U.S. NUCLEAR REGULATORY COMMISSION #### REGION III Licensee: Commonwealth Edison Company Post Office Box 767 Chicago, Illinois 60690 Facility Name: Braidwood Station Examination Administered At: Production Training Center Examination Conducted: May 21-25, 1984 Examiners: R. L. Higgins 7/11/84 Date Tm Burdish 7/11/84 Date Roger S. Walker for 7/1)/44 Date Approved By: Rose S. Wilher for J. I. McMillen, Chief Operator Licensing Section 7/11/44 Date #### Examination Summary Examinations Administered during the week of May 21-25, 1984 Written, oral, and simulator examinations were administered to nine instructor certification candidates. Results: Four candidates passed, five candidates failed. #### REPORT DETAILS ### Personnel Examined K. G. Bartes J. E. Browning D. E. Cooper G. L. Gruhn T. D. Irel ad M. G. Olson T. E. Petelle D. G. Selph J. Skoryi, Jr. #### 2. Examiners *R. L. Higgins T. M. Burdick F. S. Jaggar *Chief Examiner #### 3. Examination Review Meeting At the conclusion of the written examination the chief examiner met with Messrs. L. Kline, T. Chasensky, and K. Gerling of the Braidwood Simulator Training Staff to review the written examination and answer key. One facility comment was made concerning the questions. A facility representative felt that question 6.5 (a one point question concerning moisture separator reheaters) and question 6.6 (a one and one half point question concerning moisture separator shell drain tanks) together covered the same topic thus placing undue importance on this one topic. The facility's contention was rejected for two reasons. First, the total point value of the two questions combined is only two and one half points, only ten percent of the section. Examiner standards permit as much as 20 percent of a section to be devoted to a single topic. In addition, the questions did not address the same topic. Question 6.5 concerned the steam system, while question 6.6 concerned the heater drain system. Facility comments about the answers, as well as the disposition of the facility's comments, are summarized in the following paragraphs. a. In the answer for question 5.2, the facility requested that fuel densification and crud buildup also be accepted as correct responses. Both phenomena do in fact impede heat transfer from the fuel rods into the coolant, thus causing average fuel temperature to increase as fuel burnup increases. Therefore the facility's request was granted and the answer key expanded to include fuel densification and crud buildup as correct responses. - b. In the answer for question 5.3, the facility requested that the responses "allows loading of additional excess reactivity" and "minimizes the required number of control rods" be accepted as correct responses. Burnable poison rods offset some of the excess reactivity loaded into the core initially, so the first response was accepted. Burnable poison rods also increase the shutdown margin of the reactor, thereby reducing the number of control rods required to maintain the reactor shutdown, so the second response was also accepted. The answer key was expanded to reflect these additions. - c. In the answer for question 5.4.b, the facility requested that Pu-Be be deleted as a required response, since it is not going to be used at Braidwood, though originally it had been planned to be used. The latest references were checked to verify the facility's request, and Pu-Be will not be used at Braidwood. The facility's request was granted and the answer was changed to no longer require Pu-Be in order to get full credit. - d. In the answer for question 5.7, the facility requested that the equation Q = UALT be used to solve for Tave. The relationship was in fact used to generate the answer, so the facility's requested was granted. - e. In the answer for question 5.9.c, the facility requested that samarium not be needed in order for full credit to be awarded. BOS 1.1.1.e-1, Byron Operating Surveillance, was given as a reference. Since the samarium contribution is small and is ignored by other facilities when calculating the shutdown margin, the facility's request was granted. Samarium was not necessary for full credit. - f. In the answer for question 5.10.a, the facility requested that the phrase "at height Z" be required for fully credit. Because the references the examiner used did not specify "at height Z", the facility's request was denied. The answer was not changed. - g. In the answer for question 5.12 b, the facility requested that the response of "radial xenon oscillation" be counted as a correct response. Since a radial xenon oscillation would cause power to shift from one side of the core to the other, adversely affecting the Quadrant Power Tilt Ratio, the answer was modified to include "radial xenon oscillation" as a correct response. - h. In the answer for question 6.4, the facility wanted the response "high auctioneered Tave" to be considered optional, since the input for this parameter is multiplied by zero. Since multiplying Tave by zero effectively eliminates it as an input in the Rod Insertion Limit calculation, the facility's request was granted. The answer was modified to no longer require Tave in order to be awarded full credit. - i. In the answer for question 6.10, the facility requested that full credit be given for the response "381A and B modulate opposite of each other - as one throttles shut, the other throttles open." Since these valves modulate in order to control the temperature exiting the letdown reheat heat exchanger, the facility's request was granted. The answer was expanded to grant full credit if an examinee stated that 381A and B are throttled. - j. In the answer for question 6.12.b, the facility requested that the answer be modified to require the examinee to include the relief valve in the return line set to relieve at 2485 psig in order to receive full credit. Since the intent of the question was to determine the strengthened design of the thermal barrier return line, the relief valve was not considered to be a required response. The facility's request was denied. - k. In the answer for question 6.14, the facility requested that the answer be modified to include the Centrifugal Charging starting at 10 seconds and the Control Room Refrigeration Unit starting at 25 seconds. The reference, BCA 2, page 6, was checked to verify the facility's request, and the answer was changed. In addition, the examiner decided that the response "4160V/480V transformer" was trivial and therefore was not required for full credit. The answer as revised is: | Centrifugal Charging Pump 10 sec. | (0.4) | |---|-------| | Control Room Refrigeration Unit 25 sec. | (0.4) | | Component Cooling Pumps 30 sec. | (0.4) | | Essential Service Water Pumps 35 sec. | (0.4) | | Auxiliary Feedwater Pump 45 sec. | (0.4) | Ref: Training Manual 9-31; BCA 2, p. 6 - In the answer for question 7.8, the facility requested that the response "prevent crud from entering the RCP seals" be given full credit. The facility's request met the intent of the question, so the request was granted. - m. In the answer for question 8.7, the facility requested that the answer be modified so that full credit be given to examinees who did not specifically mention "telephone voice communications system" or "State and local authorities." This request was granted, since other organizations share this communications link with State and local authorities. The examiner agreed that the fact that the communications link was a telephone was not a necessary part of the answer. - n. In the answer for question 8.14, the facility requested that the response "changes which would result in operation outside of the assumptions of FSAR accident analysis" be awarded full credit. Since this statement is a paraphrase of the answer, the request was granted. - o. In the answer for question 8.15, the facility requested that the response "maximum allowed by ASME code" be granted full credit. Since the ASME allowance is only 400 cc per hour, which is very nearly 0 gpm, the facility's request was granted. p. In the answer for question 8.16.a, the facility requested that the response "250°F", as well as the response "380°F", both be counted as correct since the plant reference material contradicts itself. The references - BGP 100-5 Rev. 1, page 13, step 41, and Tech Spec 3/4 4-35 - were checked and verified so the facility's request was granted. ### 4. Exit Meeting At the conclusion of the visit to the Production Training Center the chief examiner, Mr. R. L. Higgins, and one of the examiners, Mr. F. S. Jaggar, met with Mr. Louis Kline, the Braidwood Simulator Manager, and with Messrs. Tom Chasensky and Ken Gerling, Braidwood Simulator Instructors. This meeting was held to discuss the known results of the examination as well as other observations noted by the examiners during the examination. The facility was informed that seven examinees definitely passed the simulator/oral portion of the examination, while two examinees were considered marginal. The other observations made by the examiners are listed in following paragraphs. - a. The Production Training Center personnel were complimented for the cooperation shown to the examiners during the course of the examinations. - b. The Simulator operator, Mr. Gerling, was complimented on the expeditious response to requests made during the simulatory examinations. This greatly reduced the amount of time required to conduct the examinations. - c. Some of the initial conditions used by the Braidwood Simulator were not compatible with steps in the Braidwood procedures. This problem manifested itself when the examinees discovered during one of the scenarios that plant components were not in the status required by the procedure. This fact caused much confusion for the examinees and made one of the examinees extremely upset, no doubt contributing to his marginal performance. The facility representatives
