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NOTICE

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, or any of their
employees, makes any warranty, expressed or implied, or assumes any legal liability of re-
sponsibility for any thied party's use, or the results of such use, of any information, apparatus,
product or process disclosed in this report, or represents that its use by such third party would
not infringe privately owned rights.
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NOTICE

Availability of Reference Materials Cited in NRC Publications |

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room,1717 H Street, N.W.
Washington, DC 20555

2. The N RC/GPO Sales Program, U.S. Nuclear Regulatory Commission,
Washington, DC 20555

3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications,
it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Docu-
ment Room include NRC correspondence and internal NRC memoranda: NRC Office of inspection
and Enforcement bulletins, circulars, information notices, inspection and investigation notices;
Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and
licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales
Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and
NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of
Federal Regulations, and Nuclear Regulatory Commission issuances.

Documents available from the National Technical information Service include NUREG series
reports and technical reports prepared by other fedent agencies and reports prepared by the Atomic
Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items,
such as books, journal and periodical articles, and transactions. Federal Register notices, federal and
state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference
proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draf t reports are available free, to the extent of supply, upon written request i

to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Com-
jmission Washington, DC 20555.
I

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process
are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available |
there for reference use by the public. Codes and standards are usually copyrighted and may be |
purchased from the originating organization or, if they are American National Standards, from the
American Nstional Standards Institute,1430 Broadway, New York, NY 10018.
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FOREWORD-
,

The concept. of -Lower Limit of. Detection -(LLD) :bs used routinely in the NRC

Radiolog'ical Effluent Technical Specifications (RETS) for measurement of radio-
*

Dlogical effluent concentrations within a nuclear power plant and of radiological

environmental samples outside of the plant. - The definition of LLD is subject-

to different interpretations by'various groups. Consequently, difficulties arose

.

when the NRC attempted to apply uniformly requirements on licensees. At
.

present, NRC relies on documentation on LLDs that has been dev' eloped by other
,

agencies for their own purposes. The material is for the most part dif ficult

to.obtain, and is only partially relatable to Technical Specifications require-

ments.

* There was clearly a need to evaluate the various concepts and interpretations

of LLD presented in the literature and to determine the current use and applica-
.

4

tion of these concepts in practice in Technical Specifications.for operating

nuclear plants. This would then lead to a NUREG/CR documentLthat could assist

the NRC Nuclear Reactor Regulation staff in defining and elaborating its position
4

relative to LLDs, as well as providing a technically sound basic document on-
,

detection capability for effluent and environmental monitoring.

,

Dr. Lloyd A. Currie of the National Bureau of Standards, a nationally -

,

recognized expert in statistics, was asked to undertake this task. At the start|
|

Dr. Currie performed an extensive literature search in the area of detection

limits. lie discussed concepts and problems of LLD with a number of individuals

|_ from licensed nuclear power plants, from contracting measurement laboratories,
I
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and from=NRC Headquarters and' Regional Offices. He then. integrated these nuclear-

power-or'iented questions'and concepts into his extensive' experience in low-level

measurement to develop.a comprehensive document covering the~problemsaof LLD in .j
. . .

1

radiological effluent and environmental measurements. I

I

It should be emphasized that this document represents Dr. Currie's inter-

pretation of the situations he encountered and.his recommendations to the NRC

staff relative to these problems. It connot of itself represent NRC policy.' It

will, h'owever, be used by NRC staff in development of potential modifications in

the definitions and bases sections of the model RETS relative to LLD. And of

most immediate importance, it'will provide a sound basis to licensees and NRC-.

. staff alike for use in clarifying. thoughts and-writings in the area of detection

capability of radiological measurement systems.-

t

Frank J. Congel, Chief
Radiological Assessment Branch

.

Charles A. Willis, Leader
'

Effluent Treatment Section

g NRC Division of Systems ' Integration

L
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i

-A manual is provided;to define and illustrate a proposed.use of the Lower'
~

' ' ~

Limit _of' Detection'(LLD) for~ Radiological' Effluent and Environmental Measure--

:The manual'contains a--review of informatiEn regarding LLD p.actices ,i ments.

gained from site visits;'a review of the literature and a'' summary.)f basic

principles; underlying the concept of detection in Nuclear and Analytical
4

Chemistry;.a. detailed presentation of the,. application of LLD principles to>

a range'of problem categories (simple counting to multinuclide' spectroscopy),

including derivations, equations, and numerical examples; and a brief exami--

[ nation of related issues such as reference samples, numerical quality' control,

1

and instrumental limitations. An appendix contains a summary of notation

and terminology, a bibliography, and worked-out examples.
;
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EXECUTIVE SUMMARY j
i

.

ThisIdocument-. defines andLillustrates a proposed use of the concept of

- Lower Limit. of Detection (LLD) for. Radiological Ef fluent 'and Environmental~

,

Measurements. :It contains a review of.information regarding LLD practices-

.

gained from nuclear plant-site visits, a review of the literature and a

- summary of basic principles underlying the' concept .of: detection;in Nuclear.

and Analytical Chemistry, and a detailed presentation of the application of '
.

. ,

LLD principles to a range of problem categories.(simple counting.to multi-

nuclide spectroscopy), including ' derivations, equations, and numerical -

examples. It also contains a brief examination of related issues such as
i

reference samples, numerical quality control, and instrumental limitations.

An appendix contains a summary of notation and terminology, a' bibliography,

I and worked-out examples,
i

4

The detection capability of. any measurement process (MP) is one of
!

its most important performance characteristics. When one is concerned with

pressing an MP to its lower limit or with designing an MP to meet an extreme

measurement requirement, an objective measure of this capability is just as

b important for characterizing the MP as is the more commonly understood

characteristics " precision" and " accuracy." As with these other characteristics,-
'!
! -

the detection capability cannot be specified quantitatively unless the MPcis4

. rigorously defined.and-in a state of control. In the monitoring environment,

for low levels of effluent and' environmental radioactivity associated with

the operation of nuclear power reactors, MPs must be capable of detecting the
i

.

~ relevant radionuclides at' levels well below those of concern to the public
l

: health and safety.
!

vii
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Much confusion surrounds the, nomenclature, formulation, and assumptions j

. associated with this.important measurement process characteristic. For the

. purposes of this document'the term." Lower Limit of Detection" (LLD) is used

to: describe the MP characteristic, and the same terminology, with appropriate

adjustments f or scale and dimensions . is applied to amounts of radioactivity,

concentrations, release rates, etc. In short, the same notation, LLD, is used

as a universal descriptor for all of the MPs in question. The assumptions

and mathematical and numerical formulations underlying LLDs are treated

explicitly, and the practical usage (and limitations thereof) is illustrated

with appropriate numerical examples. In particular, the special opportunities

and pitfalls associated with " Poisson counting statistics" are duly noted.

Section I of the report provides an introduction-that sets the stage for

the technical sections that follow. Considerations that enter into an NRC

Technical Position on LLD are recorded, including theoretical background,

technical issues, policy issues, and implementation and documentation. High-

lights from site visits are next presented, providing perspective on the

problems and actual practices regarding LLD from the viewpoints of: the NRC

(regional offices and inspectors), a trade association, nuclear utility labo-

ratories, the EPA cross-check laboratory, and contracting laboratories.

The primary historical and theoretical background on detection decisions

and detection limits is presented in Section II. The lack of and need for

uniform practice, which was ascertained during the site visits, is underlined

in the historical review of the literature. The basis for the approach to

viii
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' LLD' adopted here, hypothesis testing, is outlined in some detail. . This.iss
,

followed by:an examination of several crucial issues of general concern such

as the role of detection decisions,.the meaning of a priori in the case of^

interference, the treatment of systematic error, and the calibration func-
-

tion. The basic concepts are next applied to radioactivity, and to specific

issues related to the blank, counting technique,_ measurement process design

(to meet the requisite LLD), quality in communication and monitoring (control),

and the increase requir2d in LLD to meet the demands of multiple' detection

decisions.

Section III builds on the theory developed in Section II. Basic and

simplified formulations are presented in " stand-alone" form, with sufficient

notes, that they might be adapted for use in Radiological Efluent Technical*

Specifications (RETS). The heart of Section III comprises detailed algebraic
,

reductions of the general equations for a variety of radioactivity measure-

ment situations, ranging from " simple counting" to multicomponent spectroscopy.

The treatment of extreme low-level counting is illustrated, as well as ordinary

Poisson error treatment and systematic error treatment in relation to the LLI

The Appendix includes a condensed summary of notation, an index to the

tutorial notes in Section III, a more extended literature survey and biblio-
4

graphy, and' worked-out numerical examples.

'
.
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.I. INTRODUCTION

Introductory Remarkl.

.The detection capability of any measurement process (MP) is one of its
,

most.important performance characteristics. When one'is concerned with

pressing an MP to its lower limit or with designing an MP to meet an extreme

measurement requirement, an' objective measure of this capability is just as

important for characterizing the MP as is the more commonly understood

characteristics " precision" and " accuracy." As with these other characteris-
i

tics,- the detection capability cannot be specified quantitatively unless the
.

MP is rigorously defined and in a state of control. (Thus, a secondary issue

of major importance is the quality control of the measurement procedure.) In

i the monitoring environment -- in the present ' case, for low levels of effluent

and environmental radioactivity associated with the operation of nuclear
!.

. power reactors -- HPs must be capable of detecting the relevant
!

radionuclides at levels well below those of concern to the public health'and

; safety. (This need may be contrasted with others where, for example,

j adequate detection capability may be required to monitor biological .condi-

!

| tions, natural hazards, industrial processes and materials properties,

international agreements, etc.)

Much confusion surrounds the nomenclature, formulation, and assumptions4

i

{ associated with this important measurement process characteristic. For the

| purposes of this document, we shall somewhat arbitrarily select the term

i

,

" Lower Limit of Detection" (LLD) to describe the MP characteristic, and we
]

[ shall apply the same terminology, with appropriate adjustments for scale and-
I

,

dimensions, to amounts of radioactivity, concentrations, release rates, etc.
,

|

| -- in short, we shall use the same notation, LLD, as a universal descriptor
i

I In this report reference numbers are placed in parentheses and special
numbered notes (preceded by series letter A or B),'in brackets.

t

_ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ . . . ._
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for all of .the MPs in question. The assumptions and mathematical and

numerical formulations underlying LLD's will be treated explicitly, and the

practical usage (and limitations thereof) will.te illustrated with

appropriate numerical examples. In particular, the special opportunities and

pitfalls associated with " Poisson counting statistics" will be duly noted.

B. Plan for the Report

The objective and background for an NRC Technical position (following

section) sets the stage for this report-manual on LLD. Next, perspective is

given on the problems and actual practices from the viewpoints of: the NRC

(regional offices and inspectors), a trade association, nuclear utility

laboratories, the EPA cross-check laboratory, and contracting laboratories.

The primary historical and theoretical background on detection decisions

and detection limits is presented in section II. The iack of and need for

uniform practice, which was ascertained during the site visits, is underlined

in the historical review of the literature. The basis for the approach to

LLu adopted here, hypothesis testing, is outlined in some detail. This is

followed by an examination of several crucial issues of general concern such

as the role of detection decisions, the meaning of a priori in the case of

interference, the treatment of systematic error, nnd the calibration func-

tion. The basic concepts are next applied to radioactivity, and to specific

issues related to the blank, counting technique, measurement process design

(to meet the requisite LLD), quality in communication and monitoring

(control), and the increase required in LLD to meet the demands of multiple

detection decisions.

l

i
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Section III builds on the theory developed in section II. Basic and 'l

' simplified formulations are presented in " stand-alone" form, with sufficient

notes, that they might be adapted for use in Radiological Effluent Technical

Specifications (RETS). (This led to some necessary redundancy with ideas

presented in section II.) The heart of section III comprises detailed

algebraic reductions of the general equations for a variety of radioactivity

measurement situations, ranging from " simple counting" to multicomponent

s pectroscopy. The treatment of extreme low-level counting is illustrated, as

well as ordinary Poisson error treatment and systematic error treatment in

. relation to the LLD.

The Appendix includes a condensed summary of notation, an index to the

tutorial notes its section III, a more extended literature survey and
,

bibliography, and worked-out numerical examples.

C. Considerations for an NRC Technical Position

1. Objective of the NRC Position

Adequate measurement capabilities for ef fluent and environmental

radioactivity are required to assure the safety of the public, as put forth

in 10 CFR Parts 20 and 50 which mandate appropriate radiological effluent and

environmental monitoring programs. In order to assure adequate detection

capability for radionuclides to meet these requirements, the NRC has

established numerical levels for Lower Limits of Detection (LLD) which are

consistent with a sufficient capacity for detecting ef fluent and environ-

mental radionuclides well below levels of concern for the public health and

safety. For such LLDs to be meaningful and useful, they must (a) be soundly

based in terms of measurement science, and (b) they must be accepted,

understood, and applied in a uniform manner by the community responsible for

i

|
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performing'and evaluating the respective measurements. These limiting valuess

'as LLDs become part of the Operating License of a Nuclear Power-Plant through: :!
.

.the Ra'diological Effluent' Technical Specifications-(RCTS) of the operating-

license.

r

2. Theoretical Background

IA firm basisIror' evaluating LLDs.is given by'the statistical theory of

hypothesis testing, which recognizes that the issue of detection involves a
'

|

decision (" detected," '"not detected") made on .the basis of an experimental

observation and an appropriate test statistic. Once the decision algorithm

has lbeen defined, one can evaluate the underlying detection capability (LLD)

of the measurement process under consideration. Arbitrary rules for defining

LLD's which do not have a sound base (such as hypothesis testing) yield LLD's
i

with little meaning and needless incomparability among laboratories. The

system for computing and evaluating LLDs to be recommended for effluent and

environmental radioactivity measurement processes, is based on exactly the

L same principles which underlie more commonly used and understood confidence

intervals. Key quantities which arise in the approach to LLDs are the

probabilities of false positives (a) and false negatives (B) - both generally

taken to be 5%.

3 Technical Issues

e The adopted terminology (notation) to reflect the measurement

(detection) capability shall be "LLD," and it shall refer to the intrinsic

detection capability of the entire measurement process - sampling through

data reduction and reporting.

.

s



An LLD.for simply one stage of the measurement process, such as Y-ray

spectroscopy or 8-counting, may in some instances be far smaller than the

overall LLD; as a result, the presumed capability to detect important levels

of (e.g.) environmental contamination may be much too optimistic.

e The LLD shall be defined according to the statistical hypothesis

testing theory, using 5% for both " risks" (errors of the first and second

kind), taking into consideration possible bounds for systematic error. This

means that the detection decision (based on an experimental outcome) and its

comparison with a critical or decision level must be clearly and consciously

distinguished from the detection limit, which is an inherent performance

characteristic of the measurement process. (Note that physical non-

negativity implies the use of 1-sided significance tests.)

e Both the critical level and the LLD depend upon the precision of the

measurement process (MP) which must be evaluated with some care at and below

the LLD in order for the critical level and LLD to be reliable quantities.

Information concerning the nature and variability of the blank is crucial in

this regard. (For a=S, and symmetric distribution functions, LLD = twice the

critical level, numerically.)

e Given the above statistical (random error) bases it is clear that

the overall random error (o) of the MP must be evaluated -- via propagation,

replication, or " scientific judgment" -- to compute a meaningful LLD.

" Meaningful," as used here, refers to an LLD which in fact reflects the

desired a, 8 error rates or risks.

e A great many assumptions must be recognized and satisfied for the

LLD to be meaningful (or valid). These include: knowledge of the error

distribution function (s) (they may not simply be Poisson or Normal): consid-

5
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eration of all sources of random error; reliable estimation of random errors

and appropriate use of Student's-t and careful attention to sources of

systematic error,

e Systematic error derives from non-repeated calibration, incorrect

models or parameters (as in Y-ray spectroscopy), incorrect yields, efficien-

cies, sampling, and " blunders." Bounds for systematic error should always

be estimated and made small compared to the imprecision (a), if possible.

Systematic calibration and estimation error may become a very serious problem

for measurements of " gross" (a,8) activity where the response depends on the

relative mix of half-lives and particle energies.

e Control of the MP also is essential, and should therefore be

guaranteed by both internal and external " cross-check" programs. External

cross-checks should represent the same type (sample matrix, nuclide mixture)

and level of activity as the "real" effluent and environmental samples

including blanks for the " principal radionuclides", and the cross-checks

should be available " blind" to the measuring laboratory. Note that without

I adequate control or without negligible systematic error. LLD loses meaning

in the purely probabilistic sense. The issues of setting bounds for residual

systematic error and bounds for possibly undetected activity under thcoe
t

circumstances both deserve careful consideration, however.

| e Radionuclide interference (and increased Compton baseline)

necessarily inflates the LLD, and must be taken into consideration quantita-
|

| tively. The use of "a priori" and "a posteriori" to refer to this issue is
|

( strongly discouraged, because of needless confusion thereby introduced
!

involving another usage of these terms (related to detection decisions and

LLD). 1

|
| \

i

|

|

|
I
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e Reporting practices are crucial to the communication and

understanding of data (as well as the validity of the respective LLD). This.

is a special problem for levels at or below'the LLD, where sometimes even

negative experimental estimates obtain. Full data reporting is recommended,

from a technical point of view, to alleviate information-loss and the

possibility of introducing bias when periodic averages are required. (Also,

policy on uncertainty estimates and significant figures is in order.)

4. Related Policy Issues

e Once defined and agreed upon, a uniform approach to LLD, statement

of uncertainty, QA assessment (external), and data reporting should be

established.

e Issues involving interference (and LLD relaxation) and reliance only

on Poisson counting statistics (vs adequate replication and full error propa-

gation) must be settled. Other factors such as branching ratios /Y-abundance

should be considered in setting practically-achievable nuclide LLDs.

e Significant distortions which could arise from: a) " gross" (a,8)

activity measurements, b) sampling systematic errors, and c) concealed

software and bad nuclear parameters must be highlighted and controlled.

(Institution of an external data " cross-check" QA program, as the IAEA Y-ray

intercomparison spectra, may be one fruitful approach to the last problem.)

Difficulties between scientific jgs public (political) perceptionse

connected with " detected" jys "non-detected" radionuclides especially in

reporting contexts need to be addressed.

7
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e 'Means for dealing'with situations where'the purely statistical'

i

assumptions underlying LLD may not'be satisfied must be: defined. (That is one. j

purpose of the present report. See section II for a catalog of assumption

l
difficulties.)- !

Implementation and Documentation-

A potential. basis for the'NRC position.for effluent''and' environmental'

radioactivity measurement process LLD's is developed and illustrated in this

technical manual (NUREG/CR document). This document is designed to provide-

I explicit information on a) the history and principles of LLD's; b) practices

.actually encountered in the field at the time of this study; .c) simple, clear

yet accurate exposition and numerical illustrations of detection decisions

and LLD use, as applied to effluent and environmental radioactivity measure-

ments; and d) special technical issues, data, and bibliographic material (in:
l

the Appendix).

D. Highlights from Site Visits

The highlights developed from a series of site visits are presented as a

_

synthesis of information gained rather than as a report concerning individual
L

discassions or specific organizations. The information represents my under-
,

|

| standing from numerous discussions; the more critical issues may need to be
I I

appropriately verified. Also, it should be understood that the contents in
|

1 i
i this section constitute a record of my observations, not necessarily an j

indication that all parts are directly applicable to the Radiological !
1

! I

| Effluent Technical Specifications (RETS). (e.g., parts 12 and 13). |

i-

|

.|

!

i
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' Organizations and Individuals Visited (besides NRC-Headquarters)

4 November 1982 Dave Harward, Atomic Industrial Forum, Bethesda, MD

19 November 1982 Dave McCurdy, Yankee Atomic Electric Company,
Framingham, MA, (Environmental Lab)

5 July 1983 Jerry Harada (Inspector), NRC Region V Office,
Walnut Creek, CA

6 July 1983 Roger Miller, Rancho Seco Power Plant, CA (accompanied
by J. Hamada)

7 July 1983 Rod Melgard, EAL, Inc. (Contracting Lab.), Richmond, CA

11 July 1983 Art Jarvis and Gene Easterly,
EPA - Las Vegas (cross-check program)

12 July 1983 Jim Johnson, Colorado State University, Pt. Collins
(measurements for Ft. St. Vrain plant)

9 August 1983 Mary Birch and Boo Sorber, Duke Power Co., Charlotte, NC
(HQ, and Lab at Oconee site)

21 November 1983 Carl Paperiello, (Marty Schumacher, Steve Rozak,
Al Januska) NRC Region III Office, Glen Ellyn, IL

22 November 1983 Leonid Huebner, Teledyne Isotopes Midwest Lab (formerly
Hazelton), Northbrook, IL

9 February 1984 Tom Jentz, John Campisi, Joan Grover,
Charlie Marcinkiewicz, NUS (Contractor Lab.), Gaithersburg,
MD

1. Need and approach for the planned LLD manual. With one exception, I

came away from the several meetings with strong support for the aim of

producing a manual. Most of those I visited (especially in the West) were

quite anxious to receive a copy of the manual as soon as possible. Valuable

suggestions included requests to treat the basic concepts in a unified and

complete, yet easy-to-grasp manner (e.g., hypothesis testing). One approach

would be to include mathematics and appropriate reprints in an appendix, but

worked-through exampics in the text.
!

9

_ _ _ _ _ _ _ _ - _ - - _ _ - _ _ _ _ _ _ _ _ - _ _ - _ .



, ,

,

2. Diversity of training and experience. This was evident in speaking

to personnel ranging from lab technicians to lab managers to company offi-

cials. This diversity underlines the approach; called for in item 1. (It was_ j
-|

noteworthy that some of the younger and least professionally trained person- I

nel raised some of the most penetrating questions about assumptions,

alternative approaches to data presentation.and evaluation, etc.)

3. _ Diversity of terminology, usage, etc. Despite the definition and

references provided by the NRC for LLD -(e.g. , throughout NUREG-0472), there

-exist a number of popular terms (LLD, MDA, MDC,~...) and_ formulations (2o,

S/N, hypothesis testing risks, ...) to the detection limit, and an even wider

diversity of assumptions recognized (or ignored!) in practice. Some of the

more pertinent practices (re: assumptions) will be noted below.

4. Policy Issues. I found many opportunities to become enmeshed in

policy. Despite my advance letter (and copy of the " manual" - work state-

ment), certain of my hosts seemed to believe I could speak to policy'-- i.e. ,

what numerical values should be established for LLD's to be met. I explained

that this was not my charge, though in certain special cases -- e.g., the

effects of seiere radionuclide interference on detection capabilities -- it

might be useful to consider the impact of policy on practical cperations (see
.

below).

In certain cases, I was advised that the " process environo nt" mandated

special approaches to the evaluation and reporting of data, because of large

sample loads and the need for rapid decisions. Under some circumstances this

could imply (statistically) conservatively biased reporting of data, and

non-specific radionuclide measurements (e.g., B counting of. separated iodine j

I

|

I
,

i

10

)



m,

s

'

; ..

The issue I. isotopes, and treating the result as though it were all I-131).

'perce'ive~is whether it is' appropriate to-recommend different LLD and/or
~

' reporting schemes depending on how busy a laboratory is. i

1

L5. Detection decisions. ILfound the full range of criteria: from

decisions based'on the critical level.(such that i and 8 risks each equal 5%)'

;to'those based on LLD (such that " false positives" are infinitesimal, but

"falso negatives" are 50%!). I have-the impression that the decision-making

aspect'of detection -- i.e., the. actual testing of the null hypothesis -- is-

not fully appreciated by all workers.

