Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Open Session
Docket Number:	(n/a)
Location:	Rockville, Maryland

Date: Thursday, March 5, 2020

Work Order No.: NRC-0839

Pages 1-117

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	671ST MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	OPEN SESSION
8	+ + + + +
9	THURSDAY
10	MARCH 5, 2020
11	+ + + + +
12	ROCKVILLE, MARYLAND
13	+ + + + +
14	The Advisory Committee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2D10, 11545 Rockville Pike, at 8:30 a.m., Matthew W.
17	Sunseri, Chairman, presiding.
18	
19	COMMITTEE MEMBERS:
20	MATTHEW W. SUNSERI, Chairman
21	JOY L. REMPE, Vice Chairman
22	WALTER L. KIRCHNER, Member-at-Large
23	RONALD G. BALLINGER, Member
24	DENNIS BLEY, Member
25	CHARLES H. BROWN, JR., Member
	1

	2
1	VESNA B. DIMITRIJEVIC, Member
2	JOSE MARCH-LEUBA, Member
3	DAVID PETTI, Member
4	PETER RICCARDELLA, Member
5	
6	ACRS CONSULTANTS:
7	STEPHEN SCHULTZ
8	
9	DESIGNATED FEDERAL OFFICIAL:
10	MIKE SNODDERLY
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	3
1	C-O-N-T-E-N-T-S
2	Opening Remarks by the ACRS Chairman 4
3	NuScale Areas of Focus: Steam Generator
4	Design, Containment Evacuation System and
5	Hydrogen & Oxygen Monitoring 8
6	NuScale Topical Reports: Loss of Coolant Accident
7	(LOCA), Non-LOCA and Rod Ejection Accident
8	Methodologies
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

	4
1	PROCEEDINGS
2	(8:30 a.m.)
3	CHAIRMAN SUNSERI: The meeting will now
4	come to order. This is the first day of the 671st
5	meeting of the Advisory Committee on Reactor
6	Safeguards.
7	I am Matthew Sunseri, the Chair of the
8	ACRS. Members in attendance today are Pete
9	Riccardella, Ron Ballinger, Dave Petti, Joy Rempe,
10	Walt Kirchner, Jose March-Leuba, Charlie Brown.
11	Dennis Bley is here. He'll be stepping in
12	a minute and Vesna Dimitrijevic. We also have our
13	consultant, Steve Schultz present as well. And I note
14	that we have a quorum.
15	The ACRS was established by the Atomic
16	Energy Act and it's governed by the Federal Advisory
17	Committee Act.
18	The ACRS section of the U.S. NRC public
19	website provides information about the history of the
20	ACRS and provides documents such as our charter,
21	bylaws, Federal Register notices for meetings, letter
22	reports and transcripts of all full and subcommittee
23	meetings, including slides presented at the meetings.
24	The Committee provides its advice on
25	safety matters to the Commission through its publicly

(202) 234-4433

	5
1	available letter reports. The Federal Register notice
2	announcing this meeting was published on February 21,
3	2020, and provides an agenda and instructions for
4	interested parties to provide written documents or
5	request opportunity to address the Committee.
6	The Designated Federal Official for this
7	meeting is Mr. Mike Snodderly. During today's meeting
8	the Committee will consider the following.
9	NuScale Area of Focus: Steam Generator
10	Design, Containment Evacuation System and Hydrogen and
11	Oxygen monitoring and number two, NuScale Topical
12	Reports: Loss of Coolant Accident (LOCA), Non-LOCA
13	and Rod Ejection Accident Methodology.
14	Following those presentations the ACRS
15	will engage in preparation of reports. As reflected
16	in our agenda, portions of the NuScale session may be
17	closed in order to discuss and protect information
18	designated as sensitive or proprietary. And I will
19	say there will be closed sessions today.
20	A phone bridge line has been opened to
21	allow members of the public to listen in on the
22	presentations and Committee discussion. We have
23	received no written comments or requests to make oral
24	statements from members of the public regarding
25	today's session.
l	

(202) 234-4433

There will be an opportunity for public comment and we have set aside time in the agenda for comments from members of the public attending or listening to our meetings. Written comments may be forwarded to Mr. Mike Snodderly, the Designated Federal Official.

7 A transcript of the open portion of the 8 meeting is being kept and it is requested that 9 speakers use one of the microphones, identify 10 themselves and speak with sufficient clarity and 11 volume so that they may readily be heard.

For the people that will be presenting today, I ask that you consider the following. We've seen a lot of the material. And in most of the subcommittee meetings on these topics we've had full committee membership participation.

So, please feel free to progress smartly through, you know, maybe the background material and stuff that we've seen before and focus your detail on the things that you've been briefed on as important to us because we know you know what topics are important to us. If we need to slow you down we will slow

you down. So, let us control the pace.

Just one thing before we get into the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

	7
1	presentations. I do have an item of interest that I
2	want to make public. Today in the Federal Register
3	notice a notice was published that we are seeking
4	qualified candidates for membership on the ACRS.
5	The ACRS is seeking two members, one with
6	nuclear power plant experience and a second one
7	regarding, with risk analysis and the consideration of
8	uncertainty in decision making. So, those positions
9	fill out vacant and soon to be vacant with retirement
10	the positions.
11	And any interested candidates should
12	follow the instructions on the Federal Register
13	notice. We will now begin the presentations with
14	NuScale.
15	And I'll turn to staff to see if they have
16	any remarks that you want to make before the NuScale
17	presentation. Who is, Rebecca, are you over there?
18	MS. PATTON: No. We just thank the
19	Committee for their time and hope for a productive
20	dialogue.
21	CHAIRMAN SUNSERI: Okay, thank you. And
22	now, Marty, the floor is yours for the NuScale.
23	MR. BRYAN: Okay, thanks, Matt. I'm Marty
24	Bryan. I'm the licensing project manager for Chapter
25	3. I've got with me Bob Houser, Kevin Spencer,
1	

(202) 234-4433

8
Matthew Presson and also Brian Wolf will be joining us
on the phone for part of the presentation.
So, today in open session it's fairly
brief. We're going to get into more of the feedback
we received in the closed session. But certainly ask
questions if something comes up.
So, we're going to do just a brief
overview of Steam Generator Design and then talk a
little bit about the proposed DCA revisions that we
intend to include in the errata for Rev 4. So, I'll
turn it over to Kevin.
MR. SPENCER: So, I'm Kevin Spencer. I'll
be doing a brief overview of the Steam Generator
Design this morning. This was previously presented so
I'll try to I'll make it fairly high level.
Each NuScale power module has two steam
generators. On the shell side we have the primary
fluid. On the tube side we have the secondary fluid.
We have about 1,380 tubes overall. They
range in length from 74 to 86 feet. It is a helical
coil design. Each tube is made out of Alloy 690,
thermally treated material.
I have brought with me this morning a
little, a plastic prototype of the steam generator
tubes and how they interact with the steam generator

(202) 234-4433

	9
1	supports. I'll pass this around.
2	Feel free, it does come apart. If it
3	falls apart you can put it back together easily. But
4	it will allow you to take a look at how the helical
5	coil tubes interact with the tube supports. So, I'll
6	pass this around.
7	MEMBER MARCH-LEUBA: While you still have
8	it in your hand, what's the length of the straight
9	shot on the tube? When does it start curving because
10	you're going to put the other thing, the metal thing
11	inside it, right?
12	MR. SPENCER: Yes. So, the helical coil
13	this is, the supports have the, work on the helical
14	coil section of it.
15	But at the, where it intersects with the
16	steam and feedwater plenum you can kind of see on the
17	drawing on the left-hand side here there is a straight
18	section, a straight leg section.
19	MEMBER MARCH-LEUBA: You need to look at
20	the microphone or he can't hear you.
21	MR. SPENCER: Okay. There is a straight
22	leg section down at the feedwater plenum and at the
23	steam plenum. That's a transition from the helical
24	coil to a straight tube.
25	That varies in length for each tube. But
1	I contract of the second se

(202) 234-4433

	10
1	it's typically on the order of 20 to 30 inches at
2	least on the feedwater side.
3	MEMBER MARCH-LEUBA: So, you have like 20
4	inches of straight?
5	MR. SPENCER: Yes.
6	MEMBER MARCH-LEUBA: Good. That's good
7	information to have.
8	MR. SPENCER: Yes. And I do want to note,
9	we can actually just probably go to the next slide and
10	I'll do the IFR.
11	I did bring a prototype inlet flow
12	restrictor as well. Now this one is a prototype so
13	it's a little bit longer than the one you'll see on
14	the screen which is representative of the actual
15	design.
16	Notably, this has eight sections and the
17	actual design has five sections. This also doesn't
18	have the threaded connection that will thread it onto
19	the plate.
20	But it is kind of it's prototypical so
21	you it would allow you to get a feel for it.
22	MEMBER MARCH-LEUBA: That's not
23	proprietary, the design?
24	MR. SPENCER: No. Not in this form
25	without dimensions and such.

(202) 234-4433

11 1 MEMBER MARCH-LEUBA: The dimensions are 2 proprietary. But the number of stages is not 3 proprietary. 4 MR. SPENCER: Right, right. 5 MEMBER MARCH-LEUBA: Okay. MEMBER RICCARDELLA: I note that from this 6 7 model that tubes can slide axially. Is that true in 8 the actual model? MR. SPENCER: 9 That won't be necessarily true in the actual model because the helical coil will 10 be constrained on all sides. 11 But what I did want to mention here with 12 the five, with the set of five expansions you'll 13 14 notice that the IFR is contained within the actual 15 tube sheet. 16 So, it doesn't extend out past the, it 17 doesn't extend past the tube sheet into the heated 18 area. 19 MEMBER MARCH-LEUBA: What is the tube 20 sheet? 21 MR. SPENCER: Yes. So, it's not as long, 22 the --23 MEMBER MARCH-LEUBA: So, this is outside 24 of the primary? It's not in contact with the primary 25 fluid?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	MR. SPENCER: That's correct. That's
2	correct.
3	CHAIRMAN SUNSERI: So, when you said the
4	tube straight piece is 30 inches or so is that
5	including the length through the tube sheet or after
6	it passes through the tube sheet?
7	MR. SPENCER: The straight section from
8	the feedwater transition plenum is probably on the
9	range from 20 to maybe 35 inches overall. And then
10	that does include the length of tube which is, which
11	passes through the tube sheet and is welded on the
12	secondary face of the tube sheet.
13	I think I can say that it's probably not
14	proprietary to say that. That's on the order of six
15	inches is the thickness of the tube sheet.
16	MEMBER MARCH-LEUBA: So, just so I can
17	visualize it. Where the IFR is inserted that is not
18	a tube but is a stronger piece of material?
19	MR. SPENCER: It is, it's a tube that's
20	passed through a hole. So, there's a six inch thick
21	metal plate.
22	MEMBER MARCH-LEUBA: So, it's a thick
23	metal plate with drills.
24	MR. SPENCER: Yes, with the appropriate
25	the OD of the tube would be drilled through. The tube
	1

(202) 234-4433

I	13
1	is inserted into the tube sheet. It's hydraulically
2	expanded.
3	So, it's pushed out with force up against
4	those walls. And then it's, there's a fillet weld on
5	the end of the tube on the secondary face.
б	MEMBER MARCH-LEUBA: So, it's welded at
7	the bottom?
8	MR. SPENCER: So, in this drawing here it
9	would be welded in between the IFR mounting plate.
10	And you'll see there's clouding on that second side.
11	That's to allow a similar metal weld.
12	MEMBER MARCH-LEUBA: The IFR is held in
13	place from the back on the, with a screw?
14	MR. SPENCER: Yes. So, there's an IFR
15	plate that all these, each IFR is inserted into the
16	plate. It's mounted through a threaded section
17	through the plate.
18	Ideally that's going to be a loose design
19	when it's inserted into the tube so that it will allow
20	each IFR to be seated into the tubes. That plate will
21	be mounted through various mounting studs to the
22	actual tube sheet.
23	That will prevent any sort of bowing or
24	flexure of that plate. And then once all that is in
25	position then those IFR, then the IFR threads
	I Contraction of the second

(202) 234-4433

	14
1	themselves will be tightened up and preloaded.
2	MEMBER MARCH-LEUBA: And you do this every
3	refueling, to load it?
4	MR. SPENCER: Yes. This will be
5	MEMBER MARCH-LEUBA: So, you loosen the
6	screw in the back for every one of them and then put
7	them in?
8	MR. SPENCER: Yes. Not for every
9	refueling but for every inspection.
10	MEMBER MARCH-LEUBA: Yes, right. Every
11	time you take it apart.
12	MR. SPENCER: Yes. And it may be during
13	a steam generator inspection you may be doing 100
14	percent inspection of the tubes. You may also be
15	inspecting some smaller number of the tubes based on
16	the steam generator program that the utility sits on.
17	MEMBER MARCH-LEUBA: But all the IFRs are
18	on the same plate?
19	MR. SPENCER: I'm sorry.
20	MEMBER MARCH-LEUBA: All of the IFRs are
21	on the same plate
22	MR. SPENCER: Yes.
23	MEMBER MARCH-LEUBA: for each entrance?
24	MR. SPENCER: Yes.
25	MEMBER MARCH-LEUBA: You have four of
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	15
1	them.
2	MEMBER BALLINGER: What is the orientation
3	of the flow restrictor, is the left-hand end the
4	furthest end of the tube sheet?
5	MR. SPENCER: The furthest end of the tube
6	sheet is the tip, yes.
7	MEMBER BALLINGER: Yes. So, is there any
8	concern about vibration there? It's a very short,
9	it's a sharp V on the thing.
10	Is there any concern that you might have
11	a wear problem on that point there because that's on
12	the hydraulically expanded part?
13	MR. SPENCER: Yes.
14	MEMBER BALLINGER: So, is there
15	possibility of this thing doing this?
16	MR. SPENCER: So, we've done a significant
17	amount of testing with respect to forward flows, flows
18	in the nominal direction from the feedwater into the
19	tube at velocities, we've done prototypic testing
20	where we're looking at Reynolds numbers that are much
21	higher that we would expect and the turbulent buffing
22	that we've looked at and any sort of vibration that
23	we've looked at has not been a cause for concern for
24	the IFR.
25	MEMBER MARCH-LEUBA: But that's assuming

(202) 234-4433

	16
1	no oscillations, no flow oscillations, correct?
2	MR. SPENCER: That's, so, yes. That
3	explicitly has been forward flow on the IFR.
4	MEMBER MARCH-LEUBA: For 100, 120 percent
5	nominal flow, not 300 percent nominal flow?
6	MR. SPENCER: I want to say that we've
7	gone up to like maybe 800 percent flow in our testing.
8	MEMBER MARCH-LEUBA: On the
9	MR. SPENCER: In the forward direction.
10	MEMBER MARCH-LEUBA: Vibration testing?
11	MR. SPENCER: Yes, prototypically. Not at
12	temperature and pressure. But
13	MEMBER MARCH-LEUBA: And this thing is
14	screwed into a plate on the back, right?
15	MR. SPENCER: Yes.
16	MEMBER MARCH-LEUBA: Yes, a Phillips
17	screwdriver. Hopefully you torque it the right
18	position, you don't do it like I do?
19	MR. SPENCER: Yes. Well, it will be a
20	hardware design that will prevent loose parts. So, we
21	wouldn't want to have loose parts from this. But it
22	will be, so it will be
23	MEMBER MARCH-LEUBA: You have 1,200 of
24	these. One of them after ten years is not going to
25	get a little loose and go ping, ping?
1	

(202) 234-4433

1 MR. SPENCER: Well, so again these would 2 be removed and, these would be considered to be a part 3 of the Steam Generator Program. So, they will be 4 inspected at the same frequency at which the tubes 5 would be inspected as a part of that Steam Generator 6 Program. 7 So, when the IFRs are removed they will, 8 you know, any time that you return a threaded part to 9 service part of your procedure in doing that is to look at the condition of the threads, at the condition 10 of the mounting hardware to ensure that it can be put 11 back into service safely. 12 MEMBER MARCH-LEUBA: And I assume you look 13 14 inside the tube sheet to look for wear? 15 SPENCER: 100 MR. Yes. So, there's percent volumetric inspection of the tubes from the 16 inside. 17 So --I'm told from the 18 MEMBER MARCH-LEUBA: 19 people that know about this that this particular alloy 20 scratches easily. Is that correct? 21 MEMBER BALLINGER: I don't know about 22 scratch easily. But its wear characteristics are much 23 different than Alloy 600. 24 MEMBER MARCH-LEUBA: It creates oxide, you 25 scratch the oxide, it creates oxide, you scratch the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	18
1	oxide.
2	MEMBER BALLINGER: Now I have one more
3	question. Is there any thought to having an ejection
4	collar on one of those things?
5	What I'm saying is it would be a pretty
6	bad hair day if the nut on the outside, if it were to
7	fracture there and this thing ended up going into the
8	tube.
9	But if it was designed so that there was
10	a diameter change in the plate if the nut cracked it
11	wouldn't be possible to send that thing into the tube.
12	MR. SPENCER: Yes, yes. So, we've done
13	some preliminary test analysis. I guess, I mean the
14	current design that we're here to present today is the
15	current design for the DCA.
16	You know, we do as we change operation,
17	if we change operationally in the future we're going
18	to also be required to change this as a function of
19	that to ensure that we have the same characteristics
20	to prevent DWO that the inlet flow restrictor is
21	designed to do.
22	So, if we change the operation that
23	affects the design and that allows us to reexamine the
24	design. But the current design that we're presenting
25	today doesn't include that feature.

(202) 234-4433

	19
1	But we have done some preliminary stress
2	results. We'll present those in the closed session a
3	little bit to show that, you know, we think we have
4	sufficient margin to, any sort of ASME, you know, any
5	sort of ASME analysis on the thread or on the bolt or
6	anything like that.
7	I think I've presented this slide kind of
8	overall. If you have any questions about it otherwise
9	I suggest we move on.
10	CHAIRMAN SUNSERI: You just move on and
11	we'll stop you.
12	MR. BRYAN: One thing that is different
13	from the last time we were here, we got a lot of
14	feedback. We went back and evaluated it.
15	And we are now proposing a COL item to
16	address the evaluation methodology. And so, I'll
17	pause there just a minute and let you read the COL
18	item.
19	But this is what we proposed to address
20	developing a methodology that would evaluate the
21	secondary side instabilities including reverse flow.
22	MEMBER MARCH-LEUBA: If I'm reading
23	correctly you will ensure you have a validated tool
24	that will be able to predict instabilities and what
25	happens during them and how then to calculate the ASME
l	1

(202) 234-4433

20 1 loads if they should happen. Is that what you're 2 saying? 3 MR. BRYAN: Yes, correct. MEMBER MARCH-LEUBA: And that will be a 4 5 COL item? MR. BRYAN: Correct. 6 7 MEMBER MARCH-LEUBA: Can we say carveout 8 in the open session? 9 MEMBER KIRCHNER: That has a different 10 meaning. 11 MEMBER MARCH-LEUBA: I know but, okay, maybe we'll wait for the -- yes, but can we talk about 12 that? 13 14 CHAIRMAN SUNSERI: Why don't you wait until the staff --15 MEMBER MARCH-LEUBA: All right. I wanted 16 to see what the difference is. But we'll wait for the 17 staff to tell us what the difference is. 18 CHAIRMAN SUNSERI: Would you envision that 19 20 this is, this methodology be documented on a technical 21 report or a topical report or something? I'm just 22 trying to think of what, how that would get looked at. MR. HOUSER: Yes, it would be. We would 23 24 develop something that's very. Yes. It would be 25 documented and available.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	It would be much like the methodologies
2	that were developed for the LOCA and non-LOCA topical
3	reports in terms of content. We can get into that in
4	a little bit more detail in the closed session.
5	MEMBER MARCH-LEUBA: You would issue a
6	topical or a technical report?
7	MR. BRYAN: It would be technical, I
8	think.
9	MEMBER MARCH-LEUBA: Yes, that would be
10	more likely.
11	MEMBER BROWN: But you all developed the
12	other reports. Now you're pushing this off to the COL
13	who has no background in this design other than they
14	have chosen you all as the design document, the design
15	whatever you want to call it.
16	It's kind of hard to see this guy walks in
17	cold and has to develop all this analysis technology
18	and methodology for a design that they haven't even
19	seen until they decided to go with you. Maybe I'm
20	speaking out of turn.
21	This just seems to be kind of complicated
22	when you all have spent several years developing your
23	own evaluations and design analyses and topical
24	reports, that's all.
25	MR. HOUSER: We are continuing to move
1	I contract of the second se

(202) 234-4433

	22
1	forward with development of that ASME scale, that
2	methodology.
3	MEMBER BROWN: So, whey the COL if you're
4	all doing it and you're all not going to provide it
5	yourself?
6	MEMBER RICCARDELLA: The timing.
7	MEMBER BROWN: I understand that. But
8	that's, time is nice. But I'm looking at it from the
9	technical standpoint and the ability to get a, I guess
10	a methodology that it's truly representative of what,
11	you know, the design and what density wave
12	oscillation.
13	I'm not a thermal hydraulic guy, okay.
14	But I know that's not good.
15	MEMBER RICCARDELLA: But it's not
16	realistic to assume that there's going to be a COL guy
17	and NuScale is just going to walk away and this COL
18	applicant is going to build the plant all by himself.
19	Come on, Charlie.
20	MR. HOUSER: That will not happen.
21	MEMBER RICCARDELLA: That's absurd.
22	MEMBER BLEY: There's another thing here.
23	Correct me if I'm wrong. If you issue it as a
24	technical, I assume you'll just move into this and
25	you're working on it.
	I contract of the second se

(202) 234-4433

	23
1	If you finish it and it's a technical
2	report it won't come to the staff or to us until
3	there's a COL applicant. If you issued it as a
4	topical it might come right away for approval.
5	Am I correct in that assumption of how
6	things could progress?
7	MR. BRYAN: Yes. In terms of technicals
8	and topicals that's correct.
9	MEMBER MARCH-LEUBA: But it's not
10	necessary. I mean, you could send a technical ahead
11	of time.
12	Given the visibility that it has already
13	had you likely will or you will have a visit in
14	Corvallis to go see it, I think.
15	MR. MELTON: I want to say, it's Mike
16	Melton with NuScale. So, the COL items will be
17	addressed with, you know, people that are technically
18	qualified.
19	You know, all resources will be applied to
20	make sure that methodologies or NuScale's involvement.
21	I don't think we need to be concerned
22	about because the design expertise, analysis, you know
23	consultants we'll have the right workforce to make
24	sure that this gets done properly as with all our COL
25	items.

