

DEPARTMENT OF THE ARMY U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND ARMAMENTS CENTER PICATINNY ARSENAL, NEW JERSEY 07806-5000

5 Mar 2020

FCDD-ACD

MEMORANDUM FOR United States Nuclear Regulatory Commission, Region 1, 2100 Renaissance Boulevard, King of Prussia, PA, 19406-2713

SUBJECT: Submission of Final Status Survey Report for Building 315 at Picatinny Arsenal, NJ, License Number SUB-348

Mr. Lawyer:

Attached please find the final status survey report for your review. Armaments Center requests an uncontrolled release of the specified facility to remove this location off the SUB-348 license based on the attached survey results.

Please note that the name of our command and center have changed due to reorganizations which occurred in the Department of the Army. The former acronym for our command and technical center, RDECOM ARDEC, has changed to CCDC AC. However, personnel named in license SUB-348 have not changed positions or roles.

The point of contact for this document is Armaments Center Health Physicist, Radiation Safety Officer, Malgorzata (Margaret) Kouretas; malgorzata.e.kouretas.civ@mail.mil or 973-724-6518.

JOHN F. HEDDERICH III Director, Combat Capabilities Development Command Armaments Center

ENCL MARSSIM Final Status Survey **REVISION A**

RADIOLOGICAL FINAL STATUS SURVEY REPORT FOR PICATINNY ARSENAL BUILDING 315

DOVER, NEW JERSEY

JANUARY 22, 2020

REVISION A

RADIOLOGICAL FINAL STATUS SURVEY REPORT FOR PICATINNY ARSENAL BUILDING 315

DOVER, NEW JERSEY

JANUARY 10, 2020

- Prepared for: U.S. Army Joint Munitions Command Rock Island, Illinois
- Prepared by: Hidden Water, Inc. Wichita, Kansas

In coordination with: Leidos, Inc. St. Louis, Missouri

TABLE OF CONTENTS

SEC	ΓΙΟΝ		PAGE
LIST	OF TA	ABLES	ii
LIST	OF FI	GURES	ii
LIST	OF A	PPENDICIES	ii
LIST	OF A	CRONYMS AND ABBREVIATIONS	iii
1.0	INTI	RODUCTION	5
	1.1	OVERVIEW OF OPERATIONAL HISTORY	5
	1.2	BUILDING 315	6
	1.3	 BUILDING 315 RADIOLOGICAL SURVEY HISTORY 1.3.1 Site 135 (Buildings 315 and 316) Environmental Investigations 1.3.2 2006 Radiological Survey 1.3.3 2010 Radiological Survey 	6 6 7
2.0	HIST	FORICAL SITE ASSESSMENT	9
3.0	SUR	VEY PARAMETERS	11
	3.1	RADIONUCLIDE OF CONCERN	11
	3.2	GEOGRAPHIC SCOPE AND OVERVIEW OF RADIOLOGICAL SURVEYS	11
	3.3	OVERVIEW OF SURVEY APPROACH	12
	3.4	DERIVED CONCENTRATION GUIDELINE LEVELS	13
4.0	DEC	ISION ERROR	15
	4.1	DECISION ERROR FOR SURVEYS AT BUILDING 315	15
5.0	SUR	VEY PARAMETERS	17
	5.1	RELATIVE SHIFT	17
	5.2	THE NUMBER OF MEASUREMENTS PER SURVEY UNIT	17
	5.3	CLASSIFICATION OF SURVEY UNITS	18
	5.4	CALCULATION OF MEASUREMENT GRID SPACING	19
6.0	SUR	VEY IMPLEMENTATION	21
	6.1	INSTRUMENTATION SELECTION	21 21 22
7.0	RAD	IOLOGICAL INVESTIGATIONS AND SURVEYS RESULTS	23
	7.1	INVESTIGATION AND DISPOSTION OF POTENTIALLY CONTAMINATED ITEMS	23
	7.2	BUILDING STRUCTURE SURVEY MEASUREMENT AND SCAN RESULTS	24

TABLE OF CONTENTS (Continued)

SECTION PAGE Metallography Laboratory Floor and Lower Walls SU-1......24 7.2.1 7.2.2 7.2.3 7.2.4 7.3 8.0 9.0

LIST OF TABLES

Table 3-1.	Portion of the Uranium-Series Radionuclides	11
Table 3-2.	Rooms in Building 315	12
Table 5-1.	MARSSIM Suggested Survey Unit Areas	18
Table 6-1.	Evaluation of Instruments Used at Picatinny Arsenal	21
Table 7-1.	Number of Systematic Fixed-Point Measurements	24
Table 7-2.	Removable Contamination Evaluation	27

LIST OF FIGURES

Figure 1.	Historical Building 315 Layout
-----------	--------------------------------

- Figure 2. Current Building 315 Layout
- Figure 3. Metallography Laboratory Floor and Lower Walls (SU-1)
- Figure 4. Class 3 Survey Unit 2
- Figure 5. Building 315 2010 Survey Layout
- Figure 6. DU Machine Shop Floor (SU-3) and Walls (SU-4)
- Figure 7. West End Walls (SU-5)
- Figure 8. Hallway Walls (SU-6)
- Figure 9. Garage Walls (SU-7)
- Figure 10. East End Garage Walls (SU-8)

LIST OF APPENDICIES

- Appendix A DECOMMISSIONING AND DEMOLITION OUTPUT SUMMARY REPORT FOR URANIUM 238
- Appendix B INSTRUMENT CALIBRATIONS
- Appendix C SCAN MINIMUM DETECTABLE CONCENTRATIONS FOR RADIOLOGICAL CONTAMINANTS OF CONCERN AT PICATINNY ARSENAL AT BUILDING 315
- Appendix D RESULTS OF RADIOLOGICAL SURVEYS
- Appendix E STATISTICAL TESTS

LIST OF ACRONYMS AND ABBREVIATIONS

σ	standard deviation
$\Delta \sigma$	relative shift
AEC	Atomic Energy Commission
ALARA	as low as reasonably achievable
ANSI	American National Standards Institute
ARDEC	Armaments Research, Developments and Engineering Center
ARI	additional remedial investigation
ATG	Allied Technology Group
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CFR	Code of Federal Regulations
cm ²	square centimeter(s)
cpm	counts per minute
D&D	decommissioning and demolition
DCGL	derived concentration guideline level
DCGLw	derived concentration guideline levels used for statistical tests
dpm	disintegrations per minute
$dpm/100 cm^2$	disintegrations per minute per 100 square centimeters
DU	depleted uranium
EDM	Electro-Discharge Machining
FR	Federal Register
FSS	Final Status Survey
ft	foot/feet
НЕРА	high efficiency particulate air
HWI	Hidden Water Inc
LBGR	lower bound of the gray region
m	meter(s)
m^2	square meter(s)
MARSSIM	Multi-Agency Radiation Survey and Site Investigational Manual
MDC	minimum detectable concentration
MDCR	minimum detectable count rate
MeV	megaelectron Volt(s)
mrem	millirem
mSv	millisievert (s)
NIST	National Institute of Standards and Technology
NRC	U.S. Nuclear Regulatory Commission
NUREG	U.S. Nuclear Regulatory Commission Regulation
Pa	protactinium
Ph	lead
PH1 RI	nhase 1 remedial investigation
ΩC	quality control
RDX	roval demolition explosive
SN	serial number
Sr	strontium
SU	suomum suovev unit
TEDE	survey unit
	וטומו טווטטוויט עטפט טעעוימוטוו

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

Th	thorium
U	uranium
World	World Environmental

1.0 INTRODUCTION

This document presents a radiological final status survey (FSS) report for the performance of radiological final status surveys at Building 315 on Picatinny Arsenal, New Jersey. Picatinny Arsenal is the Joint Center of Excellence for Armaments and Munitions, providing products and services to all branches of the U.S. military. Located on 4,500 acres of land in northern New Jersey, Picatinny Arsenal specializes in the research, development, acquisition and lifecycle management of advanced conventional weapon systems and advanced ammunition. Picatinny Arsenal's portfolio comprises nearly 90 percent of the U.S. Army's lethality and all conventional ammunition for joint warfighters.

1.1 **OVERVIEW OF OPERATIONAL HISTORY**

"On 6 September 1880, the War Department established the Dover Powder Depot. Four days later, it changed the name to Picatinny Powder Depot. In 1907, the U.S. Army altered the name to Picatinny Arsenal and established its first powder factory on the site. While continuing to produce munitions, the arsenal moved into research and development work with the start of a school to instruct officers in weaponry sciences in 1911 and the establishment of testing and control laboratories during the World War I era, and the beginning of a small, experimental plant for the design and development of artillery ammunition in 1919. In 1921, the arsenal took over responsibility for experimental work on fuses.

"The arsenal continued to realize its potential as a research and development facility in the years between the two world wars. Major accomplishments of this period included better methods for storing smokeless powder, improved processing of cyclonite, more commonly called [royal demolition explosive] RDX, and the discovery of a new explosive, haleite. The discoverer was Dr. George C. Hale, the arsenal's chief chemist.

"World War II interfered with the arsenal's efforts to concentrate on research and development. As one of the few facilities with the ability to manufacture munitions, it employed 18,000 people and ran three shifts turning out bombs and artillery shells. However, it still had its research triumphs, especially the development of a delay fuse for skip bombing and special bombs for dams and oil fields. It also pioneered production processes later transferred to munitions manufacturers around the country.

"After World War II, Picatinny refocused its efforts on developing new weapons and munitions. Its support to the American forces in Korea included an improved bazooka and an illuminating rifle grenade. In periods of peace, the arsenal made important contributions to progress in the areas of radar, pyrotechnics, missiles, time fuses, and nuclear munitions. When war broke out again, it gave troops in Vietnam a complete family of 40mm ammunition for grenade launchers and helicopter gunships.

"In 1977, the Army recognized Picatinny's leadership in weapons and munitions development by headquartering its Armament Research and Development Command at the arsenal and giving it responsibility for developing small caliber weapons and munitions.

"In 1983, the Army disestablished the Armament Research and Development Command and Picatinny became the home of the Armament Research and Development Center. In 1986, the name again changed to the Armament Research, Development and Engineering Center. Whatever the name, the installation leads the way in weapons and ammunition development." (Picatinny Arsenal 2015).

1.2 BUILDING 315

Use of Picatinny Arsenal Building 315 as a metallographic facility for the analysis and study of depleted uranium (DU) began sometime prior to 1980 and continued until 2005. Analyses performed included mechanical testing, metallurgical analysis, corrosion investigations and environmental studies (Chatterjee 2011). Areas utilized for DU operations include the Mechanical Test Laboratory, DU Machine Shop, Electro-Discharge Machining (EDM) Room, Metallography Laboratory, Microscopy Laboratory, Corrosion Laboratory, and Storage Room. See Figure 1 for historical building layout. No radiological work is known to have taken place in the bathroom, hallway, clean machine shop, or the two offices.

The exterior of Building 315 measures 148 feet [ft] (45 meters [m]) long, 32 ft (10 m) wide, and 18 ft (5.5 m) to the building shoulder or 37 ft (11 m) to the roof peak. Since 2005, most of Building 315 has been remodeled for use as office space. Exceptions include the Metallography Laboratory.

1.3 BUILDING 315 RADIOLOGICAL SURVEY HISTORY

1.3.1 Site 135 (Buildings 315 and 316) Environmental Investigations

Four environmental investigations were conducted at Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Site 135 which included Building 315 and 316: (1) radiological surveys and removal actions at Buildings 315 and 316 completed by Allied Technology Group (ATG) in 1994, (2) a second radiological removal action conducted by ATG at Building 316 in 1996, (3) environmental sampling at Building 315 during the phase 1 remedial investigation (PH1 RI) in 1995 and revision in 1997, and (4) sampling and surveys at Buildings 315 and 316 during the additional remedial investigation (ARI) in 1998. Site 135 historical radiological data as it relates to Building 315 is summarized following.

<u>ATG 1994 and 1996</u>: ATG completed a pre-disposal survey and post-removal "as left" radiological surveys in Building 315 and reported no contamination above the Nuclear Regulatory Commission (NRC) license requirements.

<u>PH1 RI in 1995 and Revision in 1997:</u> This investigation did not include radiological surveys or sampling.

<u>ARI in 1998</u>: The ATG radiological closure reports were reviewed, and it was determined that analysis of surface soil samples was not necessary for radiological parameters.

1.3.2 2006 Radiological Survey

In October 2006, World Environmental (World), mobilized to the Armaments Research, Developments Engineering Center (ARDEC), Picatinny Arsenal, to perform a radiological characterization survey which included characterization of equipment, furniture, and other ancillary items for disposition. The survey results are discussed in the, *Characterization and Survey of Building 315* (World 2006) and are summarized as follows:

The survey results were compared to Regulatory Guide 1.86 limits for both fixed and removable contamination applicable for DU as follows:

Fixed contamination:	5,000 disintegrations per minute per 100 square centimeters (dpm/100 cm ²) (average alpha and beta)		
	15,000 dpm/100 cm ² (maximum alpha and beta)		
Removable contamination:	1,000 dpm/100 cm ² total (alpha and beta)		

The surveyed items were segregated by radiological, hazardous, or non-hazardous criteria for disposal. With the exception of the materials, piping and ventilation system equipment in the Metallography Laboratory all surveyed items were dispositioned as part of the work activities associated with the project. The disposition of materials, piping and the ventilation system in the Metallography Laboratory was to be determined at a later time. After the equipment and material were removed, surveys were performed on the floors and walls of all the rooms within the building with the exception of the Metallography Laboratory, Microscopy Laboratory and Storage Room.

Prior to performing building surveys, different areas of the building were given a degree of potential contamination ranging from not probable to very probable. Using NUREG-1575, *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)* (DOD 2000) classifications as a guide, areas/rooms were given a Class 1, Class 2 or Class 3 designation. Work began in Class 3 areas, followed by Class 2 areas and followed by Class 1 areas. After equipment was removed then surveys of the structure were performed. The floor and 6 ft up the wall in all rooms were surveyed. The floor and wall areas were divided into 3-ft-by-3-ft (3'x3') grids.

The average beta contamination levels in the DU Machine Shop was 1,380 dpm/100 cm² which was several times higher than any of the other areas surveyed. The DU machine shop and other rooms were less than Regulatory Guide 1.86 limits for both fixed and removable contamination.

The High Efficiency Particulate Air (HEPA) Filtration System located above the DU machine shop was evaluated and as a result, the HEPA filters and pre filter were removed and disposed of as radiological waste. The remaining ventilation system (i.e., in the Metallography Laboratory) which includes the umbilical ducts were determined to be radiologically contaminated and were left in place for disposal at a later time.

Upon completion of the surveys on equipment, material and building surfaces, the ceiling tiles and insulation above the ceiling tiles were removed and surveyed. No contamination above criteria was identified during the surveys of the ceiling tiles or insulation.

After characterization survey activities were complete the Metallography Laboratory and potentially contaminated items were left to address at a later date and the building required a final status release survey.

1.3.3 2010 Radiological Survey

In August 2010, Hidden Water, Inc., (HWI) performed a building final release survey based on the Regulatory Guide 1.86 protocols summarized in Section 1.3.2 using 1 square meter (m²) grids. Areas and equipment known to be contaminated were identified and remediated through decontamination or removal prior to performing final surveys of building surfaces.

For the final surveys, the building was divided into 8 areas:

- 1. West End
- 2. Metallography Lab
- 3. Hallway
- 4. Heater Room
- 5. Bathroom
- 6. DU Room
- 7. Garage
- 8. East End

The floor, walls up to 15 ft, and the horizontal beam at the roof peak was surveyed using scans, direct frisks, and large area dry wipes. Survey grids were established in the building west end, Metallography Lab, hallway, Heater Room, bathroom, DU Machine Shop, garage and East End.

In summary, there were over 5,200 smears, direct frisks, and scans obtained from more than $1,400 \ 1-m^2$ grids in addition to large area swipes of the horizontal beam of the roof peak and the ventilation intake on the southern wall of the hallway.

The wood studded framework load bearing walls of the DU Room were left intact because of the potentially DU contaminated asbestos containing floor tile under the sole plates. Subsequently, as a result of remodeling, new wall materials were installed and a poured epoxy floor was used which continued 6 to 8 inches above the existing floor/wall joint.

Note that although surveys of the floor under the sole plates could not previously be performed (and they were assumed to be potentially contaminated), surveys conducted in 2006 and 2010 demonstrated that the floors directly adjacent to the sole plates in the DU Room met release criteria, so there is no historical data to support that radioactive contamination exists in excess of criteria on the floor under the sole plates. Therefore, the inaccessible area under the sole plates in the DU Room were considered non-impacted.

Additional areas of the building that required survey included:

- 1. Roof Stacks
- 2. Floor Drains and P-Traps
- 3. Horizontal Beam at the Roof Peak
- 4. DU Room and Metallography Lab Mezzanines
- 5. Exposed pipes outside of the west end of the building
- 6. Air intake on the southern wall of the hallway

The survey results are discussed in the, *Hidden Water, Inc. Armament Research Development and Engineering Center (ARADEC) Building 315 Radiological Survey* (HWI 2010) and are summarized as follows.

Surveys of the exterior roof stacks, the horizontal beam at the interior roof peak, the HEPA ventilation system and stack on the mezzanine above the DU Room, the air intake on the southern wall of the hallway, the three floor drains in the bathroom and the drain in the shower in the Metallography Lab did not show any removable or fixed contamination above the Regulatory Guide 1.86 limit. Two other floor drains were determined to be both inaccessible and non-impacted, therefore no measurements were taken.

The areas found to exceed the criteria and were left to address at a later date because it was anticipated that future DU work was planned in the Metallography Laboratory. These items were:

- the Metallography fume hood;
- the ventilation system on the mezzanine in the Metallography Laboratory;
- the sink drains in the Metallography Laboratory which were part of the line that was connected to the grinding/polishing unit; and
- the drain line along the southern wall of the Metallography Laboratory where the grinding/polishing unit was attached (This drain line leads to a sump pump located in the northeast corner of the room. Previous surveys indicated that the pump was internally contaminated).

2.0 HISTORICAL SITE ASSESSMENT

The U.S. Army Research, Development and Engineering Command, ARDEC has been issued NRC Source Material License SUB-348. This license authorizes possession and use of limited quantities of source materials including the materials formerly subjected to investigations and analyses in various parts of Building 315. This section summarizes the known information related to the historical use of radioactive materials in Building 315.

Records indicate Building 315 has been used as a sodium nitrate storehouse, as offices of the engineering division, as research and development laboratories, as physical sciences workshops, and as metallurgical laboratories. Metallography laboratory activities include analyzing and studying DU from 1985 to 2005. The principal areas where DU was handled, was in areas with equipment for conducting metallographic, corrosion, stress corrosion, and mechanical testing, or storage. These areas are shown on Figure 1 and include the following:

- the hot machine shop,
- the EDM test room,
- the mechanical test lab,
- the metallography lab,
- the microscopy lab, and
- the storeroom.

An undated Picatinny Arsenal memorandum addressed DU contamination in the corrosion laboratory, machine shop, metallographic laboratory, and mechanical testing area. The memorandum identified DU chips and fines as airborne contaminants in the previously noted areas. In addition, the metallographic laboratory generated wastewater contaminated with DU. Until 1992, the DU wastewater was piped to holding tanks located within the uranium workshop. The DU wastewater was decanted in one tank and discharged into another tank where it was tested for chemical content and radioactive concentration. The wastewater was then discharged into the sewer system. However, in 1992, the wastewater holding tank system was shut down due to leakage of one of the holding tanks. In May 1994, both DU wastewater tanks were removed. After 1992, the DU wastewater generated at Building 315 was stored in 30-gallon poly drums within the building and was transported by a waste hauler to an off-site disposal facility.

An Environmental Baseline Survey conducted on Building 315 in November 1993 identified wastewater contaminated with DU as a waste stream.

No radiological work has ever occurred in the bathroom, hallway, clean machine shop or the two offices. The hallways and clean machine shop had only been used for moving pallets of radioactive material shipped to building 315 into the storeroom where they were unpacked.

Most of Building 315 has been upgraded for use as office space with the exception of the metallographic lab. See Figure 2 for the current building layout. During the upgrade of the areas, the original walls in the impacted areas were removed or new walls were installed. Surveys of walls and floors from the 2010 building surveys indicated the building met the Regulatory Guide 1.86 (AEC 1974) limits for unrestricted use. There has been an absence of work with DU in the recent past and no work with DU is anticipated in the foreseeable future.

THIS PAGE INTENTIONALLY LEFT BLANK

3.0 SURVEY PARAMETERS

3.1 RADIONUCLIDE OF CONCERN

DU is the lone radionuclide of concern at Picatinny Arsenal. The primary constituent in DU is uranium (U)-238. As shown in Table 3.1, U-238 (half-life 4.5 x 10^9 years) decays to thorium (Th)-234 (half-life 24 days), which in turn decays to protactinium (Pa)-234 (half-life 1.7 minutes), then to U-234 (half-life 2.5 x 10^9 years). Given the relatively short half-lives of Th-234 and Pa-234 and the long half-life of U-238, a relatively stable state is reached between U-238 and its immediate progeny in a relatively short period of time. Although the primary mode of decay for U-238 itself is through alpha emission, the decay of the short-lived radionuclides (i.e., Th-234 and Pa-234) is through beta emission. Given the greater attenuation of alpha particles compared to beta, beta surveys were used as the primary method of detection, as recommended in MARSSIM Section 4.3.2 (DOD 2000) and NUREG-1757, Volume 2, Appendix O, Section O.3.3.5 (NRC 2006).

Isotope	Half-life	Radiation ^a	Energy Level (MeV) ^a	Frequency (%)
11 229	4.5 - 109	Alpha	4.3	75
0-238	4.5×10^{5} years	Alpha	0.7	25
		Beta	0.076	2.7
TL 224	24.5 days	Beta	0.095	6.2
1n-234		Beta	0.096	18.6
		Beta	0.1886	72.5
Pa-234m	1.7 minutes	Beta	2.28	98.6
Pa-234	6.7 hours	Beta	0.224	100
11.224	2.5 - 105	Alpha	4.72	27.4
0-234	$2.5 \times 10^{\circ}$ years	Alpha	4.77	72.3

Table 3-1. Portion of the Uranium-Series Radionuclides

^a Primary radiations and energies of interest.

Lead (Pb)-206 is the stable daughter in the uranium decay chain.

MeV – megaelectron Volt(s)

3.2 GEOGRAPHIC SCOPE AND OVERVIEW OF RADIOLOGICAL SURVEYS

The work within the scope of this report was accomplished in accordance with the *Radiological Survey Plan for Structures at Picatinny Arsenal* (HWI 2019). Floors and walls up to 2 m above the floor in the Metallography Laboratory were surveyed as one Class 1 survey unit (SU). All other impacted room floors were surveyed as one Class 3 survey unit with the exception of the DU Machine Shop. The DU Machine Shop had additional epoxy floor covering installed that precludes measuring the beta contamination because of the thickness of the epoxy and remodeling of the area. MARSSIM allows the use of previously collected survey data as final status data if data quality objectives are met, therefore, an evaluation of previous beta survey data from the 2010 radiological survey was evaluated using 2 pi efficiency for strontium (Sr)-90 as specified on the calibration certificate and applying a 0.5 surface efficiency and comparing results to the screening-level derived concentration guideline level (DCGL).

The same evaluation was performed for 2010 impacted wall surveys throughout the building up to 2 m above the floor because the walls during the operation time frame were removed or replaced with new surfaces covering the surface surveyed during the 2010 survey. The DU Shop floor was designated as a Class 1 SU, the lower walls up to 2 meters were designated as Class 2 SUs.

The external of the building, the former bathroom area and walls/ overhead area above 2 m are non-impacted and no further surveys are planned in these areas.

The impacted rooms from the historical building layout are listed in Table 3-2. The historical building Layout is shown on Figure 1.

Room
Metallography Laboratory
DU Machine Shop
EDM Room ^a
Microscopy Laboratory ^b
Storage Room ^b
Mechanical Test Laboratory ^a
Corrosion Laboratory ^b
Hallway
Machine Shop ^a

Table 3-2. Rooms in Building 315

Note a and b – Walls have been removed from these areas resulting in a large open area on east end (a) and west end (b) of the building connected by the Hallway.

In addition to the building surfaces the following areas/items associated with the Metallography laboratory required further investigation and surveys or removal and disposal as radioactive waste:

- the fume hood;
- ventilation system in the overhead area of the Metallography Laboratory and survey of accessible areas of remaining system;
- operational surveys of the Metallography Lab mezzanine area after removal of the ventilation and HEPA to ensure there was no spread of contamination;
- sink drains which were connected to the grinding/polishing unit;
- drain lines along the southern wall.
- pump and drain lines in northeast corner of Metallography Laboratory;

See Section 7.1 for final disposition of these items.

3.3 OVERVIEW OF SURVEY APPROACH

Scan surveys and fixed point measurements were performed using Ludlum Model 43-93 and 43-89 dual phosphor detectors coupled with either Ludlum Model 2360 or 2224 scaler/rate meters. The instrumentation detects both alpha and beta activity, however, beta surveys were used as the primary method of detection and quantification for comparison to the screening-level DCGL. The alpha measurements from the 2018 and 2019 surveys are also included for informational purposes in the survey data tables.

Removable survey measurement were collected at Class 1 survey locations, drains and the ventilation system to confirm that average removable activity is no greater than 10 percent of the total activity and the assumption used in developing screening-level DCGLs is appropriate.

3.4 DERIVED CONCENTRATION GUIDELINE LEVELS

The first step in the process of releasing a given room, building, or site is to determine what release criteria apply. In June 1974, the U.S. Atomic Energy Commission (AEC) issued AEC Regulatory Guide 1.86 (AEC 1974), which provided guidance with respect to surface contamination limits. (Historically, this NRC document is commonly referred to as "NRC Reg Guide 1.86," although the NRC did not exist at the time this document was initially produced.) Limits contained in NRC Regulatory Guide 1.86 were derived based on detectability, rather than being dose- or risk-based, with removable contamination limits equating to 20 percent of the respective total contamination limits.

Regulatory Guide 1.86 (AEC 1974) limits are commonly used for materials and equipment. The levels are 5,000 dpm/cm² for fixed beta/gamma emitters and 1,000 dpm/100 cm² for removable beta/gamma emitters.

In 1997, the NRC published Title 10, *Code of Federal Regulations (CFR)*, Part 20, Subpart E, "Radiological Criteria for License Termination," in the *Federal Register (FR)* (62 *FR* 39058). These regulations included dose-based cleanup levels, also referred to as DCGLs, for releases both with and without radiological restrictions. Section 20.1402 of Subpart E states that "A site will be considered acceptable for unrestricted use if the residual radioactivity that is distinguishable from background radiation results in a [total effective dose equivalent] (TEDE) to an average member of the critical group that does not exceed 25 [millirem] (mrem) (0.25 [millisievert] mSv) per year, including that from groundwater sources of drinking water, and that the residual radioactivity has been reduced to levels that are as low as reasonably achievable (ALARA). Determination of the levels which are ALARA must take into account consideration of any detriments, such as deaths from transportation accidents, expected to potentially result from decontamination and waste disposal."

In addition to issuance of radiological criteria for license termination, the NRC also performed "generic modeling" that "addresses residual radioactive contamination inside buildings and in soils." NUREG screening-level DCGLs for structure surfaces were developed based on "building renovation and normal building occupancy" scenarios. The building occupancy scenario accounts for exposure to fixed and removable residual radioactivity on the walls, floor, and ceiling of a decommissioned facility. It assumes that the building will be used for commercial or light industrial activities (e.g., an office building or warehouse) and includes the external radiation, inhalation of (re)suspended removable residual radioactivity, and inadvertent ingestion of removable residual radioactivity. The screening value represents the surface concentration of individual radionuclides that would be deemed in compliance with the 25 mrem per year unrestricted release dose limit in 10 *CFR* 20.1402 and is derived using conservative assumptions. Given the conservatism built into screening-level DCGLs, analysis to demonstrate that the dose to the average member of the critical group is ALARA is not required.

The "Screening Values of Common Radionuclides for Building-Surface Contamination Levels," as defined in NRC Commission Paper SECY-98-242, lists decommissioning and demolition (D&D) screening values. The screening-level DCGLs specified represent the 90th percentile of the output dose distribution equivalent to 25 mrem per year for each of the listed radionuclides.

The NRC staff acknowledged several areas in which modeling used to develop screening-level DCGLs is overly conservative. One such area is in the selection of resuspension factors. Consequently, NRC issued guidance in NUREG-1720, *Re-Evaluation of the Indoor Resuspension Factor for the Screening Analysis of the Building Occupancy Scenario for NRC's License Termination Rule - Draft Report for Comment*, (NRC 2002), which recommends a resuspension

factor of 1 x 10^{-6} m⁻¹. Screening-level DCGLs have been recalculated using D&D Version 2.1, with the only change being the modification of the value of the resuspension factor to the recommended value of 1 x 10^{-6} m⁻¹. Using a 95 percent confidence level, this change resulted in derivation of the screening-level DCGL of 1,400 dpm/100 cm² for U-238. A copy of the D&D output summary report using the modified resuspension factor is included in Appendix A of this survey report.

Each decay of natural uranium results in emission of alpha particles from the U-238 series parent and from U-234 as well as two beta particles from Th-234 and Pa-234m. This results in an alpha/beta ratio of about 1. With DU by contrast, U-234 is preferentially extracted with U-235 resulting in an alpha/beta ratio typically on the order of approximately 1.6 (NRC 2006). As such, the ratio of 1.6 is applied to the U-238 screening-level of 1,400 to make it applicable for a total beta screening level of 2,240 dpm/100 cm² for DU. This value is more conservative than the activity concentration (i.e., 6,000 dpm/100 cm²) specified for uranium in Table 5-2, "Screening levels for Clearance" of Department of Army Pamphlet 385-24 but is consistent with NRC license criteria contained in Title 10, *CFR* and with approaches recommended by NUREG-1757.