were told to revise the Braidwood Simulator's initial conditions to accurately match steps in the procedures before any more NRC simulator examinations are administered at the Braidwood simulator. - d. It was discovered during the examination that a conflict existed between the Byron Tech Specs and the Byron Startup Procedures. Tech Specs 3.5.3 requires that a maximum of one centrifugal charging pump shall be operable whenever the temperature of one or more of the Reactor Coolant System (RCS) cold legs is less than or equal to 350°F. Procedure BGP 100-1 Revision 3 step 37 contains a caution statement requiring that two centrifugal charging pumps be operable prior to exceeding an RCS temperature of 250°F. The conflict between Tech Specs and procedures resulted in one of the examinees refusing to comply with the simulator operator's order to continue the startup. The examinee, when again ordered to follow the procedure, demanded to be relieved. At this time the examiners intervened to acknowledge the examinee's concern but told him to continue the startup in order to expedite the exam. The simulator operator was told by the examiners not to require the examinees to violate Tech Specs or procedures during an NRC exam. If the examiners want the examinees to do so in order to expedite the examination, the examiners will personally make this known to the examinee. Though the simulator has no control over the procedures or Tech Specs which are provided by the plant, the conflict between the two documents is a serious one and should be resolved as soon as possible. - e. Several labels and meters were discovered to be inaccurate during the examination, and inappropriate chart paper was used in several recorders. The specific meters, charts, and labels were shown to the facility personnel at the conclusion of the exit meeting. The facility will correct the meters and labels, but since the proper chart paper is in short supply and the Byron and Braidwood plants are given priority over the simulator, the facility personnel made no commitment to use appropriate chart paper for the foreseeable future. - f. It was pointed out by the examiners that an open steam generator PORV would be extremely difficult to notice. One simulator scenario contained a failed open steam generator PORV; it took an extremely long time for the examinees to notice the failure. It was also pointed out that no indication for steam generator safety valves existed in the control room. - g. During the conduct of the exams anyone walking through the hall adjacent to the Braidwood simulator could view the simulator examinations being conducted. The examiners therefore recommended that venetian blinds be installed on the windows between the hall and the simulator so that future NRC exams could be conducted in privacy. - h. The procedures used at the simulator had pages falling out of them, and no ruler was available to aid in reading graphs. - i. The steam generator tube rupture emergency conducted during one of the scenarios seemed unrealistic because level in the ruptured steam generator kept dropping even though there was a 350 gallons per minuta leak into the generator from the RCS. The facility promised to reevaluate the steam generator tube rupture scenario to ensure that the simulator provides a realistic simulation. #### Generic Weaknesses The only generic weakness noted during the simulator/oral portion of the examination was the unfamiliarity which most of the examinees evidenced when operating the simulator in cold shutdown conditions. This may have been due in part to the incompatibility between the initial conditions used for cold shutdown and the steps in the procedures. The following generic weaknesses were exhibited on the written examination: - Calculation of OTAT - b. Determination of Shutdown Margin - C. - Definition of F_O(Z) Automatic actions associated with Radiation Monitors d. - Fire Protection Deluge System e. - f. Automatic closure feature of Breaker 1592 - Effect of a low level in the Moisture Separator Drain Tank g. - Interlocks between the Letdown Orifice Isolation Valves and the h. Letdown Line Control Valves - i. RHR Hot Leg Suction Valve interlocks - CCW Pump trip on low CCW expansion tank level - CCW Thermal Barrier Heat Exchanger Piping Design k. - Emergency backup method of tripping the Turbine from the Control Room 1. - Basis for placing the turbine driven Main Feed Pumps on the turning m. gear when filling and venting the Condensate System - n. Verification of the deenerization of an ESF DC bus - Purpose of the OSC 0. - Recovery Group and the near-site EOF D. - Symbols used on the procedure flow charts q. - Verification of System Lineups r. - Definition of "change in intent" when applied to a Temporary S. Procedure - Allowable leakage through a Pressurizer Safety Valve t. - Methods for providing Low Temperature Overpressure Protection for u. the RCS Master #### U.S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION FACILITY: REACTOR TYPE: DATE ADMINISTERED: May 21, 1984 EXAMINER: APPLICANT: Braidwood Simulator Westinghouse PWR R. L. Higgins #### INSTRUCTIONS TO APPLICANT: Use separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. | Category
Value | % Of
Total | Applicant's
Score | % Of
Category
Value | | Category | |-------------------|---------------|----------------------|---------------------------|------|---| | 25 | 25 | | | 5. | Theory of Nuclear Power Plant
Operation, Fluids, and
Thermodynamics | | 25 | | <i>j</i> ==- | | 6. | Plant Systems Design, Control, and Instrumentation | | 25 | 25 | | _ | 7. | Procedures - Normal, Abnormal,
Emergency, and Radiological
Control | | 25 | | | - | 8. | Administrative Procedures,
Conditions, and Limitations | | 100 | 100 | | | тот | TALS | | | | | Final Gra | de _ | * | All work done on this exam is my own, I have neither given nor received aid. | Applicant | 's | Signature | |-----------|----|-----------| | 5.1 | With the plant at 100% power, normal pressure and flux distribution, how much of an increase in RCS average temperature from the 100% power reference temperature value would cause an OTAT trip? Assume plant power remains at 100%. Show your work! | (2.0) | |------|---|-------| | | What phenomenon causes the average fuel temperature at 100% power to increase as fuel burnup increases? | (1.0) | | 5.3 | Give two reasons for the use of burnable poison rods. | (1.0) | | 5.4 | a. What element is used as the absorber material in the
control rod? | (0.5) | | | Explain how each type of primary neutron source produces
neutrons. | (1.5) | | 5.5 | Explain why the moderator temperature coefficient is more negative when control banks C and D are inserted than it is when control bank D alone is inserted. Refer to Figure 5.5-1. | (2.0) | | 5.6 | What limitation is imposed by regulation to ensure that a zirconium-water reaction will not take place? | (1.0) | | 5.7 | With reactor power remaining constant at 50% power, what value of Tave would cause the steam generator safety valve with the lowest lift setting to open? Assume that the normal steam generator pressure at 50% power is 1030 psig. Show your work! | (2.0) | | 5.8 | The initial RT _{NDT} of the reactor vessel is 40°F. After 32 EFPY the RT _{NDT} will rise to 121°F at 1/4 T and 94°F at 3/4 T. | | | | a. Define RT _{NDT} . | (1.0) | | | b. Why will the RT pp be higher at 1/4 T than it is at 3/4 T after 32 EFPY? | (2.0) | | 5.9 | a. Why must the required shutdown margin be greater in
modes 1, 2, 3, and 4 than it is in mode 5? | (1.0) | | | b. How is shutdown margin determined in mode 1? | (1.0) | | | c. How is shutdown margin determined in mode 3? | (1.0) | | | d. What action must be taken if the shutdown margin is
determined to be inadequate? | (1.0) | | 5.10 | a. What is F _Q (Z)? | (1.0) | | | b. Why must $F_Q(Z)$ be modified by $K(Z)$? | (1.5) | | 5.11 | Why must the injection of accumulator nitrogen into the RCS be prevented? | (1.0) | ## Sheet of Information ΟΤΔΤ $\Delta T = \Delta T_0 \{ K_1 - K_2 (T - T^1) + K_3 (P - P^1) - f_1 (\Delta I) \}$ ΔT_1 = Indicated ΔT at rated power $K_1 = 1.072$ K₂ = .0265 per °F T = average temperature $T^1 = 587.7$ (Nominal Tave at rated thermal power) $K_3 = .00134 \text{ per psi}$ P = Pressurizer pressure, psig $P^1 = 2235$ psig (Nominal RCS operating pressure) | | Abs Press | | rable 1 | | ited Steam | Enthalp | | - DOIE | Entropy | | | |---|---|--|---|--|--|--|--|--|--|--|--| | Temp
fahr
1 | Lb per
Sq in.
P | Sat
Liquid | Evap | Sat.
Vapor | Sat.
Liquid | Evap | Sat.
Vapor | Sat.
Liquid | Evap | Sat.
Vapor | Temp
Fahr
t | | 37.3°
34.0
36.0 | 0 08859
0 09600
0 10395**
0 11249 | 0 016027
0 016021
0 016020
0 016019 | 3304 7
3061
9
-2839 0
2634 1 | 3304 7
3061 9
2839 0
2634 2 | -00179
1996
4008
6018 | 1075 5
1074 4
1073 2
1072 1 | 1075.5
1076.4
1077.2
1078.1 | 0.0000
0.0041
0.0081
0.0122 | 2 1873
2 1762
2 1651
2 1541 | 2.1873
2.1802
2.1732
2.1663 | 37.8 | | 41 | 0 12163
0 13143
0 14192
0 15314
0 16514 | 0 016019
0 016019
0 016019
0 016020
0 016021 | 2445 8
22772 4
2112 8
1965 7
1830 0 | 2445 8
2272 4
2112 8
1965 7
1830 0 | 8 027
10 035
12 041
14 047
16 051 | 1071.0
1069.8
1068.7
1067.6
1066.4 | 1079 0
1079 9
1080 7
1081 6
1082 5 | 0 0162
0 0202
0 0242
0 0282
0 0321 | 2 1432
2 1325
2 1217
2 1111
2 1006 | 2 1594
2 1527
2 1459
