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FOREWORD

The concept of Lower Limit of Detection (LLD) is used routinely in the NRC
Radiological Effluent Technical Specifications (RETS) for measurement of radio-
logical effluent concentrations within a nuclear power plant and of radiological
environmental samples outside of the plant. The definition of LLD is subject
to different interpretations by various groups. Consequently, difficulties arose
when the NRC attempted to apply uniformly requirements on licensees. At
present, NRC relies on documentation on LLDs that has been developed by other
agencies for their own purposes. The material is for the most part difficult
to obtain, and is only partially relatable to Technical Specifications require-

ments.

There was clearly a need to evaluate the various concepts and interpretations
of LLD presented in the literature and to determine the current use and applica-
tion of these concepts in practice in Technical Specifications for operating
nuclear plants. This would then lead to a NUREG/CR document that could assist
the NRC Nuclear Reactor Regulation staff in defining and elaborating its position
relative to LLDs, as well as providing a technically sound basic document on

detection capability for effluent and environmental monitoring.

Dr. Lloyd A. Currie of the National Bureau of Standards, a nationally
recognized expert in statistics, was asked to undertake this task. At the start
Dr. Currie performed an extensive literature search in the area of detection
limits. He discussed concepts and problems of LLD with a number of individuals

from licensed nuclear power plants, from contracting measurement laboratories,
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and from NRC Headquarters and Regional Offices. He then integrated these nuclear-
power oriented questions and concepts into his extensive experience in low-level
measurement to develop a comprehensive document covering the problems of LLD in

radiological effluent and environmental measurements.

It should be emphasized that this document represents Dr. Currie's inter-
pretation of the situations he encountered and his recommendations to the NRC
staff relative to these problems. It connot of itself represent NRC policy. It
will, however, be used by NRC staff in development of potential modifications in
the definitions and bases sections of the model RETS relative to LLD. And of
most immediate importance, it will provide a sound basis to licensees and NRC
staff alike for use in clarifying thoughts and writings in the area of detection

capability of radiological measurement systems.

Frank J. Congel, Chief
Radiological Assessment Branch

Charles A. Willis, Leader
Effluent Treatment Section

NRC Division of Systems Integration
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ABSTRACT

A manual is provided to define and illustrate a proposed use of the Lower
Limit of Detection (LLD) for Radiological Effluent and Environmental Measure-
ments. The manual contains a review of information regarding LLD p.actices
gained from site visits; a review of the literature and a summary )>f basic
principles underlying the concept of detection in Huclear and Analytical
Chemistry; a detailed presentation of the application of LLD principles to
a range of problem categories (simple counting to multinuclide spectroscopy),
including derivations, equations, and numerical examples; and a brief exami-
nation of related issues such as reference samples, numerical quality control,
and instrumental limitations. An appendix contains a summary of notation

and terminology, a bibliography, and worked-out examples.



EXECUTIVE SUMMARY

This document defines and illustrates a proposed use of the concept of
Lower Limit of Detection (LLD) for Radiological Effluent aund Environmental
Measurements. It contains a review of information regarding LLD practices
gained from nuclear plant site visits, a review of the literature and a
summary of basic principles underlying the concept of detection in Nuclear
and Analytical Chemistry, and a detailed presentation of the application of
LLD principles to a range of problem categories (simple counting to multi-
nuclide spectroscopy), including derivations, equations, and numerical
examples. It also contains a brief examination of related issues such as
reference samples, numerical quality control, and instrumental limitations.
An appendix contains a summary of notation and terminology, a bibliography,

and worked-out examples.

The detection capability of any measurement process (MP) is one of
its most important performance characteristics. When one is concerned with
pressing an MP to its lower limit or with designing an MP to meet an extreme
measurement requirement, an objective measure of this capability is just as
important for characterizing the MP as is the more commonly understood
characteristics "precision" and "accuracy." As with these other characteristics,
the detection capability cannot be specified quantitatively unless the MP is
rigorously defined and in a state of control. In the monitoring environment,
for low levels of effluent and environmental radioactivity associated with
the operation of nuclear power reactors, MPs must be capable of detecting the
relevant radionuclides at levels well below those of concern to the public

health and safety.
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Much confusion surrounds the nomenclature, formulation, and assumptions

associated with this important measurement process characteristic. For the
purposes of this document the term "Lower Limit of Detection" (LLD) is used

to describe the MP characteristic, and the same terminology, with appropriate
adjustments for scale and dimensions is applied to amounts of radiocactivity,
concentrations, release rates, etc. In short, the same notation, LLD, is used
as a universal descriptor for all of the MPs in question. The assumptions

and mathematical and numerical formulations underlying LLDs are treated
explicitly, and the practical usage (and limitations thereof) is illustrated
with appropriate numerical examples. In particular, the special opportunities

and pitfalls associated with "Poisson counting statistics" are duly noted.

Section I of the report provides an introduction that sets the stage for
the technical sections that follow. Considerations that enter into an NRC
Technical Position on LLD are recorded, including theoretical background,
technical issues, policy issues, and implementation and documentation. High-
lights from site visits are next presented, providing perspective on the
problems and actual practices regarding LLD from the viewpoints of: the NRC
(regional offices and inspectors), a trade association, nuclear utility labo-

ratories, the EPA cross-check laboratory, and contracting laboratories.

The primary historical and theoretical background on detection decisions
and detection limits is presented in Section II. The lack of and need for
uniform practice, which was ascertained during the site visits, is underlined

in the historical review of the literature. The basis for the approach to
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LLD adopted here, hypothesis testing, is outlined in some detail. This is
followed by an examination of several crucial issues of general concern such
as the role of detection decisions, the meaning of a priori in the case of
interference, the treatment of systematic error, and the calibration func-
tion. The basic concepts are next applied to radioactivity, and to specific
issues relaced to the blank, counting technique, measurement process desigzn

(to meet the requisite LLD), quality in communication and monitoring (control),

and the increase requirad in LLD to meet the demands of multiple detection

decisions.

Section III builds on the theory developed in Section II. Basic and
simplified formulations are presented in "stand-alone" form, with sufficient
notes, that they might be adapted for use in Radiological Efluent Technical
Specifications (RETS). The heart of Section III comprises detailed algebraic
reductions of the general equations for a variety of radiocactivity measure-
ment situations, ranging from "simple counting" to multicomponent spectroscopy.
The treatment of extreme low-level counting is illustrated, as well as ordinary

Poisson error treatment and systematic error treatment in relation to the LLI

The Appendix includes a condensed summary of notation, an index to the
tutorial notes in Section III, a more extended literature survey and biblio-

graphy, and worked-out numerical examples.
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I. INTRODUCTION

A. Introductory Remark'

The detection capability of any measurement process (MP) is one of its
most important performance characteristics. When one is concerned with
pressing an MP to its lower limit or with designing an MP to meet an extreme
measurement requirement, an objective measure of this capability is just as
important for characterizing the MP as is the more commonly understood
characteristics "precision" and "accuracy." As with these other characteris-
tics, the detection capability cannot be specified quantitatively unless the
MP is rigorously defined and in a state of control. (Thus, a secondary issue
of major importance is the quality control of the measurement procedure.) In
the monitoring environment -- in the present case, for low levels of effluent
and environmental r-adioactivity associated with the operation of nuclear
power reactors =-- MPs must be capable of detecting the relevant
radionuclides at levels well below those of concern to the public health and
safety. (This need may be contrasted with others where, for example,
adequate detection capability may be required to monitor biological condi-
tions, natural hazards, industrial processes and materials properties,
international agreements, etc.)

Much confusion surrounds the nomenclature, formulation, and assumptions
associated with this important measurement process characteristic., For the
purposes of this document, we shall somewhat arbitrarily select the term
"Lower Limit of Detection" (LLD) to describe the MP characteristic, and we
shall apply the same terminology, with appropriate adjustments for scale and
dimensions, to amounts of radioactivity, concentrations, release rates, etc,

== in short, we shall use the same notation, LLD, 2a a universal descriptor

-

'In this report reference numbers are placed in parentheses and specjal
numbared notes (preceded by series letter A or B), in brackets.
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for all of the MPs in question. The assumptions and mathematical and
numerical formualations underlying LLD's will be treated explicitly, and the
practical usage (and limitations thereof) will te illustrated with
appropriate numerical examples. In particular, the special opportunities and

pitfalls associated with "Poisson counting statistics" will be duly noted.

B. Plan for the Report

The objective and background for an NRC Technical position (following
section) sets the stage for this repor--manual on LLD. Next, perspective is
given on the problems and actual practices from the viewpoints of: the NRC
(regional offices and inspectors), a trade association, nuclear utility
laboratories, the EPA cross-check laboratory, and contracting laboratories.

The primary historical and theoretical background on detection decisfons
and detection limits is presented in section 1I. The .ack of and need for
uniform practice, which was ascertained during the site visits, {s underlined
in the historical review of the literature. The basis for the approach to
LL. adopted here, hypothesis testing, is outlined in some detail. This is
iollowed by an examination of several crucial issues of general concern such
as the role of detection decisions, the meaning of a priori in the case of
interference, the treatment of systematic error, znd the calibration func-
tion. The basic concepts are next applied to radiocactivity, and to specific
issues related to the blank, counting technique, measurement process design
(to meat the requisite LLD), quality in communication and monitoring
(control), and the increase required in LLD to meet the demands of multiple

detection decisions.



.f;-

NN T e B

Section III builds on the theory developed in section II. Basic and
simplified formulations are presented in "stand-alone" form, with sufficient
notes, that they might be adapted for use in Radiological Effluent Technical
Specifications (RETS). (This led to some necessary redundancy with ideas
presented in section II.) The heart of section III comprises detailed
algebraic reductions of the general equations for a variety of radiocactivity
measurement situations, ranging from "simple counting" to multicomponent
spectroscopy. The treatment of extreme low-level counting is illustrated, as
well as ordinary Poisson error treatment and systematic error treatment in
relation to the LLD.

The Appendix includes a condensed summary of notation, an index to the
tutorial nptes in section III, a more extended literature survey and

bibliography, and worked-out numerical examples.,

C. Considerations for an NRC Technical Position

1. Obgective of the NRC Position

Adequate measurement capabilities for effluent and environmental
radioactivity are required to assure the safety of thz publie, as put forth
in 10 CFR Parts 20 and 50 which mandate appropriate radiological effluent and
environmental monitoring programs. In order to assure adequate detection
capability for radionuclides to meet these requirements, the NRC has
established numerical levels for Lower Limits of Detection (LLD) which are
consistent with a suffictent capacity for detecting effluent and environ-
mental radionuclides well below levels of concern for the public health and
safety. For such LLDs toc be meaningful and useful, they must (a) be soundly
based in terms of measurement sc.ence, and (b) they must be accepted,

understood, and applied in a uniform manner by the community responsible for



performing and evaluating the respective measurements. These limiting values
as LLDs become part of the Operating License of a Nuclear Power Plant through
the Radiological Effluent Technical Speci®ications (RETS) of the operating

license.

2. Theoretical Bacgggpund

A firm basis for evaluating LLDs is given by the statistical theory of
hypothesis testing, which recognizes that the issue of detection involves a
decision ("detected,” "not detected") made on the basis of an experimental
observation and an appropriate test statistic. Once the decision algorithm
has been defined, one can evaluate the underlying detection capability (LLD)
of the measurement process under consideration. Arbitrary rules for defining
LuD's which do not have a sound base (such as hypothesis testing) yield LLD's
with little meaning and needless incomparability among laboratories. The
system for computing and evaluating LLDs to be recommended for effluent and
environmental radioactivity measurement processes, is based on exactly the

same principles which underlie more commonly used and understood conf idence

intervals. Key quantities which arise in the approach to LLDs are the
probabilities of false positives (a) and false negatives (8) - both generally

taken to be 5%.

3. Technical Issues

® The adopted terminology (notation) to reflect the measurement
(detection) capability shall be "LLD," and it shall refer to the intrinsic

detection capability of the entire measurement process - sampling through

data reduction and reporting.




An LLD for simply one stage of the measurement process, such as Y-ray

spectroscopy or g-counting, may in some instances be far smaller than the
overall LLD; as a result, the presumed capability to detect important levels
of (e.g.) environmental contamination may be much too optimistic.

® The LLD shall be defined according to the statistical hypothesis
testing theory, using 5% for both "risks" (errors of the first and second
kind), taking into consideration possible bounds for systematic error. This
means that the detection decision (based on an experimental outcome) and its
comparison with a critical or decision level must be clearly and consciously
distinguished from the detection ligl&, which is an inherent performance
characteristic of the measurement process. (Note that physical non-
negativity implies the use of 1-sided significance tests.)

® Both the critical level and the LLD depend upon the precision of the
measurement process (MP) which must be evaluated with some care at and below
the LLD in order for the critical level and LLD to be reliable quantities,
Information concerning tne nature and variability of the blank is cruecial in
this regard. (For a=8, and symmetric distribution functions, LLD = twice the
critical level, numerically.)

® Given the above statistical (random error) bases it is clear that

the overall random error (o) of the MP must be evaluated -- via propagation,

replication, or "scientific judgment" == to compute a meaningful LLD,
"Meaningful ," as used here, refers to an LLD which in fact reflects the
desired a, B8 error rates or risks.

® A great many assumptions must be recognized and satisfied for the
LLD to be meaningful (or valid). These include: knowledge of the error

distribution function(s) (they may not simply be Polsson or Normal); consid-



eration of all sources of random error; reliable estimation of random errors
and appropriate use of Student's-t and careful attention to sources of
systematic error.

@ Systematic error derives from non-repeated calibration, incorrect
models or parameters (as in Y-ray spectroscopy), incorrect yields, efficien-

cies, sampling, and "blunders." Bounds for systematic error should always

be estimated and made small compared to the imprecision (o), if possible.

Systematic calibration and estimation error may become a very serious problem
for measurements of "gross" (a,8) activity where the response depends on the
relative mix of half-lives and particle energies.

® Concrol of the MP also i{s essential, and should therefore be
guaranteed by both internal and external "cross-check" programs. External
cross-checks should represent the same type (sample matrix, nuclide mixture)
and level of activity as the "real" effluent and environmental samples
including blanks for the "principal radionuclides", and the cross-checks

should be available "blind" to the measuring laboratory. Note that without

adequate control or without negligible systematic error, LLD loses meaning

in the purely probabilistic sense. The issues of setting bounds for residual

systematic error and bounds for possibly undetected activity under these
¢ircumstances both deserve careful consideration, however,

® Radionuclide interference (and increased Compton baseline)
necessarily inflates the LLD, and must be taken into consideration quantita-
tively. The use of "a priori" and "a posteriori" to refer to this i(ssue |s
strongly discouraged, because of needless confusion thereby introduced

| volving another .sage of these terms (related to detection decisions and

LLD) .



@ Reporting practices are crucial to the communication and

- understanding of data (as well as the validity of the respective LLD). This
is a special problem for levels at or below the LLD, where sometimes even
negative experimental estimates obtain. Full data reporting is recommended,
from a technical point of view, to alleviate information-10ss and the
possibility of introducing bias when periodi~ averages are required. (Also,

policy on uncertainty estimates and significant figures is in order.)

y, Related Policy Issues

@ Once defined and agreed upon, a uniform approach to LLD, statement
of uncertainty, QA assessment (external), and data reporting should be
established.

® Issues involving interference (and LLD relaxation) and reliance only
on Poisson counting statistics (13 adequate replication and full error propa-
gation) must be settled., Other factors such as branching ratios/Y-abundance
should be considered in setting practically-achievable nuclide LLDs.

@ Significant distortions which could arise from: a) "gross" (a,8)
activity measurements, b) sampling systematic errors, and ¢) concealed
software and bad nuclear parameters must be highlighted and controlled.
(Institution of an external data "cross-check" QA program, as the IAEA Y-ray
intercomparison spectra, may be one fruitful approach to the last problem.)

® Difficulties between scientific vs public (political) perceptions
connected with "detected" vs "non-detected" radionuclides especially in

reporting contexts need to be addressed.



