QUAD-CITIES NUCLEAR POWER STATION

UNITS 1 AND 2

MONTHLY PERFORMANCE REPORT

JUNE 1984

COMMONWEALTH EDISON COMPANY

AND

10WA-1LLINOIS GAS & ELECTRIC COMPANY NRC DOCKET NOS. 50-254 AND 50-265 LICENSE NOS. DPR-29 AND DPR-30

IE 24

TABLE OF CONTENTS

- 1. Introduction
- 11. Summary of Operating Experience
 - A. Unit One
 - B. Unit Two
- 111. Plant or Procedure Changes, Tests, Experiments, and Safety Related Maintenance
 - A. Amendments to Facility License or Technical Specifications
 - B. Facility or Procedure Changes Requiring NRC Approval
 - C. Tests and Experiments Requiring NRC Approval
 - D. Corrective Maintenance of Safety Related Equipment
 - IV. Licensee Event Reports
 - V. Data Tabulations
 - A. Operating Data Report
 - B. Average Daily Unit Power Level
 - C. Unit Shutdowns and Power Reductions

V1. Unique Reporting Requirements

- A. Main Steam Relief Valve Operations
- B. Control Rod Drive Scram Timing Data
- VII. Refueling Information
- VIII. Glossary

1. INTRODUCTION

Quad-Cities Nuclear Power Station is composed of two Boiling Water Reactors, each with a Maximum Dependable Capacity of 769 MWe Net, located in Cordova, Illinois. The Station is jointly owned by Commonwealth Edison Company and Iowa-Illinois Gas & Electric Company. The Nuclear Steam Supply Systems are General Electric Company Boiling Water Reactors. The Architect/Engineer was Sargent & Luedy, Incorporated, and the primary construction contractor was United Engineers & Constructors. The Mississippi River is the condenser cooling water source. The plant is subject to license numbers DPR-29 and DPR-30, issued October 1, 1971, and March 21, 1972, respectively; pursuant to Docket Numbers 50-254 and 50-265. The date of initial Reactor criticalities for Units One and Two, respectively were October 18, 1971, and April 26, 1972. Commercial generation of power began on February 18, 1973 for Unit One and March 10, 1973 for Unit Two.

This report was compiled by Becky Brown and Dave Kimler, telephone number 309-654-2241, extensions 127 and 192.

11. SUMMARY OF OPERATING EXPERIENCE

A. Unit One

Unit One remained shutdown throughout the month for End of Cycle Seven Refueling and Maintenance.

B. Unit Two

June 1-10: Unit Two began the month reducing load in preparation for unit shutdown. On June 2, at 0305 hours, the Turbine was tripped and at 0400 hours the unit was scrammed to perform maintenance on an oil leak in Transformer 21. On June 4, at 0111 hours, the Keactor was critical and at 1250 hours the unit began a normal load increase to full power. On June 6, at 0505 hours, load was dropped to 600 MWe to perform Control Rod maneuvers. At 0700 hours the unit began a normal load increase to full power. On June 10, at 0020 hours, load was dropped to 700 MWe to perform bi-weekly testing of the Main Steam Isolation Valves. At 0150 hours the unit scrammed due to a "FAST" closure of the #4 Control Valve during testing. At 1955 hours the Generator was back on-line at 124 MWe.

June 11-23: On June 11, at 1650 hours, load was reduced at 20 MWe/hour to allow Maintenance to perform repairs on a Feedwater Heater Valve. At 0430 hours, on June 12, the unit began a normal load increase to full power. On June 13, at 0000 hours, load was dropped to 600 MWe to perform Control Rod maneuvers. At 0330 hours a normal increase to full power was initiated. On June 16, at 2355 hours, load was dropped to 700 MWe to perform weekly Turbine tests. At 0230 hours, the unit began a normal load increase to full power.

June 24-30: On June 24, at 0100 hours, load was dropped to 700 MWe to perform weekly Turbine tests. At 0230 hours the unit began a normal load increase to full power. On June 30, at 2200 hours, load was dropped to 700 MWe to perform weekly Turbine tests.