2 1393
2 1327 | #1
#1
#1
#1 | | 50 0
52 0
54 0
56 0
58 0 | 0 17796
0 19165
0 20625
0 22183
0 23843 | 0 016023
0 016024
0 016026
0 016028
0 016031 | 1704 8
1589 2
1482 4
1383 6
1292 2 | 1704 8
1589 2
1482 4
1383 6
1292 2 | 18 054
20 057
22 058
24 059
26 060 | 1065.3
1064.2
1063.1
3061.9
1060.8 | 1083 4
1084 2
1085 1
1086 0
1085 9 | 0 0361
0 0400
0 0439
0 0478
0 0516 | 2 0901
2 0798
2 0695
2 0593
2 0491 | 2 1262
2 1197
2 1134
2 1070
2 1008 | 50 0
52 0
54 0
56 0
56 0 | | 62 0
62 0
64 0
64 0 | 0 25611
0 27494
6 29497
0 31676
0 33889 | 0 016033
0 016036
0 016039
0 016043
0 016046 | 1207 6
1129 2
10% 5
989 0
926 5 | 1207.6
1129.2
2056.5
989.1
926.5 | 28 060
30 059
32 058
34 056
36 054 | 1059 7
1058 5
1057 4
1056 3
1055 2 | 1087 7
1088 6
1089 5
1090 4
1091 2 | 0 0555
0 0593
0 0632
0 0670
0 0708 | 2 0391
2 0291
2 0192
2 0094
1 9996 | 2 0946
2 0885
2 0824
2 0764
2 0704 | 41
- 41
- 41 | | 76 8
72 8
74 8
76 8
78 8 | 0 36792
0 38844
0 41550
0 44420
0 47461 | 0 016050
0 016054
0 016058
0 016063
0 016067 | 8683
8143
7641
7174
6738 | 368 4
814 3
764 1
717 4
673 9 | 38 052
40 049
42 046
44 043
46 040 | 1054 0
1052 9
1051 8
1050 7
1049 5 | 1092 1
1093 0
1093 8
1094 7
1095 6 | 0.0745
0.0783
0.0821
0.0858
0.0858 | 1 9900
1 9804
1 9708
1 9614
1 9520 | 2 0645
2 0587
2 0529
2 0472
2 0415 | 78 0
72 0
74 0
76 0
76 0 | | 80 8
82 8
84 9
86 0
86 0 | 0 50683
0 54093
0 57702
0 61518
0 65551 | 0 016077
0 016077
0 016087
0 016087
0 016093 | 633 3
595 5
560 3
227 5
496 8 | 633 3
595 5
560 3
527 5
496 8 | 48 037
50 033
52 029
54 026
56 022 | 1048 4
1047 3
1046 1
1045 0
1043 9 | 1096 4
1097 3
1098 2
1099 0
1099 9 | 0 0932
0 0969
0 1006
0 1043
0 1079 | 1 9426
1 9334
1 9242
1 9151
1 9060 | 2 0859
2 0303
2 0248
2 0193
2 0139 | 80 8
82 0
84 8
86 0
84 8 | | 90 0
97 0
94 8
95 0
88 0 | 0 69813
0 74313
0 79062
0 84072
0 89356 | 0 016099
0 016105
0 016111
0 016117
0 016123 | 468 1
441 3
416 3
392 8
370 9 | 4681
4413
4163
3929
8709 | 58 018
60 014
62 010
64 006
66 003 | 1042 7
1041 6
1040 5
1039 3
1038 2 | 1100 8
1101 6
1102 5
1103 3
1104 2 | 0 1115
0 1152
0 1188
0 1224
0 1260 | 1.8970
1.8701
1.8792
1.8794 | 2 0086
2 0033
1 9980
1 9928
1 9876 | 90 5
82 8
84 8
86 0
82 8 | | | | | | | | | | | | | | | 180 8
107 D
164 D
165 D
168 8 | 0 94924
1 00789
1 06965
1 1347
1 2030 | 0 016130
0 016137
0 016144
0 016151
0 016158 | 350 4
331 1
313 1
296 16
280 28 | 350 4
331 1
313 1
296 18
280 30 | 67 999
69 995
71 992
73 99
75 95 | 1037 1
1035 9
1034 8
1033 6
1032 5 | 1105 1
1105 9
1106 8
1107 6
1108 5 | 31295
01331
01366
01402 | 1 8358
1 8273 | 1 5275
1 9775
1 9725
1 9675 | 180 8
182 8
184 9
184 8 | | 110 8
112 0
114 8
116 0
118 0 | 1.2750
1.3505
1.4299
1.5133
1.6009 | 0 016165
0 016173
0 016180
0 016188
0 016196 | 265 37
251 37
238 21
225 84
214 20 | 265 39
251 38
238 72
225 85
214 21 | 77 98
79 98
81 97
83 97
85 97 | 1031 4
1030 2
1029 1
1027 9
1026 8 | 1109 3
1110 2
1111 0
1111 9
1112 7 | 01437
01472
01507
01542
01577
01611 | 18105
18021
17938
17856 | 1.9626
1.9577
1.9528
1.9480
1.9433
1.9386 | 118 8
112 8
114 8
116 8 | | 170 0
122 0
124 0
176 0
128 0 | 1 6927
1 7891
1 8901
1 9959
2 1068 | 0 016204
0 016213
0 016221
0 016229
0 016238 | 203 25
192 94
183 23
174 08
165 45 | 203 26
192 95
183 24
174 09
165 47 | 87 97
89 96
91 96
93 96
95 96 | 1025 6
1024 5
1023 3
1022 2
1021 0 | 11136
11144
11153
11161
11170 | 0 1646
0 1680
0 1715
0 1749
0 1783 | 17693
17613
17533
17453 | 19339
19293
19247
19202
19157 | 176 8
127 8
127 8
174 8
176 8
128 8 | | 130 0
137 0
134 0
134 0
130 0 | 2 2230
2 3445
2 4717
2 6047
2 7438 | 0 016247
0 016256
0 016265
0 016274
0 016284 | 157.32
149.64
142.40
135.55
129.09 | 157 33
149 66
142 41
135 57
129 11 | 97 96
99 95
101 95
103 95
105 95 | 1019 8
1018 7
1017 5
1016 4
1015 2 | 1117 8
1118 6
1119 5
1120 3
1121 1 | 0.1817
0.1851
0.1884
0.1918
0.1951 | 17295
17217
17140
17063 | 9112
9068
9024
8980
8937 | 138 8
132 8
134 8
136 8 | | 140 0
142 0
144 0
146 0
148 2 | 2 3892
3 0411
3 1997
3 3653
3 5361 | 0 016293
0 016303
0 016312
0 016322
0 016332 | 122 98
117 21
111 74
106 58
101 68 | 123 00
117 22
111 76
106 59
101 70 | 107 95
109 95
111 95
113 95
115 95 | 1014 0
1012 9
1011 7
1010 5
1009 3 | 1127 0
1127 8
1123 6
1124 5
1125 3 | 0 1985
0 2018
0 2051
0 2084 | 1 6910 1
1 6534 1
1 6759 1
1 6684 1 | #895
#852
#810
#769
#727 | 138 6
148 6
142 6
144 6
146 6
148 8 | | 150 8
157 8
154 6
156 0
158 0 | 3 7184
2 9065
4 1025
4 3068
4 5197 | 0 016343
0 016353
0 016363
0 016374
0 016384 | 97 05
92 65
88 50
84 56
80 82 | 97 07
92 68
88 52
84 57
80 83 | 117 95
119 95
121 95
123 95
125 96 | 1008 ?
1007 0
1005 8
1004 6
1003 4 | 1126 1
1126 9
1127 7
1128 6
1129 4 | 02150
02183
02716
02748 | 16536 1
16463 1
16390 1
16318 1 | 8686
8646
8606
8565
8526 | 150 8
152 9
154 6
154 0 | | 160 0
162 8
164 8
166 0
166 0 | 4 7414
4 9722
5.2124
5 4623
5.7223 | 0 016395
0 016406
0 016417
0 016428
0 016440 | 77 27
73 90
70 70
67 67
64 78 | 77 29
73 92
70 72
67 68
64 80 | 127 96
129 96
131 96
133 97
135 97 | 1007 2
1001 0
999 8
998 6
997 4 | 1130 2
1131 0
1131 8
1132 6
1133 4 | 0 2313
0 2345
0 2377
0 2409 | 16174 1
16103 1
16032 1
15961 1 | 8487
8448
8409
8371 | 1813 | | 170 0
177 0
174 0
176 0
178 0 | 5.9926
6.2736
6.5656
6.8690
7.1840 | 0016451
9016463
0016474
0016486
0016498 | 62 04
59 43
56 95
54 59
52 35 | 67 06
59 45
56 97
54 61
52 36 | 137 97
139 98
141 98
143 99
145 99 | 996 2
995 0
993 8
992 6 | 1134 2
1135 0
1135 8
1136 6
1137 4 | 0.2473
0.2505
0.2537 | 1 5827 1
1 5753 1
1 5684 1 | 8295
8298
8258
8271
8184 | 164 0
170 8
172 8
174 6
176 8 | The states shown are meta-states 100 Table 1. Saturated Steam: Temperature Table - Continued | Table 1. Saturated Steam: Temperature Table—Continued | | | | | | | | | | 1-1- | | |---|---|---|---|---|--|---|--|--|--|--|---| | Temp
fahr
1 | Abs Press
Lb per
Sq in | Sat
Liquid
Vi | Evap | Sat
Vapor
Ve | Sat
Liquid | Enthalpy
Evap | Sat Vapor | Sat
Liquid
St | Entropy
Evap
Stg | Sat
Vapor | Temp
Fahr
1 | | 100 5
167 8
-104 6
166 0
186 0 | 7.5110
7.850
8.703
8.568
8.947 | 0016510
0016572
0016534
0016547
9016559 | \$0.21
48.172
46.232
44.383
42.621 | 50.22
18.189
46.749
44.400
42.638 | 148 00
150 01
152 01
154 02
156 03 | 990 2
989 0
987 8
986 5
985 3 | 3138 2
1139 0
1139 8
1140 5
1141 3 | 0.2631
0.2752
0.2694
0.2725
0.2756 | 1.5480
1.5413
1.5346
1.5279
1.5213 | 1.8111
1.8075
1.8040
1.8004
1.7969 | 100 t
102 t
104 t
104 t | | 196 8 ⁻¹ ·
192 8
194 9
196 8
198 8 | 9.340
5.747
10.168
10.605
11.058 | 0.016577
0.016585
0.016598
0.016611
0.016624 | 40 941
39 337
37 808
36 348
34 954 | 40 957
39 354
37 824
36 364
34 970 | 158 04
160 05
162 05
164 06
166 08 | 984 1
982 8
981 6
980
4
979 1 | 1142 1
1142 9
1143 7
1144 4
1145 2 | 0.2787
0.2818
0.2848
0.2879
0.2910 | 1.5148
1.5082
1.5017
1.4952
1.4888 | 1.7934
1.7900
1.7865
1.7831
1.7798 | 190 0
182 0
184 5
196 0 | | 200 8
704 0
208 0
217 0
216 0 | 11 526
12 512
13 568
14 696
15 901 | 0 016637
0 016664
0 016691
0 016719
0 016747 | 33 672
31 135
28 867
26 782
24 878 | 33 639
31 151
28 878
26 799
24 894 | 368 09
172 11
176 14
180 17
184.20 | 977 9
975 4
972 8
970 3
967 8 | 1146 0
1147 5
1149 0
1150 5
1152 0 | 0.2940
0.3001
0.3061
0.3121
0.3181 | 1 4874
1 4697
1 4571
1 4447
1 4323 | 1 7764
1 7698
1 7632
1 7568
1 7505 | 200 0
204 9
208 0
212 0
216 0 | | 276 0
274 0
278 8
272 8
232 6
236 0 | 17 186
18 556
20 015
21 567
23 216 | 0 016775
-0 016805
0 016834
0 016864
0 016895 | 23 131
21 529
20 056
18 701
17 454 | 23 148
21 545
20 673
18 718
17 471 | 188.23
192.27
196.31
200.35
204.40 | 965 2
962 6
960 0
957 4
954 8 | 1153 4
1154 9
1156 3
1157 8
1159 2 | 0.3241
0.3300
0.3359
0.3417
0.3476 | 14201
14081
13961
13842
13725 | 1.7442
1.7380
1.7320
1.7260
1.7201 | 274 8
274 8
221 0
237 0
236 8 | | 248 8
244 0
242 0
252 8
256 8 | 24 968
26 826
28 796
30 883
33 091 | 0 016926
0 016958
0 016990
0 017022
0 017055 | 16 304
15 743
14 764
13 358
12 520 | 16 321
15 260
14 281
13 375
12 538 | 208 45
212 50
216 56
220 62
224 69 | 952 1
949 5
946 8
944 1
941 4 | 1160 6
1167 0
1163 A
1164 7
1166 1 | 03533
03591
03649
03706
03763 | 13609
13494
13379
13266
13154 | 1.7142
1.7085
1.7028
1.6972
1.6917 | 248 5 | | 260 0
264 0
268 5
272 0
276 0 | 35 427
37 894
40 500
43 249
46 147 | 0 017089
0 017123
0 017157
0 017193
0 017228 | 11 745
11 025
10 358
9 738
9 162 | 11 762
11 042
10 375
9 755
9 180 | 228 76
232 83
236 91
240 99
245 08 | 938 6
935 9
933 1
930 3
927 5 | 1167 4
1168 7
1170 0
1171 3
1372 5 | 0.3816
0.3876
0.3937
0.3987
0.4043 | 1.3043
1.2933
1.2823
1.2715
1.2607 | 16852
16808
16755
16702
16650 | 260 8
264 0
268 0
272 0
276 8 | | 280 8
284 6
288 0
292 8
296 8 | 49 200
52 414
55 795
59 350
63 084 | 0 017264
0 01730
0 01734
0 01738
0 01741 | 8 627
8 1280
7 6634
7 2301
6 8259 | 8 644
8 1453
7 6807
7 2475
6 8433 | 249 17
253 3
257 4
261 5
265 6 | 924 6
921 7
918 8
915 9
913 0 | 3173 8
1175 0
1176 2
1177 4
1178 6 | 0 4098
0 4154
0 4208
0 4263
0 4317 | 1.2501
1.2395
1.2290
1.2166
1.2082 | 16599
-16548
16498
16449
16400 | 760 0
204 0
205 0
257 0
251 0 | | | | | | | | | | | | | | | 304 8
304 8
308 8
312 8
316 9 | 67 005
71 119
75 433
79 953
84 688 | 0 01745
0 01749
0 01753
0 01757
0 01761 | 6 4483
6 0955
5 7655
5 4566
5 1673 | 6 4658
6 1130
5 7830
5 4742
5 1849 | 269 7
273 8
278 0
282 1
286 3 | 910 0
907 0
904 0
901 0
897 9 | 1179 7
1180 9
1182 0
1183 1
1184 1 | 04372
04426
04479
04533
04586 | 11979
11877
11776
11676
11576 | 1 6351
1 6303
1 6256
1 6209
1 6162 | 300 0
304 0
305 0
312 0
316 0 | | 370 0
374 0
370 0
332 0
336 3 | 89 643
94 826
100 245
105 907
111 820 | 0 01766
0 01770
0 01774
0 01779
0 01783 | 4 8961
4 6418
4 4030
4 1788
3 9681 | 4 9138
4 6595
4 4208
4 1966
3 9859 | 290 4
294 6
298 7
302 9
307.1 | 894 8
891 6
888 5
885 3
882 1 | 1185 2
1186 2
1187 2
1188 2
1189 1 | 0 4640
0 469?