Consistent with NUREG-1757, *Consolidated Decommissioning Guidance: Characterization, Survey, and Determination of Radiological Criteria,* (NRC 2003), Group 2 licensees include those who "can demonstrate compliance with 10 *CFR* Part 20.1402 (Radiological criteria for unrestricted use) using the screening methodology." Given the use of such criteria for building surveys at Picatinny Arsenal, the associated permittees are reasonably categorized as equivalent to Group 2 licensees.

With respect to ALARA, it should be noted that pursuant to NUREG-1757, Volume II, Revision 1, Appendix N, (NRC 2006) indicates that "absent information to the contrary that licensees who remediate building surfaces or soil to the generic screening levels do not need to provide the analyses to demonstrate that these screening levels are ALARA. In addition, if residual radioactivity cannot be detected, it may be assumed that it has been released to levels that are ALARA" (NRC 2006).

4.0 **DECISION ERROR**

There are two types of decision error: Type I (alpha) and Type II (beta). Type I error is described as the probability of determining that the median concentration of a particular constituent is less than a criterion when it is actually not (false positive). Type II error is described as the probability of determining that the median is greater than criteria when it is not (false negative). The probability of making decision errors can be controlled by adopting an approach called hypothesis testing.

 H_0 = the median concentration in the SU exceeds that in the reference area by more than the DCGL

where

 $H_0 = null hypothesis$

This hypothesis assumes the site to be contaminated above criteria until proven otherwise. The Type I error refers to the probability of determining that the area is below the criterion when it is actually above the criterion (incorrectly releasing the survey unit). The Type II error refers to the probability of determining that the area is above the criterion when it is actually below the criterion (incorrectly failing to release the survey unit).

Based on the previously defined null hypothesis, lowering the Type I error decreases the probability of residual contamination exceeding site criteria, whereas increasing the Type I error would have the inverse effect. By contrast, lowering the Type II error decreases the probability of releasing a survey unit in which residual concentrations of contamination are below site criteria, generally resulting in increased costs for the removal of residuals that actually achieve criteria. Increasing the Type II error, by contrast, typically results in increased sampling costs but in a reduced probability of failing to release a survey unit that actually achieves cleanup criteria.

4.1 DECISION ERROR FOR SURVEYS AT BUILDING 315

The Type I error for Picatinny Arsenal has been set at 0.05 and the Type II error has been set at 0.2. This indicates a 5 percent probability of erroneously releasing a survey unit with a true mean greater than the DCGL and a 20 percent probability of not releasing a site that has attained the DCGL. This implies that if the mean is at a concentration that would produce an exposure at the criterion level, a 5 percent probability of erroneously finding it below the criterion exists, and a 20 percent probability of erroneously finding it to be greater than the criterion exists.

THIS PAGE INTENTIONALLY LEFT BLANK

5.0 SURVEY PARAMETERS

5.1 **RELATIVE SHIFT**

A material background reference area was not used for this survey and the number of samples was determined using the calculations for the Sign Test. The relative shift is defined as the Δ/σ where Δ is the DCGL - LBGR (lower bound of the gray region) and σ is the standard deviation of the contaminant distribution. MARSSIM recommends that the LBGR initially be set to one half of the DCGL, but that it should be adjusted if necessary to provide a Δ/σ value in the recommended range of 1 to 3. The total gross beta screening-level DCGL for Picatinny Arsenal was set to 2,240 dpm/100 cm². Thus, Δ can be found by:

$$\Delta = DCGL - LBGR$$

$$\Delta = 2,240 \frac{dpm}{100 \ cm^2} - \frac{2,240 \frac{dpm}{100 \ cm^2}}{2} = 1,120 \frac{dpm}{100 \ cm^2}$$

To determine standard deviation actual data may be used or consistent with MARSSIM guidance and with experience implementing the MARSSIM approach, "It is reasonable to assume a coefficient of variance of 30 percent" (DOD 2000).

Thus using a variance of 30 percent the relative shift was determined as follows:

relative shift
$$= \frac{\Delta}{\sigma}$$

$$relative \ shift = \frac{1,120 \frac{dpm}{100 \ cm^2}}{672 \frac{dpm}{100 \ cm^2}} = 1.67$$

Given that MARSSIM guidance recommends a relative shift between 1.0 and 3.0, no adjustment was necessary.

5.2 THE NUMBER OF MEASUREMENTS PER SURVEY UNIT

The calculated value for the relative shift can be used to obtain the minimum number of measurements necessary to satisfy requirements using the MARSSIM equation:

$$N = \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{4(Sign \, p - 0.5)^2}$$

The calculated value, N, is the number of measurements from the SUs. Z1- α and Z1 β are critical values that can be found in MARSSIM Table 5.2, and Sign p is a measure of probability available from MARSSIM Table 5.4.

The number of data points, N, for the Sign Test of each SU is calculated using Equation 5-2 and Table 5.4 in MARSSIM, given 5 percent Type I error and 20 percent Type II error.

$$N = \frac{(1.645 + 0.842)^2}{4(0.945201 - 0.5)^2} = 8 \text{ samples}$$

The uncertainty associated with the calculation, N, should be accounted for during survey planning, thus the number of data points is increased by 20 percent and rounded up. This is to ensure there are sufficient data points to allow for any possible lost or unusable data.

N = 8 + 0.2(8) = 10 measurements

Therefore 10 measurements were required for the structure survey units in Building 315. The number was further increased to 20 measurements to increase the power associated with the survey.

5.3 CLASSIFICATION OF SURVEY UNITS

As described in MARSSIM, SUs are subdivided into three classes. An SU is classified as a Class 1 SU if it meets any one of the following criteria:

- 1. The area is or was impacted (potentially influenced by contamination);
- 2. The area has potential for delivering a dose or risk greater than criteria;
- 3. There is potential for small areas of elevated activity; or
- 4. There is insufficient evidence to classify the area as Class 2 or Class 3.

An SU is classified as Class 2 if:

- 1. The area has the potential to have been impacted;
- 2. The area has low potential for delivering a dose or risk greater than criteria; or
- 3. There is little or no potential for small areas of elevated activity.

An SU is classified as Class 3 if:

- 1. The area has only minimum potential for being impacted;
- 2. The area has little or no potential for delivering a dose or risk greater than criteria; and
- 3. There is little or no potential for small areas of elevated activity.

Table 5-1 lists recommended surface areas for each class of SU.

Classification	Suggested SU Areas for Structures
Class 1	Up to 100 m ²
Class 2	100 to 1,000 m ²
Class 3	No Limit

 Table 5-1. MARSSIM Suggested Survey Unit Areas

Source: DOD 2000

Using the previous criteria and also taking into consideration that the entire building had previously been surveyed and met Reg Guide 1.86 criteria with the exception of the Metallography Laboratory. It was determined that one Class 1 SU was necessary for the Metallography Laboratory floor and lower walls and one Class 3 SU was necessary for the remainder of floors requiring survey. In addition to the two survey units established for radiological survey there are 6 additional SUs that were established to evaluate the survey data previously collected in 2010. These SUs included one Class 1 SU for the DU Room floor and 5 Class 2 SU for the lower walls of the impacted areas of Building 315. The walls were designated as Class 2 SUs because there were no areas of elevated

activity identified in 2010 and readings were collected using a 1 m^2 grid pattern rather than random points for a Class 3 SU. The wall areas were divided into SUs based on the wall surveys performed in 2010 and having 1 m^2 grids provided sufficient data for each SU.

5.4 CALCULATION OF MEASUREMENT GRID SPACING

The appropriate spacing for a triangular grid on the floor the floor and lower walls of a 67 m² Class 1 area requiring 10 measurements was 2.8 m. The actual number of fixed-point measurements collected (in a triangular grid) in the Class 1 SU was increased to 20 measurements result in a grid spacing of approximately 2.0 m.

THIS PAGE INTENTIONALLY LEFT BLANK

6.0 SURVEY IMPLEMENTATION

6.1 INSTRUMENTATION SELECTION

Survey instruments used for quantitative radiological measurements were:

- selected based on the survey instrument's detection capability for alpha and beta activity;
- calibrated in accordance with American National Standards Institute (ANSI) N323A, Radiation Protection Instrumentation Test and Calibration – Portable Survey Instruments (ANSI 1997);
- calibrated with National Institute of Standards and Technology (NIST) traceable sources to obtain definitive quantitative measurements; and
- operated and maintained by qualified personnel, in accordance with Health Physics Program procedures (e.g., physical inspection, background checks, response/operational checks).

Radiological field instrumentation used for this survey was calibrated in accordance with manufacturers' recommendations and ANSI N323A within the past 12 months. Daily quality control (QC) checks were conducted on each instrument and performed in accordance with Health Physics Procedures. Only data obtained using instruments that satisfy these performance requirements have been accepted for use during this survey. (See instrument calibrations in Appendix B.)

6.1.1 Scan Minimum Detectable Concentrations

The minimum detectable concentration (MDC) is an activity level that a specific instrument and measurement technique can be expected to detect 95 percent of the time. Detection sensitivities (i.e., scan MDCs) were initially calculated in accordance with the approach detailed in NUREG-1507, *Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions* (NRC 1998). Calculations and associated results for Ludlum 43-89, Ludlum 43-93, and Ludlum 43-37 detectors are provided in Appendix C of this document and instrument summaries are listed in Table 6-1, following, for the survey instrumentation.

Detector Model	Radiation of Interest	Background (cpm)	Instrument Efficiency (cpm/dpm)	Scan MDC ^a (dpm/100 cm ²)	Static MDC ^a (dpm/100 cm ²)
		2018 and	l 2019 Surveys		
Ludlum Model 2360 Scaler with Model 43-93 Detector SN: 260691	Beta	226	0.451	860	226
Ludlum Model 2360 Scaler with Model 43-93 Detector SN: 200115	Beta	204	0.451	816	215
Ludlum Model 2360 Scaler with Model 43-93 Detector SN: 311200	Beta	252	0.506	811	213

 Table 6-1. Evaluation of Instruments Used at Picatinny Arsenal

Detector Model	Radiation of Interest	Background (cpm)	Instrument Efficiency (cpm/dpm)	Scan MDC ^a (dpm/100 cm ²)	Static MDC ^a (dpm/100 cm ²)
		2018 and 2019	Surveys (Continued)		
Ludlum Model 2360 Scaler with Model 43-93 Detector SN: 311200	Beta	246	0.506	800	210
Ludlum Model 3030E with Model 43-10-1 Detector SN: PR360356	Beta	65.8	0.404	N/A	71.5
		201	0 Surveys		
Ludlum Model 2224 Scaler with Model 43-89 Detector SN: 170449	Beta	280	0.358	930	362
Ludlum Model 2224 Scaler with Model 43-89 Detector SN: 170449	Beta	290	0.358	943	368
Ludlum Model 2360 Scaler with Model 43-93 Detector SN: 244555	Beta	280	0.499	868	324
Ludlum Model 2221 Scaler with Model 43-37 Detector SN: 15934	Beta	1409	0.569	107	236

Table 6-1. Evaluation of Instruments Used at Picatinny Arsenal (Continued)

^a The derivation of site-specific scan MDCs is presented in Appendix C.

SN – serial number; cpm – counts per minute; dpm – disintegrations per minute

6.1.2 Fixed-Point Measurement Calculations

Fixed-point beta measurement results in units of counts per minute (cpm) are converted to units of dpm/100 cm² using the following equation:

$$\operatorname{Result}\left(\frac{dpm}{100cm^2}\right) = \frac{\left(R_g\right) - \left(R_b\right)}{\left(\varepsilon_i\right)\left(\varepsilon_s\right)\left(\frac{\operatorname{Probe Area}}{100}\right)}$$

where:

 R_g is the static data point gross count rate (cpm)

 R_b is the instrument field background count rate (cpm)

 ε_i is the instrument 2 π efficiency (cpm/disintegrations per minute [dpm])

 ε_s is the surface efficiency (e.g., 0.50 for higher energy beta)

Probe Area (square centimeters [cm²]) (e.g., 100 cm² for Ludlum Model 43-93).

7.0 RADIOLOGICAL INVESTIGATIONS AND SURVEYS RESULTS

Surveys and investigations described in this survey report addresses the removal and disposition of various equipment, the radiological surveys performed in May 2018 and November 2019 of the Building floor area designated as a Class 3 SU and the Metallography Laboratory floor and lower walls, drains and ventilation ducting. After the 2010 survey of the building floors and walls using Regulatory Guide 1.86 limits for release, an epoxy coating between 6 to 8 inches thick was placed over the DU Machine Shop floor and remodeling and installation of new wall material was installed making resurvey impractical. Therefore the relevant data collected in 2010 was evaluated using 2 pi efficiency for Sr-90 and applying a 0.5 surface efficiency to compare to the beta screening-level DCGL consistent with the 2018 and 2019 surveys. The impacted areas surveyed and evaluated were divided into 8 SUs. There are two Class 1 SUs, five Class 2 SUs and 1 Class 3 SU that were designated to evaluate the impacted areas of Building 315.

7.1 INVESTIGATION AND DISPOSTION OF POTENTIALLY CONTAMINATED ITEMS

In 2018 all contaminated drain lines and the sump pump in the Metallography Laboratory were removed and disposed of as radioactive waste. The fume hood was disconnected from the ventilation system and removed from against the wall, wiped down and surveyed by direct frisk for release. A glass drain attached to the fume hood was contaminated and was left for removal during the site mobilization in 2019.

The ventilation system above the Metallography Laboratory was confirmed to be contaminated in 2018 and the HEPA filters were removed and disposed of as radioactive waste. The ventilation ducting was left to be removed and addressed during the 2019 mobilization.

In 2019 the glass drain was removed from the fume hood and smears were collected. The fume hood was surveyed for release in 2018 and 2019 and is not part of the remaining structure surveys.

In 2019 the HEPA ducting, HEPA housing and the inlet and outlet transition piece from the HEPA housing were removed. The ventilation ducting was disposed of as radioactive waste and the inlet and outlet transition piece were wiped down and surveyed for release. After removal of the HEPA housing outlet transition piece the blower inlet was surveyed with all pieces below the scan MDC. The blower and blower exhaust ducting discharging to the roof stack are the only remaining portions of the HEPA ventilation that are part of the building structure. The removed pieces were released, however, readings were collected on all components at the highest location identified during the scan and compared to the screening-level DCGL.

After removal and survey of the ventilation components a scan survey was performed on 100 percent of the floor area of the overhead mezzanine area and no readings above the scan MDC were identified. Three fixed point readings were collected in the work area.

The ventilation system above the DU Machine Shop was removed wiped down and released in 2010. A new fume hood was installed in the Adhesives Laboratory and an investigation was done in the overhead mezzanine area to determine if any portion of the previous system was re-used and thus part of the building structure. The HEPA housing and blower unit that were previously released were still in the mezzanine area but were not part of the new ventilation system and not part of the permanent structure. Only the roof stack exhaust piping was in use. A scan survey of the HEPA housing and the blower inlet were performed and did not exceed the scan MDC. Measurements were also collected for comparison to the screening-level DCGL to confirm the 2010 surveys, indicating no contamination downstream of the HEPA filters. The measurement data from the ventilation systems and the mezzanine area can be found in Appendix D. Table D-1.

There were 4 drains in the impacted area of Building 315. A floor drain and a pipe drain in the southeast corner of the Metallography Laboratory, a floor drain in the Adhesives Laboratory, and a sink drain in the warehouse (formerly the Garage) in the eastern portion of building 315. Readings were collected at the drain opening and compared to the screening-level DCGL in 2019. Only the sink drain had a cover that could be removed and a reading was also taken on the bottom of the drain cover. All readings were below the screening-level DCGL. The measurement data from the drains can be found in Appendix D, Table D-2.

7.2 BUILDING STRUCTURE SURVEY MEASUREMENT AND SCAN RESULTS

Information provided in this section summarizes the measurement results for the building surface SUs. The actual number of systematic measurements collected exceeded the minimum required number for the Building 315 SUs. Table 7-1 contains the calculated minimum number of samples, the actual number of measurements collected for each SU and the results of a retrospective evaluation of the minimum number of samples using the SU mean as the LBGR and the SU standard deviation.

SU	Area	Minimum Number of Measurements per MARSSIM Calculation	Actual Number of Systematic or Random Measurements Collected	Retrospective Analysis of the Minimum Number of Measurements per MARSSIM Calculation
1	Metallography Laboratory	10	19	8
2	Class 3 Floor Area	10	20	8
3	DU Machine Shop Floor	10	35	9
4	DU Machine Shop Walls	10	41	8
5	West End Walls	10	100	8
6	Hallway Walls	10	86	8
7	Garage Walls	10	44	8
8	East End Garage Walls	10	34	8

 Table 7-1. Number of Systematic Fixed-Point Measurements

7.2.1 Metallography Laboratory Floor and Lower Walls SU-1

The Metallography Laboratory floor and walls up to 2 m were classified as a MARSSIM Class 1 SU and measurements were collected on a systematic grid as shown on Figure 3.

One hundred (100) percent of the surface area was subjected to gross beta scan surveys. There were four locations identified during the scan survey that required further investigation and collection of a biased measurement. A small area of approximately 1 ft² in size directly in front of the door had elevated activity and two fixed point measurements were collected at the two locations with the highest readings identified during the scan, measurement location 21 and 22. Measurement location 22 exceeded the screening-level DCGL. This location was wiped down with a cleaner and rags and allowed to dry and resurveyed. The final measurement (22a) met the screening-level DCGL. In the area that was behind where the fume hood had been located there was an area with elevated activity identified on the scan on the floor area adjacent to the wall and on the bottom of the wall each approximately 100 cm² in size. One fixed point reading was taken on the reading on both the floor and the lower wall, locations 23 and 24 respectively and both met the screening-level DCGL. All other surface scan results were below the investigation level.

Nineteen systematic measurements were collected on a systematic grid. The original grid was established for 20 grid point measurements but one location was inadvertently collected on the north wall rather than the east wall. This measurement, location (5), was included as a biased location

rather than a systematic. A retrospective analysis of the data indicated that 8 measurements were the minimum required for the statistical test and therefore the 19 measurements that were collected are adequate for evaluating the SU. There were no systematic measurements that exceeded the screening-level DCGL See Appendix D Table D-3 for survey data.

MARSSIM states that if the largest SU measurement is less than the derived concentration guideline levels used for statistical tests (DCGL_w), the Sign test will always show that the SU always meets the release criterion. No systematic measurements exceeded the DCGL_w, therefore, a Sign test was not required and SU-1 meets the release criterion. Sufficient information has been collected to reject the null hypothesis that the area in question exceeds the DCGL_w.

7.2.2 Class 3 Floor Area SU-2

The remainder of the Building 315 impacted floor with the exception of the DU Machine Shop floor was classified as a MARSSIM Class 3 SU and measurements were collected at random locations as shown on Figure 4.

Gross beta scan surveys were performed at an area of approximately 2 m^2 around each fixed point measurement, on 100 percent of the accessible areas in the hallway from the Metallography Laboratory up to the warehouse on the east end of the building and areas directly in front of doorways exiting the building. Scan surveys did not reveal any areas that were radiologically elevated with respect to the investigation level which was established at the beta scan MDC.

Twenty random measurements were collected. The statistical design only required 10 samples and the number was increased to 20 to ensure adequate power was achieved. There were no random measurements that exceeded the screening-level DCGL. See Appendix D Table D-4 for survey data.

MARSSIM states that if the largest SU measurement is less than the DCGL_w, the Sign test will always show that the SU always meets the release criterion. No systematic measurements exceeded the DCGL_w, therefore, a Sign test was not required and SU-2 meets the release criterion. Sufficient information has been collected to reject the null hypothesis that the area in question exceeds the DCGL_w.

7.2.3 DU Machine Shop Floor SU-3

The DU Machine Shop floor was surveyed in 2010 using a 1 m² grid and the results were compared to Regulation Guide 1.86 limits to allow for release of the building structure. The 1 m² grid survey data collected in 2010 is being re-evaluated as a MARSSIM Class 1 SU and compared to the screening-level DCGL. See Figure 5 for the 2010 building layout and Figure 6 for the floor systematic grid locations.

One hundred (100) percent of the surface area was subjected to gross beta scan surveys. There were seven bolt holes that had elevated readings identified during the scan survey. The concrete was chipped away and wiped down using a cleaner then the area was rescanned to verify the contamination was removed. No post decontamination fixed point measurements were recorded. It should be noted that the beta investigation action level in cpm for 5,000 dpm/100 cm² using 4 pi efficiency and a surface of efficiency of 1 is only slightly higher than the action level would be when using 2 pi instrument efficiency and a 0.5 surface efficiency using the following equation:

$$CPM = \left(Limit \times InstEff \times SurfEff \times \left(\frac{\text{ProbeArea}}{100} \right) + fieldBKGD \right)$$

- Regulatory Guide 1.86 action level= 5000 x 0.081 x 1 x 1.25 + 280 = 786 cpm
- Screening-level DCGL action level= $2240 \times 0.358 \times 0.5 \times 1.25 + 280 = 781$ cpm

There is a very small difference between the scanning action levels and essentially the same for a surveyor in the field monitoring a ratemeter. The small difference in action levels provides assurance that the final scans in 2010 meet the beta screening-level DCGL.

Thirty five systematic measurements were collected on the 1 m^2 systematic grid. Two of the elevated bolt hole readings also used for the systematic grid measurement. As mentioned previously, these locations were decontaminated and scanned to ensure the contamination was removed but no additional fixed point measurements were collected. The original elevated readings are included in the data set table and in the Sign Test. See Appendix D Table D-5 for survey data.

Two systematic measurements exceeded the screening-level DCGL, therefore, a Sign test was required. The Sign test shows that SU-3 passes and meets the release criterion. Sufficient information has been collected to reject the null hypothesis that the area in question exceeds the DCGL_w. See Appendix E for the SU-3 Sign Test.

7.2.4 Building 315 Lower Walls SU-4 through SU-8

The Building 315 lower walls were surveyed in 2010 using a 1 m² grid and the results were compared to Regulation Guide 1.86 limits to allow for release of the building structure. The 1 m² grid survey data collected on the lower walls in 2010 is being re-evaluated as five MARSSIM Class 2 SUs and compared to the screening-level DCGL. The SUs include walls from the following:

- DU Machine Shop (SU-4)
- West End (SU-5)
- Hallway (SU-6)
- Garage (SU-7)
- East End Garage (SU-8)

See Figure 5 for the 2010 Building layout and Figures 6 through 10 for the wall systematic grid locations associated with each SU respectively.

One hundred (100) percent of the SU accessible wall surface area was subjected to gross beta scan surveys. There were no locations with elevated activity identified during the scan that required remediation. No post decontamination fixed point measurements were recorded.

Systematic measurements were collected at each 1 m^2 grid with the actual number collected for each SU shown in Table 7-1. The statistical design required 10 samples and the number was increased to 20 to ensure adequate power was achieved. Each SU exceeded 20 systematic measurements. There were no measurements that exceeded the screening-level DCGL. See Appendix D Tables D-6 through D-10 for survey data.

MARSSIM states that if the largest SU measurement is less than the DCGLw, the Sign test will always show that the SU always meets the release criterion. None of the systematic measurements exceeded the DCGLw, therefore, a Sign test was not required in any of the wall SUs and SUs- 4 through 8 meet the release criterion. Sufficient information has been collected to reject the null hypothesis that the wall SUs in question exceeds the DCGLw.

7.3 **REMOVABLE CONTAMINATION EVALUATION**

NUREG-1757, Volume 2, notes that screening level DCGLs developed by the NRC are based on the assumption that the fraction of removable surface contamination is equal to 0.1. As such, if areas of elevated radioactivity are encountered, the percentage of removable activity is generally

evaluated to assure that the fraction of removable activity is consistent with the underlying assumption. Removable survey measurements were collected for the Class 1 systematic and biased locations and were also collected for drain and ventilation measurements. The locations that had positive results for the fixed point and removable measurements were compared to evaluate the average fraction of removable activity. The average removable activity fraction was less than 0.1. See Table 7-2 for removable results.

		Removable Beta Activity			vable A		
Measurement Location	gross net	$dnm/100 \text{ am}^2$	gross net		$dnm/100 \text{ am}^2$	%	
	cpm	cpm	apm/100 cm-	cpm	cpm	upm/100 cm²	removable*
Metallography Laboratory #1	54.5	0	0	0	0	0	
Metallography Laboratory #2	62.0	0	0	0	0	0	
Metallography Laboratory #3	63.5	0	0	0	0	0	
Metallography Laboratory #4	71.5	5.7	14	0	0	0	0.30
Metallography Laboratory #5	64.0	0	0	0	0	0	
Metallography Laboratory #6	52.5	0	0	0	0	0	
Metallography Laboratory #7	75.0	9.2	23	1	0.9	3	0.11
Metallography Laboratory #8	63.5	0	0	1	0.9	3	
Metallography Laboratory #9	66.0	0.2	0	1	0.9	3	0.00
Metallography Laboratory #10	75.0	9.2	23	0	0	0	0.07
Metallography Laboratory #11	60.0	0	0	0	0	0	
Metallography Laboratory #12	67.5	1.7	4	1.5	1.4	4	0.07
Metallography Laboratory #13	62.0	0	0	1	0.9	3	
Metallography Laboratory #14	61.5	0	0	1.5	1.4	4	
Metallography Laboratory #15	72.0	6.2	15	1.5	1.4	4	0.10
Metallography Laboratory #16	67.0	1.2	3	0	0	0	
Metallography Laboratory #17	61.0	0	0	0.5	0.4	1	
Metallography Laboratory #18	51.0	0	0	0	0	0	
Metallography Laboratory #19	68.0	2.2	5	0.5	0.4	1	
Metallography Laboratory #20	62.5	0	0	0	0	0	
Metallography Laboratory #21	67.0	1.2	3	0.5	0.4	1	0.00
Metallography Laboratory #22	62.5	0	0	3.5	3.4	10	
Metallography Laboratory #23	79.5	13.7	34	5	4.9	14	0.02
Metallography Laboratory #24	63.0	0	0	0	0	0	
Metallography Laboratory Blower Inlet	64.5	0	0	0.5	0.4	1	
Metallography Laboratory HEPA Outlet Transition	53.0	0	0	0	0	0	
Metallography Laboratory HEPA Housing	66.5	0.7	2	1.5	1.4	4	0.00
Metallography Laboratory HEPA Inlet Transition	62.5	0	0	0	0	0	
DU Machine Shop HEPA Housing	59.0	0	0	0.5	0.4	1	
DU Machine Shop Blower Inlet	64.0	0	0	0	0	0	
Metallography Laboratory Floor Drain	54.5	0	0	0	0	0	
Metallography Laboratory Pipe Drain	59.0	0	0	0	0	0	
Warehouse (former Garage) Sink Drain	60.5	0	0	0	0	0	
Adhesive Laboratory Drain	66.5	0.7	2	0	-0.1	0	0.02
						Average Removable	0.07
						Fraction	,

Table 7-2. Removable Contamination Evaluation

Notes:

The counting instrument used was Ludlum Model 3030E serial #327699 coupled with Ludlum Model 43-10-1 serial #PR360356. Cal Due 9/20/2020. Alpha efficiency- 34.85%, Beta efficiency 40.4%.

Beta minimum detectable activity (MDC) = $71.5 \text{ dpm}/100 \text{ cm}^2$, alpha MDC= $7.4 \text{ dpm}/100 \text{ cm}^2$. (10 minute background with 2 minute count time). * Included % removable when both fixed and removable were positive results.

THIS PAGE INTENTIONALLY LEFT BLANK

8.0 CONCLUSION

Radiological final status surveys including building surface scans and fixed point measurements were performed to assess the status of Building 315. Surveys were designed and conducted to determine if radiologically impacted areas met the criteria for unrestricted release in accordance with 10 *CFR* 20, Subpart E.

Sufficient data exist for all impacted areas of Building 315 to demonstrate that residual concentrations of U-238 from past operations with DU achieve the beta screening-level DCGL of 2,240 dpm/100 cm². MARSSIM FSS demonstrates that the null hypothesis, "that residual activity in Building 315 exceeds the DCGL" is rejected. Measurement results collected from impacted areas demonstrate that each SU meets the criterion. See Appendix D for survey results.

Results demonstrated that residual activity in each SU was compliant with the NRC surface activity screening-level DCGL. The screening-level DCGL was developed by the NRC such that it conservatively corresponds to the 25 mrem per year dose limit for the average member of the critical group. As such, compliance with this screening-level DCGL necessarily demonstrates compliance with the NRC unrestricted release standards prescribed by 10 *CFR* 20, Subpart E.

THIS PAGE INTENTIONALLY LEFT BLANK

9.0 **REFERENCES**

- AEC 1974. U.S. Atomic Energy Commission. "Termination of Operating Licenses for Nuclear Reactors." U.S. Atomic Energy Commission Regulatory Guide: Directorate of Regulatory Standards. Regulatory Guide 1.86. June 1974.
- ANSI 1997. American National Standards Institute. *Radiation Protection Instrumentation Test* and Calibration, Portable Survey Instruments. ANSI N323A-1997. New York, New York. April 3, 1997, with July 8, 2004 correction.
- Chatterjee 2011. Email communications from Tapan Chatterjee to Joseph Fabiano dated January 24, 2005, Subject: "B315."
- DOD 2000. Department of Defense, U.S. Department of Energy, U.S. Environmental Protection Agency, and U.S. Nuclear Regulatory Commission. *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*. NUREG-1575. EPA 402-R-97-016. August 2000, with June 2001 updates.
- HWI 2010. Hidden Water, Inc. Hidden Water, Inc. Armament Research Development and Engineering Center (ARADEC) Building 315 Radiological Survey. 2010.
- HWI 2019, Hidden Water, Inc. 2019. *Radiological Survey Plan for Structures at Picatinny Arsenal Revision 1*, October.
- NRC 1998. Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions, NUREG-1507, Nuclear Regulatory Commission. June.
- NRC 2002. Re-Evaluation of the Indoor Resuspension Factor for the Screening Analysis of the Building Occupancy Scenario for NRC's License Termination Rule - Draft Report for Comment (NUREG-1720), June.
- NRC 2003. Consolidated Decommissioning Guidance: Characterization, Survey, and Determination of Radiological Criteria (NUREG-1757, Vol. 2, Rev. 1), September.
- NRC 2006. U.S. Nuclear Regulatory Commission. Consolidated Decommissioning Guidance; Characterization, Survey, and Determination of Radiological Criteria. NUREG-1757, Volume 2, Revision 1. September 2006.
- Picatinny Arsenal 2015. Picatinny Arsenal. "Picatinny Arsenal Historical Overview." http://www.pica.army.mil/PicatinnyPublic/about/history.aspx. Accessed August 2015.
- World 2006. World Environmental, Inc. Characterization and Survey of Building 315. December 2006.