III. PLANT OR PROCEDURE CHANGES, TESTS, EXPERIMENTS, AND SAFETY RELATED MAINTENANCE

A. Amendments to Facility License or Technical Specifications

There were no Amendments to the Facility License or Technical Specifications for the reporting period.

B. Facility or Procedure Changes Requiring NRC Approval

There were no Facility or Procedure changes requiring NRC approval for the reporting period.

C. Tests and Experiments Requiring NRC Approval

There were no Tests or Experiments requiring NRC approval for the reporting period.

D. Corrective Maintenance of Safety Related Equipment

The following represents a tabular summary of the major safety related maintenance performed on Unit One and Unit Two during the reporting period. This summary includes the following headings: Work Request Numbers, LER Numbers, Components, Cause of Malfunctions, Results and Effects on Safe Operation, and Action Taken to Prevent Repetition.

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q26819		4KV/480V Transformers 18 & 19	Transformers 18 & 19 were inspected for faulty connections using thermovision camera as response to NRC Bulletin IE 83-37.	No "hot" spots or abnormalities were found, therefore, there are no safety implications.	No further action is being considered for Unit 1. Transformers 28 & 29 will also be inspected.
Q33802		MO 1-202-4A Valve	Valve disc was not completely seating.	Valve has no PCi function. In case of a pipe break, valve would have limited flow to 5 gpm.	Stem was replaced and disc was polished. No further corrective action is being considered.
Q34098		Reactor Pressure Permissive Switch for Core Spray Injection 1-263-52B was inoperable	Micro-switch contacts failed OPEN.	The Reactor was shutdown at the time of discovery and redundant Core Spray System was operable.	The micro-switch was replaced.
Q34538	84-5	Weld Repair Leak on 'H' Jet Pump Riser Weld 02H-S3	Unknown. Suspect IGSCC induced axial indication worsened by IdSI.	Indication was not 100%.through-wall until treated with IHSI.	The crack was repaired, and then a weld overlay was performed as designed by Nutech Engineers, Inc.

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q34539	84-5	Weld 02H-S4 on 'H' Jet Pump Riser	Unknown. Suspect IGSCC induced axial indications.	The indication was not 100% through- wall until treated with IHSI.	Repaired pipe by peening and welding, then weld overlay was performed as designed by Nutech Engineers, Inc
Q34541	84-5	Weld 02J-S4 on 'J' Jet Pump Riser	Unknown. Suspect IGSCC induced axial and circumferential indications.	Indication was not 100% through-wall until treated with IHSI.	Repaired leak by welding and then weld overlay was performed as designed by Nutech Engineers, Inc.
Q34544	84-5	Weld 02J-F6 on 'J' Jet Pump Riser	Unknown. Suspect IGSCC induced axial indications.	The crack indications were nearly 100% but the maximum axial indication was 1½ inches long.	Repaired leak by welding and then weld overlay was performed as designed by Nutech Engineers, Inc.
Q34718	84-5	Weld 02J-S3 on 'J' Jet Pump Riser	Unknown. Suspect IGSCC induced axial and circumferential indications.	Indication was not 100% through-wall until treated with IHSI.	Repaired leak by welding and then weld overlay was performed as designed by Nutech Engineers, Inc.
Q34887	84-5	Weld 02B-S7 on 0-Ring Header	Unknown. Suspect IGSCC induced axial indication.	Indication was not 100% through-wall until treated using IHSI.	Leak was repaired by welding, then a weld overlay was performed as designed by Nutech Engineers, Inc.

UNIT ONE MAINTENANCE SUMMARY

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q35641		Reset Lift Pressure of 1B Standby Liquid Control Relief Valve 1-1105B	Metallic foreign material prevented valve from seating and subsequently system pressure could not reach the required 1400 to 1490 psig.	The latest monthly operating flow surveillance was satisfactory. The unit was shutdown and the 1A Standby Liquid Control pump could achieve the required 1400 psig. Therefore, the safety implications of this occurrence are minimal.	The relief valve was replaced and successfully tested six times.