0 4745
0 4798
0 4850 | 11477
11378
11280
11163
11086 | 16116
16071
16025
15981
15936 | 374 6
374 6
378 9
377 8
376 0 | | 348 6
344 8
348 0
357 8
354 8 | 117 992
124 430
131 142
138 138
145 424 | 0.01787
0.01792
0.01797
0.01801
0.01806 | 3 7699
3 5834
3 4078
3 2423
3 0863 | 37878
36013
34258
32603
31044 | 311 3
315 5
319 7
323 9
228 1 | 878 8
875 5
872 2
868 9
865 5 | 1190 1
1191 0
1191 1
1192 7
1193 6 | 0.4902
0.4954
0.5006
0.5058
0.5110 | 1 0990
1 0894
1 0799
1 0705
1 0611 | 15897
15849
15856
15763
15721 | 340 0
344 0
541 0
352 0
356 0 | | 360 8
364 8
364 0
372 8
376 8 | 153 010
160 903
169 113
177 648
185 517 | 0 01811
0 01816
0 01821
0 01826
0 01831 | 2 9392
2 8002
2 6691
2 5451
2 4279 | 2 9573
2 8184
2 6873
2 5633
2 4462 | 332 3
336 5
340 8
345 0
349 3 | 862 1
858 6
855 1
851 6
848 1 | 1195 2
1195 9 | 0 5161
0 5212
0 5263
0 5314
0 5365 | 1 0517
1 0424
1 0332
1 0240
1 0148 | 15678
15637
15595
15554
15513 | 360 0
364 0
368 0
372 0
376 0 | | 364 8
364 8
361 8
392 8
396 9 | 195 729
205 294
215 720
225 516
236 193 | 0.01836
0.01842
0.01847
0.01853
0.01858 | 2 3170
2 2120
2 1126
2 0184
1 9291 | 2 3353
2 2304
2 1311
2 0369
1 9477 | 353 6
357 9
362 2
366 5
370 8 | 844 5
840 8
837 2
833 4
829 7 | 1198 7
1199 3
1199 9 | 0 5416
0 5466
0 5516
0 5567
0 5617 | 1 6057
0 9966
0 9876
0 9786
0 9696 | 1 5473
1 5432
1 5392
1 5352
1 5313 | 300 5
384 0
381 0
357 0
366 0 | | 490 0
484 9
488 0
417 8
415 8 | 247 259
258 725
270 600
287 894
295 617 | 0 01864
0 01870
0 01875
0 01881
0 01867 | 1 8444
1 7640
1 6877
1 6152
1 5463 | 1 8630
1 7627
1 7064
1 6340
1 5651 | 375 1
379 4
383 8
386 1
392 5 | 825 9
822 0
818 2
814 2
810 2 | 1201 5
1201 9
1207 4 | 0 5667
0 5717
0 5766
0 5816
0 5866 | 0 9607
0 9518
0 9479
0 9341
0 9753 | 1 5274
1 5234
1 5195
1 5157
1 5118 | 400 0
464 8
407 0
412 0
416 0 | | 474 8
474 8
478 8
437 8
437 8 | 308 780
327 391
336 463
351 00
366 03 | 0 01894
0 01900
0 01905
0 01913
0 01919 | 1 4808
1 4184
1 3591
1 30766
1 24887 | 1 4997
1 4374
1 3782
1 37179
1 26806 | 396 9
401 3
405 7
410 1
414 6 | 806 2
802 2
798 0
793 9
789 7 | 1203 1
1203 5
1203 7
1204 0 | 0 5915
0 5964
0 6014
0 6063
0 6112 | 0 9165
0 9077
0 8990
0 8903
0 8816 | 1 5080
1 5042
1 5004
1 4966
1 4928 | 474 8
474 8
473 0
437 8
436 0 | | 441 1
441 1
452 8
456 8 | 38) 54
397 56
414 09
43) 14
448 73 | 0 01926
0 01933
0 01940
0 01947
0 01954 | 1.19761
1.14874
1.10212
1.05764
1.01518 | 1.21687
1.16806
1.12152
1.07711
1.83472 | 419 0
423 5
428 0
432 5
437 0 | 785 4
781 1
776 7
772 3
767 8 | 1204 6
1204 7
1204 8 | 0 6161
0 6210
0 6259
0 6308
0 6356 | 0 8729
0 8643
0 8557
0 8471
0 8385 | 1 4890
1 4853
1 4815
1 4778
1 474) | 440 0
444 0
445 0
452 0
454 0 | ... 40 The same of sa Table 1. Saturated Steam: Temperature Table - Continued | | Abs Press | Specific V | olume | | Enthalp | , | -Continue | Entropy | | |--|---|---|---|---|---|---|---|---|---| | Temp
fahr
t | Sq In | Sat
Liquid Evap | Vapor
Ve | Liquid | Evap
his | Sat
Vapor
he | Sat
Liquid
St | Eva. | Sat Temp
Vapor fahr | | 450 0
464 0
464 0
477 0
477 0 | 466 87
485 56
504 83
524 67
545 11 | 001961 097463
001969 093588
001976 08985
001984 086345
001992 0.82958 | 0.99424
0.95557
0.91862
0.88329
0.84950 | 441 5
446 1
450 7
455 2
459 9 | 763.2
754.0
749.3
744.5 | 1704 8
1204 7
1704 6
1204 5
1204 3 | 0 6405
0 6454
0 6502
0 6551 | 68299 1
08213 1
08127 1
08042 1 | 4704 464 t
4667 464 t
4679 464 t
4592 472 t
4555 476 t | | 484 1
484 1
482 1
482 1
482 1 | 566 15
587 81
610 10
633 03
656 61 | 0.02000 0.79716
0.02009 0.76613
0.02017 0.73641
0.02026 0.70794
0.02034 0.68065 | 0 81717
0 78622
0 75658
0 72820
0 70100 | 469 1
473 8
478 5
483 2 | 739 6
734 7
779 7
774 6
719 5 | -1204 1 —
1203 8
1203 5
1203 1
1202 7 | 0.6696
0.6745
0.6793 | 07785 1
07700 1
07614 1 | 4518 441 441 441 441 3
4444 451 3
4407 497 8
4370 486 8 | | 560 0
564 0
538 0
517 0
516.0 | 680 86
705 78
731 40
757 72
784 76 | 0 02043 | 0.57492
0.64991
0.62592
0.60289
0.58079 | 487.9
492.7
497.5
502.3
507.1 | 714.3
709.0
703.7
698.2
692.7 | 1202 2
1201 7
1201 1
1200 5
1195 8 | 0 6939
0 6987
0 7036 | 0 7357 1
0 7271 1
0 7185 1 | 4333 500 0
4296 504 0
4258 508 0
4271 512.0
4183
516.0 | | \$70 8
\$74 8
\$28 0
\$37 0
\$36 8 | 812 53
841 04
870 31
900 34
931 17 | 0 02091 0 53864
0 02102 0 51814
0 02112 0 49843
0 02123 0 47947
0 02134 0 46123 | 0 55956
5 53916
0 57955
0 50070
0 48257 | 512 0
516 9
521 8
526 8
531.7 | 687.0
681.3
675.5
669.6
663.6 | 1199 0
1198 ?
1197 3
1196 4
1195 4 | 0.7182
0.7231
0.7280 . | 0 6926 1
0 6839 1
0 6752 1 | 4146 878 8
4108 \$24 8
4070 \$78 8
4032 \$32.8
3993 \$36.8 | | 548 0
544 6
548 0
552 0
556 0 | 962 79
995 22
1028 49
1062 59
1097 55 | 002146 044367
002157 042677
002169 041048
002182 039479
002194 037966 | 0 46513
0 44834
0 43217
0 41660
0 40160 | 536 8
541 8
546 9
552 0
557 2 | 657.5
651.3
645.0
638.5
632.0 | 1194 3
1193 1
1191 9
1190 6
1189 2 | 0 7477
0 7476
0 7525 | 0 6489 1.
0 6400 1.
0 6311 1. | 3954 - \$48 8
3915 - \$44.8
3876 - \$48 8
3837 - \$52 6
3797 - \$56 8 | | 540 8
544 0
548 0
572 0
576 3 | 1133 38
1170 10
1207 72
1246 26
1285 74 | 002707 036507
002221 035099
002235 033741
002249 032429
002264 031162 | 0.38714
0.37320
0.35975
0.34678
0.33426 | 562 4
567 6
572 9
578 3
583 7 | 625.3
618.5
611.5
604.5
597.2 | 1187.7
1186.1
1184.5
1182.7
1180.9 | 0.7674
0.7725
0.7775 | 06041 1.
05950 1.