THIS PAGE INTENTIONALLY LEFT BLANK

FIGURES
THIS PAGE INTENTIONALLY LEFT BLANK

Hidden Water Inc. 3939 W. McKinley Ave Milwaukee, WI 53208	Title: Figure 1 Original Configuration	Date: December 28, 2019	Location: Building 315	Scale: As Shown 0 5 10 15 20 25 40		
	Project: Building 315	Job Number: USA 2015-017	Picatinny Arsenal RDAR-QES-F Building 315 Picatinny Arsenal, NJ 07806			

		1 ×	X	2 X	3 X	4	⁵ X
	6 X	Z X	8 X	9 X		$X_{10}^{21} X^{22}$	
		12 X	13 X	14 X	15 X	23 X	
-		17 ×	18 X	1	9 X	X ²⁴	
		⊠ Random ૬ × Biased Sા	3urvey Poin¹ ≀rvey Points	ts			
Hidden Water Inc. 239 W. McKinley Av.	Tit Metallogra	ાe: Figure 3 aphy Room-Class 1	Date: Decem	ber 28, 2019	Location: E	Building 315	Scale: As Shown 0 1 2 3 4 5 10
Nilwaukee, UI 53208	Projec	ot: Building 315	Job Number:	USA 2015-017	RDAR Bulldl Picatinny Ars	-QES-F Ing 315 enal, NJ 07806	

Figure 5. Building 315 2010 Survey Layout

	SU-3 DU Room Floor										
1	6 11 16 21 26 31										
2	7	12	17	22	27	32					
3	8	13	18	23	28	33					
4	9	14	19	24	29	34					
5	10	15	20	25	30	35					

SU-4 West Wall									
> 2m									
7	7 8 9 10 11 12								
1 2 3 4 5 6									

SU-4 North Wall										
> 2m										
18	18 19 20 21 22									
13	13 14 15 16 17									

SU-4 East Wall										
> 2m										
28	29	30	31	Deer	32					
23	23 24 25 26 Door 27									

SU-4 South Wall								
> 2m								
37	38	40	41					
33	34	Door	35	36				

Figure 6. DU Machine Shop Floor (SU-3) and Walls (SU-4)

West Wall										
> 2m										
10	11	12	13	14	15	16	17	18		
1	1 2 3 4 5 6 7 8 9									

	North Wall															
	> 2m															
36	26 27 28 20 40 41 42 42 44 45 46 47 48 40 50 51 52									52						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35

East Wall									
. 2									
> 2m									
60	60 61 62 63 64 65 66								
53	54	55	56	57	58	59			

Small East Wall								
> 2m								
87	88	89	90					
83 84 85 86								

	South Wall												
	> 2m												
75	75 76 77 78 79 80 81 82												
67	68	69	67 68 69 70 71 72 73 74										

	Sm	all South W	/all	
		> 2m		
>2m 96 97 98 99 100				
91	92	93	94	95

Figure 7. West End Walls (SU-5)

Hallway West Wall									
> 2m									
	2.00								
5	5 6 7 8								
1 2 3 4									

	Hallway North Wall										
	> 2m										
20	20 21 22 23 24 25 26 <u>27</u> 28 29 30										
9	9 10 11 12 13 14 15 Doorway 16 17 18 19										

	South Wall West End										
	> 2m										
58	58 57 56 55 54 53 52 51 50 49 48 47 46 45										45
44	33 33 33 33 33 33 31 36 35 34 33 32 31										

	South Wall East End										
	> 2m										
86	86 85 84 83 82 81 80 79 78 77 76 75 74 73										73
72	72 71 70 69 68 67 66 65 64 63 62 61 60 59										59

Figure 8. Hallway Walls (SU-6)

Garage West Wall										
	> 2m									
8	8 9 10 11 12 13 14									
1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

	Garage North Wall											
	> 2m											
30	30 31 32 33 34 35 36 37 38 39 40 41 42 43 44										44	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29											29	

Figure 9. Garage Walls (SU-7)

Eas	East End Garage North Wall									
	> 2	2m								
5	5 6 7 8									
1	1 2 3 4									

	East End Garage East Wall											
	> 2m											
18	18 19 20 21 22 23 24 25 26											
9	10	11	12	13	14	15	16	17				

Eas	East End Garage South Wall									
	> 2	2m								
31	31 32 33 34									
27	28	29	30							

Figure 10. East End Garage Walls (SU-8)

APPENDIX A

DECOMMISSIONING AND DEMOLITION OUTPUT SUMMARY REPORT FOR URANIUM 238

THIS PAGE INTENTIONALLY LEFT BLANK

DandD Building Occupancy Scenario

DandD Version: 2.4.0 Run Date/Time: 1/9/2018 1:47:56 PM Site Name: Picatinny Description: U-238 Revised resuspension factor FileName:C:\Users\passigm\DandD Docs\U-238 Revised.mcd

Options:

Implicit progeny doses NOT included with explicit parent doses Nuclide concentrations are distributed among all progeny Number of simulations: 100 Seed for Random Generation: 8718721 Averages of sampled values used for behavioral and metabolic type parameters Averages of sampled values not used for derived behavioral or metabolic parameters

External Pathway is ON Inhalation Pathway is ON Secondary Ingestion Pathway is ON

Initial Activities:

Nuclide	Area of Contamination (m ²)		Distribution
238U	UNLIMITED	CONSTANT(dpm/100 cm**2)
Justification for concentration equating to 25 mrem/yr whe resuspension factor of 1E-6	on: Site Specific Value n applying the indoor m-1	<u>Value</u>	1.40E+03

Chain Data:

Number of chains: 1

Chain No. 1: 238U Nuclides in chain: 16

Nuclide	Chain Position	Half Life	First Parent	Fractional Yield	Second Parent	Fractional Yield	Ingestion CEDE Factor (Sv/Bq)	Inhalation CEDE Factor (Sv/Bq)	Surface Dose Rate Factor ((Sv/d)/ (Bq/m ²))	15 cm Dose Rate Factor ((Sv/d)/ (Bq/m ³))
238U	1	1.63E+12					6.88E-08	3.20E-05	4.76E-14	4.76E-17
234Th	2	2.41E+01	1	1	0	0	3.69E-09	9.47E-09	7.18E-13	1.12E-14
Ir1										

234mPa	Implicit		2	0.998			0.00E+00	0.00E+00	1.32E-12	3.62E-14
234Pa	Implicit		2	0.002	0	0.0013	5.84E-10	2.20E-10	1.59E-10	4.65E-12
234U	3	8.93E+07	2	1	0	0	7.66E-08	3.58E-05	6.46E-14	1.85E-16
230Th	4	2.81E+07	3	1	0	0	1.48E-07	8.80E-05	6.48E-14	5.52E-16
226Ra	5	5.84E+05	4	1	0	0	3.58E-07	2.32E-06	5.56E-13	1.42E-14
222Rn	6	3.82E+00	5	1	0	0	0.00E+00	0.00E+00	3.41E-14	9.81E-16
218Po	Implicit		6	1			0.00E+00	0.00E+00	7.67E-16	2.27E-17
214Pb	Implicit		6	0.9998			1.69E-10	2.11E-09	2.10E-11	5.78E-13
218At	Implicit		6	0.0002			0.00E+00	0.00E+00	0.00E+00	0.00E+00
214Bi	Implicit		6	1			7.64E-11	1.78E-09	1.22E-10	3.77E-12
214Po	Implicit		6	0.9998			0.00E+00	0.00E+00	7.02E-15	2.07E-16
210Pb	7	8.15E+03	6	1	0	0	1.45E-06	3.67E-06	2.14E-13	1.13E-15
210Bi	8	5.01E+00	7	1	0	0	1.73E-09	5.29E-08	9.06E-14	1.61E-15
210Po	9	1.38E+02	8	1	0	0	5.14E-07	2.54E-06	7.16E-16	2.11E-17

Initial Concentrations:

Note: All reported values are the upper bound of the symmetric 95% confidence interval for the 0.9 quantile value

Nuclide	Surface Concentration (dpm/100 cm**2)						
238U	1.40E+03						
234Th	0.00E+00						
234mPa	0.00E+00						
234Pa	0.00E+00						
234U	0.00E+00						
230Th	0.00E+00						
226Ra	0.00E+00						
222Rn	0.00E+00						
218Po	0.00E+00						
214Pb	0.00E+00						
218At	0.00E+00						
214Bi	0.00E+00						
214Po	0.00E+00						
210Pb	0.00E+00						
210Bi	0.00E+00						
210Po	0.00E+00						

Model Parameters:

General Parameters:

Parameter Name	Description	Distribution
To:Time In Building		CONSTANT(hr/week)

	The time in the building during the occupancy period		
Behavioral category: Defau	ilt value used	Value	4.50E+01
Tto:Occupancy Period	The duration of the occupancy exposure period	CONSTAN	T(days)
Behavioral category: Defau	It value used	Value	3.65E+02
Vo:Breathing Rate	The average volumetric breathing rate during building occupancy for an 8-hour work day	CONSTAN	T(m**3/hr)
Metabolic category: Defaul	t value used	Value	1.40E+00
RFo*:Resuspension Factor	Effective resuspension factor during the occupancy period = RFo * Fl	CONSTAN	Γ(1/m)
Physical category: Justifica	tion for modification: NUREG-1720	Value	1.00E-06
		Default DEF	RIVED(1/m)
GO*:Ingestion Rate	Effective secondary ingestion transfer rate of removable surface activity from building surfaces to the mouth during building occupancy = GO * Fl	DERIVED(1	n**2/hr)
Behavioral category: Defau	lt value used		
Tstart:Start Time	The start time of the scenario in days	CONSTANT	Γ(days)
Program Control category:	Default value used	Value	0.00E+00
Tend:End Time	The ending time of the scenario in days	CONSTANT	Γ(days)
Program Control category:	Default value used	Value	3.65E+02
dt:Time Step Size	The time step size	CONSTANT	l'(days)
Program Control category:	Default value used	Value	3.65E+02
Pstep:Print Step Size	The time steps for the history file. Doses will be written to the history file every n time steps	CONSTANT	ſ(none)
Program Control category:	Default value used	Value	1.00E+00
AOExt:External Exposure Arca	Minimum surface area to which occupant is exposed via external radiation during occupancy period	CONSTANT	ſ(m**2)
Behavioral category: Defau	It value used	Value	1.00E+01
AOInh:Inhalation Exposure Area	Minimum surface area to which occupant is exposed via inhalation during occupancy period	CONSTANT	r(m**2)
Behavioral category: Defau	lt value used	Value	1.00E+01
AOIng:Secondary Ingestion Exposure Area	Minimum surface area to which occupant is exposed via secondary ingestion during occupancy period	CONSTANT	r(m**2)
Behavioral category: Defau	t value used	Value	1.00E+01
AO:Exposure Area	Minimum surface area to which occupant is exposed during the occupancy period	DERIVED(n	n**2)
Behavioral category: Defau	t value used		
Fl:Loose Fraction	Fraction of surface contamination available for resuspension and ingestion	CONSTANT	(none)
Physical category: Default v	value used	Value	1.00E-01
Rfo:Loose Resuspension Factor	Resuspension factor for loose contamination	CONTINUO	US LOGARITHMIC(1/m)
Physical category: Default v	value used	Value 9.12E-06	Probability 0.00E+00

		1.10E-04 1.46E-04 1.62E-04 1.85E-04	7.67E-01 9.09E-01 9.50E-01 9.90E-01
		1.90E-04	1.00E+00
GO:Loose Ingestion Rate	The secondary ingestion transfer rate of loose removable surface activity from building surfaces to the mouth during building occupancy	CONSTANT(n	n**2/hr)
Behavioral category: Defau	lt value used	Value	1.10E-04

Correlation Coefficients:

None

Summary Results:

90.00% of the 100 calculated TEDE values are < 2.50E+01 mrem/year. The 95 % Confidence Interval for the 0.9 quantile value of TEDE is 2.50E+01 to 2.50E+01 mrem/year

Detailed Results:

Note: All reported values are the upper bound of the symmetric 95% confidence interval for the 0.9 quantile value

Concentration at Time of Peak Dose:

Nuclide	Surface Concentration (dpm/100 cm**2)
238U	1.40E+03
234Th	1.27E+03
234mPa	1.26E+03
234Pa	2.53E+00
234U	1.64E-03
230Th	4.55E-09
226Ra	4.55E-13
222Rn	4.37E-13
218Po	4.37E-13
214Pb	4.37E-13
218At	8.75E-17
214Bi	4.37E-13
214Po	4.37E-13
210РЬ	0.00E+00
210Bi	4.23E-14
210Po	4.90E-14

Pathway Dose from All Nuclides (mrem)

External

Inhalation

I

All Pathways Dose			Secondary Ingestion
2.50E+01	4.95E-02	2.45E+01	4.33E-01

Radionuclide Dose through All Active Pathways (mrem)

Nuclide	All Pathways Dose
238U	2.49E+01
234Th	4.14E-02
234mPa	2.71E-02
234Pa	6.55E-03
234U	3.27E-05
230Th	2.22E-10
226Ra	1.28E-15
222Rn	2.42E-19
218Po	5.45E-21
214РЬ	1.50E-16
218At	0.00E+00
214Bi	8.68E-16
214Po	4.99E-20
210РЬ	0.00E+00
210Bi	1.60E-18
210Po	1.76E-16
All Nuclides	2.50E+01

Dose from Each Nuclide through Each Active Pathway (mrem)

Nuclide	External	Inhalation	Secondary Ingestion
238U	1.08E-03	2.45E+01	4.13E-01
234Th	1.48E-02	6.55E-03	2.01E-02
234mPa	2.71E-02	0.00E+00	0.00E+00
234Pa	6.55E-03	3.04E-07	6.35E-06
234U	1.72E-09	3.21E-05	5.40E-07
230Th	4.79E-15	2.19E-10	2.89E-12
226Ra	4.11E-18	5.76E-16	6.99E-16
222Rn	2.42E-19	0.00E+00	0.00E+00
218Po	5.45E-21	0.00E+00	0.00E+00
214Pb	1.49E-16	5.04E-19	3.17E-19
218At	0.00E+00	0.00E+00	0.00E+00
214Bi	8.67E-16	4.25E-19	1.43E-19
214Po	4.99E-20	0.00E+00	0.00E+00
210Pb	0.00E+00	0.00E+00	0.00E+00

210Bi	6.23E-20	1.22E-18	3.14E-19
210Po	5.70E-22	6.79E-17	1.08E-16

APPENDIX B

INSTRUMENT CALIBRATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

ALIBR	ATION GI	CERTIF	ICATE	FO	R	2	360	SERIA	L#	193682	
DAT	E:	11/29/17				LOCA	TION:			Griffin Inst	
TECH: E.M. Glenn			n			DATE	LAST CAL	EXPIRES:		11/07/17	
		- 111						0	Demoin (C	an Bernerkel	
Rea	son For C	alibration:		G	Due F	or Calibrati	ion	0	Repair (S	ee Kemarks)	6
				(O Other	(See Rema	irks)	0	Due and i	Repair (See Re	marks)
			NIST TRAC	EAE	BLE EQUI	IPMENT US		G CALIBRA	TION		
MO	DEL:	M-500		SER	IAL #:	114512		CAL.	DUE:	11/13/18	
1	Audio	Response		6	Geotro	pism	CAE	BLE LENGT	'H: 39"		
NDITION:	Sa	t 🖌		NIC	AL ZERO:	. 0	AL	MECHANI	CAL ZERG	D: 0	
V BATTE	RIES:	0	Yes 🤇		No	BATTERY	CHECK:	Sat		10 10	
' (+/-10%	AS FO		AS LI	EFT	HV.	WIN	DOW SETTI	NGS:	<u>A.F.</u>	A.L.	
500 V:	5	500		A.F.		BT (3.5 mV +/- 1	mV):	3.5	A.F.	
	4	000		AF		RIM	(30 mV ±/-3	mV).	30	AF	
				rulti			fan 1114 - 149				
1500 V:	1 Lambatra A.G	500		A.F.	THAT THE	AT (1	120 mV +/-10	0 mV):	120	A.F.	u nasta anas
1.22		RA	LE WEI	EF	C.	3.228			S	CALER	
	SCALE	RATE CPM	AS FOUN	D	% ERROI	R AS LEFT	% ERROR	AS FOUN	D %ERF	OR AS LEFT	6 ERROR
	x.1 or x1	100	100	·	0.0%	A.F.		Weir Stat	ING STREET		(1.210) (1
		250	250	1	0.0%	A.F.		251	0.49	6 A.F.	
	_	400	400		0.0%	A.F.				San Alex Basela	
	x1 or	1000	1000		0.0%	A.F.			and the second	Sec. Prov	3.2.5
	x10	2500	2500		0.0%	A.F.					$t \in \mathcal{L}^{(n)}$
	1	4000	4000		0.0%	A.F.		作和正规			一些法公
	x10 or	10K	10	K	0.0%	A.F.		a la la la	Real Provide	and the second	
	×100	25K	25	K	0.0%	A.F.					1000
	w100.cm	40K	40	ĸ	0.0%	A.F.					
	x100 or	100K	250	╏	0.0%	A.F.				A Carlotter	
		250K	400	÷	0.0%	AF		1441		CLERK MARCH	
erload L MARKS:	is .ight:	the As Foun	d Data Wil	thin fied	20% of th	ne Set Poin Int Adj.	t?:	• Ye	es ()	No	4445-5
es Instru	ument Mee	et Final Acce	ptance Cri	teria	17:		Yes	0	No		
libration	Sticker A	ttached?:					• Yes	0	No		
te Instru	ment is D	ue For Next (Calibration				11/29/18				
STRUMP		ED WITH		3-93	3	# PR260	691				
rformed	/Reviewed	lby: c	OUT CO	A	6	Date: 11/	29/2017		Entered	by: the Ini	tials
		<u>G</u> .	The Flen	<u>n</u>		1	Calibra	ations performed	to ANSI N32	3A-1997 standards	

CALIBRATION CERTIFICATE FOR PROBE# PR260691 43-93 Owner: GI LOCATION: Griffin Inst DATE: 11/29/17 11/07/17 DATE LAST CAL EXPIRES: TECH: E.M. Glenn **REASON FOR CALIBRATION:** O Due and Repair Due For Calibration Other (See Remarks) Repair (See Remarks) 39" INPUT SENSITIVITY: DUAL CABLE LENGTH: NIST TRACEABLE EQUIPMENT AND STANDARDS USED DURING CALIBRATION 11/29/18 193682 CAL. DUE: MODEL: 2360 SERIAL #: NIST TRACEABLE SOURCES USED 2 pi Activity Source Number Isotope 4 pi Activity **Assay Date** 12,070 cpm 02/01/17 P2-149 **Tc99 SS** 21,949 dpm 02/01/17 11,190 cpm P2-152 Th230 22,166 dpm 12/02/09 9,370 cpm 2696-00 Pu239 18,500 dpm 8,530 cpm 2697-00 Sr90 12,200 dpm 03/01/00 Efficiencies from last cal.: 22.90% 18,76% 30.57% **Condition:** Unsat Pu: Th: Sr: \bigcirc Sat Tc ss: 14.62% C14: Tc NI: As Found (AF) Efficiencies: HV / Vernier: Tc-99 Source Response Pu-239 Source Background (CPM) Tc-99 Source Response Stainless Steel (CPM): Nickel (CPM): Response (CPM): B ch. B ch. Net Eff. B ch. Net Eff. A ch. B ch. Net Eff. A ch. A ch A ch. 3080 13.08% 775 / N/A 4249 497 22.96% 210 11 1 Net A to B B to A Xtalk: Xtalk: <10% <1% 6.3% <1% Sr90 C-14 Pu239 Tc99 Ni Tc99 ss Th-230 2603 AF CPM: 3080 4647 4249 30.01% 22.96% 13.08% 20.96% AF 4 pi eff: 23.78% 41.52% 42.93% 45.34% AF 2 pi eff:

Is as found efficiency within 20% of the efficiency from the last cal?

Yes O No (See Remarks)

Note If the as found data is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the plateau section and go directly to remarks.

PROBE #: PR260691

Date: 11/29/17

PLATEAU AND SET POINT DATA

HV / Vernier:	Tc-99 5	Source Re SS (CPN	esponse }:	Pu- Res	239 Si ponse	ource (CPM):	Background (CPM):		Net A to B Xtalk: <10%	B to A Xtalk: <1%	
	A ch.	B ch.	Net Eff.	A ch.	Bct	Net Eff.	A	ch.	B ch.		J
725	13	1874	8.0%	3961	323	21.4%		1	125	4.8%	<1%
750	14	2501	10.6%	4080	365	22.0%	1.7%	1	176	4.4%	<1%
775	6	2966	12.7%	4230	491	22.9%		2	186	6.7%	<1%
800				4353	817	23.5%		4	279	11.0%	
Alpha / E	Beta Bkg	(cpm)	2		98						
HV / Vernier		יייי, <u>פו</u>	<u>ı-239</u>	<u>Tc-9</u>	<u>9 Ni</u>	<u></u> <u>Tc-99</u> :	<u>ss</u>	<u>Th-</u> ;	230	<u>C-14</u>	<u>Sr-90</u>
775 / N/A	CP	M: 4	222			3054		47	09		2711
4 pi AL E	fficiencie	es: 22	.81%			13.01	%	21.2	24%		31.52%
2 pi AL E	fficiencie	es: 45	.04%			23.66	%	42.0	06%		45.08%
<u>v</u>											
REMARKS						12					
Does Instrument M	leet Final	Accepta	nce Criteri	a?	•	Yes (0	No			
Calibration Sticker	Attached	?:			•	Yes (С	No			
Date Instrument is	Due For	Next Cali	bration:		11/29	9/18					
INSTRUMENT M	IARRIED	WITH		2360		# 19368	2				
Performed/Revi	ewed by:	<u>6</u>	<u>.917. Sh</u>	<u>nn</u>		Date: 11	/29/2	017		Entered by:	

2 pi efficiencies denoted in Italics.

Calibrations performed to ANSI N323A-1997 standards.

2

CALIBR	ALIBRATION CERTIFICATE FOR						360	SERIA	\L#	193654		
Owner:	GI											
DAT	E:	11/29/17				LOCA	TION:			Griffin Inst		
TEC	:H:	E.M. Glen	n			DATE	LAST CAL	EXPIRES:		11/07/17		
Rea	son For C	Calibration:		(Due F	or Calibrati						
				(Other	ISan Doma	rkel	Due and	Dennis (Can D	amarka)		
					J Ouler	(See Reilla	пкај	0	Due and	Kehan (See L	(eniarks)	
		<u> </u>	NIST TRAC	CEA	<u>BLE EQU</u>	IPMENT US	ED DURING	CALIBRA	TION			
MO	DEL:	M-500		SERIAL #: 114512					DUE:	11/13/18		
	🗹 Audio	Response		6	Geotro	opism	CA	BLE LENGT	r H: 39'			
ONDITION:	Sa	at A	F MECHA	NIC	AL ZERO	: 0	AL	MECHANI	CAL ZER	0: 0		
	RIES:	0	Yes 🤅	0	No	BATTERY	CHECK:	Sat				
N/ (±/_10%)			ACI	CCT	LINZ	JARIAN	DOW RETT					
V [+/-10%	1 <u>49 PC</u>		ASL			VVINI	DOW SEITI	<u>NG5:</u>	<u>A.F.</u>	<u>A.L.</u>		
500 V:		500		A.F.		BT (3.5 mV +/- 1	mV):	3.5	A.F.		
1000 V:	1	000		A.F.		BW	(30 mV +/-3	mV):	30	A.F.		
1500 V:	1	500		A.F.		AT (1	20 mV +/-10	0 mV):	120	A.F.		
	SCALE	RATE CPM			% ERRO	R AS LEFT	% ERROR	AS FOUN	0 <u>% Er</u> f	OR AS LEFT	% ERROR	
1	x.1 or x1	100	100	Ť	0.0%	A.F.		1000000000	and the second		1	
		250	250		0.0%	A.F.		250	0.09	6 A.F.		
		400	400		0.0%	A.F.		Section Section				
	x1 or x10	1000	2500		0.0%	A.F.			and the set		VI.TANA AND	
		4000	4000		0.0%	A.F.		Constant of				
	x10 or	10K	10	к	0.0%	A.F.			SHEEL!			
	×100	25K	25	к	0.0%	A.F.				States.		
10		40K	40	ĸ	0.0%	A.F.			法区	and the state		
	x100 or	100K	100	K	0.0%	A.F.				R. Call and	3 1 34	
	×1000	250K	250	K	0.0%	A.F.						
verioad Li	ls iaht:	the As Found	d Data Wil	thin :	20% of th	e Set Point	?:	• Ye	is O	No		
EMARKS:												
oes Instru	iment Mei	et Final Accep	tance Cri	teria	?:		Yes	0	No			
alibration	Sticker A	ttached?:					Yes	0	No			
ate Instru	ment is D	ue For Next C	alibration	:			11/29/18					
ISTRUME	NT MARR	IED WITH	4	3-93		# PR2001	115					
erformed/	Reviewed	iby: So	m Ge	đ	¥ a	Date: 11/2	9/2017		Entered	by: de Ir	itials	
	<u>6.91. Stenn</u>					1	Date: 11/29/2017 Entered by: Current of the ansistance 1 Calibrations performed to ANSI N323A-1997 standard					