(202) 234-4433

	24
1	I just want to assure the Committee.
2	We'll make sure it gets done properly. And I think
3	Marty is correct. This does sound like a technical
4	report but I don't know if we've made that internal
5	decision.
6	But because of the applicability it's
7	probably that direction. If it does go in the form of
8	a topical report it will follow the process.
9	MR. PRESSON: And in terms of process
10	it's, you know, we have the ITAAC which is tagged to
11	the COL. But this would ensure that methodology is
12	reviewed prior to the ITAAC process. So, it would be
13	captured in the FSAR portion of that.
14	MR. DUDEK: And just to add, this is
15	Michael Dudek, the Branch Chief for Nuclear Reactors.
16	The COL versus the carveout is really, as you said, a
17	timing issue.
18	We have not seen or evaluated fully the
19	proposed COL item. Previous to that we had identified
20	a technical open item and that's where we proposed not
21	giving them finality in the role which is AKA the
22	carveout.
23	So, as we evaluate and go forward we may
24	take that off the table. But as of now it's still an
25	open item and we propose not giving finality through
1	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	25
1	the rulemaking.
2	MEMBER MARCH-LEUBA: So, that carveout
3	would be a way to address this technical review, if
4	it's a technical report.
5	MR. DUDEK: What they do could suffice and
6	take that open off the table. But we have yet to
7	reach that conclusion.
8	MR. BRYAN: Okay. So, just to wrap up.
9	There is again, we got a lot of feedback. We heard
10	the feedback. We went back for both the staff and the
11	Committee and we revised both 3.9 to include the COL
12	item.
13	And we also clarified the language in 5.4.
14	There was a lot of discussion about the use of RELAP
15	there. So, we took that discussion out and replaced
16	it.
17	We thought you would have the errata by
18	now. But that got held up, that you would have seen
19	it before this meeting. But that will be forthcoming
20	in the errata letter to clean up some of the 5.4
21	language.
22	So, that's really all we had planned to
23	cover in the open session. We'll get into some more
24	of the details in the closed session.
25	We know the staff is going to speak to the

(202) 234-4433

Í	26
1	carveout from our perspective. As Matthew said, by
2	having successful completion of the ITAAC we have a
3	COL item, we believe this constitutes the basis for
4	NRC determination to allow operation of the facility
5	certified under 10 CFR 52.
6	MEMBER MARCH-LEUBA: You say operation,
7	you mean certification under 52, right?
8	MR. BRYAN: Yes.
9	CHAIRMAN SUNSERI: Okay, thank you.
10	Members, any questions for the presenters?
11	MEMBER MARCH-LEUBA: I just wanted to put
12	on the record that this is good. I'm happy that
13	you're taking it seriously and we are going to follow
14	through instead of trying to avoid it. So, today I'm
15	happier than I was yesterday.
16	CHAIRMAN SUNSERI: Well, that's a
17	milestone. Okay. All right, thank you. Let's bring
18	up the staff now.
19	And as you all are taking the table I
20	would remind you once again this is open. And if we
21	ask any questions that drive us to proprietary
22	information just refrain and we'll address those in
23	the closed session later.
24	MS. JOHNSON: Good morning, everyone. My
25	name is Marieliz Johnson. I'm the project, not yet.

(202) 234-4433

	27
1	(Off-microphone comments.)
2	MS. JOHNSON: Do you hear me better now?
3	So, I'm Marieliz, sorry, Marieliz Johnson, project
4	manager for NuScale the certification application.
5	Today we're going to present the NRC
6	review of the NuScale steam generator. For the agenda
7	we have the NRC staff review team. We have a brief
8	summary of the review of the steam generator.
9	And we will go through a summary of the
10	steam generator design issues that are not resolved by
11	the, by certification, by the design certification
12	application. Here's a list of the review team.
13	And then I'm going to turn it over to Greg
14	Makar to continue.
15	MR. MAKAR: I'm Greg Makar from the
16	Corrosion and Steam Generator Branch. And I want to
17	briefly review our is that better?
18	I'm Greg Makar of Corrosion and Steam
19	Generator Branch and I want to briefly review our
20	findings on the topics for steam generator materials
21	and Steam Generator Program. And then I'll turn our
22	attention to the incomplete topic of secondary side
23	flow stability.
24	We found in most cases, except for that
25	one, we found the materials area acceptable. That

(202) 234-4433

28 1 includes material selection and the associated 2 requirements, things like the application of the ASME 3 code and fabrication, cleaning, inspection 4 requirements. 5 The design limits the crevices along the tubes and enables flow along the tubes and we found 6 7 that important, degradation mechanisms associated with 8 crevices. The materials will be compatible with the 9 10 planned primary and secondary environments. And the 11 design provides for primary and secondary side access 12 for inspection, cleaning, foreign object search and retrieval. 13 14 Next slide, please. Steam Generator 15 Program we found to be acceptable. It is consistent 16 with the standard tech specs and the industry 17 guidelines. We say appropriately acceptable because 18 19 there are some differences in terminology and other 20 aspects of the tech specs that are different for 21 NuScale. 22 inspection And the program, it's а 23 performance based framework that has some prescriptive 24 elements and it defines tube integrity in terms of the 25 structural and or describes the performance criteria

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

29
in terms of the structural and leakage integrity of
the tubes.
They have provided a generic tube plug in
criterion which is the amount of through wall loss of
the tube that you can have before you have to take a
tube out of service.
And the COL applicant will submit the and
prepare the steam generator inspection program and
implement that plan and provide any site specific
information which includes their own degradation
assessment, their own plug in criterion and timing and
so forth. Next slide.
MEMBER BALLINGER: I just had something
pop into my head. The standard tube integrity
inspection technique is bobbin coil or something like
that.
But usually the, it's on the primary side,
goes up the primary side. In this case you're going
to have to go up the secondary side.
And if the criteria is 40 percent through
wall volumetric, right, that's one of the criteria for
tube plugging, that volumetric will be on the inside
not the outside of the tube. So, is there, that going
to work out okay?
MR. MAKAR: Well, the inspection is

(202) 234-4433

	30
1	looking for any kind of degradation that you could
2	expect according to your degradation assessment for
3	that particular plant.
4	Some degradation has come from the inside
5	of the tube, some secondary, some
6	MEMBER BALLINGER: Cracking is not an
7	issue. But I'm talking about removal of material,
8	volumetric defect on the inside of the tube where the
9	bobbin coil or pancake or whatever you're using goes
10	up.
11	That's a little bit different, I think,
12	then what you would find in a recirculating or once
13	received generator like in a PWR.
14	MR. MAKAR: Well, the inspection will be
15	able to detect volumetric on the inside or the
16	outside.
17	MEMBER BALLINGER: Okay.
18	MR. MAKAR: As it does now.
19	MEMBER BALLINGER: Okay.
20	PARTICIPANT: Are you worried about the
21	coil getting caught up?
22	MEMBER BALLINGER: You know, I'm not a
23	coil expert. But if it's all of a sudden now you have
24	a 40 percent volumetric defect once you have removed
25	material.

(202) 234-4433

Í	31
1	MR. MAKAR: And that, still the most
2	likely place for that is on the outside of the tubes
3	at support structures. But it could be that this flow
4	restrictor if that, you know, we talked about that.
5	MEMBER BALLINGER: Corrosion on the
6	outside of that type doesn't concern me. You're not
7	going to get any kind of thing because it's on the
8	primary side.
9	MR. MAKAR: But the support structures are
10	on the, are also on the outside.
11	MEMBER BALLINGER: Yes, okay.
12	MR. MAKAR: So, we still need to look for
13	anything they expect on both the inside and outside.
14	MEMBER BLEY: I hadn't thought about it
15	and it's not an issue here. But in the current
16	designs where the primary is on the inside when you go
17	in to work you've got a lot of streaming coming out of
18	those tubes, radiation streaming.
19	I wonder if that's going to be different
20	or better this way around. Go ahead, I'm just
21	wondering.
22	MEMBER KIRCHNER: Proximity to the core
23	of the tube sheets is going to make for a much
24	different situation. In the current fleet the
25	inspection of the PWRs is, like you said, it's
I	1

(202) 234-4433

	32
1	whatever, particulate corrosion, whatever inside the
2	tubes.
3	This one you're much closer, the structure
4	has been sitting much closer to the core. So, I
5	wonder what activation
6	The core is about what, ten feet lower
7	than the start of the steam generator? But that's the
8	difference I see in terms of personnel exposure. They
9	take this, put it in the dry dock and then inspect it.
10	It may be hotter, the material.
11	MEMBER BLEY: Kind of in general. But in
12	the current ones you have it on the inside of the
13	tubes and you really get a beam kind of coming out of
14	it.
15	MEMBER MARCH-LEUBA: Activation is neutron
16	flux and very few neutrons are going to make it
17	through 20 feet of water. So, there will be a gamma
18	flux.
19	But the gamma doesn't activate. In
20	inspection the core will be in a different place.
21	MEMBER BALLINGER: That's about 20 tenth
22	value layers.
23	MEMBER KIRCHNER: The other thing is that
24	assuming they keep doing water chemistry, but these
25	are low flows. So, if stuff is going to accumulate on
	I contraction of the second

(202) 234-4433

	33
1	the primary side it's going to be around the tube
2	sheet entrance on the primary side, if there's crud in
3	other things.
4	MEMBER BALLINGER: The first inspection
5	will be interesting.
6	MR. MAKAR: All right, next slide, please.
7	We have determined that this, we have this issue of
8	structural leakage integrity that has not been fully
9	demonstrated.
10	And that's related to the effective
11	density wave oscillations on tube integrity and also
12	for the method of analysis for the secondary side,
13	thermal hydraulic conditions and associated loads.
14	NuScale is working to address that topic.
15	And if there are no, unless there are other questions
16	about our Chapter 5 review I'm going to turn this over
17	to Tom Scarbrough to talk more about the secondary
18	flow instability topic.
19	MR. SCARBROUGH: Thank you, Greg. I'm Tom
20	Scarbrough with the Mechanical Engineer Branch. We
21	had quite a bit of discussions over the past few weeks
22	regarding the steam generator tubes and their
23	integrity.
24	And after quite a bit of significant
25	interactions, you know, among all the technical

(202) 234-4433

ĺ	34
1	reviewers. There are a number of technical reviewers.
2	You know, there are several chapters that are involved
3	here of this.
4	And so, after a lot of deliberation we
5	decided that at this point we're going to propose that
6	we specify the structural integrity and leakage, the
7	structural and leakage integrity of the steam
8	generator tubes are not resolved and not receiving
9	finality in the NRC draft proposed rule for design
10	certification.
11	MEMBER BLEY: I would just interject here.
12	We've had concerns about wear which could lead to two
13	failures.
14	The PRA certainly has not reflected
15	anything about this phenomena if it exists.
16	MR. SCARBROUGH: Yes. And you brought
17	that point and that was one of our concerns that we've
18	talked about quite a bit over the last few weeks.
19	And so, we're going to talk about the
20	specific details of the technical reasons why in the
21	next couple slides. But I'm just kind of telling you
22	what the process is right now.
23	MEMBER RICCARDELLA: What you said, does
24	that mean carveout?
25	MR. SCARBROUGH: It's a carveout, yes,
	1

(202) 234-4433
	35
1	sir. I didn't use carveout
2	MEMBER RICCARDELLA: That's different than
3	what the licensee, the licensee was talking about a
4	COL item and an ITAAC and you're talking about a
5	carveout.
6	MEMBER BLEY: This is a carveout. They've
7	been working independently on this.
8	MR. SCARBROUGH: Yes. They've been trying
9	to resolve the issue themselves. And they proposed a
10	COL item. We looked at the COL item.
11	We don't have a technical concern with the
12	COL item. We actually think it's a good thing. But
13	in terms of whether or not we could certify the
14	specific aspects, and this is focused right, it's
15	focused on the steam generator tube integrity.
16	And, you know, it's not the whole steam
17	generators. And so, but in this focused area we do
18	not feel we had confidence that we could decide on
19	finality for this particular aspect.
20	MEMBER MARCH-LEUBA: So, from the way you
21	envision the certificate is to have a carveout and a
22	COL. Is that correct?
23	MR. SCARBROUGH: Yes, yes. In discussions
24	when we had first seen their proposed COL item we
25	said, you know, we have our own process for, you know,

(202) 234-4433

	36
1	going on carveout.
2	And the response we received, they felt
3	like the COL item was a good thing, right. It was a
4	benefit to their design in terms of what, how they
5	presented their design certification application.
6	And we agreed. But it doesn't
7	specifically affect what we're trying to do here with
8	the finality.
9	MEMBER MARCH-LEUBA: I was going to make
10	another momentous announcement in the fact that I'm
11	happier with the applicant's proposal than with yours.
12	CHAIRMAN SUNSERI: So, let me ask a
13	question. So, let me so, I guess this doesn't make a
14	big difference.
15	But would you envision that when a COL
16	applicant comes in and does what the applicant is
17	saying in the COL item for this activity, would that
18	information be sufficient to resolve the carveout?
19	They would have, I know they would have to
20	license amendment or something like that to get it
21	approved. But is the work that they plan to do for
22	the COL the work that needs to be done to address your
23	safety concerns?
24	MR. SCARBROUGH: Yes. They're very
25	similar because they, if they plan to demonstrate that

(202) 234-4433

1 they are not going to have issues with the potential 2 DWO and the reverse flow the first step from this 3 perspective is to develop a methodology that would 4 predict that reliably.

5 And so, then they would use that. And 6 then, you know, as through and we'll talk a little 7 more about the sections that we have a concern with. 8 But in the design certification they need to have a 9 methodology listed right for all of the various 10 aspects of the design.

And this methodology is not ready yet. And so, once they are ready they will use it to, in combination with probably the ANSYS model to show that the stress and the wear on the tubes are not significantly impacted by the DWO and reverse flow.

So, again that's the first step that the COL applicant would come in and say here is the methodology and this is how we're going to use it to show that we do not have significant wear on the tubes or damage the IFRs.

21 MEMBER BLEY: I'd like to try something 22 because we haven't dealt with carveouts as such before 23 this time around. It seems to me what we have the 24 applicant has a COL item which will have to be met 25 during the COL.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

38 1 What you're saying is they're saying what they're going to do. You're just saying we haven't 2 3 reviewed this yet. We have to review it at the COL 4 time. 5 MR. SCARBROUGH: Yes, yes. And that's basically what a carveout is. It's, if we did not 6 7 have a carveout and we didn't mention it at all 8 officially we have finality on all the aspects of a 9 steam generator. 10 We really don't have the authority to question the steam generator tubes anymore. And so, 11 we're not ready there. We're not there yet, you know. 12 We still want to review the COL item and 13 14 make sure the methodology is proper. 15 MS. PATTON: I think Mike has something to add. 16 And, Mr. Chairman, just to 17 MR. DUDEK: dovetail into Tom's response is that the COL item is 18 19 only one small piece of the carveout. I think you'll 20 see that in the upcoming slides is that, yes, they can 21 include the COL item. 22 And it may address one small piece of the 23 carveout. But that doesn't resolve the larger picture 24 of all of the open items that are included. And 25 you'll see they are included in the carveout.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	39
1	CHAIRMAN SUNSERI: Yes, I get it. But it
2	does outline the methodology that would take them
3	there, right?
4	MR. DUDEK: You'll see that's only one
5	small piece.
6	CHAIRMAN SUNSERI: Yes, okay. All right.
7	MR. DUDEK: It's like a first step.
8	MS. PATTON: There is also a little
9	difference in the legal definition between like a
10	carveout versus a COL item. And a carveout makes it
11	very clear that has to be done by the COL.
12	You know, you can rely on a carveout in
13	making the findings and it's a little bit more limited
14	how much reliance we can place on a COL item. And so,
15	we're still working through that and some of the
16	questions on COL item versus carveout.
17	So, I don't want to get ahead of that.
18	But some of those differences are what's being
19	considered in this as well.
20	CHAIRMAN SUNSERI: As Dennis said, we're
21	still learning on this. But when it comes to carveout
22	and I don't like using that vernacular.
23	But is there any timing issues regarding
24	when a license then would be issued or when a licensee
25	would be able to start operating the plant regarding

(202) 234-4433

	40
1	a carveout or anything?
2	MR. SCARBROUGH: Well, they would need to
3	come in the COL applicant would come in and address
4	this aspect of the design that did not reach finality
5	as part of design certification.
6	MEMBER RICCARDELLA: So, doesn't that, I
7	mean a carveout automatically implies a COL item,
8	right? I mean you have to resolve the carveout
9	because it hasn't been, that aspect of the design
10	hasn't been approved.
11	MR. SCARBROUGH: In words or not, right,
12	of course. And so, the COL item that NuScale is
13	proposing is that first step to resolve this issue
14	that's been carved out, exactly.
15	MEMBER MARCH-LEUBA: So, while you're
16	making the presentation can you address my bias. I
17	see opposite to what you said. I see that their COL
18	proposal is broader than your very limited carveout.
19	MEMBER RICCARDELLA: Maybe we need to see
20	the remaining, the additional slides.
21	MEMBER KIRCHNER: All they have proposed
22	is a methodology. You still have to do all of the
23	analysis and have to do the ASME code case, et cetera,
24	et cetera. It's much more.
25	MEMBER BLEY: We've only seen their first
1	1

(202) 234-4433

	41
1	slide. Maybe we could look at some more.
2	MS. PATTON: There are two more slides on
3	the carveout.
4	MEMBER MARCH-LEUBA: I want you to address
5	my biases while you present it because what I hear
6	here is as long as you satisfy the ASME code, the tube
7	doesn't break, we're perfectly okay with it.
8	MR. SCARBROUGH: No. We're only on the
9	first bullet on the first slide.
10	MEMBER MARCH-LEUBA: I have a bias of
11	controllability and moisture in the steam line.
12	MR. SCARBROUGH: Exactly, yes. We're
13	going to get there. So, this is just
14	VICE CHAIRMAN REMPE: To follow up on
15	Matt's question about how to fix things. I can
16	remember with Vogtle that there was, they let them go
17	ahead and pour concrete for some things but not some
18	nuclear construction.
19	And that was a fuzzy line. When does the
20	carveout have to be addressed? Does it affect what
21	can be done in the construction for a COL applicant?
22	MR. SCARBROUGH: In this case and we are
23	fortunate we had actually two OGC lawyers helping us
24	with this, right, and so, because this is new ground
25	for me too. This is carved out.

(202) 234-4433

	42
1	And this only affects the steam generator
2	tube aspect of the design. Everything else goes
3	forward the way it is supposed to go forward.
4	VICE CHAIRMAN REMPE: Okay. And that
5	would be true for the other carveout too?
6	MR. SCARBROUGH: Yes.
7	VICE CHAIRMAN REMPE: It's just limited on
8	that thing, thank you.
9	MEMBER BLEY: But at the COL stage an
10	applicant could not get a license until these
11	carveouts were fulfilled, reviewed and approved?
12	MR. SCARBROUGH: Yes. This aspect has to
13	be completed, you know, for the COL applicant to
14	receive the COL.
15	MS. PATTON: Right. It basically just
16	identifies the portion of the design that wasn't
17	granted finality through the rule, right.
18	So, it's basically takes a piece that
19	would normally be in a design certification and says
20	the COL when they apply has to provide this additional
21	piece.
22	MEMBER BLEY: But since this is new to us,
23	one last question. Assuming the Commission issues a
24	design certification that rule would then say the
25	following aspects have not yet been evaluated or
	I Contraction of the second

(202) 234-4433

	43
1	something.
2	MR. SCARBROUGH: Exactly. We are working
3	with OGC on the exact words. And we're going to sort
4	of show you the words that we're working with OGC to
5	put into the rule itself that will indicate that this
6	specific aspect of the steam generator tubes does not
7	receive finality yet as to OGC license.
8	MS. PATTON: Right. There's a few lines
9	that actually go directly into the rule and carve it
10	out.
11	MEMBER BLEY: We have one or more other
12	carveouts that are going on.
13	MR. SCARBROUGH: I believe there's two
14	other carveouts on different topics.
15	MS. PATTON: That's why I said, there's a
16	little difference in legal definition between like a
17	carveout and a COL items and a carveout, you know,
18	makes it very clear within the rule that needs to be
19	provided.
20	CHAIRMAN SUNSERI: Thank you, thanks for
21	taking us on this little detour of the regulatory
22	practice here. Let's get back into the technical
23	presentation. Go ahead, Mike.
24	MR. DUDEK: Just one more side note.
25	Something that may help is that the legal definition

(202) 234-4433

(202) 234-4433

	44
1	according to OGC has evolved for a COL item.
2	The COL items is being used now is more
3	interpreted as just an information tracking item. It
4	doesn't have any legal gumption or enforcement in the
5	COL going forward. So, it's more of an information
6	tracker versus an enforcement item.
7	MEMBER BLEY: I could get an operating
8	license without fulfilling the COL item?
9	MS. PATTON: We would have to probably
10	have an attorney answer that.
11	MEMBER BLEY: I think so. That really
12	sounds bizarre.
13	MS. PATTON: My understanding is that, my
14	little bit of understanding and, Mike, you can chime
15	in is that there is, more like there could be a
16	potential fight about that a little bit.
17	And this, a carveout makes it, gives it
18	the force of law.
19	MEMBER BLEY: Is the authority here. It
20	brings the strength.
21	MS. PATTON: It's stronger than a COL
22	item.
23	MEMBER BLEY: We've supported a number of
24	design certs under the assumption all COL items
25	CHAIRMAN SUNSERI: Maybe we can take up
	I contract of the second se

(202) 234-4433

	45
1	that topic at a different meeting. Okay, thanks.
2	Tom, go ahead.
3	MR. SCARBROUGH: Okay. So, Appendix G is
4	going to be the portion of Part 52 which is the
5	NuScale design certification rule.
6	And so, there's a section, Section 6, I'll
7	call it issue resolution which will talk about the
8	steam generator tube integrity issue and indicate that
9	it's not resolved within the meaning of 5263 Alpha 5.
10	And that, I went back and pulled that out.
11	That has to do with all matters all resolved except
12	for 10 CFR 2.335 which has to do with petitions.
13	So, that's what that has basically it's
14	saying that this issue has not been resolved yet for
15	finality for the design certification.
16	And then there is another section that
17	will be in Appendix G, which is Section 4 which talks
18	about what is the COL applicant responsible for. And
19	it will talk about the fact that the COL applicant
20	needs to provide the design information to address the
21	steam generator tube integrity.
22	And so, those sort of two sections that we
23	are working with OGC now to get the words just right
24	from the legal perspective to make sure we carve it
25	out to cover the issues but also, you know, it's only

(202) 234-4433

	46
1	the steam generator tube area aspect that's being
2	carved out.
3	And so, the rule now, the proposed rule
4	language it's with OGC right now and they're working
5	on it to have it ready for Commission approval. So,
6	that's where we are right now.
7	So, now Becky is going to walk us through
8	there is two specific sort of parts to this
9	carveout. And, but we talk about them separately just
10	because it's easier to keep track of.
11	So, Becky is going to talk about the first
12	part.
13	MS. PATTON: Okay. So, currently in the
14	FSAR that NuScale submitted, Section 3912 there's a
15	listing of the computer programs that are used by
16	NuScale for the dynamic and static analyses and for
17	the hydraulic transient load analyses.
18	So, you know, if you look in that
19	currently it will list, you know, NRELAP, for example,
20	as one of those codes. And then, you know, points you
21	over to 1502 for the code description and the V&V.
22	And so, you know, my branch in Reactor
23	Systems assisted, you know, with the review of NRELAP
24	for those, you know, mechanical, those blow down
25	loads.