6. Reporting (when "not detected"). Such results are equated to zero,
.

4 some upper limit, LLD, LLD/2, etc. All of those I spoke to recognized that

averaging (e.g., over a quarter) of such reported results is either imposs-

; ible, or positively or negatively biased. I sensed some resistance to
' reporting the observed value (especially when it is negative), though-one

group preserves sue' information for unbiased averaging; but then reports the
.

j same data in two different -(biased) ways according to the policies mandated

; by different users of the data! Also, during one visit, I learned that

; company (?) policy leads to different ways of reporting "non-detected"

results between environmental and effluent measurements.
.

7 Radionuclide interference. A significant issue. It is (universally)

| recognized that interference increases detection limits (all else being

equal). The same example (Ce-144 with very large amounts of Co-58. -60) was
;

raised during two visits, but with somewhat different (policy) perspectives.'

i

In the one, it was suggested that prescribed LLD's be relaxed (or possibly
4

remain " pure solution" or interference-free LLD's) when excessive'

!

!

!

11,
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interference is present because the relative contribution of Ce-144 (here) is

trivial by comparison. In the other, caution was suggested, because even a

small amount of Ce-144 could be an important indicator for transuranics.

8. Blank, background, baseline. Some ambiguity was noted in the current

proposed NRC definition for LLD. Also, the question of real background

variability and number of degrees of freedom (and Student's-t) were raised.
,

One laboratory always assumes Poisson-background variability, or, if this

seems exceeded, it shuts down until a problem is identified or expected

behavior resumes.

9. Non-counting errors. Almost universally it was recognized that

actual probabilities of detection (and LLD) depend upon all sources of error,

yet nearly all workers are using Poisson statistics only (for the blank and

sample, and ignoring errors for efficiency or chemical yield estimates) to

calculate LLD. Since the Relative Standard Deviation =30% at the detection

limit (a -8 =0.05), this approximation is partly justified. Severe errors,

however, in blank estimates, detection efficiency (e.g., for cartridge

filters and for gross-a deposits), and sampling 2 can seriously invalidate
,

this (Poisson) approximation. Several of the groups are working very hard to

estimate (and minimize) non-counting error, but there is little movement

toward considering its (necessary) effects on the LLD.

One interesting suggestion (mutually developed) was to distribute blind

cross-check samples having radionuclide concentrations sligholy (e.g., 50%)

higher than the intended (NRC) LLD's to assess the actual significance of

non-Poisson error on detection capabilities. (This might also include blanks

of " principal radionuclides" to test a-risk performance.)

...............

2 ampling Errors -- e.g., involving soil particles, coolant containingS
sediment, single ion exchange beads, -- were in some cases shown to be

|
overwhelming, reducing all other errors to insignificance. i

l.

12
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1 10. Modeling rather than direct measurement. Knowing'(at least

approximately) relative dilution factors (laboratory, atmosphere, coolant

systems) in many cases allows more accurate inferences to be drawn-from

relatively high level measurements followed by calculation -- as opposed to
;

[ . direct measurements of the diluted (dispersed) material. (This is followed,
4

e

for example, in preparation of the EPA cross-check samples.)
i

11. QA and cross-check samples. I found some excellent intralab QA, but

at' the same time I found extremely strong support for external cross-check

programs -- especially because of the wide range of (e.g.) contractor or
I

; technician capabilities. The EPA sample program is valuable (essential, ,

'

!

| since there is no other) for this purpose, but'several useful extensions were~

suggested: increased frequency (perhaps suited to QA performance), truly
[

" blind" samples (EPA's are clearly recognizable, and of ten given special'

j attention), and samples which are closer in composition and level to those

| encountered in the various programs (environmental, effluent, waste).
!
'

(Splits, especially with mobile laboratories serve effluent QA well, but

availability or "known" samples would be valuable.)

{
12. "De minimis" reporting. Media other than air and water are in many

|

! , cases not covered by specified LLD's (e.g., oil, charcoal, ...), so that any

!detected activity must be reported. Apparently, the situation is analogous

l
: to that arising from one interpretation of the Delaney Amendment, where

:
I

non-detection is taken equivalent to absence; so that reporting requirements

) (and public perceptions) are strongly affected as measurement techniques [
,

j improve. ;
"

i
i

I

i

i

*
13
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13 Uncertainties,' reporting levels, litigation. In view of measurement

uncertainty, one of ten meets the question of whether an-experimental observa-

tion implies that the true .value exceeds or. is less than a specified regula-

tory limit. The issue _is perhaps compounded when one considers a summation,

n f concentration )
I i

(reportinglevelj|i
21

1

as on page- 5 of the NRC Radiological Assessment Branch Technical Position

(November 1979). Both the magnitude of the total errors and the number of

terms (n) impact this matter. Actions and legal defense can be rather complex

as a result; so cautious attention must be given to matters of relative

" costs", experienced judgment on the part of inspectors, burden of proof,

etc.

14. Continuous and continual monitoring; averaging. A difficult area:
'

varied equipment age or quality can make continuous monitors difficult to

integrate reliably, and errors in estimated time constants and flow rates can

be substantial. Continual monitoring (for period averaging), on the other

hand, aust be done with care to avoid missing non-monotonic behavior

(excursions, ...). Random variations may be approximately normal (gaussian)

close to the emission site, but log-normal when mixed in the environmental

system. Averaging procedures (arithmetic vjs. geometric mean) may differ

accordingly. (Weighted averaging is yet another topic.)

15. Multiple detection decisions. Basing all decisions on a = 5%

(single observation false positive risk) means that on the average 1 in 20

blanks will be reported as detected. Adjustment so that, e.g. in a multi-

component Y-ray spectrum, there is only a 5% change of any false positive,

was a seemingly esoteric matter noted by very few of those I visited.

t

.*
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'Als'o, not widely appreciated was the too ' liberal nature of an outlier1

' rule (Chauvenet's criterion) being sometimes employed. ->

16. ' Hidden algorithms,' bad parameters. A widespread, but not too widely

appreciated problem is the nature and lack of access to computer programs

used for Y-ray spectrum evaluation. A number of parameters (e.g., branching

ratios) both'in certain nuclear. data compilations and in some " canned"

software routines are wrong. The absence of adequate software documentation

and the inaccessibility of source code has caused moderate difficulties-in.

'several-laboratories --' problems which may be exacerbated for small activi-

ties (i LLD), for high levels of interference (base-line shape,

pile-up, ...), and for multiplets. One interesting test that was described,

revealed software artifacts (algorithm switching) when computer-output was

examined for a series of sequential (know dilutions of a given radionuclide

sample. (Ncte the similarity to the classic, Standard Addition Method to

reveal or compensate chemical interference.)

II. BASIC CONCEPTSI

In order to meet the underlying objective of defining LLD for use :in

Radiological Effluent Technical Specifications (RETS) it is necessary first -

to adopt a uniform and reasonable conceptual approach to the specification of
j

i

detection capability for an MP, and it is then necessary to set forth a-

carefully-constructed and consistent scheme of nomenclature and mathematical

statistical relations for' specific application to the range of problems

-encountered in measurements of effluent and environmental radioactivity. Our-

goal in this section is to outline the preferred conceptual-approach together

with a reasonably-complete catalogue of assumptions and means for. putting it
<

_______________

I See Appendix A for selected nomenclature and terminology.
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- into-practice. , Detailed reduction of the~ basic formulas presented in.this

section|will take place in the next.section, for the several common cate -

- gories of nuclear and radiochemical measurements and-explicit numerical-

examples will be given in the~ Appendix. - Let us begin with a glance' at the

. past. |

|

'

A.- Overview and H1'storical Perspective

Some appreciation for the evolution of' methods for expressing detection

Lcapabilitysmay be gained from-Table l'. In this table,.which refers'only to
,

detection capability. (not detection decision-levels), we. observe that the

' development of. detection terminology'and formulations for Nuclear and

Analytical Chemistry covers an extended period of time and that it has been,

characterized by diverse and non-consistent approaches. (Besides alternative.

- terms for the same concept, one occasionally finds the same term applied to

different concepts -- viz., Kaiser's "Nachweisgrenze" which refers.to the

test or detection decision level,-is commonly translated " detection limit";

yet, in english " detection limit" generally relate's to theLinherent detection
P

capability of the Chemical Measurement Process (CMP).) For-information

I concerning the detailed assumptions and formulations associated with'the

I terms presented in Table 1 the reader is referred to the original litera-

ture. The. principal approaches, however,'are represented by: .(a) Feigl'

-- selecting a.more or less arbitrary concentration (or amount), based on

expert judgment of the current state of the art; (b) Kaiser and Altshuler
'

-- grounding detection-theory ~on the principles of hypothesis testing; (c) St.;-

i John -- using signal / noise (assumed " white") and considering only the error
a

e

a

,
16
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|
|

'offthe first' kind; (d) Nicholson -- considering detection from the l
t

~

perspective of a specific assumed probability! distribution.(Poisson); (e)
<

Liteanu -- treating detection 1n terms of'the directly observed frequency
~

j distribution, and (f) Grinzaid -- applying the weaker, but more robust
'

approaches of non-parametric statistics to the problem. The widespread"

,

practice of ignoring the error of the.second kind is epitomized by Ingle in
i

his inference that.it is too complex for ordinary chemists to use and

comprehend! Treatment of detection in the presence of possible systematic
(

and/or model error is considered briefly in Ref. [33]. .

TI
Table 1. Historical Perspective -- Detection Limit Terminology

Feigl ('23) - Limit or Identification [Ref. 1]
Altshuler ('63) - Minimum Detectable True Activity [Ref. 4] !

Kaiser ('65 '68) - Limit of Guarantee for Purity [Ref. 2]
1

St. John ('67) - Limiting Detectable Concentration (S/Nrms).[Ref. 3]
Currie ('68) - Detection Limit [Ref. 5]
Nicholson ('68) - Detectability [Ref. 36]

IUPAC ('72) - Sensitivity; Limit of Detection...[Ref. 22,'23]

Ingle ('74) - ("[too] complex. . .not common") [Ref. 51]4

Lochamy ('76) - Minimum Detectable Activity [Ref. 7],

Grinzaid ('77) - Nonparametric. . . Detection Limit [Ref. 44]
Litea',u ('80) - Frequentometric Detection [Ref. 31]

i

'

A condensed summary of the principal approaches to signal detection is

presented in Table'2. The hypothesis testing approach, wh.ich this author-

favors, serves also as the basis for the more familiar construction of.

| confidence intervals for signals which are detected [83]. For more informa-
!

tion on the relationship between the power of an hypothesis test and the

!
!

i
'
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significance levels and number of replicates (for normally-distributed data)

the reader may rer?r to OC (' Operating Characteristic) curves as compiled by

Natrella [84]. There it is seen, for example, that 5 replicates are neces-

sary if one wishes to establish a detection limit which is no greater than
,

1

20, taking [a] and [B] risks at 57, each. (Note the inequality statement;

this arises because of the discrete nature of repiteation.) Once we leave

the domain of simple detection of signals, and face the question of analyte

or radioactivity concentration detection, we encounter numerous added

Table 2. Detection Limits: Approaches, Difficulties

Signal / Noise (S/N) [Ref's 3,29,30,86]

Detection Limit 5 2N _p, 2Nrms, 3s (n-16-20)p

[Nems = N _p/5.]p

K: white noise assumed, 8-error ignored

AC: must consider noise power spectrum, non-stationarity,

digitization noise

Simple Hypothesis Testing [Ref's 2.5,26,56,83]

$=y-5

g: significance test (a-error) - 1-sided confidence interval

g: power of test (S-error) - Operating Characteristic Curve

Determination of SD requires accurate knowledge of the distribution

function for $
If $ - N(S, 2o ), and a, B-0.05, then S9 - 2SC - 3.29 o

Other Approaches [Ref's 28,85,87,88]

Decision Analysis (uniformly best, Bayes, minimax), Information and Fuzzy
set theories.

18



problems or difficulties with assumption validity. That is, assumptions

concerning the calibration function or functions -- i.e., the full analytic

model -- and the " propagation" of errers (and distributional characteristics)

become crucial. A catalog of some of these issues is given in Table 3;

further discussion will be found in the following subsection. Finally, for

more detailed summary of the relevant literature, the reader is referred to

the review and bibliography in Appendix C.
,

Table 3 Concentration Detection Limits - Some Problems

_

2 only estimated; H -test ok (ts//n), but xD is uncertaine 0 o

e Calibration function estimated, so normality not exactly preserved:

linear Fcn (observations)x = (y-B)/ e,

3 B-distribution (or even magnitude) may not be directly observed

e Effects of non-linear regression; effects of " errors in x-

and y" (calibration)

e Systematic error, blunders -- e.g., in the shape, parameters of A

[6 + A, without continual re-calibration]

e Uncertain number of components (and identity)

[ Lack of fit tests lose power under multicollinearity]

e Multiple detection decisions: (1 a)+(1-a)U

+

B. Signal Detection (principles)

1. Alternative Approaches

A necessary, first step in treating signal detection is to conslaer what

magnitude observed (a posteriori) response (gross signal) constitutes a

"

statistically significant deviation (increment, or net signal) from the

zero-level (blank or background or baseline in radioactivity measurement).

This increment, which really represents a critical or decision level (S )C

19
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with'Ehich the observed signal is compared, is derived from_the distribution

. function.for the noise.. If the noise can be considered normal (" Gaussian")
f

~ with parameter-o (standard deviation), SC is given by;a fixed multiplier I
i

times o, and the detection process becomes simply a sign'ificance test based

' on comparison of the observed with the critical signal to noise ratio.

'Certain non trivial problems arise if the noise power spectrum is not " white"- -

(Gaussian) and when the signal-'is continuous (in time) but is sampled

periodically. These issues _are treated in some depth in References indicated

in Table 2.

The test, however, is incomplete ('though widely practiced!) for our

purposes. It speaks only toLthe question of signal detection'(a

posteriori) -- i.e., the detection decision given the noise probability

density function (pdf) and an observed signal. It is important to us in that

the significance level of the test a is equivalent to the false positive

probability'or "ecror of the first kind." (That is, a equals the probability

that one would, by chance, falsely conclude that a blank contained excess

radioactivity.) This is insufficient, per se, for us to specify the detec-

tion capability or LLD, which is an a priori performance characteristic of

the Measurement Process (MP).
4

A solution is found in the theory of Hypothesis Testing, wherein we use

an experimental outcome S not simply to test for the presence of a signal but

actually to discriminate between two possible states of the system: Ho and

Hg. ,Ho and He are, respectively, the " null hypothesis" and the " alternative

hypothesis".and the critical level SC is set in such a way that an optimal

decision (in the long run) is made between the two hypotheses. As the
1

4

4

i

20
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subscripts imply,'Ho refers to samples-containing no net. radioactivity, and

Ho, to samples containing radioactivity at thesLLD. .In terms of the net

signal, H :'S=0 and H : S,SD (S being the'true, but unknown net-signal.)J 3

Two of the basic forms of Hypothesis testing require information or

assumptions that are-not generally available for simple chemical or physical~

measurements.- The first involves the use of the " Bayes Criterion" which

requires prior. probabilities for Ho and Hp, as.well as the assignment of

costs.for making incorrect decisions. In this case SC would be set to

minimize the average (long-run) cost. The second approach, which is related

to game theory, does not require prior probabilities.' Rather, it is designed

to minimize the maximum cost over the entire set of possible prior probabili-

ties. Appropriately, this is termed the " Minimax" decision strategy.
,

Lacking either costs or prior probabilities, we prefer to define detection

capability (LLD) on the basis of simple hypothesis testing (" Neyman-Pearson

criterion") which considers Ho, Hp and SC simply in terms of the probabili-

ties-of drawing false conclusions when $ is compared to S . Lucid exposi-C

tions of all three decision strategies are given in Ref's 28, 29 and 79. A

more complete development of simple hypothesis-testing for direct application

to LLD follows.

2. Simple Hypothesis Testing and the LLD
j

l[ adapted from Ref. 38] '

The basic issue we wish to address is whether one primary hypothesis

[the " null hypothesis", Ho] describes the state of. the system at the point

(or time) of sampling or whether the " alternative hypothesis" [H ] describesD

it. The actual test is one of consistency - i.e., given the experimental-

; sample, are. the data consistent with Ho, at the specified level of signifi-

2i
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;cance, a? That is the-first question,.and ir=we draw (unknowingly) the wrong

conclusion,~ it is called an error of the first kind. This,is equivalent to'a

false positive'in the case of trace analysis - i.e.','although tne (unknown)-
.i

true analyte signal S equals zero (state Ho), the analyst' reports,

" detected".

The'second question relates to discrimination. That is, given.a

decision -(or critical-) level SC used for deciding upon consistency of-the

: experimental sample with Ho, what true signal level So can be distinguished

-

C at a level of significance S? If the state of the system correspondsfrom S

D (S"S ) and we falsely conclude that it is in state Ho, that is calledto H D

an error of the second kind, and it corresponds in trace analysis to a false-+

negative. The probabilities of making correct decisions are therefore 1-a-
'

(given Ho) and 1-8 (given Hg); 1-8 is also known as the " power" of the test,

and it is fixed by 1 a (or S ) and S . One major objective _in selecting a-C D

particular MP is thus to achieve adequate detection power (1-8) at

the signal level of interest (S ), while minimizing the risk (a) of falseD

positives. Given a and S (commonly taken to be 5% each), there are clearly
,

;

two derived quantities of interest; SC for making the detection decision, and

j SD the detection limit. (If, for RETS, our concern were strictly with the

net signal rather than radioactivity concentration,-LLD would be taken

equal to S .) Figure 1 illustrates the interrelation of a, 8, SC andD

the' detection limit.

An assumption underlying the above test procedure is that the estimated
'

net _ signal $ is an independent random variable having a known distributi40n.'

(This is' identical to the prerequisite for specifying confidence intervals.)

.

.Thus, knowing (or having a statistical estimate for) the standard deviation

of the estimated net signal $, one can calculate S
'

C and S , given the form ofD

I 22
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the. distribution .and a and S. If-the distribution is. Normal with constant o,

'and a - 6 ='0.05, 30 - 3.'29 os and Sc - Sa/2. Thus,-the relative standard

deviation of the estimated net signal equals 30% at the detection limit (5).

Incidentally, the theory-of differential detection follows exactly that of
l

detection, except that ASJND (the "just noticeable difference") takes the-

place of S , and for Ho reference is made to.the base level So of the analyteD

rather than the zero level (blank). A small fractional change (AS/S)p thus

requires even smaller imprecision.

Obviously, the smallest detection '.imits obtain for-interference-free

measurements and in the absence of systematic error. Allowance for these

factors not only increases S , but (at least in the case of systematic error)D

distorts the probattlistic setting, just as it does with confidence inter-

vals. Special treatments for these questions and for non-normal distribu-

tions will be given as appropriate. Not so obvious perhaps is the fact that

SD depends on the specific algorithm selected for data reduction. As with

interference effects on So, this dependence comes about because of the effect

on os, the ctandard deviation of the estimated net signal. More explicit

coverage of these matters will be given below and detailed derivations and

numerical examples will be found in section III and the Appendix of this

report, respectively, (see also Ref. 33.).

Hypothesis testing is extremely important for other phases of chemical

and radiochemical analysis, in addition to the question of analyte detection

limits. Through the use of appropriate test statistics, one may test data

sets for bias, for unexpected random error components, for outliers, and even

for erroneous evaluation (data reduction) models (33). Because of statisti--

cal limitations of such tests, especially when there are relatively few
'I

! ~ degrees of freedom, they are somewhat insensitive (lack power) except for
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quite large effects.. For this reason it is worth considerable effort on the

~

part of the analyst to construct his MP so that it is as free from or

resistant to bias, blunders, and imperfect models as possible.

~

Figure 2 gives an illustration of the difficulties.of detecting both

~

Lsystematic error and excess random error. There we'see that just to detect

systematic error when it is comparable to the random. error (o) requires about~

15 observations; and to detect an extra random error component having a

comparable o requires 47 observations (89). In a simple case involving model

error it has been shown that analyte components omitted from a least-squares

multicomponent spectrum fitting exercise must be significantly above their

detection limits (given the correct model) before misfit statistics. signal'

the error (33). This limitation in " statistical power" to prevent

significant model error bias, especialy in the fitting of multicomponent

spectra, is one of the most important reasons for developing multidimensional

chemical or instrumental procedures and improved detectors of high

specificity or resolution.

C. General Formulation of LLD - Major Assumptions and Limitations

The foregoing discussion provides the basis for deriving specific

expressions for the LLD for signals, given a and 8, and -o as a function ofs

concentration. Before treating concentration detection limits generally, and

radioactivity concentration detection limits specifically, however,'it is

'
necessary to examine a number of basic assumptions connected with the concept

and with the MP.
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1)~. Detection Decis' ions vs Detection Limits.

:The signalfdetection limit S 18 undefined unless a or SC is defined andD -

: applied. That is, detection decisions are mandatory if detection limits (in.

'the. hypothesis testing sense)'are to be meaningful. The relatively common.

practice of equating these two;1evels (S -S ) is equivalent to setting the.C D
~

false negative risk at 50%. That is, a detection limit so defined.will'in,

fact be missed half the time! The recommended practice therefore is to take
-

a=S=0.05, in which case,
.

C " Z1-a o - 1.645.0o -(1)S c

(2)So = SC +'Z1-800= 2SC = 3 2900_

provided the standard deviation of the net signal og is known and constant

(at least up to the detection limit) and it is normally-distributed (z refers

; to the indicated percentile-of the standard normal variate.) In'Eq's (1) and

(2), ao - o3 (at S=0); this in turn equals oB.if the average value of the

blank is well-known (Ref. 5). (For " paired observations", oo - 0B/25) SC 18

used for testing whether en observed signal $ is (statistically) distinguish-
! able from the blank -- i.e. " detected"; SD represents the corresponding MP

I performance characteristic, i.e., the detection limit. Although S /SC*2D

generally, this is not universally true. A number of exceptional cases which

do occur, especially in extreme low-level counting and in nuclear

spectroscopy, are treated in section III of this manual.

,

1

-2) A Priori vs A Posteriori; Changes in the MP (Interference, ...)
i Some confusion exists in the usage of these terms which mean "before the

. fact" and "after the fact." The " fact" referred to is the experimental

! outcome -- i.e., the observation of a (random) signal S, associated ~with the

l .

The MP, which necess'arily includes the
,

'

j measurement of a particular sample.

t
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influence'of the sample on the characteristics of the measurement system is

notLthe " fact", from the perspective of hypothesis testing'~ In' order to make.