W.R. NUMBER	LER NUMBER	COMPONENT	CAUSE OF MALFUNCTION	RESULTS & EFFECTS ON SAFE OPERATION	ACTION TAKEN TO PREVENT REPETITION
Q30722		Replace Elbow on Reactor Water Clean-up Line 2-1202-6"A	During the Fall 1983 ISI, and IGSCC was identified and a weld repair could not be accomplished; therefore, the elbow was replaced.	Indication was not 100% through-wall.	Elbow was replaced as designed by Nutech Engineers, Inc.
Q31042	83-21/01T	Weld 2BS-F7 on 'B' Recirculation Suction Piping	Unknown. Suspect IGSCC induced circumferential indication.	Indication was not 100% through-wall.	Weld was treated using IHSI then weld overlay was performed as designed by Nutech Engineers, Inc.
Q35387		Repalced PCI Relay 2-595- 104D	Coil on relay was burnt out.	This relay is one of four arranged in one- out-of-two-twice logic. Failure of this relay did not prevent or cause a Group II isolation.	Replaced the relay.

IV. LICENSEE EVENT REPORTS

The following is a tabular summary of all licensee count reports for Quad-Cities Units One and Two occurring during the reporting period, pursuant to the reportable occurrence reporting requirements as set forth in sections 6.6.B.1. and 6.6.B.2. of the Technical Specifications.

	Unit One	
Licensee Event Report Number	Date	Title of Occurrence
84-10	5-30-84	IRM Reactor Scram
84-11	6-15-84	Reactor Scram
84-12	6-22-84	RHR Service Water Vault Sump Pump Discharge Check Valves Leak Excessively
	Unit Two	cheessivery
84-6	6-1-84	Tardy Weekly Surveillance
84-7	6-10-84	Reactor Scram #4 Turbine Control Valve

V. DATA TABULATIONS

The following data tabulations are presented in this report:

- A. Operating Data Report
- B. Average Daily Unit Power Level
- C. Unit Shutdowns and Power Reductions

OPERATING DATA REPORT

DOCKET NO. 50-254

UNIT ONE

DATEJULY 9

COMPLETED BYDAVE KIMLER

TELEPHONE309-654-2241X192

OPERITING STATUS

0000 060184

1. Reporting period: 2400 063084 Gross hours in reporting period: 720

2. Currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769* Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net): NA

4. Reasons for restriction (if any):

		This Month	Yr.to Date	Cumulative
5.	Number of hours reactor was critical	0.0	1562.1	85117.7
6.	Reactor reserve shutdown hours	0.0	0,0	3421.9
7.	Hours generator on line	0.0	1561.2	81909.1
8.	Unit reserve shutdown hours.	0.0	0.0	909.2
9.	Gross thermal energy generated(MWH)	0	3659732	168766438
i0.	Gross electrical energy generated(MWH)	0	1213148	54471764
11.	Net electrical energy generated(MWH)	-2634	1147630	50753597
12.	Reactor service factor	0.0	35.8	80.0
13.	Reactor availability factor	<u>.0</u>	35.8	83.2
14.	Unit service factor	0.0	35.7	77.0
15.	Unit availability factor	0.0	35,7	77.8
16.	Unit capacity factor (Using MDC)	5	34.2	62.0
17.	Unit capacity factor (Using Des.MWe)	5	33.3	60,4
18.	Unit forced outage rate	0.0	0.0	6.1
19,	Shutdowns scheduled over next 6 months	(Type,Date,	and Duration	of each):
20.	If shutdown at end of report period,est	timated date	of startup	7-30-84

#The MDC may be lower than 769 MWe during periods of high ambient temperature due to the thermal performance of the spray canal.