(202) 234-4433

47
Currently in the FSAR in Chapter 5 it also
lists NRELAP as being used for determining the
pressure drop in the IFR design to ensure acceptable
mass flow fluctuations for power levels, et cetera, et
cetera.
Our understanding is that, you know,
NuScale has plans to, you know, modify that to clarify
that. But basically, that's listing currently of
NRELAP in 391 is intended for blow down loads
currently.
That's what the staff had reviewed. We
hadn't reviewed it for, you know, other loading
conditions potentially for DWO.
So, this would be a portion of the
carveout to say that 3912 with DWO loads being a
potential loading condition you would need to list a
method of analysis into 3912 for those loading
conditions.
And those presently are not there. So,
the carveout would specify that in demonstrating steam
generator tube integrity a COL applicant would need to
provide information to demonstrate that GDC 4 is met

for the method of analysis to predict thermal hydraulic conditions of the steam generator fluid system and the resulting load stresses and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	deformations from DWO.
2	So, our understanding is that NuScale is
3	planning on, you know, adding some, you know, a COL
4	item for one to this section to specify that would be
5	done in the future. We would still, you know, the
6	current plan is that we would still maintain this as
7	part of the carveout.
8	But that's, basically the first portion
9	would be that method, you know, hasn't been specified
10	and it's integral to the finding in that section made
11	by the Mechanical Branch that all those methods are
12	listed.
13	MR. SCARBROUGH: Right, exactly. So,
14	that's the first part. So, that would that's the
15	COL item sort of section.
16	Now the other part is the actual steam
17	generator tube integrity issue. And that sort of has
18	been, I've been to the meetings in the past couple
19	months of the ACRS and heard a lot about that.
20	But the bottom line is NuScale has not
21	provided reasonable assurance that the flow
22	oscillations that occur in the steam generator
23	secondary fluid system will not cause damage to the
24	steam generator tubes directly from DWO or reverse
25	flow or indirectly by possible damage from the inlet

(202) 234-4433

I	49
1	flow restrictors, IFRs where they might vibrate and
2	such.
3	As you saw, they're kind of a cantilevered
4	process. And NuScale talked about their forward flow
5	testing.
6	But they really haven't done really much
7	in the other direction to see if there was something
8	that might cause these to have some issues in the
9	opposite reverse flow direction. And so, that's what,
10	the concern we have there.
11	So, and it sort of this issue sort of
12	grew over time because, you know, if you go back to
13	the original Rev 2 of the DCA it indicated in Section
14	5412 that the flow restriction devices would preclude
15	DWO.
16	And then there was Rev 3 which came out
17	that said well, there will be oscillations but they
18	will be within acceptable limits. And as we've gotten
19	more interaction with NuScale in terms of what that
20	really meant and what the information was we
21	determined that we weren't comfortable with the amount
22	of degradation that might occur from reverse flow from
23	DWO and such.
24	And so, based on that our concern is not
25	like one tube failing. Our concern would be if there
	I contraction of the second

(202) 234-4433

was catastrophic failure of a number of tubes could it
interfere with the natural circulation process because
everything in this reactor relies on natural
circulation for cooling.

5 And so, if you had a significant break of tubes 6 а number of you could disrupt natural 7 circulation cooling either from ECCS system which we 8 talked a lot about this week and also the decay 9 removal system.

You know, both of those are natural circulation processes. So, that was our concern. Until we are comfortable that there won't be this potential for catastrophic failure because there is GDC 4 which is dynamic effects and vibrations and such.

And then there's also GDC 31 which is the fracture prevention of the reactor coolant pressure boundary. And so, and that GDC talks about the fact that you need to have capability to ensure that you do not have a rapid, propagating failure of the reactor coolant pressure boundary.

22 And if you had a number of these IFRs come 23 loose and go through these tubes you might have a 24 number of tubes that fail at the same time. So, we 25 feel comfortable did not that we had enough

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

information to be able to say that, yes, this issue can have finality.

3 And so, as part of this carveout is a 4 specification, and this would be in the rule itself 5 that a COL applicant will need to provide information demonstrating that 10 CFR Part 100, Appendix A, which 6 7 is the seismic capability aspect and also Part 50 8 Appendix A, GDC 4 and 31 are met with respect to structural and 9 leakage integrity for the steam 10 generator tubes that might be compromised by these adverse effects from DWO and the secondary fluid 11 12 system.

But we're going to be very clear in the carveout that these are the areas that we're carving out. You know, we're not carving out the entire steam generators and that sort of thing because we have to make sure that we focus it on what the concern was and what is not receiving finality.

And that's what is happening right now with the rule that OGC is helping us with. So, that is the two sort of technical issues.

22 So, there's no question, now I was going 23 to have Yuken go through and kind of describe the DWO 24 phenomenon and what's going on with that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. WONG: My name is Yuken Wong. NuScale

(202) 234-4433

25

1

2

52 1 had performed the TF-2 tests mainly for thermal 2 hydraulic performance of the steam generators. These 3 tests are also used for flow induced vibration 4 purpose. 5 The TF-2 specimen had five columns of tubes with 250 tubes in total. And one column of tube 6 7 52 with tubes was used for the density wave 8 oscillation tests. Density wave oscillation was observed 9 10 during the TF-2 testing with temperature and flow 11 oscillations in the secondary cooling. The DWO frequency was low and will not excite the steam 12 generator tube structural resonances. Based on the TF-13 14 2 strength gauge measurements, the staff estimate that the alternating stress intensities will be below the 15 ASME fatigue endurance limits. 16 17 However, any differences such as geometry, material and operating conditions between the TF-2 and 18 19 the actual as built steam generators have not been 20 evaluated. 21 As discussed on the next slides the staff 22 is concerned about the potential impact of the density 23 wave oscillation on the steam generator tubes directly 24 and indirectly by the inlet flow restrictors. 25 MEMBER RICCARDELLA: Excuse me. Could I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	ask, those strain gauges that you show on the previous
2	slide, were they on the inside or the outside of the
3	tube?
4	MR. WONG: They are on the outside of the
5	tubes.
6	MEMBER RICCARDELLA: Okay. So, they would
7	pick up pressure oscillations. But if there were any
8	thermal gradient effects that would only occur on the
9	inside. It might not, you might not see it on the
10	outside, right?
11	MR. WONG: They pick up the strains as
12	well.
13	MEMBER RICCARDELLA: Not if there was a,
14	if there was a thermal gradient and thus a strain
15	gradient through the thickness of the tube it would
16	not, you know, when you do a thermal shock on a
17	component you get higher stresses on the inside than
18	on the outside.
19	That's a fairly thin tube. But you still
20	might have some through wall gradient.
21	MR. WONG: The tubes are very thin. And
22	from the
23	MEMBER RICCARDELLA: I understand.
24	MR. WONG: what the data indicates it
25	does pick up the strain in this subset. They suspect
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	54
1	some of the strains at the thermal oscillations.
2	The steam generator in the flow
3	restrictors are designed to provide the necessary
4	pressure drop to limit density wave oscillation in the
5	tubes.
6	As explained earlier, the flow restrictors
7	are mounted on the mounting plate and inserted into
8	the steam generator tubes. NuScale performed in the
9	flow restrictor, excuse me, leakage flow instability
10	tests for the conceptual design of the inlet flow
11	restrictors.
12	The staff did not identify any concerns
13	for the test for the normal flow or forward flow.
14	However, these tests did not include density wave
15	oscillation conditions as the forward flow.
16	NuScale has selected a final inlet flow
17	restrictor design that is similar to one of the tested
18	designs. And NuScale will perform validation testing
19	for the final inlet flow restrictor design after
20	design certification.
21	Next slide, please. Unstable density wave
22	oscillation can cause reverse flow to the inlet flow
23	restrictors including subcooled liquid from modest
24	density wave oscillation or slug and two-phase flow
25	for strong density wave oscillation.

(202) 234-4433

	55
1	NuScale has not yet evaluated potential
2	impacts on steam generator tubes and inlet flow
3	restrictors for reverse flow such as fatigue of bolted
4	joints and loose inlet flow restrictors.
5	The concerns due to leakage flow
б	instability cantilever the inlet flow restrictors
7	unless stable under reverse flow conditions. Also,
8	due to cyclic pressure drops and high speed turbulent
9	two-phase flow through the inlet flow restrictors.
10	The concern also includes cavitation
11	erosion of the steam generator tube walls and wear of
12	inlet flow restrictors and the tube walls that can
13	further worsen density wave oscillation.
14	MEMBER BLEY: Excuse me. Two related
15	questions. When you say they're less, the flow
16	restrictors are less stable under reverse flow
17	conditions, what do you mean by that?
18	And my second question is I'm envisioning
19	this thing maybe going back and forth a little bit.
20	And can these screws back out? I've seen screws back
21	out in vibrating situations.
22	And if they do I guess that flow
23	restrictor is free to either flow out or go forward.
24	MR. WONG: Literature indicates when a
25	cantilever structure, when the flow is going from the

(202) 234-4433

	56
1	support end to the free end it's more stable.
2	MEMBER BLEY: So, it's this kind of
3	vibration that you're talking about?
4	MR. WONG: Correct.
5	MEMBER BLEY: Yes, that makes sense.
6	MEMBER MARCH-LEUBA: When the flow is
7	going forward you're pulling. When you're pushing.
8	The pushing is much more when you're pulling it
9	straightens out.
10	When you're pushing it moves towards the
11	wall, right.
12	MEMBER BLEY: That makes sense if that is
13	what you're talking about.
14	MR. WONG: Yes, yes. And if the screws
15	MEMBER BLEY: Let me, I've looked at these
16	things and I kind of assume that you've got a lot of
17	turns on that screw that hold it in place. But that
18	screw is long enough to go through that plate.
19	I don't know how many turns you get. So,
20	I'm the idea that a screw could back out might not
21	be crazy.
22	MEMBER RICCARDELLA: It's preloaded, you
23	know.
24	MEMBER BLEY: Yes. I know it's preloaded.
25	But now you're jerking it back and forth.

(202) 234-4433

	57
1	MEMBER RICCARDELLA: Yes, but, you know,
2	theoretically if the preload sustain you don't get
3	oscillatory loads on a preloaded bolt. That's why you
4	preload bolts.
5	MEMBER BLEY: But you preload them under
б	assumptions and this assumption wasn't there.
7	MEMBER RICCARDELLA: Yes. You preload and
8	there's also, typically there's something that keeps
9	it from backing out like in LWR internals they use
10	some sort of retainer device or something to keep it
11	from unscrewing.
12	CHAIRMAN SUNSERI: NuScale said that there
13	would be, you know, loose parts prevention measures
14	applied, right. So, if that's what you're talking
15	about.
16	MEMBER RICCARDELLA: Yes. But that
17	doesn't, if you just contain it as a loose part like
18	you would put a cap over it that doesn't keep it, that
19	doesn't ensure that the preload is maintained. It
20	could still lose preload.
21	It, you know, they're going to be doing a
22	lot of work in this area obviously. That's detailed
23	design work that has to be done.
24	MR. SCARBROUGH: Right. And that's,
25	they're going to have to finish, you know, the design,

(202) 234-4433

	58
1	pick the final design and then qualify the design.
2	So, there's still quite a bit of work to
3	do to address your issues that you're raising.
4	MEMBER RICCARDELLA: But theoretically, if
5	it's properly preloaded you won't see oscillatory
6	loads.
7	MEMBER BLEY: And one would think after
8	this testing and analysis a consideration of reverse
9	flow would be part of that preloads.
10	MEMBER RICCARDELLA: Yes, for sure.
11	MR. SCARBROUGH: Okay. Next slide,
12	please. So, where do we go from here, okay?
13	Assuming that the design certification
14	rule is issued, the COL applicant will be responsible
15	to address the steam generator tube integrity in its
16	COL application and it has these sort of two parts
17	that we talked about.
18	One is the method of analysis that they
19	have a COL item that's going to make sure the COL
20	applicant knows they have to submit that. And then
21	the second part will be demonstrating that the tubes
22	will not be damaged by DWO directly or by, or
23	indirectly by the IFRs vibrating and things of that
24	nature causing some damage.
25	So, the COL applicants will be responsible
1	I contract of the second se

(202) 234-4433

	59
1	for demonstrating that in the process of receiving its
2	COL. So, that's going to be a review that the staff
3	will do.
4	And this will all come back to the ACRS
5	for you all to take a look at as well. And then
6	assuming that COL is issued, the next step will be a
7	COL holder.
8	And there's a number of aspects that the
9	COL holder is responsible for. There are ITAAC
10	related to the ASME Boiler and Pressure Code, Section
11	3 requirements.
12	But there also, in addition to that there
13	is the Comprehensive Vibration Assessment Program, the
14	CVAP which Yuken reviews quite a bit in terms of the
15	review for applicants.
16	And there's specific aspects. There is
17	some additional testing. The TF-3 referred to as TF-3
18	testing that has to be done. There's also vibration
19	testing that's specified in Tier 2 in Table 14.272
20	that had to do.
21	So, they have that to do. And plus
22	they're going to have some instrumentation on, for the
23	initial start of a steam generator.
24	So, the COL holder has quite a bit of work
25	to do as well after that phase of receiving the COL.
	I contraction of the second

(202) 234-4433

	60
1	So, that's the process after the design certification
2	to make sure this issue is fully reviewed as part of
3	the next step after design certification.
4	And then Becky is going to talk about next
5	steps.
6	MS. PATTON: Sure. NuScale is currently
7	preparing errata to the Revision 4 of the DCA. And
8	you saw part of that with their proposed COL item that
9	they presented earlier.
10	They are also, you know, preparing some
11	other changes potentially to clarify some of the steam
12	generator secondary fluid flow issues that could
13	impact the tubes, the IFRs, some of the various
14	statements, you know, made in the associated chapters.
15	So, we have prepared drafts for the
16	proposed rule. And it discussed the steam generator
17	tube integrity, the issue as a whole. It includes the
18	method of analysis and as Tom mentioned, the portion
19	of the carveout related to integrity of the IFR and
20	the tubes.
21	So, the draft proposed rule would exclude
22	both aspects of that issue from finality and will,
23	basically what will happen is a COL applicant would
24	have to provide those portions when they apply for the
25	COL and then that's when the NRC staff would perform,
1	I contract of the second s

(202) 234-4433

	61
1	you know, that review.
2	Except, I think as noted they could, you
3	know, put a topical report or something together on
4	the method, you know, that could come in ahead of
5	time. If it's a technical report it would typically
6	come with the COL.
7	But either way the COL would, you know,
8	fulfill that by either referencing like an approved
9	topical report, you know, or providing the technical
10	report.
11	So, other aspects of the steam generator
12	design are considered acceptable to staff. Those
13	would be granted finality but not the ones
14	specifically identified in the carveout.
15	MEMBER MARCH-LEUBA: Okay. And that's
16	where my earlier comment was. Apparently the staff is
17	not concerned about controllability and operability of
18	the steam generator?
19	MR. SCARBROUGH: That issue is, we
20	consider, we separated. The design certification
21	focuses on the reactor aspects. The COL applicant
22	still will need to come in and talk about the
23	secondary side, control and things of that nature.
24	But just from a design certification
25	perspective we focused on is there a potential impact

(202) 234-4433

	62
1	on the reactor safety. And our concern was that if
2	there was catastrophic failure of a number of tubes
3	that could affect reactor safety.
4	And so, that's how we separate it. We
5	haven't, it's not that we're not concerned about it.
6	We just have put that over into the COL application
7	review.
8	MS. PATTON: Right. The carveouts are
9	linked to what the findings are that the staff has to
10	make at the design certification stage specifically.
11	So, you know, you can as a finding right
12	that he has to make on that IFR, for example, you
13	know, show it doesn't fall apart and somehow impact
14	the integrity of the tubes or fail to perform its
15	function and therefore you could, you know, have
16	oscillations impacting that.
17	The controllability of the plant, whether
18	or not there are any issues with that, you know, I
19	think if I remember correctly I believe the control
20	system like gets, you know, that gets designed later.
21	I think there's a COL item on some aspects
22	of the MPS control system. So, those are things that
23	would be looked at, you know, at the COL stage.
24	You don't need a, you don't use a carveout
25	for that.
	•

(202) 234-4433

	63
1	MEMBER MARCH-LEUBA: Control and
2	protection system will determine, you're still dumping
3	moisture in the steam line that becomes an issue too.
4	MS. PATTON: Right. But, so some issues
5	have to be, you know, looked at as part of the design,
6	their design, the findings that need to be made, you
7	know, under the regulations.
8	And so, those where you can't make them
9	it's a carveout.
10	MEMBER MARCH-LEUBA: So, you have not made
11	any finding about the controllability and operability
12	of the secondary side?
13	MS. PATTON: No. The control system is
14	part of
15	MR. SCARBROUGH: That would be a COL item,
16	COL application review not for design certification.
17	MEMBER DIMITRIJEVIC: Okay. Up to now I
18	look at this as operability issue. I did not think it
19	was a safety concern because of your putting, they
20	don't call it steam generator tube rupture but steam
21	generator tube failure. Now when you bring the safety
22	concern isn't that too big to carveout because you
23	cannot even make conclusion that this plant meets
24	safety goal?
25	With this carveout you cannot make

(202) 234-4433

	64
1	conclusion in Chapter 19 that this plant is meeting
2	safety goal.
3	MR. SCARBROUGH: Well, we're carving out
4	just the aspect of the steam generator tube integrity
5	aspect.
6	MEMBER DIMITRIJEVIC: Yes. But this is a
7	risk steam generator to fail. That leads to loss.
8	So, you are carving safety concern which can impact
9	conclusions about safety of this plant. How can you
10	do that?
11	So, by making it a, well by making it a
12	carveout for one you're putting it directly in the
13	rule. So, the COL applicant will have to demonstrate
14	that IFR, you know, does remain intact, doesn't, you
15	know, cause damage to the tubes, right, performs its
16	function.
17	That is ensured to have to be demonstrated
18	by the COL applicant by carving that out specifically.
19	So, that's what we would expect.
20	MEMBER DIMITRIJEVIC: But then your
21	Section 19 cannot make conclusions that this plant
22	meets safety goal until that's proved. Just, I just
23	want to say that.
24	Until this is proved by COL applicant we
25	don't know that this plant meets safety goals.

(202) 234-4433

	65
1	MR. SCARBROUGH: The COL applicant will
2	have to demonstrate this to be able to receive
3	permission to load fuel. So, they're going to have to
4	
5	MEMBER DIMITRIJEVIC: No, no. I
6	understand. But I just say the second sentence in
7	Chapter 19 is this plant meets safety goals with
8	badging, blah, blah, blah.
9	That's not true anymore. It won't be true
10	until they prove that in the COL.
11	MR. SCARBROUGH: We have interacted with
12	OGC on how this process works. And according to their
13	legal opinion you sort of carve that, this very narrow
14	focus out when you make that decision.
15	So, we're going through the process of OGC
16	of what carveouts work. And so far they've indicated
17	that this focused carveout is acceptable from the
18	perspective of you can proceed with design
19	certification with this carveout.
20	So, that's sort of where we are with the
21	process.
22	MEMBER DIMITRIJEVIC: You know, if you
23	think that this is safety concern, you know, it would
24	be tough to agree with that, that you can proceed
25	having such a big safety concern.

(202) 234-4433

66
MR. SCARBROUGH: Okay, well thank you.
I'll relay that back to OGC and make sure we're on
good legal ground. Thank you.
CHAIRMAN SUNSERI: Okay. Any other Member
comments?
VICE CHAIRMAN REMPE: Okay. Real quick,
this has changed in the last few weeks. It's been
changed again because we might have done a letter this
week and how confident are we in the material that
we've only seen in slides?
MR. SCARBROUGH: Well, in terms of the
carveout I think we're pretty comfortable. We have
OGC agreement on how the carveout works and how it's
very focused on this specific aspect.
So, we're comfortable with this aspect.
We don't plan to, this has to go to the Commission of
course and they have to, you know, sign out the rule.
But we do not plan to have any changes at this point
in terms of how the carveout.
And it's very consistent with the slides
you've seen in terms of the wording. The discussion
in the rule is very short.
It's very similar to what is in the slides
because OGC says you just have to focus it and make
sure you that you carve out a very narrow, specific

(202) 234-4433

	67
1	concern that you have.
2	So, we don't anticipate any changes. But
3	it does have to go to the Commission for their
4	approval.
5	MS. PATTON: Right. I mean, the
6	Commission, you know, review of the proposed rule
7	always happens afterwards anyway.
8	VICE CHAIRMAN REMPE: So, just trusting
9	and wanted to kick the tires and make sure. Thank
10	you.
11	MS. PATTON: Right. I mean obviously feel
12	free to weigh in one way or another because you're
13	always before the Commission. Bob had
14	MEMBER BROWN: Yes. You zipped right
15	through something where you said changes in the MPS,
16	Module Protection System. What
17	MS. PATTON: No, I believe that's, I'm
18	sorry I may have misspoke.
19	MEMBER BROWN: I was hoping you were,
20	okay.
21	MS. PATTON: I believe it's the control
22	system.
23	MEMBER BROWN: Okay. You're talking about
24	the control system for like feedwater control or
25	something like that.