@ Means for dealing with situations where the purely statistical

assumptions underlying LLD may not be satisfied must be defined. (That is one
purpose of the present report. See section II for a catalog of assumption

difficulties.)

Implementation and Documentation

A potential basis for the NRC position for effluent and environmental
radioactivity measurement process LLD's is developed and illustrated in this
technical manual (NUREG/CR document). This document is designed to provide
explicit information on: a) the history and principles of LLD's; b) practices
actually encountered in the field at the time of this study; c¢) simple, clear
yet accurate exposition and numerical illustrations of detection decisions
and LLD use, as applied to effluent and environmental radiocactivity measure-
ments; and d) special technical issues, data, and bibliographic material (in

the Appendix).

D. ﬂ1§h1155&3 from Site Visits

The highlights developed from a series of site visits are presented as a
synthesis of information gained rather than as a report concerning individual
discussions or specific organizations, The information represents my under-
standing from numerous discussions; the more critical issues may need to be
appropriately verified. Also, it should be understood that the contents in
;his section constitute a reccrd of my observations, not necessarily an

indication that all parts are directly applicable to the Radiological

Effluent Technical Specifications (RETS). (e.g., parts 12 and 13).



Organizations and Individuals Visited (besides NRC-Headquarters)

4 November 1982 Dave Harward, Atomic Industrial Forum, Bethesda, MD

19 November 1982 Dave McCurdy, Yankee Atomic Electric Company,
Framingham, MA, (Environmental Lab)

S July 1983 Jerry Hamada (Inspector), NRC Region V Office,
Walnut Creek, CA
6 July 1983 Roger Miller, Rancho Seco Power Plant, CA (accompanied
by J. Hamada)
7 July 1983 Rod Melgard, EAL, Inc. (Contracting Lab.), Richmond, CA
11 July 1983 Art Jarvis and Gene Easterly,

EPA - Las Vegas (cross-check program)

12 July 1983 Jim Johnson, Colorado State University, Ft. Collins
(measurements for Ft. St. Vrain plant)

9 August 1983 Mary Birch and Bob Sorber, Duke Power Co., Charlotte, NC
(HQ, and Lab at Oconee site)

21 November 1983 Carl Paperiello, (Marty Schumacher, Steve Rozak,
Al Januska) NRC Region III Office, Glen Ellyn, IL

22 November 1983 Leonid Huebner, Teledyne Isotopes Midwest Lab (formerly
Hazelton), Northbrook, IL

9 February 1984 Tom Jentz, John Campisi, Joan Grover,

Charlie Marcinkiewicz, NUS (Contractor Lab.), Gaithersburg,
MD

1. Neel and approach for the planned LLD manual. With one exception, I

came away from the several meetings with strong support for the aim of
producing a manual. Most of those I visited (especially in the West) were
quite anxious to receive a copy of the manual as soon as possible. Valuable
suggestions included requests to treat the basic concepts in a unified and
complete, yet easy-to-grasp manner (e.g., hypothesis testing). One approach
would be to include mathematics and appropriate reprints in an appendix, but

worked=-through examples in the text.



2. Diversity of training and experience. This was evident in speaking

to personnel ranging from lab technicians to lab managers to company offi-
cials. This diversity underlines the approach called for in item 1. (It was
noteworthy that some of the younger and least professionally trained person-
nel raised some of the most penetrating questions about assumptions,
alternative approaches to data presentation and evaluation, ete.)

3. Diversity of terminology, usage, etc. Despite the definition and

references provided by the NRC for LLD (e.g., throughout NUREG-0472), there
exist a number of popular terms (LLD, MDA, MDC, ...) and formulations (29,
S/N, hypothesis testing risks, ...) to the detection limit, and an even wider
diversity of assumptions recognized (or ignored!) in practice. Some of the
more pertinent practices (re: assumptions) will be noted below.

4. Policy Issues. I found many opportunities to become enmeshed in

policy. Despite my advance letter (and copy of the "manual" - work state-
ment ), certain of my hosts seemed to believe I could speak to policy =-- i.e.,
what numerical values should be established for LLD's to be met. I explained
that this was not my charge, though in certain special cases =-- e.g8., the
effects of sesere radionuclide interference on detection capabilities == it
might be useful to consider the impact of policy on practical cperations (see
below).

In certain cases, 1 was advised that the "process environr nt" mandated
special approaches to the evaluation and reporting of data, because of large
sample loads and the need for rapid decisions. Under some circumstances this
could imply (statistically) conservatively biased reporting of data, and

non=specific radionuclide measurements (o.g.. B~ counting of separated iodine
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isotopes, and treating the result as though it were all I-131). The issue I

perceive is whether it is appropriate to recommend different LLD and/or
reporting schemes depending on how busy a laboratory is.

5. Detection decisions. I found the full range of criteria: from

decisions based on the critical level (such that a and B risks each equal 5%)
to those based on LLD (such that "false positives" are infinitesimal, but
"false negatives" are 50%!). I have the impression that the decision-making
aspect of detection -- i.e., the actual testing of the null hypothesis -- is
not fully appreciated by all workers.

6. Reporting (when "not detected"). Such results are equated to zero,

some upper limit, LLD, LLD/2, etc. All of those I spoke to recognized that
averaging (e.g., over a quarter) of such reported results is either imposs-
ible, or positively or negatively biased. I sensed some resistance to
reporting the observed value (especially when it is negative), though one
group preserves suc' information for unbiased averaging; but then reports the
same data in two different (biased) ways according to the policies mandated
by different users of the data! Also, during one visit, I learned that
company (?) policy leads tn different ways of reporting "non-detected"
results between environmental and effluent measurements.

7. Radionuclide interference. A significant issue, It is (universally)

recognized that interference increases detection limits (all else being
equal). The same example (Ce-144 with very large amounts of Co-58, =-60) wae
raised during two visits, but with somewhat different (policy) perspectives.
In the one, it was suggested that prescribed LLD's be relaxed (or possibly

remain "pure solutioa" or interference-free LLD's) when excessive
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interference is present because the relative contribution of Ce-1U44 (here) is

trivial by comparison. In the other, caution was suggested, because even a
small amount of Ce=1L4 could be an important indicator for transuranics.

8. Blank, background, baseline. Some ambiguity was noted in the current
proposed NRC definition for LLD. Also, the question of real background
variability and number of degrees of freedom (and Student's-t) were raised.
One laboratory always assumes Poisson-background variability, or, if this
seems exceeded, it shuts down until a problem is identified or expected
behavior resumes.

9. Non-counting errors. Almost universally it was recognized that

actual probabilities of detection (and LLD) depend upon all sources of error,
yet nearly all workers are using Poisson statistics only (for the blank and
sample, and ignoring errors for efficiency or chemical yield estimates) to
calculate LLD., Since the Relative Standard Deviation =30% at the detection
limit (a =8 =0.05), this approximation is partly justified, Severe errors,
however, in blank estimates, detection efficiency (2;1;. for cartridge
filters and for gross~a deposits), and sampling2 can seriously invalidate
this (Poisson) approximation. Several of the groups are working very hard to
estimate (and minimize) non-counting error, but there is little movement
toward considering its (necessary) effects on the LLD.

One interesting suggestion (mutually developed) was to distribute blind
cross-check samples having radionuclide concentrations sligh.ly (e.g., 50%)
higher than the intended (NRC) LLD's to assess the actual signiflcance of
non=Poisson error on detection capabilities. (This might also include blanks
of "principal radionuclides" to test a-risk performance,)

ZSnmpliug Errors -~ e.g., involving soll particles, coclant containing
sediment, single ifon exchange beads, -- were in some cases shown to be
overwhelming, reducing all other errors to inaignificance,

$
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10. Modeling rather than direct measurement. Knowing (at least

approximately) relative dilution factors (laboratory, atmosphere, coolant
systems) in many cases allows more accurate inferences to be drawn from
relatively high level measurements followed by calculation =-- as opposed .0
direct measurements of the diluted (dispersed) material. (This is followed,
for example, in preparation of the EPA cross-check samples,)

1. QA and cross-check samples. I found some excellent intralab QA, but

at the same time I found extremely strong support for external cross-check
programs -- especially because of the wide range of (e.g.) contractor or
technician capabilities, The EPA sample program is valuable (essential,
since there i3 no other) for this purpose, but several useful extensions were
suggested: increased frequency (perhaps suited to QA performance), truly
"blind" samples (EPA's are clearly recognizable, and often given special
attentlon), and samples which are closer Iin composition and level to those
encountered in the various programs (environmental, effluent, waste).
(Splits, especially with mobile laboratories serve effluent QA well, but
avallability of "known" samples would be valuable.)

12, "Ue minimis" reporting. Media other than air and water are in many

_cases not covered by specified LLD's (e.g., oil, charcoal, ...), so that any
detected activity must be reported. Apparently, the situation is analogoua
to chat arising from one interpretation of the Delaney Amendment, where
non=detection is taken equivalent to absence; so that reporting requirements
(and public perceptions) are atrongly affected as measurement tachniques

improve,
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into practice. Detailed reduction of the basic formulas presented in this
section will take place in the next section, for the several common cate-
gories of nuclear and radiochemical measurement; and explicit numerical
examples will be given in the Appendix. Let us begin with a glance at the

past.

A. Overview and Historical Perspective

Some appreciation for the evolution of methods for expressing detection
capability may be gained from Table 1, In this table, which refers only to
detection capability (not detection decision levels), we observe that the
development of detection terminology and formulations for Nuclear and
Analytical Chemistry covers an extended period of time and that it has been
characterized by diverse and non-consistent approaches. (Besides alternative
terms for the same concept, one occasionally finds the same term applied to
difi{erent concepts -- viz., Xaiser's "Nachweisgrenze", which refers to the
test or detection decision level, is commonly translated "detection limit";
yet, in english "detection limit" generally relates to the inherent detection
capability of the Chemical Measurement Process (CMP).) For information
concerning the detailed assumptions and formulations associated with the
terms presented in Table 1 the reader is referred to the original litera-
ture. The principal approaches, however, are represented by: (a) Feigl
-- selecting a more or less arbitrary concentration (or amount), based on
expert judgment of the current state of the art; (b) Kaiser and Altshuler
-- grounding detection theory on the principles of hypothesis testing; (c) St.

John -- using signal/noise (assumed "white") and considering only the error
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of the first kind; (d) Nicholson =-- considering detection from the

perspective of a specific assumed probability distribution (Pcisson); (e)

Liteanu == treating detection in terms of the directly observed frequency

distribution, and (f) Grinzaid =-- applying the weaker, but more robust

approaches of non-parametric statistics to the problem. The widespread

practice of ignoring the error of the second kind is epitomized by Ingle in

his inference that it is too complex for ordinary chemists to use and

comprehend! Treatment of detection in the presence of possible systematic

and/or model error is considered briefly in Ref. [33].

Table 1.

Historical Perspective -- Detection Limit Terminology

Feigl ('23)
Altshuler ('63)
Kaiser ('65-'68)
St. John ('67)
Currie ('68)
Nicholson ('68)
IUPAC ('72)
Ingle ('7%)
Lochamy ('76)
Grinzaid ('77)
Litea-wu ('80)

Limit of Identification [Ref. 1]

Minimum Detectable True Activity [Ref. 4]

Limit of Guarantee for Purity [Ref. 2]

Limiting Detectable Concentration (S/Npps) [Ref. 3]
Detection Limit [Ref. 5]

Detectability [Ref. 36]

Sensitivity; Limit of Detection...[Ref. 22, 23]
("[too] complex...not common") [Ref. 51]
Minimum Detectable Activity [Ref. 7]
Nonparametric...Detection Limit [Ref. Uu4]
Frequentometric Detection [Ref. 31]

A condensed summary of the principal approaches to signal detection is

presented in Table 2.

The hypothesis testing approach, which this author

favors, serves also as the basis for the more familiar construction of

confidence intervals for signals which are detected [83). For more informa-

tion on the relationship between the power of an hypothesis test and the
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significance levels and number of replicates (for normally-distributed data)
the reader may ref2r to OC (Operating Characteristic) curves as compiled by
Natrella [84]. There it is seen, for example, that 5 replicates are neces-
sary if one wishes to establish a detection limit which is no greater than
20, taking [a) and [B] risks at 5% each. (Note the inequality statement;
this arises because of the discrete nature of replication.) Once we leave
the domain of simple detection of signals, and face the question of analyte

or radioactivity concentration detection, we encounter numerous added

Table 2. Detection Limits: Approaches, Difficulties

Signal/Noise (S/N) [Ref's 3,29,30,86]
Detection Limit 2 2Np.p, 2Npms, 38 (n=16-20)
[Npms - Np-p/So]
DC: white noise assumed, R-error ignored

AC: must consider noise power spectrum, non-stationarity,

digitization noise

Simple Hypothesis Testing [Ref's 2,5,26,56,83]

S=y~8B

Hg: significance test (a-error; ~ 1-sided confiderce interval

Hp: power of test (g=error) ~ Operating Characteristic Curve

Determination of Sp requires accurate knowledge of the distribution
function for S
If § ~ N(S, ¢2), and a, B8=0.05, then Sp = 2S¢ = 3.29 o

Other Approaches [Ref's 28,85,87,88])

Decision Analysis (uniformly best, Bayes, minimex), Information and Fuzzy

set theories.,
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problems or difficulties with assumptloﬁ validity. That is, assumptions
concerning the calibration function or functions == i.e., the full analytic
model =- and the "propagation" of errors (and distributional characteristics)
become crucial. A catalog of some of these issues is given in Table 3;
further discussion will be found in the following subsection. Finally, for
more detailed summary of the relevant .iterature, the reader is referred to

the review and bibliography in Appendix C.

Table 3. Concentration Detection Limits - Some Problems

02 only estimated; Ho-test ok (ts/vn), but xp is uncertain
Calibration function estimated, so normality not exactly preserved:
X = (y-é)/ﬁ # linear Fen (observations)

B-distribution (or even magnitude) may not be directly observed

1

o} Effects of non-linear regression; effects of "errors in x-
and y" (calibration)

@ Systematic error, blunders -- e.g., in the shape, parameters of A
[6 » A, without continual re-calibration]

@ Uncertain number of components (and identity)
[Lack of fit tests lose power under multicollinearity]

® Multiple detection decisions: (1=a)»(1-a)"

B. Signal Detection (principles)

1. Alternative Approaches

A necessary, first step in treating signal detec'ion is to consiager what
magnitude observed (a posteriori) response (gross signal) constitutes a
statistically significant deviation (increment, or net signal) from the
zero-level (blank or background or baseline in radioactivity measurement).

This increment, which really represents a critical or decision level (S¢)
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with which the observed signal is compared, is derived from the distribution
function for the noise. If the noise can be considered normal (“Gaussian")
with parameter-o (standard deviation), S¢ is given by a fixed multiplier
times o, and the detection process becomes simply a significance test based
on comparison of the observed with the critical signal to noise ratio.
Certain non-trivial problems arise if the noise power spectrum is not "white"
(Gaussian) and when the signal is continuous (in time) but is sampled
periodically. These issues are treated in some depth in References indicated
in Table 2.

The test, however, is incomplete (though widely practiced!) for our
purposes. It speaks only to the question of signal detection (a
posteriori) -- i.e., the detection decision given the noise probability
density function (pdf) and an observed signal. It is important to us in that
the significance level of the test a is equivalent to the false positive
probability or "error of the first kind." (That is, a equals the probability
that one would, by chance, falsely conclude that a blank contained excess
radioactivity.) This is insufficient, per se, for us to specify the detec-
tion capability or LLD, which is an a priori performance characteristic of
the Measurement Process (MP).

A solution is found in the theory of Hypothesis Testing, wherein we use
an experimental outcome § not simply to test for the presence of a signal but
actually to discriminate between twn possible states of the system: Hgy and
Hp. Hg and Hp are, respectively, the "null hypothesis" and the "alternative
hypothesis" and the critical level Sg is set in such a way that an optimal

decision (in the long run) is made between the two hypotheses. As the
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subscripts imply, H, refers to samples containing no net radioactivity, and

Hp, to samples containing radioactivity at the LLD. 1In terms of the net
signal, Hp: S=0 and Hp: S-Sp (S being the true, but. unknown net signal.)