\$UNOFFICIAL COMPANY NUMBERS ARE USED IN THIS REPORT

OPERATING DATA REPORT

DOCKET NO. 50-265

UNIT_____TWO

DATEJULY 9

COMPLETED BYDAVE KIMLER

TELEPHONE309-654-2241X192

OPERATING STATUS

0000 060184

1. Reporting period: 2400 063084 Gross hours in reporting period: 720

2. Currently authorized power level (MWt): 2511 Max.Depend capacity (MWe-Net): 769* Design electrical rating (MWe-Net): 789

3. Power level to which restricted(if any)(MWe-Net): NA

4. Reasons for restriction (if any):

		This Month	Yr.to Date	Cumulative
5.	Number of hours reactor was critical	656.5	2821.1	80738.6
ε.	Reactor reserve shutdown hours	0.0	0.0	2985.8
7.	Hours generator on line	644.2	2711.0	77920.8
8.	Unit reserve shutdown hours,	0.0	0.0	702.9
9,	Gross thermal energy generated(MWH)	1482529	6279983	161662071
i0.	Gross electrical energy generated(MWH)	474417	2038706	51474486
1. j	Net electrical energy generated(MWH)	453336	1940177	48274237
12.	Reactor service factor	91.2	64.6	76.5
13.	Reactor availability factor	91.2	64,6	79.4
14.	Unit service factor	89.5	62.1	73.9
15.	Unit availability factor	89.5	62.1	74,5
1.6.	Unit capacity factor (Using MDC)	81.9	57.8	59.5
17.	Unit capacity factor (Using Des.MWe)	79.8	56.3	58.0
18.	Unit forced outage rate	2.7	5.2	8.5

19. Shutdowns scheduled over next 6 months (Type, Date, and Duration of each):

20. If shutdown at end of report period, estimated date of startup NA

The MDC way be lower than 769 MWe during periods of high ambient temperature due to the thermal performance of the spray canal.

#UNOFFICIAL COMPANY NUMBERS ARE USED IN THIS REPORT

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

	DOCKET NO50-254
	UNITONE
	DATEJULY 9
	COMPLETED BYDAVE KIMLER
	TELEPHONE309-654-2241X192
MONTHJune 1984	
DAY AVERAGE DAILY POWER LEVEL (MWe-Net)	DAY AVERAGE DAILY POWER LEVE (MWe-Net)
1	17
22.6	18
3	19
4	203.2
5	21
6	22
7,	23
83.0	24
9	25
1.0	26
ii. <u>-2.8</u>	27
12	28
13	29
14	30
15	
16	

12.

14.

100

INSTRUCTIONS On this form, list the average daily unit power level in MWe-Net for each day in the reporting month.Compute to the nearest whole megawatt. These figures will be used to plot graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 180% line (or the restricted power level 1.5e). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO. 50-265
UNITTWO
DATEJULY 9
COMPLETED BYDAVE KIMLER
TELEPHONE309-654-2241X192
DAY AVERAGE DAILY POWER LEVE (MWe-Net)
17764.2
18. 763.3
19759.8
20. 759.2
21. 760.3
22759.2
23762.5
24. 758.1
25. 762.7
26. 761.9
27751.0
28771.8
29. 779.8
30. 743.5

759.0

16.

INSTRUCTIONS On this form, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the

nearest whole megawatt. These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the restricted power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly

D/5A DCKET NO NIT NAME			Unit 1		UNIT	APPE SHUTDOWNS A	NDIX D ND POWE	R REDUCTION	QTP 300-S13 Revision 6 August 1982 COMPLETED BY D Kimler
TE	July	10, 19	84		REF	ORT MONTH	JUNE	984	TELEPHONE 309-654-2241
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS
84-14	840306	S	720	c	1		RC	FUELXX	Unit One remains shutdown for End of Cycle Seven Refueling and Maintenance
									APPROVED
		1.1							AUG 1 6 1982