(202) 234-4433

	68
1	MS. PATTON: But my understanding was the
2	control system actually has like a COL item on it.
3	MEMBER MARCH-LEUBA: I said trip but I
4	meant protection of equipment and protection of
5	MEMBER BROWN: She used the words, the
6	acronym MPS when she zipped right through a comment
7	earlier.
8	MS. PATTON: Yes. I meant to say control,
9	MCS.
10	MEMBER BROWN: Module Protection System
11	is, has nothing to do with this.
12	MS. PATTON: No.
13	MEMBER BROWN: Thank you for the
14	clarification.
15	MR. CALDWELL: This is Bob Caldwell. I'm
16	the deputy director of DNRL. I just want to make
17	sure. But we cannot make a safety finding based on a
18	COL item.
19	We can't say the design is good or bad
20	based on the COL item. It is a tracking item.
21	However, COL items must be addressed during the COL
22	application where we do a review, basically the same
23	SRP type review of what's actually being built with
24	all the final design details in it.
25	So, we actually look at it before a plant
	1

(202) 234-4433

Í	69
1	will ever be built for that. So, a carveout is very
2	specific. It's very focused. It's on one of the
3	findings.
4	We have multiple findings during our DC
5	review and the certification. So, they are findings
6	by regulation. I'm not familiar that we ever make a
7	finding that the plant is safe.
8	We say that the plant meets the
9	regulations and that all the regulations are satisfied
10	with the exception of an aspect of a regulation. So,
11	we're very comfortable with the COL carveout, excuse
12	me, the carveout process.
13	We're also very comfortable with the COL
14	items. But we can't make a safety finding that the
15	regulations are met based on a COL item.
16	MEMBER BROWN: So, you're confirming
17	Member Dimitrijevic's comment that you can't give a
18	firm basis that it meets the safety goal until, that's
19	why you're saying later? That's what I heard you just
20	say.
21	I'm sorry, I didn't talk to the mic.
22	Vesna noted that how can you give a, say you meet the
23	safety goals, I forgot what the words are, okay, as
24	part of this rulemaking.
25	You have to, part of it's being deferred
1	I contract of the second se

(202) 234-4433

	70
1	because of this until the COL applicant completes
2	whatever is necessary on the steam generator design
3	issue. And you all will be reviewing it at that time.
4	You made a comment you can't make a firm
5	commitment that it meets it until you finish this and
6	that's going to be delayed. I'm just trying to
7	confirm what Vesna said that I got it, that first of
8	all they kind of waved their hands.
9	And you're saying well, she's really kind
10	of right. That's the way I
11	MEMBER RICCARDELLA: I'm not a policy
12	person. But the rulemaking says hey, it meets the
13	safety goals in everything except for these specific
14	areas in which are carved out.
15	MR. CALDWELL: That's correct.
16	MEMBER RICCARDELLA: That's not a big
17	deal.
18	MEMBER BROWN: I didn't say the rule was
19	
20	MEMBER DIMITRIJEVIC: There is three
21	things core damage large release and conditional
22	containment which this will impact significantly. So,
23	those are three safety goals that come from the PRA
24	perspective.
25	So, I mean that much we don't know. That
	I contraction of the second seco

(202) 234-4433
	71
1	would be me. And, you know, this is not a carveout
2	for the hydrogen, you know line. You are carving out
3	a big part of the thing.
4	I mean, you know, it's not really small
5	item like we were discussing yesterday the hydrogen
6	and, you know, line. So, I mean, I really, you know,
7	I am really, I am not comfortable with this.
8	MR. SCARBROUGH: Okay, well thank you.
9	We'll go back and talk to OGC and make sure that we're
10	on
11	MR. CALDWELL: Let me just make it clear.
12	Excuse me, this is Bob Caldwell again. For the items
13	of which we determine finality they meet the safety
14	goals.
15	For the items that we have not reached
16	finality on we do not say one way or the other. But
17	for everything that we have reached finality on we
18	have, we believe we meet the Commission's safety
19	goals.
20	MEMBER BROWN: But you won't have finality
21	on this?
22	MR. CALDWELL: We won't have that on that
23	before we actually get the review on the COL for that
24	one aspect.
25	CHAIRMAN SUNSERI: And the plant won't
	I

(202) 234-4433

	72
1	operate until they do.
2	MEMBER BROWN: So, that part I understand.
3	But you need to know how to say, no.
4	CHAIRMAN SUNSERI: All right, Members, any
5	other, I'm sorry, Tom, anything else?
6	MR. SCARBROUGH: No, we're good. Thank
7	you.
8	CHAIRMAN SUNSERI: Members, any other
9	comments or questions for staff while we're in the
10	open session?
11	MEMBER MARCH-LEUBA: Let me put something
12	on the open session. Certainly I like better the
13	approach of the applicant than your approach in the
14	sense that I believe, and this is a belief of religion
15	if you want, that the output of that process will be
16	ending up more validated so we will know for sure
17	whether we are unstable or not.
18	And we will make the changes that will be
19	necessary to the plant so that we won't be unstable at
20	100 percent flow. That's what I believe the output of
21	the COL process will be.
22	And I love it. As I said before, I'm
23	getting tired of winning. So, thank you very much.
24	CHAIRMAN SUNSERI: Okay. At this time I
25	will ask any Members that are in the room that would

(202) 234-4433

	73
1	like to make a statement please come up to the mic and
2	do so.
3	While we're doing this, Mike, can you get
4	the public line open?
5	MR. DUDEK: I will. But just to clarify
6	for members of the public that are on the line we are
7	going to closed session in order to protect
8	proprietary information to the NuScale design is the
9	reason that we're going as announced earlier in the
10	meeting that we can go to closed session to protect
11	proprietary information.
12	We will reopen the line for public
13	discussion or for the public to participate at 1:00
14	p.m. this afternoon when the open session will begin
15	again. Thanks.
16	CHAIRMAN SUNSERI: Anybody in the room?
17	MR. DUDEK: This is Michael Dudek. I just
18	have one additional comment to add on to what you
19	said, Jose. It's not one or the other.
20	I think you're going to get both. So, I
21	think you're going to get NuScale's proposed design
22	fixes and you're going to get the carveout. So,
23	that's just the extra regulatory assurance.
24	MEMBER MARCH-LEUBA: Well, let me
25	reiterate, I'm happier today than I was yesterday.
1	

(202) 234-4433

	74
1	CHAIRMAN SUNSERI: No comments from the
2	room. So, I'll turn to the phone line. Any member of
3	the public on the phone line that wishes to make a
4	statement please state your name and your comment.
5	All right. We're going to close the phone
б	line. And at this point we have reached the end of
7	the open session. We're going to take a 15 minute
8	break.
9	We're going to reconvene at 10 after ten
10	in a closed session with NuScale presenting first. We
11	are recessed until 10:10.
12	(Whereupon, the above-entitled matter went
13	off the record at 9:53 a.m. and resumed at 1:03 p.m.)
14	CHAIRMAN SUNSERI: All right, we are
15	reconvening the meeting now. We will start with
16	NuScale in open discussion to begin with the lost
17	my rod ejection accident.
18	MR. PRESSON: Matt Sunseri?
19	CHAIRMAN SUNSERI: Matthew, you all are
20	ready to go?
21	MR. PRESSON: Yeah, thank you, and good
22	afternoon. Appreciate you all taking the time to hear
23	from us on these topical reports today. I'm Matthew
24	Presson, Licensing Project Manager for NuScale Power.
25	And we are going to be discussing the evaluation

(202) 234-4433

	75
1	methodologies for rod ejection accidents, loss of
2	coolant accidents, and non-loss of coolant accidents.
3	The presentations provided today are
4	identical to the presentations we gave to the
5	Subcommittee on February 19, so we'll be moving
6	through them at a pretty quick summary level today.
7	But for interested members of the public, when the
8	transcripts for that February 19 meeting come out,
9	there will be a fair amount more detail there.
10	That being said, while we'll be giving a
11	summary, if you have any questions, feel free to
12	interrupt. And we have our engineers listening in on
13	the phone or one of them here at Rockville, so let us
14	know.
15	CHAIRMAN SUNSERI: All right, thank you.
16	MR. PRESSON: Next slide. All right, so
17	slide 2. For our first presentation on the rod
18	ejection method, it'll by myself up here, and Kenny
19	Anderson is supporting from Corvallis as our Nuclear
20	Fuels Analyst. Next slide.
21	For slide 3, I did want to spend a minute
22	on this just to re-scope, given our week of discussing
23	DCA and FSAR topics here. This slide provides us with
24	a high level map of the technical and topical reports,
25	which develop the methods needed for Chapter 15 and
Į	1

(202) 234-4433

(202) 234-4433

	76
1	other related thermohydraulic sections.
2	Today we will be looking specifically at
3	rod ejection LOCA and non-LOCA. And while these do
4	support the NuScale FSAR, the results of these as
5	applied to the FSAR design are presented in Chapter
6	15. Our discussions today will be focused on the
7	separate licensing submittals for these methods.
8	All right, for our agenda, our
9	presentation will cover a quick summary of the event,
10	our acceptance criteria, our expectations against
11	future reg guides, especially DG-1327, a flow chart of
12	the method, how we initialize and evaluate our events.
13	And then a quick summary of that method again.
14	For slide 5, we discuss why we look at a
15	separate method for rod ejection and for meeting our
16	GDC-28 commitments. And it provides a couple of
17	examples on why it's unique insofar as Chapter 15
18	events, such as its focus on nuclear physics instead
19	of thermohydraulics, where that spatial focus is.
20	Postulated causes, and definitely acceptance criteria,
21	which we will also discuss on slide 6.
22	This slide 6 is another summary table
23	providing information on which acceptance criteria are
24	more unique to the rod ejection event than the rest of
25	Chapter 15 events. For the NuScale method, most of
I	I

(202) 234-4433

those acceptance criteria are covered by our method requirements to preclude fuel failure, there we go, and that's part of that footnote down at the bottom of the table.

5 Our next slide, while not applicable to the current method or FSAR DCA design, discusses why 6 7 we feel pretty comfortable in meeting future proposed criteria for pellet clad interaction. As it is not 8 9 current criteria, we do not have a full evaluation 10 showing this. But as no exposure is credited in our rod ejection method and as M5 cladding is less 11 susceptible to those interactions in general, we are 12 confident that we won't be challenged when those 13 14 criteria are revised.

So for slide 8, we are looking at a flow 15 chart that shows an overview of our method, how we 16 17 moved from SIMULATE5 to SIM-3K. And then eventually split it out to look at our peak RCS pressure, our 18 19 MCHFR, fuel temperature and our and enthalpy 20 requirements.

21 slide 9, For that's summary а very 22 discussion. does but it provide of the some 23 information for how we initiate and set up our steady 24 state assumptions and evaluations. We use SIMULATE5 25 to set up the core response. SIMULATE5 is covered in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

our nuclear analysis codes and methods qualification.

2 And our design does include the assumption bounding potential for an ejected assembly to damage 3 4 adjacent assemblies, which has been discussed in terms 5 of our FSAR design. I believe, if my notes are correct, that we and the NRC intend to follow up with 6 7 that during DCA discussion in the April full committee 8 insofar as the DCA design. For the scope of this 9 method, it is simply an assumption that is built into those initial conditions. 10

Slide 10. Slide 10 shows how we build on 11 12 from that steady state initialization and move into our dynamic response. SIM-3K is used to model the 13 14 transient and what's benchmarked to demonstrate a combined neutronic, thermohydraulic and fuel time 15 modeling capabilities. So the slide also lists some 16 17 of the primary uncertainties that were applied for the simulations. 18

19 Slide 11 discusses how we move into our 20 CHF evaluation, where we use VIPRE-01. This was 21 originally demonstrated to be appropriate for our 22 design in our subchannel analysis methodology.

There are some unique differences in this application versus that original topical report, such as smaller axial nodalization, case-specific radial

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	79
1	power distributions, couple of the other bullets seen
2	there. And to that point, we evaluated additional
3	sensitivities to holistically justify those changes.
4	For slide 12, to insure against our fuel
5	heat-up criteria, we include a hand calc, which takes
6	a adiabatic approach, including total energy generated
7	by a SIM-3K, and runs that through either as a
8	temperature or energy increase. Those values are
9	compared against NRC-developed acceptance criteria.
10	And some example values are included in the
11	Subcommittee closed session slides from February 19.
12	Slide 13 looks at the first side of our
13	dynamic system response. So we covered CHF in the
14	previous slide. Our first type of dynamic response
15	that we look at is our CHF evaluation. It takes a
16	transient response and provides those system
17	thermohydraulic conditions over to VIPRE for a
18	subchannel evaluation.
19	Next slide, 14, discusses a quick summary
20	of our second dynamic system response, which is
21	looking for pressurization. For that we, it's a
22	little bit different scenario. We are looking for
23	something that raises the power quickly up to just
24	below those high power and high power rate trip
25	setpoints, and let it go for as long as it takes

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	80
1	before it trips the core.
2	So then from there we calculate the peak
3	system pressure and compare that against our
4	acceptance criteria.
5	So a very quick presentation, but in
6	summary, we have a conservative analysis method for
7	our unique rod ejection accident, at least in terms of
8	Chapter 15 events.
9	And the topical report provides details
10	and justification for software tools and acceptance
11	criteria used, the applicability of the method and
12	those tools, the appropriate treatment of
13	uncertainties, and the results of this application of
14	the method by input to our DCA FSAR Chapter 15. So.
15	MEMBER KIRCHNER: I do have one question.
16	I didn't bring the slides from the previous
17	Subcommittee meeting, but I thought on the slide for
18	fuel that shows the figure fuel enthalpy rise versus
19	oxide wall thickness, you drew a box in within the
20	lefthand figure that you were using for your
21	acceptance criteria.
22	You mention the next-to-the-last bullet,
23	the upper limit that you were using, so I think I can
24	say that. I was curious, I don't remember how you
25	chose a point on the abscissa on oxide wall thickness.

(202) 234-4433

Í	81
1	Is that a proprietary number?
2	MR. PRESSON: I'll have to ask Kenny if
3	that was a proprietary value.
4	MEMBER KIRCHNER: Yeah, I
5	MR. PRESSON: But it was based on not
6	needing to basically ever take credit or advantage of
7	any of the space after you pass that point, so.
8	MEMBER KIRCHNER: So that was a box that
9	you drew as your acceptance criteria.
10	MR. PRESSON: Yeah, that's correct.
11	MEMBER KIRCHNER: For the actual NPM,
12	right?
13	MR. PRESSON: Yup.
14	MEMBER KIRCHNER: I'll go back and check
15	on whether that was an open slide or a closed. But
16	again, the basis for that was that that was the
17	estimated maximum oxide oxidation you would see?
18	MR. PRESSON: Correct. And Kenny, if
19	you're available
20	MEMBER BALLINGER: That's number's a
21	widely used number.
22	MEMBER KIRCHNER: Okay.
23	MEMBER BALLINGER: The one that they use,
24	so.
25	VICE CHAIRMAN REMPE: So I forgot that I

	82
1	needed to declare that I might have a conflict of
2	interest in certain aspects of this discussion on this
3	particular methodology and limit my participation in
4	such discussions and deliberations.
5	CHAIRMAN SUNSERI: Noted.
6	MR. PRESSON: Kenny, are you available to
7	chat? Because I do believe that value is open
8	information, it just didn't show up on the slide.
9	MEMBER KIRCHNER: Okay.
10	MR. PRESSON: Yeah, you can talk right
11	now.
12	MR. ANDERSON: Hi, this is Kenny in
13	Corvallis. Yes, that number comes from our assumed
14	or calculated maximum corrosion. And it, I think it
15	is on the slide, but perhaps it's not showing up in
16	the presentation.
17	MEMBER KIRCHNER: Yeah, okay. Thank you.
18	MR. PRESSON: Yeah, I'm 99% sure it's not,
19	so. All right, that is the end of our presentation,
20	so if there are any questions.
21	CHAIRMAN SUNSERI: Any members, comments,
22	questions on rod ejection? All right, then we're
23	done. Did that one.
24	MR. PRESSON: All right. Are we
25	presenting this? Yeah. Good?

(202) 234-4433

CHAIRMAN SUNSERI: Yes, when you're ready.

MR. PRESSON: All right, so next presentation will be a similar summary fashion. And again, same slides as before. This is the, our presentation on our NuScale topical report, loss of coolant accident evaluation model.

So here we have myself, Matthew Presson,
on the line we have Dr. Pravin Sawant, a Supervisor of
Code Validation and Methods. We also have Dr. Selim
Kuran, who is our Thermohydraulic Analyst. And Ben
Bristol, our Supervisor of System Thermohydraulics.

12 Slide 3 provides a quick overview of our We describe a very summary version of our 13 agenda. 14 methodology, provide a reference slide for our NPM 15 safety systems. There were the four elements of our LOCA topical report and the PIRT, our assessment base. 16 model 17 The evaluation for NRELAP5, and our applicability evaluation. 18 And we discuss how we 19 extend the LOCA evaluation to an IORV event and end 20 with conclusions.

21 So slide 4, little bit of background on 22 the NPM and the LOCA. Some of the unique features 23 involve our integrated design, which eliminates a lot 24 of piping and limits potential breaks. Coolant is 25 captured completely in containment, cooled and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	84
1	returned to the reactor pressure vessel using a large
2	pool.
3	Our regulatory requirements that we use to
4	build our method are, well, that we used to make sure
5	our method met, was the 10 CFR 50.46 acceptance
6	criteria. And we looked to maintain maximum PCT at
7	steady state with no clad heat-up. To meet those for
8	our evaluation method, we used conservative LOCA
9	acceptance criteria. These are figures of merit that
10	the core remains covered, and therefore it collapsed
11	liquid level over the top of active fuel.
12	Our MCHFR is greater than our CHFR limit
13	of 1.29, and our containment pressure and temperature
14	are below the design limit.
15	For slide 6, this provides kind of a
16	roadmap for how we take those acceptance criteria and
17	develop them out into a method. So we start with our
18	10 CFR 50.46 requirements. We then process that using
19	Reg Guide 1.203. And we develop that into our LOCA
20	PIRT Element 1. Use that to develop our assessment
21	base for separate effects testing and integral effects
22	testing.
23	Move on to Element 3, where we developed
24	the evaluation model. And finally, with Element 4, we
25	use all the prior elements to assess that adequacy.
I	I contract of the second se

(202) 234-4433

	85
1	Slide 7 is just a quick picture for
2	reference in case any information is needed, but it
3	provides a lot of information about our safety
4	systems, kind of how they're oriented. All right.
5	Slides 8 and 9 get us into Element 1 of
6	our PIRT process. So there we assessed our relative
7	importance of phenomena. We would recognize experts
8	and NuScale subject matter experts in our PIRT panel.
9	And we targeted those figures of merit, CHF, collapsed
10	level above top of active fuel, and containment
11	pressure and temperature. That when we used rankings
12	in importance and knowledge to see where we needed to
13	focus our, any evaluations on.
14	It was a result of that for slide 10, we
15	developed this understanding of phases, Phase 1a
16	blowdown, Phase 1b ECCS actuation, and Phase 2 flow
17	reversal at RRVs. For LOCA, we focus on Phase 1a and
18	1b. We move onto long-term cooling for Phase 2.
19	All right, yeah, for slide 12, it goes
20	into how we develop our NRELAP5 code. We use RELAP5
21	3D, version 4.1.3, as the baseline code. We maintain
22	a code configuration control and development
23	consistent with NuScale's NQA-1 2008 and 2009 NQA
24	program.
25	And some of the specific modifications we

(202) 234-4433

made for NRELAP5 were to consider NuScale specific components such as our helical coil steam generator. Make sure that we met those regulatory requirements from earlier and apply error corrections as they're determined.

Slide 13 is a very high level, but we did 6 7 want to point out that we have a fair number of tests spanning our integral effects testings and separate 8 9 effects testing. And for slide 14, we present our NIST-1 facility, where a large portion of those tests 10 took place. It's the primary source of our NuScale-11 12 specific test data, and it includes a good number of design features that look to scale and provide 13 14 information for our LOCA and non-LOCA events.

All right, so for our NuScale LOCA model overview, we look into the analysis and justifications of why we use NRELAP5, what we need for time-step controls, how we set up those boundary conditions, and how we maintain and treat setpoints and trips. We also take a look at the LOCA break spectrum and dig into the methodology of sensitivity calculations.

Those are required by Appendix K, they are phenomena-specific, and we use them to establish a conservative bias.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

For Element 4, our applicability

(202) 234-4433

25

1

2

3

4

5

evaluation, we took both the bottom-up and top-down approach. For the bottom-up approach, we identified the dominant models and correlations for the hydraulic phenomena, it's in table 8-1 of the topical report. Identified a lot of key parameters and reviewed those models and correlations. Again, a lot of that is in Chapter 8.

For the integral performance, the top-down 8 9 portion of it, we reviewed the codes and evaluated the 10 integral performance of those codes using those integral effects test data. And we compared that test 11 12 data to NRELAP5 scalability via scaling and distortion those differences 13 analysis. And we note and 14 distortions between the NPM and NIST and look to see 15 how we can account for them using NRELAP5.

So our conclusions for the LOCA method is that there are a number of conservatisms built into it. We have both as much from 10 CFR 50, Appendix K, as is applicable to the NuScale design. And we look to make sure that those other unique considerations are considered by other methodology conservatisms.