- intelligent decisions regarding S we need therefore information concerning
~

the MP characteristics, notably-os at S=0 and the variation of.os with-
'

;

concentration. This in turn is influenced by the level and nature of any. I

interfering species in the sample in question. Also, as soon as we. consider |
,

the'real quantity of interest, the concentration detection limit (xD), we

require information concerning t'e overall calibration factor for theh

particular sample; this includes the (radio) chemical yield or recovery,

detection efficiency (as perturbed by sample matrix effects: absorption and

scattering), volume or mass of the sample, etc.-

Thus prior knowledge concerning the sample in question'jjt recuired in

order to compute SC which one needs for the a posteriori test of S; it is

needed also to compute the signal and concentration detection limits (So,
4

xp) for that sample. Such prior information may be obtained in a preliminary

or screening experiment; it may be estimated from data resulting'from the

experiment, itself; or it 'may be assumed (not recommended) independent of the
J

experiment. The last approach might be taken if one were interested in " pure

solution" or ideal sample detection limits, where there is no interference,-

no matrix efrects and perfect or unvarying recoveries. A slightly less

disastrous alternative, to assume average values for such quantities or

effects, results in needless information loss. To caricature the situation,

it's equivalent to permitting the counting time to vary in a haphazard
1.

fashion from sample to sample and guessing an average time for calculating

individual counting rates. The point is: the critical.(decision) level and-

detection limit really do vary with the nature of the sample. So proper

;

,
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i assessment' of these quantities demands relevant information on each sample,

unless the variations among samples.(e.g., interference' levels) are quite

~ trivial.

Some perspective and'a suggested approach to this' matter are given in

Fig.' 3. -Here, we consider three possible outcomes for an experiment

(" experiment-a") which is designed (sample size, expected interference level

or background ' activities, counting time, etc.) according to our prior

knowledge of the MP. This prior." knowledge", which here includes the

assumption of zero interference (I-0)', we designate " prior (a)"; it leads to a

concentration detection limit xD
O

Bo. - We consider the experiment adequately designed if this. estimated

detection limit xp (actual LLD) does not exceed the specified maximum level

x'R (prescribed LLD).

As soon as the (first) experiment is performed, we. gain two kinds of-

information: new data on the MP-characteristics for the sample at hand, and

an experimental result x . The three possible outcomes (MP characteristics)a

depicted in Fig. 3 show progressively greater background- (or baseline-)

equivalent activities (B >B >Bj ) and therefore similarly increasing detection3 2

limits (xD's). For outcome-1, the posterior MP characteristics [" post (a)n].

are equivalent to our assumed prior MP-characteristics [" prior (ah,], __ i,e,

1 - Bo -- so of course the detection limit is as calculated (xD) = xp ) andB

the experiment is adequate (xD 5 XR). For outcomes-2 and -3 the posterior

characteristics differ from the' prior; there. 3 interference (B2 and B >3

B ), so the detection limit is greater. Outcome-2 still shows an adequateo

detection limit (xD 5 xR) so our task is complete --the initial design was
2

sufficiently conservative (xD
O

tolerated.
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The. third set of MP-characteristics (outcome-3) correspond to a sampleL:,

L- .having'so high a 1evel'of interference that the initial design was: inadequate~~

(xp > xR). We therefore must use this posterior information (" post (a)n). asi. _

; 3

our new prior information (" prior (b)")-to re-design the MP to yield adequate
'

characteristics (x6 15'xR), in preparatio'n for_a second-(final) experiment.
3-.

'(This is still properly _ considered "a priori" in the technical sense of

hypothesis testing until the second experimental result xb [" fact" or~

observation] has been obtained.) Such re-design can be based on any of'the
1

MP-variables under our control, such as sample size, radiochemical separation~

or concentration, or counting time. (In Fig. 3 we indicate re-des'gn simplyi

'

as an extension of counting time for relatively long-lived radioactivity.) A

1-line summary of these comments regarding sequential experiments would be

simply to state that one's posterior becomes another's prior.,

3 Continuity of Hypotheses; Unprovability

Hypothesis-testing as outlined above was dichotomous -- that is, we

referred to the null hypothesis (Ho: S=0) and the detection limit hypothesis

(H : 3"S ) only. In fact, S 's a continuous quantity which may take on anyDD

value from zero and some'large, reasonable upper limit.1 What takes place

when we compare $ with SC and make the detection decision is-to. conclude that

one or the other of our two hypotheses (Ho, H ) is quite unlikely, or moreD

correctly that such a' result $ is quite unlikely (here, 55% chance of

_______________

'l A : logician might object to this _ statement on the basis that atoms are
discrete; and such an argument might even seem relevant if we had, say,
100 atoms of a short-lived radionuclide and a perfect (100% efficient)
detector. We could count them all. Even here, however, the "S" that

as scientists we're interested-in is not the number of' atoms in that
.particular sample, but its expected value -- such as the long-run
-average that would arise from repeated, identical activation analyses.

,
_

[ 'The' underlying'' issue relates to compound probability distributions; a
treatment for the case of radioactivity is given in Ref. 63
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occurring);given H0 or H . .The other hypothesis (Ho if S S S ,f HD if S'> S )D C C

- is said.-to be- consistent with the observation, but it is .byf no means proved.

An -Infinite number of intermediate values of S are also consistent! (The I

1

most likely is S = $~) This bit of logic may seem trivial and obvious;to-.

some, and subtle and irrelevant to others, but there is one curious and.
;.

important consequence.-The habit of ." accepting"= the hypothesis that . is not-

rejected, sometimes leads to . biased : reporting of data.- For example, if $ $

LS , the value' reported may be zero; the other ' extreme is reporting it-asC
i

being at.the detection limit, if S >'S .. A further comment on this matter isC

given in the subsection on Reporting of Results (section II.D.4).. (See also

note A13.)

4. The Calibration Function and LLD.

Since our concern is with the detection limit for radioactivity concen-

. tration -- i.e., the " lower limit of detection" (LLD) -- we must.go beyond
;

the above exposition on signal detection. If the calibration function,

relating response y to concentration x is linear,

(3)y = B + Ax + ey

where B. represents the blank; A, the calibration constant or factor; and e ,-.y
s

the error in the observation y.
,,

,

I

1

.
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a
.The estimated net signal is.

|,

S-y-S . (4).
.a

-

. . .
.

IB being an' independent estimate for B; and the estimated concentration |

'

is.

x --(y - 8)/I. (5)-

' being an independent estimate for A. (Here, " independent" means 4

-independent of the observation y . Interdependence [ correlation] or s'and i.
~

always :results, of course, when. they are both estimated from the fitting of a

single set of calibration data.)

Ideally we would next determine o as a function of x either via
. x

replication,.or by error-propagation. Complete replication of the entire

calibration and sample measurement process for the full range.of sample

f matrixes and interfering activities to yield and adequate number (n) of

replicates: xi for i = 1 to n spanning the ' full concentration range of

concern (from zero to - LLD) wou'd be a very large task. (For the estimated

standard deviation to have a relative uncertainty (95% CI) or 2105 for.

L

example would require about n = 200 replicates at each concentration!) We

favor therefore error propagation, reserving occasional full replication for

control of quality and blunder identification.

Error-propagation is straightforward for linear functions of.normally-

distributed random variables. Thus.

2VS*Vy+VB=a (6).
S

where V; represents the variance of the subscripted quantity. Since E(y) (the

expected value of y) equals S + B,

o - V (S=0) = VB+VB (7)V 3

33
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Eso,.if-the observations leading-to B and'y are equivalent, Vo ='2VB 0r .~

0o|= aB/2 as noted earlier.' Calculation of.SC and Sp. follow'immediately

-(assuming-still Normality).

- With the introductio'n of a random variable in the denominator-of Eq. 5,

complications set in'beca'use we now have'a non-linear function (ratio) of

random' variables. If 4A (relative standard deviation or'RSD of'A)-is quite

small, the distribution of E is only slightly skew; however, the appropriate

error' propagation formula (not shown), which itself is'an approximation,

1 contains the unknown quantity A. The consequence is that.both xC and xp are
,

themselves uncertain. (Or, if we choose values for xC and xD, the hypothesis

testing errors a and 8 are uncertain.) Full treatment'of"this matter is

beyond the scope of this document, but further details may be found in.

Ref. 76.

The approach adopted for LLD ourposes, which we label "S-based" is-

simpler in concept and straightforward in application. -Tha't is,'we treat the

detection decision strictly in the signal domain, using S and S . TheC

; corresponding signal detection limit SD is then transformed into the "true"

concentration detection limit xD using the true calibration factor A, which
,

we do not know.
,

xD = SD/A " (Z1 aCo + Z1-BOD)/A -(8)

0Using bounds for A; A i z1-y/2 A, we can then calculate a confidence interval

for xp. Taking a conservative viewpoint, we go one step further; namely

Am " k-Z1-Y/20A is inserted in the denominator of Eq. (8). The resulting
i
! quantity is an upper limit for xD for S - 0.05.. (A dual interpretation,

which will not be discussed here, defines xp in conjunction with an upper

limit _for S. a, of course, remair.s at 0.05; and neither SC nor So suffer
<

from the-A-uncertainty, because they are strictly signal-based. When A is

34
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not randomly' sampled, the uncertainty in xD no-longer represents a "confi-

dence" interval. :It must be viewed as a systematic error.. interval. ' Finally,

if this conservative estimateL(upper limit) for xp;is less than the
,

prescribed regulatory limit (xR),3the objective of RETS;will have been met.

Recognizing the distinction between'xR -- the maximum. permissible.LLD, or

; " regulatory limit", and'xp - the actual LLD or." concentration detection

limit" for a particular' sample and measurement technique, and'the RETS

requirement:

xp 5 'xR (9)'
,

' it becomes interesting to consider.inequalit'y approaches. 'One'such

inequality,- forced on us because_of-the non-linear relation-Eq. 5, has

already been useful in conjuncion with Eq. 9. The crucial point.is that
,

Eq. 9 removes the necessity that xD be known exactly or with a fixed small
.,

relative uncertainty. As long as a reasonably chosen upper-limit for xp

satisfies this relation the problem is solved.

7
A second type of inequality involving xD, of great practical

importance, derives from upper bounds'which can be derived immediately from<

i -
the experimental result (x, o ) which is necessarily produced for everyx

1

analysis. The resulting upper bound for x,'if S.) xC, can be shown always to

.! exceed xp. Therefore, if for a given sample that bound satisfies Eq. 9,

thcre is no need'to re-determine the actual detection limit or to re-design

~

the experiment. (See the comments on sequential experiments, accompanying

. Fig. 3 [section II, C.2], and the note [B4] in Section III for a.slightly'
r
'

extended discussion of the use of inequalities for rapid estimation of bounds

'for.the detection limit.)

4

4

9

8

4
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' A purposely controversial, "non-detected" result (x ) has been shown inL
'

a

IFig.13, so that.we may address the matter of an inadequate MP_(xp ) xR) f0P
4

1

which a seemingly adequate result (x -upper limit < xR) has been obtained. Ia,

I

We. advise caution. That is, if xD.> xR, the uncertainty associated with.any |{,

ogiven measurement is apt to yield rather gradually changing significance.

levels-(and false negative errors,~8). It is advisable in cases such as

this to estimate directly the probability 8 which would obtain taking x1 as

the upper limit. That is, assuming normality

X . xR ~ XUzj_g, R - x
+ z.95 (10):-

ox ox

' If the 90% CI upper limit (xu - x + 1.645 o ) is smaller .than xR, then 8 is -x

; necessarily less than 5%. However, as is obvious from Eq 10, the statistical

significance of a given difference (xR-xU) decreases with increasing o ,x

which is to say it decreases with increasing LLD (xD). Taking-the result in

Fig. 3, xo-xa + 1.645 o u - 0.9 xR (where xD3 - 1.5 xg), we find that-x

(xR-xU)/0x = 0.219 [ assumes ao-ox - const.], so z1_g' - 1.864 or

8' = 0.031. This is not so much smaller than the base value 8 - 0.05 or, put

differently, the upper limit from a 95% CI would exceed xR. Contrast thist

with outcome-1 in Fig. 3, where xD1 (and therefore o ) is smaller by a. factoro
,

were 0.9 xa, z1_g' would be 1.645 + 3 (0.219) - 2.302,of 3 There, if an xu

so 8' = 0.01, and a 98% CI would be required for the upper limit.to reach xR.3i

A final set of precautionary notes regarding the calibration function are
4

in order:

e The presumed straight-line model (Eq. 3) is generally adequate over
:

a small concentration range.(" locally linear"), such as between
!

i
'

i

3 he numerology in this paragraph takes an added impact when one facesT
the issue of multiple detection decisions, where still more stringent
requirements are placed on a and 8. (See section II.D 4.)-- j

i
i
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x = 0 and x = xp. If there is any. doubt, however, such a presumption
,

.

should be checked; and, above all, the slope or " calibration-

constant" A in the region of the detection limit should not be

' derived from remote data'(x>>xD) where the curve may exhibiti
~

'non-linearity (Ref. 76).-

e Imposed (instrumental, software) thresholds, in place of S s WillC

not only alter a but may-change the relevent " local" slope -- unless.

the calibration curve is perfectly straight.(Ref. 76).

e The calibration factor A, and any of the factors that comprise.~it --

.Y (yield), E (efficiency), V (sample mass or-volume), T (counting

time' function) -- may show interactions with B (background,~-

baseline,' blank, interference). Such further_ distortions (of Eq.-3)

)- are discussed briefly in section III.

e If non-linear estimation techniques, such as non-linear least-

squares, are employed for nuclide identification or for estimation

~
of calibration curve parameters, values of a and 8 and the

distribution of x can be perturbed. (Ref. 90).

Obvious, but worth stating, is the fact that 4A (RSD of A) for usee

in connection with Ea. (8) is

+T ]1/2
2 2 2 2

(11)- [+Y + +E 4 +4 +
VA

provided that all the constituent 4's are small. (Sampling errors, which-

could be manifest in the factors Y, E, or V may not always satisfy this

requirement. 4T, on the other hand, is effectively zero in most counting

situations -- though uncertain (temporal) sampling input functions, or

uncertain half-lives or radionuclide mixes could affect even this quantity.)
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5. Bounds for Systematic Error

It would be marvelous if all our errors were random and of known

distribution (with known parameters), and even more so if we could rely on

their being Poisson. Such is never the case, so it is inappropriate to apply

the foregoing random-error based hypothesis testing framework for x -o

calculation, except as an asymptotic component. With carefully controlled

experimental work, however, that asymptotic component fortunately can be the

principal component.

A basis for the treatment of detection decisions and detection limits

in the presence of possible (uncorrected) systematic error is given in Ref.

33 for the case of signal detection. We extend that here to include the case ,.

of "S-based" concentration detection, through the introduction of a second

systematic error bound parameter. Building on Eq. (8) for the random-error-

based concentration detection limit, we get

SC"A+Z1ao (12)0

xD - f(2A + z1 a0o + Z1-80D)/A (13)

where the quantity in the numerator in parentheses in Eq. (13) is So

(incorporating blank systematic error bounds), and f is a proportionate

amplification factor to provide a conservative bound for possible systematic

error in A. Thus, if A = YEVT (ignoring the 2.22 pCi conversion factor) were

based on a one-time calibration such that random calibration errors became

systematic,

f=1 +ZY/2 &A (14)1

where 4A is given by Eq. (11 ) . A represents the a bound for possible blank

or interference systematic error. It can be further decomposed into kBB

wherekB denotes the relative systematic error bound in the blank (or

interference) and B denotes the magnitude of this quantity. (See Eq. 4.)

,
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If *nt re'-cast Eq. (13) in terms of. radioactivity,. assuming oo - oD-and

itaking|z1_a = zj.g =-1.645-;

'f(21B+3.2900)|. B
xD - (15)H

2.22.(YEVT)

.Here, the numerator is in units of counts, and xp, in units of pCi' per -unit
~

- mass or. volume.
,

Following our }-notation for the relative systematic error bound we-

obtain from Eq. (14)

c f'-1 +jA (16)

Clearly, the best experimental practice would include exhaustive theoretical ;

| and/orexperimentalstudiestoobtainreliablevaluesforkBand.kA*

That empirical evaluation of such quantities is not trivial is shown in.

:

Fig. 2, where we see that just to detect a systematic error equal in magni-

tude to the random error of the MP requires more than ten observations (for

i
standard error reduction).4

; In lieu of this, and for the sake of providing explicit, reasonable

limits for the j's, we suggest the following [see notes All and B3]:

1Bk = 0.05,1 = 0.01, I - 0.101 A

where "Bk" refers to both the blank and background and "I" refers to baseline

or interfering activity effects on B. Systematic error of still another

- type, systematic model error is beyond the scope of our discussion though it'

is treated briefly in section III. C and in some detail in Ref. 72.

Equations (12) and (15) thus reduce to

SC - (0.05)B + 1.645 oo [ counts] (17).
J

{ 3 29 c )'

o
xp = (0.11)BEA + (0.50)I I [pci/g or L] .(18)

( YEVT )

_
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for'theLease offBlank (Bk) predominance. If I >> Bk,'then the coef?icients

=of*the first terms'in'Eq's (17 and 18)'become 0.'01 and 0.022. - B, in Eq. (17)

represents the Blank counts; and BEA, in Eq. (18) is-the Blank Equivalent

1 Activity. As- we shall see -in subsequent discussions, this is a very impor-

tant | quantity'both for the. calculation of the systematic error bound.(term-1,
'

Eq. (18)) and for derivation of'the random error-based term-2 (through o ).o

o is the standard' deviation of-the estimated net signal (counts) when itso

'true value is zero. Its magnitude depends on the specific counting (measure-

ment) process, and it is the subject of the second following subsection.

Equation-(18) is the expression for the LLD (actual [xp], not

prescribed [xR]). It is valid only when used in conjunction'with Eq. (17).

Also, it carries the assumption of. normality, and it should therefore be used

only when the " blank experiment" yields B 5 70 counts. (See section III for

the treatment of very low-level counting and other special situations.)

D. Special Topics Concerning the LLD and Radioactivity

1. The Blank, Blank Equivalent Activity (BEA), and Regions of Validity

The ultimate limit of detection for any nuclear or chemical measurement

process is governed by the systematic and random uncertainty in B. (For B,

t.
read: background, blank, interference, model error bias, etc.) For this

reason BEA should be recognized as an important benchmark in considerations of

detection capabilities. Some useful perspective on the nature and importance
i

of B-variations is offered in the following three paragraphs (adapted from

|

Ref. 38.) '

"Unfortunately, there is no alternative to extreme vigilence when

-treating the limitations imposed by the olank. In the best of circumstances

the mean value of the blank might be expected to be constant and'its !

|
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' fluctuations . (" noise") normally distributed. Given an adequate number of

observations, one could' estimate the standard deviation of this noise and j

!

.
- ,

therefore set detection' limits and precisions for trace signals. In situa-

tions where the chemical (analyte) blank remains small compared to the

instrumental noise' blank this procedure may be valid, as in many low-level
;

counting experiments. Even here, however, to assume that the noise is nor-

mally or Poisson distributed, or to estimate the background from one or two

observations is to invite deception. As indicated in Table 4, there is a

significant chance (5% for normally-distributed blanks) that the expected

value of the noise (blank standard deviation).will exceed the observed dif-

ference between two blanks by a factor of 16! Subtle ' perturbations arise'

even in the instrumental blank situation. For example, if the analyte detec-
,

4 tion efficiency changes discretely or even fluctuates, it is quite possible

that the instrumental blank will suffer a disproportionate change (77).

Certain special cases occur where the blank can be reliably estimated,

and therefore adjusted, indirectly. This is the situation: for "on-line"

coincidence cancellation of the cosmic-ray mu-meson component of the back-
.

ground in low-level radioactivity measurement (where there is not even a

stochastic residue from the adjustment process); for the adjustment of the

baseline (due generally to multiple interfering processes) in the fitting of

spectra or chromatograms; and for correction for isonuclidic contamination

(due to interfering nuclear reactions) in high sensitivity nuclear activationi

! analysis.

When the blank is due to contamination (as opposed to interferences or

instrumental background), high quality trace analysis is at its greatest

risk. Assumptions of constancy, normality or even randomness are not to be

trusted. An apparent analyte signal may be almost entirely due to
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~ contamination '(7'8)'; and blank correction must take into account its point (s)

of introduction and. subsequent analyte recoveries.. The randomness assumption

.may be inappropriate because the blank.may depend upon the specific history
.

of the sample, container or. reagents (35).. Also when procedures are applied'

to'real sample matrices as opposed to pure solutions blank problems abound,

as:was observed, for example, in the analysis of Pb (at a concentration of 30

ng/g) in porcine blood in contrast to aqueous solutions (93). (Reference 93

is also commended to the reader for a more complete treatment.of the blank in

trace analysis.) The most severe test of this sort comes when'" blind" blanks

together with samples at or near the detection limit, all in actual sample

'

matrices, are submitted for analysis. Horwitz, for example, referring to

collaborative tests of." unknowns" for 2378-TCDD in pure solutions, beef fat,

and human milk, noted that significant numbers of false negatives began to.

appear when concentrations were less than 9 x 10-12 (p8/8), and that false

positives increased from 19% for blank " standards'.' to over 90% for human milk

samples (94)!"

Table 4. The Blank

Direct.0bservation - Crucial for Detection Limit-

Adequate No. of Measurements Needed: With but two, oB may be 16 times-

the difference

Efficiency Correction May Differ Between Blank and Analyte (Scales,-1963)-

[Ref. 77]

Yield Corrections Must Recognize Point (s) of Introduction of Blank-

(Patterson, 1976) [Ref. 78]

Multisource Blanks Generate Strange Probability Distributions - Shape-

and Parameters Important (Kingston, 1983) [Ref. 95]

Poisson Hypothesis Must be Tested for Counting Background and Blank-

,
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In~relativelyicontroll'ed environments', especially if B is not an
.

= excessive number of counts,1the Poisson assumption (o2' = B) may be reason-
B.

-;' ably valid. The possibility of additional systematic and random error-,

components should never be dismissed, however; and it is recommended that

both types of _ non-Poisson.B-error. be monitored via internal as well as

external quality! control procedures. It has already been shown.that such

control is not easy'-- i.e., in Fig. 2 (and Ref. 38) it was shown that.more

. than 10.and nearly 50 observations ~are required just to detect systematic or.

additional random error, respectively equal.in magnitude to the Poisson~

component. The alternative of substituting s2.for the Poisson estimate.fo'r
B

the assessment S and xp has some merit; but, for a number of reasons weC

recommend using it (s2) rather as a measure of control. [See notes d1-and
B

A2.] What has been recommended (preceding section) to cover'the possibility.

ofnon-Poissonerroris.provisionofarelativesystematic-errorboundhB*
In less-controlled environments, rather severe excursions in B and in its

variability may take place. If B comes from contamination 11'n sampling'and

analysis (reagent), its distribution function -- which is crucial for

estimating detection limits -- may be derived from both normal (or

approximately constant " offset") and log-normal components (Ref. 95), in

which case a large suite of genuine blanks is a prerequisite to 1q) estima-

tion. In the worst of circumstances B fluctuations may be wild and non-

random. In this case there is no substitute for experienced, " expert

judgment" as to maximum non-significant excursions. (Modern statistical'

tools, such as Exploratory Data Analysis (Ref. 96) would make, superb

partners for " expert judgment" in these cases.) Formally, this could-

correspondtosubstitutionofasite-specific,realisticvalueofdB,.in.
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. place of. cur suggested default value (0.05). One situation in which such'

relatively severe: fluctuations might be expected would be continuous
1

-monitors:(count rate meters- ' analog or digital)~for effluent' noble gases. |

Model error,Lsuch.as deviations of baselines from single functional |

.