1.2.1

VCUSK

build build build

10

D/5A DCKET NO.	050	-265			UNIT	APPI SHUTDOWNS /	ENDIX D AND POW	QTP 300-S13 Revision 6 August 1982			
IT NAME	Quad-C	ities	Unit 2						COMPLETED BY D Kimler		
ATE	July 1	0, 198	4		REP	ORT MONTH	JUNE	1984	TELEPHONE 309-654-2241		
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT CODE	CORRECTIVE ACTIONS/COMMENTS		
84-19	840601	s	6.5	В	5		RC	CONROD	Reduced load for rod maneuver in preparation for unit shutdown		
84-20	840602	S	57.8	В	2		ED	TRANSF	Manually scrammed unit to repair oil leak on Transformer 21		
84-21	840606	S	2.0	н	5		RC	CONROD	Reduced load to perform Control Rod maneuver per Nuclear Engineer		
84-22	840610	S	1.1	В	5		CD	VALVEX	Reduced load to perform bi-weekly Main Steam Isolation Valve test		
84-23	840610	F	18.1	A	3		cc	VALVEX	Reactor scram due to "FAST" closure of #4 Control Valve during testing		
84-24	840611	S	11.7	в	5		СН	VALVEX	Reduced load to allow Maintenance to work on Feedwater Heater Valve		
84-25	840613	S	0.5	н	5		RC	CONROD	Reduced load to perform Control Rod maneuver per Nuclear Engineer		
									APPROVED		
									AUG 1 6 1982		

- 11 m

VCUSK

hand hand h

/5A CKET NO IT NAME TE									August 1982 COMPLETED BY D_Kimler		
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM	COMPONENT	CORRECTIVE ACTIONS/COMMENTS		
84-26	840616	s	2.5	В	5		НА	TURBIN	Reduced load to perform weekly Turbine tests		
84-27	840624	S	1.5	В	5		HA	TURBIN	Reduced load to perform weekly Turbine tests		
34-28	840630	S	2.0	В	5		НА	TURBIN	Reduced load to perform weekly Turbine tests		
									APPROVED		
									AUG 1 6 1982		

100

VCUSK

hand hand hand hand

VI. UNIQUE REPORTING REQUIREMENTS

The following items are included in this report based on prior commitments to the commission:

A. Main Steam Relief Valve Operations

There were no Main Steam Relief Valve Operations for the reporting period.

B. Control Rod Drive Scram Timing Data for Units One and Two

There was no Control Rod Drive Scram Timing Data for Units One and Two for the reporting period.

VII. REFUELING INFORMATION

The following information about future reloads at Quad-Cities Station was requested in a January 26, 1978, licensing memorandum (78-24) from D. E. O'Brien to C. Reed, et al., titled "Dresden, Quad-Cities, and Zion Station--NRC Request for Refueling Information", dated January 18, 1978.

QUAD-CITIES REFUELING INFORMATION REQUEST

and the second s

ł

[

I

I

1

1

QTP 300-S32 Revision 1 March 1978

* 1.	Unit: Q1 Reload: 7 Sycle.	8		
	cycle.	Refueling Outage		
2.	Scheduled date for next refueling shutdown:	Currently in Progress		
3.	Scheduled date for restart following refueling:	7-30-84		
4.	Will refueling or resumption of operation thereafter specification change or other license amendment: Yes Specification changes have been submitted to include MA the reload fuel types and extending MAPLHGR curve for B	Preparatory Technical APLHGR curve for one of		
5.	Scheduled date(s) for submitting proposed licensing information:	action and supporting		
	Technical Specification change has been submitted Fabru	ary 21, 1984.		
6.	<pre>Important licensing considerations associated with r 'different fuel design or supplier, unreviewed design methods, significant changes in fuel design, new ope 1) All new fuel assemblies will be GE7B-type (barrier exposure design).</pre>	or performance analysis rating procedures:		
	 A generic methodology was used for the analysis of Accident and Rod Withdrawal Error events. 	the Control Rod Drop		
	 Four Barrier Lead Test Assemblies will be re-inser information on the effects of extended exposures. 	ted to gather		
7.	The number of fuel assemblies.			
	a. Number of assemblies in core:	724		
	b. Number of assemblies in spent fuel pool:	1926		
8.	The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:			
	a. Licensed storage capacity for spent fue':	3657		
	b. Planned increase in licensed storage:	0		
9.	The projected date of the last refueling that can be spent fuel pool assuming the present licensed capacit	discharged to the ty: 2003		

D

APR 2 0 1973

Q. C. O. S. R.

QUAD-CITIES REFUELING INFORMATION REQUEST

QTP 300-532 Revision 1 March 1978

1.	Unit:	Q2	Reload: 7	Cycle:	8	
2.	Scheduled	date	for next refueling shutdo	wn:	3-18-85	
3.	Scheduled	date	for restart following ref	ueling:	5-26-85	

4. Will refueling or resumption of operation thereafter require a technical specification change or other license amendment:

Not as yet determined.