We developed this using the cycle independent bounding LOCA analysis. It is supported by an extensive experimental database. A lot of those new to NuScale using this one, as well as several

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	88
1	others. Applicability evaluation is consistent with
2	Reg Guide 1.203, and we maintain we look to
3	maintain those figures of merit.
4	So CHF is not challenged, our collapse
5	level in the reactor remains above the top of active
6	fuel. There is no clad or fuel heat-up, and our
7	pressure and temperature remain below design limits.
8	And the next slide, slide 20, really slide
9	21, go into how we kind of extend our LOCA into IORV
10	space. So we're looking to kind of evaluate liquid
11	space, RRV and steam space, RVV and RSV discharge.
12	And these are fairly similar transients to the LOCA.
13	From that, we followed a very similar
14	process as our LOCA, developing the method. And yeah,
15	next slide. On slide 22, we account for a couple of
16	the differences. The main difference is our key
17	acceptance criteria, our MCHFR limit moves to 1.13 and
18	1.37.
19	And our conservatisms are the same as
20	LOCA, but with the following exceptions. That we
21	remove an additional 15% bias in fuel. We have our
22	limiting axial power shapes and radial peaking based
23	on subchannel analysis. The Moody choked flow model
24	for two phase is applied to the initiating valve, and
25	the initial conditions are biased to minimize MCHFR.
l	1

(202) 234-4433

(202) 234-4433

	89
1	So on slide 23 we come to similar
2	conclusions. IORV as an extension of the LOCA method.
3	Maintains its own PIRT assessment and applicability
4	within the LOCA. The minor method differences mainly
5	account for the AOO classification of that.
6	And MCHFR occurs early within that
7	transient, and then rapidly rises, given the flow-to-
8	power ratio. So our primary concern there, that the
9	collapsed liquid in the RPV does remain above the top
10	of active fuel.
11	MEMBER MARCH-LEUBA: The MCHFR occurs
12	early but does not violate the limit, right?
13	MR. PRESSON: Correct.
14	MEMBER MARCH-LEUBA: Because the way you
15	have it written, I said, wait a moment.
16	MR. PRESSON: Yeah, well, and it is still
17	the minimum, or maximum but it does not violate
18	MEMBER MARCH-LEUBA: I know exactly what
19	you mean, it can be misinterpreted.
20	MR. PRESSON: Yup. And that is our LOCA
21	presentation.
22	CHAIRMAN SUNSERI: Members, any comments
23	or questions for NuScale? No? All right. So you may
24	proceed with the non-LOCA,
25	MEMBER BLEY: It just strikes me that if
	I contract of the second s

(202) 234-4433

1 were listening in, I would think we have Т no 2 interest. But we had a Subcommittee meeting on this 3 where we delved into the associated issues in great 4 detail. 5 CHAIRMAN SUNSERI: That's a good point, and we had good, full Committee participation at those 6 7 subcommittees as well. 8 MEMBER MARCH-LEUBA: And it was two days 9 ago. 10 CHAIRMAN SUNSERI: Yes. 11 MEMBER MARCH-LEUBA: So that's why we're 12 quiet, because this so is just а pro forma 13 presentation. 14 PRESSON: Yeah, two days ago for MR. 15 for the original Chapter 15 and two weeks ago 16 Subcommittee for this. But those transcripts aren't 17 up yet. 18 CHAIRMAN SUNSERI: But it's important to 19 get it on the record for public --20 MR. PRESSON: Yeah. There was a good full 21 day of conversation on this. 22 VICE CHAIRMAN REMPE: Good, huh? 23 MR. PRESSON: I would say so, yeah. Hey, 24 it's nuclear industry, we value а questioning 25 attitude.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

90

All right, and our final presentation for this afternoon is on the Non-Loss of Coolant Accident Topical Report. Again, presenters are myself up here, as well as Megan McCloskey, who is our Thermohydraulic Analyst. We have Ben Bristol on the line, who is our Supervisor of System Thermohydraulics, and Paul Infanger, our Licensing Specialist is in the audience as needed.

9 So for slide 3, we go over our outline where we, just the outline of the presentation. 10 We 11 give a scope of the non-LOCA LTR as compared to other 12 Chapter 15 events, as well as other FSAR events. We discuss those non-LOCA events that are covered in the 13 14 method. We discuss the development of our non-LOCA 15 method and give a general overview of how we perform those analyses and look at a couple of specific 16 17 events.

So slide 4, discussing scope. 18 Our non-19 LOCA method does look at NRELAP5 system transient 20 analysis of non-LOCA events. It looks at t.hat. 21 interface to subchannel and accident radiological 22 And goes over the short-term transient analvsis. 23 progression with DHRS cooling. So what is out of 24 scope for the non-LOCA method is the SAFDLs, which are 25 evaluated and downstream subchannel analysis, with its

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

own topical report.

1

2 All of these out-of-scope items are either 3 captured in topical reports or technical reports. 4 Also includes accident radiological dose analysis, 5 control rod ejection, which we already covered, as well as LOCA, and those IORV events. Peak containment 6 7 pressure has its own technical report. And the long-8 term transient is covered in the long-term cooling 9 technical report.

non-LOCA evaluation method 10 So our is 11 applicable to the following events. We covered 12 cooldown events, heat-up events, reactivity events, inventory increase and inventory decrease. 13 Most of 14 these are fairly standard events for Chapter 15, but 15 a couple of unique ones for NuScale giving our design 16 loss of containment vacuum and containment our 17 flooding. As well as the heat-up event of an inadvertent operation of DHRS. 18

19 quick overview of non-LOCA Α event 20 acceptance criteria. This table presents those 21 criteria in general, so for the minimum critical heat 22 flux ratio and the maximum fuel center line 23 temperature, you'll note that both of those point to 24 the Footnote 1, where we, that was pretty much as 25 collapsed down to the same AOO acceptance criteria.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

93
And here we have a zoom-in on how our non-
LOCA method interacts with those other topical
reports. We have our, you developed a design, you
look at the events. Our non-LOCA methods covers the
system thermohydraulic response. That then passes
that information on to VIPRE for subchannel analysis,
looking at CHF.
And then mass and energy releases from the
thermohydraulic response and other inputs are looked
at in our accident radiological analysis, which is
bounded by our accident source term topical report.
MEMBER MARCH-LEUBA: And this might be
relevant for some other topic, but not every single
transient evaluated within RELAP gets evaluated with
VIPRE.
MR. PRESSON: Correct.
PARTICIPANT: You use screening criteria.
MR. PRESSON: Yup.
MEMBER MARCH-LEUBA: Say two words about
i+2

MR. PRESSON: Yeah, we'll actually cover that on a later slide, but that is correct, yeah. For slide 8, we look at our margin to acceptance criteria. For non-LOCA, we are looking at MCHFR. Primary pressure, secondary side pressure, radiological

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

it?

release, and establishing those safe, stable conditions to pass on down.

3 For slide 9, the evaluation method 4 development follows a fairly similar path as our LOCA. 5 Followed the same Req Guide 1.203 process in developing the graded approach. Element 1 is looking 6 7 at establishing the applicable transients and 8 acceptance criteria and to create that non-LOCA PIRT. 9 Elements 2, 3, and 4 leverage a fair amount of information from LOCA, but it definitely 10 11 does focus on the differences between high ranked 12 phenomenon, well, the differences between the LOCA and non-LOCA high ranked phenomena, make sure that we have 13 14 additional NRELAP5 code validation performed to focus 15 on, for example, DHRS and the integral non-LOCA 16 response. Slide 10 covers the results and what was 17 considered in our non-LOCA PIRT, including the general 18 19 categories of event types, the SSCs that were 20 considered, as well as the phases that are part of our 21 non-LOCA, our pre-trip transient, our post-trip 22 transition, and finally Phase 3 of stable natural 23 circulation. Slide 24 11 qives а quick summary of

25 NRELAP5's applicability for non-LOCA. As mentioned

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

94

	95
1	before, there was a KATHY analysis performed to
2	determine how to address those high ranked phenomena,
3	looking to see what validation was still applicable,
4	as taken from the LOCA evaluation model and adding
5	additional validation and benchmarks for non-LOCA.
6	That also looked to our conservative
7	inputs and make sure that we had suitable subchannel
8	analysis established. Sorry, yeah.
9	Overall conclusion is that the NRELAP5
10	code with the NPM system model is applicable for
11	calculation of the NPM non-LOCA system response, so.
12	Slide 12 goes over that analysis process.
13	Topical report section 4, where we develop that plant
14	base model. We adapt it as needed for the specific
15	events. You perform you steady state and transient
16	calculations within RELAP5, and you evaluate those.
17	You confirm your margins to RCS pressure acceptance,
18	steam generator pressure acceptance criteria.
19	And you, this kind of goes to your point
20	earlier, you identify the cases that you look to
21	examine further with subchannel analysis and extract
22	the boundary conditions as applicable. So we're
23	looking conservative bias directions of maximal
24	reactor power, core exit pressure, core inlet
25	pressure, minimum RCS flow rate.
1	I contraction of the second

(202) 234-4433

	96
1	And the NRELAP5 CHF calculations for non-
2	LOCA may be used as a screening tool to assist
3	analysts in determining limiting cases to be evaluated
4	in that downstream subchannel analysis of that CHF.
5	It's not itself used for those non-LOCA events.
6	So, and 6, you look to identify if any
7	applicable radiological analysis needs to be
8	performed.
9	MEMBER MARCH-LEUBA: How do you identify
10	the step 6, what do you use as criteria?
11	MS. McCLOSKEY: For the events with
12	downstream radiological analysis, we look at the
13	system transient response and which cases have the
14	maximum mass release, which would carry the
15	radioactivity and increase the dose. And the maximum
16	iodine spiking time between reactor trip and isolation
17	of the break.
18	MEMBER MARCH-LEUBA: But if all your
19	analyses show no clad damage, what do you do?
20	MS. McCLOSKEY: Is the question why do we
21	do it, or what do we do?
22	MEMBER MARCH-LEUBA: What do you do if you
23	run all of your transients and none of them results in
24	clad damage? So your core is intact.
25	MS. McCLOSKEY: We still pass the boundary

(202) 234-4433

	97
1	conditions to the radiological analysis, and they use
2	an appropriate source term based on, I think, and I am
3	not radiological analysis analyst, you've got tech
4	spec limits on fuel failure rates and normal operating
5	coolant that can be
6	MEMBER MARCH-LEUBA: So you assume normal
7	operation failure rates, and that is what is gives you
8	the source term.
9	MS. McCLOSKEY: Again, I'm not an expert
10	on the radiological analysis of what they used for the
11	source term.
12	MEMBER MARCH-LEUBA: Okay, I don't
13	remember, but that sounds familiar.
14	MS. McCLOSKEY: But there are source terms
15	that are evaluated.
16	MEMBER MARCH-LEUBA: It was like one
17	yeah.
18	MR. PRESSON: From tech spec
19	concentration, just got a note, so.
20	Slide 13 looks at our general methodology
21	and event-specific methodology. In general we're
22	looking at steady state conditions, our treatment of
23	plant controls, loss of power, single failure, making
24	sure we have bounding reactivity parameter input. And
25	then bias the other parameters as needed. And we also
	I

(202) 234-4433

	98
1	look at operator action as needed.
2	For the event-specific methodology, we
3	then dive a little deeper into the description of the
4	event initiation and progression. And we make sure we
5	appropriately scope for the acceptance criteria of
6	interest and target limiting single failures, the loss
7	of power scenarios, and whether or not we need
8	additional sensitivity calculations. The initial
9	condition biases and conservatisms that already
10	existent, or if we need, again, to perform more
11	sensitivities.
12	And then tabulated representative results
13	of those sensitivity calculations. So, and those
14	sample analysis results are provided in Section 8 of
15	the non-LOCA method.
16	So, for conclusions, slide 14. Our non-
17	LOCA system transient evaluation model is developed
18	following that graded approach we discussed in
19	accordance with guidance provided in Reg Guide 1.203.
20	It applies to NPM-type plant design, natural
21	circulation water reactors with helical coil steam
22	generators and an integral pressurizer.
23	NRELAP5 is used to simulate those systems
24	thermohydraulic responses to demonstrate primary and
25	secondary pressure acceptance criteria are met, and

(202) 234-4433

	99
1	that safe and stable conditions are achieved. And
2	system transient results provide the boundary
3	conditions that are then passed down to our subchannel
4	methods and radiological analyses.
5	And that concludes our non-LOCA.
6	CHAIRMAN SUNSERI: Members, any questions
7	or comments for NuScale?
8	MEMBER MARCH-LEUBA: Not today.
9	CHAIRMAN SUNSERI: Okay, well, good, we
10	appreciate the recap and the presentation. So at this
11	time we can transition over the staff for their
12	comments.
13	So as the presenters are taking their
14	seats, I'll turn to Rebecca and ask if you have any
15	overarching remarks that you want to make at this
16	point.
17	MS. PATTON: No, just thank you.
18	CHAIRMAN SUNSERI: Because I skipped you
19	earlier today. Okay, so Bruce, are you the lead here?
20	All right, well, whenever you're ready.
21	MR. BAVOL: All right, good afternoon,
22	everybody, my name is Bruce Bavol, I'm the Project
23	Manager on the NuScale project. This afternoon from
24	the NRC staff we're going to be talking several
25	topical reports, the first being rod ejection, the

(202) 234-4433

Í	100
1	second being loss of coolant accident analysis, and
2	the third non-loss of coolant analysis.
3	To my right, Chris Van Wert will be
4	leading the rod ejection. We're, since we've talked
5	a lot about these topics, I'm just going to move right
6	into the staff review and turn it over to Chris.
7	CHAIRMAN SUNSERI: Yeah, and I think
8	similar kind of comments. I mean, there's not, you
9	don't have to read every bullet on the slide, we're
10	well versed in the topic to hit the high points and
11	the important message that you want to leave us with.
12	MR. VAN WERT: All right, good afternoon,
13	this is Chris Van Wert. And since we're jumping here
14	into the review, just want to point out that what is
15	included and not included within the review, we did
16	look at the criteria and the methodology as a whole,
17	as well as the assumptions that went into it.
18	And it's worth noting that the analysis
19	itself for the DCA is not part of this review, that is
20	handled separately under the Chapter 5 staff
21	evaluation report. It's also worth noting that the
22	staff did audit calculations and other supporting
23	information during its review.
24	As far as the analysis criteria itself, we
25	did look at the RCS pressure, fuel cladding failure,
	I contract of the second se

(202) 234-4433

	101
1	core coolability, and fission product inventory. And
2	we did determine that they either followed the
3	guidance provided in SRP 4.2's Appendix B, or were
4	conservative compared to it.
5	And as we discussed during the
6	Subcommittee, it was also not part of the staff's
7	review, but we were cognizant of the draft guidance
8	that's out there in terms of revised guidance for rod
9	ejection accidents.
10	And we did compare the two to see where
11	NuScale fell within it. But again, since that's draft
12	guidance, that wasn't a criteria that they had to
13	follow. But they were conservative in regards to
14	either criteria.
15	So next was the evaluation of the code
16	suite. In terms of rod ejection, they used CASMO5 to
17	SIMULATE5, you know, SIMULATE-3K and RELAP5 and VIPRE.
18	Most of those, with the exclusion of SIMULATE-3K, were
19	already reviewed and approved as part of another
20	topical report, the nuclear analysis codes and
21	methods, so that was not part of this review.
22	However, SIMULATE-3K was unique to this
23	and the validation was contained within it, so the
24	staff's review did cover it. And we did determine
25	that they successfully demonstrated that they could

(202) 234-4433

	102
1	use it properly and get accurate results.
2	MEMBER MARCH-LEUBA: Has SIMULATE-3K been
3	licensed by any other vendor or facility?
4	MR. VAN WERT: So SIMULATE-3K has been
5	used in licensing actions and has been reviewed by the
6	staff. It has not been submitted by Studsvik as the
7	standalone methodology topic report. So there's no
8	generic, yeah.
9	MEMBER MARCH-LEUBA: But any licensee or
10	vendor?
11	MR. VAN WERT: Licensees have submitted.
12	MEMBER MARCH-LEUBA: Some licensees use
13	it?
14	MR. VAN WERT: Yeah.
15	MEMBER MARCH-LEUBA: Okay, good.
16	MR. VAN WERT: For plant cycle, this
17	attribute did include plant cycle assumptions used by
18	NuScale. And in general, they included ranges and
19	power and cycle time and range of operating conditions
20	and show that they used limiting conditions.
21	The staff also agreed that the assumptions
22	in terms of the automatic systems response of non-
23	safety systems were conservative, and that the
24	methodology regarding timing of loss of AC power
25	conservatively biases the RCS pressure evaluation.

(202) 234-4433

The staff reviewed the methodology itself, including how information is passed between the different codes, the uncertainties, the modeling assumptions, and the handling of reactor trips. And in conclusion, the staff determined that they were conservative and that the methods were acceptable for demonstrating compliance with the acceptance with 8 acceptance criteria.

And in conclusion overall, the staff 9 concludes that the criteria used for evaluating REA 10 11 either follows or is more conservative than the staff 12 quidance, and that the methodology accounts for various potential operating conditions in time in life 13 14 and conservatively addresses uncertainties in plant conditions. 15

The staff therefore finds the use of this 16 17 topical report acceptable for evaluating reactivityinitiated accidents from the NuScale plant design. 18

19 And if there are any questions? And if 20 not, pass it on to Shanlai Liu.

21 CHAIRMAN SUNSERI: Members? all No, 22 right. Continue on. 23 DR. LU: Okay, Shanlai Lu from the staff,

NRR. 24 25 Okay, right away jumping to the -- okay,

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	104
1	the review team might have skipped that, so you
2	already talked about that one.
3	So the design features of course that you
4	guys have already gone through one. Very simple
5	design, there are three reactor vent valves on top of
б	the reactor vessel, two reactor, you know, return
7	valves. And then containment functions as a part of
8	ECCS.
9	So the scope of this topical report of
10	course is number one, it's to underline the LOCA. And
11	then as a part doing part of the review process, they
12	extended this topical report to cover the IORV
13	methodology. And as part of it, it also supports the
14	peak containment pressure and non-LOCA topical report
15	and non-term cooling analysis models.
16	Applicable regulation for LOCA of course
17	10 CFR 50.46. They decided to use Appendix K, which
18	does give them some flexibility to reduce the number
19	of runoffs that don't have to do the best estimate a
20	whole bunch of statistical sampling. Okay, next
21	slide.
22	The review approach, and we did take an
23	early engagement and, so that we can we conducted
24	extensive audits, all the way to, you know, a couple
25	months before this some presentation. And because of
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	105
1	that effort, and then we only identified a total
2	number of 13 RAIs, which is 45 RAI but through the
3	process we resolved 210 other issues.
4	And those were really resolved based on
5	extensive staff sensitivity studies and based on
6	NRELAP5 confirmatory analysis with TRACE, thanks for
7	our research support.
8	And the primary and, you know, scope of
9	this review is a focus on LOCA and a non-LOCA too.
10	And related to IORV. So the review area number one is
11	PIRT. And based on the staff's review, we conclude
12	that the PIRT process they had followed the CSAU
13	methodology.
14	And we used NRELAP5 code, which is a
15	derivative of NRELAP-3D, which has been used
16	extensively before. But they did add additional NPM
17	special features. We went through all each features
18	before.
19	And in order to confirm and then benchmark
20	the code, they conduct the extensive testing which
21	lasted a very long time, actually, more than ten
22	years. And then they also performed the scaling
23	distortion analysis. We reviewed that one, identified
24	the issues, and they did additional testing. And,
25	which resolved the issues there too.
	I contract of the second se

(202) 234-4433

And as part of IORV analysis methodology, and then we dived very deep into the actual CHF correlations by our staff. And what is used for low and low flow and high flow conditions, including the STERN and the KATHY facility specific fuel databases they used for AOOs. So those are review areas we covered. Next slide.

And as I mentioned that we did extensive staff confirmatory analysis, which covers the separate event test and the integral effect test, extensively on the NIST models itself. And we used both TRACE and a RELAP5 code, and more than 55 sets of calculation were performed.

And because of all the effort, we were be able to resolve a lot of the, you know, audit issues. So we can zoom in to the RAIs, like total questions are only 45. Those are the confirmatory analysis.

Based on the review, we concluded at the end NuScale LOCA EM model. And RELAP5 version 1.4 approved for determining critical heat flux and collapsed liquid level for NuScale NPM in compliance with 10 CFR 50.46 key requirements.

And the code is, can be used to determine the peak containment pressure, but with the limitation that they have to apply certain specific peak

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7
Í	107
1	containment pressure analysis criteria there. And the
2	CHF model is approved, subject to limitations and the
3	conditions for low flow and the high flow conditions.
4	So with that, that's the conclusion of
5	staff's presentation on LOCA topical report. All
6	right.
7	CHAIRMAN SUNSERI: Comments from members?
8	All right, Alex, your turn.
9	MS. SIWY: Is this the one that doesn't
10	work?
11	CHAIRMAN SUNSERI: Yeah, I'm sorry, use
12	the one to your right.
13	MS. SIWY: Okay, all right. My name is
14	Alex Siwy and I'm a Technical Review in the Reactor
15	Systems Branch in NRR. To provide a basic summary of
16	the staff's review process, we conducted our review of
17	the non-LOCA topical report in accordance with the
18	applicable NRC regulations and guidance. Our SER is
19	based on Revision 2 of the topical report.
20	The staff conducted audits similar to what
21	was done for LOCA, two audits in four different phases
22	that covered different topics. We examined about 140
23	different issues as part of the audits, and overall,
24	the audits really helped to confirm the staff's
25	understanding of the docketed information and to
	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	108
1	inform RAIs.
2	In total, we issued 33 RAI questions, and
3	to date all of these have been resolved and responses
4	have been incorporated into the topical report as
5	appropriate.
6	So this slide covers the scope of the non-
7	LOCA methodology, which NuScale covered well in their
8	presentation. I think the thing that I would
9	highlight here is that some of the items that are
10	discussed in the topical report the staff is not
11	making conclusions on as part of the topical report
12	review, because we feel that those items are more
13	appropriate for a design-specific application of the
14	methodology. These include items like the limiting
15	loss of power assumptions and single failures.
16	One of the major areas of staff review
17	were the key design features and models that would be
18	particularly relevant for non-LOCA event analysis.
19	The staff reviewed things like the natural circulation
20	design, the helical coil steam generator models, the
21	DHRS modeling, and the fact that the evacuated
22	containment vessel produces the potential for a new
23	type of event.
24	The staff also extensively reviewed the
25	applicability of NRELAP5 to performing non-LOCA

(202) 234-4433

transient analyses. As the applicant discussed, they 2 developed the non-LOCA EM based on the LOCA EM using 3 a grade approach. The staff reviewed the applicant's 4 non-LOCA PIRT to ensure that the important phenomena were identified and appropriately captured in the non-6 LOCA topical report.

7 And the staff reviewed how the applicant 8 addressed each of the highly ranked non-LOCA 9 phenomena, which included methods such as separate and 10 integral effects tests, code-to-code benchmark, use of bounding input values, as well as other analysis 11 methodologies. 12

Related to this topic was one significant 13 14 issue that we encountered as part of our review. In 15 additional particular, the staff requested justification for how multidimensional flow effects in 16 17 the RCS and thermal stratification in the reactor pool are addressed as part of the non-LOCA EM. The staff's 18 19 major concerns on this topic were the potential for 20 reduced RCS flow rates, as well as degradation in DHRS 21 performance.

22 To summarize, the applicant's RAI response 23 resolved the issue, as was confirmed by the staff 24 audit of underlying calculation notes, as well as 25 audit discussions with the applicant.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

5

The staff reviewed each of the NRELAP5 assessments against test data presented in the non-LOCA topical report, as well as a couple that were presented as part of the LOCA topical report. And overall, the staff finds that the KAIST, the NIST HP-03 and HP-04 tests served to validate the NRELAP5 DHRS models.