: shapes (linear,-quadratic, ...) or incorrect components or peak shapes-when

-fitting complex mult'iplets or ' spectra, constitutes another source of B-error.-

.Here, the'"B"--involved'actually is interference, and~the. problem.is that-high-

Jlevels of interfer-ing activities can cause serious deviations.from our

z-assumed B. (e.g., baseline) uncertainties and, hence, estimated detection

limits. Our default value {I.- 0.01 is' intended to' provide some protection.'

Some discussion and illustration of this potentially complex issue is given
,

in section III and P.ef. 72.

Before leaving the. topic of the Blank, let. us consider some regions of

validity in relation to 3 types of- ef fects on 'the' detection limit. Two of

these have been noted already: systematicerror(via.[B)andnormally-

distributed random error (via c ). (See Eq. 15.) The third, of majoro

concern in extreme low-level counting is Poisson ef fect, viz. Poisson ,

4

deviations from Normality. For " simple counting" (gross signal minus

background) this (Poisson effect) adds a term z2 = 2.71 -to'the parenthetical

quantity in the numerator of Eq.15. (For the lowest level counting, where B

= 0. Eq.15 must be replaced with an exact Poisson treatment. (See section

equal to cB = /B for the "well-known" blank case , and -III.C.1.) Taking oo

jB - 0.05, we .can directly compare the three terms whichL delimit the

detection of net signals (units: counts):

[ systematic]~ term-1: 2dBB .0.10 B (counts) j

i

(. 1[ conventional] term-2: 3.29 co - 3 29_'/B (counts) i

!

[ Poisson] term-3: z2 - 2.71 -(counts)'

:
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.Two1 types of' question interest us: ~(1) the cross-over points where each term
.

becomes predominant,.and (2) the' points (B-magnitudes) by which the
I. -

.. . _

..
.

-

| unconventional" terms-1;and -3 are negligible. For. question (1), we set

adjacent terms' equal and solve for B; for~ question.(2) we define negligible.

as 10% relative. The results:

' term-1 < term-2Lfor B < 1082 counts

ter -3 < term-2 fer B > 0.68 counts 1

.Thus,'the conventional'.approximately Normal Poisson expression (term-2)

predominates for roughly 1 to 1000 background counts observe'. (Fcrd
'

.

. interference, substituting [I'= 0.01 for 1B, the upper limit is

increased to about 27,000 counts.

Terms-1 and -3 are not so easily ignored, however. The systematic error
~

tert-1 exceeds 10% of. term-2, for B > 10.8 counts; and the extra Poisson

ter -3 exceeds 10% of term-2 fer B < 67.6 counts. Thus, Eq's (15) and (18)-

were recommended fer use when B 3 70 counts. (The above regicns of' validity

apply strictly to the very ec mon simple-counting, well-known blank case.
i

Somewhat altered values come about when x is estimated frc: single or

.

multicomponent least squares deconvolution.) (See also note B9 for a
i

discussion of the approximation og = / -)B

2. Deduction of Signal Detection Limits for Specific Counting Techniques.

~The concentration detection limit xD or LLD can be expressed as (see Eq's

(13)'and (15)

x3 = const. BEA + const' SO/(YEVT) (19)
D

_______________

I It is. interesting to consider the exact Poisson treatment in this case.
Using Table ' 7 in section III.C.1. we calculate a detection limit (Sp) of
5.63 counts, whereas the sum of terms-2 and -3 gives 5.42 counts.

l
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where the~first term relates purely;to systematic': uncertainty (error. bounds)-~

~ '

- andiboth constants include the calibration. systematic--error; factor f. SO
D-

is.the signal detection lim'it taking into account: random error'.only. .'Apar t
~

,

'lfrom:BEA,'the LLD?is controlled by the, nature of the counting process '

' .-(including the data reduction algorithm) as reflected 11n- the random error-~

'

, controlled quantity S0 and the calibration factors Y,E,V,T.. In-this. -;
-

D'

: subsection we shall consider the dependence of the all-important:. quantity

S0 on the. nature of the counting process. Tne calibrat' ion' factors wil'1 be.
4 D.

discussed.in the following subsection on design.
'

Signal decision (critical) levels.and detection limits were"given in.Eq's

[ (1) and (2) -

So = z1-a ao = 1.645.00 ( 1. )
C

SO - SO + z1_g oD = 1.645 (ao'+ op) '(2')
~

D - C-_

I ..

..

(A prime has been placed on Eq. (2) because:we do not wish.to restrict

ourselves to the assumption that oo = oD at this point.) The crucial

quantities governing the signal detection limit are.thus ao and oD - :the.3

standard deviations of the estimated net signal (S) when its true value is

S = 0.and S = S0 These are what we shall relate to the counting system.
D

,

What follows is simply a concise summary for different systems of importance.

Derivations and detailed expositions are to be found in section III.C. (Note
*

that in the-remainder of this section, since we shall refer strictly to'the,

random error component, we.shall omit''the superscript'- zero on SC.and SD..

-- for ease of presentation. Also, o - S = 0.05, so z = 1.645.).

.a)' Meaning of oo and op. These quantities are central to.the entire,

. discussion. Let us'therefore consider their definitions in terms of the.

. observations (gross counts) y1-and y2, for " simple counting."

. .

9
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y1 = S + 3 + ej- (gross signal) (20)

72 = bB = e2- (blank) (21)

(In' Eq 21, one can envisage y2 as the sum _'or b - measurements of the blank,

so y2/b equals-the' average observed blank.)

The estimated net signal is-

S = c1y1 + c272 " (I)Y1 ~' ( B
1

Y2 (22)

(The coefficients ci are introduced for later generalization.) Following the

2rules of error propagation, and using V-o ,

(23 - E Of V V2 (23)-V1V +y

= V ; and V2 = bV . Thus,'4 hen S = 0, V1 3 3

)2
1

(bV ) =V3 (1-+ -) - V n (24)Vo-V3+ 3 3o

(Equation (24) defines the coefficient n.)

When S = S , V1 =V3 39 '''' '

D

general case (e.g., non-counting systems, or systems where non-Poisson

variations dominate). Thus, for variance which is relatively independent

of signal amplitude, V1 = const - V , so V9=V. It follows, in this caseB o

that

SC = 1.645 oo - 1.645 og v7I (25)

So = SC + 1.645 og - 2 SC. (26)

(Thus far we have said nothing about Poisson counting statistics. That will

follow shortly.)
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First, an Ilmportant generalization: If"we consider a rather more

Scomplicated measurement ~ scheme (e.g... decay-curve and/or 7-spectrum fitting-'

byjlinear'least: squares),-
'

yi - E aijSj + Bi + ei (2'7 )

' the. solution to~Eq. (27) is of the form.(see sectfon III.C.3),

,
Sj = E cji yi (22')

~ or, denoting the ' component of interest as St (or simply S)'and the respective

coefficients as cli (or simply ot) we write

S - E ci yi

~

just like Eq. (22). Therefore,

2
V3 = I et Vi (23')

't

just like Eq. (23). Knowing the least squares coefficients (ci) and the

variances (V ) of the observations (yi), we can proceed according to exactlyi

; the sample principles developed for " simple counting." (Admittedly, non-

: trivial issues must be dealt with concerning Poisson statistics, identity and

amplitudes of interfering. components (Sj for j / 1), and possible semi-;

empirical shape functions for fitting the baseline b . Such complicationsi

will be treated in part below and in part in section III.C.)

|
In any case, Eq's (25) and (26) are the most important results of this

introductory section. The signal detection limit is seen to be directly.,.

I' proportional to the standard deviation of the blank, where the constant of

proportionality (for simple counting) is 3 29 /7i. The dimensionless quantity-
4

9 depends on the relative amount of effort (replicate measurements, counting

$ time) involved in estimating the mean value of the blank. 'The bounds for n

are clearly 1 and 2 (taking b>1).
,

|

$

4
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2.b)I Use of replication (s ) and Student's-t, We have an enormous

. advantage but a subtle trap as a result of Poisson counting statistics. oB'

.and.o'n can be estimated directly from the respective number of gross counts.
_

The trap is that other sources of random error may be operating'[Ref. 20].

y sB for 1.645 0B in Eq.One solution to this problem'is,to substitute't

(23), where t isLStudent's-t-(also at the 1-a = 0.95 significance level) fory

v-degrees of freedom. (v=b-1 according to the convention of Eq. 21)~sB 18

-the square root of the estimated blank variance, i.e.,

2 n' (Bi - B)2
sB'= E (28)

1 n-1

where, for our example, n = b.

We strongly recommend the routine calculation of SB as,a_ control for the

anticipated Poisson value, 6. If non-Poisson Normal, random error
4

predominates and is well understood and in control, then it is appropriate to

_

adopt t sB in place of 1.645 4. Unless this is assured, blithe applicationy

~

of t sB could be foolhardy, for Eq. (28) will give a numerical value even ify

the blank is non-Normal or not in control. Further, information which can be

deduced using Poisson statistics (e.g., from Eq's (22') and (23')) is

generally far more general and more precise than what can be derived from a

I reasonable number of replicates. [For more on this topic, including the

analogue of Eq. (26) under replication, see notes A1, A2, and B2.]

c) Simple Counting -- Poisson Statistics. If there are at least several

blank counts expected (B 3 5), substitution of the Poisson variances for V1

and i'2 at S = 0 and S = SD give'a valid solutions:

C = 1.645 &I= 1.645 /B (b+1)b ;|(25')S

So = z2 +'2 SC = 2. 71 +2SC (26')
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.The'constantSz2 din'Eq. (24') comes directly'from Poisson statistics and.the'

fact that op.'>~oa [Rsf. 5]. Thus, it-is. evident-that the detection limit.
~

.

,

remains finite even'with a zero blank. I

l

;d)- Multicomponent Counting. When there-are two or more mutually'.
_

interfering species,.o and of) are'not-so easily expressed. More detail on
. o

.

these topics will be found in section'III.C. but two of the results will:be-
4

-

~

highlighted'h'ere.

-For-two mutually interering components,.where a? solution is given by.

. simultaneous. equations or linear least squaree, it can be-shown that

SC - 1.645 &n~ [n>1] (25'')

2SD*Z u+2SC [u>1] ,(26'')

where, now, B, n, and u depend on the specific set of equations defining the

observations in relation to the net. signal of interest. ("S" and "B" remain

useful and even meaningful labels for the components when there are only

two.) These more general relations show that a universal consequence of

Poisson statistics is the inequality: Sp/SC > 2. Equality is approached,'

however, for simple counting when B > 70 counts.
_

For multiple interference, a closed (analytic) solution for SD cannot be

given. One must return to the original defintions, Eq's (1) and (2'),'and

tentatively estimate the corresponding o's from the appropriate diagonal

elements of the inverse least-squares (variance-covariance) matrix. (Non-

linear fitting introduces some rather peculiar problems. See se'etion III.)

Fortunately, a limiting calculation for xp, which derives from non-

negatively (S)0), can be made for any specific result (x, o ) of multi-x

component analysis. Through the use of Inequality Relations (o x ,>,,,o , etc.)o

upper bounds for the critical level and detection limit can be immediately
si

derived. (See note B4.)
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A very significant.'oint'with respect to.these;more. complicated,
~

p

multicomponent-cases.is-algor'thm dependence.. (See'section?III.) That~isi

~the particularidata r duction algorithm '(modelLand channels used forfpeak andd
'

.

.

baseline estimation; assumed number:and type.of-interfering species, etc.)
,

: determines o and oD,.anditherefore'the detection limit.o

. e) Continuous Monitors. Both analog and digital. monitors: are- used for

4 .

Asinoted already in section II.D.1,-
--

continuous monitoring in nuclear plants.*

one must be cautious in applying Poisson stat'istics in uncontrolled'
,

i . environments. Some. basic information on the statistics of such count rate
i.

{ meters is-given, however, in Evans (Ref. 74) and'more recent publications
.

. ,-

j- such as Ref. 73 -Some of this has been covered also in section'III of this?

!~ report. Two basic limiting relations, for example, are:
i

} oR2 = R/t if t > t (29)
:

oR2 - R/2T if t < t (30)

where R refers to count rate, t to the averaging time, and T to the time.
,

,

i

j constant for an analog circuit. Applications of the relations for long-term

(Eq. 29) and instantaneous (Eq. 30) measurements are treated in section III.

(See also note 97.)'

f) Extreme Low-Level Counting. When the expected number of blank counts
,

for a sample measurement is less,than about 5 it is advisable to use the;.

b
'

exact Poisson distribution for making detection decisions and setting

detection limits. (So long as the constant term z2 is kept in the expression
,

4

' for simple counting [Eq. 26'], this gives a reasonable approximation even
|

down to E(yj ) = 1. count -- see section III.D.1.) Although treatments have

been.given.where both gross signal (yj) and-blank (y2) observations contain

I few if any counts (Ref. 36, 75), we recommend the MP be designed so that a
'

:

f

L
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reasonably precise estimate be available for B. The expected number of blank'

counts =in the ' blank' experiment (y2 = bB), for example, should exceed 100,

tir possible.

'In that case, a simple re'duced activity diagram (Fig. 7) can;be used to

.instantly determine SC and the detection limit (in units of BEA) [Ref. 19].~

A complete treatment of .this subject"is given in section III.C.1,

3. Design and Optimization

We consider briefly the question of experiment (i.e.,-i.rf design because

this is the very question one faces when attempting to alter the adjustable-

experimental variables in order.to meet-RETS requirements. The task is to

bring about the condition,

'XD 1 xR (9)

Optimization differs from design- (in general) in that we adjust the variables

to minimize xp rather.than simply to satisfy the inequality Eq. (9). Design

and optimization are literally multidimensional operations when one treats a.

multicomponent system with interfering spectra and/or decay curves and the.

possibility of different schemes of-multiple time and multiple energy band

observation. It is well beyond the scope of this manual.

For rather simpler systems, however, we can consider design from-the

perspective of Equations 15, 18, and 26'.
\I f ) [2.71 + 3.29 /R nt + 0.10 RgtB (31)t [1-e-t/T] fxp

2.22 YEV

That is,

I1 ) [C + Cp /R trl + C f R t] \
3 B B (32)XD " 1-e-t/TYEV

i
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' Eq. (32) has|been cast, of ' course, to highlight the controllable ' variables:
'' .Y,E,V'and t' (Note that'T = 1/A =-mean life.). Since the effects of these.

~ variables-fall in two categories we shall treat each of the two main; factors.

|. -in-Eq. 32: separately.-

a) Proportionate Factors, YEV. 'xp decreases'directly with each.of these.

. factors, so a-requisite proportionate decrease to' meet the prescribed LLD1

(i.e., xR) can be. achieved.(in principle);by a corresponding reduction in'any-

, - one of'them or'in their. product.

The factor most readily availableLis V,, for this-is a measure of the

sample size taken. In certain situations, it may have reached an. upper limit,

for various practical reasons, the most' common. of which is the size that the

nuclear detector can accomodate. If the amount of sample (or disappearance

. through rapid decay) is not limiting, V may be effectively increased further
! .

through concentration and/or radiochemical separation. If such steps are.too

labor intensive, alternative approaches may be preferred. In general,.

?
.

' , - however, because of its controllability and the inverse proportionality
;

between xp and V, this quantity provides the greatest leverage.
;

j Y cannot exceed unity. In the absence of sample preparation steps, it is
J

not even a relevant variable. The most important circumstances arise when Y

j is quite small; major improvements in procedures having poor recovery could

have some impact.

i The detection efficiency E is a complex factor. Changes possibly at our

disposal include geometry, external or self-absorption (or quenching in thet

i

case of liquid scintillation counting), and the selection of nuclear particle

or Y-ray to be measured.
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Some effects are dictated by' Nature,Lhowever. Most noteworthy is tne'

y
decay scheme, especially~ branching ratios (or Y-abundances, etc.).. Other

-

things being equal,rthe LLD achievable -- i.e., xD -- will vary inversely

with the particle or Y-abundance of the_ radiation being measured. If-
,

nuclides having. low Y-abundances are to' achieve the same LLD's as those with

high abundances, other factors will have to be accordingly adjusted.

Note that the effective detection efficiency may-depend also on the data.

reduction algorithm -- e.g., fraction of a Y-spectrum used for radionuclide
,

estimation. More efficient numerical information extraction schemes may-thus
'

be beneficial.
4

b) Background (Blank) Rate; Counting Time. It is clear from the

numerator of the second factor in Eq. 32 that decreasing the background rate

will decrease LLD up to a point. If t is fixed (say, the maximum feasible)

then once the first (extreme Poisson) term C1 predominates, further reduction

in the background (or blank or interference) will have little effect. In
, ,

contrast if B is so large that the third (systematic-error) term C B predomi-3

nates, then B - reductions will have as large an effect as proportionate

increases in V and E. In section II.D.1, we saw (for typical MP parameter

values) that the B - transition points occurred at about 1 count and 1000
i

counts. Perhaps the most important opportunity for B-reduction. occurs when
!
j it is due to large amounts of interfering nuclides which can be eliminated by

) decay cr radiochemical separation. ;

| A second quantity at our disposal is n. This depends on the amount of-

time or channels (for a simple peak) used for estimating B for simple

f counting. In more complex (multicomponent) situations, the data reduction

I algorithm (as embodied in n) will have some effect on xD*

]
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The major and most commonly considered variable is counting time. It is

interesting here to consider two extremes for the factor in the denominator,

(1-e-t/t). [t represents the mean life, t1/2/'En2] . If t<t this factor a t.

At the other extreme (t>t) it approaches a constant (one). We can represent

the situation in two dimensions as follows:

Table 5. LLD (x ) Variations with B and t(a)o

t<t t>t

Bi1 x0 a t~l xp = const

1/2 1/21 i B E 1000(D) xD = t xD = t
B 3 1000(b) xD = const' xD a t

b) For $1 = 0.01, the upper crossing point changes from /'En2) .
equals the mean life (t1/2a) Units for B are counts. I

-1000 to ~27000
counts.

__

.-

!

Depending on which domain of B and t we are in, it is clear that increases in

counting time may decrease xo, have no ef fect, or at worst increase xp.

Also, it is interesting that in the region of extremely small B, all

increases in t will be beneficial; in fact, the initial variation (if t<t)

(Admittedly, for fixed R , increased t will tend towill be proportionate. B

move B out of the extreme Poisson region. However, if the expected value of
.

B is significantly smaller than 1 count, increases in t can be of major

advantage if one is measuring long-lived activity.)

When B is already quite large, increase in t can only make matters worse.

The intermediate region is intriguing. Here (1<B<1000 counts) " conventional"

' counting statistics predominate; and for fixed Rp, xD decreases with

increased counting time for long-lived activity but reverses itself for
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short-lived activity. Obviously there must be an optimum. Differentiating

th6 appropriate term in Eq. (32) shows that optimum to be the solution of the

transcendental equation.

/1)
t={ -- l (1-e-t)fe-t (33)

\ 2)

where t is in units of the mean life T. The solution to equation (33) gives
i

the optimum counting time as -1.8 times the half-life. !

It is worthy of re-statement that (Eq. 32, Table 5):

o Knowing the time and B-domains, one can quickly scale xD according to

the expected variation with time,

o Diminishing returns for background reduction set in when the' term C1

begins to dominate.

o Diminished returns for LLD (xo) reduction by extended counting set in

once (a) t > 1.8 tt/2 or (b) B > n (z/kB)2 which equals 1082 and 27060

counts for the default values taken for blank and baseline relative

systematic error bounds. (This latter statement is equivalent to

indicating -2% and -11% of the BEA as minimum achievable bounds for xD-)

o A rapid graphical approach for experiment planning, for all 3 B-domains

can be given in the form of the " Reduced Activity Diagram." Space does

not permit an exposition on this topic, but one such diagram (for extreme

low-level counting) is included as Fig. 7. Other diagrams for higher

activity levels and including the effects of non-Poisson error may be

found in Ref's 62 and 80.
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4 Quality

a) Communication. Free and accurate exchange of information is one

crucial link for assuring the quality aor an MP and the evaluation of the
-

consequent data. A few highlights in this area, relevant to LLD and RETS

follow.

[i] Mixed Nuclide Measurements. Interpretation of non-specific

radionuclide measurements is seldom possible unles- the average temporal and-

detector responses are fixed. Calibrations and measurements of gross nuclide

mixtures require controls on the relative amounts of nuclides having'

different half-lives and different detector responses for meaningful'

interpretation.

[it] " Black boxes" and Automatic Data Reduction. One of the dis-

benefits of automated data acquisition and evaluation is lack of .1 formation

on source code or detailed algorithms employed, specific nuclear parameter

values stored, and artificial thresholds and internal " data massaging",

routines. A number of surprises and blunders could be prevented if there

! were adequate open communication in this area. One problem of hidden

algorithms which can be especially troublesome for detection decisions and

limits (as well as for quantification) is intentional (but unknown to the

user) a1gorithm switching. A potential means of control for these kinds of

problems is the use of artificial (known) reference data sets as distributed

by the IAEA [Ref 813 (Further comments on this are given below.)
'

[111] Reporting Without Loss of Information. The following paragraphs

and Figures are adapted from [Ref. 38].

" Quality data, poorly reported, leads to needless information loss. This

is especially true at the t' ace level, where results frequently hover about

the limit of detection. In particular, reports of upper limits or "not
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1

-detected" can-mask:important1information,.make intercomparison' impossible,
'

:and;even produce bias in an overall-data set. An example is|given in Fig. 4

which relates toia very; difficult'radioanalytic. problem involving fission
,

. products in~ seawater.(97).~ In this example, only six--of_the fifteen results

a

1could be compared and'only eight~could be used to calculate a mean. Since; j
1

negative estimates were' concealed by "ND" and "<", the mean-w'as necessarily I
~

i
-

(The true value't in this exercise was, in fact, essen- ][' positively biased.

| !

L tially zero; and the use of a robust. estimator, the~ median (m].does give a" !
!

' consistent estimate.) Although upper limits 7envey more -information than

"ND", authors choose conventions ranging from tie <(possibly negati'e)v

estimated mean ($) plus one standard error to some sort of fixed " detection

limit." Such differences are manifest when one finds va'riable upper limits.

; frcm one laboratory but constant upper limits frcm another (98).

I
! The solution to the trace. level reporting dilemma is to record all

relevant information, including as a minimum: the number of observations

(when pertinent), the estimated value x (even if it is negative!) and its

standard deviation, and meaningful bounds for systematic error. More

thorough treatments of this issue may be found in Eisenhart (99) and Fennel

and West (100)."

| When information is not fully preserved for a set of marginally detected

!

| results, distributional information and parameters may be recovered by
!

| statietical techniques (probability plots; maximum-likelihood estimates)

I which have been developed for "censoreo" data. [Ref. 48,69,82,91 ]. By

!-
" censored" we mean that although numerical results of some of the data may

L not be preserved, the number of such results is recorded. Though such
!

techniques permit the partial recovery of'information from censored data-
'|

I
'

sets, they cannot fully compensate for such information loss.

|
'

t -.
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Fig. 4a. X/ 6 vs degrees of freedom. The cuaves enclose the 95% confidence
interval for X 6.' They may be used for assessing the fit of/

single or multiple parameter models, and they give a direct
indication of the precision of standard deviation estimates.