1

I

1

C

1 -

5. Scheduled date(s) for submitting proposed licensing action and supporting information:

January 18, 1985, if licensing action required.

- 6. Important licensing considerations associated with refueling, e.g., new or 'different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:
 - 1) All new fuel assemblies will be GE7B-type (barrier clad, extended exposure design).
 - 2) A generic methodology was used for the analysis of the Control Rod Drop Accident and Rod Withdrawal Error events.
- 7. The number of fuel assemblies.

a.

Number of assemblies	in core:	724
Number of assemblies	in spent fuel pool:	414

b. Number of as:

8. The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

a.	Licensed storage capacity for spent fuel:	3897
ь.	Planned increase in licensed storage:	0

9. The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity: 2003

-1-

APPROVED

APR 2 0 1978

Q. C. O. S. R.

VIII. GLOSSARY

The following abbreviations which may have been used in the Mouthly Report, are defined below:

ACAD/CAM	-	Atmospheric Containment Atmospheric Dilution/Containment
		Atmospheric Monitoring
ANSI	-	American National Standards Institute
APRM	-	Average Power Range Monitor
ATWS	-	Anticipated Transient Without Scram
BWR	-	Boiling Water Reactor
CRD	-	Control Rod Drive
EHC	-	Electro-Hydraulic Control System
EOF	-	Emergency Operations Facility
GS EP	-	Generating Stations Emergency Pian
HEPA	-	High-Efficiency Particulate Filter
HPC1	-	High Pressure Coolant Injection System
HRSS	-	High Radiation Sampling System
1 PC LRT	-	Integrated Primary Containment Leak Rate Test
IRM	-	Intermediate Range Monitor
151	-	Inservice Inspection
LER	-	Licensee Event Report
LLRT		Local Leak Rate Test
LPC1	-	Low Pressure Coolant Injection Mode of RHRS
LPRM	-	Local Power Range Monitor
MAP LHGR	-	Maximum Average Planar Linear Heat Generation Rate
MCPR	-	Minimum Critical Power Ratio
MFLCPR		Maximum Fraction Limiting Critical Power Ratio
MPC	-	Maximum Permissible Concentration
MS IV		Main Steam Isolation Valve
NIOSH	-	National Institute for Occupational Safety and Health
PCI	-	Primary Containment Isolation
PCLOMR	-	Preconditioning Interim Operating Management Recommendations
RBCCW	-	Reactor Building Closed Cooling Water System
RBM	-	Rod Block Monitor
RCIC	-	Reactor Core Isolation Cooling System
RHRS	-	Residual Heat Removal System
RPS	-	Reactor Protection System
RWM	-	Rod Worth Minimizer
SBGTS	-	Standby Gas Treatment System
SBLC	-	Standby Liquid Control
SDC	-	Shutdown Cooling Mode of RHRS
SDV	-	Scram Discharge Volume
SRM	-	Source Range Monitor
TBCCW	-	Turbine Building Closed Cooling Water System
TIP	-	Traversing Incore Probe
TSC	-	Technical Support Center

Commonwealth Edison

Quad Cities Nuclear Power Station 22710 206 Avenue North Cordova, Illinois 61242 Telephone 309/654-2241

NJK-84-206

July 5, 1984

Director, Office of Inspection & Enforcement United States Nuclear Regulatory Commission Washington, D. C. 20555 Attention: Document Control Desk

Gentlemen:

Enclosed for your information is the Monthly Performance Report covering the operation of Quad-Cities Nuclear Power Station, Units One and Two, during the month of June 1984.

Very truly yours,

COMMONWEALTH EDISON COMPANY QUAD-CITIES NUCLEAR POWER STATION

Hermond

N. J. Kalivianakis Station Superintendent

bò

Enclosure

IE24