05859 1. | 3757 566 8
3716 564 8
3675 568 0
3634 572.8
3592 576.8 | | 500 0
504 0
508 0
507 0
506 0 | 1326 17
1367 7
1410 0
1453 3
1497 8 | 0 07279 0 29937
0 02295 0 28753
0 02311 0 27608
0 02328 0 26499
0 02345 0 25425 | 032216
031048
029919
028827
027770 | 589 1
594 6
600 1
605 7
611 4 | 589 9
582 4
574 7
566 8
558 8 | 1179 0
1176 9
1174 8
1172 6
1170 2 | 0 7927
0 7978
0 8030 | 05580 1
05485 1
05390 1 | 3550 Sec 8
3507 564 8
3464 548 8
3420 562 8
3375 566 8 | | 0 00 | 1543 2
1565 7
1637 3 | 0 02382 0 23374 | 0.26747
0.25757
0.24796 | 6171
6229
6288 | 5422 11 | 67 7
65 1 | 08134 05
08187 05 | 97 1.328 | 4 604.0 | | 112.0 | 1686 1
1735 9 | 0 07427 0 21447 0
0 07444 0 20516 | 0.23865
0.22960 | 634 F
640 B | 5247 11 | 62 4
59 5
56 4 | 0 8240 0 49
0 8294 0 41
0 8348 0 4 | 96 1.319 | 0 612.0 | | 70 0
74 0
28 0
37 0
36 0 | 1786 9
1839 0
1892 4
1947 0
2002 8 | 0 02514 0 17880 0
0 02539 0 17044 0 | 0.27081
0.21226
0.20394
0.19583
0.18792 | 646 9
653 1
659 5
665 9
672 4 | 496 6 11
486 7 11
476 4 11 | 53 2
49 8
46 1
42 2
38 1 | 0.8403 0.45
0.8458 0.45
0.8514 0.44
0.8571 0.43
0.8628 0.43 | 583 1304
174 1298
164 1293 | 1 674 8
8 628 0
4 637 8 | | 44 0
44 0
48 0
57 0
56 8 | 2059 9
2118 3
2178 1
2239 2
2301 7 | 007625 0.14644 0
002657 0.13876 0
002691 0.13124 0 | 018-21
017269
016534
015816
015115 | 679 1
685 9
692 9
700 0
707 4 | 4431 11
4311 11
4187 11 | 33 7
29 0
24 0
18 7
13 1 | 0 8686 0 4
0 8746 0 4
0 8806 0 3
0 8868 0 3
0 8931 0 3 | 015 1.276
893 1.269
767 1.263 | 9 641 8
9 641 8 | | 60 0
64 0
67 0
77 0
76 0 | 2365 7
2431 1
2498 1
2566 6
2636 8 | 002811 010947 0
002858 010229 0
002911 009514 | 014431
013757
013087
012424
011769 | 7149
7229
7315
7402
7492 | 377.7 11
3621 10
3457 10 | 07.0
00.6
93.5
85.9
77.6 | 0 8995 03
0 9064 03
0 9137 03
0 9212 03
0 9287 02 | 361 1.242
210 1.234
054 1.226 | 5 664 8
7 668 9
6 672 8 | | 80 0
84 0
48 0
97 0
96 0 | 2708 6
2782 1
2857 4
2934 5
3013 4 | 0 03714 0 07349 0
0 03204 0 06595 0
0 03313 0 05797 | 0 11117
0 10463
0 09799
0 09110
0 08371 | 758 5
768 2
778 8
790 5
804 4 | 290.2 10
268.2 10
243.1 10 | 68 5
58 4
47 0
33 6
17.2 | 0 9447 02:
0 9535 02:
0 9634 02 | 720 1.708
537 1.198
337 1.187
110 1.174
6-1 1.159 | 5111 | | 700 0
702 0
704 0
705 0
705 47* | 3094 3
3135 5
3177 2
3198 3
3208 2 | 0.03824 0.03173 0
0.04108 0.02192 0
0.04427 0.01304 0 | 0.07519
0.06997
0.06300
0.05730
0.05078 | 822 4
835 0
854 2
873 0
906 0 | 1447 9
1020 9
614 9 | 95.2
79.7
56.2
34.4
06.0 | 1 0006 011
1 0169 0 0
1 0329 0 0 | 490 1139
246 1125
876 1104
527 1085
000 1061 | 762 8
764 9
785 8 | *Critical temperature *** 554 | Abs Press. Temp Sat | | | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--|--| | Lb/Sq in. | fahr | Liquid | Evap | Vapor | Liquid | Evep
his | Vapor
h g | Liquid | Evap | Vapor | Abs Press
Lb/Sq In | | 9.80165
9.25
9.25
1.9
5.9
10.0
14.695
15.0 | 32 018
59 323
- 79 586
301 74
162 24
193 21
212 00
213 03 | 0 016022
0 016032
0 016031
0 016136
0 016407
0 016597
0 016726 | 3302 4
1235 5
641 5
333 59
73 515
38 404
26 782
26.274 | 3307 4
1735 5
641 5
333 60
73 532
38 420
26 799
26 290 | 0 0003
27 382
47 623
69 73
130 20
161 26
180 17
181 21 | 1075 5
1060 1
1048 6
1036 1
1000 9
987 1
976 3
969 7 | 1075 5
1087 4
1096 3
1105 8
1131 1
1143 3
1150 5
1150 9 | 0 0000
-0542
0 0925
0 1326
0 2349
0 2836
0 3121
0 3137 | 2 1872
2 0425
1 9446
1 8455
1 6094
1 5043
1 4447
1 4415 | 2 1872
2 0967
2 0370
1 9781
1 8443
1 7879
1 7568
1 7552 | 0.06865
-0.75
0.50
1.8
5.8
10 0
14.696
15.8 | | 29.8
36.0
40.0
50.0
62.0
70.0
80.0
80.0 | 227 96
250 34
267 25
281 02
292 71
302 93
312 04
320 28 | 0 016834
0 017009
0 017151
0 017274
0 017383
0 017482
0 017573
0 017659 | 26 070
13 7266
10 4794
8 4967
7 1562
6 1875
5 4536
4 8779 | 20 087
13 7436
10 4965
8 5140
7 1736
6 2050
5 4711
4.8953 | 196.27
218.9
236.1
250.2
262.2
272.7
282.1
290.7 | 960 1
945 2
933 6
923 9
915 4
907 8
900 9
894 6 | 1156 3
1164 1
1169 8
1174 1
1177 6
1180 6
1183 1
2185 3 | 0.3358
0.3682
0.3521
0.4112
0.4273
0.4411
0.4534
0.4643 | 13962
13313
12844
17474
12167-
11905
11675
11470 | 3.7320
1.6995
1.6765
1.6586
1.6440
1.6316
1.6208
1.6113 | 29 5
35.9
40 0
50 0
70.0
80 0
70.0 | | 180 8
110 3
120 6
130 0
140 8
130 0
140 8
130 8
180 8 | 327.82
334.79
341.27
347.33
353.04
358.43
363.55
368.42
373.08
377.53 | 0 017740
0 01782
0 01789
0 01796
0 01803
0 01809
0 01815
0 01827
0 01833 | 4 4133
4 0306
3 7097
3 4364
3 2010
2 9958
2 8155
2 6556
2 5129
2 3847 | 4 4310
4 0484
3 7275
3 4544
3 190
3 0139
2 8336
2 6738
2 5312
2 4030 | 298 5
305 8
312 6
319 0
325 0
330 6
336 1
341 2
346 2
350 9 | 888 6
883 1
877 8
872 8
868 0
863 4
859 0
854 8
950 7
846 7 | 1187.2
1188.9
1190.4
1191.7
1193.0
1194.1
1195.1
1196.0
1196.9
1197.6 | 0 4743
0 4834
0 4919
0 4998
0 5071
0 5141
0 5206
0 5269
0 5328
0 5384 | 3.1284
1.1115
1.0960
1.0815
1.0681
1.0554
1.0435
1.0322
1.0215
1.0113 | 1.6027
1.5950
1.5879
1.5813
1.5752
1.5695
1.5641
1.5591
1.5543
1.5498 | 160 8
116 8
120 0 | | 700 8
210 0
270 0
270 0
240 0
240 0
250 0
270 0
280 0
290 6 | 381 80
385 91
389 88
393 70
357 39
490 97
402 44
407 80
411 07
414 25 | 0 01839
0 01844
0 01850
0 01855
0 01865
0 01865
0 01875
0 01880
0 01885 | 2 2689
2 16373
2 06779
1 97991
1 89909
1 82452
1 75548
1 69137
1 63169
1 57597 | 2 2873
2 18717
2 08629
1 99846
1 99846
1 1769
1 184317
1 77418
1 71013
1 65049
1 55482 | 355 5
354 2
368 3
372 3
376 1
376 1
378 1
387 1
387 6 | 842 8
839 1
835 4
831 8
878 4
825 0
821 6
818 3
815 1
812 0 | 1198 3
1199 0
1199 6
1200 1
1200 6
1201 1
1201 5
1201 9
1202 3
1202 6 | 0 5438
0 5490
0 5540
0 5588
0 5679
0 5722
0 5865
0 58 14 | 1 0016
0 9923
0 9834
0 9665
0 9665
0 9586
0 9433
0 9291 | 1 5454
1 5413
1 5413
1 5336
1 5299
1 5264
1 5230
1 5197
1
5166
1 5135 | 780 0
215 0
220 8
230 0
240 0
250 0
260 0
270 0
280 0 | | 300 0
350 0
400 0 | 417.35
431.73
444.60 | 0 01889
0 01912
0 01934 | 1.52384
1.30647
1.14162 | 1 54274
1 32554
1 16095 | 394 0
405 8
424 2 | 808 9
794 2
780 4 | 1202 9
1204 0
1204 6 | 0 5882
0 0059
0 6217 | 0 9223
0 8909
0 8630 | 1 5105
1 4958
1 4847 | 300 0
350 0
400 ° | | 450 C
500 G
550 G
600 C
650 D
700 D | 456 28
467 01
4 : 6 94
486 20
494 89
503 08 | 0 01954
0 01975
0 01994
0 02013
0 02032
0 02050 | 1 01224
0 90787
0 82183
0 74962
0 68811
0 63505 | 1 03179
0 92762
0 84177
0 76975
0 70843
0 65556 | 437 3
449 5
460 9
471 7
481 9
491 6 | 767 5
755 1
742 3
737 0
720 9
710 2 | 1204 8
1204 7
1204 3
1203 7
1202 8
1201 8 | 0 6360
0 6490
0 6611
0 6723
0 6878 | 0.8378
0.8148
0.7936
0.7738
0.7552
0.7377 | 1 4738
1 4639
- 1 4547
1 4461
1 4381
1 4304 | 500 b
550 0
600 0
650 0
700 0 | | 750 0
850 0
850 0
950 0
950 0
1850 0
1150 0
1150 0
1250 0 | 510 84
518 21
525 24
531 95
538 39
544 58
550 53
556 28
561 82
567 19 | 0 02069
0 02087
0 02105
0 02123
0 02143
0 02149
0 02177
0 02195 | 0 58880
0 54809
0 51197
0 47968
0 45064
0 42436
0 40047
0 37863
0 35859 | 0.60949
0.56896
0.53302
0.50091
0.47205
0.44596
0.42224
0.40058
0.38073
0.36245 | 500 9
509 8
518 4
526 7
534 7
542 6
550 1
557 5
564 8
571 9 | 699 8
689 6
679 7
660 0
650 4
640 9
631 5
632 2
613 0 | 1200 7
1199 4
1198 0
1196 4
1194 7
1192 9
1191 0
1189 1
1187 0
1184 8 | 0.7012
0.7111
0.7197
0.7279
0.7358
0.7434
0.7507
0.7578
0.7647 | 0 7210
0 7051
0 6899
0 6753
0 6612
0 6476
0 6216
0 6051
0 5969 | 1 4232
1 4163
1 4096
1 4032
1 3970
1 3910
1 3851
1 3794
1 3683 | 758 0
800 0
850 0
900 0
900 0
1800 0
1100 0
7150 0
7750 8 | | 1250 B
1200 B
1350 B
1450 B
1450 B
1550 B
1560 B
1560 B
1570 B | 572 38
577 42
582 32
587 07
591 70
596 20
600 59
604 87
609 05
613 13 | 0 02250
0 02769
0 02788
0 02307
0 02327
0 02366
0 02367
0 02407
0 02428 | 032306
030722
029250
027871
026584
025372
024235
023159
027143 | 034556
032991
031537
030178
028917
027719
026601
025545
024551
023607 | 578 8
585 6
592 3
598 8
605 3
611 7
618 0
624 0
636 5 | 603 8
594 6
585 4
576 5
567 4
558 4
549 4
540 3
531 3
522 2 | 1187 6
1180 2
1177 8
1175 3
1172 8
1170 1
1167 4
1164 5
1161 6
1158 6 | 0 7780
0 7843
0 7966
0 7966
0 8026
0 8085
0 8142
0 8199
0 8554
0 8309 | 0 5850
0 5733
0 5620
0 5507
0 5397
0 5285
0 5182
0 5071
0 4867 | 1.3630
1.3577
1.3525
1.3474
1.3423