	IN CER	RTIFIC	CATE F	OR	43	8-93		PROBE	:#	PRZU	J115	
Owner: Gl										1.12		
DATE: 11/29 TECH: E.M.	/17 Glenn			5103		LOCA	ATION:	AL EXPIRE	6 5:	Griffin Ins 11/07/17	t 7	
			RE	SON F	OR CALI	BRATIO	N:					
Due For Ca	alibration	0	Repair (S	ee Rem	arks)	O ott	ner (See F	Remarks)		ue and Re	epair	
CABLE	LENGTH:	39"				INPUT	SENSITI	VITY: DU	AL.			
	NIST TI	RACEAE		MENT	AND STA	NDARD	S USED D		IBRATIO	<u>N</u>		
MODEL:	2360		SEI	RIAL #:		19365	4	CAL. DUE		11/29/1	8	
			NIS	T TRAC	EABLE S	OURCE	S USED			1.4		
Source Nu	mher		Isotope		4 pi A	ctivity		Assa	v Date		2 pi Activity	
oburco rua	2-149		Tc99 SS		21	949 dpm	1	0	2/01/17		12,070 cpm	
	P2-152				22	166 dpπ	1	0	2/01/17	11,190 cp		
2	2696-00			18,500 dpm			1	- 13		9,370 cpn		
2	2697-00 Fu239			12,200 dpm				03/01/00 8,9				
									en an	n sank		
								Efficien	cies from	last cal.	:	
Condition:	Sa	t ()	Unsat			Pi	u: 24	Efficien .38% Th	cies from : 19.74	i last cal. 1% S	: Sr: 31.119	
Condition:	● Sa	t O	Unsat			Pi Tc :	u: 24 ss: 14	Efficien .38% Th .70% C14:	cies from : 19.74	last cal. 1% S Tc I	: 6r: 31.11% Ni:	
Condition: As Found (A	 Sa F) Efficient 	t () ncies:	Unsat			Pi Tc :	u: 24 ss: 14	Efficien .38% Th .70% C14:	cies from : 19.74	i last cal. 1% S Tc I	: 6r: 31.11% Ni:	
Condition: As Found (A HV / Vemier:	 Sa F) Efficien Tc-99 Sn Nin 	t O ncies: ource Re	Unsat esponse M):	Pu-2 Resp	239 Sourc	Pr Tc: Tc: 20	u: 24 ss: 14 Backgro	Efficien .38% Th .70% C14: wund (CPM):	cies from : 19.74 Tc-99 S Stainle	i last cal. 4% S Tc I Gource Re	: Sr: 31.11% Ni: esponse (CPM):	
Condition: As Found (A HV / Vemier:	 Sa F) Efficien Tc-99 Sa Nic A ch. 	t O ncies: ource Re ckei (CP B ch.	Unsat esponse M): Net Eff.	Pu-2 Resp A ch.	239 Sourc onse (CF B ch.	Pi Tc: 22e 22M): Net Eff.	u: 24 ss: 14 Backgro A ch.	Efficien .38% Th .70% C14: bund (CPM): B ch.	cies from : 19.74 Tc-99 S Stainle A ch.	i last cal. 4% S Tc I Source Re ess Steel B ch.	: Sr: 31.11% Ni: esponse (CPM): Net Eff.	
Condition: As Found (A HV / Vemier: 700 / N/A	 Sa F) Efficien Tc-99 So Nic A ch. 	ncies: ource Re ckel (CP B ch.	Unsat esponse M): Net Eff.	Pu-2 Resp A ch. 4457	239 Sourc onse (CP B ch. 576	Pr Tc: 24 09%	u: 24 ss: 14 Backgro A ch. 0	Efficien .38% Th .70% C14: bund (CPM) B ch. .184	Cies from 19.74 Tc-99 S Staink A ch. 19	i last cal. 4% S Tc I Source Re ess Steel B ch. 2909	: Sr: 31.11% Ni: esponse (CPM): Net Eff. 12.42%	
Condition: As Found (A HV / Vemier: 700 / N/A	Sa Si Si C-99 Si Nic A ch.	ncies: ource Re ckel (CP B ch.	Unsat esponse M): Net Eff.	Pu-2 Resp A ch. 4457 Na Xta	239 Sourconse (CP B ch.) 576 et A to B alk: <10%	Pt Tc : 24 09% B to /	u: 24 ss: 14 Backgro A ch. 0 A Xtalk: <1%	Efficien .38% Th .70% C14: bund (CPM) B ch. 184	tes from 19.74 Tc-99 S Staink A ch. 19	i last cal. 4% S Tc I Source Re ess Steel B ch. 2909	: Sr: 31.11% Ni: esponse (CPM): Net Eff. 12.42%	
Condition: As Found (A HV / Vemier: 700 / N/A	Sa Sa F) Efficien Tc-99 Si Nic A ch.	t O ncies: ource Re ckel (CP B ch.	Unsat esponse M): Net Eff.	Pu-2 Resp A ch. 4457 Ne Xta	239 Sourconse (CP B ch. 576 et A to B alk: <10% 8.1%	Pr Tc : M): Net Eff. 24 09%	u: 24 ss: 14 Backgro A ch. 0 A Xtalk: <1%	Efficien .38% Th .70% C14: bund (CPM) B ch. 184	Tc-99 S Staink A ch. 19	a last cal. 4% s Tc l 6ource Re ess Steel B ch. 2909	: Sr: 31.11% Ni: esponse (CPM): Net Eff. 12.42%	
Condition: As Found (A HV / Vemier: 700 / N/A	Sa Sa F) Efficien Tc-99 Sr Nic A ch. Pu239	t O ncies: ource Re ckel (CP B ch.	Unsat esponse M): Net Eff.	Pu-2 Resp A ch. 4457 Ne Xta	239 Sourconse (CF B ch. 576 et A to B alk: <10% 8.1% 5.1%	Pr Tc : M): 24 09% B to /	u: 24 ss: 14 Backgro A ch. 0 A Xtalk: <1% <1%	Efficien .38% Th .70% C14: ound (CPM) B ch. 184 <u>Sr90</u>	Tc-99 S Staink A ch. 19	a last cal. 4% \$ Tc 1 6ource Re ess Steel B ch. 2909 4	: Sr: 31.11% Ni: esponse (CPM): Net Eff. 12.42%	
Condition: As Found (A HV / Vemier: 700 / N/A	Sa Sa F) Efficien Tc-99 Sr Nic A ch. Pu239 4457	t O ncies: ource Re ckel (CP B ch.	Unsat esponse M): Net Eff.	Pu-2 Resp A ch. 4457 Ne Xta	239 Sourconse (CF B ch. 576 et A to B alk: <10% 8.1% 7c99 ss 2909	Pr Tc : M): Net Eff. 24 09% B to / TI 44	u: 24 ss: 14 Backgro A ch. 0 A Xtalk: <1% -230 B03	Efficien .38% Th .70% C14: ound (CPM) B ch. 184 <u>Sr90</u> 2552	Tc-99 S Staink A ch. 19	a last cal. 4% S Tc l 6ource Re ess Steel B ch. 2909 <u>C-14</u>	: Sr: 31.11% Ni: esponse (CPM): Net Eff. 12.42%	
Condition: As Found (A HV / Vernier: 700 / N/A AF CPM: AF 4 pi eff:	 Sa F) Efficien Tc-99 Sr Nia A ch. Pu239 4457 24.09 	t O ncies: ource Re ckel (CP B ch.	Unsat esponse M): Net Eff.	Pu-2 Resp A ch. 4457 Ne Xta	239 Sourconse (CP B ch. 576 et A to B alk: <10% 8.1% C99 ss 2909 2.42%	Pr Tc : 20 20 20 21 21 21	u: 24 ss: 14 Backgro A ch. 0 A Xtalk: <1% <1% -230 803 67%	Efficien .38% Th .70% C14: ound (CPM) B ch. 184 <u>Sr90</u> 2552 29.70%	Tc-99 S Stainle A ch. 19	a last cal. 4% S Tc I Source Re ess Steel B ch. 2909	: Sr: 31.11% Ni: esponse (CPM): Net Eff. 12.42%	

Is as found efficiency within 20% of the efficiency from the last cal?

• Yes O No (See Remarks)

Note If the as found data is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the plateau section and go directly to remarks.

PROBE #: PR200115

Date: 11/29/17

PLATEAU AND SET POINT DATA

HV / Vernier:	Tc-99 S	esponse):	Pu- Res	239 S ponse	ource (CPM)	Backgro	und (CPM):	Net A to B Xtalk: <10%	B to A Xtalk: <1%	
	A ch	B ch.	Net Eff.	A ch.	Bct	Net Eff.	A ch.	B ch.	50	
650	16	1447	6.3%	4049	312	21.9%	1	66		
675	13	1855	7.9%	4341	354	23.4%		124	5.7%	<1%
700	13	2787	12.0%	4445	526	24 0%		124	5.0%	<1%
725				4443	804	24 0%		150	1.7%	<1%
					001	24.070		213	11.7%	
						┟───╢				
Alpha / B <u>HV / Vernier</u>	eta Bkg (cpm) <u>Pu</u>	2 - <u>239</u>	1 <u>Tc-99</u>	58 <u>Ni</u>	<u>Tc-99 s</u>	<u>35 Th-</u>	<u>230</u>	<u>C-14</u>	<u>Sr-90</u>
700 / N/A	CPN	1: 44	46			3004	48	36		2670
4 pi AL Efi	ficiencie	s: 24.	02%			12 07%		1.e.p/		
2 pi AL Efi	ficiencie:	5: 47.4	43%			23.58%	° ∡1.0 ∠ ./? '	2170 209/		31.51%
							· · ····	20 /8		45.06%
*.			8							
REMARKS:	- 11									
Does instrument Me	et Final A	cceptand	e Criteria	?: (Y	es C) No			
Calibration Sticker A	ttached?:			(Y	es C	No			
Date Instrument is D	ue For N	ext Calibi	ration:		11/29/ [.]	18				
INSTRUMENT MA	RRIED V	VITH	:	2360		# 193654				
Performed/Review	ved by:	<u>6.0</u>	M. Glen	фС б		Date: 11/2	9/2017		Entered by:	Initials
2 pi efficiencies denoted in	italics,							b		

Calibrations performed to ANSI N323A-1997 standards.

DATE: 07/23/19 LOCATION: Griffin Inst TECH: Joanne Glenn DATE LAST CAL EXPIRES: 07/10/19 Reason For Calibration:	SALIBR	GI	CERTIF	ICATE	FC	DR	2	360	SERIAI	_# :	278624	
TECH: joanne Gienn DATE LAST CAL EXPIRES: 07/10/19 Reason For Calibration:	DAT	TE:	07/23/19				LOCA	TION:			Griffin Inst	
Reason For Calibration: () Due For Calibration () Other (See Remarks) () Due and Repair (See Remarks) () Due for Calibration () Due for Calibration () Due for Calibration () Due for Calibration () Due and Repair (See Remarks) () Due for Calibration () Due for Calibration () Due for Calibration () Due and Repair (See Remarks) () Due for Calibration () Due for C	TEC	:H:	Joanne G	Slenn			DATE	LAST CAL	EXPIRES:		07/10/19	
Interest of California (See Remarks) O Other (See Remarks) O Due and Repair (See Remarks) International of the California (See Remarks) O Other (See Remarks) O Due and Repair (See Remarks) MODEL: 500-2 SERIAL #: 284951 CAL DUE: 1003/19 Image: Second Seco	Rea	son For C	alibration				as Calibrat		0.			
O Other (See Remarks) O Due and Repair (See Remarks) NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION MODEL: 500-2 SERIAL #: 284951 CAL DUE: 10/03/19 Madio Response I Geotropism CABLE LENGTH: 39" DNDITION: Sat AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 EW BATTERIES: Image: Constraints Mindow Settings: A.F. A.F. BT (3.5 mV +/- 1 mV): 3.5 A.F. 500 V: 500 A.F. BT (3.5 mV +/- 1 mV): 3.5 A.F. 1500 V: 1000 A.F. BW (30 mV +/-3 mV): 30 A.F. 1500 V: 1500 A.F. BW (30 mV +/-10 mV): 110 120 RATE METER SCALER SCALER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS LE	Nea	SUIFUL					or Calibrat	ion	01	kepair (Si	e Kemarks)	
HDTEACEABLE EQUIPMENT USED DURING CALIBRATION MODEL: 50.2 SERIAL #: 284951 CAL DUE: 1003/19 MADIO Response I Geotropism CABLE LENGTH: 39" CMUTION: Sal AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 EW BATTERIES: I MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 EW BATTERIES: I MECHANICAL ZERO: 0 AL MECHANICAL ZERO: Sal ALICI-103X AS FOUND HY AS LEFT HY WINDOW SETTINGS: A.F. AL. 500 V: 500 A.F. BT (3.5 mV +/- 1 mV): 3.5 A.F. 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 30 A.F. 1500 V: 1500 A.F. BW (30 mV +/-10 mV): 110 120 CALE ER SCALE FR SCALE FR Start METER Start METER Start METER Start METER Start METER Start METER Start METER <td></td> <td></td> <td></td> <td></td> <td></td> <td>O Other</td> <td>(See Rema</td> <td>irks)</td> <td>0</td> <td>Due and F</td> <td>Repair (See R</td> <td>lemarks)</td>						O Other	(See Rema	irks)	0	Due and F	Repair (See R	lemarks)
MODEL: 50-2 SERIAL #: 284951 CAL.DUE: 1003/19 Image: Construction of the set of				NIST TRA	CEA	<u>BLE EQU</u>	IPMENT US		G CALIBRAT	ION		
Image: Second secon	MO	DEL:	500-2		SEF	RIAL #:	284951		CAL.	DUE:	10/03/19	
DNDITION: Sat AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 EW BATTERIES:	F	Audio	' Response		F	Geotro	nism	CAI		1. 30"		
DNDITION: Sat AF MECHANICAL ZERO: 0 AL MECHANICAL ZERO: 0 EW BATTERIES: (a) Yes No BATTERY CHECK: Sat MU 14/-10%) <u>AS EQUND HY</u> <u>AS LEFT HY</u> WINDOW SETTINGS: A.F. A.F. 500 V: 500 A.F. BT (3.6 mV +/-1 mV): 3.5 A.F. 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 30 A.F. 1500 V: 1500 A.F. AT (120 mV +/-10 mV): 110 120 RATE METER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AL 100 100 0.0% A.F. 250 0.0% A.F. 4000 4000 0.0% A.F. 250 0.0% A.F. 250 0.0% A.F. 100 25K 25 k 0.0% A.F. 0.0% A.F. 0.0% A.F. 0.0% A.F. 0.0% A.F. 11000 25K 25 k 0.0% A.F.					ľ					. 55		
EW BATTERIES: Image: Control of the set of	ONDITION:	Sa	it /	AF MECHA	NIC	AL ZERO:	: 0	AL	MECHANIC	AL ZERO	. 0	
HY 14/10% AS FOUND HY AS LEFT HY WINDOW SETTINGS: A.F. A.L. 500 V: 500 A.F. BT (3.6 mV +/-1 mV): 3.5 A.F. 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 30 A.F. 1500 V: 1500 A.F. AT (120 mV +/-10 mV): 110 120 RATE METER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x100 2500 2500 0.0% A.F. 100 100 100 x100 250K 25 0.0% A.F. 100 100K 0.0% A.F. x100 z50K 250 0.0% A.F. 100 100K 0.0% A.F. x1000 250K 2	EW BATTE	RIES:	۲	Yes ()	No	BATTERY	CHECK:	Sat			
500 V: 500 A.F. BT (3.6 mV +/-1 mV): 3.5 A.F. 1000 V: 1000 A.F. BW (30 mV +/-3 mV): 30 A.F. 1500 V: 1500 A.F. AT (120 mV +/-10 mV): 110 120 RATE METER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND	<u>IV (+/-10%</u>) <u>AS FC</u>	UND HV	AS L	EFT	HV	WIN	DOW SETTI	NGS:	<u>A.F.</u>	<u>A.L.</u>	
1000 Y: 100 A.F. BW (30 mV +/-3 mV): 30 A.F. 1500 Y: 1500 A.F. A.F. A.F. 100 100 RATE METER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR SALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR AS	500 V:	ţ	500		A.F.		BT ((3.5 mV +/- 1	l mV):	3.5	A.F.	
1509 Y: 150 A.F. AT (120 mV +/-10 mV); 10 12 RATE METER SCALE SCALE RATE CPM AS FOUND & ERROR AS LEFT & ERROR & ERROR A	1000 V:	1	000		A.F.		BW	(30 mV +/-3	mV):	30	A.F.	
RATE METER SCALER SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % ERROR x1 or x1 100 100 0.0% A.F. 250 0.0% A.F. x1 or x1 100 1000 0.0% A.F. 250 0.0% A.F. x1 or x10 2500 2500 0.0% A.F. 250 0.0% A.F. x100 2500 2500 0.0% A.F. x100 25K 25 k 0.0% A.F. x100 250K 250 k 0.0% A.F. x100 250K 250 k 0.0% A.F. Is the AS Found Data Within 20% of the Set Point?: Yes No Overload Light: Adjusted / Verified Not Adj.	1500 V:	1	500		A.F			120 mV +/-1	0 mV):	110	120	
SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR % ERROR AS LEFT % ERROR % % % % % %		S & S AND	R/A		re!	2	~ (e	CALED	and a substitution of the substitution
SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR AS FOUND % ERROR AS LEFT % Mo x10 0000 0.0% A.F. <td></td> <td>Children and</td> <td></td> <td>The States</td> <td></td> <td></td> <td>Mary and a</td> <td>a set</td> <td>Constant Sur</td> <td>3</td> <td>OALER</td> <td></td>		Children and		The States			Mary and a	a set	Constant Sur	3	OALER	
x.1 or x1 100 100 0.0% A.F. 250 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x1 or 1000 1000 0.0% A.F. 250 0.0% A.F. x10 2500 2500 0.0% A.F. 250 0.0% A.F. x100 2500 2500 0.0% A.F. 250 0.0% A.F. x100 25K 25 x 0.0% A.F. 250K 250K 250K 0.0% x1000 250K 250 x 0.0% A.F. 250K		SCALE	RATE CPM	AS FOU	ND	% ERRO	R AS LEFT	% ERROR	AS FOUND	% ERR	OR AS LEFT	% ERROR
250 250 0.0% A.F. 250 0.0% A.F. 400 400 0.0% A.F.		x.1 or x1	100	100		0.0%	A.F.	[Enclosed B.S.	The second	No. Pharter	State of
400 400 0.0% A.F. x1 or 1000 1000 0.0% A.F. x10 2500 2500 0.0% A.F. x10 2500 2500 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Poin			250	250		0.0%	A.F.		250	0.0%	A.F.	
x1 or 1000 1000 0.0% A.F. x10 2500 2500 0.0% A.F. x10 or 10K 10 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 250K 250 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. state As Found Data Within 20% of the Set Point?: No Overload Light: Adjusted / Verified Not Adj. EMARKS: Yes No valibration Sticker Attached?: Yes No No <tr< td=""><td></td><td></td><td>400</td><td>400</td><td></td><td>0.0%</td><td>A.F.</td><td></td><td>The second second</td><td>Sharely .</td><td>AN THE REAL</td><td>Louis and</td></tr<>			400	400		0.0%	A.F.		The second second	Sharely .	AN THE REAL	Louis and
x10 2500 2500 0.0% A.F. 4000 4000 0.0% A.F.		x1 or	1000	1000	11	0.0%	A.F.				A CARA	
4000 4000 0.0% A.F. x10 or 10K 10 K 0.0% A.F. 40K 40 K 0.0% A.F. Image: Constraint of the set of the s		x10	2500	2500		0.0%	A.F.		and the second	(and		A STORAGE
x10 or 10K 10 K 0.0% A.F. x100 25K 25 K 0.0% A.F. x100 or 100K 100 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: werload Light: Is the As Found Data Within 20% of the Set Point?: Is the As Found Set Point?: Is the As Found Set Point?: Is the As Found Set Point Set Point?: werload Light: Is the As Found Set Point Set Poi		-and	4000	4000		0.0%	A.F.		1594	1 1 1 1 1 1		A STATE
x100 25K 25 X 0.0% A.F. 40K 40K 40 X 0.0% A.F. x100 or 100K 100 X 0.0% A.F. x100 250K 250 X 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Verioad Light: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% verioad Light: Is the As Found Data Within 20% of the Set Point?: Is the As Found Data Within 20% No verioad Light: Is the As Found Data Within 20% Not Adj. Is the As Found Data Within 20% No allibration Sticker Attached?: Is the As Found Data Within 20% Is the As Found Data Within 20% No MSTR		x10 or	10K	10	ĸ	0.0%	A.F.	2201 - 2	State St	Service in		
40K 40 K 0.0% A.F. x1000 100K 100 K 0.0% A.F. x1000 250K 250 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Image: Construct of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Is the As Found Data Within 20% of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set Point?: Image: Construct of the Set		x100	25K	25	K	0.0%	A.F.			the space of	the state	1.10
x1000 or 100 k 100 k 0.0% A.F. x1000 250K 250 k 0.0% A.F. 400K 400 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Yes No verload Light: Adjusted / Verified Not Adj. verload Light: Adjusted / Verified Not Adj. everload Light: Adjusted / Verified Not Adj. cess Instrument Meet Final Acceptance Criteria?: Yes No allbration Sticker Attached?: Yes No ate Instrument is Due For Next Calibration: 07/23/20 VSTRUMENT MARRIED WITH 43-93 #PR311200 Entered by: ground: Ganne, Glent Date: 7/23/2019 Entered by: Linitials			40K	40	ĸ	0.0%	A.F.			and and	4 1 5 7 1	
x1000 250K 250 k 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Yes No verload Light: Adjusted / Verified Not Adj. EMARKS: Adjusted / Verified Not Adj. cess Instrument Meet Final Acceptance Criteria?: Yes No allbration Sticker Attached?: Yes No ate Instrument is Due For Next Calibration: 07/23/20 ISTRUMENT MARRIED WITH 43-93 #PR311200 erformed/Reviewed by: Geanne Glenne Date: 7/23/2019 Entered by: Cf	3	x100 or	100K	100	k	0.0%	A.F.		deres 1		treast the	and the second
400K 400 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: Yes No verload Light: Adjusted / Verified Not Adj. twerload Light: Adjusted / Verified Not Adj. twerload Light: Adjusted / Verified Not Adj. twerload Light: Adjusted / Verified Not Adj. twerload Light: Adjusted / Verified Not Adj. twerload Light: Adjusted / Verified Not Adj. EthankS: oes Instrument Meet Final Acceptance Criteria?: Yes No alibration Sticker Attached?: Yes Yes No ate Instrument is Due For Next Callbration: 07/23/20 VSTRUMENT MARRIED WITH 43-93 #PR311200 verformed/Reviewed by: Gaanne Glenric Date: 7/23/2019 Entered by: 		×1000	250K	250	K	0.0%	A.F.			D the second		CHAR I
Is the As Found Data Within 20% of the Set Point?:			400K	400	K	0.0%	A.F.		ET COLES	State.	and the second	、自己的研究
Overload Light: Adjusted / Verified Not Adj. EMARKS: Poes Instrument Meet Final Acceptance Criteria?: Yes No Scalibration Sticker Attached?: Yes Yes No Poerformed/Reviewed by: Scanne Gland Date: 7/23/2019 Entered by: Conne Gland		ls	the As Four	id Data Wi	thin	20% of th	e Set Poin	17:	• Yes	0	No	
Overroau Light: Adjusted / Vermed REMARKS: Does Instrument Meet Final Acceptance Criteria?: Ores Instrument Meet Final Acceptance Criteria?: Ores Instrument Meet Final Acceptance Criteria?: Ores Instrument Meet Final Acceptance Criteria?: Ores Instrument Meet Final Acceptance Criteria?: Ores Instrument Meet Final Acceptance Criteria?: Ores Instrument Meet Final Acceptance Criteria?: Ores Instrument is Due For Next Calibration: Ortical Instrument is Due For Next Calibration: Ortical Instrument Meet Final Acceptance Criteria?: Ortical Instrument is Due For Next Calibration: Ortical Instrument Meet Final Acceptance Criteria?: Ortical Instrument is Due For Next Calibration: Ortical Instrument Meet Final Acceptance Criteria?: Ortical Instrument is Due For Next Calibration: Ortical Instrument Meet Final Acceptance Criteria?: Ortical Instrument is Due For Next Calibration: Ortical Instrument Meet Final Acceptance Criteria?: NSTRUMENT MARRIED WITH Ortical Instrument Meet Final Acceptance Criteria?: Ortical Instrument Meet Final Acceptance Criteria?: Ortical Instrument Meet Final Acceptance Criteria?:	e ar anno anna an Canada ar a' 11	verte ver and many	A	المغمرة فالمعامد		0 "	а. А				a y da y 1979 Million III (million) da y de la seconda da seconda da seconda da seconda da seconda da seconda d	dalah tertekara a
Notes Notes Does Instrument Meet Final Acceptance Criteria?: Yes Notes Yes Notes Yes Notes Yes Notes Yes Notes Yes Notes Yes Notes Yes Notes Notes Yes Notes Note	Jverioad Li	ignt:	Adju	usted / Veri	ned	⊖ No	t Adj.					
Does Instrument Meet Final Acceptance Criteria?: Yes No Calibration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 07/23/20 NSTRUMENT MARRIED WITH 43-93 #PR311200 Date: 7/23/2019 Entered by:	CIMARKS:											
Does Instrument Meet Final Acceptance Criteria?: Yes No Callbration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 07/23/20 NSTRUMENT MARRIED WITH 43-93 #PR311200 Derformed/Reviewed by: <u>Ganne Glenric</u> Date: 7/23/2019 Entered by: <u>Ganne Linitials</u>												
Calibration Sticker Attached?: Yes No Date Instrument is Due For Next Calibration: 07/23/20 NSTRUMENT MARRIED WITH 43-93 #PR311200 Performed/Reviewed by: Ganne Glener Date: 7/23/2019 Entered by: Comparison of the second	oes Instru	iment Mee	et Final Acce	ptance Cri	teria	97:		Yes	O N	0		
Pate Instrument is Due For Next Calibration: 07/23/20 NSTRUMENT MARRIED WITH 43-93 #PR311200 Performed/Reviewed by: <u>Goanne Gland</u> Date: 7/23/2019 Entered by: <u>Goanne Stand</u> Initials	alibration	Sticker A	ttached?:					Yes	ON	lo		
NSTRUMENT MARRIED WITH 43-93 #PR311200 Performed/Reviewed by: <u>Goanne Glenno</u> Date: 7/23/2019 Entered by:	ate Instru	ment is D	ue For Next	Calibration				07/23/20				
NSTRUMENT MARRIED WITH 43-93 #PR311200 Performed/Reviewed by: <u>Geanne Glenne</u> Date: 7/23/2019 Entered by: <u>Geanne Glenne</u> Initials					••			01143120				
NSTRUMENT MARRIED WITH 43-93 #PR311200 Performed/Reviewed by: <u>Geanne Glenn</u> Date: 7/23/2019 Entered by: <u>Geanne Glenn</u> Initials												
Performed/Reviewed by: <u>Goanne Glann</u> Date: 7/23/2019 Entered by:	NSTRUME	NT MARR	IED WITH		13-9	3	#PR311	200				
	Performed/	Reviewed	by: 🤤	anne Gler	a	•	Date: 7/23	3/2019		Entered	by: <u>0</u>	nitials
1 Calibrations performed to ANSI N323A-1997 standards.			0-	-	- '		1	Calibra	tions performed to	ANSI N323	• A-1997 standards.	

PROBE # PR311200 **CALIBRATION CERTIFICATE FOR** 43-93 Owner: Gl **Griffin Inst** DATE: 07/23/19 LOCATION: DATE LAST CAL EXPIRES: 07/10/19 TECH: Joanne Glenn **REASON FOR CALIBRATION:** O Due and Repair Due For Calibration O Repair (See Remarks) O Other (See Remarks) INPUT SENSITIVITY: dual CABLE LENGTH: 39" NIST TRACEABLE EQUIPMENT AND STANDARDS USED DURING CALIBRATION SERIAL #: 278624 CAL. DUE: 07/23/20 MODEL: 2360 NIST TRACEABLE SOURCES USED 2 pi Activity Source Number Isotope 4 pi Activity **Assay Date** P2-149 Tc99 SS 21,949 dpm 02/01/17 12;070 cpm P2-152 Th230 22,166 dpm 02/01/17 11,190 cpm Q5-679 Pu239 20,819 dpm 06/01/18 10,510 cpm AL-8203 30,720 dpm 05/31/18 19,920 cpm Sr90 Efficiencies from last cal.: Condition: \odot Sat С Unsat Pu: 23.51% Th: 20.68% Sr: 33.48% 16.08% C14: Tc NI: Tc ss: As Found (AF) Efficiencies: Pu-239 Source Background (CPM): Tc-99 Source Response HV / Vernier: Tc-99 Source Response Nickel (CPM): Stainless Steel (CPM): Response (CPM): B ch. Net Eff. B ch. B ch. Net Eff. A ch. B ch. Net Eff. A ch A ch. A ch. 3770 16.43% 650 / N/A 4942 490 23.74% 0 164 Ð B to A Xtalk: Net A to B Xtalk: <10% <1% 6.2% <1% C-14 Pu239 Tc99 Ni Tc99 ss Th-230 Sr90 AF CPM: 4942 3770 4507 9955 AF 4 pl eff: 23.74% 16.43% 20.33% 32.78%

Is as found efficiency within 20% of the efficiency from the last cal?

47.02%

• Yes O No (Se

50.55%

O No (See Remarks)

Note: If the as found data is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the plateau section and go directly to remarks.

40.28%

29.88%

AF 2 pl eff:

PROBE #: PR311200 Date: 07/23/19

PLATEAU AND SET POINT DATA

HV / Vernier:	Tc-99 S	ource Re SS (CPM	esponse):	Pu-2 Resp	239 Sol Ionse (C	urce CPM):	Backgro	ound (CPM):	Net A to B Xtalk; <10%	B to A Xtalk: <1%
	A ch.	B ch.	Net Eff.	A ch.	B ch.	Net Eff.	A ch.	B ch.		I
N/A	T		ТТ					1		<u> </u>
										<u> </u>
			177							
			┝──╂			<u></u>		-├		
L	· 1		<u>/</u>		<u> </u>			<u> </u>	·	E.
					6 - d				to an international state of the second state of the	
Alpha / B	eta Bkg	(cpm)	0	1	64	_				
<u>HV / Vernier</u>		Pu	-239	<u>Tc-99</u>	NI	<u>Tc-99 (</u>	<u>55 TI</u>	<u>1-230</u>	<u>C-14</u>	<u>Sr-90</u>
650 / N/A	CPI	A: 4	942			3770	4	507		9955
4 pi AL Ei	ficiencie	s: 23.	74%			16.43	6 20	.33%		32.78%
2 pi AL E	fficiencie	s: 47,	.02%			29.889	40 <mark>م</mark>	.28%		50.55%
· · · · · · · · · · · · · · · · · · ·						_				
REMARKS:	8-84-1		P (ris) is a set on a part of			derektyra-9-9 ar dri i warang p			and a second	
Does Instrument Me	et Final /	Acceptan	ice Criteria	17:	Ye) No			
Calibration Sticker /	Attached?	5			• Ye	es (D No			
Date Instrument is [Due For N	lext Calib	oration:		07/23/2	20				
INSTRUMENT M		NITH		2360		#278624	F			
Performed/Revie	wed by:	Ga	<u>anne Gle</u>			Date: 7/2	3/2019		Entered by:	PInitials

2 pi efficiencles denoted in italics.

Calibrations performed to ANSI N323A-1997 standards.