Two of the basic forms of Hypothesis testing require information or
assumptions that are not generally available for simple chemical or physical
measurements. The first involves the use of the "Bayes Criterion" which
requires prior probabilities for Hg and Hp, as well as the assignment of
costs for making incorrect decisions. In this case S; would be set to
minimize the average (long-run) cost. The second approach, which is related
to game theory, does not require prior probabilities. Rather, it is designed
to minimize the maximum cost over the entire set of possible prior probabili-
ties. Appropriately, this is termed the "Minimax" decision strategy.

Lacking either costs or prior probabilities, we prefer to define detection
capability (LLD) on the basis of simple hypothesis testinz ("Neyman-Pearson
criterion") which considers Hg, Hp and S¢ simply in terms of the probabili-
ties of drawing false conclusions when § is compared to Sc. Lucid exposi-
tions of all three de-ision strategies are given in Ref's 28, 29 and 79. A
more complete development of simple hypothecis testing for direct application

to LLD follows.

2. Simple Hypothesis Testing and the LLD

[adapted from Ref. 38]

The basic issue we wish to address is whether one primary hypothesis
[the "null hypothesis", Ho] describes the state of the system at the point
(or time) of sampling or whether the "alternative hypothesis" [Hp] describes
it. The actual test is one of consistency - i.e., given the experimental

sample, are the data consistent with Hp, at the specified level of signifi-



cance, a? That is the first question, and if we draw (unknowingly) the wrong
conclusion, it is called an error of the first kind. This is equivalent to a
false positive in the case of trace analysis - i.e., although tne (unknown)
true analyte signal S equals zero (state Hp), the analyst reports,
"detected".

The second question relates to discrimination. That is, given a
decision- (or critical-) level Sp used for deciding upon consistency of the
experimental sample with Hp, what true signal level Sp can be distinguished
from Sc at a level of significance 8? If the state of the system corresponds
to Hp (S=Sp) and we falsely conclude that it is in state Hp, that is called
an error of the second kind, and it corresponds in trace analysis to a false
negative. The probabilities of making correct decisions are therefore 1-a
(given Hg) and 1-8 (given Hp); 1-8 is also known as the "power" of the test,
and it is fixed by 1-a (or S¢) and Sp. One major objective in selecting a
particular MP is thus to achieve adequate detection power (1-8) at
the signal level of interest (Sp), while minimizing the risk (a) of falre
positives. Given a and 8 (commonly taken to be 5% each), there are clearly
two derived quantities of interest; Sc for making the detection decision, and
Sp the detection limit. (If, for RETS, our concern were strictly with the
net signal rather than radioactivity concentration, LLD would be taken
equal to SD.) Figure 1 illustrates the interrelation of a, 8, Sg and
the detection limit.

An assumption underlying the above test procedure is that the estimated
net signal § is an independent random variable having a known distribution.
(This is identical to the prerequisite for specifying confidence intervals.)
Thus, knowing (or having a statistical estimate for) the standard deviation

of the estimated net signal §, one can calculate S; and Sp, given the form of
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Fig. 1. Hypothesis testing;errors of the first and second kinds
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the distribution and a and B. If the distribution is Normal with constant o,

and a = B = 0.05, 3p ~ 3.29 og and S¢ = Sp/2. Thus, the relative standard
deviation of the estimated net signal equals 30% at the detection limit (5).
Incidentally, the theory of differential detection follows exactly that of
detection, except that AS;yp (the "just noticeable difference") takes the
place of Sp, and for Hp reference is made to the base level Sp of the analyte
rather than the zero level (blank). A small fractional change (AS/S)p thus
requires even smaller imprecision.

Obviously, the smallest detection 'imits obtain for interference-free
measurements and in the absence of systematic error. Allowance for these
factors not only increases Sp, but (at least in the case of systematic error)
distorts the probatilistic setting, just as it does with confidence inter-
vals. Special treatments for these questions and for non-normal distribu-
tions will be given as appropriate. Not so obvious perniaps is the fact that
Sp depends on the specific algorithm selected for data reduction. As with
interference effects on Sp, this dependence comes about because of the effect
on og, the ctandard deviation of the estimated net signal. More explicit
coverage of these matters will be given below and detailed derivations and
nunerical examples will be found in section III and the Appendix of this
report, respectively, (see also Ref. 33.).

Hypothesis testing is extremely important for other phases of chemical
and radiochemical analysis, in addition tc the question of analyte detection
limits. Through the use of appropriate test statistics, one mav test data
sets for bias, for unexpected random error components, for outliers, and even
for erroneous evaluation (data reduction) models (33). Because of statisti-
cal limitations of such tests, especially when there are relatively few

degrees of freedom, they are somewhat insensitive (lack power) except for
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quite large effects. For this reason it is worth considerable effort on the

part of the anaiyst to construct his MP so that it is as free from or

resistant to bias, blunders, and imperfect models as possible.

Figure 2 gives an illustration of the difficulties of detecting both
systematic error and excess random ertror. There we see that just to detect
systematic error when it is comparable to the random error (o) requires about
15 observations; and to detect an extra random error component having a
comparable o requires 47 observations (89). In a simple case involving model
error it has been shown that analyte components omitted from a least-squares
multicomponent spectrum fitting exercise must be significantly above their
detection limits (given the correct model) before misfit statistics signal
the error (33). This limitation in "statistical power" to prevent
significant model error bias, especialy in the fitting of multicomponent
spectra, is one of the most important reasons for developing multidimensional
chemical or instrumental procedures and improved detectors of high

specificity or resolution.

C. General Formulation of LLD - Major Assumptions and Limitations

The foregoing discussion provides the basis for deriving specific
expressions for the LLD for signals, given a and 8, and og as a function of
concentration. Before treating concentration detection limits generally, and
radiocactivity concentration detection limits specifically, however, it is
necessary to examine a number of basic assumptions connected with the concept

and with the MP.
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1) Detection Decisions vs Detection Limits

The signal detection limit Sp is undefined unless a or Sc is defined and
applizd. That is, detectior decisions are mandatory if detection limits (in
the hypothesis testing sense) are to be meaningful. The relatively common
practice of equating these two levels (Sc¢=Sp) is equivalent to setting the
false negative risk at 50%. That is, a detection limit so defined will in
fact be missed half the time! The recommended practice therefore is to take
a=8=0.05, in which case,

S¢c = Z1-q0p = 1.645 0g (1)

Sp = S¢ * 21-p0g = 25¢ = 3.290, (2)
provided the standard deviation of the net signal og is known and constant
(at least up to the detection limit) and it is normaliy-distributed (z refers
to the indicated percentile of the standard normal variate.) In Eq's (1) and
(2), 0o = og (at S=0); this in turn equals op if the average value of the
blank is well-known (Ref. 5). (For "paired observations", o, = op/2.) S¢ is
used for testing whether zn observed signal S is (statistically) distinguish-
able from the blank -- i.e. "detected"; Sp represents the corresponding MP
performance characteristic, i.e., the detection limit. Although Sp/S¢ = 2
generally, this is not universally true. A number of exceptional cases which
do occur, especially in extreme low-level counting and in nuclear

spectroscopy, are treated in section III of this manual.

2) A Priori vs A Posteriori; Changes in the MP (Interference, ...)

Some confusion exists in the usage of these terms which mean "before the
fact" and "after the fact." The "fact" referred to is the experimental
outcome -- i.e., the observation of a (random) signal §. associated with the

measurement of a particular sample. The MP, which necessarily includes the
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influence of the sample on the characteristics of the measurement system is
not the "fact", from the perspective of hypothesis testing. In order to make
intell.gent decisions regarding S we need therefore information concerning
the MP characteristics, notably 0og at S=0 and the variation of og with
concentration., This in turn is influenced by the level and nature of any
interfering species in the sample in question. Also, as soon as we consider
the real quantity of interest, the concentration detection limit (xp), we
require information concerning the overall calibration factor for the
particular sample; this includes the (radio)chemical yield or recovery,
detection efficiency (as perturbed by sample matrix effects: absorption and
scattering), volume or mass of the sample, etc.

Thus prior knowledge coricerning the sample in question is required in
order to compute Sp which one needs for the a posteriori test of §; it is
needed also to compute the signal and concentration detection limits (Sp,
xp) for that sample. Such prior information may be obtained in a preliminary
or screening experiment; it may be estimated from data resulting from the

experiment, itself; or it may be assumed (not recommended) independent of the

experiment. The last approach might be taken if one were interested in "pure
solution" or ideal sample detection limits, where there is no interference,
no matrix effects and perfect or unvarying recoveries. A slightly less
disastrous alternative, to assume average values for such quantities or
effects, results in needless information loss. To caricature the situation,
it's equivalent to permitting the counting time to vary in a haphazard
fashion from sample to sample and guessing an average time for calculating
individual counting rates. The point is: the critical (decision) level and

detection limit really do vary with the nature of the sample. So proper
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assessment of these quantities demands relevant information on each sample,

unless the variations among samples (e.g., interference levels) are quite
trivial.

Some perspective and a suggested approach to this matter are given in
Fig. 3. Here, we consider thres possible outcomes for an experiment
("experiment-a") which is designed (sample size, expected interference level
or background activities, counting time, etc.) according to our prior
knowledge of the MP. This prior "knowledge", which here includes the
assumption of zero interference (I=0), we designate "prior(a)"; it leads to a
concentration detection limit xDo based on a background equivalent activity
Bg. We consider the experiment adequately designed if this estimated
detection limit xp (actual LLD) does not exceed the specified maximum level
Xxg (prescribed LLD).

As soon as the (first) experiment {s performed, we gain two kinds of
information: new data on the MP-characteristics for the sample at hand, and
an experimental result Qa. The three possible outcomes (MP characteristics)
depicted in Fig. 3 show progressively greater background- (or baseline-)
equivalent activities (B3>Bp>By) and therefore similarly increasing detection
limits (xp's). For outcome-1, the posterior MP characteristics ["post(a)"]
are equivalent to our assumed prior MP-characteristics ["prior(a)"]. -- i.e,
By = By -- so of course the detection limit is as calculated (xD1 = xDo) and
the experiment is adequate (xp S xg). For outcomes-2 and -3 the posterior
characteristics differ from the prior; there is interference (B, anc¢ B3 >
By), SO the detection limit is greater. Outcome-2 still shows an adequate
detection limit (xD2 € xg), so our task is complete --the initial design was
sufficiently conservative (XDO < xg) that some interference could be

tolerated.
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The third set of MP-characteristics (outcome-3) correspond to a sample
having so high a level of interference that the initial design was inadequate
(xD3 > Xg). We therefore must use this posterior information ("post(a)m) as
our new prior information ("prtor(b)") to re-design the MP to yield adequate
characteristics (xﬁ3 $ xg), in preparation for a second (final) experiment.
(This is still properly considered "a priori" in the technizal sense of
hypothesis testing until the second experimental result ;b ["fact" or
observation] has been obtained.) Such re-design can be based on any of the
MP-variables under our control, such as sample size, radiochemical separaticn
or concentration, or counting time. (In Fig. 3 we indicate re-design simply
as an extension of counting time for relatively long-lived radioactivity.) A
1-line summary of these comments regarding sequential experiments would be

simply to state that one's posterior becomes another's prior.

3. Continuity of Hypotheses; Unprovability

Hypothesis-testing as outlined avove was dichotomous =-- that is, we
referred to the null hypothesis (Hg: S=0) and the detection limit hypothesis
(Hp: S=Sp) only. 1In fact, S ‘s a continuous quantity which may take on any
value from zero and some large, reasonable upper limit.! What takes place
when we compare § with Sc ana make the detection decision is to conclude that
one or the other of our two hypotheses (Hg, Hp) is quite unlikely, or more

correctly that such a result S is quite unlikely (here, s$5% chance of

- —————————

Ta logician might object to this statement on the basis that atoms are
discrete; and such an argument might even seem relevant if we had, say,
100 atoms of a short-lived radionuclide and a perfect (100% efficient)
detector. We could count them all. Even here, however, the "S" that
as scientists we're interested in is not the number of atoms in that
particular sample, but its expected value -- such as the loing-run
average that would arise from repeated, identical activation analyses.
The underlying issue relates to compound probability distributions; a
treatment for the case of radioactivity is given in Nef. 63.
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occurring) given Hy or Hp. The other hypothesis (Hp if S s S¢, Hp if S > S¢)
is said to be consistent with the observation, but {t is by no means proved.
An infinite number of intermediate values of S are also consistent! (The
most likely is S = 8.) This bit of logic may seem trivial and obvious to
some, and subtle and irrelevant to others, but there is one curious and
important consequence. The habit of "accepting" the hypothesis that {s not
rejected, sometimes leads to biased reporting of data. For example, if § s
S¢, the value reported may be zero; the other extreme s reporting it as
being at the detection limit, i{f S > Sp, A further comment on this matter is

given in the subsection on Reporting of Results (section II.D.4)., (See also

note A13.)

4, The Calibration Function and LLD.

Since our concern is with the detection limit for radiocactivity concen-
tration -- i.e., the "lower limit of detection" (LLD) -- we must go beyond
the above exposition on signal detection. 1If the calibration function,
relating response y to concentration 5.13 linear,

y =B+ Ax + ey (3)
where B represents the blank; A, the calibration constant or factor; and ey,

the error in the observation y.
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The estimated net signal is

S-=y-8 (4)

8 being an independent estimate for B; and the estimated concentration
is

x = (y - B)/R (5)
R being an independent estimate for A. (Here, "independent" means
independent of the observation y . Interdependence [correlation] of B and A
always results, of course, when they are both estimated from the fitting of a
single set of calibration data.)

Ideally we would next determine oy as a function of x either via
replication, or by error-propagation. Complete replication of the entire
calibration and sample measurement process for the full range of sample
matrixes and interfering activities to yield and adequate number (n) of
replicates: §1 for i = 1 to n spanning the full concentration range of
concern (from zero to -~ LLD) wou'd be a very large task. (For the estimated
standard deviation to have a relative uncertainty (95% CI) of +10% for
example would require about n = 200 replicates at each concentration!) We
favor therefore error propagation, reserving occasional full replication for
control of quality and blunder identification.

Error-propagation is straightforward for linear functions of normally-
distributed random variables. Thus,
Vg = Vy + Vg = og (6)
where V represents the variance of the subscripted quantity. Since E(y) (the
expected value of y) equals S + B,

Vo = Vg(S=0) = Vg + V§ (1)
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so, if the observations leading to B and y are equivalent, V, = 2Vg or
O0g = 03/5'33 noted earlier. Calculation of S¢ and Sp follow immediately
(assuming still Normality).

With the introduction of a random variable A in the denominator of EQ: 5,
complications set in because we now have a non-linear function (ratio) of
random variables. If ¢, (relative standard deviation or RSD of A) is quite
small, the distribution of X is only slightly skew; however, the appropriate
error propagation formula (not shown), which itself is an approximation,
contains the unknown quantity A. The consequence is that both x; and xn are
themselves uncertain. (Or, if we choose values for Xc and xp, the hypothesis
testing errors a and g are uncertain.) Full treatment of this matter is
beyond the scope of this document, but further details may be found in
Ref. 76.

The approach adopted for LLD ourposes, which we label "S-based" is
simpler in concept and straightforward in application. That is, we treat the
detection decision strictly in the signal domain, using § and Sg. The
corresponding signal detection limit Sp is then transformed into the "true"
concentration detection limit xp using the true calibration factor A, which
we do not know.

xp = SD/p = (21200 * 21-gop)/A (8)
Using bounds for A; A Z1-y/2°A» We can then calculate a confidence interval
for xp. Taking a conservative viewpoint, we go one step further; namely
Am = A-2zq-ysp0a is inserted in the denominator of Eq. (8). The resulting
quantity is an upper limit for xp for B = 0.05. (A dual interpretation,
which will not be discussed here, defines xp in conjunction with an upper
limit for 8. a, of course, remaiis at 0.,05; and neither Sg nor Sp suffer

from the A-uncertainty, because they are strictly signal-based. When A is
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not randomly sampled, the uncertainty in xp no longer represents a "confi-
dence" interval. It must be viewed as a systematic error interval. Finally,
if this conservative estimate (upper limit) for xp is less than the
prescribed regulatory limit (xg), the objective of RETS will have been met.