1.3373
1.3374
1.3274
1.3275
1.3176 | 1756 0
1780 0
1780 0
1450 0
1450 0
1560 0
1560 0
1660 0
1850 0
1786 0 | | 1750 8
1800 0
1850 0
1950 0
1950 0
1950 0
2000 0
2180 0
2200 0
2300 8 | 617 12
621 02
624 83
628 56
632 22
635 80
642 76
649 45
655 89
662 11 | 0 07450
0 07472
0 07495
0 07517
0 02541
0 02565
0 02615
0 02767
0 02727 | 0.70263
0.19390
0.18558
0.17761
0.16999
0.16266
0.14885
0.13603
0.12406
0.11287 | 0 27713
0 21861
0 21052
0 20778
0 19540
0 18831
0 17501
0 16272
0 15133
0 14076 | 642 5
648 5
660 4
666 3
672 1
683 8
695 5
707 2
719 0 | 513 1
503 8
494 6
485 7
475 8
466 7
426 7
406 0
384 8 | 1155 E
1152 3
3149 0
1145 6
1147 0
1138 3
3130 5
1122 2
1113 2 | 0 8363
0 8417
0 8470
0 8522
0 8574
0 8625
0 8777
0 8828
0 8929 | 0 4765
0 4667
0 4561
0 4358
0 4756
0 4053
0 3848
0 3430 | 1.3128
1.3079
1.3030
1.2981
1.2931
1.2681
1.2780
1.2676
1.2569
1.2460 | 1756 6
1800 0
1850 6
1800 0
1850 0
2800 0
2100 8
2200 0
2300 0
2300 0 | | 7500 8
7500 0
2700 0
2800 0
7900 8
3800 0
3100 8
3708 8
3708 8 | 668 11
673 91
679 53
684 96
690 27
693 33
700 28
705 08
705 47 | 0 02855
0 02938
0 03029
0 03134
0 03262
0 03661
8 04472
0 05078 | 0 10709
0 09172
0 08165
0 07171
0 06158
0 05073
0 03771
0 01191
0 09000 | 0 13068
0 17110
0 11194
(/ 10305
0 09420
0 08500
0 07452
0 05663
0 05078 | 731 7
744 5
757.3
770 7
785 1
801 8
824 0
875 5 | 3616
3376
3123
2851
2547
2184
1693
561 | 1093 3
1082 0
1069 7
1055 8
1039 8
1020 3
993 3
931 6 | 0 9139
0 9247
0 9356
0 9468
0 9588
0 9728
0 9914
1 0351 | 0 3206
0 2977
0 2741
0 2491
0 2215
0 1891
0 1460
0 0482
0 0000 | 1.2345
1.2725
1.2097
1.1958
1.1803
1.1619
1.1373
1.0832
1.0612 | 2580 9
2580 8
2786 8
2800 0
2800 0
3800 9
3180 8
3208 8
3208 7 | | 5.12 a. | What is the maximum Quadrant forer lilt Ratio value which will permit indefinite operation at 100% power? | (0.5) | |---------|---|-------| | b. | Name two events, not including a failed power range channel, which could cause the Quadrant Power Tilt Ratio to exceed the value in part "a". | (1.5) | | | three reasons (bases) for the establishment of a minimum temperature for criticality. | (1.5) | | 6.1 | State the automatic actions (if any) associated with the following process/area radiation monitors: | 3 | |------|---|-------| | | a. Main Control Room Turbine Building Air Intakes | (0.5) | | | b. Component Cooling Water Radiation Monitor ORE-PRO09 | (0.5) | | | c. Fuel Building Area Radiation Monitors ORE-AR055 and ORE-AR058 | (0.5) | | | d. Gross Failed Fuel Detector | (0.5) | | 6.2 | List the signals that will automatically activate the main power transformer's fire protection deluge system. | (1.0) | | €.3 | List 4 of the 6 conditions which must be satisfied in order for breaker 1592 to <u>AUTO</u> close. | (2.0) | | 6.4 | Which signa 's) is (are) used to generated the following: | | | | a. Rod Insertion Limit | (0.5) | | | b. Pressurizer Level Program | (0.5) | | | c. Mainfeed/Main Steam Differential Pressure Program | (0.5) | | 6.5 | Explain why, when a moisture separator reheater tube bundle is removed from service, the bundle on the opposite side must also be removed from service. | (1.0) | | 6.6 | What problem may result if the moisture separator shell drain tank level drops too low? | (1.5) | | 6.7 | Why is reverse rotation of an RCP undesirable? | (1.0) | | 6.8 | Explain how one of the pressurizer PORVs (PCV-455A) is designed to open at a pressure below 2335 psig for a very fast high pressure transient. | (1.5) | | 6.9 | Explain how the letdown orifice isolation valves are interlocked with the letdown line control valves (CV460 and CV459). | (1.5) | | 6.10 | On Figure 6.10-1, circle the valves which will be open and place an X through the valves which will be shut when the BTRS is in the Boration mode. | (3.0) | | 6.11 | What four interlocks must be satisfied in order to open the RCS Hot Leg Suction valves to the RHR pumps, 8701A(B) and 8702A(B)? | (2.0) | | 5.12 | a. What interlock prevents damage to the component cooling water pumps due to loss of suction head? | (1.0) | | | b. | How is the CCW piping from the thermal barrier heat exchanger protected from overpressurization due to an I to CCW leak? | RCS | (2.0) | |------|------|--|-----|-------| | 6.13 | When | is hot leg recirculation initiated and why? | + | (2.0) | | 6.14 | | te the timing sequence of the Safe Shutdown (Blackout) | | (2.0) | | 7.1 | "Adverse Containment" as used in the Byron Emergency Procedures exists when either or both of two criteria are met. What are those criteria? | (1.0) | |------|---|-------| | 7.2 | Why does 1BEP-O require the RCPs to be stopped if containment-
pressure exceeds 20 psig? | (2.0) | | 7.3 | What parameters (setpoints are $\underline{\text{not}}$ required) must be satisfied prior to terminating an SI? | (2.0) | | 7.4 | What actions can be taken in the control room to trip the turbine if the Turbine Manual Trip push button will not work? | (2.0) | | 7.5 | a. What action must be taken if criticality is achieved below
the low low insertion limit? | (1.5) | | | b. What is the zero-power rod insertion limit? | (0.5) | | 7.6 | How quickly must RCP shaft rotation occur after the RCP's breaker is shut? | (0.5) | | 7.7 | Why must the B and C Main Feedwater pumps be placed on their Turning Gear prior to filling and venting the Condensate System? | (1.0) | | 7.8 | Why should the RCP Seal Return Valves he shut prior to depressurizing the RCS? | (1.0) | | 7.9 | a. How is the de-energization of an ESF DC bus verified? | (1.0) | | | b. What immediate action must be taken if the de-energization
of an ESF DC bus is
verified? | (1.0) | | 7.10 | What effect will the failure of two power range detectors have if the failures occur while the plant is in cold shutdown? | (1.0) | | 7.11 | a. In the event of Control Room Inaccessibility, where does the
Shift Engineer go? | (0.5) | | | b. Where does the NSO go? | (0.5) | | 7.12 | a. An explosive flammable mixture is a concentration of
hydrogen between and | (1.0) | | | b. If stator coil inlet conductivity is equal to or greater
than, then manually trip the Main Generator without
delay and go to 1BEP-0, Reactor Trip or Safety Injection. | (0.5) | | 7.13 | Briefly explain how water could be added to a steam generator if none of the feedwater pumps or AFW pumps are operable. | (2.0) | | 7.14 | How is a reactor trip verified? | (1.5) | | 7.15 | Why is Manual SI ac | ctuation not | advisable during an ATWOS? | (1.5) | |------|------------------------------|--------------|------------------------------------|-------| | 7.16 | List the steps, in boration. | detail, for | two different methods of emergency | (3.0) | | 8.1 | Name four reasons, other than the completion of his work assignment, which would require an individual to leave the controlled area as quickly as possible. | (2.0) | |------|---|-------| | 8.2 | a. When can an extended RWP be used? | (1.0) | | | b. What is the maximum amount of time for which an extended RWP is valid? | (0.5) | | 8.3 | a. What is the NRC quarterly external dose limit for radiation
exposure to the skin? | (0.5) | | | b. How can the skin get exposed but not the whole body? | (1.0) | | 8.4 | Why are thyroid blocking agents administered to individuals in case of a fission product release? | (1.5) | | 8.5 | What is the purpose of the OSC? | (1.0) | | 8.6 | a. Who normally functions as the initial GSEP Station Group
Director? | (0.5) | | | b. During the more serious emergencies, the GSEP Corporate
Command Center Director is responsible for activating a
at the affected station's | | | | | (1.0) | | 8.7 | What is the function of NARS? | (1.0) | | 8.8 | What is the Daily Order Book used for? | (1.0) | | 8.9 | List the Critical Safety Functions in their order of priority. | (1.5) | | 8.10 | a. What are Caution Cards used for? | (1.0) | | | b. Special Order Cards are used on what equipment? | (0.5) | | 8.11 | What do the large circle and small box around step 31, RCP starts, on the BGP 100-1 Flowchart signify? Refer to Figure 8.11-1. | (2.0) | | 8.12 | Verification of the correct alignment of components during System Lineups can be accomplished by any of three methods. Name two. | (2.0) | | 8.13 | a. Who normally functions as the Fire Chief? | (0.5) | | | A fire brigade of at least members shall be maintained