2

CALIBRATION CERTIFICATE FOR 3030E SERIAL# 327699 **Owner: C&C ENVIRONMENTAL** DATE: 09/20/19 LOCATION: Griffin Inst TECH: Joanne Glenn DATE LAST CAL EXPIRES: 10/04/19 **Reason For Calibration:** Due For Calibration Repair (See Remarks) CABLE LENGTH: 39* O Other (See Remarks) O Due and Repair (See Remarks) NIST TRACEABLE EQUIPMENT USED DURING CALIBRATION MODEL: 500-2 SERIAL #: 341331 CAL. DUE: 09/03/20 MODEL: SERIAL #: CAL DUE: AF Mechanical Zero: 0 Condition: Ο Sat ()Unsat AL Mechanical Zero; 0 Scaler Function Check As Found As Left Beta Channel Window (4-50 mV): 4.4-53 4-50 Alpha Channel Window (175 mV, 120 for 3030): 112 120 Alpha Counts w/Puiser @ 10,000 CPM: 9.960 9965 % Error: 0.4% Beta Counts w/Pulser @ 10,000 CPM: 9,944 9966 % Error: 0.6% HIGH VOLTAGE POWER SUPLY CAL. (2929 only) 1 KV Reading (R-5 on HV Board): 1.018 1.0 Max HV (1500 V +): Sat O Unsat **REMARKS: Verified Internal battery sat.** Does Instrument Meet Final Acceptance Criteria?: \odot Yes No \cap Calibration Slicker Atlached?: Yes No Date Instructient is Dur For Next Calibration." 09/20/20 INSTRUMENT MARRIED WITH 43-10-1 #PR360356

Performed/Reviewed by:

Juanne Glenn

Date: 9/20/2019

Entered by: 11 Initials

9/20/2019 -8:43:57 AM Header 1: John Q Public Header 2: Serial#327699~ Header 3: PR360356~ Header 4: Room 7 EastWall Header 5: More Comments? Header 6: More Comments? Calibration Due Date: 9/20/2020 -Model 3030 Date: 9/20/2019 -Model 3030 Time: 8:43:14 AM -Count Time Switch (min): 1.0 User PC Time (min): 1.0 Alpha Alarm: 999999 Beta Alarm: 999999 Alpha + Beta Alarm: 999999 High Voltage (VDC): 875 Loss of Count Time (min): 30.0 Count Mode: SCALER Alpha Efficiency %: 37.8 -Beta Efficiency %: 22.8 -Background Subtract: OFF Alpha Background: 0.0 Beta Background: 58.0 Crosstalk Correction: OFF Alpha to Beta Crosstalk %: 2.5 Beta to Alpha Crosstalk %: 0.0 Show Parameters during startup: Enabled Daily QC Check: OFF Update Efficiency/Background Subtract from QC: SUB Override QC Count Time: ON Last Alpha Efficiency %: 39.6 Last Beta Efficiency %: 32.3 Standard Alpha Efficiency %: 40 Standard Beta Efficiency %: 32 Allowable Alpha QC Efficiency \pm %: 15 Allowable Beta QC Efficiency \pm %: 15 Alpha Source Size (dpm): 397000 Alpha Source Size (Bg): 6616.67 Alpha Source Size (µCi): 0.17882882883 Beta Source Size (dpm): 227000 Beta Source Size (Bq): 3783.33 Beta Source Size (µCi): 0.10225225225 Alpha QC Count Time (min): 1.0 Beta QC Count Time (min): 1.0 Background QC Count Time (min): 1.0 Last Alpha QC Background: 0.0 Last Beta QC Background: 35.0 Alpha Background Upper Limit (cpm): 3.0 Alpha Background Lower Limit (cpm): 0.0 Beta Background Upper Limit (cpm): 80.0 Beta Background Lower Limit (cpm): 0.0 Next Sample Number: 0001 User-defined Comment: AAAAAAAAAA Logging Mode: Off Recycle Mode: OFF Printer Mode: OFF

155				G	RIFFIN	INSTR	UMENT	S			y
ALIBRATI	ON CE	RTIFI	CATE	FOR	4	3-10-1		PROBE	:#	PR30	50356
Owner: C&	C ENVIF	ONME	ENTAL								
DATE: 09/2 TECH: Joan	.0/19 nne Glenn			ane.	alle-	LOC	ATION: E LAST C	AL EXPIRES	3:	Griffin In 10/04/	ist 19
Due Fee f	althantion.	0	RE	ASON	OR CAL	IBRATIO	N:		~		
C Due Por C	anoration	0	Kepair (See Ren	harks)	O Ot	her (See F	Remarks)	OB	ue and F	tepair
CABL	: LENGTH		-	-	1123	INPU	' SENSITI	VITY:			0
	NIST T	RACEA	BLE EQUI	PMENT	AND ST.	ANDARD	S USED D		BRATI	ON	
NODEL:	3030E		SE	RIAL #:		32769	9	CAL, DUE		09/20/	20
		THE	NIS	T TRAC	EABLE	SOURCE	S USED				
Source Ni	umber		Isotope	1	4 ni	Activity			Deta		
	P2-149		Tc99 SS		2	1.949 dor		A538) 02	V01/17		2 pi Activity
	P2-152		Th230		23	2,166 dpr	1	02	2/01/17		11 190 cpn
2696-00 Pu239				18,500 dpm				12	/02/09		9.370 cpn
2697-00 Sr90				12,200 dpm				03	/01/00		8,530 cpn
	PX-726		C14		48	3,780 dpn	1	01	/21/08		18,660 cpm
			-					Efficienc	les fron	ı last cal.	:
condition:	Sa	t O	Unsat			P	J: 37	.35% Th:	34.8	5%	Sr: 40.56%
			1.49			Tos	13: 23	38% C14:	13.6	3% Tc	NI:
	E) Efficier	icies:									
As Found (A	• 7 ••••••••						10 3 M				1
As Found (A HV / Vemler:	Tc-99 So Nic	urce Re kel (CPI	esponse M):	Pu-2 Resp	239 Sour	ce PMD:	Backgrou	and (CPM):	Tc-99 Steink	See Sinel	isponse
As Found (A HV / Vemler:	Tc-99 Sc Nic A ch.	burce Re kel (CPI B ch.	Net Eff.	Pu-2 Resp A ch.	239 Sour	ce PM): Net Eff.	Backgrou A ch	B ch	Tc-99 S Staink	B ch	(CPM):
As Found (A HV / Vemler: 875 / N/A	Tc-99 So Nic A ch.	burce Re kel (CPI B ch.	esponse M): Net Eff.	Pu-2 Resp A ch. 6997	239 Sour onse (CF B ch. 205	ce M): Net Eff. 37.82%	A ch.	und (CPM): B ch. 127	Tc-99 S Staink A ch. 0	B ch. 5071	(CPM): Net Eff. 22.52%
As Found (A HV / Vemler: 875 / N/A	Tc-99 So Nic A ch.	burce Re kel (CPI B ch.	esponse M): Net Eff.	Pu-2 Resp A ch. 6997	239 Soun onse (CF B ch. 205	ce M): Net Eff. 37.82%	A ch. 1	B ch. 127	Tc-99 S Staink A ch. 0	B ch. 5071	(CPM): Net Eff. 22.52%
As Found (A HV / Vemler: 875 / N/A	Tc-99 Sc Nic A ch.	burce Re kel (CP) B ch.	osponse M): Net Eff.	Pu-2 Resp A ch. 6997	239 Source onse (CF B ch. 205 et A to B sik: <10%	B to A	Backgrou A ch. 1 Xtalk: 1%	B ch. 127	Tc-99 S Staink A ch. 0	B ch.	(CPM): Net Eff. 22.52%
As Found (A HV / Vemler: 875 / N/A	Tc-99 Si Nic A ch.	burce Re kel (CPI B ch.	Asponse M): Net Eff.	Pu-2 Resp A ch. 6997	239 Source onse (CF B ch. 205 205 at A to B sik: <10% 1.1%	Ce PM): Net Eff. 37.82% B to A	Backgrou A ch. 1 Xtalk: 1%	B ch. 127	Tc-99 S Staink A ch.	B ch. 5071	(CPM): Net Eff. 22.52%
As Found (A HV / Vemler: 875 / N/A	Tc-99 Si Nic A ch.	burce Re kel (CPI B ch. 1	Not Eff.	Pu-3 Resp A ch. 6997 Ne Xta	239 Source onse (CF B ch.) 205 et A to B lik: <10% 1.1% 2099 ss	ce PM): Net Eff. 37.82% B to A C Th	Backgrou A ch. 1 Xtalk: 1% 1% -230	Und (CPM): B ch. 127 <u>\$r90</u>	A ch.		(CPM): Net Eff. 22.52%
As Found (A HV / Vemler: 875 / N/A	Tc-99 St Nic A ch. <u>Pu239</u> 6997	burce Re kel (CPI B ch.	Net Eff.	Pu-3 Resp A ch. 6997 Na Xta	239 Source onse (CF B ch. 205 et A to B lik: <10% 1.1% C99 ss 5071	ce PM): Net Eff. 37.82% B to A < Th 75	Backgrou A ch. 1 Xtalk: 1% -230 86	Ind (CPM): B ch. 127 <u>\$r90</u> 3109	A ch.	<u>C-14</u> 610	(CPM): Net Eff. 22.52%
As Found (A HV / Vemler: 875 / N/A AF CPM: F 4 pl eff:	Tc-99 St Nic A ch. <u>Pu239</u> 6997 37.829	burce Re kel (CPI B ch.	Sponse M): Net Eff.	Pu-3 Resp A ch. 6997 Ne Xta I	239 Source onse (CF B ch.] 205 tt A to B lik: <10% 1.1% c99 ss 5071 2.52%	ce PM): Net Eff. 37.82% B to A C Th 75 34.2	Backgrou A ch. 1 Xtalk: 1% -230 86 2%	And (CPM): B ch. 127 Sr90 3109 39.09%	A ch.	C-14 6100 12.26	(CPM): Net Eff. 22.52%

Is as found efficiency within 20% of the efficiency from the last cal?

Yes

No (See Remarks)

Note: If the as found data is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the plateau section and go

Ludlum Measurements, Inc. Model 3030 Plateau Data

9/20/2019 8:41:41 AM Header 1: John Q Public Header 2: Serial#327699~ Header 3: PR360356 ~ Header 4: Room 7 EastWall Header 5: More Comments? Header 6: More Comments? Header 6: More Comments? Calibration Due Date: 9/20/2020 ✓ Model 3030 Date: 9/20/2019 ✓ Model 3030 Time: 7:30:14 AM User PC Time: 1.0

Alpha Isotope: Pu239, 2696-00, 12/2/09 / Alpha Source Size (dpm): 18500 Alpha Source Size (Bq): 308.33 Alpha Source Size (µCi): 0.008333333

Beta Isotope: Tc99, P2-149, 2/1/17 ✓ Beta Source Size (dpm): 21949 Beta Source Size (Bq): 365.82 Beta Source Size (µCi): 0.009886937

Starting High Voltage: 700 Starting High Voltage: 950 High Voltage Increment: 25

Plateau Count Mode: SCALER Source Count Time (min): 1.0 Background Count Time (min): 1.0

 HV	l Source	(Beta)	ALPHA Background	Eff	 CrossTalk	Source	(Alpha)	BETA Background	Eff	 Crosstalk
700 725 750 775 800 825 850	4935 5554 6182 6549 6733 6918 7074 7000	(643) (449) (307) (256) (230) (254) (215) (231)	0 1 0 0 1 0 1	26.7% 30.0% 33.4% 35.4% 36.4% 37.4% 38.2%	12.9% 7.8% 4.6% 3.4% 2.6% 3.0% 2.5% 2.5%	1080 1780 2385 3086 3585 4078 4679	(0) (0) (0) (1) (0) (0)	5 17 22 32 55 46 41	4.9% B.0% 10.8% 13.9% 16.1% 18.4% 21.1%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
900 925 950	6905 7044 7245	(215) (935) (1075)	0 0 1	37.3% 37.3% 38.1% 39.2%	2.5% 2.2% 11.8% 0.6% !	5066 5504 5545 6793	(0) (0) (2) (1)	58 65 104 1032	22.0% 24.0% 24.0% 26.2%	0.0% 0.0% 0.0% 0.0%

20.0 18 19

PROBE #: PR360356 Date:

09/20/19

HV / Vernier:	Tc-99 S	ource Ri SS (CPM	esponse I):	Pu- Res	239 Sc ponse (CPM):	Background (CPM):			Net A to B Xtalk: <10%	B to A Xtalk <1%
	A ch,	B ch.	Net Eff.	A ch.	B ch	Net Eff.	Ad	h.	B ch,		-
See	Í I	1									
Attached		A- III -		TAN		0.00720	-		1929		- Jacobier -
											1. 1. 1. 1.
				1			San Confe				1.1
	11202	3-20			2.53		2				
875 / N/A 4 pl AL E 2 pi AL E	CPI fficiencie fficiencie	VI: 7 98: 37 95: 74	000 .84% .71%			5066 22.82 41.49	% %	7724 34.85% 69.03%		5847 11.87% 31.02%	3140 40.40% 57.78%
ARKS: Cleane	d around	mylar dı	ue to high l	backgrou	und as	found. Re-	plateau	ed.			
s Instrument M	eet Final.	Accepta	nce Criteria	17:	۰ ۱	res () No				
bration Sticker	Attached	2:	1.1		٥ ١	res () No				
Instrument is	Due For I	lext Cali	bration:		09/20	20					
STRUMENT M	ARRIED	WITH	:	3030E		#32769	9				
orformed/Revi	wed by:		onne Gle	nn de)	Date: 9/2	0/2019	dir.		Entered by:	de Initia
fficiencies denoted	in Italica.	1						Calit	rations p	erformed to ANSI No	23A-1997 standar
									Contraction 2		

PLATEAU AND SET POINT DATA

CALIBRATI	ION CE	RTIFICATE	FOR		43-89		PROBE	E #	PR1	70449
Owner: SC	DLUTIEN	T TECHNOL							1942	
DATE: 07/1 TECH: Joa	17/10 Inne Glenn				LO	CATION: TE LAST	CAL EXPIRES	6:	Griffin Ir 02/13/	ıst 10
Due For 0	Calibration	R Repair	EASON (See Re	FOR C/ marks)	O O	DN: ther (See	Remarks)	0 0	ue and l	Repair
CABLE	ELENGTH	: 39"			INPU	T SENSI	TIVITY: dual			
	NIST T	RACEABLE EQU	IPMENT	AND S	TANDAR	DS USED	DURING CAL	BRATIC	<u>NC</u>	
MODEL:	2224	S	ERIAL #	:	1637	41	CAL. DUE:		07/17/	11
		NI	ST TRA	CEABLE	SOURC	ES USED				
Source Ni OOTC47 94TH47 2	umber 70-0654 70-1593 2696-00 2697-00	Isotope Tc99 SS Th230 Pu239 Sr90		4 p	i Activity 17,300 dpi 16,700 dpi 18,500 dpi 12,200 dpi	וד דר דו זו	Assay 06 06 12 03	Date /15/09 /16/09 /02/09 /01/00		2 pi Activity 10.800 cpm 8.170 cpm 9.370 cpm 8.530 cpm
Condition:	Sat	t 🔾 Unsat			P	ut	Efficienc	les from	last cal	
					Tc	ss: 8	3 23% C14	10 03	Te	51; MZ-
As Found (A	F) Efficien	cles:							TC	NI.
HV / Vernier	Tc-99 So Nic	urce Response kel (CPM)	Pu- Resp	239 Sou onse (C	rce PM)	Backgro	aund (CPM)	Tc-99 S Stainle	ource Re ss Steel	esponse (CPM)
675	A ch	B ch. Net Eff	A ch. 3508	B ch. 595	Net Eff. 18.95%	A ch 0	B ch. 274	A ch. 5	B ch 1785	Net Eff 8.73%
			Ne Xta	et A to B	B to A	Xtalk 1%				
				8 4%	<	1%				
	<u>Pu239</u>	<u>Tc99 Ni</u>	I	<u>c99 ss</u>	Th	-230	<u>\$r90</u>		<u>C-14</u>	
AF CPM:	3508		1	785	29	45	2653			
AF 4 pi eff:	18.96%		8	73%	17.6	3%	25.01%			
AF 2 pl eff:	37.44%		13	.99%	36.05%		35.77%			

Is as found efficiency within 20% of the efficiency from the last cal?

O Yes (See Remarks)

Note If the as found data is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10% then the technician may N/A the plateau section and go directly to remarks

CALIB Owner:	RATION SOLUT	I CERTIF	ICATE	GIE	D R S	2	224	SERIA	L#	163741 1940		
DA	ATE:	07/17/10				LOCA	TION:			Griffin Inst		
TE	CH	Joanne C	lenn			DATE	LAST CAL	EXDIDES		02/12/10		
	· · · ·				~	DATE	LAST CA	L EAFIRES:		u2/13/10		
Re	ason For C	alibration:		2	Due F	or Calibrat	on	Repair (S	lepair (See Remarks)			
				. 1	O Other	(See Rema	rks)	0	Due and Repair (See Remarks)			
			NIST TRA	CEA	BLE EQU	IPMENT US	ED DURIN	NG CALIBRAT	ION			
M	ODEL	M-500		SEF	RIAL #	42386		CAL	DUE:	04/21/11		
	🗸 Audio I	Response			Geotro	pism	CA	ABLE LENGT	H: 39"			
CONDITION	l: Sa	t .	AF MECH	ANIC	AL ZERO	0	A		AL ZERO	o. 0 es		
NEW BATT	ERIES:	۲	Yes	C	No	BATTERY	CHECK:	Sat				
HV (+/-10)	AS FO	<u>UND HV</u>	ASI	.EFT	HV	WIN	DOW SETT	TINGS:	<u>A.F.</u>	<u>A.L.</u>		
500 V:	5	000		AF		BT (3,5 mV +/-	1 mV):	3.5	A F.		
1000 V:	1	000		A.F.		BW	(30 mV +/-	3 mV):	30	A.F.		
1500 V:	1	500		AF		AT (1	20 mV +/-1	10 mV)	110	120		
		RA		TER	2		20 1111 17-1	io integ.	C			
	SCALE	RATE CPM	AS FOU		% EB800	ASIECT						
	<u>oortee</u>	400	100		78 CRROF	AS LEFT		AS FOUND	TO ERR	UR AS LEFT % ERROR		
	X.1 OF X1	250	250		0.0%	AF.		036	0.00			
		400	400	=	0.0%	AF		250	0.0%	A.F.		
	x1 or	1000	1000	_	0.0%	AF						
	x10	2500	2500		0.0%	AE				The state of the s		
		4000	4000		0.0%	AE		-				
	x10 or	10K	10	ĸ	0.0%	A.F.		1.201 28				
	×100	25K	25	ĸ	0.0%	A.F.		Sec. Para		0.5		
		40K	40	ĸ	0.0%	A.F.						
	x100 or	100K	100	ĸ	0.0%	A.F.						
	×1000	250K	250	к	0.0%	A.F.						
		400K	400	К	0.0%	AF				STATE SALES		
	Is	the As Foun	d Data Wi	thin :	20% of the	e Set Point	7:	Yes	0	No		
Overload L REMARKS	.ight:	Adjus	ited ()	Not	Adj.							
Does Instr	ument Mee	t Final Accep	otance Cri	teria	?:		Yes	O N				
Calibration	n Sticker At	tached?:					Yes	O N	0			
Date Instru	iment is Du	e For Next C	alibration	1			07/17/11					
INSTRUME		ED WITH	2	3.89		# PR1704	19					
Performed	/Reviewed	bv:		d?		Date: 7/17	7010		E-the sta	2		
		-s. [nove Sylanos	21		Udt8; //1//	2010		Entered l	oy: <u> </u>		

1

PROBE # PR170449

Date 07/17/10

HV / Vernier: Tc-99 Source Response Pu-239 Source Background (CPM): Net A to B B to A Xtalk: SS (CPM) Response (CPM) Xtalk: <10% <1% A ch. B ch. Net Eff. A ch. B ch. Net Eff. A ch Bch N/A Alpha / Beta Bkg (cpm) 0 274 HV / Vernier <u>Pu-239</u> Tc-99 Ni Tc-99 SS <u>Th-230</u> C-14 <u>Şr-90</u> 675 CPM: 3508 1785 2945 2653 4 pi AL Efficiencies: 18.96% 8.73% 17.63% 25.01% 2 pl AL Efficiencies: 37.36% 13.99% 36.05% 35.77% REMARKS: As found data off scale - replaced mylar Does Instrument Meet Final Acceptance Criteria?: Yes O No Calibration Sticker Attached?: O No Yes Date Instrument is Due For Next Calibration 07/17/11 INSTRUMENT MARRIED WITH 2224 # 163741

Date: 7/17/2010

PLATEAU AND SET POINT DATA

2 pl efficiencies denoted in italics.

Performed/Reviewed by:

Calibrations performed to ANSI N323A-1997 standards.

Entered by: P Initials

hanne likon

CALIB Owner:	RATION SOLUT	I CERTIF	ICATE	F GIE	OR IS	2	224	SERIAL	# 2 1	21460 919	
DA	ATE:	03/02/10				LOC	TION:			Griffin Inst	
те	CH:	Joanne O	Slenn			DATE		EYDIDES:		02/13/10	
Re	ason For (alibration			O Due F	0		ENTINES.		02/13/10	
ne		verintenou:			Uue F	or Calibrat	ion	O Re	Repair (See Remarks)		
					O Other	(See Rema	ırks)	O Du	e and Re	apair (See	Remarks)
			NIST TRA	CEA	BLE EQU	IPMENT US	ED DURIN	G CALIBRATIO	N		
M	ODEL:	M-500		SE	RIAL #2	114512		CAL. DU	IE: 0	9/05/10	
	🖌 Audio	Response			✓ Geotro	pism	CA	BLE LENGTH:	39"		
	ł: Sa ERIES:	it /	AF MECH/ Yes (AL ZERO	0 BATTERY	A CHECK:	L MECHANICA Sat	ZERO:	0	
<u>HV (+/-109</u>	6) <u>AS FO</u>	UND HV	<u>AS L</u>	EFT	<u>HV</u>	WIN	DOW SETT	INGS: A	. <u>F.</u>	<u>A.L.</u>	
500 V:	5	500		AF		BT (3,5 mV +/-	1 mV); 3	5	A.F.	
1000 V:	1	000		AF		aw.	ः (30 m\(→ि	1 m1/1	о- 10	20	
1500 V·	1	500		Ar			(30 III 4 1)	2 III 4]; 2	9	30	
1000 1.		DAT				r) IA	20 mV +/-1	0 mV): 1:	20	A.F.	
	and the second	R/A			x				SC	ALER	
15	SCALE	RATE CPM	AS FOU	ND	% ERROF	AS LEFT	% ERROR	AS FOUND	6 ERRO	R AS LEFT	% ERRO
	x.1 or x1	100	100		0.0%	A.F.		Diamonta and	al. and		
		250	250		0.0%	A.F.		250	0.0%	A.F.	
	v1 or	400	400	_	0.0%	A.F.					
	x10	2500	2500		0.0%	A.F.					
		4000	2500	_	0.0%	A.F.		AREA DERING			
	x10 or	10K	10	14	0.0%	A.F.					
	x100	25K	25		0.0%			States .			
		40K	40	ĸ	0.0%	AE					
	x100 or	100K	100	R	0.0%	AF	· · · ·				
	×1000	250K	250	ĸ	0.0%	AE		Sec. 10			
		400K	400	ĸ	0.0%	A.F.	,				
Overload L REMARKS:	is ight:	the As Found	d Data Wit ted 💿	hin Not	20% of the Adj	e Set Point	?:	Yes	0 N	٥	
13											
Does Instru	ument Meel	t Final Accep	tance Cri	teria	?:		• Yes	O No			
Calibration	Sticker At	tached?:					• Yes	O No			
Date Instru	ment is Du	e For Next C	alibration	:			03/02/11				
INSTRUME		ED WITH	4	3-93		# 002446					
						- F F FX4433	55				

Owner: SOLUTIENT TECHNOL DATE: 03/02/10 LOCATION: DATE LAST CAL EXPIRES: Griffin Inst 02/13/10 TECH: Joanne Glenn REASON FOR CALIBRATION: REASON FOR CALIBRATION: CABLE LENGTH: 0 Une For Calibration Repair (See Remarks) O Une ror Calibration Due and Repair CABLE LENGTH: 39" INPUT SENSITIVITY: dual MINT TRACEABLE EQUIPMENT AND STANDARDS USED DURING CALIBRATION MODEL: 2224 SERIAL #: 221460 CAL DUE: 03/02/11 NIST TRACEABLE SOURCES USED Source Number 2 pi Activity 00TC470-0654 1500 pp 06/15/09 8.170 cpr 2596-00 PU239 18.500 dpm 03/01/00 8.530 cpr Efficiencies from last cal.: Condition: Sat Unsat Nickei (CPM) The 18.38% Srource Response Mickei (CPM) Source Response 2597-00 S159 12.200 dpm 03/01/00 8.530 cpr Sat <th colsp<="" th=""><th>CALIBRATI</th><th>ON CERTIF</th><th>ICATE</th><th>FOR</th><th></th><th>43-93</th><th></th><th>PROBE</th><th>E #</th><th>PR24</th><th>14555</th></th>	<th>CALIBRATI</th> <th>ON CERTIF</th> <th>ICATE</th> <th>FOR</th> <th></th> <th>43-93</th> <th></th> <th>PROBE</th> <th>E #</th> <th>PR24</th> <th>14555</th>	CALIBRATI	ON CERTIF	ICATE	FOR		43-93		PROBE	E #	PR24	14555
DATE: 03/02/10 Joanne Glenn LOCATION: DATE LAST CAL EXPIRES: Griffin Inst 02/13/10 REASON FOR CALIBRATION: REASON FOR CALIBRATION: Due and Repair CABLE LENGTH: 39" NPUT SENSITIVITY: dual INPUT SENSITIVITY: dual INST TRACEABLE EQUIPMENT AND STANDAROS USED DURING CALIBRATION MODEL: 2224 SERIAL #: 221460 CAL. DUE: 03/02/11 NINFUT SENSITIVITY: dual MODEL: 2224 SERIAL #: 221460 CAL. DUE: 03/02/11 Source Number Isotope 4 pi Activity Assay Date 2 pi Activity 00TC470.0654 Tc99 SS 17,300 dpm 06/15/09 8,170 cpr 2696-00 Pu239 18,500 dpm 12/02/09 9,370 cpr Z696-00 Pu239 18,500 dpm 03/01/00 8,530 cpr Condition: Sat Unsat Pu: Th: 18,38% Sr: Condition: Sat Unsat Pu: 239 Source Response Stainless Steel (CPM) Sat	Owner: SO	LUTIENT TEC	HNOL									
REASON FOR CALIBRATION: Oue and Repair Oue For Calibration Repair (See Remarks) Other (See Remarks) Oue and Repair CABLE LENGTH: 39' INPUT SENSITIVITY: dual NINPUT SENSITIVITY: dual MODEL: 2224 SERIAL #: 221460 CAL. DUE: 03/02/11 MIST TRACEABLE SOURCES USED Source Number Isotope 4 pl Activity Assay Date 2 pl Activity Source Number Isotope 4 pl Activity Assay Date 2 pl Activity 05/15/09 10.800 cpr Source Number Isotope 4 pl Activity Assay Date 2 pl Activity 05/15/09 10.800 cpr Source Number Isotope 4 pl Activity Assay Date 2 pl Activity Source Number Source Number Distinue Source Efficiencies: Condition: Sat Unsat Pu-239 Source Condition: Sat <th< td=""><td>DATE: 03/02 TECH: Joan</td><td>2/10 Ine Glenn</td><td></td><td></td><td></td><td>LOC DAT</td><td>ATION: E LAST C</td><td>AL EXPIRES</td><td>S:</td><td>Griffin In: 02/13/1</td><td>st IO</td></th<>	DATE: 03/02 TECH: Joan	2/10 Ine Glenn				LOC DAT	ATION: E LAST C	AL EXPIRES	S:	Griffin In: 02/13/1	st IO	
INPUT SENSITIVITY: dual INPUT SENSITIVITY: dual MODEL: 2224 SERIAL #: 21460 CAL DUE: 03/02/11 NODEL: 2224 SERIAL #: 21460 CAL DUE: 03/02/11 NIST TRACEABLE SOURCES USED Source Number Isotope 4 pl Activity Assay Date 2 pl Activity Source Number Isotope 4 pl Activity Assay Date 2 pl Activity 0.800 cpr 94TH470-1593 Th:230 16.700 dpm 06/16/09 8.170 cpr 2696-00 Pu239 18.500 dpm 12/02/09 9.370 cpr Efficiencies from last cal.: Condition: Sat Unsat Pu: Tr is 8.8% Sr: To sat Unsat Pu: Tr is 8.8% Sr: Source Response Pu-239 Source Response (CPM) Co-99 Source Response Art is 18 <th< td=""><td>Due For C</td><td>alibration</td><td>Ri Repair (</td><td>EASON See Rei</td><td>FOR CA marks)</td><td></td><td>ାN:ି her (See</td><td>Remarks)</td><td>Ор</td><td>ue and R</td><td>lepair</td></th<>	Due For C	alibration	Ri Repair (EASON See Rei	FOR CA marks)		ାN:ି her (See	Remarks)	Ор	ue and R	lepair	
MODEL: 2224 SERIAL #: 21460 CAL_DUE: 03/02/11 NIST TRACEABLE SOURCES USED Source Number Isotope 4 pl Activity Assay Date 2 pl Activity 0.000 cpr 00TC470-0654 Tc99 SS 17.300 dpm 06/15/09 8.170 cpr 2 00 dpm 06/15/09 8.170 cpr 94TH470-1593 Th230 16.700 dpm 06/15/09 8.170 cpr 2695-00 Pu239 18.500 dpm 12/02/09 9.370 cpr 2697-00 Sr90 12.200 dpm 03/01/00 8.530 cpr 12/02/09 9.370 cpr 2697-00 Sr90 12.200 dpm 03/01/00 8.530 cpr Condition: Sat Unsat Pu: Th: 18.38% Sr: Condition: Sat Unsat Pu: Th: 18.38% Sr: Tc Sr: 12.00% C14: Tc NI: As Found (AF) Efficiencies: Nickel (CPM): Pu-239 Source Response (CPM) Sci A ch B ch A ch	CABLE	LENGTH: 39"				INPU	SENSIT	IVITY: dua				
MODEL: 2224 SERIAL #: 221460 CAL. DUE: 03/02/11 NIST TRACEABLE SOURCES USED Source Number Isotop 4 pi Activity Assay Date 2 pi Activity 00TC470-0654 Tc99 SS 17.300 dpm 06/15/09 10.800 dpm 94TH470-1593 Th230 16,700 dpm 06/16/09 8.170 dpm 2696-00 Pu239 18.500 dpm 12/02/09 9.370 dpr 2697-00 Sr90 12.200 dpm 03/01/00 8.530 dpr EHficiencies from last cal.: Condition: Sat Unsat Pu Th 18.38% Sr: As Found (AF) Efficiencies: Nickel (CPM): Response (CPM) Tc-99 Source Response Nickel (CPM): Response (CPM) Stainless Steel (CPM) Stainless Steel (CPM) 63% <1%		NIST TRACE		IPMENT	AND S	TANDARD	S USED (DURING CAL	BRATIC	<u>N</u>		
NIST TRACEABLE SOURCES USED Source Number 00TC470-0654 Isotope Tc99 SS 4 pl Activity 17,300 dpm Assay Date 06/15/09 2 pl Activity 10,800 dpr 94TH470-1593 Th230 16,700 dpm 06/15/09 8,170 dpr 2696-00 Pu239 18 500 dpm 03/01/00 8,530 dpr 2696-00 Sr90 12,200 dpm 03/01/00 8,530 dpr Efficiencies from last cal.: Condition: • Sat Unsat Pu: Th: 18 38% Sr: As Found (AF) Efficiencies: Tc-99 Source Response Nickel (CPM): Pu:239 Source Response (CPM) Background (CPM) Tc-99 Source Response Stainless Steel (CPM) A ch B ch Net Eff A ch B ch Net Eff A ch B ch Net Eff 675 / N/A A ch B ch Net Eff A ch B th A Xtalk Xtalk: <10% C-14 AF CPM: 4287 2551 3651 3619 Af A pi eff: 23.16% 21.06% 44.66% 49.86%	MODEL:	2224	SI	ERIAL #	¢ •	22146	0	CAL. DUE	ę.	03/02/1	1	
Source Number Isotope 4 pl Activity Assay Date 2 pl Activity 00TC470-0654 Tc99 SS 17.300 dpm 06/15/09 10.800 cpr 94TH470-1593 Th230 16.700 dpm 06/16/09 8.170 cpr 2696-00 Pu239 18.500 dpm 12/02/09 9.370 cpr 2697-00 Sr90 12.200 dpm 03/01/00 8.530 cpr Efficiencies from last cal.: Condition: Sat Unsat Pu: Th: 18.38% Sr: Tc ss: 12 00% C14: Tc Ni: As Found (AF) Efficiencies: HV / Vernier: Tc-99 Source Response Pu-239 Source Background (CPM) Tc-99 Source Response Stainless Steel (CPM) Stainless A ch B ch Net Eff A ch. B ch Net Eff 675 / N/A A ch B ch Net Eff A ch. B ch Net Eff 63% <1%			NI	ST TRAC	CEABLE	SOURCE	S USED					
Efficiencies from last cal.: Condition: • Sat Unsat Pu: Th: 18.38% Sr: Tc ss: 12.00% C14: Tc Ni: As Found (AF) Efficiencies: Pu:-239 Source Background (CPM) Tc-99 Source Response Stainless Steel (CPM) HV / Vernier: Tc-99 Source Response Nickel (CPM): Pu:-239 Source Background (CPM) Tc-99 Source Response Stainless Steel (CPM) A ch B ch Net Eff A ch B ch Net Eff A ch B ch Net Eff 675 / N/A Net A to B B to A Xtalk: 2 276 18 2551 13.15% Met A to B B to A Xtalk: <1%	Source Nu 00TC47 94TH47 2 2	mber 0-0654 0-1593 696-00 697-00	Isotope Tc99 SS Th230 Pu239 Sr90		4 p	i Activity 17,300 dpn 16,700 dpn 18,500 dpn 12,200 dpn	n n 1 1	Assay 06 06 12 03	/ Date 5/15/09 5/16/09 5/02/09 5/01/00		2 pi Activity 10,800 cpm 8,170 cpm 9,370 cpm 8,530 cpm	
Condution: Sat Disat Pu: Th: 18 38% Sr; Tc ss: 12 00% C14; Tc Ni: As Found (AF) Efficiencies: HV / Vernier: Tc-99 Source Response Nickel (CPM): Pu-239 Source Response (CPM) Background (CPM) Tc-99 Source Response Stainless Steel (CPM) A ch B ch Net Eff A ch B ch Net Eff A ch B ch Net Eff 675 / N/A A ch B ch Net Eff A ch B ch Net Eff A ch B ch Net Eff 63% <1%	Condition		-					Efficienc	ies from	last cal.	:	
As Found (AF) Efficiencies: Pu-239 Source Response (CPM) Background (CPM) Tc-99 Source Response Stainless Steel (CPM) A ch B ch Net Eff A ch B ch Net Eff A ch. B ch A ch B ch Net Eff A ch. B ch A ch B ch Net Eff A ch. B ch. Net Eff	Condition	Sat U	Unsat			Pi	1	Th:	18 38	% S	Br:	
HV / Vernier:Tc-99 Source Response Nickel (CPM):Pu-239 Source Response (CPM)Background (CPM)Tc-99 Source Response Stainless Steel (CPM)A chB chNet EffA chB chNet EffA ch.B chA chB chNet Eff675 / N/AA chB chNet EffA chB chNet EffA ch.B chA chB chNet Eff675 / N/AN/ANet EffA chB chNet EffA ch.B chA chB chNet Eff675 / N/AN/ANet A to BB to A Xtalk xtalk: <10%	As Found (Al	F) Efficiencies				101	55 12	00% C14;		TC .	NI:	
A ch B ch Net Eff A ch B ch A ch B ch Net Eff 675 / N/A A ch B ch Net Eff 4287 564 23 16% 2 276 18 2551 13 15% Net A to B Net A to B B to A Xtalk <1% Net Eff A ch B ch Net Eff Net Eff <th< th=""></th<>	HV / Vemier:	Tc-99 Source R Nickel (CF	esponse PM):	Pu- Resp	239 Sou oonse (C	irce PM)	Backgro	und (CPM)	Tc-99 S Stainle	ource Re ss Steel	sponse (CPM)	
Net A to B Xtalk: <10% B to A Xtalk: <1% 6 3% <1%	675 / N/A	A ch B ch	Net Eff	A ch 4287	B ch 564	Net Eff. 23 16%	A ch. 2	B ch 276	A ch 18	B ch 2551	Net Eff. 13.15%	
6 3% <1% Pu239 Tc99 Ni Tc99 ss Th-230 Sr90 C-14 AF CPM: 4287 2551 3651 3619 AF 4 pi eff: 23.16% 13.15% 21.85% 34.86% AF 2 pi eff: 45.73% 21.06% 44.66% 49.86%				Ni Xta	et A to E alk: <10	B to A % <	Xtalk: 1%					
Pu239 Tc99 Ni Tc99 ss Th-230 Sr90 C-14 AF CPM: 4287 2551 3651 3619 AF 4 pi eff: 23.16% 13.15% 21.85% 34.86% AF 2 pi eff: 45.73% 21.06% 44.66% 49.86%					6.3%	<	1%					
AF CPM: 4287 2551 3651 3619 AF 4 pi eff: 23.16% 13.15% 21.85% 34.86% AF 2 pi eff: 45.73% 21.06% 44.66% 49.86%		<u>Pu239</u>	<u>Tc99 Ni</u>	1	<u>[ç99 ss</u>	Th	<u>-230</u>	<u>Sr90</u>		<u>C-14</u>		
AF 4 pi eff: 23.16% 13.15% 21.85% 34.86% AF 2 pi eff: 45.73% 21.06% 44.66% 49.86%	AF CPM:	4287			2551	36	51	3619				
AF 2 pi eff: 45.73% 21.06% 44.66% 49.86%	AF 4 pi eff:	23.16%		1:	3.15%	21.8	5%	34.86%				
	AF 2 pi eff:	45.73%		2	1.06%	44.6	6%	49,86%				