Recognizing the distinction between xg -- the maximum permissible LLD, or
"regulatory limit", and xp =-- the actual LLD or "concentration detection
limit" for a particular sample and measurement technique, and the RETS
requirement:

Xp S xg (9)
it becomes interesting to consider inequality approaches. One such
inequality, forced on us because of the non-linear relation Eq. 5, has
already been useful in conjuncion with Eq. 9. The crucial point is that
Eq. 9 removes the necessity that xp be known exactly or with a fixed small
relative uncertainty. As long as a reasonably chosen upper limit for xp
satisfies this relation the problem is solvad.
A second type of inequality involving xp, of great practical

importance, derives from upper bounds which can be derived immnediately from

the experimental result (Q. ox) which is necessarily produced for every
analysis. The resulting upper bound for x, if X > Xg, can be shown alua!s to
exceed xp. Therefore, if for a given sample that bound satisfies Eq. 9,
there is no need to re-determine the actual detection limit or to re-design
the experiment. (See the comments on sequential experiments, accompanying
Fig. 3 [section II, C.2], and the note [B4] in Section III for a slightly
extended discussion of the use of inequalities for rapid estimation of bounds

for the detection limit.)
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A purposely controversial, "non-detected" result {(X;) has been shown in
Fig. 3, so that we may address the matter of an inadequate MP (xp > xg) for
which a seemingly adequate result (xy-upper limit < xg) has been obtained.
We advise caution. That is, if xp > xg, the uncertainty associated with any
given measurement is apt to yield rather gradually chauging significance
levels (and false negative errors, 8). It is advisable in cases such as
this to estimate directly the probability 8 which would obtain taking xp as

the upper limit. That is, assuming normality

Xg - X Xg - Xy

21-° = * 2,95 (10)

0x 0x
If the 90% CI upper limit (x, = X + 1.645 oy) is smaller than xg, then 8 is
necessarily less than 5%. However, as is obvious from Eq 10, the statistical
significance of a given difference (xg-xy) decreases with increasing oy,
which is to say it decreases with increasing LLD (xD). Taking the result in
Fig. 3, Xg = xa + 1.6U5 oxy = 0.9 xg (where XD3 = 1.5 xg), we find that
(xg=xy)/ox = 0.219 [assumes oy = ox = const.], so z1-g° = 1.864 or
8° = 0.031, This is not so much smaller than the base value g = 0.05 or, put
differently, the upper limit from a 95% CI would exceed xg. Contrast this
with outcome-1 in Fig. 3, where xD, (and therefore o,) is smaller by a factor
of 3. There, if an x, were 0.9 xg, z1-g° would be 1.645 + 3 (0.219) = 2.302,
so B = 0.01, and a 98% CI would be required for the upper limit to reach xR.3
A final set of precautionary notes regarding the calibration function are
in order:
@ The presumed straight-line model (Eq. 3) is generally adequate over
a small concentration range ("locally linear"), such as between

3The numerology in this paragraph takes an added impact when one faces
the issue of multiple detection decisions, where still more stringent
requirements are placed on a and 8. (See section II.D.4.)
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x = 0 and x = xp. If there is any doubt, however, such a presumption
should be checked; and, above all, the slope or "calibration
constant" A in the region of the detection limit should not be
derived from remote data (x>>xp) where the curve may exhibit
non-linearity (Ref. 76).

@ Imposed (instrumental, software) thresholds, in place of Sg, will
not only alter a but may change the relevent "local" slope ~-- unless
the calibration curve is perfectly straight (Ref. 76).

® The calibration factor A, and any of the factors that comprise it --
Y (yield), E (efficiency), V (sample mass or volume), T (counting
time function) -- may show interactions with B (background,
baseline, blank, interference). Such further distortions (of Eq. 3)
are discussed briefly in section III.

® If non-linear estimation techniques, such as non-linear least
squares, are employed for nuclide identification or for estimation
of calibration curve parameters, values of a and 8 and the
distribution of x can be perturbed. (Ref. 90).

® Obvious, but worth stating, is the fact that ¢, (RSD of A) for use
in connection with Eq. (8) is

C 4 . 2 P 2 r 2 ]1/? (1)
¢A ‘Y OE ¢V Qr

provided that all the constituent ¢'s are small. (Sampling errors, which
could be manifest in the factors Y, E, or V may not always satisfy this
requirement. ¢, on the other hand, is effectively zero in most counting
situations =-- though uncertain (temporal) sampling input functions, or

uncertain half-lives or radionuclide mixes could affect even this quantity.)
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5. Bounds for Systematic Error

It would be marvelous if all our errors were random and of known
distribution (with known parameters), and even more so if we could rely on
their being Poisson. Such is never the case, so it is inappropriate to apply
the foregoing random-error based hypothesis testing framework for xp=
calculation, except as an asymptotic component. With carefully controlled
experimental work, however, that asymptotic component fortunately can be the
principal component.

A basis for the treatment of detection decisions and detection limits
in the presence of possible (uncorrected) systematic error is given in Ref.
33 for the case of signal detection. We extend that here to include the case
of "S-based" concentration detection, through the introduction of a second
systematic error bound parameter. Building on Eq. (8) for the random-error-
based concentration detection limit, we get

Sc = A+ 21-40p (12)

Xxp = £(24 + 21-400 * Z1-gop)/A (13)

where the quantity in the numerator in parentheses in Eq. (13) is Sp
(incorporating blank systematic error bounds), and f is a proportionate
amplification factor to provide a conservative bound for possible systematic
error in A. Thus, if A = YEVT (ignoring the 2.22 pCi conversion factor) were
based on a one-time calibration such that random calibration errors became
systematic,

f =1+ 21-Y2 92 (14)
where ¢5 is given by Eq. (11). A represents the a bound for possible blank

or interference systematic error. It can be further decomposed into ‘BB

where ‘B denotes the relative systematic error bound in the blank (or

interference) and B denotes the magnitude of this quantity. (See Eq. 4.)
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If we re-cast Eq. (13) in terms of radioactivity, assuming o, = op and
taking 2.4 = 29.g = 1.645

R r(2hgB + 3.290,)
D 2.22 (YEVT)

(15)

Here, the numerator is in units of counts, and xp, in units of pCi per unit

mass or volume,

Following our ‘-notation for the relative systematic error bound we

obtain from Eq. (14)
£ =1+ (16)
Clearly, the best experimental practice would include exhaustive theoretical

and/or experimental studies to obtain reliable values for AB and ‘A-

That empirical evaluation of such quantities is not trivial is shown in
Fig. 2, where we see that just to detect a systematic error equal in magni-
tude to the random error of the MP requires more than ten observations (for
standard error reduction).

In lieu of this, and for the sake of providing explicit, reasonable

limits for the A's, we suggest the following [see notes A11 and B3]:

lBk = 0.05, lI = 0.0%1, LA = 0,10
where "Bk" refers to both the blank and background and "I" refers to baseline
or interfering activity effects on B. Systematic error of still another
type, systematic model error is beyond the scope of our discussion though it
is treated briefly in section III. C and in some detail in Ref. 72.

Equations (12) and (15) thus reduce to

Sc = (C.05)B + 1.645 oo [counts] (17)
xp = (0.11)BEA + (0.,50)}————— (pCi/g or L] (18)
YEVT

39



for the case of Blank (Bk) predominance. If I >> Bk, then the coef“icients
of the first terms in Eq's (17 and 18) become 0.01 and 0.022, B, in Eq. (17)
represents the Blank counts; and BEA, in Eq. (18) is the Blank Equivalent
Activity. As we shall see in subsequent discussions, this is a very impor-
tant quantity both for the calculation of the systematic error bound (term-1,
Eq. (18)) and for derivation of the random error-based term-2 (through op).
0o is the standard deviation of the estimated net signal (counts) when its
true value is zero. Its magnitude depends on the specific counting (measure-
ment) process, and it is the subject of the second following subsection.
Equation (18) is the expression for the LLD (actual [xp], not
prescribed [xg]). It is valid only when used in conjunction with Eq. (17).
Also, it carries the assumption of normality, and it should therefore be used
only when the "blank experiment" yields B > 70 counts. (See section III for

the treatment of very low-level 2ounting and other special situations.)

D. Special Topics Concerning the LLD and Radioactivity

1. The Blank, Blank Equivalent Activity (BEA), and Regions of Validity

The ultimate limit of detection for any nuclear or chemical measurement
process is governed by the systematic and random uncertainty in B. (For B,
read: background, blank, interference, model error bias, etc.,) For this
reason BEA should be recognized as an important benchmark in considerations of
detection capabilities, Some useful perspective on the nature and importance
of B-variations is offered in the following three paragraphs (adapted from
Ref. 38.)

"Unfortunately, there is no alternative to extreme vigilence when
treating the limitations imposed by the vlank. In the best of circumstances

the mean value of the blank might be expected to be constant and its
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fluctuations ("noise") normally distributed. Given an adequate number of
observations, one could estimate the standard deviation of this noise and
therefore set detection limits and precisions for trace signals. In situa-
tions where the chemical (analyte) blank remains small compared to the
instrumental noise blank this procedure may be valid, as in many low-level
counting experiments. Even here, however, to assume that the noise is nor-
mally or Poisson distributed, or to estimate the background from one or two
observations is to invite deception. As indicated in Table 4, there is a
significant chance (5% for normally-distributed blanks) that the expected
value of the noise (blank standard deviation) will exceed the observed dif-
ference between two blanks by a factor of 16! Subtle perturbations arise
even in the instrumental blank situation. For example, if the analyte detec-
tion efficiency changes discretely or even fluctuates, it is quite possible
“hat the instrumental blank will suffer a disproportionate change (717).

Certain special cases occur where the blank can be reliably estimated,
and therefore adjusted, indi~ectly. This is the situation: for "on-1line"
coincidence cancellation of the cosmic-ray mu-meson component of the back=-
ground in low-level radioactivity measurement (where there is not even a
stochastic residue from the adjustment process); for the adjustment of the
baseline (due generally to multiple interfering processes) in the fitting of
spectra or chromatograms; and for correction for isonuclidic contamination
(due to interfering nuclear reactions) in high sensitivity nuclear activation
analysis.

When the blank is due to contamination (as opposed to interferences or
instrumental background), high quality trace analysis is at its greatest
risk. Assumptions of constancy, normality or even randomness are not to be

trusted. An apparent analyte signal may be almost entirely due to

u









A s L

place of our suggested default valie (0.05). One situation in which such
relatively severe fluctuations might be expected wéuld be continuous
monitors (count rate meters - analog or digital) for effluent noble gases.

Model error, such as deviations of baselines from single functional
shapes (linear, quadratic, ...) or incorrect components or peak shapes when
fittinz complex multiplets or spectra, constitutes another source of B-error.
Here, the "3" involved actually i{s interference, and the problem is that high
levels of interfer-ing activities can cause sericus deviations from our
assumed B (e.g., daseline) uncertainties and, hence, estimated detection
limits. Our default value AI = 0,01 is intended to provide some protection.
Some discussion and illustration of this potentially complex issue is given
in section III and Ref. 72.

Before leaving the topic of the Blank, let us consider some regions of

-

validity in relation to 3 types of effects on the detection limit. Two of

or

o
e 2

hese have been noted already: systematic error (via Ag) and normally=-

istributed random error (via oy5). (See Eg. 15.) The third, of major

(&)

concern in extreme low-level counting is Poisson effect, 133. Poisson
deviations from Normality. For "simple counting" (gross signal minus
background) this (Poisson effect) adds a term 22 = 2,71 tc the parenthetical
quantity in the numerator of Eq. 15. (For the lowest level coun%ing, where B
« 0, 5g. 15 mist be replaced with an exact Poisson treatment. (See section
III.C.1.) Taking oo equal to o = /8 for the "well-known" blank case, zand
dg = 0.05, we can directly compare the three terms which delimit the
detection of net signals (units:counts):

[systematic] term-1: 2438 = 0.10 B (counts)

[conventionall term=2: 3.29 o4 = 3.2% v  (counts)

Tpoisson’ term=3: 22 = 2,71 (counts)
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Two types of question interest us: (1) the cross-over points where each term
becomes predominant, and (2) the points (B-magnitudes) by which the
unconventional" terms-1 and -3 are negligible. For question (1), we set
adjacent terms equal and solve for B; for question (2) we define negligible
as 10% relative. The results:

term=1 < term=2 for B < 1082 counts

-
i

(% 2}

term=3 < term=2 for B > 0,68 counts
Thus, the conventional, approximately Normal Poisson expressior (term=2)
predominates for roughly ' to 1000 background counts observed. (For
{nterference, substituting A7 = 0.01 for 4s, the upper limit is

increased to about 27,00C counts.

Terms-1 and -3 are not so easily ignored, however. The systematic error
term=1 exceeds 10% of term=2, for B > 10.8 counts; and the extra Poisson
term=3 exceeds 10% of term=2 for B < 67.6 counts. Thus, Eq's (15) and (18)
were recommended for use when B > 70 counts. (The above regions of validity
apply strictly to the very common simple-counting, well-known blank case.
Somewhat altered values come about when x is estimated from single or
multicomponent least squares deconvolution.) (See also note B9 for a

discussion of the approximation og = vB.)

2. Deduction of Signal Detection Limits for Specific Counting Technigues

The concentration detection limit xp or LLD can be expressed as (see Zq's
(13) and (15)

Xp = const. BEA + const” « SO/(YEVT) (19)

e
D

Tt 1s interesting to consider the exact Pcisson treatment in this case.
Using Table 7 in section III.C.1 we calculate a detection limit (Sp) of
5.63 counts, whereas the sum of terms=-2 and -3 gives 5,42 counts.
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where the first term relates purely to systematic uncertainty (error bounds)
and both constants include the calibration systematic error factor f. Sg
is the signal detection limit taking into account random error only. Apart
from BEA, the LLD is controlled by the nature of the counting process
(including the data reduction algorithm) as reflected in the random error-
contrelled guantity sg and the calibration factors Y,E,V,T. In this
subsection we shall consider the dependence of the all=-important quantity
Sg on the nature of the counting process. Tne calibration factors will be
discussed in the following subsection on design.

Signal decision (eritical) levels and detection limits were given in EQ's
(1) and (2)

S(? = 21-a Og = 106“5 Qo (1)

SO = SO + 29,5 op = 1.645 (og + ap) (2°)
5 w 8

~

(A prime has been placed on Eq. (2) because we do not wish to restrict
ourselves to the assumption that oy, = op at this point.) The crucial
quantities governing the signal detection limit are thus 0o and op == the
standard deviations of the estimated net signal (3) when its true value is
S =0 and § = SS. These are what we shall relate to the counting system.
v

what follows is simply a concise summary for different systems of importance.
Derivations and detailed expositions are to be found in section III.C. (Note
that in the remainder of this section, since we shall refer strictly to the
random error component, we shall omit the superscript - zero on Sc and Sp
== for ease of presentation. Also, o = § = 0.05, so z = 1,645,)

a) Meaning of o, and op. These quantities are central to the entire
discussion. Let us therefore consider their definitions in terms of the

observations (gross counts) yq and yp, for "simple counting."
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Yo = S +8 % 8y (gross signal) (20)

y2 = bB = e2 (blank) 21)
(In Eq 21, one can envisage yy as the sum of b - measurements of the blank,
SO ys/b equals the average observed blank,)

The estimated net signal is

= 1
S =1y + coyz = (1)yq = (-é-)yz (22)

(The coefficients cy are introduced for later generaliration.) Following the

rales of error propagation, and using u-o2.