The SIET TF-1 test validated the steam 8 9 generator secondary side phenomena, but the staff had some concerns about the ability of the SIET TF-2 test 10 to fully validate primary to secondary heat transfer. 11 The NLT2A, 2B, and 15P2 integral effects 12 test together demonstrate the applicability of NRELAP5 13 14 to evaluate non-LOCA transients. And the benchmark against RETRAN-3D provides confidence that the NRELAP5 15 point kinetics model with the thermohydraulic feedback 16 produces results that are consistent with those of an 17 NRC-approved code. 18

There were a couple of significant review issues related to the assessment against NRELAP5, or assessments of NRELAP5 against test data.

In particular, the applicant removed steam generator and DHRS heat transfer biases from the methodology in response to staff questions about the steam generator heat transfer uncertainty based on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	111
1	SIET TF-2 concerns that I mentioned on the previous
2	slide. And this was associated with the DCA Chapter
3	15 UOI, as well as concerns about DHRS nodalization.
4	To address these concerns, the applicant
5	provided justification that non-LOCA figures of merit
6	are not sensitive to these biases. And based on its
7	review of the justification, as well as audits of the
8	underlying calculations, the staff finds that the
9	removal of the DHRS and steam generator heat transfer
10	biases is supported for NPM model Revision 2.
11	But we did impose a related limitation and
12	condition because some of the sensitivities were
13	specific to the particular design at hand.
14	The staff also reviewed the general and
15	event-specific non-LOCA methodology. Overall, the
16	process for analyzing non-LOCA events, including the
17	interfaces with other methodologies, provides an
18	acceptable analysis framework. The staff also finds
19	that the deterministic approach using conservative or
20	bounding inputs, initial conditions, and assumptions
21	is acceptable for conservative calculations of non-
22	LOCA events.
23	In addition, the staff reviewed each of
24	the event-specific methodologies and concluded that
25	the application of those methodologies will ensure
	1

(202) 234-4433

	112	
1	conservative results.	
2	And finally, the staff reviewed the	
3	representative non-LOCA event calculations in Section	
4	8 of the topical report and concludes that they	
5	adequately illustrate how the non-LOCA methodology can	
6	be applied to conservative transient analyses.	
7	This slide just summarizes the limitations	
8	and conditions found in the staff SER. I won't go	
9	through them line by line, but there are six different	
10	limitations and conditions.	
11	And in conclusion, the staff finds that	
12	all technical issues from the course of the review	
13	have been resolved and that the use of NRELAP5 with	
14	the non-LOCA methodology described in the topical	
15	report is acceptable for the non-LOCA safety analyses	
16	of the NuScale NPM design, subject to the specified	
17	limitations and conditions.	
18	CHAIRMAN SUNSERI: Very good, thank you.	
19	Members, any questions or comments?	
20	MEMBER KIRCHNER: I just would like to	
21	thank NuScale and the staff for their very good	
22	presentations during our February Subcommittee	
23	meetings and their excellent short summaries today.	
24	Thank you.	
25	CHAIRMAN SUNSERI: Any other comments?	

(202) 234-4433

	113
1	All right, so we'll ask if there are any members in
2	the room that would like to make a comment. And while
3	we're doing that, if we can open up the phone lines
4	for public comment.
5	MR. PRESSON: Hey, Matthew Presson with
6	NuScale. I wanted to confirm for you that the 100 mil
7	corrosion limit is indeed non-proprietary. So good to
8	use.
9	MEMBER BALLINGER: It's only a 100 it's
10	a 100, not 80?
11	MR. PRESSON: That is what was emailed to
12	me, yes.
13	MEMBER BALLINGER: Okay. All right.
14	Eighty has been around for the last 15 years or 20
15	years.
16	CHAIRMAN SUNSERI: All right, there's no
17	comments from the room, so we'll turn to the phone
18	line. If there is a member of the public that is on
19	the phone line that wishes to make a comment, now is
20	your opportunity. Please state your name and provide
21	your comment.
22	MR. LEWIS: Marvin Lewis.
23	CHAIRMAN SUNSERI: Okay, Marvin, we'll
24	take yours first.
25	MR. LEWIS: Wonderful, thank you. Look,
I	1 I I I I I I I I I I I I I I I I I I I

(202) 234-4433

	114
1	it sounds reasonable saying that it's going to mean
2	that the reactor will operate without problems. But
3	at least the verbiage sounds good. I do have a
4	question, mainly about density waves fluctuate
5	density wave oscillations.
6	When you get the water hammer and
7	everybody runs out of the nuclear power plant, how do
8	you know there's going to be enough people left to
9	handle the resume without emergencies, thank you.
10	CHAIRMAN SUNSERI: Thank you for your
11	comment. Ms. Fields, I think you're next.
12	MS. FIELDS: Yes, this is Sarah Fields.
13	I brought this up at the NuScale Subcommittee meeting
14	a few days ago. I do not understand how the NRC will
15	be finalizing the draft rule and submitting it to the
16	Commission on March 19, which is two weeks from now.
17	And then the NRC intends to publish rulemaking effort
18	on June 1.
19	There's still a few things to iron out
20	between the ACRS, NuScale and the NRC that have been
21	discussed over the past few days. The ACRS won't
22	finalize their or submit their final letter until
23	June 23, I believe. And then the NRC staff won't
24	finalize the SER until November. And yet the NRC
25	appears to be going ahead with this rulemaking as if
I	I contract of the second se

(202) 234-4433

	115
1	all the T's have been crossed and the I's have been
2	dotted, which they haven't.
3	So I think the NRC's schedule for this
4	rulemaking is rather premature. Also, there really is
5	no rush. The prospective COL applicant, the only
6	prospective applicant, is the Utah Associated
7	Municipal Power Systems, or UAMPS.
8	The type of reactor that UAMPS intends to
9	construct and operate would have 25 more percent power
10	than the current NuScale design. Therefore, UAMPS
11	must wait until the NuScale after NuScale submits
12	its standard design approval application, which would
13	include that 25% power increase, before they could
14	submit their COL application to the NRC. And the
15	NuScale SDA application's not expected until the
16	latter part of 2021.
17	So basically, there really is no COL
18	applicant out there who will be submitting an
19	application specifically referencing this design
20	certification. So I just wanted to put that out
21	there. I think that the public should be able to wait
22	until all ACRS and NRC staff documents related to this
23	design certification are complete before the
24	rulemaking. Thank you.
25	CHAIRMAN SUNSERI: Thank you. Any other
1	•

(202) 234-4433

	116
1	members of the public on the phone line that wish to
2	make a statement? Okay, we will close the phone line
3	at this point, thank you. And we're at a transition
4	point here. Let me poll the Committee here. Do we
5	see the need for a closed session to talk to staff or
6	NuScale about any proprietary information?
7	MEMBER MARCH-LEUBA: I recommend that we
8	go into closed session to read the letters for
9	proprietary content, so NuScale can tell us they're
10	not proprietary. And then we go back to open session
11	to discuss them.
12	VICE CHAIRMAN REMPE: But we should be all
13	done with the transcriber.
14	CHAIRMAN SUNSERI: Yeah, we can do that
15	MEMBER MARCH-LEUBA: Off the transcript.
16	CHAIRMAN SUNSERI: Yeah, off the. Well,
17	we're going off the record anyway at this point in
18	time. So I think we'll proceed along that, those
19	lines. Walt, is that okay with you?
20	All right, so we are going to go off the
21	record at this point in time. The next time we will
22	be on is at 10:45 tomorrow morning when we'll look at
23	the biannual review of the Nuclear Safety Research
24	Program.
25	We are going into closed session now for

(202) 234-4433

	117
1	report writing
2	VICE CHAIRMAN REMPE: Matt, say again what
3	you said. We're not going to have any more
4	transcribers, right, for the rest of this session or
5	this meeting? Because we're not going to need a
6	transcriber for that or for P&P. P&P's public, but
7	CHAIRMAN SUNSERI: Well, I don't know
8	about transcribers, I'm just talking about open
9	session.
10	MEMBER MARCH-LEUBA: We'll stay have a
11	transcriber. You need to put your microphone on.
12	VICE CHAIRMAN REMPE: P&P is open.
13	CHAIRMAN SUNSERI: Okay, we are going
14	closed.
15	(Whereupon, the above-entitled matter went
16	off the record at 2:07 p.m.)
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I

LO-0220-69052

February 28, 2020

Docket No. 52-048

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738

SUBJECT: NuScale Power, LLC Submittal of Presentation Materials Titled "ACRS Full Committee Presentation: NuScale – Steam Generator Design," PM-0220-69051, Revision 0

The purpose of this submittal is to provide presentation materials to the NRC for use during the upcoming Advisory Committee on Reactor Safeguards (ACRS) NuScale Full Committee Meeting on March 5, 2020. The materials support NuScale's presentation of the NuScale steam generator design.

The enclosure to this letter is the nonproprietary presentation titled "ACRS Full Committee Presentation: NuScale – Steam Generator Design," PM-0220-69051, Revision 0.

This letter makes no regulatory commitments and no revisions to any existing regulatory commitments.

If you have any questions, please contact Marty Bryan at 541-452-7172 or at mbryan@nuscalepower.com.

Sincerely,

Lille

Zackary W. Rad Director, Regulatory Affairs NuScale Power, LLC

Distribution: Robert Taylor, NRC, OWFN-8H12 Michael Snodderly, NRC, OWFN-8H12 Christopher Brown, NRC, OWFN-8H12 Gregory Cranston, NRC, OWFN-8H12 Michael Dudek, NRC, OWFN-8H12 Bruce Bavol, NRC, OWFN-8H12

Enclosure: "ACRS Full Committee Presentation: NuScale – Steam Generator Design," PM-0220-69051, Revision 0

Enclosure:

"ACRS Full Committee Presentation: NuScale – Steam Generator Design," PM-0220-69051, Revision 0 **NuScale Nonproprietary**

ACRS Full Committee Presentation

NuScale

Steam Generator Design

Copyright 2020 by NuScale Power, LLC.

Presenters

Kevin Spencer Engineer, NSSS Engineering

Bob Houser

Manager, Testing and Code Development

Brian Wolf Supervisor, Code Development

Marty Bryan Licensing Project Manager

Agenda

- Steam Generator Design
- DCA Revisions

Steam Generator Design

PM-0220-0220-69051 Revision: 0

4

Copyright 2020 by NuScale Power, LLC.

Steam Generator Inlet Flow Restrictor

Inlet Flow Restrictor (IFR)

IFR in Tubesheet

Steam Generator Design

- Integral Helical Coil SG Design features ۲
 - Shell side is primary side Tube side is secondary side
 - Alloy 690 TT (1380 tubes, 74 86 ft long, 5/8" OD)
 - Low flow in primary (~1ft/sec)
 - Tube wall degradation allowance (0.010" > ASME min wall)
 - Support 100% volumetric inspection
 - Normal access to shell side of tubes from below during refueling
- Steam Generator Program and In-service Inspections
 - Follow guidance of NEI 97-06 & EPRI (COL Item 5.4-1: Develop and implement a SG Program)
- SG is designed with a flow restrictor at tube inlet to reduce the potential for density wave oscillations (DWO)

DCA Revisions

• An Action Item has been established for the Combined License applicant (COL Item 3.9-14)

A COL applicant that references the NuScale Power Plant design certification will develop an evaluation methodology for the analysis of secondary-side instabilities in the steam generator design. This methodology will address the identification of potential density wave oscillations in the steam generator tubes, and qualification of the applicable portions of the reactor coolant system integral reactor pressure vessel and steam generator given the occurrence of density wave oscillations, including the effects of reverse fluid flows within the tubes.

DCA Revisions (cont'd)

- FSAR Section 3.9 has been revised and establishes a COL Item for development of an evaluation methodology for analysis of secondary side instabilities.
- FSAR Section 5.4 clarifies language related to secondary side instabilities.

NuScale Conclusion

 The successful completion of ITAAC and the COL Item constitutes the basis for the NRC determination to allow operation of a facility certified under 10 CFR 52

Portland Office

6650 SW Redwood Lane, Suite 210 Portland, OR 97224 971.371.1592

Corvallis Office

1100 NE Circle Blvd., Suite 200 Corvallis, OR 97330 541.360.0500

Rockville Office

11333 Woodglen Ave., Suite 205 Rockville, MD 20852 301.770.0472

Richland Office

1933 Jadwin Ave., Suite 130 Richland, WA 99354 541.360.0500

Charlotte Office

2815 Coliseum Centre Drive, Suite 230 Charlotte, NC 28217 980.349.4804

10 PM-0220-69051 Revision: 0

Copyright 2020 by NuScale Power, LLC.

Backup Material

Copyright 2020 by NuScale Power, LLC.

ITAAC Closure Path for DWO

- Resolution of DWO is to be achieved through ITAAC activities related to the steam generator
- Tier 1 Table 2.1-2 defines the NuScale Power Module (NPM) ASME Code Class 1, 2, 3, and CS components that comply with ASME Code Section III requirements including:

Equipment Name	ASME Code Section III
RCS Integral RPV/SG/Pressurizer	1

 Number 02.01.01 specifies that "each ASME Code Class 1, 2, and 3 component (including piping systems) of a nuclear power plant requires a Design Report in accordance with NCA-3550"

ITAAC Closure Path for DWO (continued)

- An ITAAC inspection is performed of the NuScale Power Module "ASME Code Class 1, 2, 3, and CS as-built component Design Reports to verify that the requirements of ASME Code Section III are met"
- From Subsection NCA of the 2013 Edition of the ASME Code
 - NCA-2142.2 requires that Design Specifications identify all loadings (e.g. pressure, temperature, mechanical loads, cycles, and/or transients) and the service limits a component will experience
 - Loading combinations for the RPV (including SG tubes) defined in Table 3.9-3 of DCA
 - Transient (TH) loads are based on time history of design basis transients, described in DCA Section 3.9.1.
 - NCA-3254 and 3255 provide additional information about design specifications
 - NCA-3260 requires that the Design Report evaluate the loads as defined in the design specification

United States Nuclear Regulatory Commission

Protecting People and the Environment

NRC Review of NuScale Steam Generator

NuScale Design Certification Application

ACRS Full Committee Meeting March 5, 2020

(Open Session)

- NRC Staff Review Team
- Summary of Review of Steam Generator (SG) Materials, Design, and Inspection
- Summary of SG Design Issue Not Resolved by Design Certification Application (DCA)
 - Safety Significance
 - Method of Analysis
 - Appendix G to 10 CFR Part 52

NRC Staff Review Team

- Technical Reviewers:
 - Gregory Makar, materials engineering
 - o Leslie Terry, materials engineering
 - Yuken Wong, mechanical engineering
 - o Peter Yarsky, Office of Research
 - o Raymond Skarda, Office of Research
 - Carl Thurston, reactor systems
 - o Kaihwa Hsu, mechanical engineering
 - Steven Hambric (consultant)
- Project Management:
 - o Marieliz Johnson
 - o Bruce Bavol
- Technical Management:
 - Thomas Scarbrough, mechanical engineering
 - o Rebecca Patton, reactor systems
 - o Steven Bloom, materials engineering

NuScale Steam Generator SER Sections 5.4.1 and 5.4.2 SG Materials, Design, and Inspection

FINDING: SG Materials and SG Program meet applicable requirements for most review areas:

- Materials acceptable with respect to selection, fabrication, testing, and inspection
- Design limits crevice areas along tubes
- Primary and secondary water chemistry acceptable (based on industry guidelines)
- Design provides primary and secondary access for inspection and for removal of corrosion products and foreign objects

SER Sections 5.4.1 and 5.4.2 SG Materials, Design, and Inspection

FINDING: SG Materials and SG Program meet applicable requirements for most review areas:

(Continued)

- SG Program based on applicable industry guidelines and consistent with the Standard Technical Specifications
- Generic tube plugging criterion determined in accordance with applicable guidance
- Combined License (COL) applicant will develop and implement an SG Program and provide corresponding plant-specific information

SER Sections 5.4.1 and 5.4.2 SG Materials, Design, and Inspection

SG DESIGN – Secondary Flow Oscillations

- NRC staff considers design demonstration of structural and leakage integrity for SG tubes to be incomplete for DCA including:
 - Ability of SG tubes to maintain structural and leakage integrity during density wave oscillation (DWO) in SG secondary fluid system
 - Method of analysis to predict thermal-hydraulic conditions and loads of SG secondary fluid system
- NuScale is working to demonstrate SG tube integrity subsequent to design certification

Regulatory Process for Incomplete SG Tube Integrity

- NRC staff is proposing to specify structural and leakage integrity of SG tubes as not resolved and not receiving finality in NRC draft proposed rule for NuScale design certification.
- Appendix G to 10 CFR Part 52, Section VI, "Issue Resolution," is being proposed to clarify that SG tube integrity is not resolved within the meaning of §52.63(a)(5)
- Section IV, "Additional Requirements and Restrictions," is being proposed to state that COL applicant is responsible for providing design information to address SG tube integrity.
- Draft proposed rule currently in concurrence process prior to being provided to the Commission for approval.

SG Secondary Fluid System Method of Analysis

- DCA Part 2, Tier 2, Section 3.9.1.2 states that it lists computer programs used by NuScale for dynamic and static analyses and hydraulic transient load analyses.
- Section 3.9.1.2 does not include the method of analysis to appropriately predict thermal-hydraulic conditions and loads of SG secondary fluid system.
- In demonstrating SG tube integrity, COL applicant will need to provide information demonstrating that 10 CFR Part 50, Appendix A, GDC 4, is met for the method of analysis to predict thermal-hydraulic conditions of SG secondary fluid system and resulting loads, stresses, and deformations from DWO.

Demonstration of SG Tube Integrity

- NuScale has not provided reasonable assurance that flow oscillations that occur in SG secondary fluid system will not cause damage to SG tubes directly from DWO or indirectly by inlet flow restrictors (IFRs).
- COL applicant will need to provide information demonstrating that 10 CFR Part 100 and Part 50, Appendix A, GDC 4 and 31, are met with respect to structural and leakage integrity of SG tubes that might be compromised by adverse effects from DWO in SG secondary fluid system.

DWO Phenomenon

- TF-2 testing involved a full scale mock-up of 252 tubes.
- DWO was observed during TF-2 testing with temperature and flow oscillations in the secondary coolant.
- DWO frequency during TF-2 testing did not excite SG tube structural resonances.

- TF-2 alternating stress intensities for instrumented TF-2 tubes were below fatigue endurance limit, although TF-2 geometry, materials, and operating conditions might not be conservative compared to as-built SG.
- As discussed on the next slides, the staff is concerned about the potential impact of DWO on the SG tubes directly and indirectly by the IFRs.

SG Inlet Flow Restrictor

- SG Inlet Flow Restrictor (IFR) designed to provide necessary pressure drop to limit DWO in the SG tubes.
- Staff evaluated leakage flow instability (LFI) between IFRs and SG tubes during forward flow test (separate from TF-2) and did not identify any concerns.
- However, testing did include DWO conditions.
- NuScale has not validated the final IFR design.

SG Inlet Flow Restrictor – DWO Concerns

- Unstable DWO could cause reverse flow through IFRs
 - Subcooled liquid for modest DWO
 - Slug and two-phase flow for strong DWO
- NuScale has not yet evaluated the potential impacts on SG tubes and IFRs for reverse flow such as:
 - Fatigue of bolted joints, and loose IFR parts
 - LFI in that cantilevered IFRs are less stable under reverse flow
 - Cyclic pressure drops
 - High speed turbulent two-phase flow
 - Cavitation erosion of SG tube walls
 - Wear of IFRs and/or tube walls that could further worsen stability

Post-Design Certification

- COL Applicant will address SG tube integrity in the COL application as follows:
 - Provide validated SG secondary fluid system flow thermal-hydraulic method of analysis
 - Demonstrate that SG tubes will not be damaged by DWO directly or indirectly by IFRs
- COL Holder will verify SG construction including:
 - Complete ITAAC on Tier 1 Table 2.1-4 (#1) to confirm that ASME BPV Code Class components designed to ASME BPV Code Section III
 - Implement Comprehensive Vibration Assessment Program (CVAP) COL Item 3.9-1
 - Satisfy Tier 1, TF-3 flow testing requirement, and Tier 2, Table 14.2-72 SG flow-induced vibration testing
 - Instrument one tube in initial startup SG testing with strain gages at top, middle, and bottom, for FIV evaluation

- NuScale is preparing errata for Revision 4 to DCA to clarify SG secondary fluid flow issues that could impact SG tubes and IFRs.
- NRC staff discusses SG tube integrity, including SG secondary flow method of analysis, in the draft proposed rule for NuScale design certification to be provided for Commission approval.
 - Draft proposed rule excludes SG tube integrity from finality.
 - NRC staff will address SG tube integrity as part of a NuScale COL application review.
- Other aspects of the NuScale SG design are acceptable to the NRC staff and would be granted finality.

Questions?

LO-0320-69151

March 4, 2020

Docket No. 52-048

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738

SUBJECT: NuScale Power, LLC Submittal of Presentation Materials Entitled "ACRS Full Committee Presentation: NuScale Topical Report – Rod Ejection Accident Methodology," PM-0320-69146, Revision 0

The purpose of this submittal is to provide presentation materials to the NRC for use during the upcoming Advisory Committee on Reactor Safeguards (ACRS) NuScale Full Committee Meeting on March 5, 2020. The materials support NuScale's presentation of the "Rod Ejection Accident Methodology" topical report.

The enclosure to this letter is the nonproprietary presentation entitled "ACRS Full Committee Presentation: NuScale Topical Report – Rod Ejection Accident Methodology," PM-0320-69146, Revision 0.

This letter makes no regulatory commitments and no revisions to any existing regulatory commitments.

If you have any questions, please contact Matthew Presson at 541-452-7531 or at mpresson@nuscalepower.com.

Sincerely, 61/1

Zackary W. Rad Director, Regulatory Affairs NuScale Power, LLC

Distribution: Robert Taylor, NRC, OWFN-8H12 Michael Snodderly, NRC, OWFN-8H12 Christopher Brown, NRC, OWFN-8H12 Samuel Lee, NRC, OWFN-8H12 Gregory Cranston, NRC, OWFN-8H12 Michael Dudek, NRC, OWFN-8H12 Rani Franovich, NRC, OWFN-8H12

Enclosure: "ACRS Full Committee Presentation: NuScale Topical Report – Rod Ejection Accident Methodology," PM-0320-69146, Revision 0

LO-0320-69151

Enclosure:

"ACRS Full Committee Presentation: NuScale Topical Report – Rod Ejection Accident Methodology," PM-0320-69146, Revision 0

ACRS Full Committee Presentation

NuScale Topical Report

Rod Ejection Accident Methodology

March 5, 2020

Copyright 2020 by NuScale Power, LLC.