Is as found efficiency within 20% of the efficiency from the last cal?

Yes O No (See Remarks)

Note. If the as found data is writin 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10% then the technician may N/A the plateau section and go directly to remarks.

PROBE #: PR244555

Date:

03/02/10

HV / Vernier	Tc-99 S	ource Re	esponse):	Pu- Resp	239 Sol oonse (C	irce CPM),	Backgrou	ind (CPM)	Net A to B Xtalk: <10%	B to A Xtalk: <1%	
	A ch.	B ch	Net Eff	A ch	B ch.	Net Eff.	A ch	B ch.		L	-
N/A			T						-		
		_									
			+	_	┝─┼	 ·					
					+						I
Alpha / B	eta Bkg (cpm)	2	2	76						
HV / Vernier		Pu	-239	<u>Tc-99</u>	NE	<u>Tc-99 S</u>	<u>SS Th-</u>	230	<u>C-14</u>	<u>Sr-90</u>	
675 / N/A	CPN	1: 4:	287			2551	36	51		3619	
4 pi AL Ef	ficiencie	s: 23.	16%			13,157	6 21.8	35%		34.86%	
2 pl AL Ef	ficiencie	s: 45.	63%			21.05%	6 44.0	56%		49.86%	
EMARKS											
oes Instrument Me	et Final /	Acceptar	ce Criteria	a?:::	• Ye	is (No				
alibration Sticker A	Attached?				• Ye	is (No				
ate Instrument is E	Due For N	lext Calib	vation.		03/02/1	1					
	RRIED	VITH	2	21460		# 2224					
Performed/Review	wed by:	Jun	une Ghore	Þ	I	Date: 3/2/	2010		Entered by	nitials	5

PLATEAU AND SET POINT DATA

2 pl efficiencies denoted in italics.

Calibrations performed to ANSI N323A-1997 standards.

ALIBRAT	UTIEN	CERTIFIC IT TECHNO	CATE F	:0 S	R //	22	21	SERIAL#	176942 1135			
DATE:		07/17/10				LOCA	TION:		Griffin Inst			
TECH:		Joanne Gk	enn			DATE	LAST CAL	EXPIRES:	03/28/10			
Beeren	Eas C	libration		į.	Due For	Calibrati	on	Repair (See Remarks)				
Reason				1	Other (S	ee Remai	rks)	Ö Due	and Repair (See Remarks)			
		N	IIST TRACI	EAE	ILE EQUIPI	MENT US	<u>ED DURIN</u>	G CALIBRATION				
MODEL	.: N	A-500	s	ER	IAL #:	42386		CAL. DUE	: 04/21/11			
MODEL			9	ER	IAL #:			CAL DUE	:			
V Fast/Slow S	Switch	working pro	operty 💆	Ž A	udio Resp	onse	Geotro	pism CABL	E LENGTH 6'			
CONDITION:		Sat A	F MECHAI	NIC	AL ZERO:		0 AL	MECHANICAL Z	ERO: 0			
NEW BATTERI	ES:	۲	Yes (2	No B	ATT, CHE	CK >4.8V:	6	3 V			
HV	(+/-107	ទា		AS	FOUND H	1		AS LEFT HV				
5	500 V:				594			596				
12	200 V:				1175			1197				
18	800 V:				1770			1789				
AF INPUT SENS	SITIVIT	Y (mV):	4			SENSITIN	/ITY (mV):	A.F.				
/		RAI	re met	EI	२				SCALER			
<u>s</u> c	CALE	RATE CPM	AS FOUN	<u>ID</u>	% ERROR	AS LEFT	% ERRO		6 ERROR AS LEFT % ERRO			
x.1	or x1	100	100		0.0%	A.F.						
	[250	250	-1	0.0%	A.F.	<u> </u>	250	0.0% A.F.			
		400	400		0.0%	A.F.		-				
x		1000	1000		0.0%	A.P.	↓	-1				
	^IV	2500	2000		0.0%	ÅF.	+	-				
	10.01	4000	10	k	0.0%	AE	<u> </u>	-				
	x100	25K	25	K	0.0%	A.F.		-1				
		40K	40	k	0.0%	A.F.	<u> </u>	1				
	100 or	100K	100	K	0.0%	A.F.	1	7				
11		26010	250	ĸ	0.0%	A:F.		7				
x1 x	c1000	2300						-				

LOG SCALE

SCALE RATE CPM AS FOUND % ERROR AS LEFT % ERROR

Log	200	200	ì	0.0%	A.F.		
	2000	2000)	0.0%	A.F.		
	20K	20	K	0.0%	A.F.		
	2008	195	K	2.5%	A.F.		

Is the As Found Data Within 20% of the Set Point?:

		GR	RIFFIN INSTRUMENTS					
Audio Divide:	۲	Set 😳 Unsat	Push Buttons:	SERIAL # 176942 07/17/10 Sat Unsat				
Lamp:	۲	Sat 😳 Unsat	Scaler/Digital:	🖲 Sat 🗇 Unsat				
Remarks				2				
Does Instrument N	leet Final	Acceptance Criteria?:	• Yes	O No				
Calibration Sticker	Attached	d?:	• Yes	No				
Date Instrument is	Due For	Next Calibration:	07/17/11					
INSTRUMENT MAI	RRIED W	ITH	#					
Performed/Review	red by:	E CAR	Date: 7/17/2010					

40.03%

Owner: SC		RTIFIC/ T TECHN	ATE F Ol	OR	4	3-37		PROBE	#	RN01 1167	5934
DATE: 07/*	17/10	1		1. 10.000.000		LOC	TION:	10 mm	(Griffin Ins	L
TECH: Joa	inne Glenn					DATE	ELAST C	AL EXPIRES	:	03/28/10)
🕈 Due For (Calibration	R	REA apair (S	SON F	OR CAL arks)	IBRATIO	N: Ier (S ee	Remarks)	О рі	ue and Ri	spair
CABL	E LENGTH	: 6'			_	INPUT	SENSIT	WITY: 4 m			
	<u>NIST T</u>	RACEABLE		MENT	AND ST	ANDARD	S USED		IBRATIC	<u>M</u>	
MODEL:	2221		SEF	RIAL #:		17694	2	CAL. DUE:		07/17/1	1
			NIST	TRAC	EABLE	SOURCE	<u>s used</u>				
Source N	umber	lsc	tope		4 pi	Activity		Assay	Date		2 pi Activity
00TC4	70-0654	Te	99 SS		17	7,300 dpm	1	06	/15/09		10,800 cpm
94TH4	70-1593	٦	h230		16	5,700 dpm	I	06	/16/09		8,170 cpm
	2696-00	Ŧ	°u239		18	3,500 dpm	i -	12	/02/09		9,370 cpm
	2697-00		Sr90		12	2,200 dpm	l .	03	/01/00		8,530 cpm
								Efficienc	ies from	last cal.	:
Condition:	(a) S:	. 26	linest			р,	. 2	4 58% Th-	20.52	2961 9	In 41 349
Condition:	(e) Sa	at (j	Unsat			Pu To s	:: <u>2</u>	4.58% Th: 1.25% C14:	20.52	2% S Tc 1	ir: 41.349 NI:
Condition: As Found (Sa (•) Sa AF) Efficie	at () ncies:	Unsat			Pu Tc s	:: <u>2</u>	4.58% Th: 1.25% C14:	20.52	2% S	ir: 41.349 Vi:
Condition: As Found (HV / Vernier	Sa Sa AF) Efficie Tc-99 S Ni	at () ncies: jource Resp ckel (CPM):	Unsat	Pu-2 Resp	239 Sour	Pu Tcs ce PM):	s: 2 Backgr	4.58% Th: 1.25% C14: pund (CPM):	20.52 Tc-99 S Stainle	2% S Tc 1 Source Re ess Steel	sr: 41.349
Condition: As Found (HV / Vernier	Sa AF) Efficie Tc-99 S Ni A ch.	at cles: nource Resp ckel (CPM): B ch.	Unsat onse l	Pu-2 Resp A ch.	239 Sour onse (Cl B ch.	Pu Tcs C6 PM): Net Eff.	i: 2 is: 2 Backgri A ch.	4.58% Th: 1.25% C14: pund (CPM): B ch.	20.52 Tc-99 S Staink A ch.	2% S Tc 1 Source Re ess Steel B ch.	sponse (CPM): Net Eff.
Condition: As Found (HV / Vernier 1250 a / 1750	Sa Sa AF) Efficie Tc-99 S Ni A ch. b	at ncies: iource Resp ckel (CPM): B ch.	Unsat onse i let Eff.	Pu-2 Resp A ch. 4397	239 Sour onse (Cl B ch.	Pu Tc s C8 PM): Net Eff. 23.74%	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	4.58% Th: 1.25% C14: bund (CPM): B ch. 875	20.52 Tc-99 S Staink A ch.	2% S Tc 1 Source Reess Steel B ch. 5668	sponse (CPM): Net Eff. 27.71%;
Condition: As Found (HV / Vernier 1250 a / 1750	Sate Sate Sate Sate Sate Sate Sate Sate	at ncies: Jource Resp ckel (CPM): B ch. N	Unsat onse let Eff.	Pu-2 Resp A ch. 4397 Ne Xta	239 Sour onse (Cl B ch. B ch. Ht A to B sik: <109	Pu Tc s PM): Net Eff. 23.74%	2: 2 Backgr A ch. 5 Xtalk: 1%	4.58% Th: 1.25% C14: Dund (CPM): B ch. 875	20.52	2% S Tc 1 Source Reess Steel B ch. 5668	sr: 41.349 NI: (CPM): Net Eff. 27.71%
Condition: As Found (HV / Vernier 1250 a / 1750	Sa Sa AF) Efficie Tc-99 S Ni A ch. b	at ncies: iource Resp ckel (CPM): B ch. N	Unsat onse let Eff. 9 Ni	Pu-2 Resp A ch. 4397 Ne Xta	239 Souri onse (Cl B ch. th A to B alk: <109 cg99 ss	Pu Tc s PM): Net Eff. 23.74% 6 B to A	: 2 Backgr A ch. 5 Xtalk: 1%	4.58% Th: 1.25% C14: bund (CPM): B ch. 875 <u>Sr90</u>	20.52 Tc-99 S Stainle A ch.	C-14	sr: 41.349 NI: (CPM): Net Eff. 27.71%:
Condition: As Found (HV / Vernier 1250 a / 1750 AF CPM:	Sa Sa AF) Efficie Tc-99 S Ni A ch. b Pu239 4397	at ncies: iource Resp ckel (CPM): B ch. N 2 <u>Tcs</u>	Unsat onse let Eff. 9 Ni	Pu-2 Resp A ch. 4397 Ne Xta	239 Souri onse (Cl B ch. th A to B alk: <109 c99 ss 5668	Pu Tc s PM): Net Eff. 23.74% B to A 6 Th 36	: 2 Backgr A ch. 5 Xtalk: 1%	4.58% Th: 1.25% C14: bund (CPM): B ch. 875 <u>Sr90</u> 4662	20.52 Tc-99 S Stainle A ch.	2% 5 Tc 1 Source Re ess Steel B ch. 5668 <u>C-14</u> 834	sr: 41.349 VI: (CPM): Net Eff. 27.71%:

Is as found efficiency within 20% of the efficiency from the last cal? Yes No (See Remarks)
Note. If the as found data is within 10% of the last calibration and the B-A Xtalk is <1% and the A-B Xtalk is <10%, then the technician may N/A the plateau section, and go
directly to remarks

44.90%

56.94%

44.38%

46.87%

AF 2 pl eff:

1

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

SCAN MINIMUM DETECTABLE CONCENTRATIONS FOR RADIOLOGICAL CONTAMINANTS OF CONCERN AT PICATINNY ARSENAL BUILDING 315

THIS PAGE INTENTIONALLY LEFT BLANK

SCAN MINIMUM DETECTABLE CONCENTRATRATIONS FOR RADIOLOGICAL CONTAMINANTS OF CONCERN AT PICATINNY ARSENAL BUILDING 315

NUREG-1507, *Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions* (NRC 1998), and NUREG-1575, MARSSIM (DOD 2000), provide methodology for calculation of MDCs. The following details the approach for calculating site-specific MDCs for U-238 for use in the survey process at the Building 315. The MDCs provided in this appendix were calculated using specific instrument and background data gathered at building 315 during surveys in August 2010, May 2018 and November 2019.

The steps utilized for calculating MDCs for Building 315 follow the approach detailed in NUREG-1507. The steps include:

- 1. Calculating the minimum detectable count rate (MDCR) by selecting a given level of performance, scan speed, and background level of the detector; and
- 2. Selecting a surveyor efficiency, if applicable.

The scan MDCs for structure surfaces may be calculated as follows:

The observation interval (*i*) is defined as the width of the probe divided by the time that 25 percent of the probe is over a 4"×4" area of interest (scan speed).

$$i = (\text{probe width}) / (\text{scan speed})$$

$$i = \frac{w}{s}$$

where:

i = observation interval (second)

w = probe width (inches)

The observable background count (b_i) is defined as is the number of background counts that occur during an observation interval.

$$b_i = (\mathbf{B}) \times (i/60)$$

where:

B = background count rate (cpm)

The minimum detectable number of net source counts in the interval is given by s_i . Therefore, for an ideal observer, the number of source counts required for a specified level of performance can be arrived at by multiplying the square root of the number of background counts by the detectability value associated with the desired performance (d'), as shown in the following equations:

$$s_{i} = d' \sqrt{b_{i}}$$

or
$$s_{i} = d' \sqrt{B(\frac{i}{60})}$$

where:

- s_i = minimum detectable number of net source counts
- d' =index of detectability
- B = background count rate (cpm)

The MDCR is defined as the increase above background recognizable during a survey in a given period of time. The variable, d', is defined as the index of sensitivity and is dependent on the selected decision errors for Type I (alpha) and Type II (beta) errors. A true positive error $(1-\beta)$ of 95 percent and a false positive error (alpha) of 60 percent were selected to be consistent with NUREG-1507. The value of 1.38 was obtained from Table 6.1 in NUREG-1507 (Table 6.5 in MARSSIM).

 $MDCR = s_i \times (60/i) = cpm$

Finally, the scan MDCs for structure surfaces may be calculated:

$$MDC = \frac{MDCR}{\left(\sqrt{p}\right)(\varepsilon_s)(\varepsilon_i)\left(\frac{probe\ area}{100\ cm^2}\right)}$$

where:

MCDR = minimum detectable count rate

 ε_s = surface efficiency

 ε_i = instrument efficiency

p = surveyor efficiency

The static MDC for structure surfaces may be calculated as follows:

$$MDC = \frac{\left(3 + 3.29\sqrt{(B)(T_g)(1 + \frac{T_g}{T_b})}\right)}{(\varepsilon_s)(\varepsilon_i)\left(\frac{probe\ area}{100\ cm^2}\right)(T_g)}$$

where:

- B = background count rate (cpm)
- ε_s = surface efficiency
- ϵ_i = instrument efficiency
- T_g = measurement count time (minutes)
- T_{b} = background count time (minutes)

The beta static MDC for the 43-93 can be calculated as follows:

where:

 $\begin{array}{l} B &= 226 \ cpm \\ T_b &= 2 \ minutes \\ T_g &= 2 \ minutes \\ \varepsilon_s &= 0.5 \\ \varepsilon_i &= 0.451 \ cpm/dpm \\ probe \ area &= 100 \ cm^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(226)(2)(1 + \frac{2}{2})}\right)}{(2)(0.5)(0.451)\left(\frac{100}{100\ cm^2}\right)} = 226\ dpm/100\ cm^2$$

The beta scan MDC for the 43-93 can be calculated as follows:

where:

$$w = 2.8$$
 inches
s = 2 inch/second

$$i = \frac{2.8}{2} = 1.4$$
 seconds

where:

$$d' = 1.38$$

B = 226 cpm
i = 1.4 seconds

$$MDCR = 1.38 \left(\sqrt{(226) \frac{1.4}{60}} \right) \left(\frac{60}{1.4} \right) = 137 \text{ cpm}$$

where:

$$\begin{split} MCDR &= 137 \text{ cpm} \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.451 \\ p &= 0.5 \\ probe \text{ area} &= 100 \text{ cm}^2 \end{split}$$

$$MDC = \frac{137}{\left(\sqrt{0.5}\right)(0.5)(0.451)\left(\frac{100}{100\ cm^2}\right)} = 860\ dpm/100\ cm^2$$

The beta static MDC for the 43-93 can be calculated as follows:

where:

 $\begin{array}{ll} B &= 204 \ cpm \\ T_b &= 2 \ minutes \\ T_g &= 2 \ minutes \\ \varepsilon_s &= 0.5 \\ \varepsilon_i &= 0.451 \ cpm/dpm \\ probe \ area = 100 \ cm^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(204)(2)(1 + \frac{2}{2})}\right)}{(2)(0.5)(0.451)\left(\frac{100}{100\ cm^2}\right)} = 215\ dpm/100\ cm^2$$

The beta scan MDC for the 43-93 can be calculated as follows:

where:

$$w = 2.8$$
 inches
s = 2 inch/second

$$i = \frac{2.8}{2} = 1.4$$
 seconds

where:

$$d' = 1.38$$

B = 204 cpm
i = 1.4 seconds

$$MDCR = 1.38 \left(\sqrt{(204) \frac{1.4}{60}} \right) \left(\frac{60}{1.4} \right) = 130 \text{ cpm}$$

where:

$$\begin{split} MCDR &= 130 \text{ cpm} \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.451 \\ p &= 0.5 \\ probe \text{ area} &= 100 \text{ cm}^2 \end{split}$$

$$MDC = \frac{130}{\left(\sqrt{0.5}\right)(0.5)(0.451)\left(\frac{100}{100\ cm^2}\right)} = 816\ dpm/100\ cm^2$$

The beta static MDC for the 43-93 can be calculated as follows:

where:

 $\begin{array}{l} B &= 252 \ cpm \\ T_b &= 2 \ minutes \\ T_g &= 2 \ minutes \\ \varepsilon_s &= 0.5 \\ \varepsilon_i &= 0.506 \ cpm/dpm \\ probe \ area = 100 \ cm^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(252)(2)(1 + \frac{2}{2})}\right)}{(2)(0.5)(0.506)\left(\frac{100}{100\ cm^2}\right)} = 213\ dpm/100\ cm^2$$

The beta scan MDC for the 43-93 can be calculated as follows:

where:

$$w = 2.8$$
 inches
s = 2 inch/second

$$i = \frac{2.8}{2} = 1.4$$
 seconds

where:

$$d' = 1.38$$

B = 252 cpm
i = 1.4 seconds

$$MDCR = 1.38 \left(\sqrt{(252) \frac{1.4}{60}} \right) \left(\frac{60}{1.4} \right) = 145 \text{ cpm}$$

where:

 $\begin{aligned} \text{MCDR} &= 145 \text{ cpm} \\ \epsilon_{\text{s}} &= 0.5 \\ \epsilon_{\text{i}} &= 0.506 \\ p &= 0.5 \\ \text{probe area} &= 100 \text{ cm}^2 \end{aligned}$

$$MDC = \frac{145}{\left(\sqrt{0.5}\right)(0.5)(0.506)\left(\frac{100}{100\ cm^2}\right)} = 811\ dpm/100\ cm^2$$

The beta static MDC for the 43-93 can be calculated as follows:

where:

 $\begin{array}{l} B &= 246 \mbox{ cpm} \\ T_b &= 2 \mbox{ minutes} \\ T_g &= 2 \mbox{ minutes} \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.506 \mbox{ cpm/dpm} \\ \mbox{ probe area} &= 100 \mbox{ cm}^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(246)(2)(1 + \frac{2}{2})}\right)}{(2)(0.5)(0.506)\left(\frac{100}{100\ cm^2}\right)} = 210\ dpm/100\ cm^2$$

The beta scan MDC for the 43-93 can be calculated as follows:

where:

$$w = 2.8$$
 inches
s = 2 inch/second

$$i = \frac{2.8}{2} = 1.4$$
 seconds

where:

$$d' = 1.38$$

B = 246 cpm
i = 1.4 seconds

$$MDCR = 1.38 \left(\sqrt{(246) \frac{1.4}{60}} \right) \left(\frac{60}{1.4} \right) = 143 \text{ cpm}$$

where:

$$\begin{split} MCDR &= 143 \text{ cpm} \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.506 \\ p &= 0.5 \\ \text{probe area} &= 100 \text{ cm}^2 \end{split}$$

$$MDC = \frac{143}{\left(\sqrt{0.5}\right)(0.5)(0.506)\left(\frac{100}{100\ cm^2}\right)} = 800\ dpm/100\ cm^2$$

LUDLUM MODEL 2224 WITH 43-89 DETECTOR SN 170449

The beta static MDC for the 43-89 can be calculated as follows:

where:

 $\begin{array}{l} B &= 280 \text{ cpm} \\ T_b &= 1 \text{ minutes} \\ T_g &= 1 \text{ minutes} \\ \varepsilon_s &= 0.5 \\ \varepsilon_i &= 0.358 \text{ cpm/dpm} \\ \text{probe area} &= 125 \text{ cm}^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(280)(1)(1 + \frac{1}{1})}\right)}{(1)(0.5)(0.358)\left(\frac{125}{100\ cm^2}\right)} = 362\ dpm/100\ cm^2$$

The beta scan MDC for the 43-89 can be calculated as follows:

where:

w = 3 inches s = 2 inch/second

$$i = \frac{3}{2} = 1.5$$
 seconds

where:

$$d' = 1.38$$

B = 280 cpm
i = 1.5 seconds

$$MDCR = 1.38 \left(\sqrt{(280) \frac{1.5}{60}} \right) \left(\frac{60}{1.5} \right) = 147 \text{ cpm}$$

where:

MCDR = 147 cpm $\varepsilon_s = 0.5$ $\varepsilon_i = 0.358$ p = 0.5probe area = 125 cm²

$$MDC = \frac{147}{\left(\sqrt{0.5}\right)(0.5)(0.358)\left(\frac{125}{100\ cm^2}\right)} = 930\ dpm/100\ cm^2$$

LUDLUM MODEL 2224 WITH 43-89 DETECTOR SN 170449

The beta static MDC for the 43-89 can be calculated as follows:

where:

 $\begin{array}{ll} B &= 290 \mbox{ cpm} \\ T_b &= 1 \mbox{ minutes} \\ T_g &= 1 \mbox{ minutes} \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.358 \mbox{ cpm/dpm} \\ \mbox{ probe area} &= 125 \mbox{ cm}^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(290)(1)(1 + \frac{1}{1})}\right)}{(1)(0.5)(0.358)\left(\frac{125}{100\ cm^2}\right)} = 368\ dpm/100\ cm^2$$