«\2
Vg = L C% 'in = Uy o+ (-5- V2 (23)

when S = 0, Vy = Va; and V2 = bVy,. Thus,

14 . 1 2 2 1 e 1‘ * ’
Vg = Vg * |~ (b¥g) = Vg (1 -+ ;ﬂ = Van (24)

-

(Equation (24) defines the coefficient n.)
q S i

when S = Sp, Vq = Vg + B which may or may not differ from Vg in the most

-

general case (=.2., gggfcoanting systems, or systems where non~Polsson
variations dominate). Thus, for variance which is relatively independent
of signal amplitude, Vy = const = Vg, 8¢ Vp = V5. It follows, in this case
that

Sc = 1.645 g = 1,645 og V7 (25)

Sp = Sg + 1.645 o = 2 S¢ (26)
{Thus far we have said nothing about Poisson counting statistics, That will

follow shortly.)
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First, an important generalization: If we consider a rather more
complicated measurement scheme (e.g., decay curve and/or Y-spectrum fitting
by linear least squares),

yi = L agjSy + By *+ ey (27)
the solution to Eq. (27) is of the form (see sectfon III.C.3),
Sy =Lcyiyy (227)
or, denoting the component of interest as S; (or simply S) and the respective
coefficients as ¢y (or simply cj) we write
§=1fcqy

just like Eq. (22). Therefore,

Vg = cf vy (23")
just like Eq. (23). Knowing the least squares coefficients (¢j) and the
variances (V{) of the observations (yi{), we can proceed according to exactly
the sample principles developed for "simple counting." (Admittedly, non-
trivial issues must be dealt with concerning Poisson statistics, identity and
amplitudes of interfering components (SJ for j # 1), and possible semi-
empirical shape functions for fitting the baseline bj. Such complications
will be treated in part below and in part in section III.C.)

In any case, Eq's (25) and (26) are the most important results of this
introductory section, The signal detection limit is seen to be directly
proportional to the standard deviation of the blank, where the constant of
proportionality (for simple counting) is 3.29 /n. The dimensionless quantity
n depends on the relative amount of effort (replicate measurements, counting
time) involved in estimating the mean value of the blank. The bounds for n

are clearly 1 and 2 (taking b>1).

48



b) Use of replication (s) and Student's-t. We have an enormous

advantage but a subtle trap as a result »f Poisson counting statistics. op
and op can be estimated directly from the respective number of gross counts,
The trap is that other sources of random error may be operating [Ref. 20].

One solution to this problem is to substitute t,, sg for 1.645 og in Eq.
(23), where t, is Student's-t (also at the 1-a = 0.95 significance level) for
v-degrees of freedom. (v=b-1 according to the convention of Eq. 21) sg is
the square root of the estimated blank variance, i.e.,

(By - B)?

2
sg (28)

-t 3

n-1
where, for our example, n = b,

We strongly recommend the routine calculation of sg as a control for the

anticipated Poisson value, /3. 1If non-Poisson Normal, random error

predominates and is well understood and in control, then it is appropriate to
adopt t.sg in place of 1.645 /B. Unless this is assured, blithe application
of t,sg could be foolhardy, for Eq. (28) will give a numerical value even if
the blank is non-Normal or not in control. Further, information which can be
deduced using Poisson statistics (e.g., from Eq's (22°) and (237)) is
generally far more general and more precise than what can be derived from a
reasonable number of replicates. [For more on this topic, including the
analogue of Eq. (26) under replication, see notes Al, A2, and B2,]

¢) Simple Counting -- Poisson Statistics. If there are at least several

blank counts expected (B > 5), substitution of the Poisson variances for V;

and Vp at S = Q0 and S = S give a valid solutions:
é b+1
Sc = 1.645 /By = 1.645 (-b—) (257)

Sp =~ 22 + 2 5¢ = 2.71 + 2 S¢ (26°)
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The constant 22 in Eq. (24°) comes directly from Poisson statistics and the
fact that op > o, [Ref. 5]. Thus, it is evident that the detection limit
remains finite even with a zero blank.

d) Multicomponent Counting. When there are two or more mutually

interfering species, 0o and op are not so easily expressed. More detail on
these topics will be found in section III1.C, but two of the results will be
highlighted here.

For two mutually intefering components, where a solution is given by
simultaneous equations or linear least squ.res, it can be shown that

Sg = 1.645 VB [m>1] (25°°)

Sp =22 u+ 2SS [wi] (26°*)
where, now, B, n, and u depend on the specific set of equations defining the
observations in relation to the net signal of interest. ("S" and "B" remain
useful and even meaningful labels for the components when there are only
two., These more general relations show that a universal consequence of
Poisson statistics is.the inequality: Sp/Se > 2. Equality is approached,
however, for simple counting when B > 70 counts.

For multiple interference, a closed (analytic) solution for Sp cannot be
given, One must return to the original defintions, Eq's (1) and (2°), and
tentatively estimate the corresponding o's from the appropriate diagonal
elements of the inverse least-squares (variance-covariance) matrix. (Non-
linear fitting introduces some rather peculiar problems. See section III.)

Fortunately, a limiting calculation for Xp, which derives from non=-
negatively (8>0), can be made for any specific result (Q. 0x) of multi-

component analysis. Through the use of Inequality Relations (oy > 0gs ete.)

upper bounds for the critical level and detection limit can be immediately

derived, (See note BY4,)
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A very significant point with respect to these more complicated,

multicomponent cases is algorithm dependerce. (See section III.) That is

the particular data reduction algorithm (model and channels used for peak and
baseline estimation; assumed number and type of interfering species, etc.)
determines oy and op, and therefore the detection limit.

e) Continuous Monitors. Both analog and digital monitors are used for

continuous monitoring in nuclear plants. As noted already in section II.D.?,
one must be cautious in applying Poisson statistics in uncontrolled
environments. Some basic information on the statistics of such count rate
meters is given, however, in Evans (Ref. 74) and more recent publicaticns
such as Ref. 73. Some of this has been covered also in section III of this
report, Two basic limiting relations, for example, are:

op° = R/t if t » 1 (29)

ope = R/21 if t € 1 (30)
where R refers to count rate, t to the averaging time, and I to the time
constant for an analog circuit. Applications of the relations for long-term
(Eq. 29) and instantanecus (Eq. 30) measurements are treated in section III.
(See also note 57.)

f) Extreme Low-Level Counting. when the expected number of blank counts

for a sample measurement is less than about 5 it is advisable to use the
exact Poisson distribution for making detection decisions and setting
detection limits. (So long as the constant term 22 is kept in the expression
for simple counting [Eq. 26°], this gives a reasonable approximation even
down to E(yy) = 1. count =-- see section III.D.1.) Although treatments have
been given where both gross signal (y{) and blank (y,) observations contain

few if any counts (Ref, 36, 75), we recommend the MP be designed so that a

51



reasonably precise estimate be available for B. The expected number of blank
counts in the 'blank' experiment (yp, = bB), for example, should exceed 100,
if possible.

In that cace, a simple reduced activity diagram (Fig. 7) can be used to
instantly determine S¢ and the detection limit (in units of BEA) [Ref. 19].

A complete treatment of this subject is given in section III.C.1.

3. Design and Optimization

We consider briefly the question of experiment (i.e., 1.+, design because
this is the very question one faces when attempting to alcter the adjustable
experimental variables in order to meet RETS requiremenis. The task is to

bring about the condition,

xp < XR (9)

Optimization differs from design (in general) in that we adjust the variables
to minimize xp rather than simply to satisfy the inequality, Eq. (9). Design
and optimization are literally multidimensional operations when one treats a
multicomponent system with interfering spectra and/or decay curves and the
possibility of different schemes of multiple time and multiple energy band
observation. It is well beyond the scope of this manual.

For rather simpler systems, however, we can consider design from the

perspective of Equations 15, 18, and 26°.

. £ 2,71 + 3.29 /Rpnt + 0.10 Rgt L
D "\2.22 YEV T [1-e-t/1]

al 1 Cqy + Cp vRgtn + C3(Rpt] (32)
D " \vev 1=~ t/1

That is,
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Eq. (32) has been cast, of course, to highlight the controllable variables:
Y,E,V and t. (Note that t = 1/) = mean life.) Since the effects of these
variables fall in two categories we shall treat each of the two main factors
in Eq. 32 separately.

a) Propertionate Factors, YEV. xp decreases directly with each of these

factors, so a requisite proportionate decrease to meet the prescribed LLD
(i.e., xg) can be achieved (in principle) by a corresponding reduction in any
one of them or in their product.

The factor most readily available is V, for this is a measure of the
sample size taken. In certain situations, it may have reached an upper limit
for various practical reasons, the most common of which is the size that the
nuclear detector can accomodate. If the amount of sample (or disappearance
through rapid decay) is not limiting, V may be effectively increased further
throug!. concentration and/or radiochemical separation. If such steps are too
labor intensive, alternative approaches may be preferred. In general,
however, because of its controllability and the inverse proportionality
vetween xp and V, this quantity provides the greatest leverage.

Y cannot exceed unity. In the absence of sample preparation steps, it is
not even a relevant variable., The most important circumstances arise when Y
is quite small; major improvements in procedures having poor recovery could
have some impact.

The detection efflciencylg is a complex factor. Changes possibly at our
disposal include geometry, external or self-absorption (or quenching in the
case of liquid scintillation counting), and the selection of nuclear particle

or Y-ray to be measured.
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Some effects are dictated by Nature, however. Most noteworthy is tne
decay scheme, especially branching ratios (or Y-abundances, etc.). Other
things being equal, the LLD achievable -- i.e., xp == will vary inversely
with the particle or Y-abundance of the radiation being measured. If
nuclides having low Y-abundances are to achieve the same LLD's as those with
high abundances, other factors will have to be accordingly adjusted.

Note that the effective detection efficiency may depend also on the data
reduction algorithm -- e.g., fraction of a Y-spectrum used for radionuclide
estimation. More efficient numerical intormation extraction schemes may thus
be beneficial.

b) Background (Blank) Rate; Counting Time. It is clear from the

numerator of the second factor in Eq. 32 that decreasing the background rate
will decrease LLD up to a point, If t is fixed (say, the maximum feasible)
then once the first (extreme Poisson) term Cy predominates, further reduction
in the background (or Slank or interference) will have little effect. In
contrast if B is so large that the third (systematic-error) term C3B predomi=-
nates, then B - reductions will have as large an effect as proportionate
increases in V and E. In section II.D.1, we saw (for typical MP parameter
values) that the B - transition points occurred at about 1 count and 1000
counts. Perhaps the most important opportunity for B-reduction occurs when
it is due to large amounts of interfering nuclides which can be eliminated by
decay cr radiochemical separation.

A second quantity at our disposal is n. This depends on the amount of
time or channels (for a simple peak) used for estimating B for simple
counting. In more complex (multicomponent) situations, the data reduction

algorithm (as embodied in n) will have some effect on xp.
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The major and most commonly considered variable is counting time, It is
interesting here to consider two extremes for the factor in the denocminator,
(1-e-t/1), [t represents the mean life, ty,/An2]. 1f t€r this factor « t.
At the otner extreme (t»t) it approaches a constant (one). We can represent

the situation in two dimensions as follows:

Table 5. LLD (xp) Vartations with B and t(a)

t€r 1
B 1 xp « t~1 Xp = const
1 < B % 1000(0) xp « £1/2 xp « t1/2
B 5 1000(b) Xp = const’ Xp « t

@) Units for B are counts. 1t equals the mean life (tq/g/ﬁnz).
b) For ‘I = 0.01, the upper crossing point changes from ~1000 to -27000

counts.

Depending on which domain of B and t we are in, it is clear that {ncreases in
counting time may decrease xp, have no effect, or at worst increase Xp.
Also, it is interesting that in the regfon of extremely small B, all
increases in t will be beneficial; in fact, the fnitial varfation (if t<1)
will be proportionate, (Admittedly, for fixed Rp, increased t will tend to
move B out of the extreme Poisson region. However, if the expected value of
B s significantly smaller than 1 count, increases in t can be of major
advantage if one (s measuring long-lived activity.)

When B {s already quite large, increase in t can only make matters worse.

The intermediate region (s intriguing. Here (1£§$1000 counts) "conventional"

counting statisties predominate; and for fixed Rp, xp decreases with

{ncreased counting time for long-lived activity but reverses itself for
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short-lived activity. Obviously there must be an optimum., Differentiating
the appropriate term in Eq. (32) shows that optimum to be the solution of the
transcendental equation.

1
t -(3) (1-0-t)/‘-t (33)

where t is in units of the mean life t. The solution toc equation (33) gives

the optimum counting time as -1.8 times the half-life.
It is worthy of re-statement that (Eq. 32, Table 5):

o] Knowing the time and B-domains, one can quickly scale xp according to
the expected variation with time.

s} Diminishing returns for background reduction set in when the term Cj
pegins to dominate.

© Diminished returns for LLD (xp) reduction by extended counting set in
once (a) t > 1.8 ty,5 or (b) B > n (2/fg)? which equals 1082 and 27060
counts for the default values taken for blank and baseline relative
systematic error bounds., (This latter statement is equivalent to
indicating ~2% and ~11% of the BEA as minimum achievable bounds for xp.)

0 A rapid graphical approach for experiment planning, for all 3 B-domains
can be given in the form of the "Reduced Activity Diagram." Space does
not permit an exposition on this topic, but one such diagram (for extreme
low=level counting) is included as Fig. 7. Other diagrams for nigher
activity levels and including the effects of non-Poisson error may be

found in Ref's 62 and 80.
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4, Quality

a) Communication. Free and accurate exchange of information is one

crucial link for assuring the quality of an MP and the evaluation of the
consequent data. A few highlights in this area, relevant to LLD and RETS
follow.

(1] Mixed Nuclide Measurements. lnterpretation of non-specific

radionuclide measurements is seldom possible unles- the average temporal and
detector responses are fixed. Calibrations and measurements of gross nuclide
mixtures require controls on the relative amounts of nuclides having
different half-lives and different detector responses for meaningful
interpretation,

[i1] "Black boxes" and Automatic Data Reduction. One of the dis-

benefits of automated data acquisition and evaluation is lack of . formation
on source code or detailed algorithms employed, specific nuclear parameter
values stored, and artificial thresholds and internal "data massaging"”
routines. A number of surprises and blunders could be prevented if there
were adequate open communication in this area. One problem of hidden
algorithms which can be especially troublesome for detection decisions and
limits (as well as for quantification) is intentional (but unknown to the
user) a'‘gorithm switching. A potential means of control for these kinds of
problems is the use of artificial (known) reference data sets as distributed
by the IAEA [Ref 81]. (Further comments on this are given below.)

(1i1]) Reporting Without Loss of Information. The following paragraphs

and Figures are adapted from [Ref. 38].
"Quality data, poorly reported, leads to needless information loss. This
is especially true at the t-ace level, where results frequently hover about

the limit of detection., In particular, reports of upper limits or "not
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detected" czn mask important information, make intercomparison impossible,
and even produce bias in an overall data set. An example is given in Fig. 4
which relates to a very difficult radicanalytic problem involving fission
products in seawater (97). In this example, only six of the fifteen results
could be compared and only eight could be used to calculate a mean. Since
negative estimates were concealed by "ND" and "<", the mean was necessarily
positively biased. /The true value 1 in this exercise was, in fact, essen-
tially zero; and the use of a robust estimator, the median [m] does give a
consistent estimate.) Although upper limits -‘onvey more information than
"ND", authors choose conventions ranging from tie (possibly negative)
estimated mean (x) plus one standard error to some sort of fixed "detection
Iimit.," Such differences are manifest when cne finds variable upper limits
frcm one laboratory but constant upper limits frcm another (98).

The solution to the trace level reporting dilemma is to record all

relevant information, including as a minimum: the number of observations

(when pertinent), the estimated value x (even if it is negative!) and its
standard deviation, and meaningful bounds for systematic error. More
thorough treatments of this issue may b»e found in Eisenhart (99) and Fennel
and West (100)."