4b. Reporting deficiencies. International comparison of 95ze 95Nb
in sample SW-1-1 of seawater (pC1/kg). The symbols have the
following meanings: T= true value, R = arithmetic mean
(positive results), m = median (all results), and b2=a
" double blunder" - i.e., inconsistent result 77 i 11 wa-
originally reported as 24. N and U indicate not detected, and

upper limits, respectively.
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:So'long as the full' initial data are recorded and accessible, however, it

:may of course be. reasonable to provide' summary, reports for special purposes
n

|which exclude tabulatfor.s of'non-significant l's. But.to set them all'to-

-either zero or to LLD guarantees confusion <and biased averaging. :The

question of. automated instrumentation and data reduction may again be
(

involved here, if the'" black-box" does the censoring rather than the user.'
1

|
1

b) Monitoring (control). Three classes of control are considered
1

important for reliable detection decisions and measurements in the region of

the LLD. At the internal level'it is crucial that blank variability be

;. monitored by periodic measurements of replicates; similarly, complex fitting
i

and/or interference (baseline) routines need to be regularly monitored by'

goodness-of-fit tests and residual analysis. If such tests do not indicate

consistency with Poisson counting statistics, the simple substitution of s2
,

; or mutliplication by X2/v in place of.the Poisson standard error is not
:

! generally recommended. It could mask assumption or model error unless that
I

f possibility has been carefully ruled out [Ref. 63]. Resulting LLD estimates

; could thereby be quite in error. ,

j

1 Reference samples, internal and external, blind and known, are crucial

I |
i

| for maintaining accuracy and exposing unsuspected MP problems. " Blind
,

!

splits" and the EPA Cross-Check samples thus serve a very important need.

The utility of external quality control samples is highest, of course, when ,

i auch samples resemble "real" samples as closely as possible in their nuclear !
,

and chemical properties, when their true values are known (to the
t-

distributors), and when they are really " blind" from the perspective of theo

laboratory' wishing to maintain its quality. In connection with the LLD it |
r .

i

might really be vsluable to purposely monitor (internally and/or externally)
,
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I

|

|performance at this level -- i.e., to provide blind samples containing blanks-
|

and radionuclides in the neighborhood of the prescribed LLDs.

A third class of control relates to the data evaluation phase of the MP.

The presumption that control is quite unnecessary for this step was belied by

the IAEA Y-ray spectrum intercomparison study referred to earlier. A srmmary

of the structure and outcome of that exercise (adapted from Ref. 38) follows.

"One of the most revealing tests of Y-ray peak evaluation algorithms was

undertaken by the International Atomic Energy Agency (IAEA) in 1977. In this

exerciso, some 200 participants including this author were invited to apply

their methods for peak estimation, detection and resolution to a simulated

data set constructed by the IAEA. The basis for the data were actual Ge(Li)

Y-ray observations made at high precision. Following this, the

intercomparison organizers systematically altered peak positions and

intensities, added known replicate Poisson random errors, created a set of

marginally detectable peaks, and prepared one spectrum comprising nine

doublets. The advantage was that the " truth was known" (to the IAEA), so the

exercise provided an authentic test of precision and accuracy of the crucial

evaluation step of the CMP.

" Standard, doublet and peak detection spectra (Fig. 5) were provided:

Fig. 6 summarizes the results (81,92). While most participants were able to

produce results for the six replicates of 22 easily detectable single peaks,

less than half of them provided reliable uncertainty estimates. Twa-thirds

of the participants attacked the problem of doublet resolution, but only 23%

were able to provide a result for the most difficult case. (Accuracy

assessment for the doublet results was not even attempted by the IAEA because

of the unreliability of participants' uncertainty estimates!) Of special
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Fig. 5. IAEA test spectrum for peak detection
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DATA EVALUATION -IAEA
y RAY INTERCOMPARISON

[Parr, Houtermans, Schaerf 1979]

Peaks Participants Observations

22 Singlets 205/212 uncertainties: 41% (none),i e

(m = 6) + 17% (inaccurate)
,

9 Doublets 144/212 * most diff! cult (1:10,1 ch.)
49 results

,

22 Subliminal 192/212 * correctly detected: 2 to 19
peaks

* false positives: 0 to 23 peaks
* best methods: visual (19),2nd3

deriv. (18), cross correl. (17)

Fig. 6. Data evaluation - IAEA Y-ray intercomparison. Column two indicates
the fraction of the participants reporting on the six replicates for
22 single peaks, 9 overlapping peaks, and 22 barely detectable
peaks. Column three summarizes the results, showing (a) the percent
of participants giving inadequate uncertainty estimates, (b) the
number of results for the doublet having a 1:10 peak ratio with a
1 channel separation, and (o) the results of the peak detection
e Xet*01se .
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import from the point of view of trace analysis, however, was the outcome for

1

the peak detection exercise. The results were surprising: of the 22
,

g

subliminal peaks, the number correctly detected ranged from 2 to 19. Most
'

participants reported at most one spurious peak, but large numbers of false

, positives did occur, ranging up to 23! considering the modeling and
i

!
'

computational power available today, it was most interesting that the best

| peak detection performance was given by the ' trained eye' (visual method)."

!
| 5. Multiple Detection Decisions

| It follows obviously that if all radionuclides measured are present

|
either not at all (Ho) or at the LLD (Hg) and the errors a and 8 are each set'

at 5%, then 5% of the detection decisions will be wrong "in the long run."

Thus, for example, in a Y-ray spectrum containing njl radionuclides, if one

j were to examine say 200 locations for the possible presence of radionuclides,
i 10 false positives (on the average) would result. This carries some curious
r

I implications for any instructions to " report any activity detected" --

especially if one multiplies the 10 false positives by the number of spectra

examined, for example in a Quarter. (One may find an apparently tighter

| constraint in a phrase such as "detectec and identified," but this would
|

| require a second manual to struggle with a rigorous meaning for the term
i

" identified" in such a context!)

If the number of nuclides sought is restricted purely to the " principal

, radionuclides," the situation is altered numerically but not qualitatively,
!

If there were just one sample per month and 10 nuclides sought in each

cample, we would expect after 1 year (or 12 samples) - 6 falso positives (if

| there were in fact no activity).

l

l
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Solutions to this dilemma are either to accept an error rate of 5% false

positive or false negative results, or to redefine the goal such that there |

ta only a 5% chance or getting a single false positive given the entire set

of measurements. (This seems the only rational alternative when scanning a

high resolution spectrum for the unsuspected tiny oeaks.) The critical level

must be correspondingly increased and with it, the detection limit. (If one

were to assume some prior unequal apportionment of the samples to hypotheses

Ho and H , the increases in SC and SD could differ substantially from oneD

another, but we shall not treat this case.)

To address this matter explicitly, let us assume that N decisions (ergo,

measurements) are made all at risk-level a'. The probability that none is

incorrect can be given by the Binomial distributton:

Prob (0) = fNT (a')0 (1-a')N = (1 a')N ( 3 24 )

L l,

The probability that no decision is incorrect is by definition 1-a, where a

is the risk or probability that 1 or more is incorrect. Therefore, the a' We

need to impose on each decision is

o' - 1 - (1-a)1/N = a/N (35)

for small a. If N-100, for example, and a remains 0.05, then

o' - 1-(0.95)0.01 - 0.000513

If Normality could be assumed so far out on the tail of the distributton,

z1-a* - 3 27. Treating S' in the same way, we would conclude that decision

levels and detection limits woald each need to be increased by about a factor

of two (from 1.6145).

A somewhat related issue involving the question of reporting non-

principal radionuclides if detected is illustrated by result xb in Fig. 3

Here an observation brings the decision " detected" and the actual LLD (xp) is

below the prescribed LLD (xR). ( Also, as shown, its upper limit as well lies
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below xR.) What follows is that unless there is truly zero activity in a set

of samples examined, that the more sensitive MP's (lower xp's) will " detect"

more radionuclides even though they may be well below the prescribed LLD'(xR)

if any.

t
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III. PROPOSED APPLICATION TO RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATIONS
]

(RETS)I

A. Lower Limit of Detection - Basic Formulation

1. Definition

The LLD is defined, for purposes of these specifications, as the smallest

concentration of radioactive material in a sample that will yield a net

count, above the measurement process (MP) blank, that will be detected with

at least 95% probability with no greater than a 5% probability of falsely

concluding that a blank observation represents a "real" signal. " Blank" in

this context means (the effects of) everything apart from the signal sought

-- i.e., background, contamination, and all interfering radionuclides.

For a particular measurement system, which may include radiochemical

separation:

The Lower Limit of Detection is expressed in terms of radioactivity

concentration (pCi per gram or liter [A3]); it refers to the a priori [A4]

detection capability

f(2A+[ 1 a+Z1-83 0) ISD
LLD = = xp (1)=

2.22 (YEV)T A

The detection d,ecision is based on the observed net signal S

(a posteriori [A43) in comparison to the critical level (counts):

SC " A * Z1-a o (2)C

where the " statistical" part of the definitions (when f = 1 A = 0) sets the

false positive and false negative risks at a and 6, respectively [AS].

Meanings of the symbols follows. (See also App. A).

-.-------------

I Parts A and B of Section III represent proposed substitute RETS pages.
Part A is the more comprehensive, and it is framed in a manner that
should be applicable to most counting situations. Part B is offered as
a simplified version, which will suffice for " simple" gross
signal-minus-background measurements.
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A, is the overall calibration' factor ' transforming _ counts to pCi/g -(or
~

pCi/L).

-E_ is the overall counting efficiency, as counts per disintegration;.it'

comprises factors for solid angle, absorption and scactering, detector
!

efficiency, branching ratios'and even data reduction algorithm [A6, A7],
,

V is the sample size in units of mass or volume,
,

2.22 is the number of disintegrations per minute per picocurie'[A3],

Y,is the fractional radic0hemical yield, when applicable.j

is the Poisson standard deviation of the estimated' net counts (S) when'' g

the true value of S equals zero (i.e., a blank).- (The relation of oo to the'

background or baseline depends upon the exact mode of data reduction [see

section.III.C.3].)
:

zt_m,z1_g = the critical values of the standard normal variate -- taking on

! the value 1.645 for 5% risks (one-sided) of false positives (a) and false
l'
{ negatives (8), when single detection decisions are made. (Multiple detection

f decisions require inflated values for zj_a to prevent significant occurrence of
;

j spurious peaks -- as in high resolution Y-ray spectroscopy.) When a, 6 risks
-

are equal, and systematic error negligible, the detection limit for net

counts, S , is just twice S . (Assumes the Normal Limit for Poisson counts.)D C

) (When subscripts are omitted in the following text a will denote 20.95 "
j
i 1.645).

T = the effective counting time, or decay function, to' convert counts to
i

4

initial counting rate (time "zero": end of sampling) [A9]. It is numeri-

-Al )/A, where ta and tb are the initial and finalcally equal to (e-Ata-e b

times (of the measurement interval) and A, the decay constant. For At<<1

T4At = t -ta. [ Multicomponent decay curve analysis yields a more complicatedb.
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expression for T -- and generally c /T, the standard deviation of theo

estimated initial rate is given directly.] (T must have units of minutes,

for LLD to be exoressed in pC1.] [A3,A6,A7,A9].

f_ and A are proportionate and additive parameters which represent bounds

for systematic and non-Poisson random error. (The only totally acceptable

alternative to this is complete replication of the entire measurement process

(including recalibration, e.g., for every sample measured) and making several

replicate measurements of the blank for each mixture of interfering nuclides

and counting time under consideration [A10].)

f_ will be set equal to 1.1, to make allowance for up to a 10% systematic

error in the denominator A of Eq. (1) --- viz., in the estimate of the

product EVY [A11]. [If there are large random variations in A then full

replication should be considered together with the use of x (radioactivity

concentration) and o .] Note that A is equivalent to the slope of thex

calibration curve. If the curve deviates from linearity (e.g., -- due to

saturation effects, algorithm deficiencies or changes with counting rate,

signal amplitude, etc.) a more complex model and expression for LLD may be

required.

A will be set equal to 5% of the blank counts plus 1% of the total

interference counts (baseline minus blank) in order to give some protection

against non-Poisson random or systematic error in the (assumed) magnitude of

the blank (Ref's 20,72) [A11].

S3 is the detection limit expressed in terms of counts.

g (Eq. 2) is the critical number of counts for making the (a posterior!)

Detection Decision, with false positive risk a.
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LLD (Eq. 1) is the lower limit of detection (radioactivity

f

concentration), given the decision criterion of Eq. 2 (and risk-a), where the

false negative risk (failing to detect a real signal) is S, [a priori]. The
j

' symbol xD is used synonymously with LLD for later algebraic convenience.
!

SC is applied to the observed net signal (units are counts) [A12];

whereas LLD refers to the smallest observable (detectable) concentration

-(units are disintegrations per unit time per unit volume or mass). LLD is

without meaning unless the decision rule (Sc) is defined and applied [A131.

Bounds for systematic error in the blank (L, counts) and (relative)

systematic error in the proportionate calibration factor (f) are included to

prevent overly optimistic estimates of SC or LLD based on extended counting

times. Also, they take into account the possibility of systematic errors
1

arising from the common practice of assuming simple models for peak baselines

(linear or flat) and repeatedly using 2Verage values for blanks and calibra-

tion factors (Y,E). (Random calibration errors of course become systematic

unless the system is recalibrated for each sample.) Inclusion of A and f in

the equations for SC and LLD converts the probability statement.. into

inequalities. That is, a 5 0.05 and S 5 0.05.

2. Tutorial Extensions and Notes

[A1]. Alternative Formulation in Terms of s . If the measurementn

process (including counting time, nature and levels of all interfering

radionuclides, data reduction algorithm) is rigorously defined and under

control, then it would be appropriate to replace 21-a o in Eq. (2) by ts ,u o

where t is Student's-t at the selected levels of significance (a, 8) accord-

ing to the number of degrees of freedom (df) accompanying the estimate s 2 ofo

20o ,
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In.this case, however, a small co'mplication arises in calculating LLD,

because SD (detection limit in terms of counts) is approximately 2too (for

a=8) not 2ts . A conservative approach would be to use the upper (95%) limito

for o --i.e.s//E[",whereFL is the lower (5%) limit for the distribution,o o

2X /df. The recommended procedure is to use zoo (Poisson) but to test the

validity of the Poisson assumption through replication. (Ref. 20) [A2].

[A2]. Uncertainty in ,t,,he Detection Limit. For reasonably well behaved

systems, the critical level (S ) which tests net signals for statisticalC

significance can be fairly rigorously defined. (One needs 4 controlled MP and

reliable functional and random error models.) The detection limit (radioac-

tivity, trace element concentration, ...), however, requires knowledge of

additional quantities which can only be estimated -- e.g., standard deviation

of 1.he blank, calibration factors, chemical recoveries, etc. Thus, although

there exists a definite detection limit corresponding to the decision

criterion (SC or a) and the false negative error (8 = 0.05), its exact

magnitude may be unknown because of systematic and/or random error in these

additional factors.

Two approaches may be taken to deal with this problem: (a) give an

uncertainty interval for LLD, knowing that its true value (at 8 - 0.05)

probably lies somewhere within (49) or (b) state the upper limit of the uncer-

tainty interval as LLD, such that the false negative risk becomes an inequal- |

ity -- i.e., 8 5 0.05. We prefer the latter procedure, because it provides a

definite and conservative bound. Also, this is in keeping with the spirit of
i

RETS, which simply requires that the actual LLD (xp) not exceed the- l

prescribed maximum (xR)*
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~ 0ne very important illustration 'of this matter arises in connection with

-signal detcetion limits based en replication. 'If the estimated net signal

(when S=0) . is normally distributed and sampled n-times (e.g. , via paired

comparisons of appropriately selected blank pairs), the critical level is

given by t -1s//n, where s_ is the ' square root of the' estimated variance andn
-

Lt -1 is' Student's-t based on n-1 degrees of freedom. The minimum detectablen

signal is given by the non-central-t times the true (unknown) standard error.
.

This is approximately 2t -1 o//n. . Bounds for o obtain from the X2 distribu-n

tion: (X2/n-1).05 < 82 o2 < (X2 n-1).95 The upper bound for the signal/ /

detection limit (8 5 0.05) would thus be

[2t -1s//n][[(X2 n-1).05]1/2 .(3)/n

For example, suppose that 10 replicate paired blank measurements were

made, yielding a standard -error (s//10) for the net signal (B -Bj) of 30 cpm.i

Then tg - 1.83 (for a - 0.05) and RC = t9 SE - 54.9 cpm. Sin'ce [x /9).0531/2- 2

= 0.607,- the upper bound for the detection limit _ would be higher by a factor

of 2/0.607, or Rp .181. cpm. (B 5 0.05). The total (90% CI) relative

uncertainty for the standard error and hence R9 (B = 0.05) is given by the

ratio of the' upper and lower (.95, .05) bounds for S, in this case (n = .10)

equivalent to a factor of 2.26. To reduce the uncertainty in RD to a factor

of 2.00 (upper limit / lower limit) would require at least 13 replicates for
'

the estimation of a. [See Table 6 and Note B2.]

If, rather than paired replicates, a single . sample measurement is to be

compared with the estimated blank, and the latter is derived through
4

|
' replication,

i .2 2 2
o = SB 4 * SB (" ) (4)o

n

Thus, the' upper limit for So becomes

2 n-1)0.0531/2 - 2sB 5[t(oUL sB)] (5)[2t-1SB53/[(X / / //n

72.
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[A3]. S.I. Units. The preferred (S.I.) unit for-radioactivity is the

Becquerel (Bq) which is defined as 1 disintegration /second (s-1). .To express

LLD in units of'Bq, the conversion factor 2.22 (dpm/pC1) in the denominator

of Eq (1) would be replaced by 1. (dps/Bq) and the factor T would have units

| of seconds.

[A4]. A priori (before the fact) and a posteriori (after the fact) refer
!

| to the estimate S or x or decision process as the " fact." LLD is before the
l

fact in that it does not depend on the specific (random) outcome of the MP.

However, all parameters of-the MP (including interference levels) must_be

known or estimated before "a priori" values for SC or LLD (xD) can be calcu-

lated. (Such parameters may be estimated from the results of the MP, itself,

or they may be determined from a preliminary or " screening" experiment with

the sample in question.)

[A5]. Poisson Limit. Equations (1) and (2) are valid only in the limit

of large numbers of background or baseline counts. If fewer than -70 counts

are obtained, special formulations are required to take into account devia-

tions from normality. (See section III.C.1 note B9, and Ref. 19). The

simple sum in Eq (1) -- (z1-a+Z1-8) -- is an approximation; strictly valid

only when o($) is constant. This is a bad approximation for extreme low-'

level counting and for certain other measurement situations involving

.
artificial thresholds (76).

:

[A6]. Mixed Nuclides, Gross Counting. For mixed, non-resolved

radionuclides, where " gross" radiation measurements are made, the factors E

and T are meaningful only if the particular mix (relative amounts and

energies or. half-lives) is specified. Common agreement on the radionuclides _j

selected for efficiency calibration for " gross" counting is likewise

mandatory,

i
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-[A7]. For multicomponent spectroscopy and decay curve analysis, the .)

I
factors E and/or T are generally subsumed into the (computer-generated)

,

expression for o , where ao then has' dimensions'of disintegrations or ]o
)
i

(initial) counting rate or radioactivity (pCi or Bq). Both factors may thus

depend upon the algorithm selected for data reduction -- i.e., the "informa-
'

tion utilization efficiency" (see section III.C.3).

[A8]. Formulation of the Basic Equations. The expressions given for LLD

and SC are perfectly general, with one exception [A5], and intended to avert

many pitfalls associated with errors in assumptions (non-Poisson random

error, model error, systematic error, non-Normality from non-linear estima-

tion) which can subvert the more familiar formulation. By formulatJng Eq's

(1) and _ (2) in terms of o , we are able to apply them to all facets ofo

radioactivity measurement, including the most intricate Y-ray spectrum

deconvolution algorithms.

Use of z1-aCo in place of t a o was a hard choice. I made it because1 3

LLD (as opposed to S ) requires knowledge (or assumption) of o , as was notedC o

in the discussion on replicate blanks [A2]; and Y-spectrum algorithms, for

example, seldom are really applied to replicate baselines! Also, there is-

serious danger in so being estimated at one activity and interference level

(and counting time!) and assumed equivalent [or = 1//t] for changes according
|

to Poisson statistics. The formally simple approach of adding the term A to

Eq (2) limits both misuse and ignorance of a tso formulation. [To my

knowledge, an all-encompassing rigorous solution to the problem (non-Poisson

_ random and_ systematic error effects on detection capabilities) does not

*exist.]
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b

.[A9]. Time Factor. Obviously, T could be factored'into an. initial-decay-&

| - correct' ion and decay during counting:f(e-Ata~-~e-At )/A = e-Ata(1:- e-Aat)/A,-~

b

!~ Explicit' expressions will notRbe given for decay during sampling or for

. multistep counting schemes, because they depend upon the exact design (and. ~

g. -

input' function) for the sampling ix' counting process.

_[A10]. ' Excess (Non-Poisson) Random Error. In place of a massive-
,

i

o [Eq. 2] by ts ) Lone could assume areplication study (to replace A-+ zo o

'two-component variance model and fit the non-Poisson parameter for approxi-
t

mate estimates of detection ~11mit' variations with counting time and+

interference level (20). This-could'become crucial when B > 1.

[A11]. Systematic Error. A~and f have been set at " reasonable" values

! to represent the routine state of the art. These may be subject'to more

careful' evaluation by the NRC or specific estimation by the licensee. This-

i ' is crucial for instruments.in uncontrolled environments where these "rea-
;

sonable" values may be too small; see footnote .p.-96. Similarly, if~ demon-'

strated' smaller bounds of, say, 2% B limits could be substituted for the
J

|
default bound of 5% B. A most important consequence of including reasonable

| bounds for-systematic error is that LLD cannot be arbitrarily decreased by
,

increasing T.'

t [A12]. Multicomponent Analysis, A --Uncertainties. In cases of

j multicomponent decay curve analysis or (a, S, Y) spectroscopy,JSC may be
.

i
'

transformed to a critical level.(decision level) for an initial rate or

activity due to spectrum or-decay curve shape differences among the compo-
::
i

i-
nents. 'C:ommon factor transformations (Y,E,V). applied, with their uncer-

tainties, to SC would simply needlessly increase the detection limit. As-

4

a
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t

shown in.Eq.L(1), such common'(calibration) factors and their uncertainties

must,'however, be: included.to calculate the value of the a priori performance

- characteristic, LLD.
4

[ A13] . Decisions"and Reporting of Data. -SC (or LLD/2.20) is used for.

testing (a posteriori).each experimental result (S) for statistical signifi-
!

If S > S , the decision is " detected;" otherwise, not. Regardless of.~

cance. C

. the outcome of this' process, the experimental result-and its estimated uncer -

' tainty should be recorded, even if it should be a negative number. (Proper
.