at all times. | (0.5) | | 8.14 | One criterion which must be met before a Temporary Procedure is written is that there be no change in intent for any established procedure. What is meant by the term "change in intent"? | (2.0) | | 8.15 | a. How many reactor coolant loops must be operable in mode 3? | (0.3) | | | b. | What is the maximum allowable leakage through a pressurizer safety valve? | (0.3) | |------|----|---|-------| | | c. | What is the RCS limit for fluoride contamination in the RCS? | (0.3) | | | d. | What are the two specific activity limits of the RCS? | (0.5) | | 8.16 | a. | When must low temperature overpressure protection be operable? | (0.5) | | | b. | What are the two methods of satisfying the low temperature overpressure protection requirement? | (2.0) | # ANSWERS | 5.1 | ΔT s | etpoint = ΔT full power $[K_1-K_2 (T-T^1) + K_3 (P-P^1)-f(\Delta I)]$. | (0.2) | |-----|-----------------------------|--|---| | | | ormal pressure and flux distribution, K_3 (P-P¹) and f($\Delta\mathrm{I}$) both l zero. | (0.2) | | | ΔΤ 5 | etpoint = ΔT full power $[K_1-K_2 (T-T^1)]$ | (0.2) | | | | plant power at 100% at the time of the trip, ΔT setpoint = ull power. | (0.5) | | | ther | efore $\frac{\Delta T}{\Delta T} \frac{\text{setpoint}}{\text{full power}} = 1$ | (0.2) | | | 1-K1 | $K_1 - K_2 (T - T^1)$
= $-K_2 (T - T^1)$ | (0.1)
(0.1) | | | 1.07
.072
.026
T = | $= K_2 (T-T^1)$
2-1 = .0265 (T-587.7)
= .0265T-15.574
5T = 15.646
590.4
4-587.7 = 2.7 | (0.1)
(0.1)
(0.1)
(0.1)
(0.1) | | | | 00% power, if Tave rises 2.7 degrees from its normal value ΓΔΤ trip will occur. | | | | Ref: | Tech Specs Table 2.2-1, p 2-8. | | | 5.2 | and
fiss | thermal conductivity of the gas in the gap between the clad fuel decreases with burnup (0.5) due to the buildup of the ion product gases krypton and xenon which possess very poor mal conductivities. (0.5) (2.5) Training Manual p. 11-8 | | | 5.3 | 1. | Flatten the radial flux distribution. | (0.5) | | | 2. | Lower the beginning-of-life, hot zero power boron concentration to guarantee a negative moderator temperature coefficient. (see notes) allows loading of texases. | (0.5) | | | Ref: | Training Manual p. 11-5 allows menimizing | (2) | | 5.4 | a. | Hafnium | (0.5) | | | Ref: | Training Manual p. 11-18 | | | | b. | 1. Californium 252 undergoes spontaneous fission. 2. Plutonium undergoes alpha decay. (not region) Pu/Be is intrequired | (0.5)
(0.5) | | | | | | The alpha combines with berylium, emitting a neutron in the process. (0.5)Ref: Lesson Notes, Nuclear Fuel Structure, p. 31 5.5 As moderator temperature rises, the migration length of the . neutrons will increase, so each control rod will interact with more neutrons, absorbing additional neutrons and removing them from the fission chain. (1.0) With more control rods inserted. more neutrons will be removed from the fission process for a given rise in moderator temperature. (1.0) PWR Core Physics Text, Phase I, Module B-3 p. 24. 5.6 Peak clad temperature shall not exceed 2200°F even during postulated accident conditions. (1.0)Ref: Training Manual 11-11; 10 CFR 50.46(b)(1) 5.7 Normal steam generator temperature at 50% power is obtained from the steam tables. 1030 psig = 1045 psia which corresponds to 550°F. (0.4)The steam generator safety valve with the lowest lift setting will open at 1175 psig = 1190 psia, which corresponds to 566°F. (0.4)The steam generator temperature must therefore be raised $566-550 = 16^{\circ}F$. (0.4)Normal Tave at 50% power is (557 + 587)/2, which is 572°F. (0.4)If Tave rises to 572 + 16 = 588 at 50% power the steam generator safety valve with the lowest relief setting will open. (0.4)Ref: Tech Specs 3/4 p. 7-3; Training Manual Figure 14-1 RT_{NDT} is the reference transition nil ductility temperature, the temperature below which a material will fail in a brittle 5.8 a. rather than a ductile manner. (may) (1.0)The RT_{NDT} increases with EFPY due to neutron embrittlement, the deformation of the metal lattice caused by high-energy neutrons striking metal atoms. (1.0) At 3/4T, 3/4 of the distance from the inner wall of the reactor vessel to the Ref: Tech Spec 3/4 4-31; B 3/4 4-8 not be as great. (0.5) outer wall of the reactor vessel, the high energy neutron flux is less than it is at 1/4 T because of the shielding provided by the metal in the reactor vessel. (0.5) With a smaller neutron flux at 3/4T than at 1/4T the neutron embrittlement will be less, so the increase in RT_{NDT} will 5.9 a. In modes 1, 2, 3, and 4, the shutdown margin is based on a postulated steam line break and resulting uncontrolled cooldown. (0.5) In mode 5, Tave is below 200°F, so the reactivity transients resulting from a postulated steam line break cooldown are minimal. (0.5) Ref: Tech Spec B 3/4 1-1 The contol rods are withdrawn beyond the rod insertion limits. (1.0) Ref: Tech Specs 4.1.1.1.1.b; B 3/4 1-3 (RIL met) Consideration of the following factors | 1. | RCS boron concentration | (0.2) | |----|--|-------| | 2. | Control rod position | (0.2) | | 3. | RCS Tave | (0.2) | | 4. | Fuel burnup based on gross thermal energy generation | (0.2) | | 5. | Xenon concentration | (0.1) | | 6. | Samarium concentration - not regel | (0.1) | Ref: Tech Specs 4.1.1.1.1.e Immediately initiate boration at greater than or equal to 30 gpm (0.5) of a solution containing greater than or equal to 7000 ppm boron or equivalent until the required shutdown margin is restored. (0.5) Ref: Tech Specs 3.1.1.1 5.10 a. Heat Flux Hot Channel Factor (0.2), is defined as the maximum local heat flux on the surface of a fuel rod at core elevation Z divided by the average fuel rod heat flux. (0.8) peak at height 2 Mitigating Core Damue page 1-27 Ref: Tech Spec B 3/4 2-1 Coolant temperature increases as it flows upward through the core, (.75) so DNBR is lowest towards the top of the core. (.75) or During a LOCA, the top of the core is the first part uncovered. (0.5) When the ECCS refills the core, the top portion of the core is the last recovered. (0.5) Since the top of the core is uncovered for the longest period of time, it will reach the highest temperature. (0.5) Ref: Thermal-Hydraulic Principles and Applications to the Pressurized Water Reactor II, Chap 13, p. 33 5.11 Nitrogen is an insoluble, incompressible gas which has poor heat transfer characteristics. (0.4) If it accumulated in the reactor vessel head, coolant flow through the core might be blocked. (0.3) If it surrounded the fuel rods, the heat removal rate would be reduced greatly, causing fuel temperature to rise drastically.
(0.3) Ref: 1BCA-2 p. 20 5.12 a. 1.02 (0.5)Ref: Tech Specs 3.2.4 b. Any two of the following: Misaligned control rod (.75)Flow blockage through the core (.75)Improper fuel loading (.75)5.13 Any three of the following: 1. MTC is within its analyzed range (0.5)Trip instrumentation is within its normal operating range (0.5)3. The pressurizer is capable of being in an operable status with a steam bubble (0.5)The reactor vessel is above its minimum RT_{NDT} temperature The plant is above the cooldown steam dump premissive, P-12 4. (0.5)5. (0.5)6. Plant of ctem will be in the words of socialent anulysis ## ANSWERS | 6.1 | a. | None | (0.5) | |-----|----------|---|--| | | Ref: | Training Manual 49-16 | | | | b. | Shuts the vent valves on both component cooling surge tanks. | (0.5) | | | Ref: | Training Manual 49-8 | | | | c. | Booster fans OVAO4CA and B start and bypass dampers shut to route the exhaust through the filter prior to release. | (0.5) | | | Ref: | Training Manual 50-16 | | | | d. | None | (0.5) | | | Ref: | Training Manual 49-10 | | | 6.2 | | erential current
en pressure | (0.5)
(0.5) | | | Ref: | Training Manual 4-17 | | | 6.3 | Any | 4 of the following: | | | | c.