When information is not fully preserved for a set of marginally detected
results, distributional information and parameters may be recovered by
statistical techniques (probability plots; maximum-likelihood estimates)
which have been developed for "censorea" data, [Ref. 48,69,82,91]. By
"censored" we mean that although numerical results of some of the data may
not be preserved, the number of such results is recorded. Though such
techniques permit the partial recovery of information from censored data

sets, they cannot fully compensate for such information loss.
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Fig. 4a.
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upper limits, respectively.
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So long as the full initial data are recorded and accessible, however, it
may of course be reasonable to provide summary reports for special purposes
which exclude tabulatinns of non-significant x's. But to set them all to
either zero or to LLD guarantees confusion and biased averaging. The
question of automated instrumentation and data reduction may again be

involved here, if the "black box" does the censoring rather than the user.

b) Monitoring (control). Three classes of contrecl are considered

important for reliable detection decisions and measurements in the region of
the LLD. At the internal level it is crucial that blank variability be
monitored by periodic measurements of replicates; similarly, complex fitting
and/or interference (baseline) routines need to be regularly monitored by
goodness-of-fit tests and residual analysis, If such tests do not indicate
consistency with Poisson counting statistics, the simple substitution of s?
or mutliplication by x27y in place of the Poisson standard error is not
generally recommended. It could mask assumption or model error unless that
possibility has been carefully ruled out [Ref. 63]. Resulting LLD estimates
could thereby be quite in error.

Reference samples, internal and external, blind and known, are crucial
for maintaining accuracy and exposing unsuspected MP problems. "Blind
splits" and the EPA Cross-Check samples thus serve a very important need.
The utility of external quality control samples is highest, of course, when
such samples resemble "real" samples as closely as possible in their nuclear
and chemical properties, when their true values are known (to the
distributors), and when they are really "blind" from the perspective of the
laboratory wishing to maintain its quality. In connection with the LLD it

might really be valuable to purposely monitor (internally and/or externally)
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performance at this level -- i.,e., to provide blind samples containing blanks
and rad.onuclides in the neighborhood of the prescribed LLDs.

A third class of control relates to the data evaluation phase of the MP,
The presumption that control is quite unnecessary for this step was belied by
the IAEA Y-ray spectrum intercomparison study referred to earlier. A stmmary
of the structure and outcome of that exercise (adapted from Ref. 38) follows.

"One of the mo:t revealing tests of Y-ray peak evaluation algorithms was

undertaken by the International Atomic Energy Agency (IAEA) in 1977. In this
exercise, some 200 participants including this author were invited to apply
their methods for peak estimation, detection and resolution to a simulated
data set constructed by the IAEA. The basis for the data were actual Ge(Li)
Y-ray observations made at high precision. Following this, the
intercomparison organizers systematically altered peak positions and
intensities, added known replicate Poisson random errors, created a set of
marginally detectable peaks, and prepared one spectrum comprising nine
doublets, The advantage was that the "truth was known" (to the IAEA), so the

exercise provided an authentic test of precision and accuracy of the crucial

evaluation step of the CMP.

"Standard, doublet and peak detection spectra (Fig. 5) were provided;
Fig. 6 summarizes the results (81,92)., While most participants were able to
produce results for the six replicates of 22 easily detectable single peaks,
less than half of them provided reliable uncertainty estimates. Tw,~thirds
of the participants attacked the problem of doublet resolution, but only 231
were able to provide a result for the most difficult case. (Accuracy
assessment for the doublet results was not even attempted by the [AEA because

of the unreliability of participants' uncertainty estimates!) Of special




200

-
" P ————————————— A s it A —
-
; il
p . . »
“'"‘““"ﬁ0v-¢-h!hﬂklnununannnNuanh..T
g w »
0 -
-
0 A I s - 4 i L A L A A A A b A " l L salhs hd
0 200 400 600 800 1000 1200 1400 1600 1800 2000

CHANNEL NUMBER

Fig. 5. IAEA test spectrum for peak detection
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DATA EVALUATION-IAEA
y-RAY INTERCOMPARISON

[Parr, Houtermans, Schaerf - 1979]
Peaks Participants Observations

22 - Singlets 205/212 uncertainties: 41% (none),
(m =6) + 17% (inaccurate)

9 - Doublets 144/212 most difficult (1:10, 1 ch)

-49 results

22 - Subliminal 192/212

correctly detected: 2 to 19
peaks
* false positives: 0 to 23 peaks

* best methods: visual (19), 2nd
deriv. (18), cross correl. (17)

Fig. 6. Data evaluation - IAEA Y-ray intercomparison. Column two indicates
the fraction of the participants reporting on the six replicates for
22 single peaks, 9 overlapping peaks, and 22 barely detectable
peaks. Column three summarizes the results, showing (a) the percent
of participants giving inadequate uncertainty eatimates, (b) the
number of results for the doublet having a 1:10 peak ratio with a
! channel separation, and (¢) the results of the peak detection
exercise,
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import from the point of view of trace analysis, however, was the outcome for

the peak detection exercise, The results were surprising: of the 22

subliminal peaks, the number correctly detected ranged from 2 to 19, Most
participants reported at most one spurious peak, but large numbers of false
positives did occur, ranging up to 23! Considering the modeling and
computational power available today, it was most interesting that the best

peak detection performance was given by the 'trained eye' (visual method)."

5. Multiple Detection Decisions

It follows obviously that if all radionuclides measured are present
either not at all (Hy) or at the LLD (Hp) and the errors a and 8 are each set
at 5%, then 5% of the detection decisions will be wrong "in the long run."
Thus, for example, in a Y-ray spectrum containing no radionuclides, if one
were to examine say 200 loecations for the possible presence of radionuclides,
10 false positives (on the average) would result, This carries some curious
implications for any instructions to "report any activity detected" =--
especially If one multiplies the 10 false positives by the number of apectra
examined, for example in a Quarter, (One may find an apparently tighter
constraint in a phrase such as "detectec and identified," but this would
require a second manual to struggle with a rigorous meaning for the term
"identiffed" in such a context!)

If the number of nuclides sought is restricted purely to the "principal
radionuclides,"” the situation is altered numerically but not qualitatively.
If there were just one sample per month and 10 nuclides sought in each
sample, we would expect after 1 year (or 12 samples) ~ 6 false positives (if

there were in fact no activity).
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Solutions to this dilemma are either to accept an error rate of 5% false
positive or false negative results, or to redefine the goal such that there
is only a 5% chance of getting a single false positive given the entire set
of measurements. (This seems the only rational alternative when scanning a
high resolution spectrum for the unsuspected tiny peaks.) The critical level
must be correspondingly increased and with it, the detection limit. (If one
were to assume some prior unequal apportionment of the samples to hypotheses
Hp and Hp, the increases in S¢ and Sp could differ substantially from one
another, but we shall not treat this case.)

To address this matter explicitly, let us assume that N decistons (ergo,
measurements) are made all at risk-level a”, The probability that none {s
incorrect can be given by the Binomial distribution:

Prob (0) = (N) (a”)0 (1-a”)N = (1-q°)N (34)
0

The probability that no decision is {ncorrect {(s by definition 1-a, where a
{s the risk or probability that 1 or more i{s incorrect. Therefore, the a’ we
need to impose on each decision is
a” =1 = (1=a)1/N < a/n (35)
for small a. If N=100, for example, and a remains 0.05, then
a’ = 1-(0.,95)0.01 < 0,000513

If Normality could be assumed so far out on the tail of the distribution,
Z1-q” = 3.27. Treating 8" in the same way, we would conclude that decision
levels and detection limits would each need to be increased by about a factor
of two (from 1.645).

A somewhat related i{ssue {nvolving the question of reporting non-
principal radionuclides {f detected {3 illustrated by result ;b in Fig. 3.
Here an observation brings the decision "detected" and the actual LLD (xp) is

below the prescribed LLD (xg)., (Also, as shown, {ts upper limit as well lies
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below xR.) What follows is that unless there is truly zero activity in a set

of samples examined, that the more sensitive MP's (lower xp's) will "detect"
more radionuclides even though they may be well below the prescribed LLD (xg)

if any.
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IIT. PROPOSED APPLICATION TO RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATIONS
(RETS)!

A. Lower Limit of Detection - Basic Formulation

1. Definition

The LLD is defined, for purposes of these specifications, as the smallest

concentration of radioactive material in a sample that will vield a net
count, above the measurement process (MP) blank, that will be detected with
at least 95% probability with no greater than a 5% probability of falsely
concluding that a blank observation represents a "real" signal. "Blank" in
this context means (the effects of) everything apart from the signal sought
“- 1;2;' background, contamination, and all interfering radionuclides.

For a particular measurement system, which may include radiochemical
separation:

The Lower Limit of Detection is expressed in terms of radiocactivity

concentration (pCi per gram or liter [A3]); it refers to the a priori [A4]

detection capability

f(28¢(29-q%21-g]%) fSp
LLD = = = Xp (1)
2.22 (YEV)T A

The detection gpclslon is based on the observed net slgnal §

(a posteriori [AU4]) in comparison to the critical level (counts):

Sg = A * 21agp (2)
where the "statistical" part of the definitions (when f = 1, A = Q) sets the
false positive and false negative risks at a and g, respectively [AS5].

Meanings of the symbols follows. (See also App. A).

'Parts A and B of Section III represent proposed substitute RETS pages.
Part A 18 the more comprehensive, and it is framed in a manner that
should be appli~able to most counting situations. Part B i{s offered as
a simplified version, which will suffice for "simple" gross
signal-minus-background measurements.
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A is the overall calibration factor, transforming counts to pCi/g (or
pCi/L).

E is the overall counting efficiency, as counts per disintegration; it
comprises factors for sclid angle, absorption and scactering, detector
efficiency, branching ratios and even data reduction algerithm [A6, AT],

V is the sample size in units of mass or vclume,

E:QE is the number of disintegrations per minute per picocurie [a31],

Y is the fractional radiczhemical yield, when applicable.

o0y is the Poisson standard deviation of the estimated net counts (§) when
the true value of S equals zero (i.e., a blank). (The relation of oy to the
background or baseline depends upon the exact mode of data reduction [see
section II1.C.3].)

21-gs21-g = the eritical values of the standard normal variate =-- taking on
the value 1.6U45 for 5% risks (one-sided) of false positives (a) and false
negatives (B), when single detection decisions are made. (Multiple detection
decisions require inflated values for zj., to prevent significant occurrence of
spurious peaks =-- as in high resolution Y-ray spectroscopy.) When a, B risks
are equal, and systematic error negligible, the detection limit for net
counts, Sp, 15 just twice Sc. (Assumes the Normal Limit for Poisson counts.)
(When subseripts are omitted in the following text 2 will denote 2zg g5 =
1.645),

T = the effective counting time, or decay function, to convert counts to
initial counting rate (time "zero": end of sampling) [A9]. It is numeri-
cally equal to (e"At, - e=At)/), where t, and ty are the initial and final
times (of the measurement interval) and ), the decay constant. For At<<i1,

T+At = tp-t,. [Multicomponent decay curve analysis yields a more complicated
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expression for T -- and generally o,/T, the standard deviation of the
estimated initial rate is given directly.] (T must have units of minutes,
for LLD to be exoressed in pCi.] [A3,A6,A7,A9).

f and 4 are proportionate and additive parameters which represent bounds
for systematic and non-Poisson random error. (The only totally acceptable
4lternative to this is complete replication of the entire measurement process
(including recalibration, e.g., for every sample measured) and making several
replicate measurements of the blank for each mixture of interfering nuclides
and counting time under consideration [A10].)

f will be set equal to 1.1, to make allowance for up to a 10% systematic
error in the denominator A of Eq. (1) === viz., in the estimate of the
product EVY [A11]. [If there are large random variations in A then full
replication should be considered together with the use of X (radicactivity
concentration) and oy.] Note that A is equivalent to the slope of the
calibration curve. If the curve deviates from linearity (e.g., == due to
saturation effects, algorithm deficiencies or changes with counting rate,
signal amplitude, etc.) a more complex model and expression for LLD may be
required.

A will be set equal to 5% of the blank counts plus 1% of the total
interference counts (baseline minus blank) in order to give some protection
against non-Poisson random or systematis error in the (assumed) magnitude of
the blank (Ref's 20,72) [A11],

Sp is the detection limit expressed in terms of counts,

8¢ (Eq. 2) is the critical number of counts for making the (a posteriori)

Detection Decision, with false positive risk=a.
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One very important illustration of this matter arises in connection with
signal detection limits based ¢n replication. If the estimated net signal
(when S=0) is normally distributed and sampled n-times (e.g., via paired
comparisons of appropriately selected blank pairs), the critical level is
given by tn-1s/j;. where s is the square root of the estimated variance and
th-1 is Student's-t based on n-1 degrees of freedom. The minimum detectable
signal {s given by the non-central-t times the true (unknown) standard error.

This is approximately 2t,.y o/v/n. Bounds for o obtain from the x2 distribu-

tion: (x2/n=1) o5 < 82/02 < (x2/n-1) 95. The upper bound for the signal
detection limit (8 s 0.05) would thus be
[2tn-1s//n1 /T(x2/n=1),0511/2 (3)

For example, suppose that 10 replicate paired blank measurements were

made, yielding a standard error (s//10) for the net signal (Bi-BJ) of 30 cpm.
Then tg = 1.83 (for a = 0.05) and Rg = tg+SE = 54,9 cpm. Since [x2/9) 95]1'/2
= 0,607, the upper bound for the detection limit would be higher by a factor
of 2/0.607, or Rp = 181. cpm. (8 € 0.05). The total (90% CI) relative
uncertainty for the standard error and hence Rp (g = 0.05) is given by the
ratio of the upper and lower (.95, .05) bounds for Vx2, in tnhis case (n = 10)
equivalent to a factor of 2.26. To reduce the uncertainty in Rp to a factor
of 2.00 (upper limit/lower limit) would require at least 13 replicates for
the estimation of o. [See Table 6 and Note B2.)

If, rather than paired replicates, a single sample measurement is to be
compared with the estimated blank, and the latter is derived through

replication,

4 2 2 P
0g » 8g n= sg (RZ1 ) (4)
n

Thus, the upper limit for Sp becomes

[2tp-1 sp/nl/[(x2/n=1)g.051172 = 2sp/nlt(oyL/sp)] (5)
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[A3]). S.I. Units. The preferred (S.I1.) unit for radiocactivity is the
Becquerel (Bq) which is defined as 1 disintegration/second (s=1). To express
LLD in units of Bg, the conversion factor 2.22 (dpm/pCi) in the denominator
of Eq (1) would be replaced by 1. (dps/Bq) and the factor T would have units
of seconds.

[A4]. A priori (before the fact) and a posteriori (after the fact) refer

to the estimate S or x or decision process as the "fact." LLD is before the
fact in that it does not depend on the specific (random) outcome of the MP.
However, all parameters of the MP (including interference levels) must be
known or estimated before "a priori" values for Sg or LLD (xp) can be calcu-
lated. (Such parameters may be estimated from the results of the MP, itself,
or they may be determined from a preliminary or "screening” experiment with
the sample in question.)

[A5]. Poisson Limit. Equations (1) and (2) are valid only in the limit

of large numbers of background or baseline counts. If fewer than ~70 counts

are obtained, special formulations are required to take into account devia-

tions from normality. (See section III.C.1 note B9, and Ref. 19). The

simple sum in Eq (1) == (2y-4*29-g) == is an approximation; strictly valid
only when o(5) is constant. This is a bad approximation for extreme low-
level counting and for certain other measurcment situations involving
artificial thresholds (76).

[(A6]. Mixed Nuclides, Gross Counting. For mixed, non-resolved

radionuclides, where "gross" radiation measurements are made, the factors E
and T are meaningful only if the particular mix (relative amounts and
energies or half-lives) is specified. Common agreement on the radionuclides
selected for efficiency calibration for "gross” counting is likewise

mandatory.
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[A7]. For multicomponent spectroscopy and decay curve analysis, the

factors E and/or T are generally subsumed into the (computer-generated)
erpression for o,, where o, then has dimensions of disintegrations or
(initial) counting rate or radiocactivity (pCi or Bq). Both factors may thus
depend upon the algorithm selected for data reduction -- i.e., the "informa-
tion utilization efficiency" (see section III.C.3).