-

averaging is otherwise impossible, except with certain techniques devised for
<

lightly " censored" [but not " truncated"] data [Ref. 21, pp 7-16f].) The-

- decision outcome, of course, should be noted and for non-significant results,

the actual detection limit (for those particular samples) should be-given. If

j -' desired, a second decision level of significance using 1.9 S , may beC

noted, in view of the effects of multiple decisions on d and S. (See section
~

II.D.5 on the treatment of multiple detection decisions and the origin of the-

coefficient 1.9.) Obviously,~ changes in SC (i.e., in z1-a) alter the

i detection limit, because of the sum, (z1-a + Z1-8), in Eq. (1).

l [A14]. Variance of the Blank. Estimation of o 2 bys3-s$n~is '

o

if completely valid only if the entire rigorously defined, Measurement Process

can be replicated. This is rarely. achievable if there are significant levels

of interference (B ), for B will doubtless be unique for each sample. 'A
I I

- suggested alternative, therefore, g th'e s$ approach is to'be applied, is to.

estimatesfgfortheBlank(non-baseline)andtocombinethis.(necessarilyas

anapproximation)withthePoissono$fromthespectrumfitting. One -|

caution: X .is appropriate to estimate bounds for non-Poisson variance (20)2

and lack-of-fit (model error), but it should-never be used as an arbitrary

correction factor for the Poisson variance (61,63).

|
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L [A15]. Sa vs xD and Error Propagation. The formulation given here> is ;

based on signal detection (SCe'S ). Transformation to a concentrationD

detection limit (xD which lj( the LLD) involves uncertainties in the estimated

denominator, A. In this report, we do not " propagate" such uncertainties

directly, but rather use them to establish'a corresponding uncertainty

interval for xD, given S . If &A (RSD) is small, and eA random, thenD

I ' xD." SD A has the same RSD (&A).' If &A 5 ' O.1, then the uncertainty interval/

for -xD can be derived directly .from the lower and upper bounds for A,. . We

take a conservative position, setting LLD equal to the upper bound for xp.

This can be further interpreted as a dualism: 1.e. , LLD [Eq.1] is. the upper

(95%) limit for xD, and S - 0.05; or, LLD [Eq.1] ijl xD, but S < 0.05 (upper '

95% limit for 8). (Eq. (1), where f = 1.1, takes the relative uncertainty in

S , of course, is unaffected by 4A. An alternative treatment; f[to be 10%.) C

("x-based" rather "S-based") is given Ref. 76, where xD is estimated from

full error propagation, but where one is left with uncertainty. intervals for

both a and S. The best solution clearly is to all but eliminate $A, but in

:
any case it should be kept within the bounds given by the default value of

factor f if at all possible.

[A16]. Calibration Factor (A) Variations. If, for a given measurement

process A actually varies -- e.g. , if yields or efficiencies, etc. , fluctuate-

about their mean values from sample to sample -- then the LLD -itself. Varies.

If this variation is significant (in a practical sense) and a mean value is

used- for A, then xD would best be described by.a tolerance interval for the
4

varying population sampled. Far better, in this case, is the use of direct

or indirect measures for ft (or its component factors -- Y,E,V) for_each

sample; such methods include isotope dilution (for Y) and internal andt

77-
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external efficiency calibration (for'E). Sampling errors, which;can be very

large indeed, come under this same topic; but'further' discussion-is beyond-
'

the scope of this report.

B. Proposed Simplified RETS Page for " Simple" Countingl'

i

1

-(See footnote at-beginning of section III.) H
,

1. The LLD is Defined for purposes of these' specifications, as the smallest

concentration.of radioactive material in a sample that will' yield a net'

count, above system blank, that will be detected with at least 95% probabil-

.ity with no greater than a 5% probability of falsel'y concluding that a blank~

observation represents a "real" signal. " Blank" in this. context'means (the

effects of) everything apart from the signal sought -- i.e., background,

contamination, and all interfering radionuclides.2

For a particular measurement system, which may include radiochemical

separation:

'

LLD E (0.11) BEA + (0.50) (6)
( YEVT /

The above equation gives a conservative estimate for LLD (in pCi-per uni.t

mass or volume (V))', including bounds for relative, systematic error for the

blank of 5%, for baseline (interference) of 1%, and for the calibration -

quantities _(Y,E,V) of 10% [B53. (A 5% blank systematic error bound [kK was3
'

usedabove;forbaselineerror,substitutekIasindicatedunder'BEA'-

below.) The " statistical" part -- numerator of the second term is based on

_______________

I" Simple", as used here, means that the net signal is estimated from just two
observations (not necessarily of equal times or number of channels). One
-observation includes the signal + blank (or interference. baseline);'the
other~ being a " pure" blank (or baseline) observation. Also, the " expected"
(average) number of blank-counts must exceed ~70. counts, for Eq. 6-to be
adequately valid [B9].

2 References to notes which follow (in section III.B.2) are indicated in-
brackets--e.g., [B5].
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5% false : positive and f alse negative rieks and the standard deviation of the
.

blank or baseline (interference) (og) in units of counts, for the sample

measurement time at. [See also Eq. ( 7 ), pg. 81. ]

.v.eanings of the other quantities are:

BEA = Blank Equivalent Activity (pCi/ mass or volume). If tne baseline

(underneath ar. isolated Y-ray peak) is large compared to the blank,

substitute " Baseline" for "31ank" in the first term of Eq. (6), and use a

coefficient of 0.0220 in place of 0.11,

Y = Radiochemical recovery

E = Overall Counting efficiency (counts / disintegration :56])

T = e-Ata(1-e- Alt)/ A, the "ef fective" counting time (minutes); where A is

the decay constant, ta is the time since sampling, and Lt is the length of

the counting interval For At<<1, T=Lt] [E7, A6, A9]

og = E for Poisson counting statistics (3 equals the expected number of

Blank or Baseline counts). Do not use Eq. (6) unless B 3 70 counts.

Note that use of the observed number of blank counts, $ in place of the

unobservable true value B introduces a relative uncertainty (lo) of $6%

(Poisson) in the estimated c3, if B > 7C counts [B9].

1LL)gAwhereat is the measurement time for the sample, andn =1+
At

Na~)
LtB is the measurement time for the background. The dimensionsless factor gA

takes into account possible influences of enanges in the calibration f actor A_

on the blank -- due to blank interactions / correlations with yield, efficiency

or sample volume (mass). Generally, gA will have the value, unity (77,78).

The Detection Decision: (a posteriori) is made using as the critical

level LLD/2.20. Unless such a value is used in conjunction with Eq. (6), the

probabilistic meaning (5% false-positive, negative-risks) is non-existent (5)!

|

79
,

1



-_ Tutorial Extensions and Notes:' |2 .

[B1] Simple Spectroscopy: Eq. (6) may be used widi isolated a- or Y-ray

' peaks by substituting: (a) baseline height (counts under the selected sample

peak channels). for B in order to calculate BEA and oB; and (b) the expression

(1 + nt n2) for 4, where n1 = number of peak channels taken and n2 = total-' /

- number of channels used to estimate the pure (linear or flat) ~ baseline._ (For

a linear baseline, n2 should be symmetrically distributed about the peak

integration region.)

[B2]. Replication: The variability of the blank should always be tested

by replication, using s2 and X. (See aso notes A2,~A14.) If the2

~

replication-estimated standard deviation significantly exceeds the Poisson

value (dB), the cause should be determined.I If excess variability is random~

and stable the factors 3.29 on in Eq. (6) may be replaced by 2t oUL as

defined in note A2.

Some values of t and oUL s (both at a = 0.05) follow:/

Table 6. LLD Estimation by Replication: Student's-t and (o/s) - Bounds
vjs, Number of Observations

no. of replicates: 5 10 13 20 120 -

Student's-t: 2.13 1.83 1.78 1.73 1.66 1.645
o t/s: 2.37 1.65 1.51 1 37 1.12 _1.100n

[B3]. Systematic Error Bounds. The presence of systematic error bounds

limits unrealistic reduction of the LLD through extended counting. The

values (1%, 5% and 10% for blank, baseline and calibration factors,' resp.)

are believed reasonable [Ref. 72], but if demonstrated lower bounds are

achieved, they should.be accordingly, substituted.

_______________

IAt least 13 replicates are necessary to " assure" (90% conridence) that s be
~~

within -50% of the true o. [A2]
,
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'[B4]. -Some Inequalities for Rapid Decision Making and LLD Estimation.

Equation (6) can be written:I '

LLD x = x,9 - 1.1 (2xC) = 1.1 (2[jBEA+1.645oxo]) (7)-

.where xC, BEA and oxo have dimensions of activity.per unit mass or.volune.

In- the absence of systematic error bounds; xD - 2xC, 4+0, ' and 1.1+1. The

standard deviation of the estimated concentration when its true value is

zero, is o which equals /Bd /[2.22 (YEVT)] for " simple" counting.xo

One result which is' normally available following all radionuclide

measurements is the estimate of the radioactivity concentration, x, and its

Poisson standard deviation o . Since ox2oxo necessarily (the equalityx

applying only when x=0 -- i.e., a blank),

xC'-fBEA+1.645ox 2 xC (8),

and

xD' = 1.1 (2 xC') 2 xD (9)

with these two inequalities, using the result which is available with every

experiment (o ), we can instantly calculate quantities for conservative usex

for Detection Decisions and for setting a bound for LLD.

Equation (8) should be considered as a new (quite legitimate) decision

threshold, for which - 5 0.05. Similarly, using xC' for detection decisions,

xD' (Eq. 9) may be considered a detection limit for which 8 5 0.05. (With a

little more work, one could calculate the (S = 0.05) LLD, which would be

i

I

_. ..__________

1For convenience of algebraic statement, xp will be used here to symbolize the
actual LLD. (See App. A.) Also, when units are concentration, "o " will beo
transformed accordingly: 1.e., oxo E Oo/A, thus, oxo.is ox for x=0.

~
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smaller than xD', using xC'.) If, then, xg' is less than the prescribed.

_

regulatory value xR for LLD, the requirements will have been met; and actual

calculat)on of o , and LLD using Eq (1), would be unnecessary. Obviously,o

this approach cannot be applied completely a priori, in the absence of any

experimental results. Operationally, hcwever, it is straightforward,

conservative, and satisfies the goals of RETS.

Limits for the ratios of xD'/xD, which are necessarily the same for

xC'/XC, are readily given for simple counting. If the true value of sample

counts (S) is not zero, then the quantity dii is replaced with /B(n+r) where

r = S/B, the ratio of sample to blank counts (" reduced activity" [Ref. 19]).

Thus, for S = B, for example, and n=1 (well-known blank), ao woald be

increased by a factor of /l+r = d , and this would be reflected in o . Thex

ratio xb'/XD would likewise be 8 , if there were no systematic error. When

systematic error dominates (jBEA in Eq. 8), then xD'/x9 -1 showing no change.

[B5]. Calibration Factor Variations. If there are large random varia-

tions in Y, E, or V, the full replication of x (radioactivity concentration)

and o should be considered in place of the T-systematic errce boundx

approach.

[B6]. Branching Ratios (or absolute radiation - a, 8, Y, eg, --

fractions) may be shown explicitly by factoring the efficiency. Thus, for

example, E = Ey-(k, where E7 represents the counting efficiency for a Y-ray

of the energy in question, and Ek represents the branching ratio for that

energy Y-ray from radionuclide-k. All else being equal, then LLD a 1/(k-

[B7]. Continuous (Monitoring) Observations [See also footnote: p.51].

When a digital count rate meter is employed (Ref. 73), or when a "long"

average estimate with an analog rate meter is made, the standard deviation of

/T = /R /At (for At<<1). When anthe background rate is unchanged -- i.e., oB B
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..
" instantaneous" analog reading is made,.however, T+2T;(T = resolving time of-

' /R
1 B - ,the circuit),--so oB/T+ N 2T' [Ref. 74]. Changes ~in analog ratemeter~

'

readings are governed by the. instrumental. time constant, just as they are in
!

exponential radioactivity growth and decay, by the nuclear time constant.

.[B8]. Decisions and Reporting of. Data.. SC (or LLD/2.20) is used for.

testing each experimental (a posteriori) result f.$) for statistical signifi-

If $ > S , the decision is " detected"; otherwise, not. Regardlesszofance. C

the outcome of this process, the experimental result and its estimated uncer-

.tainty should be recorded..even if it should be a negative number. (Proper
~

averaging is otherwise impossible, except with certain techniques devised-for

lightly " censored" [but not " truncated"] data [Ref. 21, pp 7-16f].) The

decision outcome, of course, should be-noted and for non-significant results,

the actual detection limit (for those particular samples) should be given. If

i desired, a second level of significance, using 1.9 x S , may be noted, inC

- view of the effects of multiple decisions on a and B. (See Section II.D.5 on-

; the treatment of multiple detection decisions.)

S. When B[B9]. Counts Required for Adequate Approximation of OB and D

is large, the approximations

(i) on = /B and (II) Sn = 2Sc = 2z /En
,

become quite acceptable. They are, in fact, asymptotically correct, just as

the Poisson distribution is asymptotically Normal. Regions of validity can
,

be set by requiring,_for example, that each approximate expression deviate no

more than 10%.from the correct expression.

For Case (I), where.the observed number of counts is used as an estimate-

'- for the. Poisson parameter, we require:
'

0.90 $_ /B / / E < 1.10

i

I
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Taking the upper limit $ = B + z1-y /B, we have

(1.10)2 > 1 + z1-y/B, or B > (z1-y/0.21)2 counts

For 'lo' (z=1), this means B > 22.7 counts; for the '95% CI' ( z-1.9 6 ) , th e

limit is B>87.1 counts. A most important point is that the B referred to is

that associated with the Blank experiment, because that is the source of the

estimate $. Thus', if b = At /At equals the ratio of counting times [" pureB

blank"/(signal + blank)], the RSD of $ is given by 1/ 6B. The requisite

number of counts bB is still (z/0.21)2, but B itself is reduced to
,

(z1-y/0.21)2/b [b > 1]. If, for example, the blank is measured twice as long

as the sample, the '10' (z=1) limit for approximation (I) is B > 11 3 counts

(expected).

For Case (II), we require that,

S /2SC i 1.10D

that is,

(z2 + 2z 8n)/(2z En) i 1.10

this reduces .to (for 21-a * 21-g = 1.645)

B > (5z)2/n - (5 1.645)2/n - 67.6/n counts

Taking the usual limits for n, we have

B > 67.6 counts (n=1, "well-known" blank)

B > 33.8 counts (n-2, " paired comparison")

Since n = 1 + 1/b, this second approximation (II) is the more stringent.

C. LLD for Specific Types of Counting

1. Extreme Low-Level Counting

When fewer than -70 backgrounct or baseline counts (B) are observed, the

" simple" counting formula for SD must have added the term z2 - 2.71 (for

84



a=8-0.'05) to account for. minor.deviat' ions of the Poisson distribution from

Normality.--[Ref. 5.] (Obviously, this term may be retained for B > 70, but

~

its contribution is then relatively minor.)

When the mean (expected) number of background counts is fewer than about
~

25' such as may occur in low-level a-counting, further caution is necessary,

because of the rather large deviations from Normality. This issue has been

treated in some detail in Ref's 19 and 75.~ The extreme case occurs, of.

course, when B=0 where th'e asymptotic formula (SD = 3.29 /B) would give a

- detection limit (counts) of zero, and the intermediate-formula, 2.71. In

fact, as will- be shown below, the true detection limit. (a=8=0.05), in the
~

case of negligible background, is 3.00 counts. |Though'the intermediate

formula is not so bad in this case (within -10% for S ). the accuracy'for-SCD

and SD fluctuates as B increases from zero to -5 counts; but above this point

(B-5 counts) the deviations are generally within 10% relative. (Note that

the symbol B refers to the true or expected value.of the blank; B refers to

'
an experimental estimate.)

For accurate setting of critical levels (for detection decisions) and

detection limits, when B < 5 counts, we therefore recommend using the exact

i- Poisson distribution. In the following text we shall use the development

given in Ref. 19 and make explicit use of Fig. I from that reference -- which-

appears here as Fig. 7. Before fully discussing the use of this figure,
~

,

let us make some critical obserydtions:

o ~The mean number of background counts is assumed known. Such an assump-

tion is both reasonable and necessary. It is reasonable in that', even

for the lowest level counting arrangements, long-term background measure-

ments should be made yielding, say, at least 100 counts. (An RSD of 10%
|

la trivial in the present context.) 'The assumption is more:or less

-'
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necessary,Lin that'a_ rigorous detection'l'imit cannot'be stated for the~

difference-between two estimated' Poisson, variables, although. rigorous
l

detection decisions and relative limits can be given. (See references j

19',3 36, and 75 for.further details.)

o Fig. 7 gives the detection' limits in units.of BEA (background equivalent-

activity) as a function of B. For relatively small uncertainties in B,

-one can deduce limiting values from the curve.

o The integers above the curve envelope indicate the critical-number of

gross counts (yC " SC + B). (Though B and S'and y -- i.e.' true or

expected values are real numbers, the critical level for y (yC) as well

as all observed gross counts are necessarily integers.)

o The " sawtooth" structure of the envelope reflects the discrete (digital)

nature of the Poisson distribution. A consequence is that the false

positive risk becomes an inequality.-- i.e., a < 0.05. At each peak' a =

0.05, and then it is gradually decreases until the next. integer satisfies.

the a = 0.05 condition, l

o The dashed curve represents the locus of the intermediate expression

(SD = 2.71 + 1.645 4).

o It is seen that the extreme low-level situation generally applies to the

case where the Poisson detection limit exceeds the BEA. In fact,:this

occurs once B is less than -16 counts. It is recommended that Fig. 7

be used for detection decisions (SC + B = integers above the curve

envelope) and estimated detection limits (ordinate = detection limit,-in

BEA units). .In addition, the figure can be useful for designing (plan-

ning) the measurement process. For example, if the BEA for a particular

nuclide is 1 pCi/L and one wishes to be able to detect 5 pCi/L, it is

clear that the expected number of background counts must be at least'
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Figure 7a. Reduced Activity (p) vs Mean Background Counts (un) and Observed
Gross Counts (n). Each of the solid curves represents the upper

limits for p vs pB, given n. The envelope of the curves,
connected by a dotted line, represents the detection limit (pD)
and critical counts (n ) as a function of pB. (a - S = 0.05)e

7b. Reduced activity curves. Coatour plots are presented for reduced
activity (S/B = p) versus background counts (B) and counting
precision (0). Part (a) includes Poisson errors only; part (b)
incorporates additional random error (0.50% for counting
efficiency, 1.0% for background variability).
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, -1 3 If the background rate is, e.g., 3 counts /houb, this means a 26-
,

min measurement is necessary (assuming the~meaq background' rate to be

reasonably well known).;
;

o; A.further use for Fig. 7 is the setting of the upper limits when y <
.

yC; That is, the. sequence of curves below the detection limit envelope,

which have integers 1ess than yC, represent all possible outcomes when~

activity is not detected. For. example, if B (expected value) = 1.0

count, yC = 3 (so SC = 2.0) and the normalized detection limit is 6.75 -

1

!

BEA. If an experimental result were y = 1 ~ count, the second curve
. ..

below (labeled "1") intersects with'B = 1.0 and the ordinate at the-(5%)'

upper limit of 3 74 BEA.

o Table 7 is offered as an alternative to Fig. 7 Again, the mean

background rate is assumed well-known, and a j:, 0.05 while S = 0.05. For

the case earlier discussed (B = 1 3-counts), we see-that the net critical

number of counts is 1.7 [i.e., 3 - 1.3] where yC is necessarily an integer;

and the detection limit is 7.75 - 1 30 - 6.45 counts, which is indeed

- 5 BEA. (Though 8 = 0.050, for this particular case it can be shown

$ that a --0.043.) The intermediate formula would have given 1.88. counts

I (1.645 /5) for SC and 6.46 counts for Sp -- results that are fortuitously

close to the correct values. (The fortuitousness becomes clear when one

calculates SC and SD for B = 2.0, for exemple.)

,
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-Table 7.; Critical Level and Detection Limits for Extreme Low-Level. ;

,

, Counting (Assumes B known). ,
,

3

. ..

Background Counts Gross Counts
' '

'

B --Range yC = SC + B yD = SD + B _

>
, . -(integer)j

0 - 0.051 'O 3 00
0.052 - 0.35 - 1 4.74
0.36 - 0.81 2 6.30
0.82- - 1 36 3 7 75-"

1.37 -:1.96 4 9.15- ,

1.97 2'60 5 ~10.51.

2.61 - 3.28 ~6 ~11.84
. 3 29 '- 3 97 7 13.15

~

3.98 - 4.69 -8 14.43- -

; 4.70 - 5.42 9 15.71 *

.

' 2. Reductions of the General Equations.

For direct application of Eq's (1) and (2) JWe' take the
4

following parameter values,
,

f - 1.10 (10% YEV " calibration" systematic error bound)

j Z1-a - Z1-8 - 1.645 (55 false positive and negative risks)

: A=Ag+AI=dK Bg+dI BI - 0.05 Bg + 0.01 BI

A,AI represent systematic error bounds (counts) from the blank -. where: K
! ,

and interference (e.g., non-blank component of a baseline),
,

,

1 ,

respectively. .

$g,I denote relative systematic error bounds of 'the Blank- (counts,
.

Bg) and of the Interference (B ). 5% and 1% values are taken asI

reasonable for routine measurement, but these may be replaced by

laboratory-specificvalues(f)whichhavedemonstratedvalidity.

i

__________.____

- -lNote that |the Blank and Baseline (non-blank portion) are properly treated
apart (a) because the Blank may contribute directly to a peak (a, Y-ray)1due

I. to contamination by the very nuclide sought, and (b) because of dif ference
:in'both the origins of their systematic errors, and their (external)
variability.

.
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c.
,

L[ Symbols without subscr.ipts will~ denote summation .e.'g.,

AB.= IA Bt i = .|| AB||].4

Thus, Eq. -(1 ) takes the form,'

1.1_(2 S )-C 1

LLD = = xp (10) i

2.22'(YEV)T '

!

(1.1)3.290o
LLD'= 0.11 (BEA)g + 0.022 (BEA)I + 2.22 (YEV)T

,

and

12)SC =10.05 Bg + 0.01 BI + 1.645 oo (

-where: BEA = Blank (or Interference) Equivalent Activity

1.e., BEA = B/[2.22 (YEV)T] = B/A (13)-

From the above equations it;is clear also that the critical level,

expressed in the same units as LLD, is just LLD/2.2. Use of this is equiva-

lent to applying SC to test net counts for significance; and the form of data

output available may make it (LLD/2.2) more convenient to use than S . In theC

absence of systematic calibration error, of course, this equals LLD/2.

3 Derivation and Application of Expressions for on -- The Poisson Standard
Deviation of the Estimated Net Signal, Under the Null Hypothesis [ Blank]l

A. " Simple" counting (gross signal minus blank)

i) Derivation

When two (sets of) observations (yj,y2) are made, one of the sample and

one of the pure-Blank (or Interference), we have

y1 = S + B + ej (counts) [ observed] (14)
.

_______________.

l Inthe'followingtext,A{,andB.willbeusedwithoutsubscripts,inorder'
to simplify the presentation. The context will indicate whether the Blank
(B ) or interference (B ) predominates. As noted elsewhere, if the number i

K I

of background;(or interference) counts exceeds -70, the normal approximation-
of (Poisson statistics)'is adequate, and the relative uncertainty in -

estimating oo (or eB) will be less than 6%.

I
i
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y2 "- 'bB- + e2'(counts) ~[ observed] (15).

(where ej,|e2 are error terms):

Then,|N-y1-y2
.

/b

*2 2 ~ f 132 2 f1 L \2 .