Presenters

Kenny Anderson Nuclear Fuels Analyst

Matthew Presson

Licensing Project Manager

Opening Remarks – NuScale T/H Methods

3

•

•

Template #: 0000-21727-F01R5

Agenda

- Event Overview
- Acceptance Criteria
- PCMI Criteria DG-1327
- Method Flowchart
- Steady State Initialization
- Event Evaluations
- Summary

Overview

- NuScale seeks approval of methodology for modeling rod ejection accident (REA) events
- Bounding reactivity initiated accident (RIA) from General Design Criteria (GDC) 28
- REA is unique in comparison to other Ch. 15 events

Description	Rod Ejection	Other Events	
Dominant Physics	Nuclear	Thermal-Hydraulics	
Timing	milli-sec	sec to hr	
Spatially	Local	Global	
Peak power	~5x Full Power	~1.2x Full Power	
Integrated Energy	Low	Low to High	
Postulated Cause	Failure of ASME Class 1 Pressure Boundary	Single Equipment Failure	
Acceptance Criteria	Specialized	Generic	

5

Unique Event Acceptance Criteria

Criteria Description	Topical Section	Unique?
Maximum reactor coolant system pressure	5.3	No
Hot zero power (HZP) fuel cladding failure	5.5.2	Yes
FGR effect on cladding differential pressure	N/A	Yes
Critical heat flux (CHF) fuel cladding failure	5.4.1	No
Cladding oxidation-based PCMI failure	5.5.3	Yes
Cladding excess hydrogen-based PCMI failure	N/A	Yes
Incipient fuel melting cladding failure	5.5.1	No
Peak radial average fuel enthalpy for core cooling	5.5.2	Yes
Fuel melting for core cooling	5.5.1	No
Fission product inventory (failed fuel census)	5.6	Yes

- Submitted NuScale design and method inherently precludes fuel failure, thus no accident radiological consequences are evaluated.
- PCMI: Pellet-Clad Mechanical Interaction

Revised PCMI Criteria

- In general, the NuScale REA methodology has adopted the limiting criteria of the 'Clifford Letter' (ML14188C423), now included in draft guide DG-1327 (ML16124A200). In spirit, NuScale is prepared for this regulatory change:
 - Closed session presents example results, showing large margins for enthalpy rise
 - A technical 'formality' inhibits complete adoption at this time. NuScale does not currently have a validated cladding H₂ model to convert local exposure to excess cladding hydrogen
 - Oxidation criteria from NUREG-0800 Section 4.2, Appendix B (ML07074000) is used
 - To simplify method, no exposure is credited (Limit: $75 \Delta cal/gm$)
 - NuScale M5 cladding less susceptible than other zirc alloy-type clad used in the industry

Revision: 0

Copyright 2020 by NuScale Power, LLC.

Template #: 0000-21727-F01R5

Unique Event Method (Flowchart)

Template #: 0000-21727-F01R5

Copyright 2020 by NuScale Power, LLC.

Steady-State Initialization

- SIMULATE5: Setup the core response analysis
- Code shown to be appropriate in TR-0616-48793-A (Nuclear Analysis Codes and Methods Qualification)
- Determination of the worst rod stuck out (WRSO)
 - Assumption bounds potential for ejected assembly to damage adjacent control rod assembly
 - Due to rapid nature of the event, location does not significantly affect the results in NuScale application

Dynamic Core Response

- SIMULATE-3K: Model transient core response
- Benchmarked to SPERT-III experiment and NEACRP computational benchmark
 - Benchmarks demonstrate the combined transient neutronic, thermal-hydraulic, and fuel pin modeling capabilities
 - SIMULATE-3K results generally in excellent agreement with the results from the two benchmark problems
- Uncertainties applied for each simulation:
 - Delayed Neutron Fraction
 - Ejected Rod Worth
 - Doppler Temperature Coefficient
 - Moderator Temperature Coefficient

CHF Evaluation

- VIPRE-01: Model detailed thermal-hydraulics
- Evaluate critical heat flux (CHF) acceptance c
- Code shown to be appropriate in TR-0915-17 Analysis Methodology)
- Unique event differences in method:
 - Smaller axial nodalization (smaller time steps)
 - Radial power distribution (case-specific)
 - Axial power distribution (peak assembly)
 - Convergence parameters
- Additional parametric sensitivity cases pe application to holistically justify difference

Adiabatic Fuel Heatup

- Hand-Calculation: Model fuel response
- Total energy (from SIMULATE-3K) during the transient is integrated
- Conservative as no energy is allowed to leave the fuel rod
- Energy is then converted into either a temperature or enthalpy increase
- Fuel rod geometry, heat capacity, and power peaking factors taken into account
- Calculated values compared to NRC developed acceptance criteria
 - Example values provided in closed session

12

Revision: 0

Dynamic System Response I

- NRELAP5: Evaluate system response for input to <u>CHF Evaluation</u>
- Code shown to be appropriate in TR-0516-49416 (Non-LOCA Methodologies)
- Transient power from SIMULATE-3K utilized as input
 - No reactivity calculation performed in NRELAP5
- Provides system thermal-hydraulic conditions to subchannel (CHF) evaluation
 - System flow, pressure, and inlet temperature
 - 'Screens' cases for potential to be limiting
 - Family of limiting cases evaluated with VIPRE-01

Dynamic System Response II

- NRELAP5: Evaluate system response for pressurization
- Limiting scenario: Low ejected worth that raises the power quickly to just below both the high power and high power rate trip 'setpoints'
- Point-kinetics model used based on bounding static worth
- Peak system pressure calculated compared to acceptance criteria
- Example results to be presented in closed session

Summary

- A conservative analysis method for the unique rod ejection accident
- Topical report provides details and justification for:
 - Software tools and acceptance criteria used
 - Applicability of the method and tools
 - Appropriate treatment of uncertainties
- Results from application of the method provide input to FSAR Chapter 15

Acronyms

- CHF Critical Heat Flux
- GDC General Design Criteria
- HZP Hot Zero Power
- MCHFR Minimum Critical Heat Flux Ratio
- NEACRP Nuclear Energy Agency Committee on Reactor Physics
- PCMI Pellet Clad Mechanical Interaction
- REA Rod Ejection Accident
- RIA Reactivity Initiated Accident
- WRSO Worst Rod Stuck Out

Portland Office

6650 SW Redwood Lane, Suite 210 Portland, OR 97224 971.371.1592

Corvallis Office

1100 NE Circle Blvd., Suite 200 Corvallis, OR 97330 541.360.0500

Rockville Office

11333 Woodglen Ave., Suite 205 Rockville, MD 20852 301.770.0472

Richland Office

1933 Jadwin Ave., Suite 130 Richland, WA 99354 541.360.0500

Charlotte Office

2815 Coliseum Centre Drive, Suite 230 Charlotte, NC 28217 980.349.4804

17 PM-0320-69146 Revision: 0

Copyright 2020 by NuScale Power, LLC.

LO-0320-69139

March 4, 2020

Docket No. 52-048

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738

SUBJECT: NuScale Power, LLC Submittal of Presentation Materials Entitled "ACRS Full Committee Presentation: NuScale Topical Report, Loss-of-Coolant Accident Evaluation Model," PM-0320-69138, Revision 0

The purpose of this submittal is to provide presentation materials to the NRC for use during the upcoming Advisory Committee on Reactor Safeguards (ACRS) NuScale Full Committee Meeting on March 5, 2020. The materials support NuScale's presentation of the "Loss-of-Coolant Accident Evaluation Model" topical report.

The enclosure to this letter is the nonproprietary presentation entitled "ACRS Full Committee Presentation: NuScale Topical Report, Loss-of-Coolant Accident Evaluation Model," PM-0320-69138, Revision 0.

This letter makes no regulatory commitments and no revisions to any existing regulatory commitments.

If you have any questions, please contact Matthew Presson at 541-452-7531 or at mpresson@nuscalepower.com.

Sincerely,

L.Ma

Zackary W. Rad Director, Regulatory Affairs NuScale Power, LLC

Distribution: Robert Taylor, NRC, OWFN-8H12 Michael Snodderly, NRC, OWFN-8H12 Christopher Brown, NRC, OWFN-8H12 Samuel Lee, NRC, OWFN-8H12 Gregory Cranston, NRC, OWFN-8H12 Michael Dudek, NRC, OWFN-8H12 Rani Franovich, NRC, OWFN-8H12

Enclosure: "ACRS Full Committee Presentation: NuScale Topical Report, Loss-of-Coolant Accident Evaluation Model," PM-0320-69138, Revision 0

LO-0320-69139

Enclosure:

"ACRS Full Committee Presentation: NuScale Topical Report, Loss-of-Coolant Accident Evaluation Model," PM-0320-69138, Revision 0

NuScale Nonproprietary

ACRS Full Committee Presentation

NuScale Topical Report

Loss-of-Coolant Accident Evaluation Model

March 5, 2020

Copyright 2020 by NuScale Power, LLC.

PM-0320-69138 Revision: 0

Presenters

Matthew Presson Licensing Project Manager

Dr. Pravin Sawant Supervisor Code Validation and Methods

Dr. Selim Kuran

Thermal Hydraulic Analyst

Ben Bristol

Supervisor System Thermal Hydraulics

Agenda

- Methodology Overview
 - Background
 - Regulatory Requirements
 - Methodology Roadmap
- NPM Safety Systems Overview
- Element 1: PIRT
- Element 2: Assessment Base
- Element 3: NRELAP5 Evaluation Model
- Element 4: Applicability Evaluation
- Extension of LOCA EM to IORV
- Conclusions

Background

- Unique NPM Design Features
 - Integrated design eliminates piping and limits potential breaks
 - Coolant captured completely in containment, cooled and returned to RPV using a large pool as ultimate heat sink
- Simple LOCA Progression with Well-Known Phenomena
 - Choked/un-choked flow through break and ECCS valves
 - Core decay heat and RCS stored energy release
 - CNV heat transfer to pool (condensation, conduction, convection)
- EM Development Approach
 - Follows Regulatory Guide 1.203 EMDAP (Table 2-1)
 - Compliance with 10 CFR 50.46 and Appendix K requirements (Table 2-2)

Regulatory Requirements

- 10 CFR 50.46 Acceptance Criteria
 - Max. clad temperature < 2200 °F</p>
 - Cladding oxidation > 0.17 times thickness
 - Hydrogen generation < 0.01 times total hydrogen from oxidation of all cladding
 - Core remains amenable to cooling
 - Long-term cooling maintained
- Maximum PCT at steady state, no clad heat up
- Conservative LOCA EM Acceptance Criteria (FOMs)
 - Core remains covered: <u>collapsed level</u> > TAF
 - M<u>CHFR</u> > CHFR Limit (1.29)
 - <u>Containment pressure and temperature</u> below design limit

Methodology Roadmap

- 10 CFR 50.46 Appendix K Compliance (Section 2.2.3 of LTR)
- RG 1.203 EMDAP (Section 2.1 of LTR)

Template #: 0000-21727-F01 R5

NPM Safety Systems

• ECCS

- Opens a boiling/condensing circulation flow path to transfer decay and residual heat to reactor pool
- Reactor Recirculation Valves (RRV): 2 valves
- Reactor Vent Valves (RVV): 3 valves
- Actuation Signals: High CNV level, 24-hour loss of AC power
- Fail safe: ECCS trip valves open on loss of DC power
- Inadvertent Actuation Block (IAB)
 - Prevents inadvertent opening of ECCS valves at high RCS pressure
 - Actuation based on differential pressure between RPV and CNV
- Module Protection System (MPS)
 - Reactor scram
 - Steam Generator (SG) and Containment (CNV) Isolation
 - Passive safety system activation (ECCS and DHRS)
- Decay Heat Removal System (DHRS)
 - Passive, boiling-condensation system
 - Removes heat from RCS through SG via two trains
 - Each trains capable of removing 100% decay heat
 - Not credited in LOCA EM

Element 1 PIRT

PIRT Process

- Assessment of relative importance of phenomena
 - Unique phases
 - Key components
- PIRT panel included recognized experts and NuScale subject matter experts
 - State-of-knowledge, design description, LOCA description, NRELAP5 calculations
- Figures-of-Merit
 - CHF, Collapsed level above top of the active fuel, CNV P & T
- Rankings
 - Importance: High, Low, Medium, Inactive
 - Knowledge: Well known (small uncertainty), Known (moderate uncertainty, partially known (large uncertainty), very limited

Spatial and Temporal Decomposition

- Phenomena identified for Systems, Structure, Components (SSCs) and LOCA phases
 - Phase 1a: Blowdown
 - Phase 1b: ECCS activation (opening)

System/Subsystem/Module decomposition

10

PM-0320-69138

Revision: 0

Distinct phases of a typical NPM LOCA

Copyright 2020 by NuScale Power, LLC.

Template #: 0000-21727-F01R5
Element 2 Assessment Base

NRELAP5 Code

• RELAP5-3D© v4.1.3 used as a baseline code

- Two-fluid model (thermal and mechanical non-equilibrium) for hydrodynamics with
 - Non-condensable gases with gas phase
 - Semi-implicit scheme for time integration
- Heat conduction across 1D geometries (slab, cylinder, sphere)
- Neutron Kinetics with thermal hydraulic feedback
- $\circ~$ Special Process Models
- Comprehensive control/trip system modeling
- Code configuration control and development consistent with NuScale's NQA-1 2008 / 2009a QA program
- Modifications for NRELAP5:
 - NuScale specific components (e.g., helical coil SG)
 - Regulatory requirements (i.e., Appendix K)
 - Error correction

IET and SET Data

- Extensive database with adequate coverage of all highranked phenomena
- Integral effects tests (IET)
 - Six (6) NIST-1 tests
- Separate effects tests (SET)
 - Two (2) NIST-1 SETs
 - Four (4) other NuScale SETs
 - Nine (9) Legacy SETs

NIST-1 Facility

- Primary source of NuScale-Specific IET and SET data
- Design Features
 - Integral Reactor Vessel with electrically heated rod bundle core, helical coil steam generator, and pressurizer
 - Containment with HTP and Cooling Pool
 - DHRS, ECCS, CVCS lines represented
 - ~700 instruments
- Scaling Basis
 - Power/Volume Scaling
 - Reduced height and reduced volume scale
 - Full Pressure and Temperature
 - Same Time Scale (isochronicity)

Copyright 2020 by NuScale Power, LLC.

Element 3 NRELAP5 NPM LOCA

NPM LOCA Model Overview

- Analysis and Justifications
 - NRELAP5 model nodalization and input options
 - Time-step control
 - Initial and boundary condition biases
 - Treatment of setpoints and trips
- LOCA break spectrum
 - Break location and sizes
 - Single failures
 - Power availability
- Methodology sensitivity calculations
 - Required by Appendix K
 - Phenomena-specific
 - To establish conservative biases

Element 4 Applicability Evaluation

Applicability Evaluation

- Evaluated models and correlations (bottom-up)
 - Identified dominant models/correlations for 'H' phenomena (Table 8-1 of LTR)
 - Identified key model/correlation parameters and phenomenological domain where models/correlations are used (Tables 8-2 and 8-4)
 - Reviewed models/correlations (Table 8-18 of LTR)
 - Pedigree, Applicability range, Fidelity to SET data, Scalability
- Evaluated integral performance of EM (top-down)
 - Reviewed code governing equations and numerics
 - Evaluated integral performance of code using IET data (Table 8-19 of LTR)
 - Evaluated IET data applicability and NRELAP5 scalability
 - Scaling and distortion analysis
 - Differences and distortions between NPM and NIST can be accounted using NRELAP5

Conclusions

- Number of conservatisms built into the NuScale LOCA EM
 - 10 CFR 50 Appendix K
 - Other methodology conservatisms
- Cycle independent bounding LOCA analysis
- Supported by extensive experiment database, well qualified code, and several sensitivity calculations
- Applicability evaluation consistent with RG 1.203
- CHF not challenged
- Collapsed level in RPV remains above TAF
- No clad or fuel heat-up
- CNV P&T remain below design limits

Appendix B to LOCA LTR Extension to IORV Event

IORV Background

- LOCA EM Extended to IORV
 - Liquid space (RRV) and steam space (RVV, RSV) discharge
 - Similar transient phenomena and progression
- EM Development Approach
 - Compliance with DSRS for NuScale SMR Design 15.6.6
 - Follows RG 1.203 EMDAP
 - Element 1 (PIRT), Element 2 (Assessment), and Element 4 (Applicability) remains same as LOCA EM
 - Initial LOCAPIRT addressed IORV
 - Element 3 (NRELAP5 Model) unique due to event classification

Differences from LOCA EM

- Minor methodology differences given AOO classification
- Key Acceptance Criteria
 - MCHFR \geq Limit (\geq 1.13 high flow range, \geq 1.37 low flow range)
- Conservatisms same as LOCA with exceptions:
 - Fuel properties still biased to maximize stored energy, but additional 15% bias removed
 - Limiting axial power shapes and radial peaking based on subchannel analysis
 - Moody choked flow model for 2-phase flow choking applied to initiating valve
 - Initial conditions biased to minimize MCHFR

Conclusions

- IORV is an extension of LOCA EM given similar transient phenomena and progression
 - PIRT, Assessment, and Applicability same as LOCA
- Minor methodology differences for AOO classification
 - Focused on conservative CHFR evaluation
- MCHFR occurs early in transient, then rapidly rises given increasing flow to power ratio
- Collapsed level in RPV remains above TAF

Acronyms

1-D	one-dimensional	HP	high pressure
3D	three-dimensional	HS	heat sink
AC	alternating current	HTP	heat transfer plate
ANS	American Nuclear Society	H2TS	hierarchical two-tiered scaling
CCFL	counter current flow limitation	IAB	inadvertent actuation block
CHF	critical heat flux	IET	integrated effects test
CNV	containment vessel	INL	Idaho National Laboratory
CVCS	chemical and volume control system	KATHY	Karlstein thermal-hydraulic test facility
DC	direct current	kW	kilowatt
DCA	Design Certification Application	LOCA	loss-of-coolant accident
DHRS	decay heat removal system	LTR	Licensing Topical Report
ECCS	emergency core cooling system	Max	maximum
EM	evaluation model	MCHFR	minimum critical heat flux ratio
EMDAP	evaluation model development and	Min	minimum
	assessment process	Mb/ft ^{2.} hr	pounds mass per square foot per hour
FW	feedwater	MPS	module protection system
FSAR	Final Safety Analysis Report	MSIV	main steam isolation valve
FOM	figure of merit	NIST-1	NuScale Integral System Test Facility
HL	hot leg	NPM	NuScale Power Module

Acronyms

- P&T pressure and temperature
- PCT peak cladding temperature
- PIRT phenomena identification and ranking table
- psi pounds per square inch
- psia pounds per square inch absolute
- PZR pressurizer
- QA Quality Assurance
- RCS reactor coolant system
- RG Regulatory Guide
- RRV reactor recirculation valve
- RPV reactor pressure vessel
- RVV reactor vent valve
- SG steam generator
- SET separate effects test
- SIET Società Informazioni Esperienze Termoidrauliche
- StDev standard deviation
- TAF top of active fuel

LO-0320-69143

March 4, 2020

Docket No. 52-048

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738

SUBJECT: NuScale Power, LLC Submittal of Presentation Materials Entitled "ACRS Full Committee Presentation: NuScale Topical Report – Non-Loss-of-Coolant Accident," PM-0320-69141, Revision 0

The purpose of this submittal is to provide presentation materials to the NRC for use during the upcoming Advisory Committee on Reactor Safeguards (ACRS) NuScale Full Committee Meeting on March 5, 2020. The materials support NuScale's presentation of the "Non-Loss-of-Coolant Accident" topical report.

The enclosure to this letter is the nonproprietary presentation entitled "ACRS Full Committee Presentation: NuScale Topical Report – Non-Loss-of-Coolant Accident," PM-0320-69141, Revision 0.

This letter makes no regulatory commitments and no revisions to any existing regulatory commitments.

If you have any questions, please contact Matthew Presson at 541-452-7531 or mpresson@nuscalepower.com.

Sincerely,

<./h

Zackary W. Rad Director, Regulatory Affairs NuScale Power, LLC

Distribution: Robert Taylor, NRC, OWFN-8H12 Michael Snodderly, NRC, OWFN-8H12 Christopher Brown, NRC, OWFN-8H12 Samuel Lee, NRC, OWFN-8H12 Gregory Cranston, NRC, OWFN-8H12 Michael Dudek, NRC, OWFN-8H12 Rani Franovich, NRC, OWFN-8H12

Enclosure: "ACRS Full Committee Presentation: NuScale Topical Report – Non-Loss-of-Coolant Accident," PM-0320-69141, Revision 0

Enclosure:

"ACRS Full Committee Presentation: NuScale Topical Report – Non-Loss-of-Coolant Accident," PM-0320-69141, Revision 0

NuScale Nonproprietary

ACRS Full Committee Presentation

NuScale Topical Report

Non-Loss-of-Coolant Accident

March 5, 2020

PM-0320-69141 Revision: 0

Copyright 2020 by NuScale Power, LLC.