[(A8]. Formulation of the Basic Equations. The expressions given for LLD

and S¢ are perfectly general, with one exception [A5], and intended to avert
many pitfalls associated with errors in assumptions (non-Poisson random
error, model error, systematic error, non-Normality from non-linear estima-
tion) which can subvert the more familiar formulation. By formulating Eq's
(1) and (2) in terms of oy, we are able to apply them to all facets of
radioactivity measurement, including the most intricate Y-ray spectrum
deconvolution algorithms.

Use of zy-.4,05 in place of t1.,8, was a hard choice. I made it because
LLD (as opposed to Sg) requires knowledge (or assumption) of oy, as was noted
in the discussion on replicate blanks [A2]; and Y-spectrum algorithms, for
example, seldom are really applied to replicate baselines! Also, there is
serious danger in s, being estimated at one activity and interference level

(and counting time!) and assumed equivalent [or « 1//T] for changes according

to Poisson statistics. The formally simple approach of adding the term A to
Eq (2) limits both misuse and ignorance of a ts, formulation. [To my
knowledge, an all-encompassing rigorous solution to the problem (non-Pocisson
random and systematic error effects on detection capabilities) does not

exist.]
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[A9]). Time Factor. Obviously, T could be factored into an initial decay
correction and decay during counting: (e~Ata - e~Atp)/) = e~Ata(1 - e~MAl)/),
Explicit expressions will not be given for decay during sampling or for
multistep counting schemes, because they depend upon the exact design (and
input function) for the sampling or counting process.

A10]. Excess (Non-Poisson) Random Error. In place of a massive

replication study (to replace A + zoy [Eq. 2] by tsy) one could assume a
two-component variance model and fit the non-Poisson parameter for approxi-
mate estimates of detection limit variations with counting time and
interference level (20). This could become crucial when B » 1.

[(A11]. Systematic Error. A and f have been set at "reasonable" values

to represent the routine state of the art. These may be subject to more
careful evaluation by the NRC or specific estimation by the licensee. This
is erucial for instruments in uncontrolled environments where these "rea-
sonable" values may be too small; see footnote, p. 96. Similarly, if demon-
strated smaller bounds of, say, 2% B limits could be substituted for the
default bound of 5% B. A most important consequence of including reasonable
bounds for systematic error is that LLD cannot be arbitrarily decreased by
increasing T.

[A12]. Multicomponent Analysis, A - Uncertainties. In cases of

multicomponent decay curve analysis or (a, 8, Y) spectroscopy, Sc may be
transformed to a critical level (decision level) for an initial rate or
activity due to spectrum or decay curve shape differences among the compo-

nents. Common factor transformations (Y,E,V) applied, with their uncer-

tainties, to Sc¢ would simply needlessly increase the detection limit. As
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shown in £q. (1), such common (calibration) factors and their uncertainties
must, however, be included to calculate the value of the a priori performance
characteristic, LLD.

fA13). Decisions and Reporting of Data. S¢ (or LLD/2.20) is used for

testing (a posteriori) each experimental result (S) for statistical signifi-
cance, If S > S¢, the decision is "detected;" otherwise, not. Regardless of
the outcome of this process, the experimental result and its estimated uncer-
tainty should be recorded, even if it should be a negative number. (Proper
averaging is otherwise impossible, except with certain techniques devised for
lightly "censored"” [but not "truncated"] data [Ref. 21, pp 7-16f].) The
decision outcome, of course, should¢ be noted and for non-significant results,
the actual detection limit (for those particular samples) should be given. If
desired, a second decision level of significance using 1.9 » Sp, may be
noted, in view of the effects of multiple decisions on a and 8. (See section
II.D.5 on the treatment of multiple detection decisions and the origin of the
coefficient 1.9.) Obviously, changes in Sc (i.e., in 2y.4) alter the
detection limit, because of the sum, (Z3.4 * 21-3), in Eq. (1).

[A14]. Variance of the Blank. Estimation of 0,2 by s§ = s@n is

completely valid only if the entire rigorously defined, Measurement Prccess
can be replicated. This is rarely achievable if there are significant levels
of interference (By), for By will doubtless be unique for each sample. A
suggested alternative, therefore, if the sg approach is to be applied, is to
estimate sfgg for the Blank (non-baseline) and to comdbine this (necessarily as
an approximation) with the Poisson 08 from the spectrum fitting. One
caution: X2 is appropriate to estimate bounds for non-Poisson variance (20)
and lack-of-fit (model error), but it should never be used as an arbitrary

correction factor for the Poisson varianc= (61,63).
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(A15]. Sp vs xp and Error Propagation. The formulation given here is

based on signal detection (Sg, Sp). Transformation to a concentration

detection limit (xp which is the LLD) involves uncertainties in the estimated
denominator, A. In this report, we do not "propagate" such uncertainties
directly, but rather use them to establish a corresponding uncertainty
interval for xp, given Sp. If ¢p (RSD) is small, and ej random, then

Xp = Sp/A has the same RSD (¢a). If ¢p 5 0.1, then the uncertainty interval
for xp can be derived directly from the lower and upper bounds for A. We
take a conservative position, setting LLD egual to the upper bound for Xxp.
This can be further interpreted as a dualism: {.e., LLD [Eq. 1] is the upper
(95%) limit for xp, and g = 0.05; or, LLD [Eq. 1] is xp, but 8 < 0.05 (upper
95% limit for 8). (Eq. (1), where f = 1.1, takes the relative uncertainty in
A to be #10%.) S¢, of course, is unaffected by ¢p. An alternative treatment
("x-based" rather "S-based") is given Ref., 76, where xp is estimated from
full error propagation, but where one is left with uncertainty intervals for
both a and 8. The best solution clearly is to all but eliminate ¢, but in
any case it should be kept within the bounds given by the default value of

factor f if at all possible.

[(A16]. Calibration Factor (A) Variations. If, for a given measurement

process A actually varies -- e.g., if yields or efficiencies, etc., fluctuate
about their mean values from sample to sample -- then the LLD itself varies.
If this variation is significant (in a practical sense) and a mean value is
used for A, then xp would best be described by a tolerance interval for the
varying population sampled. Far better, in this case, is the use of direct
or indirect measures for A (or its component factors -- Y,E,V) for each

sample; such methods include isotope dilution (for Y) and internal and
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external efficiency calibration (for E). Sampling errors, which can be very
large indeed, come under this same topic; but further discussion is beyond

the scope of this report.

B. Proposed Simplified RETS Page for "Simple” Counting1

(See footnote at beginning of section III.)

1. The LLD is Defined for purposes of these specifications, as the smallest

concentration of radioactive material in a sample that will yield a net
count, above system blank, that will be detected with at least 95% probabil-
ity with no greater than a 5% probability of falsely concluding that a blank
observation represents a "real" signal. "Blank" in this context means (the
effects of) everything apart from the signal sought -- i.e., background,
contamination, and all interfering radionuclides.?

For a particular measurement system, which may include radiochemical

separation:

(6)

3.29 op/n
YEVT

LLD 2 (0.11) BEA + (0.50) (

The above equation gives a conservative estimate for LLD (in pCi per unit
mass or volume (V)), including bounds for relative systematic error for the
blank of 5%, for baseline (interference) of 1%, and for the calibration

quantities (Y,E,V) of 10% [B5]. (A 5% blank systematic error bound [jk] was
used adove; for baseline error, substitute §1 as indicated under 'BEA'

below.) The "statistical" part -- numerator of the second term is based on

‘"Simple". as used here, means that the net signal is estimated from just two
observations (not necessarily of equal times or number of channels). One
observatior includes the signal + blank (or interference baseline); the
other being a "pure" blank (ur baseline) observation. Also, the "expected"
(average) number of blank counts must exceed -70 counts, for Eq. 6 to be
adequately valid [B9].

2References to notes which follow (in section III.B.2) are indicated in
brackets--e.g., [BS].
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L Shit et Ems e e

5% false positive and false negative risxs and the stands~C deviation of the
blank or baseline (interference) (og) in units of counts, for the sample
measurement time At. [See also Eq. (7), pg. 81.2
Meanings of the other guantities are:

BEA = Blank Equivalent Activity (pCi/mass or volume). If the baseline

{underneath an isolated Y-ray peak) is large compar=d to the blank,
substitute "3aseline™ for "3lank" in the first term of Zq. (6), and use a
coefficient of 0.2220 in place of 0.11,

¥ = Radicchemical recovery

(5]
"
(5]
<
®
3
w
[ =4
)

Counting efficiency {counts/disintegration _26])

= AL f1-e™Alt)/), the "effective" counting time (minutes); where i is
the decay constant, t; {s the time since sampling, and 4t is the length of
the counting interval _For at<<i, T=at_ [37, A6, A9]

og = /B for Poisson counting statistics (B equals the expected number of
3lank or 3aseline counts). Do not use Zg. (6) unless 3 5 70 counts.

Note that use of the observed number of blank counts, 2 in place of the
unobservable true valuie B introduces a relative uncertainty (1o) of 56%

{Poisson) in the estimated ¢g, if B8 > 7C counts [89].
At

25 where At is the measurement time for the sample, and
Atn :

Ltg is the measurement time for the background. The dimensionsless factor 2a
takes into account possible influences of changes in the calibration factor A
on the blank == cdue to blank interactions/correlations with yield, efficiency

or sample volume (mass). GCenerally, g, will have the value, unity (77,78).

The Detection Decision: (a posteriori) is made using as the critical

level LLD/2.20. Unless such a value is used in conjunction with Eq. (6), the

probabilistic meaning (5% false-positive, negative-risks) is non-2xistent (5)!

79



2. Tutorial Extensions and Notes

[B1] Simple Spectroscopy: Eq. (6) may be used with isolated a- or Y-ray

peaks by substituting: (a) baseline height (counts under the selected sample
peak channels) for B in order to caiculate BEA and op; and (b) the expression
(1 + ny/np) for n, where ny = number of peak channels taken and nz = total
number of channels used to estimate the pure (linear or flat) baseline. (For
a linear baseline, n, should be symmetrically distributed about the peak
integration region.)

[(B2]. Replication: The variability of the blank should always be tested
by replication, using s2 and x2. (See aso notes A2, Al14.) If the
replication-estimated standard deviation significantly exceeds the Poisson

1

value (VB), the cause should be determined. if excess variability is random
and stable the factors 3.29 op in Eq. (6) may be replaced by 2t oy, as
defined in note A2.

Some values of t and oyp/s (both at a = 0.05) follow:

Table 6. LLD Estimation by Replication: Student's-t and (o/s) - Bounds
vs Number of Observations

no. of replicates: 5 10 13 20 120 ®
Student's-t: 2.13 1.83 1.78 1.73 1.66 1.645
oyL/s: 2.37 1.65 1.51 1.37 .12 - 1100

[B3]. Systematic Error Bounds. The presence of systematic error bounds

limits unrealistic reduction of the LLD through extended counting. The
values (1%, 5% and 10% for blank, baseline and calibration factors, resp.)

are believed reasonable [Ref., 72], but if demonstrated lower bounds are

acnieved, they should be accordingly, substituted.

Tat least 13 replicates are necessary to "assure" (90% confidence) that s be
within -50% of the true o. [AZ]



[BY4]. Some Inequalities for Rapid Decision Making and LLD Estimation.

Equation (6) can be written:!

LLD x = Xn = 1.1 (2x¢) = 1.1 (2[4BEA + 1.645 oxol) (1)
where Xc, BEA and oxo have dimensions of activity per unit mass or volume.
In the absence of systematic error bounds; Xp = 2xC, ‘+0. and 1.1»1. The
standard deviation of the estimated concentration when its true value is
zero, is oye which equals V/Bn /[2.22 (YEVT)] for "simple" counting.

One result which is normally available following all radionuclide
measurements is the estimate of the radioactivity concentration, i, and its
Poisson standard deviation oy, Since ox 2 oxo necessarily (the equality
applying only when x=0 -- i.e., a blank),

Xc' = ABEA + 1.645 ox 2 x¢ (8)
and
xp' = 1.1 (2 x¢') 2 xp (9)
with these two inequalities, using the result which is available with every
experiment (oy), we can instantly calculate quantities for conservative use
for Detection Decisions and for setting a bound for LLD.

Equation (8) should be considered as a new (quite legitimate) decision
threshold, for whick - £ 0.05. Similarly, using Xc' for detection decisions,
xp' (Eq. 9) may be considered a detection limit for which g s 0.05. (With a

little more work, one could calculate the (8 = 0.05) LLD, which would be

———————

1For convenience of algebraic statement, xp will be used here to symbolize the
actual LLD. (See App. A.) Also, when units are concentration, "oo" will be
transformed accordingly: 1i.e., oxg £ 09/A, thus, oxo is ox for x=0.
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smaller than xp', using x¢'.) If, then, xp' is less than the prescribed
regulatory value xg for LLD, the requirements will have been met; and actual
calculation of oy, and LLD using Eq (1), would be unnecessary. Obviously,
this approach cannot be applied completely a priori, in the absence of any
experimental results. Operationally, however, it is straightforward,
conservative, and satisfies the goals of RETS.

Limits for the ratios of xp'/xp, which are necessarily the same for
Xc'/xc, are readily given for simple counting. If the true value of sample
counts (8) is not zero, then the quantity /Bn is replaced with JET;:FT'Hhere
r = S/B, the ratio of sample to blank counts ("reduced activity" [Ref. 19]).
Thus, for 3 = B, for example, and n=1 (well-known blank), o9, wculd be
increased by a factor of /T+r = /2, and this would be reflected in 6x. The
ratio xp'/xp would likewise be V2, if there were no systematic error. When
systematic error dominates (}BEA in Eq. 8), then xp'/xp ~1 showing no change.

[B5]. Calibration Factor Variations. If there are large random varia-

tions in Y, E, or V, the full replication of x (radioactivity concentration)
and oy should be considered in place of the f-systematic error bound
approach.

(B6]. Branching Katios (or absolute radiation -- a, B8, Y, egx, ==

fractions) may be shown explicitly by factoring the efficiency. Thus, for
example, E = Ey*Ex, where Ey represents the counting efficiency for a Y-ray
of the energy in question, and g, represents the branching ratio for that
energy Y-ray from radionuclide-k. All else being equal, then LLD = 1/E.

[(B7]. Continuous (Monitoring) Observaticns [See also footnote: p.51].

When a digital count rate meter is employed (Ref. 73), or when a "long"
average estimate with an analog rate meter is made, the standard deviation of

the background rate is unchanged -- i.e., op/T = /Rp/At (for At<“1). When an
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"instantaneous" analog reading is made, however, T+2t (1t = resolving time of
the circuit), so op/T* :g [Ref. 74]. Changes in analog ratemeter
readings are governed by the instrumental time constant, just as they are in
exponential radiocactivity growth and decay, by the nuclear time constant.

[B8]. Decisions and Reporting of Data. S¢ (or LLD/2.20) is used for

testing each experimental (a posteriori) result 'S) for statistical signifi-
ance. If § > Sc¢. the decision is "detected"; otherwise, not. Regardless of
the outcome of this process, the experimental result and its estimated uncer-
tainty should be recorded, even if it should be a negative number. (Proper
averaging is otherwise impossible, except with certain techniques devised for
lightly "censored" [but not "truncated"] data [Ref. 21, pp 7-16f].) The
decision outcome, of course, should be noted and for non-significant results,
the actual detection limit (for those particular samples) should be given. If
desired, a second level of significance, using 1.9 x S¢c, may be noted, in
view of the effects of multiple decisions on a and B. (See Section II.D.5 on
the ireatment of multiple detection decisions.)

[B9]. Counts Required for Adequate Approximation of 98 and Sp. When B

is large, the approximations

(i) op = /%r and (II) Sp = 2S¢ = 2z vBn

become quite acceptable. They are, in fact, asymptotically correct, just as
the Poisson distribution is asymptotically Normal. Regions of validity can
be set by requiring, for example, that each approximate expression deviate no
more than 10% from the correct expression.