The beta scan MDC for the 43-89 can be calculated as follows:

where:

$$w = 3$$
 inches
s = 2 inch/second

$$i = \frac{3}{2} = 1.5$$
 seconds

where:

$$d' = 1.38$$

B = 290 cpm
i = 1.5 seconds

$$MDCR = 1.38 \left(\sqrt{(290) \frac{1.5}{60}} \right) \left(\frac{60}{1.5} \right) = 149 \text{ cpm}$$

where:

$$\begin{split} MCDR &= 149 \text{ cpm} \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.358 \\ p &= 0.5 \\ \text{probe area} &= 125 \text{ cm}^2 \end{split}$$

$$MDC = \frac{149}{\left(\sqrt{0.5}\right)(0.5)(0.358)\left(\frac{125}{100\ cm^2}\right)} = 943\ dpm/100\ cm^2$$

The beta static MDC for the 43-93 can be calculated as follows:

where:

 $\begin{array}{ll} B &= 280 \text{ cpm} \\ T_b &= 1 \text{ minutes} \\ T_g &= 1 \text{ minutes} \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.499 \text{ cpm/dpm} \\ \text{probe area} &= 100 \text{ cm}^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(280)(1)(1 + \frac{1}{1})}\right)}{(1)(0.5)(0.499)\left(\frac{100}{100\ cm^2}\right)} = 324\ dpm/100\ cm^2$$

The beta scan MDC for the 43-93 can be calculated as follows:

where:

$$w = 2.8$$
 inches
s = 2 inch/second

$$i = \frac{2.8}{2} = 1.4$$
 seconds

where:

$$d' = 1.38$$

B = 280 cpm
i = 1.4 seconds

$$MDCR = 1.38 \left(\sqrt{(280) \frac{1.4}{60}} \right) \left(\frac{60}{1.4} \right) = 153 \text{ cpm}$$

where:

 $\begin{aligned} \text{MCDR} &= 153 \text{ cpm} \\ \epsilon_{s} &= 0.5 \\ \epsilon_{i} &= 0.499 \\ p &= 0.5 \\ \text{probe area} &= 100 \text{ cm}^{2} \end{aligned}$

$$MDC = \frac{153}{\left(\sqrt{0.5}\right)(0.5)(0.499)\left(\frac{100}{100\ cm^2}\right)} = 868\ dpm/100\ cm^2$$

LUDLUM MODEL 2221 WITH 43-37 DETECTOR SN 244555

The beta static MDC for the 43-37 can be calculated as follows:

where:

 $\begin{array}{ll} B &= 1409 \ cpm \\ T_b &= 1 \ minutes \\ T_g &= 1 \ minutes \\ \epsilon_s &= 0.5 \\ \epsilon_i &= 0.569 \ cpm/dpm \\ probe \ area = 100 \ cm^2 \end{array}$

$$MDC = \frac{\left(3 + 3.29\sqrt{(1409)(1)(1 + \frac{1}{1})}\right)}{(1)(0.5)(0..569)\left(\frac{584}{100\ cm^2}\right)} = 107\ dpm/100\ cm^2$$

The beta scan MDC for the 43-37 can be calculated as follows:

where:

$$w = 6.26$$
 inches
s = 3 inch/second

$$i = \frac{6.26}{3} = 2.1$$
 seconds

cpm

where:

$$d' = 1.38$$

B = 1409 cpm
i = 2.1 seconds
 $MDCR = 1.38 \left(\sqrt{(1409) \frac{2.1}{60}} \right) \left(\frac{60}{2.1} \right) = 277$

where:

 $\begin{aligned} \text{MCDR} &= 277 \text{ cpm} \\ \epsilon_{s} &= 0.5 \\ \epsilon_{i} &= 0.569 \\ p &= 0.5 \\ \text{probe area} &= 584 \text{ cm}^{2} \end{aligned}$

$$MDC = \frac{277}{\left(\sqrt{0.5}\right)(0.5)(0.569)\left(\frac{584}{100 \ cm^2}\right)} = 236 \ dpm/100 \ cm^2$$

COMPUTATION OF SMEAR DETECTION LIMITS WITH A LUDLUM MODEL 3030E SCALER AND LUDLUM MODEL 43-10-1 DETECTOR

LUDLUM MODEL 3030E SN 327699 WITH 43-10-1 DETECTOR SN PR360356

$$MDC = \frac{(3+3.29\sqrt{(B)T_{S+B}(1+\frac{T_{S+B}}{T_B}))}}{KT_{S+B}}$$

NUREG-1507 (equation 3-11)

$$K = (total efficiency)(\frac{probe \ area}{100})$$

$$\epsilon_t = \epsilon_i \times \epsilon_s$$

where:

B = background count rate

 T_{S+B} = sample count time

 $T_B = background count time$

K = proportionality constant

 ε_t = total efficiency

 ε_s = surface efficiency

 ε_i = instrument efficiency

 $\epsilon_t = 0.31$

probe area = 100 cm^2

$$K = (0.31) \left(\frac{100 cm^2}{100} \right) = 0.31 cm^2$$

where:

 $\begin{array}{ll} B &= 65.8 \text{ cpm (beta)} \\ T_{S+B} &= 2 \text{ minute sample count times} \\ T_B &= 10 \text{ minutes} \end{array}$

Beta count, 10-minute background count time:

$$MDC = \frac{(3+3.29\sqrt{65.8(2)(1+\frac{2}{10})}}{0.31(2)} = 71.5 \ dpm/100 \ cm^2$$

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

RESULTS OF RADIOLOGICAL SURVEYS

THIS PAGE INTENTIONALLY LEFT BLANK

Table D-1. Structure Surface Total Activity Measurement Data for Building 315 Ventilation

Statistic	Sample Type	Alpha Activity (dpm/100 cm ²)	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Biased	70	117	0.05
Median	Biased	46	28	0.01
Standard Deviation	Biased	94	171	0.08
Number of Samples	Biased	9	9	
Maximum	Biased	314	457	0.20
Range	Biased	303	457	0.20

Table D-1a. Ventilation

Table D-1b. Ventilation

				Instrumen	t Efficiency	Surface l	Surface Efficiency		Alpha Radiati	on		Beta Radiatio	on		
Survey ID	Sample Type	Location	Description	Alpha	Beta	Alpha	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	Beta DCGL (dpm/100 cm ²)
1	Biased	Met Lab	Inlet to blower	0.403	0.506	0.25	0.50	5.5	0.83	46	253.0	246	28	0.01	2,240
2	Biased	Met Lab	Transition outlet HEPA	0.403	0.506	0.25	0.50	4.5	0.83	36	233.0	246	0	0.00	2,240
3	Biased	Met Lab	Transtion inlet HEPA	0.403	0.506	0.25	0.50	7.5	0.83	66	335.0	246	352	0.16	2,240
4	Biased	Met Lab	Inside HEPA Housing	0.403	0.506	0.25	0.50	32.5	0.83	314	361.5	246	457	0.20	2,240
5	Biased	Met Lab	Overhead Floor work area	0.403	0.506	0.25	0.50	2.0	0.83	12	249.5	246	14	0.01	2,240
6	Biased	Met Lab	Overhead Floor work area	0.403	0.506	0.25	0.50	2.5	0.83	17	281.0	246	138	0.06	2,240
7	Biased	Met Lab	Overhead Floor work area	0.403	0.506	0.25	0.50	5.5	0.83	46	261.5	246	61	0.03	2,240
8	Biased	Old DU Shop	HEPA Housing Inlet	0.403	0.506	0.25	0.50	8.5	0.83	76	204.0	246	0	0.00	2,240
9	Biased	Old DU Shop	Blower Inlet	0.403	0.506	0.25	0.50	2.5	0.83	17	245.5	246	0	0.00	2,240

Notes:

The instruments used were Ludlum Model 2360 serial # 278624 coupled with Ludlum Model 43-93 serial # 311200 (100 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_I) was determined at the time of instrument calibration, and daily pre and post instrument checks were performed.

Beta MDC = $210 \text{ dpm}/100 \text{ cm}^2$, alpha MDC= $45 \text{ dpm}/100 \text{ cm}^2$.

Instrument background was determined by collecting three, 1-minute background measurements and averaging the results.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

The activity (in dpm/100 cm^2) was determined using the following equation:

$$Result \left(\frac{dpm}{100 \ cm^2}\right) = \frac{gross (cpm) - background (cpm)}{(\varepsilon_s)(\varepsilon_i) \left(\frac{100 \ cm^2}{100 \ cm^2}\right)}$$

Table D-2. Structure Surface Total Activity Measurement Data for Building 315 Impacted Area Drains

Table D-2a. Drains												
Statistic	Sample Type	Alpha Activity (dpm/100 cm ²)	Beta Activity (dpm/100 cm ²)	Fraction of DCGL								
Mean	Biased	212	340	0.15								
Median	Biased	43	318	0.14								
Standard Deviation	Biased	276	325	0.15								
Number of Samples	Biased	5	5									
Maximum	Biased	653	833	0.37								
Range	Biased	640	833	0.37								

Table D-2b. Drains

			Instrumen	Instrument Efficiency		Surface Efficiency		Alpha Radiatio	n	Beta Radiation			Encotion of	Rote DCCI
Survey ID	Sample Type	Description	Alpha	Beta	Alpha	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	DCGL	(dpm/100 cm ²)
1	Biased	Met Lab floor Drain	0.403	0.506	0.25	0.50	67.5	1.67	653	462.5	252	833	0.37	2,240
2	Biased	Met Lab Pipe Drain	0.403	0.506	0.25	0.50	33.5	1.67	316	363.0	252	439	0.20	2,240
3	Biased	Garage Sink Drain	0.403	0.506	0.25	0.50	3.0	1.67	13	332.5	252	318	0.14	2,240
4	Biased	Garage Sink Drain Cover	0.403	0.506	0.25	0.50	5.0	1.67	33	216.0	252	0	0.00	2,240
5	Biased	Old DU Machine Shop	0.403	0.506	0.25	0.50	6.0	1.67	43	279.5	252	109	0.05	2,240

Notes:

The instruments used were Ludlum Model 2360 serial # 278624 coupled with Ludlum Model 43-93 serial # 311200 (100 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily pre and post instrument checks were performed.

Beta MDC = 213 dpm/100 cm², alpha MDC= 57 dpm/100 cm².

Instrument background was determined by collecting three, 1-minute background measurements and averaging the results.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

The activity (in dpm/100 cm^2) was determined using the following equation:

$$Result \left(\frac{dpm}{100 \ cm^2}\right) = \frac{gross (cpm) - background (cpm)}{(\varepsilon_s)(\varepsilon_i) \left(\frac{100 \ cm^2}{100 \ cm^2}\right)}$$

Table D-3. Structure Surface Total Activity Measurement Data for Metallography Laboratory (SU-1)

Statistic	Measurement Type	Alpha Activity (dpm/100 cm ²)	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Systematic	19	104	0.05
Median	Systematic	14	47	0.02
Standard Deviation	Systematic	24	115	0.05
Number of Measurements	Systematic	19	19	
Maximum	Systematic	97	335	0.15
Range	Systematic	97	335	0.15

 Table D-3a.
 Metallography Laboratory SU-1

Table D-3b. Metallography Laboratory SU-1

			Instrument	t Efficiency	Surface	Efficiency		Alpha Radiatio)n		Beta Radiation		E	Poto DCCI
Survey ID	Sample Type	Description	Alnha	Reta	Alnha	Reta	Gross	Background	Activity	Gross	Background	Activity	DCGL	$(dnm/100 \text{ cm}^2)$
			Арна	Deta	Арпа	Deta	(cpm)	(cpm)	(dpm/100 cm ²)	(cpm)	(cpm)	(dpm/100 cm ²)		(upm/100 cm)
1	Systematic	North Wall	0.432	0.451	0.25	0.50	0.5	1.00	0	200.5	204	0	0.00	2,240
2	Systematic	North Wall	0.432	0.451	0.25	0.50	2.0	1.00	9	214.5	204	47	0.02	2,240
3	Systematic	North Wall	0.432	0.451	0.25	0.50	0.5	1.00	0	192.0	204	0	0.00	2,240
4	Systematic	Door	0.432	0.451	0.25	0.50	3.0	1.00	19	214.5	204	47	0.02	2,240
5	Biased	North Wall	0.432	0.451	0.25	0.50	2.0	1.00	9	212.5	204	38	0.02	2,240
6	Systematic	West Wall	0.432	0.451	0.25	0.50	2.0	1.00	9	207.5	204	16	0.01	2,240
7	Systematic	Floor	0.432	0.451	0.25	0.50	3.0	1.00	19	249.0	204	200	0.09	2,240
8	Systematic	Floor	0.432	0.451	0.25	0.50	5.0	1.00	37	261.5	204	255	0.11	2,240
9	Systematic	Floor	0.432	0.451	0.25	0.50	5.0	1.00	37	255.5	204	229	0.10	2,240
10	Systematic	Floor	0.432	0.451	0.25	0.50	6.5	1.00	51	279.5	204	335	0.15	2,240
11	Systematic	East Wall	0.432	0.451	0.25	0.50	1.0	1.00	0	203.5	204	0	0.00	2,240
12	Systematic	Floor	0.432	0.451	0.25	0.50	2.0	1.00	9	218.5	204	64	0.03	2,240
13	Systematic	Floor	0.432	0.451	0.25	0.50	3.5	1.00	23	241.5	204	166	0.07	2,240
14	Systematic	Floor	0.432	0.451	0.25	0.50	11.5	1.00	97	267.5	204	282	0.13	2,240
15	Systematic	Floor	0.432	0.451	0.25	0.50	3.0	1.00	19	237.0	204	146	0.07	2,240
16	Systematic	Floor	0.432	0.451	0.25	0.50	1.0	1.00	0	204.0	204	0	0.00	2,240
17	Systematic	South Wall	0.432	0.451	0.25	0.50	1.0	1.00	0	248.0	204	195	0.09	2,240
18	Systematic	South Wall	0.432	0.451	0.25	0.50	2.5	1.00	14	190.5	204	0	0.00	2,240
19	Systematic	South Wall	0.432	0.451	0.25	0.50	3.0	1.00	19	194.0	204	0	0.00	2,240
20	Systematic	South Wall	0.432	0.451	0.25	0.50	2.0	1.00	9	182.5	204	0	0.00	2,240
21	Biased	Floor	0.432	0.451	0.25	0.50	48.0	1.00	435	664.0	204	2,042	0.91	2,240
22	Biased	Floor	0.432	0.451	0.25	0.50	60.0	1.00	546	933.0	204	3,236	1.44	2,240
22a	Biased	Floor	0.432	0.451	0.25	0.50	86.0	1.00	787	702.0	204	2,210	0.99	2,240
23	Biased	Floor	0.432	0.451	0.25	0.50	69.0	1.00	630	617.0	204	1,833	0.82	2,240
24	Biased	Lower wall	0.432	0.451	0.25	0.50	75.0	1.00	685	698.0	204	2,193	0.98	2,240

Notes:

The instruments used were Ludlum Model 2360 serial # 193654 coupled with Ludlum Model 43-93 serial # 200115 (100 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily pre and post instrument checks were performed.

Beta MDC = 226 dpm/100 cm², alpha MDC= 55 dpm/100 cm².

Instrument background was determined by collecting three, 1-minute background measurements and averaging the results.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

Location 22a was a resurvey of location 22 after the area was wiped down and dried.

A Sign Test was not required for this survey unit.

The activity (in $dpm/100 cm^2$) was determined using the following equation:

$$Result \left(\frac{dpm}{100 \ cm^2}\right) = \frac{gross \left(cpm\right) - background \left(cpm\right)}{(\varepsilon_s)(\varepsilon_i) \left(\frac{100 \ cm^2}{100 \ cm^2}\right)}$$

Table D-4. Structure Surface Total Activity Measurement Data for Building 315 Class 3 Floor (SU-2)

Statistic	Measurement Type	Alpha Activity (dpm/100 cm ²)	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Random	5	199	0.09
Median	Random	3	216	0.10
Standard Deviation	Random	6	199	0.09
Number of Measurements	Random	20	20	
Maximum	Random	18	514	0.23
Range	Random	18	514	0.23

Table D-4a.Class 3 Floor SU-2

Table D-4b. Class 3 Floor SU-2

			Instrumen	t Efficiency	Surface	Efficiency		Alpha Radiatio	n		Beta Radiation		E	Rote DCCI
Survey ID	Sample Type	Description	Alpha	Beta	Alpha	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	DCGL	(dpm/100 cm ²)
1	Random	Floor	0.403	0.506	0.25	0.50	0.5	1.67	0	205.0	252	0	0.00	2,240
2	Random	Floor	0.403	0.506	0.25	0.50	0.5	1.67	0	224.5	252	0	0.00	2,240
3	Random	Floor	0.403	0.506	0.25	0.50	3.0	1.67	13	332.5	252	318	0.14	2,240
4	Random	Floor	0.403	0.506	0.25	0.50	3.5	1.67	18	342.5	252	358	0.16	2,240
5	Random	Floor	0.403	0.506	0.25	0.50	1.0	1.67	0	321.5	252	275	0.12	2,240
6	Random	Floor	0.403	0.506	0.25	0.50	1.5	1.67	0	322.0	252	277	0.12	2,240
7	Random	Floor	0.403	0.506	0.25	0.50	1.5	1.67	0	336.0	252	332	0.15	2,240
8	Random	Floor	0.403	0.506	0.25	0.50	1.0	1.67	0	364.5	252	445	0.20	2,240
9	Random	Floor	0.403	0.506	0.25	0.50	0.5	1.67	0	351.5	252	394	0.18	2,240
10	Random	Floor	0.403	0.506	0.25	0.50	0.5	1.67	0	351.0	252	392	0.17	2,240
11	Random	Floor	0.403	0.506	0.25	0.50	3.0	1.67	13	379.0	252	502	0.22	2,240
12	Random	Floor	0.403	0.506	0.25	0.50	2.0	1.67	3	382.0	252	514	0.23	2,240
13	Random	Floor	0.403	0.506	0.25	0.50	2.0	1.67	3	241.0	252	0	0.00	2,240
14	Random	Floor	0.403	0.506	0.25	0.50	2.0	1.67	3	251.0	252	0	0.00	2,240
15	Random	Floor	0.403	0.506	0.25	0.50	3.0	1.67	13	291.5	252	156	0.07	2,240
16	Random	Floor	0.403	0.506	0.25	0.50	2.5	1.67	8	238.0	252	0	0.00	2,240
17	Random	Floor	0.403	0.506	0.25	0.50	2.0	1.67	3	225.0	252	0	0.00	2,240
18	Random	Floor	0.403	0.506	0.25	0.50	1.5	1.67	0	221.5	252	0	0.00	2,240
19	Random	Floor	0.403	0.506	0.25	0.50	2.5	1.67	8	252.5	252	2	0.00	2,240
20	Random	Floor	0.403	0.506	0.25	0.50	2.0	1.67	3	253.0	252	4	0.00	2,240

Notes:

The instruments used were Ludlum Model 2360 serial # 278624 coupled with Ludlum Model 43-93 serial # 311200 (100 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily pre and post instrument checks were performed.

Beta MDC = 213 dpm/100 cm², alpha MDC= 57 dpm/100 cm².

Instrument background was determined by collecting three, 1-minute background measurements and averaging the results.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

A Sign Test was not required for this survey unit.

The activity (in dpm/100 cm^2) was determined using the following equation:

$$Result \left(\frac{dpm}{100 \ cm^2}\right) = \frac{gross (cpm) - background (cpm)}{(\varepsilon_s)(\varepsilon_i) \left(\frac{100 \ cm^2}{100 \ cm^2}\right)}$$

 Table D-5. Structure Surface Total Activity Measurement Data for DU Machine Shop Floor (SU-3)

Statistic	Measurement Type	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Systematic	610	0.27
Median	Systematic	242	0.11
Standard Deviation	Systematic	941	0.42
Number of Measurements	Systematic	35	
Maximum	Systematic *	4,419	1.97
Range	Systematic *	4,419	1.97

Table D-5a. Structure Total Activity Measurement Data Summary for DU Machine Shop Floor

 Table D-5b.
 DU Machine Shop Floor Data

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Boto DCCI
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
1	Systematic	Floor	0.358	0.50	390.0	280	492	0.22	2,240
2	Systematic	Floor	0.358	0.50	404.0	280	555	0.25	2,240
3	Systematic	Floor	0.358	0.50	372.0	280	412	0.18	2,240
4	Systematic	Floor	0.358	0.50	388.0	280	483	0.22	2,240
5	Systematic	Floor	0.358	0.50	420.0	280	626	0.28	2,240
6	Systematic	Floor	0.358	0.50	424.0	280	644	0.29	2,240
7	Systematic	Floor	0.358	0.50	268.0	280	0	0.00	2,240
8	Systematic	Floor	0.358	0.50	334.0	280	242	0.11	2,240
9	Systematic	Floor	0.358	0.50	302.0	280	98	0.04	2,240
10 *	Systematic	Floor	0.358	0.50	1,268.0	280	4,419	1.97	2,240
11	Systematic	Floor	0.358	0.50	286.0	280	27	0.01	2,240
12	Systematic	Floor	0.358	0.50	334.0	280	242	0.11	2,240
13	Systematic	Floor	0.358	0.50	290.0	280	45	0.02	2,240
14	Systematic	Floor	0.358	0.50	268.0	280	0	0.00	2,240
15	Systematic	Floor	0.358	0.50	446.0	280	743	0.33	2,240
16	Systematic	Floor	0.358	0.50	364.0	280	376	0.17	2,240
17*	Systematic	Floor	0.358	0.50	892.0	280	2,737	1.22	2,240
18	Systematic	Floor	0.358	0.50	684.0	280	1,807	0.81	2,240
19	Systematic	Floor	0.358	0.50	292.0	280	54	0.02	2,240
20	Systematic	Floor	0.358	0.50	584.0	280	1,360	0.61	2,240
21	Systematic	Floor	0.358	0.50	314.0	280	152	0.07	2,240
22	Systematic	Floor	0.358	0.50	320.0	280	179	0.08	2,240
23	Systematic	Floor	0.358	0.50	314.0	280	152	0.07	2,240
24	Systematic	Floor	0.358	0.50	376.0	280	429	0.19	2,240
25	Systematic	Floor	0.358	0.50	758.0	280	2,138	0.95	2,240
26	Systematic	Floor	0.358	0.50	310.0	280	134	0.06	2,240
27	Systematic	Floor	0.358	0.50	676.0	280	1,771	0.79	2,240
28	Systematic	Floor	0.358	0.50	394.0	280	510	0.23	2,240
29	Systematic	Floor	0.358	0.50	280.0	280	0	0.00	2,240

Table D-5. Structure Surface Total Activity Measurement Data for DU Machine Shop Floor (SU-3)

			Instrument Efficiency Surface Efficiency Beta Radiation					Rote DCCI	
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
30	Systematic	Floor	0.358	0.50	286.0	280	27	0.01	2,240
31	Systematic	Floor	0.358	0.50	244.0	280	0	0.00	2,240
32	Systematic	Floor	0.358	0.50	360.0	280	358	0.16	2,240
33	Systematic	Floor	0.358	0.50	282.0	280	9	0.00	2,240
34	Systematic	Floor	0.358	0.50	308.0	280	125	0.06	2,240
35	Systematic	Floor	0.358	0.50	278.0	280	0	0.00	2,240

Table D-5b. DU Machine Shop Floor Data (Continued)

Notes:

* Location 10 and 17 were remediated and scanned to confirm the contamination was successfully removed. These initial Elevated Readings are included in the Sign Test for SU-3

The instruments used were Ludlum Model 2224 serial # 163741 coupled with Ludlum Model 43-89 serial # 170449 (125 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_l) was determined at the time of instrument calibration, and daily instrument checks were performed.

Beta MDC = $362 \text{ dpm}/100 \text{ cm}^2$, alpha MDC= $74 \text{ dpm}/100 \text{ cm}^2$.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

The activity (in dpm/100 cm^2) was determined using the following equation:

$$Result(\frac{dpm}{100 \ cm^2}) = \frac{gross(cpm) - background(cpm)}{(\varepsilon_s)(\varepsilon_i)(\frac{125 \ cm^2}{100 \ cm^2})}$$

Table D-6. Structure Surface Total Activity Measurement Data for DU Machine Shop Walls up to 2 Meters (SU-4)

Statistic	Measurement Type	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Systematic	5	0.00
Median	Systematic	0	0.00
Standard Deviation	Systematic	25	0.01
Number of Measurements	Systematic	41	
Maximum	Systematic	125	0.06
Range	Systematic	125	0.06

Table D-6a. Structure Total Activity Measurement Data Summary for DU Machine Shop Walls

Table D-6b.DU Machine Shop Wall Data

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Poto DCCI
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
1	Systematic	West Wall	0.358	0.50	214	280	0	0.00	2,240
2	Systematic	West Wall	0.358	0.50	244	280	0	0.00	2,240
3	Systematic	West Wall	0.358	0.50	230	280	0	0.00	2,240
4	Systematic	West Wall	0.358	0.50	214	280	0	0.00	2,240
5	Systematic	West Wall	0.358	0.50	210	280	0	0.00	2,240
6	Systematic	West Wall	0.358	0.50	210	280	0	0.00	2,240
7	Systematic	West Wall	0.358	0.50	242	280	0	0.00	2,240
8	Systematic	West Wall	0.358	0.50	186	280	0	0.00	2,240
9	Systematic	West Wall	0.358	0.50	226	280	0	0.00	2,240
10	Systematic	West Wall	0.358	0.50	248	280	0	0.00	2,240
11	Systematic	West Wall	0.358	0.50	252	280	0	0.00	2,240
12	Systematic	West Wall	0.358	0.50	234	280	0	0.00	2,240
13	Systematic	North Wall	0.358	0.50	196	280	0	0.00	2,240
14	Systematic	North Wall	0.358	0.50	234	280	0	0.00	2,240
15	Systematic	North Wall	0.358	0.50	276	280	0	0.00	2,240
16	Systematic	North Wall	0.358	0.50	234	280	0	0.00	2,240
17	Systematic	North Wall	0.358	0.50	240	280	0	0.00	2,240
18	Systematic	North Wall	0.358	0.50	262	280	0	0.00	2,240
19	Systematic	North Wall	0.358	0.50	280	280	0	0.00	2,240
20	Systematic	North Wall	0.358	0.50	302	280	98	0.04	2,240
21	Systematic	North Wall	0.358	0.50	308	280	125	0.06	2,240
22	Systematic	North Wall	0.358	0.50	280	280	0	0.00	2,240
23	Systematic	East Wall	0.358	0.50	190	280	0	0.00	2,240
24	Systematic	East Wall	0.358	0.50	206	280	0	0.00	2,240
25	Systematic	East Wall	0.358	0.50	226	280	0	0.00	2,240
26	Systematic	East Wall	0.358	0.50	232	280	0	0.00	2,240
27	Systematic	East Wall	0.358	0.50	218	280	0	0.00	2,240
28	Systematic	East Wall	0.358	0.50	226	280	0	0.00	2,240
29	Systematic	East Wall	0.358	0.50	248	280	0	0.00	2,240
30	Systematic	East Wall	0.358	0.50	184	280	0	0.00	2,240
31	Systematic	East Wall	0.358	0.50	236	280	0	0.00	2,240
32	Systematic	East Wall	0.358	0.50	190	280	0	0.00	2,240
33	Systematic	South Wall	0.358	0.50	188	280	0	0.00	2,240

Table D-6. Structure Surface Total Activity Measurement Data for DU Machine Shop Walls up to 2 Meters (SU-4)

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Poto DCCI
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
34	Systematic	South Wall	0.358	0.50	262	280	0	0.00	2,240
35	Systematic	South Wall	0.358	0.50	230	280	0	0.00	2,240
36	Systematic	South Wall	0.358	0.50	256	280	0	0.00	2,240
37	Systematic	South Wall	0.358	0.50	260	280	0	0.00	2,240
38	Systematic	South Wall	0.358	0.50	194	280	0	0.00	2,240
39	Systematic	South Wall	0.358	0.50	230	280	0	0.00	2,240
40	Systematic	South Wall	0.358	0.50	216	280	0	0.00	2,240
41	Systematic	South Wall	0.358	0.50	198	280	0	0.00	2,240

Table D-6b.DU Machine Shop Wall Data (Continued)

Notes:

The instruments used were Ludlum Model 2224 serial # 163741 coupled with Ludlum Model 43-89 serial # 170449 (125 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily instrument checks were performed.

Beta MDC = $362 \text{ dpm}/100 \text{ cm}^2$, alpha MDC= $74 \text{ dpm}/100 \text{ cm}^2$.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

A Sign Test was not required for this survey unit.