Presenters

Ben Bristol Supervisor, System Thermal Hydraulics Meghan McCloskey Thermal Hydraulic Analyst

Matthew Presson

Licensing Project Manager

Paul Infanger Licensing Specialist

2 PM-0320-69141 Revision: 0

Outline

- Scope of non-LOCA LTR
- Non-LOCA events
 - Events and acceptance criteria
 - Interface to other methodologies
 - Factors controlling margin to acceptance criteria
- Development of non-LOCA EM
 - PIRT and gap analysis
 - Focus of NRELAP5 validation for non-LOCA
- General event analysis methodology
- Specific event analysis

Scope of Non-LOCA Topical Report

In Scope

- NRELAP5 system transient analysis of non-LOCA events
- Interface to subchannel and accident radiological analysis
- Short-term transient progression with DHRS cooling

Out of Scope

- SAFDLs evaluated in downstream subchannel analysis
- Accident radiological dose
 analysis
- Control rod ejection
- LOCA and valve opening events
- Peak containment pressure/temperature analysis
- Long term transient progression with DHRS
 - Riser uncovery
 - Return to power

Non-LOCA EM

EM applicable to NuScale Power Module plant design Applicable initiating events:

- Cooldown events
 - Decrease in FW temperature
 - Increase in FW flow
 - Increase in steam flow Inadvertent opening of SG relief or safety valve
 - Steam piping failures (postulated accident)
 - Loss of containment vacuum Containment flooding

Heatup events

- Loss of external load Turbine trip
- Loss of condenser vacuum
- Closure of MSIV
- Loss of non-emergency AC power
- Loss of normal FW flow
- Feedwater system pipe breaks (postulated accident)
- Inadvertent operation of DHRS

Reactivity events

- Uncontrolled bank withdrawal from subcritical
- Uncontrolled bank withdrawal at power
- Control rod misoperation
 - Single rod withdrawal
 - Control rod drop
- Inadvertent decrease in RCS boron concentration
- Inventory increase event
 - CVCS malfunction

Inventory decrease events

- Small line break outside containment (infrequent event)
- Steam generator tube failure (postulated accident)

NuScale unique event

Non-LOCA Event Acceptance Criteria

Description	AOO Acceptance Criteria	Infrequent Event Acceptance Criteria	Accident Acceptance Criteria	Analysis
Reactor Coolant System Pressure (P _{design} = 2100 psia)	≤ 110% of Design	≤ 120% of Design	≤ 120% of Design	Non-LOCA NRELAP5
Steam Generator Pressure (P _{design} = 2100 psia)	≤ 110% of Design	≤ 120% of Design	≤ 120% of Design	Non-LOCA NRELAP5
Minimum Critical Heat Flux Ratio	> Limit	lf limit exceed, fuel assumed failed ⁽¹⁾	If limit exceed, fuel assumed failed ⁽¹⁾	Subchannel
Maximum Fuel Centerline Temperature	< Limit	lf limit exceed, fuel assumed failed ⁽¹⁾	If limit exceed, fuel assumed failed ⁽¹⁾	Subchannel
Containment Integrity	< Limits (pressure, temperature)	< Limits (pressure, temperature)	< Limits (pressure, temperature)	Containment P/T analysis
Escalation of an AOO to an accident (AOO) or Consequential loss of system functionality (IE or accident)?	Νο	Νο	Νο	lf other acceptance criteria are met
Radiological Dose	Normal Operations	< Limit	< Limit	Normal or Accident radiological

(1) NuScale safety analysis methodologies developed to demonstrate fuel cladding integrity maintained.

PM-0320-69141 Revision: 0

Evaluation Models – General Non-LOCA Approach

Template #: 0000-21727-F01R5

Non-LOCA Events -Margin to Acceptance Criteria

Design characteristics governing non-LOCA event transient response and margin to acceptance criteria

- <u>MCHFR</u>: Limited by combination of high power, high pressure, high temperature conditions occurring around time of reactor trip, for reactivity insertion events
- Primary pressure: Protected by RSV lift
- <u>Secondary side pressure</u>: Limited by primary side temperature conditions
- <u>Radiological release</u>: MPS designed to rapidly detect and isolate based on measured conditions
- <u>Establishing a safe, stable condition</u>: MPS designed to trip, actuate DHRS to protect adequate inventory in at least 1 steam generator

Non-LOCA EM Development

- Non-LOCA evaluation model developed to perform conservative analyses, following intent of the RG 1.203 EMDAP and applying a graded approach
- Element 1 Establish applicable transients and acceptance criteria, develop non-LOCA PIRT
- Element 2, 3, 4
 - Leverage NRELAP5 development, NRELAP5 assessments performed during LOCA evaluation model development.
 - Gap analysis performed to evaluate how high ranked phenomena are addressed
 - Focused on differences in high ranked PIRT phenomena between LOCA and non-LOCA
 - Additional NRELAP5 code validation performed focused on DHRS and integral non-LOCA response
 - Suitably conservative initial and boundary conditions applied for non-LOCA analyses
 - Sensitivity calculations used to demonstrate factors controlling margin to acceptance criteria

Non-LOCA PIRT Development

Event Types		
Increased heat removal		
Decreased heat removal		
Reactivity anomaly		
Increase in RCS inventory		
Steam generator tube failure		

SSCs Considered in PIRT				
Reactor coolant system	Main feedwater system			
Containment vessel	Main steam system			
Decay heat removal system	Chemical volume control system			
Reactor pool	Containment evacuation system			

Phase	Identification	RCS Response	DHRS Operation *	PIRT Figures of merit
1	pre-trip transient	higher flow levels at full	inactive	CHFR
		power levels		RCS pressure
2	post-trip	transitional flow levels at	startup	CHFR
	transition	transitioned power levels		RCS, secondary,
				containment pressures
3	stable natural	lower flow levels at decay	fully effective	CHFR
	circulation	power levels		RCS mixture level
				Subcriticality

* If DHRS actuated by protection system

- Different non-LOCA events involve different plant systems and responses
- PIRT developed considering all non-LOCA event types and important SSCs
- Short-term response divided into 3 generic phases with associated FoM

NRELAP5 Applicability for Non-LOCA

After non-LOCA PIRT developed, gap analysis performed to determine how to address highranked phenomena:

- Validation performed as part of NRELAP5 assessment for LOCA evaluation model
- Additional validation or benchmark for non-LOCA
- Conservative input
- · Subchannel analysis

Key areas identified from gap analysis for short-term non-LOCA analysis:

- DHRS modeling and heat transfer
 - NRELAP5 validation against KAIST tests; NIST-1 SETs HP-03, HP-04
 - NPM sensitivity calculations
- Steam generator modeling and heat transfer
 - NRELAP5 validation against SIET-TF1, SIET-TF2 tests
 - NPM sensitivity calculations
- Reactivity event response
 - NRELAP5 benchmark against RETRAN-3D
- NPM non-LOCA integral response
 - NRELAP5 validation against NIST-1 IETs NLT-2a, NLT-2b, NLT-15p2

Overall conclusion: NRELAP5 code, with NPM system model, is applicable for calculation of the NPM non-LOCA system response

Non-LOCA Analysis Process

Topical report Section 4

- 1. Develop plant base model NRELAP5 input (geometry, control and protection systems, etc)
- 2. Adapt NRELAP5 base model as necessary for specific event analysis and desired initial conditions
- 3. Perform steady state and transient analysis calculations with NRELAP5
- 4. Evaluate results of transient analysis calculations:
 - Confirm margin to maximum RCS pressure acceptance criterion
 - Confirm margin to maximum SG pressure acceptance criterion
 - Confirm appropriate transient run time execution to demonstrate safe, stabilized condition achieved

- 5. Identify cases for subchannel analysis and extract boundary conditions (if applicable)
 - Conservative bias directions:
 - Maximum reactor power
 - Maximum core exit pressure
 - Maximum core inlet temperature
 - Minimum RCS flow rate
 - NRELAP5 CHF calculations for dummy hot rod may be used as a screening tool to assist analysts in determining limiting cases to be evaluated in downstream subchannel analysis
- 6. Identify cases for radiological analysis (if applicable)
 - Maximum mass release case
 - Maixmum iodine spiking case

Non-LOCA Methodology

General Methodology (Section 7.1):

- Steady-state conditions
- Treatment of plant controls
- Loss of power -
- Single failure
- Bounding reactivity parameter input
- Biasing of other parameters: initial conditions, valve characteristics, analytical limits and response times
- **Operator** action

Event-specific Methodology <u>(Section 7.2)</u>

- Description of event initiation and progression
- Acceptance criteria 'of interest'
- Limiting single failure, loss of power scenarios, or need for sensitivity calculations
- Initial condition biases and conservatisms, or need for sensitivity calculations
- Tabulated representative results of sensitivity calculations

Example analysis results provided in Section 8

Conclusions

- Non-LOCA system transient evaluation model developed following a graded approach in accordance with guidance provided in RG 1.203
- Applies to NPM-type plant design natural circulation water reactor with helical coil SG and integral pressurizer
- NRELAP5 used to simulate the system thermalhydraulic response
- Demonstrate primary and secondary pressure acceptance criteria are met
- Demonstrate safe, stabilized condition achieved
- System transient results provide boundary conditions to downstream subchannel and radiological analyses

Presentation to the ACRS Full Committee Staff Review of NuScale Topical Report

TR-0716-50350, Revision 1, "Rod Ejection Accident Methodology"

TR-0516-49422, "Loss-of-Coolant Accident Analysis Methodology"

TR-0516-49416, "Non-Loss-of-Coolant Accident Analysis Methodology"

Presenters:

Chris Van Wert – Senior Reactor Systems Engineer, Office Nuclear Reactor Regulation Shanlai Lu – Senior Nuclear Engineer, Office Nuclear Reactor Regulation Alex Siwy – Reactor Systems Engineer, Office Nuclear Reactor Regulation

March 5, 2020

(Open Session)

Presentation to the ACRS Full Committee Staff Review of NuScale Topical Report

TR-0716-50350, REVISION 1

"Rod Ejection Accident Methodology"

Presenters:

Chris Van Wert – Senior Reactor Systems Engineer, Office of Nuclear Reactor Regulation

March 5, 2020

(Open Session)

Non-Proprietary

NRC Technical Review Areas/Contributors

- NUCLEAR METHODS, SYSTEMS & NEW REACTORS BRANCH / NRR: Rebecca Patton (BC)
- ADVANCED REACTOR TECHNICAL BRANCH / NRR: Jeff Schmidt Chris Van Wert

Staff Review Timeline

TR-0716-50350, "ROD EJECTION ACCIDENT METHODOLOGY"

- NuScale submitted Topical Report (TR)-0716-50350, "Rod Ejection Accident Methodology," Revision 1, on November 15, 2019, (Agencywide Documents Access and Management System (ADAMS) Accession No. ML19319C684).
- Staff briefed advisory committee on reactor safeguards (ACRS) subcommittee on February 19, 2020.
- Staff plans to issue its final SER in March 2020.
- Staff plans to publish the "-A" (approved) version of the TR prior to finishing Phase 6 of the NuScale DCA.

Staff Review

- The staff's review included:
 - Evaluation of the analysis criteria
 - Evaluation of the code suite used within the analysis methodology
 - Evaluation of the plant and cycle assumptions used in the analysis methodology
 - Evaluation of the rod ejection accident analysis methodology
- The staff's review does <u>not</u> include the licensing basis Reactivity Initiated Accident (RIA) analysis for the NuScale Design Certification Application (DCA)
 - Contained in Section 15.4.8 of the Safety Evaluation Report (SER) for the NuScale Design Certification
- During its review, staff audited calculations and other supporting information

Analysis Criteria

- The staff reviewed the proposed analysis criteria
 - Reactor Coolant System Pressure
 - Fuel Cladding Failure
 - Core Coolability
 - Fission Product
- The staff concluded that the proposed criteria either followed or were conservative to the guidance provided in Standard Review Plan (SRP) Section 4.2 Appendix B
- Staff also notes that DG-1327, "Pressurized Water Reactor Control Rod Ejection and Boiling Water Reactor Control Rod Drop Accidents" is currently being developed.
 - Draft guidance is not staff requirements, but the staff notes that the more stringent internal limits imposed by NuScale would not exceed the draft guidance limits as they currently stand

Evaluation of Code Suite

- The NuScale REA analysis is based on the following codes and packages:
 - CASMO5/SIMULATE5: provides reactor core physics parameters
 - SIMULATE-3K: 3-dimensional nodal reactor kinetics code which supplies power input to downstream analyses
 - NRELAP5: transient system response
 - VIPRE-01: subchannel analysis
- Applicability of CASMO5, SIMULATE5, NRELAP5, and VIPRE-01 has been reviewed and approved for NuScale in TR-0616-48793-P-A, Revision 1, "Nuclear Analysis Codes and Methods Qualification".
- The validation of SIMULATE-3K is included as part of TR-0716-50350 and is therefore included in the staff's review.
 - Staff concluded that NuScale successfully validated S3K against experimental data and the NEACRP control rod ejection problem computational benchmark

Plant and Cycle Assumptions

- The staff reviewed the plant and cycle assumptions used in the NuScale rod ejection analysis methodology
 - The staff determined that the methodology included ranges in power, time in cycle, and core power that covered a wide range of operating conditions and would capture the most limiting condition
 - The staff agreed that the assumptions associated with the automatic system response of non-safety systems were conservative
 - The staff determined that the methodology regarding the timing of loss of AC power conservatively biases the reactor coolant system (RCS) pressure evaluation

Rod Ejection Accident Analysis Methodology

- The staff reviewed the analysis methodology including steady-state initialization, dynamic core response, dynamic system response, subchannel critical heat flux evaluation, and the adiabatic heatup fuel response
- The staff's review included the methodology by which information is passed between codes, application of uncertainties, modelling assumptions used for inputs, and handling of reactor trips.
- The staff concluded that the methodology for calculating the system response, subchannel, and fuel response analyses was conservative and acceptable for demonstrating compliance with the acceptance criteria

Staff SER Conclusions

- The staff concludes that the NuScale criteria used for evaluating REA either follows or is more conservative than staff guidance
- The staff concludes that the methodology accounts for the various potential operating conditions and time in life, and conservatively addresses uncertainties and plant conditions
- The staff finds the use of TR-0716-50350-P acceptable for evaluating reactivity initiated accidents for the NuScale plant design.

Questions?

Presentation to the ACRS Full Committee Staff Review of NuScale Topical Report

TR-0516-49422

"Loss-of-Coolant Accident Analysis Methodology"

Presenters:

Dr. Shanlai Lu – Senior Nuclear Engineer, Office of Nuclear Reactor Regulation

March 5, 2020

(Open Session)

Non-Proprietary

Review Team

• NRC

Mr. Carl Thurston Dr. Peter Lien Dr. Weidong Wang Mr. Ron Harrington

Dr. Shanlai Lu

Mr. Antonio Barrett

Dr. Tim Drzewiecki

Dr. Syed Haider

NuMark Associates

Mr. Marvin SmithDr. Donald RoweDr. Leonard WardMr. Bert Dunn

• Brook Haven National Lab

Dr. Upendra Rohatgi

Design Features And Scope

3 RVVs 2 RRVs each its own IAB, trip valve and trip reset valve

Containment functions as part of ECCS

- A methodology to analyze LOCA
- A methodology to analyze IORV
- Support Peak Containment Pressure, Non-LOCA TR and Long Term Cooling Analysis

Applicable Regulation:

10CFR50.46 Appendix K

Review Approaches

 Early Engagement And Extensive Audits Through Electronic Reading Room

Pre-application engagement

Initial on-site visits and audit meetings

Two phases of continuing audits throughout review period

• Issues Raised:

45 RAI Questions

210 Audit Issues

• Staff performed sensitivity analysis with NRELAP5 and confirmatory analysis with TRACE

Review Areas

- Phenomena Identification and Ranking Table
 Following CSAU method, NuScale identified twenty-one phenomena as important to capture in the LOCA model
- NRELAP5 code is used to model NPM
 Steam Generator Model, Containment Wall Condensation Model, Critical Flow Model, CHF Correlations. NPM Model and Nodalization
- NIST Tests, Scaling and Distortion Analysis
 A new scaling analysis approach was used with distortion analysis to justify the applicability of NIST IETs
- IORV Analysis Methodology Two different sets of CHF correlations are used for low flow and high flow conditions. STERN and KATHY facilities provide specific fuel CHF databases

NRC Sensitivity & Confirmatory Analyses

- Separate Effect Tests (SETs):
 - KAIST model: DHRS tube condensation experiment, non-LOCA
 - SIET model: helical coil steam generator tube/shell side heat transfer, non-LOCA
 - NIST-1 model: high pressure condensation test (HP-02)
- Integral Effect Tests (IETs):
 - NIST-1 models: loss of coolant accident (LOCA) and inadvertent emergency core cooling system (ECCS) operations
 NPM models: licensing calculation confirmation and sensitivity studies, LOCA, non-LOCA
- Both TRACE and NRELAP5 codes were used. More than fifty five sets of calculations were performed. RAIs were issued and NRELAP5 code was updated from V1.3 to V1.4. Good agreements were obtained with NuScale analysis results

Conclusions

- NuScale LOCA EM and NRELAP5 V1.4 are approved for determining critical heat flux and collapsed liquid level for NuScale reactor in compliance with 10CFR 50.46 Appendix K requirements
- NRELAP5 computer code V1.4 is also determined applicable to predict containment pressure and temperature subject to specific modeling requirements
- The CHF modeling is approved subject to limitations and conditions

Questions?

Presentation to the ACRS Full Committee Staff Review of NuScale Topical Report

TR-0516-49416

"Non-Loss-of-Coolant Accident Analysis Methodology"

Presenters:

March 5, 2020

(Open Session)

Non-Proprietary

NRC Staff Review Team

 NRC Technical Reviewers: Antonio Barrett, NRR Jeff Schmidt, NRR Alex Siwy, NRR Ray Skarda, RES Peter Lien, RES Ron Harrington, RES Jason Thompson, RES Consultants (Energy Research, Inc.): Mohsen Khatib-Rahbar Walter Tauche (subcontractor) Morgan Libby Michael Zavisca

Review Process Overview

- Staff conducted its review in accordance with applicable NRC regulations and guidance
- Safety evaluation report (SER) is based on TR-0516-49416, Revision 2
- Two audits conducted in four phases
 - About 140 audit issues
 - Helped to confirm staff's understanding and inform requests for additional information (RAIs)
- 33 RAI questions issued
 - All resolved and responses incorporated into TR-0516-49416, Revision 2, as appropriate

Non-LOCA Methodology Scope

- Provides a methodology for performing system transient analysis of specified non-LOCA design-basis events for the NuScale Power Module (NPM)
- Evaluates primary and secondary pressure figures of merit
- Includes interfaces with other methodologies, both upstream and downstream
- Covers time frame during which mixture level is above top of riser and natural circulation is maintained
- Includes certain event-specific assumptions and conservative bias directions for initial conditions
- The staff is evaluating some items discussed in the TR as part of a designspecific application of the methodology

Key Design Features and Models for Non-LOCA

- Staff focused its review on several key features of the NuScale design and their representation in the NRELAP5 model:
 - Natural circulation design
 - Helical coil steam generators (SGs)
 - Transfer heat from reactor coolant system (RCS) to feedwater
 - Passive decay heat removal system (DHRS) condensers
 - Transfer decay heat to reactor pool using the SGs
 - Evacuated containment vessel

Applicability of NRELAP5 to Non-LOCA Analysis

- The applicant developed the non-LOCA evaluation model (EM) from the LOCA EM using graded approach described in RG 1.203
- The staff reviewed the applicant's non-LOCA phenomena identification and ranking table (PIRT) to ensure that important phenomena were identified and captured in the non-LOCA TR
- The staff reviewed how the applicant addressed highly ranked non-LOCA phenomena:
 - Separate effects tests: NIST HP-03, HP-04, KAIST, and SIET
 - Integral effects tests: NIST NLT-02a, NLT-02b, NLT-15p2
 - Code-to-code benchmark against RETRAN-3D
 - Use of bounding input values
 - Other analysis methodologies (e.g., subchannel)

Significant Review Issue – Multi-Dimensional Flow Effects

- Staff requested additional justification for how multi-dimensional flow effects in the RCS and thermal stratification in the reactor pool are addressed (RAI 9351, Question 15.00.02-31)
- Staff's major concerns were the potential for reduced RCS flow rates and degradation in DHRS performance
- The applicant's RAI response resolved the issue, as supported by the staff audit of underlying calculation notes and audit discussions with the applicant

NRELAP5 Assessments Against Test Data

The staff finds that:

- The KAIST, NIST-1 HP-03, and NIST-1 HP-04 tests validate the NRELAP5 DHRS models
- The SIET TF-1 tests validated steam generator secondary side phenomena, but the staff had concerns about the ability of the SIET TF-2 tests to fully validate primary-to-secondary heat transfer
- The NLT-02a, NLT-02b, and NLT-15p2 integral effects tests together demonstrate applicability of NRELAP5 to evaluate non-LOCA transients
- The benchmark against RETRAN-3D provides confidence that the NRELAP5 point kinetics model produces results similar to those from an NRC-approved code

Significant Review Issues – NRELAP5 Assessments

- The applicant removed steam generator and DHRS heat transfer biases from the methodology in response to staff questions about:
 - Steam generator heat transfer uncertainty based on the SIET TF-2 tests, associated with DCA Chapter 15 Unclear Open Item 15.0.2-4 (RAI 9466, Question 15.00.02-6)
 - DHRS nodalization (RAI 9374, Question 15.00.02-22)
- The applicant provided justification that non-LOCA figures of merit are not sensitive to these biases
- Based on its review of the justification and audits of underlying calculations, the staff finds that removal of the heat transfer biases is supported for NPM model Revision 2
- The staff imposed the associated Limitation/Condition 3

General and Event-Specific Non-LOCA Methodology

- The staff reviewed the overall non-LOCA analysis process and finds that it provides an acceptable analysis framework
- The staff finds that the deterministic approach using conservative or bounding inputs, initial conditions, and assumptions is acceptable for conservative calculations of non-LOCA events
- The staff reviewed each event-specific methodology and ensured that they will ensure conservative results when implemented
- The staff reviewed the representative non-LOCA event calculations in the TR and concludes that they illustrate how the non-LOCA methodology can be used for conservative transient analyses

Staff SER Limitation and Condition Summary

- I. Future changes to LOCA TR must be assessed for impacts to Non-LOCA EM
- II. Non-LOCA EM scope limited to non-LOCA events defined in the TR prior to the time of riser uncovery for evaluation of primary and secondary pressures and potential for loss of system functionality
- III. Additional justification must be provided for elimination of SG and DHRS heat transfer biases if applying methodology to a design other than NPM model Revision 2 or a model update made pursuant to a change process specifically approved by NRC for changes to the NPM model
- IV. Any credit for secondary MSIVs (not safety-related) must be approved through design review
- V. Event-specific electrical power assumptions, single failures, and operator actions must be approved through design review
- VI. Non-LOCA EM use limited to NRELAP5 v1.4 and NPM model Revision 2, unless changes are made pursuant to a change process specifically approved by the NRC staff for changes to NRELAP5 and the NPM model

Conclusions

- All technical issues from the course of the review have been resolved
- Use of NRELAP5 with the non-LOCA methodology described in the TR is acceptable for the non-LOCA safety analyses of the NuScale NPM design subject to the specified limitations and conditions

Acronyms

- ACRS Advisory Committee on Reactor Safeguards
- DCA design certification application
- DHRS decay heat removal system
- EM evaluation model
- LOCA loss-of-coolant accident
- NPM NuScale Power Module
- PIRT phenomena identification and ranking table
- RAI request for additional information
- RCS reactor coolant system
- RIA Reactivity Initiated Accident
- SER safety evaluation report
- SG steam generator
- TR topical report