(16)+ 1 1 - ) ~ y2oy = y1 +os = oy --

1 (bj 2 (b
,

* -The approximation (to be used_t_hroughout this section) involves taking y
(or B), rather.than the expected value E(y) (or B), to estimate the Poisson
variance [B9].

For the null hypothesis (S = 0),

~

2 2 f132
=B+ 1.- | (bB)03 = oo

(b)

1.e. oo - oB/Ii = Mii, .where n = (1 + 1/b)

The critical leve.1 SC thus equals

C = 1.645 Mil -(17)S = " Z1 a 00

The detection limit (counts) is defined from the basic relation,

So = SC + 31-80D " Z1-a0o + Z1-80D " Z1-a00 + Z1-8 !0 2+30 D (18)
Taking a - 8, this leads to,

SD.32 + 2 zoo - 2SC (19)

Since for a = 8 - 0.05, z2 = (1.645)2 = 2.71, -

So = 2.71 + 3.29.Mii(counts) (20)

The first term is not completely negligible if B is small. For approxi-

mate normality, B ) 9 counts (Ref. 19); but to make the first term above

(2.71)-negligible '-- i.e., less than 10% of S , we require at least 67D,

counts, since a 21. [Below B = 5 to 10 counts, the " extreme Poisson"

techniques for detection limits, discussed in Ref. 19 and section III.C.1,

should be employed; and for 5 < B <.70 counts the full equation above should

be-used (See also Ref. 36.).]
i
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Jii) Two Special' Cases .

~

.[1.] ' Gross Signal - blank

[ RANDOM PART]

If the sample is measured for time t , yielding y1' counts; and the blank1

-

for' time t ,. yielding y2 counts,~then2
-

f t +t21 i
b = t /t1 and n = 1 +-=|

2 b (t2

$ = y2|b-

and $ = y1 - y2/b.= y1 - y2 (t1/t )2

2 > t , then the limits for n are oby'iously,1 and ~ 2. )(Note that if t 1

This is to be compared with the critical number of counts S 'C

'
/ f L +t2)1

where oo;- S = /B l ISC = 1.645 oo
( 2 /

If S < S , we conclude ND; otherwise DC

(21 )Sp - 2.71 + 3.29 oo

and,

xp = LLD = 2S /[(YEVT)(2.22)] (22)-D

or, using Eq. (11) directly [last term divided by 1.1]

I t +t \1 2
3.29 o 3.29 $( lo ( L2 ).

XD * (2.22)(YEVT) 2.22(YEVT)
~

where the first approximation comes from dropping the term 2.71.in the

numerator, and the second approximation comes from using $ for the unobser-

vable true value [B9]. (Both approximations are adequate so long as B 5 70

counts, and t2 > t .)i
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If t1-is small. compared--to the half-life, then T=t1 (called At, earlier)

~ '

~ C. scale as t'1 1/2, and'xD e t71/2 (For fixed1 and S
'

Since B = RB t,ao

t /t1 or for-t2 :> t . )2 1

:When decay during counting is_not negligible then xD decreases less:

. rapidly.with increasing-t ; an'd' eventually (t >>t1/2) T assumes the formi 1

seIt[Awhichis.independentofAt(i.e.t)),so'xpasymptotically' increases- a

1/2 Obviously, there is an' optimum'(minimum-LLD or xD). [See section.asit1

II.D.3 on Design ]

[+ SYSTEMATIC PART]

Eq's (11) and (12) include terms for systematic error bounds for B (viz,

K and AB ), where for the Blank (all that's being considered here), theAB I

relative error,j is taken as 0.05.

SC - 0.05 Bg + 1.645 o -(23)o

= 0.05 B + 1.645 B | | [ counts]
( t2 ~)-

and

(1.1)(3 29)o <
o

XD = 0.11 (BEA)g +
2.22(YEVT)

[t+t)i 2
0.11 B + 3 62 51

(L2 ')
=

2.22(YEVT)

Since the first term in the numerator varies more rapidly with B than the

second, the systematic error bound'will predominate above a certain number _of

Blank counts;

1

1
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i

-(K) f3.62)2 -(t +t )1 2

Be9' = | n = 1082.n = 1082 -counts (25)~'

. (0.11/ (t2-)

Again, for.long-lived radionuclides, (t l<< t'1/2), T = tj, and since B --i

Rt,B1
-

R 9'B
xp = 0.11 RB + 3.62 [2.22(YEV) (26)-

,

.tj
,

The asymptotic constant value for xp is determined therefore by'the Blank

rate, as indicated in the first term.

For t1 >>.t1/2 .T + e-Ata/A constant; so, from equation (24)

xD=const(Rt)'+const'YRtj (27)Bi B

thus, xp asymptotically increases with t .1

As stated elsewhere, the use of systematic error bounds converts the

~

statistical risks into inequalities: a 5 0.05, 8 5 0.05.

[ REPLICATION]

Let us suppose that 11-observations were made of the Blank; all for the'

same time, t . (Otherwise, the simple replication model is invalid.) Then,1

following the common estimation procedure,

n 2 i~, , -

S = y1 - B, where B B /n, sB " OBI=
i

"

1 n-1

and

SE($) = s/ 6 (28)
2

b E EY1 + SBU3S

o + t sB E where now n = (n+1)/n/Now, in place of zoB, we use tsBe 30 Zo
n

because t2 has been replaced with I t1=nt.1
1

In the absence of systematic error, the critical number of counts is

-given by
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9

SC =~t -a,'v 8B [5 -(29)l

where to v - t.05,n-1 is Student's-t at the 5% significance level with n-1

degrees of freedom (v),;

2t-a,vsBg/F-a,v2t -a,v'0B f1 1 1

'o' '< -(30)x -

2.22(YEVT) --

2.22(YEVT)

- The inequality gives an upper limit'for xD, taking'into accountjthe!

2uncertainty of oB through the use of the X . (F -a,v . is equal to X2/v rop1

v-degrees of' freedom at the ath percentage point.)l

An alternative treatment, wherein a non-Poisson (or " extraneous")-

variance component is estimated and combined with the Poisson estimate, /U",-

is' described in Ref. 20.

[ REPORTING]

Recommendations for reporting the results following the above tests: the

estimate x = S/(2.22 YEVT), the estimated bound for systematic error

[f}(BEA)],andthestandarderroro3(2.22YEVT),shouldallberecorded/

regardless of the outcome of the detection test for significance (whether $ >

SC or not). This is vital both for unbiased averaging, and for the possibil-

ity of future tests at different levels of significance or with different

estimates of systematic error. For "ND" results, the corresponding estimate

of xp should be provided. For the sake of uniform reporting practice and to

avoid straining the distributional assumptions (Poisson = Normal) one

standard deviation (not a multiple thereof) should be reported.

_______________

I Because of the large uncertainty. interval- for s/o unless v is very large,
-the use of an upper limit for xD is preferred to the simple substitution of
s for oB in the previous equation. [A2]
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[ CONT NUOUS MEASUREMENT]

;A-long-term (t ,2>>t) measurement with an' analog count-rate' meter or a1

digital-count rate meter measurement follow essentially the same statistics-

ias above.-

For an " instantaneous" measurement with an analog meter,-however, the-
.I

uncertainty in the rate is given by

.o = /R/(2T)

where T is the RC time constant.-

The product oB /n/T in Eq (1B) is therefore replaced by /R 0/e- Ata, where.B

now'n -- 1 + 1 I = 1/(2T) (assuming t2 >> T and t1/2 >> t) . For an
t2r t2

" instantaneous" observation of a sample, we correspondingly find:

Rgro33-RB R ro33 RBg
Rnet " i OR (32)

e-Ata net 2t t2
e-Ata

The corresponding radioactivity concentrations are found by dividing the

respective R's by (2.22)(YEV); and the factors 1.645 and 3.29 are used,

respectively, to calculate critical levels and detection limits (LLD).
j

A further complication with rate meters is the equilibration time (RC for

analog instruments) whien aust be taken into consideration (74).

|

_______________

IThe reader should be alerted to the fact that an instrument in a relatively
uncontrolled environment, such as a count rate meter, may be subject to
rather significant non-Poisson " background" variations. Therefore, it is
urgent that the X2 test for background reproducibility be carried out, and
if non-Poisson random variability is implied, s2 should be used in place of
the Poisson variance estimate. (See the earlier section on the use of
Student's-t'with replication procedures.)

Worse still, such fluctuations may be non-Normal or even non-random in
character. In this case a system-specific estimate should be made for the ~
relativeuncertaintyboun'ds--i.e.,dB. (One should not simply adopt the
" reasonable" value of 5%, _ suggested for controlled environment [well -
shielded] counting systems.)

.
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[ INSTRUMENTAL THRESHOLD]

.

. -
. .

On occasion,fwhen there is " sensitivity to spare" a fixed, possibly

arbitrary threshold (K) will-be set in place.of S . The minimum detectableC

[ number,of counts is then given by:

Sp .K + z /Sp.+ o 2 (33).o

This- equation 'has the approximate s'olution,

2 1/2
Sp = K + z2 + z-[g + og + z2/] (34a)2

or, if.K >> o 2 - Bn,o

SD = K-+ 1.645 /K (34b)

For such a solution, a<<0.05, but 8 - 0.05. Also, since K is a fixed

number (like '103 counts, or in x-units 30 pci/g for example), SD is no longer

much influenced by the statistical uncertainty in B. On the other hand, the

detection limit is increased by an amount K or more.

[2] Simple Spectroscopy

[ linear or flat baseline]

If a baseline underlying a spectral peak (a ,Y-) is estimated from a

region well cemoved from that peak, then the decision and detection equations

are formally identical to those presented above. One simply substitutes (for

i and t ) n1 and n2, the respective number of channels used for-estimatingt 2

the peak and the baseline. . The only other difference is that the full

expression for A -- ( Ag + A ) -- must be used, when one includes bounds for.I

systematic error.

[ RANDOM PART]

If two equivalent, pure baseline regions lie symmetrically about the

peak, as shown in Fig. 8, each having n2/2 channels, then

!

97-
)

.. .. .. . .. .. .. .. .. ..
. .. . . ..

_ - _ _ - _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

|

1

Y1

M
f Y S&2

z ''?..-- -

- -
-

= ' - '

g Ag)o _

B

, n2I2 n n2/23

CHANNEL

I
t

,

L

Fig. 8. Simple Counting: Detection Limit for a Spectrum Peak
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4 a

;yt = E' yi - Sj + E B + e'j-

i-nj ni-
-

_

y2 = E Yi " E Bi +'02 where-
n2 n2

~

,}
'S1= g.S-equalsthenumberofnetsamplecountsinthe-peakregion.=1 i

'

1

Under the assumption of linearity for Bi (baseline-counts in. channel-1),

yj - S i+ n1 5 + et - Sj' + B + et (35)-t
~

1

y2 " D2 B +.e2 = (n2 n1) B1 + e2 .(36)/

Thus,

~
~

/St = yt-- y2 (n1 n2)

V3 = y1 + M 2 b 2
1

fng)2
2-B1+1 - | (n2 )5co

( U2/

fn3)2fng )
=B1 +1 | 1 -B

1)i = B n
i (37)-

( n2) (n1

n1 nj + n2
where n = 1 +=

n2 n2

Thus, the formulation is identical to the preceding one for gross signal

minus blank, except that nt's replace the t 's.t

[+ SYSTEMATIC PART]

The formal structure again is unchanged. However, since we now treat

baseline error bounds rather than blank systematic error bounds', } + 0.01

rather than 0.05. (The common, limiting case when one has baseline interfer-

ence is assumed here: that BK << B , so A'= 0.01 B , with BI = baseline inI I

region-1-(peak). This quantity is estimated as y2(nt n2)-/

99'
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Thus,

SC = 0.01 BI + 1.645 oo

- 0.01 B1 + 1.645 / Bin. (23')

and,-

(1.1)(3 29)oo
xD = 0.022 ~(BEA)I +

2.22(YEVT)

0.022 B1 + 3.62/B1 n
=

2.22(YEVT)

where n - (n1 + n2)/n2

The point at which the systematic baseline error term dominates the

expression for x0 is,

I f 3.621 2
4eq = n - (2.70 x 10 )n counts (25')B

0.022,
,

B. Mutual Interference (2 components)

1) Zero degrees of freedom - 2 observations

In both the evaluation of decay curves and simple spectroscopy, one of ten

encounters the situation where there is " mutual interference" -- i.e., where-

radiations from two components contribute to each of the observations taken,

or to each of tne two classes of observations. If the relative contributions

dif fer, the two components may be resolvable (depending upon statistics) .

[For the following discussion, refer to Fig. 9 for simple decay curve

resolution, and Fig.10 for simple spectrum peak analysis.]

|
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bere th'el signal- dominates ~in region-1 '(time or . energy) .and the blank, in.
'

-

region-2.:

1Thus,- .
'

<

yi = S ~+ B1 + e1> (38)
'^ f yj = I- .t .

.

,
.

y2:" E Yi = a S1 + bB1 + e2- (39)
'

,

in2

For the decay curve, the parameters a_ and b_'are uniquelyidetermined by.
r

.

the t1/2's' (or A's) of the 2 components, the . spacing _(time) of the' two -
~

. observations, and the measurement-intervals'tj and t .l. .[If A2.= 0, then.2

the'2nd component is equivalent to_~a blank and/or long-lived interfering

i nuclide.] For the spectrum' peak, n1 and n2 represent.the' respective numbers--

of channels as before; and the n2's are symmetrically placed about the_ peak

region (symmetric with respect to the mid-n1-channel) for a baseline'model..
,

.

I
which is linear or flat. The same formalism applies also.for the case of two

C
overlapping spectra (provided the blank is' negligible or corrected), such'as

Y-ray doublets. (It should not be overlooked that, for the Y-peak, the-
,

effective detection efficiency [E] here depends upon the algorithm -- i.e.,

the locations, widths and separations of regions -1 and -2.)'

Simply to solve these equations, we must assume that a-and b -- i.e., the

decay curve or spectrum shapes -- are known. When B (component-2) is a
,

linear baseline or a constant blank or interference (decay curve), b is

dictated by the model, then a < b, and

decay curve: b = t /t12-

/; spectrum: b = n2 R1

---------------

4 0) subsumes the parameter T in Eq. (11)-[ Good-IThus, a (and b, if A2
is set at the midpoint of the first interval (t )].-approximation.if to 1

.103
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[ RANDOM'PART],

TThe' solutions (Poisson statistics part) follow:
,

[byj-y2I.
. 2' f- b j2 -( 132' ,

,

1 y2- (40).
1 =|( b-a ).

'
.

and.-os =j j ' y1. + 1.S,

' 1 (b-aj (_b-aj-=

and, replacing ISjiby zero,: +

2- ['b-)21 f 1 )2.
1 1 bB1=Bn (41)'

(b-a)LB.;+.i(b-a)
- Oo = j 1

,

b(b+1 )
- where n =

.
.

;

-[When a'+ 0, as.in " simple-counting",'we get the previous result, that n +
+

- (b+1 )/b]

As before,

SC " Z1 aCo = 1.645 /B n (17')1

However,'the minimum detectable S1 - counts takes the form,

SD=Z p+ 2SC = ( 2 71 ) p + 3.29 /1]li (20')

2b +a
where p=_

.

>1
(b-a)2

Some generalizations follow:

(a) If a=b, both SC and SD diverge (SD more rapidly)

2(b) The term z p which comes about because of Poisson counting statistics

has greater influence than the term z2 which we find in " simple counting".

(c) In-fact the previous approximation So = 2SC is poorer,.especially

when'a approaches b,

C " 2 + < (Z//hf)S /SD

2(b +a)//b'(b+1)
where e= = p//n__

1(b-a)
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Asymptotic forms for K:

e when b > 1 and b > a (e.g., n2 > n., or t2>t1 or for barely-
b

overlapping peaks), e + = ( ) = 1 Lalso, g and n = 1]
b-a (1+a)// 2

e when b = 1 (e.g., for blank or linear baseline), e +
(1-a)

For the first asymptote, SD * 2SC (within 10%) when B > 68 counto, as

before (" simple" counting). For the second asymptote, K ranges from 0.707

[a-0] to = [a=1]. Taking for example, a-1/2 [K - 2.12], we find that SD*

22SC once B > 304 counts. Thus, the extra Poisson term (z p) cannot be so

readily ignored as in the case of " simple" counting.

Once again, xD " S dh.22 (YEVT)] where T will already have been includedD

in the coefficients a and b for the decay curve example, and E will be

influenced by the normalization of the coefficients for the spectrum peak

(Here, E-E , the total efficiency corresponding to the fraction ofexample.
1

the peak contained in region-1.)

That is, for the decay-curve mutual interference example, xD *
o o

R /[(YEV)(2.22)] because Ro (initial counting rate of the ' signal'D

radionuclide) depends on the eq>ations including T:

o o
y1 - R3 T31 +RB TB1 + 01 (42)

o o
y2 - R3 TS2 + RB TB2 + O2 (43)

where

At [1 - e- jAti)
Tji = e-Jl I l (44)

k AJ /
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|[ SYSTEMATIC PART]

;Let .us.next ' consider. bounds- for systematic error in B. ~ At this point, a .
~

new problem presents itself: should,we assume that the relative uncertainty

$BappliestoB1 in yj, or.to B2.= bB, in.yp,oor both? In fact, the.

question as posed is inappropriate. The systematic error'in fitting is due

.to model or shape error (in .the baseline) rauher than'a discrete shift from a

signal-free-blank observation as in." simple counting."

In order *o simply present the systematic (shape) error contribution to

xp. it will be convenient first to change- the normalization basis from

region-1 to the entire portion of the spectrum or decay curve involved in the

fitting. We accomplish this by re-writing Eq's (38) and (39)'to read,

y1 = at S+b1 B + ej. (45)

y2 = .a2 S+b2 B + e2 (46)

where the a's and the b's are normalized to unity (Ea=1, Eb=1). Thus S and B

represent the contributions of the net signal and blank to the total peak'

area that we analyze (S + B = yt + y2)-

The solution is formally identical to that obtained before,

.6 = c1 y1 + c2 Y2 (47)

2 2 2
(b B) + c2 (b B) - Bn (48)oo - c1 1 2

where now

c1 = b /D, c2 " ~D /D, D = (ajb2 - agb ) (49)2 1 i
and

2
n = E ci bi (50)

The relation,

SD = 2SC+2 p = 2z ao + z22 (51)9
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-where
_

2 --.<

p- E ci ai (52) .

-is still valid, and-it can be shown - that c - c*/at , oo-oo /aj,*

_ "/aj. where thelasterisic refers to the previous normalization (where -and =

at, bjL+ 1). It follows that
~

'
'

~ Sp. Sp Sp
.

xp . - xp- -

! (2.22|YVT)E (2.22'YVT)Ea1 (2.22 YVT)E"

Thus, the (Poisson part of)' the detection limit .does not ' depend on the a,

,
b normalization.

With this re-normalization it becomes straightforward.to' treat systematic

error. Substituting Ayi for yi in Eq'. (47) we obtain

A3 - cj;Ay1 + c2 Ay2 (53)
'

;

If the Ayt's are due to systematic shape errors in the baseline,'we have

Ah=ctB Ab1 + c2B Ab2 -B I ci Abi (54)
~

where the Ab 's are the deviations of the actual baseline shape from thei3

assumed shape and B represents the baseline area (counts) under the fitted

region. Thus the quantity E ci AbtreplacesthekBwhichoccurredinthe
;

expression for " simple counting" systematic error, so exactly the same

i equation may .be used for etlculating the detection limit. (Because of

orthogonality between the {ci} and the true baseline (b } , dB can be also .i

calculated directly from the alternative baseline-shape b'),*

i

| dB-Eci b' (55)i

i- A significant change in concept has entered, however, in that the Abt |

represent systematic baseline shape alternatives rather than simply a

(Thus, the Ab 's represent generally a smoothbaseline level shif t. i

|-
transition in function -- as from a linear to a quadratic baseline, etc.)

r

4
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The formalism developed here can be extended'qu'ite directly to the'

' estimation'of, systematic model. error even for; multicomponent-least squares

fitting of spectra and decay curves. .Some of'the basic-theory.and details#

'

' have'been developed in Ref. 72'("blas matrix"). 4

l

|

(ii) -Finite Degrees'of Freedom - Least Squares
~

For just two components (as baseline and spectral' peak, etc.) it.is

relatively simple to extend'the above considerations-to many observations -

such as'one finds with multichannel spectrum analysis or multiobservation-
J-

decay curve analysis. (This is because it is trivial to write down the

expression for the inversion of the 2 x 2 " normal-equations" matrix.) .The
,

same basic matrix formulation applies, however, for any number of components.

:

.

i [1] General WLS Formulation
!

]

In this case- (P > 2, n > P), the observations (counts) yi .can be written:
- - - ~

~b ' " ej'
~y aj 1

Y2 32 b2 eg
3

. . . .

~(56)*S+ B+* = * + * +
,

; . . . .

| Yn. .an- bn -
_ n,e- -

,

or, in matrix notation,

1

i y-M0+e (57)
!
J

; where
!

aj b; ->

. . .

and 0T = (S B)~M-j
- -

bn .
- an

The weighted least-squares (WLS) solution to Eq. (57) is, j*

i i

i S'- 01 = [(MT wM )~ l ' MT wy]1 (58)
i

I
1

h
-

.

|

. .
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' and

Vh=(MT w M)-1 .(59)
11

where the weights w are,
_

Wii = 1/Vy - 1/(M0)1 ' 1/yi (60)

where the second equality applies for Poisson statistics. (If the

observations are independent, ~w is a diagonal matrix -- i.e. , wij = 0 for
,

i / j.)

Defining,

ci E [(MT w M)-l MT w]11 (61)

we can alternately express Vh by means of error propagation, that is,

5=01 - E ci yi (58')

2 2,,

Vs - I ci V - E ci (ai S+bi B) (59')y

Thus, for the case of Poisson counting statistics,

Vh=Sp+Bn (62)

where

2 2
p" E ci ai n 5 I ci bi4

Beyond this, the development is identical to that given above for zero

degrees of freedom (P=n). Thus,

where ao= / Bn (63)SC " Zoo

2SD = 2SC+2 p (64)

Ah=Bf=BEci b[ (65)

where b[ is an alternative baseline shape, used for estimating possible

systematic error.
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The development thus~farfhas been perfectly general; that is, neither the

number'or components (P) nor the number of observations have been restricted.~

Components other than the'one of' interest (S = 9 ) have,'however, been1

coalesced to form a composite interference or baseline,-B.
,

..

- [2] Explicit Solution for P=2

~If we treat:the baseline (or any other single component) as a " pure"

sccond component, having fixed shape, then the explicit solution for S V3

and the ci may easily be stated. The results follow from the inversion of

the 2 x 2 matrix

{E
~ '

t E12 E2~E12 -

(MT wg)-1 ., Det. (66)-

2-) k-E12 E(E l)12 E

where
2

Det = (E) E2-E12)

and,

.s

2 2E3-Ewa g2 - I wb g12 = E wab

; .Taking the null case (S = 0), the weights equal,

wii = 1/(Bb ) (67)t

! using the above expression for wit and the previous definition for ci,

together with the explicit expression for the matrix M and its inverse, it
1

i

can be shown that,
I 2
i c1 = [ai/bi - 1)]/[E ai/bi - 1] (68)

n,o Se SDandj(givenb')--i All other quantities of interest - p, o C
;

! follow directly as indicated above. (A reminder: we have normalized all
|
j " spectrum" components for the foregoing derivations. That is,

{
Eat - Ebi = 1. )

|
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' Equation (68).. yields specific solutions once the peak-(ai) and baseline'
,

' (b ) shapes are given. . For a flat. baseline (bt = 1/n),'for example,~Eq (68);i
-

- reduces ~to
,

~

2 . .

ci =[ai - 1/n] /. [Eai ,- 1/n] (69)
=

i
It~follows that:

2 /1 -

- 2
n '- Eci - =:11/ [ Eat - 1/n] - (70):o

( n /..