d. | No overcurrents (phases or to ground) breaker 1592 No overcurrents (phases or to ground) breaker 1591 No malfunctions on SAT 142-1 Breaker 1591 open Control switch for breaker 1591 in "after close" Control switch for breaker 1592 in "after trip" | (0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5) | | | Ref: | Training Manual 4-100 | | | 6.4 | a. | Auctioneered high ΔT (25) and auctioneered high Tave (.25) | 2-10- | | | Ref: | Training Manual 12-44 | | | | b. | Auctioneered high Tave | (0.5) | | | Ref: | Training Manual 12-44 | | | | c. | Total Steam Flow | (0.5) | | | Ref: | Training Manual 27-20 | | | 6.5 | To 1 | imit the temperature differential across the LP turbine. | (1.0) | | | Ref: | Training Manual 35-38 | | 6.6 Steam from the moisture separator may be passed directly to the heater drain tank (0.5) allowing water contained in the heater drain tank to flash to steam (0.5), possibly overpressurizing the heater drain tank. (0.5) Ref: Training Manual 36-29 6.7 If an attempt were made to start an RCP rotating in the reverse direction, excessive starting currents would be drawn (0.5), resulting in overheating of the motor. (0.5) Ref: Training Manual 13-16 6.8 The pressure signal used to actuate the PORV is a PID compensated signal. (0.5) (PID stands for proportional, integral, and derivative.) The derivative function will reduce the setpoint in direct proportion to the rate at which pressure is increasing. (1.0) Ref: Training Manual 14-28 - 6.9 1. To open any of the letdown orifice isolation valves, CV459 and CV460 must be opened. (.75) - 2. Closing either CV459 or CV460 will automatically close all the letdown orifice isolation valves. (.75) Ref: Training Manual 15a-9 - 6.11 1. 8812A(B) RHR pump suction valves from the RWST must be shut. (0.5) - 2. 8804A(B) RHR to charging (SI) pump suction valves must be shut. (0.5) - 8811A(B) RHR pump suction valves from the containment sump must be shut. (0.5) - 4. The RCS pressure must be less than 382 psig. (0.5) Ref: Training Manual 18-12 6.12 a. A low-low level in the CCW surge tank will trip the CCW pumps. (1.0) Ref: Training Manual 19-13 b. A leak into the CCW system at the thermal barrier would greatly increase the flow rate in the return line from the RCP. (0.5) (A check valve prevents leakage out the supply line. (0.5)) The increased flow through the return line would be sensed by a flow orifice, which would cause MOV 685, the CCW thermal barrier return line isolation valve, to shut. (0.5) The CCW piping between the check valve in the thermal barrier supply line to the isolation valve is designed to withstand full RCS pressure. (0.5) Ref: Training Manual 19-15, 28, 39 6.13 Approximately 18 hours after the initiation of cold leg recirculation. (0.5) Hot leg recirculation provides a means of terminating boiling in the core should a LOCA be due to a break in one of the RCS cold legs (0.5), reduces boron precipitation in the top of the core (0.5), and maintains the core in a subcooled condition as long as core cooling is required. (0.5) Ref: Training Manual 58-52 6.14 4160V/480V transformer 10 sec. (0.5) Component Cooling Pumps 30 sec. Essential Service Water Pumps 35 sec. (0.5) 4 Auxiliary Feedwater Pump 45 sec. (0.5) 4 Ref: Training Manual 9-31 Cent Ch pune 10 ese (14) MCR Pel probon mit 25 pec (4) ## ANSWERS | 7.1 | 1. | Containment Pressure greater than 5 psig:
Containment Radiation greater than 10 ⁴ R/hr | (0.5)
(0.5) | |-----|----------------|--|----------------------------------| | | Ref: | 1BEP-0 p. 2 | | | 7.2 | 1. | Containment pressure exceeding 20 psig will cause a phase B containment isolation. | (1.0) | | | 2. | A phase B containment isolation will cause component cooling water flow to the RCPs to be isolated. | (0.5) | | | 3. | The RCPs must be stopped if CCW is lost for greater than one minute. $ \\$ | (0.5) | | | Ref: | Training Manual 13-31, Figure 19-2, 61-39; Tech Specs 3/4 6-22; 1BEP-0 p. 9; BGP 100-1, p. 1 | | | 7.3 | 2. | RCS pressure RCS subcooling Pressurizer level Secondary heat sink | (0.5)
(0.5)
(0.5)
(0.5) | | | Ref: | 1BEP-0, p. 12; 1BEP-1, p. 3; 1BEP-2, p. 8; 1BEP-3, p. 15 | | | 7.4 | 1.
2. | Pull-to-lock the EH pumps
Close the MSIVs and their bypasses | (1.0)
(1.0) | | | Ref: | 1BEP-0 p. 3 | | | 7.5 | a. | Emergency borate 100 ppm (.75) and reinsert all control rods (| .75) | | | Ref: | BGP 100-2 p. 5 | | | | b. | 47 steps on bank C or 162 steps on bank B | (0.5) | | | Ref: | Tech Spec 3/4 1-22 | | | 7.6 | 10 se | conds | (0.5) | | | Ref: | BGP 100-1 p. 3 | | | 7.7 | Preve
syste | nt the Main Feedwater Pumps from rotating without the oil ms running. | (1.0) | | | Ref: | BGP 100-1 p. 5 | | | 7.8 | Preve
Ref: | nt backflushing the Seal Return Filter into the RCP Seals. BGP 100-5 p. 17 RCP Seals | (1.0) | | | H (1918년 14일) 12일 | | |------|---|---| | 7.9 | a. Feedwater regulating valves will fail closed. | (1.0) | | | b. Manually trip the reactor. | (1.0) | | | Ref: BOA Elec - 1 p. 3, 4 | | | 7.10 | A false P-10 will be generated, deenergizing the high voltage to the Source Range detectors. | (1.0) | | | Ref: 180A INSJ-1, p. 5 | | | 7.11 | a. TSC | (0.5) | | | b. Shutdown panel | (0.5) | | | Ref: 180A Pri - 5 | | | 7.12 | a. 4% (0.5) and 75% (0.5) | | | | Ref: OBOA PRI-8, p. 3 | | | | b. 9.5 micromhos | (0.5) | | | Ref: 180A SEC-7, p. 4 | | | 7.13 | Use a running CD/CB pump (0.5) to supply water through an idle FW pump (0.5) to a S/G which has been depressurized below 670 psig (1.0) . | | | | Ref: 1BFR-H.1, p. 8 | | | 7.14 | Rod bottom lights are lit. Reactor trip and bypass breakers are open. Neutron flux is decreasing. | (0.5)
(0.5)
(0.5) | | | Ref: 18EP-0, p. 3 | | | 7.15 | A possible loss of heat sink (0.5) due to tripping of the main feedwater pumps (0.5) and a feedwater isolation actuation. (0.5) | | | | Ref: 1BCA-1, p. 2; Training Manual 25-47 | | | 7.16 | Two of the following: | | | | a. Manually open emergency boration valve 1CV8104 b. Manually start a boric acid transfer pump c. Verify emergency boration flow d. Manually increase charging flow | (0.5)
(0.5)
(0.3)
(0.2) | | | 2. a. Increase pot setting for boration flow to maximum valve b. Place make-up control selector switch to borate c. Place make-up control switch to start d. Verify 1CV110A and 1CV110B open e. Verify required boration flow | (0.3)
(0.3)
(0.3)
(0.3)
(0.3) | | | | | | 3. | a. | Manually Open 1CV112D/112E | (0.5) | |----|----|---|-------| | | b. | Manually Close 1CV112B/112C | (0.5) | | | c. | Verify one centrifugal charging pump running | (0.3) | | | d. | Verify charging flow of at least 105 gpm | (0.2) | | 4. | a. | Manually open 1CV110A | (0.4) | | | b. | Obtain key for pad lock on 1CV8439 from Shift Engineer and locally open 1CV8439 | (0.6) | | | c. | Manually start a boric acid transfer pump | (0.4) | | | d. | Verify required boration flow | (0.1) | Ref: 1BOA PRI-2, p. 3 # ANSWERS | 8.1 | Four | of the following: | | | | |-----|----------|---|---|---------------------------------|-------------------------| | | а. | When instructed or signa
Chemistry Department | | | (0.5) | | | b. | Failure or suspected fai equipment | lure of personnel pro | tective | | | | c.
d. | Unexpected deterioration
In the event that the wo
equivalent status beco | rker's current accumu | lated dose | (0.5) | | | e.
f. | equivalent is equal to
"Assembly" sirens sound
Injury | the exposure authori | zed for the job. | (0.5)
(0.5)
(0.5) | | | g. | Unexpected area radiatio rate is unknown | n monitor alarm and t | he area dose | (0.5) | | | ref: | Radiation Protection St | andards, p. 7 | | | | 8.2 | a. | Routine job (0.3) where 50 mrem but less than 10 days (0.4), but less that task. (0.3) | O mrem in
one day for | two or more | | | | b. | 7 days | | | (0.5) | | | Ref: | Radiation Protection Sta | anderds, p 13 | | | | 8.3 | a. | 7.5 rems | | | (0.5) | | | b. | Beta radiation (0.5), who penetrate past the skin | ich exposes the skin tinto the body (0.5). | out does not | | | | Ref: | Radiation Protection Sta | andards, p 24 | | | | 8.4 | satur | ge proportion of fission. Iodines will collect i ated. (0.5) A thyroid bidual will result in suffee thyroid to prevent sign | in the thyroid until to
blocking agent adminis
ficient accumulation o | he thyroid is
tered to an | | | | Ref: | GSEP p. 2-3 | | | | | 3.5 | (0.5) | ion to which support pers
and from which they will
s in support of emergency | be dispatched for as | ing an emergency
signment or | | | | Ref: | GSEP p. 3-3 | | | | | 3.6 | a. 5 | Shift Engineer | | | (0.5) | | | b. | GSEP Recovery Group
Nearsite EOF | (0.5)
(0.5) | |------|-------------|--|--| | | Ref: | GSEP p. 3-2 | | | 8.7 | voic
the | Nuclear Accident Reporting System is a dedicated telephone e communications system (0.5) that has been installed for purpose of notifying State and local authorities of declared ear emergencies. (0.5) | | | | Ref: | GSEP p. 7-5 | | | 8.8 | | ing management instructions (0.5) which have short term icability and require dissemination. (0.5) | | | | Ref: | BAP 300-3, p. 1 | | | 8.9 | b. | Subcriticality Core Cooling RCS Integrity Heat Sink Containment Inventory | (.25)
(.25)
(.25)
(.25)
(.25)
(.25) | | | Ref: | BAP 300-11, p. 6 | | | 8.10 | a. | Call attention to a temporary change of normal operating routine of equipment or a special condition of an operating system. | (1.0) | | | Ref: | BAP 300-18, p. 6 | | | | b. | Equipment under the jurisdiction of the load dispatcher. | (0.5) | | | Ref: | BAP 300-18 p. 3 | | | 8.11 | a. | The large circle signifies a major step in procedure. | (1.0) | | | b. | The box signifies a step that is to be approved prior to starting and initialled after completion by an SRO. | (1.0) | | | Ref: | BAP 300-34, p. 2 | | | 8.12 | a. | Functional testing | (1.0) | | | b. | Second qualified individual | (1.0) | | | c. | Automatic System Status Monitoring System | (1.0) | | | Ref: | BAP 399-3, p. 3 | | | 8.13 | a. | Cognizant Shift Foreman | (0.5) | |------|------|--|-------| | | Ref: | BAP 1100-1, p. 3 | | | | b. | 5 | (0.5) | | | Ref: | BAP 1100-1, p. 1 | | | 8.14 | desi | nges which result in operation outside the FSAR described gn envelope (1.0) and result in operation outside the Plant sty Analysis as described in the FSAR. (1.0) | | | | Ref: | BAP 1310-4, p. 1 | | | 8.15 | a. | 2 | (0.3) | | | Ref: | Tech Spec 3/4 4-2 | | | | b. | 0 | (0.3) | | | Ref: | Tech Spec 3/4 4-19 | | | | c. | .15 ppm | (0.3) | | | Ref: | Tech Spec 3/4 4-23 | | | | d. | Lass than or equal to 1 microcurie per gram dose equivalent I-131. | | | | | Less than or equal to 100/E microcuries per gram of gross | (0.3) | | | Ref: | radioactivity. | (0.3) | | | Rei. | Tech Spec 3/4 4-25 | | | 8.16 | a. | When the temperature of any RCS cold leg is less than 380°F and the reactor vessel head is on. 250°F is also considered. | (0.5) | | | b. | Two PORVs with nominal setpoints which vary with RCS
temperature. | (1.0) | | | | 2. The RCS depressurized with an RCS vent of greater than | | | | | or equal to 2 square inches. | (1.0) | Ref: Tech Spec 3/4 4-35