For Case (I), where the observed number of counts is used as an estimate

for the Poisson parameter, we require:

0.90 < /B / /T < 1.10
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Taking the upper limit 8 = B + zj-y /3, we have

(1.10)2 > 1 » z1-y/B, or B z'(21-y/0.21)2 counts
For '10' (2z=1), this means B > 22.7 counts; for the '95% CI' (2=1.96), the
limit is B>87.1 counts. A most important point is that the B referred to is
that associated with the gligg_experiment, because that is the source of the
estimate 8. Thus, if b = Atg/At equals the ratio of counting times ["pure
blank"/(signal + blank)], the RSD of B is given by 1//bBE. The requisite
number of counts bB is still (z/0.21)2, but B itself is reduced to
(21-y/0.21)2/b [b 3_1]. 1f, for example, the blank is measured twice as long
as the sample, the "1g' (z=1) limit for approximation (I) is B > 11.3 counts
(expected).

For Case (II), we require that,

Sp/2Sg < 1.10
that is,
(22 + 2z V/Bn)/(2z VBn) < 1.10
this reduces to (for 29.4 = z1-g = 1.645)
B > (52)2/n = (5 + 1.645)2/n = 67.6/n counts

Taking the usual limits for n, we have

B > 67.6 counts (n=1, "well-known" blank)

B > 33.8 counts (n=2, "paired comparison")

Since n = 1 + 1/b, this second approximation (II) is the more stringent.

C. LLD for Specific Types of Counting

1. Extreme Low-Level :ounting

when fewer than ~70 background or baseline counts (B) are observed, the

"simple" counting formula for Sp must have added the term z2 = 2.71 (for
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a=8=0.05) to account for minor deviations of the Poisson distribution from

Normality. [Ref. 5.] (Obviously, this term may be retained for B > 70, but

its contribution is then relatively minor.)

When the mean (expected) number of background counts is fewer than about
5, such as may occur in low-level a-counting, further caution is necessary
because of the rather large deviations from Normality. This issue has been
treated in some detail in Ref's 19 and 75. The extreme case occurs, of
course, when B=0 where the asymptotic formula (Sp = 3.29 /B) would give a
detection limit (counts) of zero, and the intermediate formula, 2.71. In
fact, as will be shown below, the true detection limit (a=8=0.05), in the
case of negligible background, is 3.00 counts. Though the intermediate
formula is not so bad in this case (within -10% for Sp), the accuracy for S¢
and Sp fluctuates as B increases from zero to ~5 counts; but above this point
(B=5 counts) the deviations are generally within 10% relative. (Note that
the symbol B refers to the true or expected value of the blank; B refers to
an experimental estimate,)

For accurate setting of critical levels (for detection decisions) and
detection limits, when B < 5 counts, we therefore recommend using the exact
Poisson distribution. In the following text we shall use the development
given in Ref. 19 and make explicit use of Fig. 1 from that reference -- which
appears here as Fig. 7. Before fully discussing the use of this figure,
let us make some critical cobservations:

[¢] The mean number of background counts is assumed known. Such an assump-
tion is both reasonable and necessary. It is reasonable in that, even
for the lowest level counting arrangements, long-term background measure-
ments should be made yielding, say, at least 100 counts. (An RSD »f 10%

is trivial in the present context.) The assumption is more or less
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Figure 7a. Reduced Activity (p) vs Mean Background Counts (up) and Observed
Gross Counts (n). Each of the solid curves represents the upper
limits for p vs ug, given n. The envelope of the curves,
connected by a dotted line, represents the detection limit (pp)
and critical counts (n,) as a function of ug. (a = B8 = 0.05)

7b. Reduced activity curves. Coatour plots are presented for reduced
activity (S/B = p) versus background counts (B) and counting
preciaion (8). Part (a) includes Poisson errors only; part (b)
incorporates additional random error (0.50% for counting
efficiency, 1.0% for background variability).
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~1.3. If the background rate is, e.g., 3 counts/hour, this means a 26

min measurement is necessary (assuming the mean background rate to be
reasonably well known).

A further use for Fig. 7 is the setting of the upper limits when y <

yc. That is, the sequence of curves below the detection limit envelope,
which have integers less “han yc, represent all possible outcomes when
activity is not detected. For example, if B (expected value) = 1.0
count, yc = 3 (so Sg = 2.0) and the normalized detection limit is 6.75

« BEA. 1If an experimental result were y = 1 count, the second curve
below (labeled "1") intersects with B = 1,0 and the ordinate at the (5%)
upper limit of 3.74 - BEA.

Table 7 is offered as an alternative to Fig. 7. Again, the mean
background rate is assumed well-known, and a < 0.05 while 8 = 0.05. For
the case earlier discussed (B = 1.3 counts), we see that the net critical
number of counts is 1.7 [i.e., 3 - 1.3] where yc is necessarily an integer;
and the detection limit is 7.75 - 1.30 = 6.45 counts, which is indeed

~ 5 « BEA. (Though 8 = 0.050, for this particular case it can be shown
that a = 0.043.) The intermediate formula would have given 1.88 counts
(1.645 /B) for Sc and 6.46 counts for Sp -- results that are fortuitously
close to the correct values. (The fortuitousness becomes clear when one

calculates S¢ and Sp for B - 2.0, for example.)
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Table 7. Critical Level and Detection Limits for Extreme Low-Level
Counting (Assumes B, known)

Background Counts Gross Counts
B - Range = + B yp = Sp + B
nteger

0 - 0.051 0 3.00
0.052 - 0.35 1 4,74
0.36 - 0.81 2 6.30
0.82 = 1.36 3 T.75
1.37 = 1.96 4 9.15
1.97 - 2.60 5 10.51
2.61 - 3.28 6 11.84
3.29 = 3.97 7 13.15
3.98 - 4.69 8 14,43
4,70 - 5.42 9 15.7

2. Reductions of the General Equations.

For direct application of Eq's (1) and (2) we take the
following parameter values,
f =1,10 (10% YEV - "calibration" systematic error bound)
Z1-q = 21-g = 1.645 (5% false positive and negative risks)
A.AK.AI.‘KBKo‘IBI-0.0581(*0.01BI
where: Ay, Ay represent systematic error bounds (counts) from the blank
and interference (e.g., non-blank component of a baseline),
respectively.
‘K.I denste relative systematic error bounds of the Blank (counts,
Bg) and of the Interference (Bp). 5% and 1% values are taken as

reasonable for routine measurement, but these may be replaced by

laboratory-specific values (‘) which have demonstrated validity.

]Note that the Blank and Baseline (non-blank portion) are properly treated
apart (a) because the Blank may contribute directly to a peak (a, Y-ray) due
to contamination by the very nuclide sought, and (b) because of difference
in both the origins of their systematic errors, and their (external)
variability.
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[Symbols without subscripts will denote summation, e.g.,

AB = IA;By = ||aB]|].
Thus, Eq. (1) takes the form,

1.1 (2 S¢)

LLD = Xp (10)

2.22 (YEV)T

(101 )3-2900
2.22 (YEV)T

LLD = 0.11 (BEA)g + 0.022 (BEA)p + (11)

and
Sc = 0.05 Bg + 0.01 By *+ 1.645 o4 (12)
where: BEA = Blank (or Interference) Equivalent Activity
i.e., BEA = B/[2.22 (YEV)T] = B/A (13)
From the above equations it is clear also that the critical level,

expressed in the same units as LLD, is just LLD/2.2. Use of this is equiva-

lent to applying Sg to test net counts for significance; and the form of data
output available may make it (LLD/2.2) more convenient to use than Sg. In the

absence of systematic calibration error, of course, this equals LLD/2.

3. Derivation and Application of Expressions for o, -- The Poisson Standard
Deviation of the Estimated Net Signal, Under the Null Hypothesis [Blank]'

A. "Simple" counting (gross signal minus blank)

i) Derivation
When two (sets of) observations (yj,yp) are made, one of the sample and
one of the pure Blank (or Interference), we have

y1 =S+ B + ey (counts) [observed] (14)

'In the following text, A ‘. and B will be used without subscripts, in order
to simplify the presentation. The context will indicate whether the Blank
(Bk) or interference (Bp) predominates. As noted elsewhere, if the number
of background (or interference) counts exceeds ~70, the normal approximation
of (Poisson statistics) is adequate, and the relative uncertainty in
estimating oy (or op) will be less than 6%.
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i1) Two Special Cases

(1] Gross Signal - blank

[RANDOM PART]

If the sample is measured for time ty, yielding yq counts; and the blank

for time tp, yielding yp counts, then

1 ti1+t2
b = ty/ty and n = 1 =

b ta

§ = y2.'b
and § = ¥ = yall o= ¥y > ¥ (t1/t5)
(Note that if ty > tq, then the limits for n are obviously, 1 and 2.)

This is to be compared with the critical number of counts S¢,

ti+to
Sc = 1.645 oy where oo = vBn = VB -:r-—-

2
If S < 5S¢, we conclude ND; otherwise D
Sp = 2.71 + 3.29 o4 (21)
and,
xp = LLD = 25p/[(YEVT)(2.22)] (22)
or, using Eq. (11) directly [last term divided by 1.1]
3 t1+to
3.29 op 3.29 |B
t2
XD' =
(2.22)(YEVT) 2.22(YEVT)

where the first approximation comes from dropping the term 2.71 in the
numerator, and the second approximation comes from using § for the unobser-
yable true value [B9]. (Both approximations are adequate so long as B > 70

counts, and tp > ty.)
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(K) 3.62 ty+t2
Beq, = {==—) n = 1082.n = 1082 { ===} counts (25)
: 0.1 t2

Again, for long-lived radionuclides, (ty << ty,2), T = ty, and since B =

Rgn
Xp = |0.11 Rp + 3.62 [ ==w=== f [2,22(YEV) (26)
©

The asymptotic constant value for xp is determined therefore by the Blank

RBt1l

rate, as indicated in the first term.
For tq > ty,2, T » e"Ata/) = constant; so, from equation (24)
xp = const (Rgty) + const"jEEET (27)
thus, xp asymptotically increases with ti.
As stated elsewhere, the use of systematic error bounds converts the

statistical risks into inequalities: a £ 0.05, B £ 0.05.

(REPLICATION]
Let us suppose that 11-observations were made of the Blank; all for the
same time, ty. (Otherwise, the simple replication model is invalid.) Then,

following the common estimation procedure,
) X a g x(ii-n)z
S=y) -8, where B = I By/n, sSpg = 0p° = e
1 n-1
and
SE(B) = s//m (28)
35 % Lyy + sgn)i /2
Now, in place of zog, we use tsg, SO zog * t sB/ﬂT where now n = (n+1)/n
because tp, has been replaced with ? t1 = n+ty.

In the absence of systematic error, the critical number of counts is

given by
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Sc = 0.01 By + 1.645 og

= 0.01 By + 1.645 /Bin (237)
and,
(1.1)(3.29) 04
Xp = 0.022 (BEA)p + g 124*)

0.022 By + 3.62 /By 7

2.22(YEVT)

where n = (ny + np)/np
The point at which the systematic baseline error term dominates the

expression for xp is,

1 3.62\ 2
Beq = n = (2.70 x 104)n counts (25")
0.022

B. Mutual Interference (2 components)

i) Zero degrees of freedom - 2 observations

In both the evaluation of decay curves and simple spectroscopy, one often
encounters the situation where there is "mutual interference" -- i.e., where
radiations from two components contribute to each of the observations taken,
or to each of the two classes of observations. If the relative contributions
differ, the two components may be resolvable (depending upon statisties).
[For the following discussion, refer to Fig. 9 for simple decay curve

resolution, and Fig. 10 for simple spectrum peak analysis.]
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Here the signal dominates in region-1 (time or energy) and the blank, in

region-2.
Thus,
¥p ok H 2N +tHh ¥ (38)
nq
y2=L yi =asSy +bB +e (39)
ng

For the decay curve, the parameters a and b are uniquely determined by
the ty,2's (or A's) of the 2 components, the spacing (time) of the two
observations, and the measurement intervals ty and t2.1. [If A» = 0, then
the 2nd component is equivalent to a blank and/or long-lived interfering
nuclide.] For the spectrum peak, nq and np represent the respective numbers
of channels as before; and the np's are symmetrically placed about the peak
region (symmetric with respect to the mid-nq-channel) for a baseline model
which is linear or flat. The same formalism applies also for the case of two
overlapping spectra (provided the blank is negligible or corrected), such as
yY-ray doublets. (It should not be overlooked that, for the Y-peak, the
effective detection efficiency [E] here depends upon the algorithm -- i.e.,
the locations, widths and separations of regions =1 and -2.)

Simply to solve these equations, we must assume that a and'B -- i.e., the
decay curve or spectrum shapes =-- are known. When B (component-2) is a
linear baseline or a constant blank or interference (decay curve), b is
dictated by the model, then a < b, and

decay curve: b = tz/t,

spectrum: b = np/my

- ————

1Thus.g (and b, if Ap # 0) subsumes the parameter T in Eq. (11) [Good
approximation if ty is set at the midpoint of the first interval (t4)].
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[RANDOM PART]

The solutions (Poisson statistics part) follow:

: byi-y2 : 2 b \2 -\ xih
= an 0 = — y + — y
: b=-a 51 b-a ! b-a =

and, replacing Sq by zero,

. b ¥ L¥ bBy = B (41)
0n = f=—]By + {— s = Byn {
e T L b-a ' \

b(b+1)
where n = =—————

(b-a)?
[When a » 0, as in "simple counting", we get the previous result, that n =
(b+1)/b]
As before,
S5¢ = 21-q00 = 1.645 JBin (17*)

However, the minimum detectable S; - counts takes the form,

Sp = z%u + 25¢ = (2.71) u + 3.29 /Byn (20*)
be+a
where o emme—— ]
(b-a)2

Some generalizations follow:

(a) If a=b, both S¢ and Sp diverge (Sp more rapidly)

(b) The term z2y which comes about because of Poisson counting statistics
has greater influence than the term z2 which we find in "simple counting".

(e) In fact the previous approximation Sp = 2S¢ is poorer, especially
when a approaches b,

Sp/Sc = 2 * (Z/v’é:)

(b2+a)/vb(b+T) i
where K = = u/vn
(b=a)
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Asymptetic forms for «:

@ when b» 1 and b » a (e.g., np » n1, or tp » tq or for barely

b
overlapping peaks), « » = (;:——) =1 {also, wand n = 1]
-a

(1+a)/v 2
(1-a)

® when b = 1 (e.g., for blank or linear baseline), « »

For the first asymptote, Sp = 2S¢ (within 10%) when B > 68 counts, as
before ("simple" counting). For the second asymptote, « ranges from 0.707
[a=0] to = [a=1]. Taking for example, a=1/2 [x = 2.12], we find that Sp =
2S¢ once B > 304 counts. Thus, the extra Poisson term (zzu) cannot be so
readily ignored as in the case of "simple" counting.

Once again, xp = SD/P.ZZ (YEVT)] where T will already have been included
in the coefficients a and b for the decay curve example, and E will be
int'luenced by the normalization of the coefficients for the spectrum peak
example. (Here, E=E,, the total efficiency corresponding to the fraction of
the peak contained in region=1.)

That is, for the decay-curve mutual interference example, xp =
Rg/[(YEV)(Z.Zz)] because Rg (initial counting rate of the 'signal'

radionuclide) depends on the equations including T:

o o
Y1 = Rg Tg1 * Rg Tpy *+ €4 (42)
0 0
y2 = Rg Tg2 *+ Rg Tgz + €2 (43)
where
R BT G b
A3
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[SYSTEMATIC PART]

Let us next consider bounds for systematic error in B. At this point, a
new problem presents itself: should we assume that the relative uncertainty
bg applies te By in yq, or to Bp = bB, in yp, or both? In fact, the
question as posed is inappropriate. The systematic error in fitting is due
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