-

4

- Gaussian Peak
.

If the peak shape (ai) is symmetric, then aj,and ci are-even functions,

which means that if alternative b[ are odd ~ (and share the same center of
,

symmetry) then-the systematic, baseline-model' error vanishes.

4

b'.= even vector . odd vector = 0[ = E ci i,

2

This suggests that for a synmetric isolated peak, one can treat the baseline
i^

as flat--even though it may be linear,or otherwise odd (about the peak;_

{' ' center) -- without introducing bias.
;

i Passing beyond just the assumption of symmetry, and specifying the peak

; to be gaussian, we can calculate explicit values for the ci once n is known.
!

It is interesting to examine this case as a function of channel density.
1

(namber of channels per FWHM or per 13 standard deviations, (SD), etc.). The

results of such a calculation are illustrated below.i

:

i .

t

F

M'
'
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2 -2 . 2
Channel-Density u = E ct at n = E ci bi =1E ci/n
.n = ch/ peak

peak " i.3 SD

~3 2.80 .1.83 ;
1

6 2.03- 1.60

1.924 1.444=-

The above values for p and a may be used to estimate the_ several.

quantities of interest for the detection of an, isolated peak. . Note that if

the observations are extended well beyond the peak (beyond 3 SD), p and n

can be reduced substanti. ally. The limiting values (n = =) become 1.16 and

0.591, respectively.

[3] Some Final Comments

The immediately preceding discussion was given from the perspective of
,

Y-ray (or a-particle) spectra. The same formalism would follow (up to the

specification of a gaussian or rymmetric peak) for detection in decay curve

analysis, or B-spectrum analysis, etc.

Except for the general matrix formulation and treatment as composite

interference (baseline), the full multicomponent decay or spectrum analysis

detection issue will not be treated here. Further discussion would require

explicit assumed models (interfering radionuclides); but the basic principles

and basic equations would be unchanged.

Regarding this more complicated situation, Powever, three procedural

comments, and three notes of caution may be given:
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~ [ PROCEDURAL COMMENTS]: i

|
e peak searching efficiency and detection power depend on the exact i

,

nature of the algorithm employed. For the IAEA test spectrum for peak

detection, for example, at least six independent principles were used

by, 212 participants to detect peaks in the same digitized, synthetic

Y-ray spectrum [ Fig. 6 and Ref. 81]. Yet, false positives ranged from

0 to 23 peaks, and false negatives ranged from 3 to 20 peaks. (The

number of actual peaks in the spectrum was 22.)

e Eq. (64) is approximate only because of changing statistical weights as

S increases from zero to S . An exact solution may be obtained byD

iteration (Ref. 61).

e Systematic model error for the mutlicomponent situation may be derived

with the use of a " Bias Matrix," which can be derived from the least

squares solution for $, --- together with alternative models (Ref.

72).

[ CAUTIONS]:

e Searches for multiple components of ten lead to multiple detection

decisions. The overall probability of a false positive (a) in

searching a single spectrum can thus be substantially more than the

single-decision risk. (See Ref. 53 and Section II.D.S for more on

this topic.)-

e If non-linear searches (involving, for example, estimation of half-

lives and/or Y-energies as well as amplitudes) are made, the estimated

signal distribution ($) is no longer normal. Again, substantial

deviations from presumed values of a may be the result (Ref. 90).
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2 because of poore Bad models and experimental blunders may inflate X

X [UE Will/fit. Multiplication.of Poisson standard errors by mis-fit

yield misleading random error estimates, and erode detection

capability. (See note [A14] and Ref. 63.)

,

h
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Appendix JA. . Notation and Terminology

" Res ponse'

" ~

y = B + Ax + ey = E(y).+ ey [ observation]-E(y) = B-+ "Ax.= B.'+.S
.

.
.

y=O+x '[ estimate]
'

L

$ =-(y - $)/

E(y)'= response or gross signal (counts), true or " expected" value [yi denotes

the ith sample or time, period or energy bin, ~etc]
;

y. = observed (" sampled") value.of y, characterized by an error ey
.

6 = random error

o = standard deviation (SD);-o//n = SD of the mean (standard error.-SE);

'RSD = relative standard deviation

A = systematic error (bound)
,

i & = relative o (RSD)

} = relative-A

{ y - statistically estimated value for y (e.g., weighted mean, ...).
|

(similarly for S, B, ,5)

i y - assumed or " scientifically" estimated value for y

i S = true net signal (counts) [" expected value"]
i
'

B = true background or blank or baseline (counts) (Bg = blank; By -
i

interference counts)'
;

!-
BEA = Background Equivalent Activity = B/A

x = true radioactivity concentration,.per. unit mass or volume [pCi or Bq/g -

;

or L]. To be referred to in the text simply as " concentration" i;
,

i
'

A = generalized calibration factor; for simple counting, with x in pC1/(g.
I 'or L). A 2.22 (YEVT), where

Y = (radio) chemical yleld or recovery
f

n.

f

h
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4

'E = detection efficiency (overall, including branching ratio)-
'

V = volume or mass of sample

i

T . appropriate time factor or function (minutes) 'l

V , V ,-etc = variance of the subscripted quantity3 x

, o ,.etc = SD of the subscripted quantity = /V"
'

03' x

xo = SD of x (at x=0) [ concentration]aoo - SD of S (at S=0)'[ counts]; o

o = 0B 07 Its value depends'

/n - a multiplier which converts oB to o t oo

on the design of the Measurement Process.

b = ratio of counting times (or channels) blank /(signal + blank); then

n-1 + 1/b

Se XC = critical or decision levels for judging whether radioac',1vity isC

present, with false positive risk-a

Sn, xD = corresponding detection limits, with false negative risk -8

zj.a* Z1-8 = percentiles of the standardized Normal distribution, equal to

1.645 for a, B = 0.05
.

LLD = Lower Limit of Detection (for radioactivity concentration) = xD

xR = prescribed regulatory LLD -- i.e., limiting value which licensee is

supposed to meet. This is in contrast to the actual LLD (xo) which

is achieved under specific experimental circumstances. (Thus,

generally, rD 1 XR)

v.or dr = degrees of freedom

Appendix B. Guide to Tutorial Extensions and Notes

Section III. A and III.B were prepared as proposed substitute RETS pages

-- the former cast as a more or less comprehensive statement, and the

latter, for " simple" gross signal-minus-blank counting. A-series and

B-series notes, respectively, were appended to these sections, so that each
.
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could be to a-large' extent'self-contained.1 LThe_following guide (or index) to
,

these notes is given because of-their possible" general utility, and because
i

the two sets of notes are not only redundant (as intended) but also
1

complementary.

..

1.- Basic Issues

a) Use of S.I. units - Note A3
!b) General formulation - Note A8'
r

Eq. (1) was developed for application to most counting situations,
'

through the introduction of parameters o , f and a which can be evaluated foro

the specific counting method and data reduction algorithm in use. The

equation must be modified, however, when small numbers of counts are

involved. Normal variate percentiles (z1-as Z1-8) are included as parameters

which may be modified as appropriate (e.g. , multiple detection decisions). .
1

c) A priori vjs a posteriori - Note A4

Measurement process characteristics must be known in advance before an "a

priori" detection limit can be specified -- may call for a preliminary

experiment.

d) Decisions and reporting - Notes A13, B8 (identical)

The critical level (S ) may need to be increased in the case of multipleC

detection decisions; LLD then automatically increases. Non-detected and

negative results should be recorded; related topics; averaging, truncation.

2. LLD Formulation -- Conventional (Poisson) Counting Statistics

a) Rapid detection decisions, LLD bounds via inequalities - Note B4 '

b) Extension of the simplified expression (Ea. 6) to isolated spectrum

peaks. - Note B1
4

3
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c) Continuous monitors - Note B7

d) Mixed nuclides, " gross" radioactivity - Note A6

e) Factors for detection efficiency (E), counting time (T). - Notes A7,

A9, B6

Branching ratios, spectrum shapes, decay curves and sampling designs all

affect LLD beyond just the matter of counting statistics. Interpretation of

Eq. (1) (mixing of factors o , E. T) varies accordingly.o

3 Non Poisson (P) - Normal (N) Errors

a) Extreme low-level counting (P / N); limits of validity for

approximate expressions - Notes AS, B9

b) Replication, lack of fit, use and misuse of s2, X2 . Notes A1, A2,

A8, A10, A14, B2

c) Uncertainty in and variability of the LLD. Blank variations;

multiplicative parameters: Y,E,V - Notes A2, A12, A15, A16, B5

d) Systematic error bounds - Notes A8, All, B3

Additive and multiplicative components; default values; limiting effect

on LLD reduction.
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' Appendix C.1

DETECTION CAPABILITIES OF CHEMICAL AND RADI0 CHEMICAL MEASUREMENT SYSTEMS:

A Survey of the Literature (1923-1982+)

i

L. A. Currie
Center for Analytical Chemistry

National Bureau of Standards
Washington, DC 20234

Introduction

The twin issues of the detection capability of a Chemical Measurement

Process (CMP) and the detection decision regarding the outcome of a specific

measurement are fundamental in the practice of Nuclear and Analytical Chem-

istry, yet the literature on the topic is extremely diverse, and common

understanding has yet to be achieved. Besides their importance to the

fundamentals of chemical and radiochemical measurement these issues have

great practical importance in application, ranging from the detection of

impurities in industrial materials, to the detection of chemical signals of

pathological conditions in humans, to the detection of hazardous chemical and

radioactive species in the environment. It is in connection with this last

area, as related to the regulation of nuclear effluents and environmental

radioactive contamination, and at the request of the Nuclear Regulatory f
1

Commission (NRC), that this report has been prepared. Highlights from our

extensive search of the literature are given in the following text.

Scope of the Survey

The focus of the literature survey was directed toward.two points: (1)

basic principles, terminology and formulations relating to detection in !

Analytical Chemistry; and (2) basic, but more detailed or specialized studies |
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relating to detection limits in the measurement of radionuclides, as well as

i
important practical applications in this area. The search was conducted with

;

the aid of five computer data bases, complemented by the examination of major

reviews and books treating mathematical and statistical aspects of Analytical

Chemistry.

Carefully constructed patterns of keywords led to a total of 1711 titles

(1964-1982) which were scanned. From these, 700 were identified as important

to our purpose, so abstracts were copied and studied. A final catalog of 387

articles from the computer literature search was prepared, and from this
!

about 100 were marked as having special relevance. Discovering so extensive

a literature on so esc'aric a topic was somewhat surprising; also surprising,

or at least noteworthy, is the fact that a very large fraction of the work on

this topic has originated in foreign institutions with major contributions

coming from Western and Eastern Europe, the Soviet Union, and Japan.

Basic References and Key Issues

For the purposes of this appendix-report our discussion of the literature

must be highly selective; thus only a few of the most critical sources are

discussed. We have given primary emphasis to the " archived" literature (e.g.,

jourr.a1 articles as opposed to reports); and more general publications

treating mathematics, statistics, radioactivity measurement, and quality

assurance have been cited only if detection limits were given major focus. A

slightly expanded, classified bibliography appears in appendix C.2.d.

The key issues which were addressed or cited in the literature included,

as noted above, terminology and formulation (definitions) resulting from

exposition of the basic principles of statistical estimation and hypothesis

testing fn chemical analysis. Special (but basic) topics treated by several

120
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authors included: the effects of counting statistics, non-counting and

non-normal random errors, random and systematic variations in the blank,

reporting and averaging practices, multi detection decisions, Bayesian

approaches, the influence of the number o degrees of freedom, interlabora-

tory errors, control and stability, optimization of detection limits,

interference effects, data truncation, and decisions vs detection vs determi-

nation vjs identification limits. Major topics which related specifically to

radioactivity measurements included the influence of alternative (Y , 6-)

spectrum deconvolution techniques, comparison / selection of alternative

instruments and radiochemical schemes of analysis (especially in the area of

activation analysis), the treatment of very low-level activity and the

treatment of very short-lived radionuclides. Titles in the highly selected

bibliography reflect T number of these specific issues.

To conclude this summary report, I should like to cite just a few

sources which I believe either set forth or review some of the more basic

issues. The groundwork (within the present time frame) was laid by Kaiser

(2), who adopted the basic statistical principles of hypothesis testing (and

type-I, type-II errors) to detection in spectrographic analysis. Other

frequently-cited works from the 60's are papers by St. John, McCarthy and

Winefordner (3), Altshuler and Pasternack (4), and Currie (5), the latter two

treating the question of radioactivity. Later important works which specif-

ically treat radioactivity detection are given in references (6) - (21).

(Further comments cannot be given in this brief report; see the titles for

the focus of each paper.)

Finally, some of the most useful expositions and summaries of LLD

treatments and principles and unsolved problema niay be found in the books and

reviews beginning with reference (22). Special attention should be directed
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to.the IUPAC statement-(22,23), the papers by' Wilson-(34),-the chapter by Currie

i(33), the reviewi by Boumans-(26), and'the books by'Winerordner (30),|Kateman

- and Pijpers (29), and Massart, Dijkstra and Kaufman -(28).

Appendix-C.2-

-I
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Appendix'D..' Numerical Examplesl

1..'Isblated Y-Ray Peak
'

~

-Consider a Ge(L1) measurement of.an' isolated Y-ray, in which a 500 mL -

H 0' sample is. counted for 200 min, and for which the detection efficiency2

(cpm-peak /dpm) is 2% absolute. Let us assume that.the expected blank rate

for-the peak region is 2.0 cpm,'and that equal numbers of channels are'used

to estimate the baseline as are used to estimate the gross peak. counts. This-

makes the net peak area estimation calculation exactly equivalent to the'

" simple" gross-signal-minus-background measurement, with equal counting times.

Referring to Figure 8 and Eq's-(35)-(37), we see that n1 = n2 (here 6 channels

each), so n - 2 and oo - oB/2I

a) Simplest Case

Ignoring possible systematic error components, the calculations are as

follows:

Y - 1, E - 0.02, V - 0.5 L, T - 200 min

B - R T - 400 countsRB - 2.0 cpm, B

SC - 1.645 oo - 1.645 oB /n - 1.645 /(400)(2) - 46.5 counts

Thus, if the net peak exceeded 46.5-counts one would conclude that a signal

had been detected. (Obviously any observed net signal must be an integer,

though SC itself-can be a real number.) The detection limit (in counts).is

SD - 2.71 + 2SC - 95.8 counts

The concentration detection limit xD 18
-I

So 95.8
~ ~

2.22(YEVT) (2.22)(1)(0.02)(0.5)(200)

_______________

I
~

All equation numbers refer to Section III of this report, except for
example 1g which refers to'Section II.
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If the mar. dated LLD [xR] were a typical 30 pCi/L, the experimental

" sensitivity" would be considered adequate.

b) Interference

lhe above calculation was " pure a priori." Let us suppose, however,

that the actual sample being measured exhibited a Compton baseline of 30 cpm

over the peak region (6 channels). Everything then becomes scaled by a

factor of /30/2 (because oo = 5) . Thus,

B = R T - 6000 countsB

SC - 1.645 /BT- 1.645 (109.5) - 180.2 counts

2.71 + 2SC 363.1
= 81.1 pCi/LxD - =

2.22(YEVT) 4.44

This exceeds the hypothetical mandated value (30 pCi/L), so we next face the

issue of Design -- i.e., change of the Measurement Process, to attain the

desired limit.

For long-lived activity in the absence of non-Poisson error, SC and xD

both decrease as (YEV)-l and as 8/T - /R /T. A lowered LLD (xp) could beB

achieved therefore by (1) decreasing the blank rate or increasing the

counting time by a factor of (81.8/30)2 - 7.43, or, (2) increasing the

product (YEV) by (81.8/30) - 2.73 For the present example, neither Y nor R B

may be altered (unless radiochemical separation could be applied to remove

the interfering activity); and we shall assume that E is fixed. Increase of

the effective volume (possibly via concentration) would probably be the most

efficient procedure, but, failing that, the counting time might be extended

to 1487 min (- 1 day).
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c) Blank Variability (s2)
i

To illustrate another point, let us assume that a series of 20 replicate-

blanks (200 min each) were obtained for which sB = 105 counts, to be compared

with the baseline Poisson estimate above,

OB = /B = /6000 = 77.4 counts

2 2
Tnus, s /c3 = (105/77.h)2 = 1.84, which exceeds the 95 percentile of the X2/dfe

distribution (just slightly - see Fig. 4A). We might conclude that this is

due to bad luck (chance), or that there is non-random structure associated

with the series of blanks, or that there is actually additional (non-Poisson)

variability. For this last assumed case, we could use tsg/n and 2t out n for/

Sc and SD (bound), resp. (see equations 3-5, and note B2). That is

/
-

Sc - ts3 3 - 1.73(105)/2 - 250.9 counts

S3 = 2Sc (cUL s) - 2(256.9)(1.37) - 703.9 counts/

and

x3 - S /(2.22 YEVT) = 158.5 pCi/LD

[The f actor ogt s may be found in Table 6 accompanying note B2.] Thus , th e/

critical level is inflated by roughly 40%, compared to the earlier (Poisson)

estimate [Sc(Poisson) - 130.2 counts]; and the Detection Limit is nearly

doubled. (Note that SD and x3 are both upper limits.)

d) Rapid Estimation of LLD, Using Inequality Relations

Following Eq's (8) and (9) in note B4, we can set a limit r r LLDo

directly from an experimental result -- for example, from a weighted least

squares (WLS) spectrum deconvolution. Continuing the same example, let us

suppose that the result from WLS ritting was

oi-95.6 32.2 pCi/L |x2

|
\

|
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Ignoring-systematic error for the moment, we wouPi take ox1oxo.

Therefore,

xC''- 1.645 ox - 53.0 pCi/L 1 xc.
.-

xD' - 2xC' = 106 pCi/L > xD
|

_

The ' result Ic would thus be judged significant (detected),' and 106 pCi/L
t. . .

could be taken as an upper limit for LuD.

e) Calibration and Systematic Blank Error

Continuing with the same example, with interference: B = 6000 counts,

T = 200 min , n - 2. Y - 1, E - 0.02, and ' V = 0.5 L~, - we can use Eq. (6) for a'

direct estimate of xD.

..

3 29 og/n'
LLD = xp - (0.0220) BEA + (0.50)

YEVT

(0.11 has been replaced with 0.0220 because we are treating a baseline rather

than a blank for the purpose of this illustration.) The baseline equivalent

activity is R /(2.22 YEV), or 30 cpm /0.0222 - 1351. pCi/L. Thus, the LLD,B

taking a limit of 1% for baseline systematic error (e.g. -- deviation from

the assumed shape) and 10% for possible relative error in (YEV) . we obtain

*

LLD - (0.0220)(1351.) + (0.50)
(1)(0.02)(0 5)(200)

LLD - 29.7 + 90.1

Thus, the Poisson part (90.1/f - 90.1/1.1 - 81.9 pCi/L) is increased by 10%

to account for uncertainty in the multiplicative factors, plus a very

significant 33% (29.7/90.1) to account for possible B uncertainty -- using

4r-o.01.

I
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f) Limits for LLD Reduction

A finite half-life (such as the 8.05 days for 1 31 1) and the systematic

errorbounds(f,kI)bothlimittheamountofLLDreductionthatcanbe

accomplished through increased counting time. In the above example (xD "

81.9 pCi/L for t - 200 min), taking t1/2 - 8.05 d and kI - 0.01, f - 1.10,

it can be shown that with the optimum counting interval (1.8 x t1/2, or - 2

weeks), the Poisson component of LLD is reduced only to 13.9 pCi/L, and the

added contribution from the systematic error bound (dI) in the baseline

then equals 47 3 pCi/L. (Setting f + 1.1 gives a further increase of 10%.)

Thus, for this example, increasing the counting time by about a factor of 100

results in an overall LLD reduction of only - 25%!

g) Multiple Detection Decisions

If we wished to compensate for the number of nuclides sought but not

found in a multicomponent spectrum search, we should increase SC (and

therefore necessarily LLD) from the above values. For example, if just 10

specific peaks were sought in a given spectrum, and we wished to maintain an

overall 5% risk of a (single) false positive, we could eraploy Eq. 2-35 to

calculate the needed adjustment in a and z1-a. That would be:

a' - 1 - (1 - 0.05)0.1 - 0.0051 2

z1 a' is thus 2.57. If we were to similarly decrease the false negative risk,

(B), both SC and SD (and therefore LLD) would be increased by the same factor

2.57/1.645 - 1.56. The resulting xD for the peak under discussion would be,

xn + 1.56 (81.9) - 128 pCi/L
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2. Simple Beta Counting

Consider the measurement of 90 r, where HB = 0.50 cpm, Y - 0.85, E =S
q

0.40, and t - 1000 min. '(V is irrelevant for this ex' ample.) We must !

consider decay during counting'for.the 64 hr (t1/2) 907 actually measured;

and.weshalltakekB-0.05,andf-1.10asbefore.
1The LLD is given by Eq. (6):

:3 29 og/W
LLD -'(0.11) BEA + (0.50)

YEVT

For this example we shall assume a very long averaged. background (.. n = 1),

BEA = (R t)/(2.22 YEVT), and T = (1-e-At)/ A - 915 min. Thus, YEVT =B

(0.85)(0.40)(.J(915) - 311 min, and
. . _ _

500 (3 29)/500
LLD - (0.11) + (0.50)

(2.22)(311) 311 -

. . . .

- 0.080 + 0.118 - 0.198 pC1,
,

where the systematic error bounds in tne blank and multiplicative factors (5%

and 10%, resp.) account for ~46% of the total. That is, with f + 1 and

a + 0, LLD - 3 29 /500/[(2.22)(311)] - 0.106 pC1. The corresponding decision

18 XD (2f) or 0.198/2.20 - 0.090 pC1.point xC /

|

|

3 Low-Level a-Counting
'

I

239 u had the followingAssume that a Measurement Process for P

characteristics.

RB - 0.01 cpm, E = 0 30, Y - 0.80, t - 1 hr

Referring to Table 7, and taking B = 0.60 counts, we find yC = 2 counts and -

yo - 6.30 counts. That is, if in a 60 min observation more than 2 counts-

.(gross) were observed, the 239 u would be considered " detected". The LLD isP

given by
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(yp - B) . (6.30 - 0.60)
~ '

2.22(YEVT) 2.22(0.80)(0.30)(60)

If RB were known to only 10% (i.e., based on 100 counts observed), we

could set limits: B - 0.60 1 0.06 counts, so yC and yD remain unchanged, but

6.30 - (0.60 1 0.06)
- 0.178 i c.0019xp

2.22(0.80)(0.30)(60)

The conservative-(upper) limit for xp thus equals 0.180 pC1.

The above estimates could, of course, have been obtained using Fig. 7A.

|
,
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