The activity (in dpm/100 cm^2) was determined using the following equation:

 $Result(\frac{dpm}{100\ cm^2}) = \frac{gross(cpm) - background(cpm)}{(\varepsilon_s)(\varepsilon_i)(\frac{125\ cm^2}{100\ cm^2})}$

 Table D-7. Structure Surface Total Activity Measurement Data for West End Walls up to 2 Meters (SU-5)

Statistic	Measurement Type	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Systematic	199	0.09
Median	Systematic	74	0.03
Standard Deviation	Systematic	233	0.10
Number of Measurements	Systematic	100	
Maximum	Systematic	991	0.44
Range	Systematic	991	0.44

Table D-7a. Structure Total Activity Measurement Data Summary for West End Walls

Table D-7b. West End Wall Data

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Poto DCCI
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
1	Systematic	West Wall	0.358	0.50	426	290	607	0.27	2,240
2	Systematic	West Wall	0.358	0.50	370	290	356	0.16	2,240
3	Systematic	West Wall	0.358	0.50	262	290	0	0.00	2,240
4	Systematic	West Wall	0.358	0.50	302	290	52	0.02	2,240
5	Systematic	West Wall	0.358	0.50	268	290	0	0.00	2,240
6	Systematic	West Wall	0.358	0.50	374	290	374	0.17	2,240
7	Systematic	West Wall	0.358	0.50	386	290	428	0.19	2,240
8	Systematic	West Wall	0.358	0.50	254	290	0	0.00	2,240
9	Systematic	West Wall	0.358	0.50	308	290	79	0.04	2,240
10	Systematic	West Wall	0.358	0.50	274	290	0	0.00	2,240
11	Systematic	West Wall	0.358	0.50	352	290	276	0.12	2,240
12	Systematic	West Wall	0.358	0.50	430	290	624	0.28	2,240
13	Systematic	West Wall	0.358	0.50	242	290	0	0.00	2,240
14	Systematic	West Wall	0.358	0.50	306	290	70	0.03	2,240
15	Systematic	West Wall	0.358	0.50	282	290	0	0.00	2,240
16	Systematic	West Wall	0.358	0.50	388	290	437	0.19	2,240
17	Systematic	West Wall	0.358	0.50	376	290	383	0.17	2,240
18	Systematic	West Wall	0.358	0.50	242	290	0	0.00	2,240
19	Systematic	North Wall	0.358	0.50	388	290	437	0.19	2,240
20	Systematic	North Wall	0.358	0.50	400	290	490	0.22	2,240
21	Systematic	North Wall	0.358	0.50	420	290	580	0.26	2,240
22	Systematic	North Wall	0.358	0.50	288	290	0	0.00	2,240
23	Systematic	North Wall	0.358	0.50	396	290	472	0.21	2,240
24	Systematic	North Wall	0.358	0.50	466	290	785	0.35	2,240
25	Systematic	North Wall	0.358	0.50	392	290	454	0.20	2,240
26	Systematic	North Wall	0.358	0.50	362	290	320	0.14	2,240
27	Systematic	North Wall	0.358	0.50	354	290	284	0.13	2,240
28	Systematic	North Wall	0.358	0.50	324	290	150	0.07	2,240
29	Systematic	North Wall	0.358	0.50	254	290	0	0.00	2,240
30	Systematic	North Wall	0.358	0.50	228	290	0	0.00	2,240
31	Systematic	North Wall	0.358	0.50	380	290	401	0.18	2,240
32	Systematic	North Wall	0.358	0.50	394	290	463	0.21	2,240
33	Systematic	North Wall	0.358	0.50	308	290	79	0.04	2,240

Table D-7. Structure Surface Total Activity Measurement Data for West End Walls up to 2 Meters (SU-5)

Survey ID	Sample Type	Description	Instrument Efficiency	Surface Efficiency		Beta Radiation		D.4. DCCI	
			Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
34	Systematic	North Wall	0.358	0.50	322	290	141	0.06	2,240
35	Systematic	North Wall	0.358	0.50	226	290	0	0.00	2,240
36	Systematic	North Wall	0.358	0.50	330	290	177	0.08	2,240
37	Systematic	North Wall	0.358	0.50	512	290	991	0.44	2,240
38	Systematic	North Wall	0.358	0.50	318	290	123	0.06	2,240
39	Systematic	North Wall	0.358	0.50	344	290	240	0.11	2,240
40	Systematic	North Wall	0.358	0.50	254	290	0	0.00	2,240
41	Systematic	North Wall	0.358	0.50	354	290	284	0.13	2,240
42	Systematic	North Wall	0.358	0.50	292	290	7	0.00	2,240
43	Systematic	North Wall	0.358	0.50	416	290	562	0.25	2,240
44	Systematic	North Wall	0.358	0.50	236	290	0	0.00	2,240
45	Systematic	North Wall	0.358	0.50	444	290	687	0.31	2,240
46	Systematic	North Wall	0.358	0.50	398	290	481	0.21	2,240
47	Systematic	North Wall	0.358	0.50	302	290	52	0.02	2,240
48	Systematic	North Wall	0.358	0.50	366	290	338	0.15	2,240
49	Systematic	North Wall	0.358	0.50	422	290	589	0.26	2,240
50	Systematic	North Wall	0.358	0.50	378	290	392	0.17	2,240
51	Systematic	North Wall	0.358	0.50	370	290	356	0.16	2,240
52	Systematic	North Wall	0.358	0.50	286	290	0	0.00	2,240
53	Systematic	East Wall	0.358	0.50	298	290	34	0.02	2,240
54	Systematic	East Wall	0.358	0.50	254	290	0	0.00	2,240
55	Systematic	East Wall	0.358	0.50	278	290	0	0.00	2,240
56	Systematic	East Wall	0.358	0.50	352	290	276	0.12	2,240
57	Systematic	East Wall	0.358	0.50	350	290	267	0.12	2,240
58	Systematic	East Wall	0.358	0.50	234	290	0	0.00	2,240
59	Systematic	East Wall	0.358	0.50	354	290	284	0.13	2,240
60	Systematic	East Wall	0.358	0.50	258	290	0	0.00	2,240
61	Systematic	East Wall	0.358	0.50	298	290	34	0.02	2,240
62	Systematic	East Wall	0.358	0.50	230	290	0	0.00	2,240
63	Systematic	East Wall	0.358	0.50	294	290	16	0.01	2,240
64	Systematic	East Wall	0.358	0.50	234	290	0	0.00	2,240
65	Systematic	East Wall	0.358	0.50	250	290	0	0.00	2,240
66	Systematic	East Wall	0.358	0.50	248	290	0	0.00	2,240
67	Systematic	South Wall	0.358	0.50	232	290	0	0.00	2,240
68	Systematic	South Wall	0.358	0.50	226	290	0	0.00	2,240
69	Systematic	South Wall	0.358	0.50	198	290	0	0.00	2,240
70	Systematic	South Wall	0.358	0.50	258	290	0	0.00	2,240
71	Systematic	South Wall	0.358	0.50	230	290	0	0.00	2,240
72	Systematic	South Wall	0.358	0.50	294	290	16	0.01	2,240
73	Systematic	South Wall	0.358	0.50	246	290	0	0.00	2,240
74	Systematic	South Wall	0.358	0.50	268	290	0	0.00	2,240
75	Systematic	South Wall	0.358	0.50	302	290	52	0.02	2,240
76	Systematic	South Wall	0.358	0.50	276	290	0	0.00	2,240
77	Systematic	South Wall	0.358	0.50	306	290	70	0.03	2,240

Table D-7b. West End Wall Data (Continued)

Table D-7. Structure Surface Total Activity Measurement Data for West End Walls up to 2 Meters (SU-5)

Survey ID	Sample Type	Description	Instrument Efficiency	Surface Efficiency Beta	Beta Radiation				Data DCCI
			Beta		Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
78	Systematic	South Wall	0.358	0.50	224	290	0	0.00	2,240
79	Systematic	South Wall	0.358	0.50	196	290	0	0.00	2,240
80	Systematic	South Wall	0.358	0.50	226	290	0	0.00	2,240
81	Systematic	South Wall	0.358	0.50	262	290	0	0.00	2,240
82	Systematic	South Wall	0.358	0.50	198	290	0	0.00	2,240
83	Systematic	Small East Wall	0.358	0.50	446	290	696	0.31	2,240
84	Systematic	Small East Wall	0.358	0.50	358	290	302	0.13	2,240
85	Systematic	Small East Wall	0.358	0.50	384	290	419	0.19	2,240
86	Systematic	Small East Wall	0.358	0.50	348	290	258	0.12	2,240
87	Systematic	Small East Wall	0.358	0.50	300	290	43	0.02	2,240
88	Systematic	Small East Wall	0.358	0.50	434	290	642	0.29	2,240
89	Systematic	Small East Wall	0.358	0.50	308	290	79	0.04	2,240
90	Systematic	Small East Wall	0.358	0.50	256	290	0	0.00	2,240
91	Systematic	Small South Wall	0.358	0.50	340	290	222	0.10	2,240
92	Systematic	Small South Wall	0.358	0.50	408	290	526	0.23	2,240
93	Systematic	Small South Wall	0.358	0.50	352	290	276	0.12	2,240
94	Systematic	Small South Wall	0.358	0.50	292	290	7	0.00	2,240
95	Systematic	Small South Wall	0.358	0.50	346	290	249	0.11	2,240
96	Systematic	Small South Wall	0.358	0.50	356	290	293	0.13	2,240
97	Systematic	Small South Wall	0.358	0.50	368	290	347	0.15	2,240
98	Systematic	Small South Wall	0.358	0.50	390	290	446	0.20	2,240
99	Systematic	Small South Wall	0.358	0.50	300	290	43	0.02	2,240
100	Systematic	Small South Wall	0.358	0.50	282	290	0	0.00	2,240

Table D-7b. West End Wall Data (Continued)

Notes:

The instruments used were Ludlum Model 2224 serial # 163741 coupled with Ludlum Model 43-89 serial # 170449 (125 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily instrument checks were performed.

Beta MDC = $368 \text{ dpm}/100 \text{ cm}^2$, alpha MDC= $77 \text{ dpm}/100 \text{ cm}^2$.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

A Sign Test was not required for this survey unit.

The activity (in dpm/100 cm^2) was determined using the following equation:

$$Result(\frac{dpm}{100 \ cm^2}) = \frac{gross(cpm) - background(cpm)}{(\varepsilon_s)(\varepsilon_i)(\frac{125 \ cm^2}{100 \ cm^2})}$$
Table D-8. Structure Surface Total Activity Measurement Data for Hallway Walls up to 2 Meters (SU-6)

Statistic	Measurement Type	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Systematic	23	0.01
Median	Systematic	0	0.00
Standard Deviation	Systematic	64	0.03
Number of Measurements	Systematic	86	
Maximum	Systematic	365	0.16
Range	Systematic	365	0.16

Table D-8a. Structure Total Activity Measurement Data Summary for West End Walls

Table D-8b. Hallway Wall Data

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Deta DCCI
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
1	Systematic	West Wall	0.358	0.50	230	290	0	0.00	2,240
2	Systematic	West Wall	0.358	0.50	202	290	0	0.00	2,240
3	Systematic	West Wall	0.358	0.50	226	290	0	0.00	2,240
4	Systematic	West Wall	0.358	0.50	254	290	0	0.00	2,240
5	Systematic	West Wall	0.358	0.50	226	290	0	0.00	2,240
6	Systematic	West Wall	0.358	0.50	232	290	0	0.00	2,240
7	Systematic	West Wall	0.358	0.50	282	290	0	0.00	2,240
8	Systematic	West Wall	0.358	0.50	272	290	0	0.00	2,240
9	Systematic	North Wall	0.358	0.50	254	290	0	0.00	2,240
10	Systematic	North Wall	0.358	0.50	242	290	0	0.00	2,240
11	Systematic	North Wall	0.358	0.50	216	290	0	0.00	2,240
12	Systematic	North Wall	0.358	0.50	212	290	0	0.00	2,240
13	Systematic	North Wall	0.358	0.50	310	290	88	0.04	2,240
14	Systematic	North Wall	0.358	0.50	242	290	0	0.00	2,240
15	Systematic	North Wall	0.358	0.50	260	290	0	0.00	2,240
16	Systematic	North Wall	0.358	0.50	294	290	16	0.01	2,240
17	Systematic	North Wall	0.358	0.50	242	290	0	0.00	2,240
18	Systematic	North Wall	0.358	0.50	258	290	0	0.00	2,240
19	Systematic	North Wall	0.358	0.50	232	290	0	0.00	2,240
20	Systematic	North Wall	0.358	0.50	372	290	365	0.16	2,240
21	Systematic	North Wall	0.358	0.50	266	290	0	0.00	2,240
22	Systematic	North Wall	0.358	0.50	236	290	0	0.00	2,240
23	Systematic	North Wall	0.358	0.50	230	290	0	0.00	2,240
24	Systematic	North Wall	0.358	0.50	258	290	0	0.00	2,240
25	Systematic	North Wall	0.358	0.50	330	290	177	0.08	2,240
26	Systematic	North Wall	0.358	0.50	236	290	0	0.00	2,240
27	Systematic	North Wall	0.358	0.50	230	290	0	0.00	2,240
28	Systematic	North Wall	0.358	0.50	246	290	0	0.00	2,240
29	Systematic	North Wall	0.358	0.50	240	290	0	0.00	2,240
30	Systematic	North Wall	0.358	0.50	226	290	0	0.00	2,240
31	Systematic	South Wall	0.358	0.50	248	290	0	0.00	2,240
32	Systematic	South Wall	0.358	0.50	314	290	106	0.05	2,240
33	Systematic	South Wall	0.358	0.50	282	290	0	0.00	2,240

Table D-8. Structure Surface Total Activity Measurement Data for Hallway Walls up to 2 Meters (SU-6)

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Poto DCCI
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
34	Systematic	South Wall	0.358	0.50	234	290	0	0.00	2,240
35	Systematic	South Wall	0.358	0.50	286	290	0	0.00	2,240
36	Systematic	South Wall	0.358	0.50	272	290	0	0.00	2,240
37	Systematic	South Wall	0.358	0.50	348	290	258	0.12	2,240
38	Systematic	South Wall	0.358	0.50	272	290	0	0.00	2,240
39	Systematic	South Wall	0.358	0.50	270	290	0	0.00	2,240
40	Systematic	South Wall	0.358	0.50	280	290	0	0.00	2,240
41	Systematic	South Wall	0.358	0.50	312	290	97	0.04	2,240
42	Systematic	South Wall	0.358	0.50	276	290	0	0.00	2,240
43	Systematic	South Wall	0.358	0.50	226	290	0	0.00	2,240
44	Systematic	South Wall	0.358	0.50	288	290	0	0.00	2,240
45	Systematic	South Wall	0.358	0.50	306	290	70	0.03	2,240
46	Systematic	South Wall	0.358	0.50	266	290	0	0.00	2,240
47	Systematic	South Wall	0.358	0.50	226	290	0	0.00	2,240
48	Systematic	South Wall	0.358	0.50	344	290	240	0.11	2,240
49	Systematic	South Wall	0.358	0.50	306	290	70	0.03	2,240
50	Systematic	South Wall	0.358	0.50	278	290	0	0.00	2,240
51	Systematic	South Wall	0.358	0.50	280	290	0	0.00	2,240
52	Systematic	South Wall	0.358	0.50	232	290	0	0.00	2,240
53	Systematic	South Wall	0.358	0.50	214	290	0	0.00	2,240
54	Systematic	South Wall	0.358	0.50	224	290	0	0.00	2,240
55	Systematic	South Wall	0.358	0.50	238	290	0	0.00	2,240
56	Systematic	South Wall	0.358	0.50	206	290	0	0.00	2,240
57	Systematic	South Wall	0.358	0.50	290	290	0	0.00	2,240
58	Systematic	South Wall	0.358	0.50	280	290	0	0.00	2,240
59	Systematic	South Wall	0.358	0.50	270	290	0	0.00	2,240
60	Systematic	South Wall	0.358	0.50	322	290	141	0.06	2,240
61	Systematic	South Wall	0.358	0.50	300	290	43	0.02	2,240
62	Systematic	South Wall	0.358	0.50	228	290	0	0.00	2,240
63	Systematic	South Wall	0.358	0.50	258	290	0	0.00	2,240
64	Systematic	South Wall	0.358	0.50	236	290	0	0.00	2,240
65	Systematic	South Wall	0.358	0.50	260	290	0	0.00	2,240
66	Systematic	South Wall	0.358	0.50	256	290	0	0.00	2,240
67	Systematic	South Wall	0.358	0.50	272	290	0	0.00	2,240
68	Systematic	South Wall	0.358	0.50	264	290	0	0.00	2,240
69	Systematic	South Wall	0.358	0.50	274	290	0	0.00	2,240
70	Systematic	South Wall	0.358	0.50	266	290	0	0.00	2,240
71	Systematic	South Wall	0.358	0.50	204	290	0	0.00	2,240
72	Systematic	South Wall	0.358	0.50	226	290	0	0.00	2,240
73	Systematic	South Wall	0.358	0.50	326	290	159	0.07	2,240
74	Systematic	South Wall	0.358	0.50	280	290	0	0.00	2,240
75	Systematic	South Wall	0.358	0.50	232	290	0	0.00	2,240
76	Systematic	South Wall	0.358	0.50	274	290	0	0.00	2,240
77	Systematic	South Wall	0.358	0.50	204	290	0	0.00	2,240

Table D-8b. Hallway Wall Data (Continued)

Table D-8. Structure Surface Total Activity Measurement Data for Hallway Walls up to 2 Meters (SU-6)

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Bete DCCI
Survey ID Sample Type	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
78	Systematic	South Wall	0.358	0.50	296	290	25	0.01	2,240
79	Systematic	South Wall	0.358	0.50	272	290	0	0.00	2,240
80	Systematic	South Wall	0.358	0.50	254	290	0	0.00	2,240
81	Systematic	South Wall	0.358	0.50	238	290	0	0.00	2,240
82	Systematic	South Wall	0.358	0.50	326	290	159	0.07	2,240
83	Systematic	South Wall	0.358	0.50	226	290	0	0.00	2,240
84	Systematic	South Wall	0.358	0.50	208	290	0	0.00	2,240
85	Systematic	South Wall	0.358	0.50	252	290	0	0.00	2,240
86	Systematic	South Wall	0.358	0.50	290	290	0	0.00	2,240

Table D-8b. Hallway Wall Data (Continued)

Notes:

The instruments used were Ludlum Model 2224 serial # 163741 coupled with Ludlum Model 43-89 serial # 170449 (125 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily instrument checks were performed.

Beta MDC = $368 \text{ dpm}/100 \text{ cm}^2$, alpha MDC= $77 \text{ dpm}/100 \text{ cm}^2$.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

The activity (in dpm/100 cm^2) was determined using the following equation:

 $Result(\frac{dpm}{100 \ cm^2}) = \frac{gross(cpm) - background(cpm)}{(\varepsilon_s)(\varepsilon_i)(\frac{125 \ cm^2}{100 \ cm^2})}$

 Table D-9. Structure Surface Total Activity Measurement Data for Garage Walls up to 2 Meters (SU-7)

Statistic	Measurement Type	Beta Activity (dpm/100 cm ²)	Fraction of DCGL
Mean	Systematic	26	0.01
Median	Systematic	0	0.00
Standard Deviation	Systematic	50	0.02
Number of Measurements	Systematic	44	
Maximum	Systematic	177	0.08
Range	Systematic	177	0.08

Table D-9a. Structure Total Activity Measurement Data Summary for Garage Walls

Table D-9b. Garage Wall Data

			Instrument Efficiency	Surface Efficiency		Beta Radiation		Poto DCCI	
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
1	Systematic	West Wall	0.499	0.50	196	280	0	0.00	2,240
2	Systematic	West Wall	0.499	0.50	244	280	0	0.00	2,240
3	Systematic	West Wall	0.499	0.50	0	280	0	0.00	2,240
4	Systematic	West Wall	0.499	0.50	250	280	0	0.00	2,240
5	Systematic	West Wall	0.499	0.50	268	280	0	0.00	2,240
6	Systematic	West Wall	0.499	0.50	234	280	0	0.00	2,240
7	Systematic	West Wall	0.499	0.50	264	280	0	0.00	2,240
8	Systematic	West Wall	0.499	0.50	252	280	0	0.00	2,240
9	Systematic	North Wall	0.499	0.50	212	280	0	0.00	2,240
10	Systematic	North Wall	0.499	0.50	0	280	0	0.00	2,240
11	Systematic	North Wall	0.499	0.50	208	280	0	0.00	2,240
12	Systematic	North Wall	0.499	0.50	228	280	0	0.00	2,240
13	Systematic	North Wall	0.499	0.50	256	280	0	0.00	2,240
14	Systematic	North Wall	0.499	0.50	194	280	0	0.00	2,240
15	Systematic	North Wall	0.499	0.50	276	280	0	0.00	2,240
16	Systematic	North Wall	0.499	0.50	278	280	0	0.00	2,240
17	Systematic	North Wall	0.499	0.50	230	280	0	0.00	2,240
18	Systematic	North Wall	0.499	0.50	260	280	0	0.00	2,240
19	Systematic	North Wall	0.499	0.50	316	280	145	0.06	2,240
20	Systematic	North Wall	0.499	0.50	256	280	0	0.00	2,240
21	Systematic	North Wall	0.499	0.50	274	280	0	0.00	2,240
22	Systematic	North Wall	0.499	0.50	220	280	0	0.00	2,240
23	Systematic	North Wall	0.499	0.50	260	280	0	0.00	2,240
24	Systematic	North Wall	0.499	0.50	226	280	0	0.00	2,240
25	Systematic	North Wall	0.499	0.50	300	280	81	0.04	2,240
26	Systematic	North Wall	0.499	0.50	256	280	0	0.00	2,240
27	Systematic	North Wall	0.499	0.50	278	280	0	0.00	2,240
28	Systematic	North Wall	0.499	0.50	324	280	177	0.08	2,240
29	Systematic	North Wall	0.499	0.50	256	280	0	0.00	2,240
30	Systematic	North Wall	0.499	0.50	258	280	0	0.00	2,240
31	Systematic	South Wall	0.499	0.50	298	280	73	0.03	2,240
32	Systematic	South Wall	0.499	0.50	246	280	0	0.00	2,240
33	Systematic	South Wall	0.499	0.50	292	280	49	0.02	2,240

Table D-9. Structure Surface Total Activity Measurement Data for Garage Walls up to 2 Meters (SU-7)

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Poto DCCI
Survey ID Sample Type		Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
34	Systematic	South Wall	0.499	0.50	306	280	105	0.05	2,240
35	Systematic	South Wall	0.499	0.50	288	280	32	0.01	2,240
36	Systematic	South Wall	0.499	0.50	306	280	105	0.05	2,240
37	Systematic	South Wall	0.499	0.50	304	280	97	0.04	2,240
38	Systematic	South Wall	0.499	0.50	284	280	16	0.01	2,240
39	Systematic	South Wall	0.499	0.50	312	280	129	0.06	2,240
40	Systematic	South Wall	0.499	0.50	318	280	153	0.07	2,240
41	Systematic	South Wall	0.499	0.50	252	280	0	0.00	2,240
42	Systematic	South Wall	0.499	0.50	276	280	0	0.00	2,240
43	Systematic	South Wall	0.499	0.50	280	280	0	0.00	2,240
44	Systematic	South Wall	0.499	0.50	236	280	0	0.00	2,240

Table D-9b. Garage Wall Data (Continued)

Notes:

The instruments used were Ludlum Model 2224 serial # 221460 coupled with Ludlum Model 43-93 serial # 244555 (100 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily instrument checks were performed.

Beta MDC= 324 dpm/100 cm², alpha MDC= 74 dpm/100 cm².

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

The activity (in dpm/100 cm^2) was determined using the following equation:

 $Result \left(\frac{dpm}{100 \ cm^2}\right) = \frac{gross \ (cpm) - background \ (cpm)}{(\varepsilon_s)(\varepsilon_i) \left(\frac{100 \ cm^2}{100 \ cm^2}\right)}$

 Table D-10.
 Structure Surface Total Activity Measurement Data for East End Garage Walls up to 2 Meters (SU-8)

Statistic	Measurement Type	Beta Activity (dpm/100 cm ²)	Fraction of DCGL	
Mean	Systematic	282	0.13	
Median	Systematic	285	0.13	
Standard Deviation	Systematic	228	0.10	
Number of Measurements	Systematic	34		
Maximum	Systematic	666	0.30	
Range	Systematic	666	0.30	

Table D-10a. Structure Total Activity Measurement Data Summary for Garage Walls

Table D-10b. East End Garage Wall Data

			Instrument Efficiency	Surface Efficiency		Beta Radiation			Poto DCCI
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
1	Systematic	North Wall	0.499	0.50	446	280	666	0.30	2,240
2	Systematic	North Wall	0.499	0.50	358	280	313	0.14	2,240
3	Systematic	North Wall	0.499	0.50	384	280	418	0.19	2,240
4	Systematic	North Wall	0.499	0.50	348	280	273	0.12	2,240
5	Systematic	North Wall	0.499	0.50	300	280	81	0.04	2,240
6	Systematic	North Wall	0.499	0.50	434	280	618	0.28	2,240
7	Systematic	North Wall	0.499	0.50	308	280	113	0.05	2,240
8	Systematic	North Wall	0.499	0.50	256	280	0	0.00	2,240
9	Systematic	East Wall	0.499	0.50	378	280	394	0.18	2,240
10	Systematic	East Wall	0.499	0.50	332	280	209	0.09	2,240
11	Systematic	East Wall	0.499	0.50	354	280	297	0.13	2,240
12	Systematic	East Wall	0.499	0.50	288	280	32	0.01	2,240
13	Systematic	East Wall	0.499	0.50	256	280	0	0.00	2,240
14	Systematic	East Wall	0.499	0.50	362	280	329	0.15	2,240
15	Systematic	East Wall	0.499	0.50	416	280	546	0.24	2,240
16	Systematic	East Wall	0.499	0.50	392	280	450	0.20	2,240
17	Systematic	East Wall	0.499	0.50	360	280	321	0.14	2,240
18	Systematic	East Wall	0.499	0.50	274	280	0	0.00	2,240
19	Systematic	East Wall	0.499	0.50	262	280	0	0.00	2,240
20	Systematic	East Wall	0.499	0.50	278	280	0	0.00	2,240
21	Systematic	East Wall	0.499	0.50	260	280	0	0.00	2,240
22	Systematic	East Wall	0.499	0.50	394	280	458	0.20	2,240
23	Systematic	East Wall	0.499	0.50	390	280	442	0.20	2,240
24	Systematic	East Wall	0.499	0.50	310	280	121	0.05	2,240
25	Systematic	East Wall	0.499	0.50	280	280	0	0.00	2,240
26	Systematic	East Wall	0.499	0.50	414	280	538	0.24	2,240
27	Systematic	South Wall	0.499	0.50	430	280	602	0.27	2,240
28	Systematic	South Wall	0.499	0.50	416	280	546	0.24	2,240
29	Systematic	South Wall	0.499	0.50	444	280	658	0.29	2,240

Table D-10. Structure Surface Total Activity Measurement Data for East End Garage Walls up to 2 Meters (SU-8)

		Instrument Efficiency	Surface Efficiency	Beta Radiation				Beta DCGL	
Survey ID	Sample Type	Description	Beta	Beta	Gross (cpm)	Background (cpm)	Activity (dpm/100 cm ²)	Fraction of DCGL	(dpm/100 cm ²)
30	Systematic	South Wall	0.499	0.50	344	280	257	0.11	2,240
31	Systematic	South Wall	0.499	0.50	278	280	0	0.00	2,240
32	Systematic	South Wall	0.499	0.50	412	280	530	0.24	2,240
33	Systematic	South Wall	0.499	0.50	310	280	121	0.05	2,240
34	Systematic	South Wall	0.499	0.50	344	280	257	0.11	2,240

Table D-10b. East End Garage Wall Data (Continued)

Notes:

The instruments used were Ludlum Model 2224 serial # 221460 coupled with Ludlum Model 43-93 serial # 244555 (100 cm² scintillation detector).

The 2 pi instrument efficiency (ϵ_i) was determined at the time of instrument calibration, and daily instrument checks were performed.

Beta MDC = $324 \text{ dpm}/100 \text{ cm}^2$, alpha MDC= $78 \text{ dpm}/100 \text{ cm}^2$.

As a conservative measure, surface material background levels of radiation (from naturally occurring radioactivity in the materials themselves) were not subtracted from these direct measurements.

The activity (in dpm/100 cm²) was determined using the following equation:

$$Result \left(\frac{dpm}{100 \ cm^2}\right) = \frac{gross \ (cpm) - background \ (cpm)}{(\varepsilon_s)(\varepsilon_i) \left(\frac{100 \ cm^2}{100 \ cm^2}\right)}$$

APPENDIX E

STATISTICAL TESTS

THIS PAGE INTENTIONALLY LEFT BLANK

Surface Contamination Sign Test									
Survey Un	it Description: DU Room F	Floor SU-3							
	Beta DCGL:	2,240 dpi	$\frac{m/100 \text{ cm}^2}{T}$						
	Probability for:	Type I Error (a)	Type II Error (β)						
~ .		0.05	0.20						
Sample No.	Beta (dpm/100cm ²)	Beta Difference●	Beta Adjusted 🛛						
1	492	1,748	1,748						
2	555	1,685	1,685						
3	412	1,828	1,828						
4	483	1,757	1,757						
5	626	1,614	1,614						
6	644	1,596	1,596						
7	0	2,240	2,240						
8	242	1,998	1,998						
9	98	2,142	2,142						
10	4,419	-2,1/9	-2,179						
11	242	2,215	2,213						
12	242	2 195	2 105						
13		2,195	2,195						
15	743	1 497	1 497						
16	376	1.864	1.864						
17	2.737	-497	-497						
18	1,807	433	433						
19	54	2,186	2,186						
20	1,360	880	880						
21	152	2,088	2,088						
22	179	2,061	2,061						
23	152	2,088	2,088						
24	429	1,811	1,811						
25	2,138	102	102						
26	134	2,106	2,106						
27	1,771	469	469						
28	510	1,730	1,730						
29	0	2,240	2,240						
21	2/	2,213	2,213						
31	258	2,240	2,240						
32	0	2 231	2 231						
33	125	2,231	2,231						
35	0	2,240	2,240						
55	SU Statistics	Sign Test	t Statistics						
Mean	610	S+	33						
St. Dev.	941	N	35						
Min. No.	0	k critical	22						
Samples	У	Result	Pass						

• Beta Difference is equal to difference between DCGL and the beta results.

2 Beta Adjusted removes results where the difference between DCGL and the result is zero.

S+ is the number of positive differences. If S+ is greater than $k_{critical}$, then the survey unit passes.

 ${\it N}$ is the number of non-zero differences.

*k*_{critical} is obtain from MARSSIM Table I.3.

Location 10 and 17 were remediated and scanned to confirm contamination was removed.

THIS PAGE INTENTIONALLY LEFT BLANK