A Computer Code for General Analysis of Radon Risks (GARR)

U.S. Nuclear Regulatory
Commission
Office of Nuclear Regulatory Research

M. Ginevan

NOTICE
 Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W.

Washington, DC 20555
2. The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulietins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained irom these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.
Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.
Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

A Computer Code for General Analysis of Radon Risks (GARR)

Manuscript Completed: September 1984
Date Published: September 1984
M. Ginevan

Division of Radiation Programs and Earth Sciences
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555

ABSTRACT

Evaluating the level of lung cancer risk associated with a given level of radon-daughter exposure is a complex matter. There is the basic question as to whether one's risk assessment should apply absolute risk models (which principally consider the amount of radon-daughter exposure) or relative risk models (which consider both the amount of radon-daughter exposure and baseline ung cancer risk). Even when a general model form has been selected, there are decisions as to the exact form of risk projection and t.o appropriate method of accounting exposure over time. Apart from these uncertainties, there is a question as to how much a personal habit such as smoking can modify risk.

This document presents a computer model for general analysis of radon risks that allows the user to specify a large number of possible models with a small number of simple commands. The model is written in a version of BASIC which conforms closely to the American National Standards Institute (ANSI) definition for minimal BASIC and thus is readily modified for use on a wide variety of computers and, in particular, microcomputers.

Model capabilities include generation of single-year life tables from 5-year abridged data, calculation of multiple-decrement life tables for lung cancer for the general population, smokers, and nonsmokers, and a cohort lung cancer risk calculation that allows specification of level and duration of radon exposure, the form of the risk model, and the specific population assumed at risk. Figure A, which shows the process of specifying and execut. ${ }^{\text {. }} \mathrm{g}$ the cohort lung cancer risk calculation, illustrates some of these capabilities.

FIGURE A

REPRESENTATIVE GARR MODELING SESSION

INPUT: KEYBD, (K) OR FILE (F)?) K

AGE AT FIRST RISK? 30
AGE AT FIRST EXPOSURE?
28
AGE AT LAST EXPOSURE? ? 6 θ
RISK/WLM-R.R.?), 01
R.R. OPTION(M,E,OR B)??
B
RISK/WLA/PY-R,R, ?) $1 E-5$
LATENCY IN YEARS? 9
ANNUAL EXPOSURE IN WLK??
1
EXPONENTIAL CORRECTION?
Y
EXPOHENT=?) -. 014
AGE SPECIFIC SENSITIVIT!
ES?) H
*

RADOH RISK MODEL

```
R.R. COEF =1.00E-0日2/WL.M
OPTION=8
A.R. =1.00E-005/PY/WL.h
AGE AT F.E. = 28
AGE AT L.E. = 60
AGE AT FIRST RISK= 30
WL.M PER YR. =10.80E-801
LATENCY= 9
EXPONENT COR =-1.40E-002
SENSITIVITY=1
```


FILE NAME FOR INPITT?) WM LCMD
PURGE INPUT FILE?) H MORKING
POP. $1=$ WHLCHD

BRSELINE
L.E. $=56.167$

DEATHS $/ 10^{\wedge} 5-L C=4835.7$

RELRISK MODEL-H
L.E. $=50.027$

LOSS $\operatorname{LE}($ MONS $)=1.67$
$D / 10^{\wedge} 5=5988.0$
EXCESS $D / 10^{\wedge} 5=1189.2$

RELRISK MODEL-E
L.E. $=50.811$

LOSS LE(MONS) $=1.87$
D $/ 18^{\wedge} 5=68^{70} .4$
EXCESS D/10^5= 1244.9

RBSRISK MODEL
L.E, $=50.053$

LOSS LE(MONS) $=1.37$
$D / 10^{\wedge} 5=5455.4$
EXCESS $D / 10^{\wedge} 5=645.1$

RUN ANOTHER POPULATION?
N

HEW INITIAL CONDITIONS??
N
EXECUTIOH ENDS

TABLE OF CONTINTS

Page

1. INTRODUCTION. 1
2. ISSUES IN RADON RISK ASSESSMENT 2
3. GARR ALGURITHMS 4
3.1 Brief Review of Cohort Risk Analysis 4
3.2 Specifying Population at Risk 9
3.3 Generating Single-Year Life Table: The GRADUATE Program 10
3.4 Considering Multiple Causes of Death: The MULDEC Program. 17
3.5 Addressing Influence of Smoking: The SMOKER Program 19
3.6 Calculating Lung Cancer Risk from Radon-Daughter Exposure: The RADRISK Program 24
4. RUNNING GARR ON THE HP-75 27
4.1 HP-75 System 27
4.2 Preparing Input File for GRADUATE and MULDEC 27
4.3 Running GRADUATE Program 29
4.4 Running MULDEC Program 32
4.5 Running SMOKER Program 37 37
4.6 Running RADRISK Program 42 42
4.6.1 Input from Keyboard 43
4.6.2 Designation of Population at Risk and Interpretation of Output 47
4.6.3 Input Via File 50
4.6.4 Error Handling and Loading Input Files from Cassette. 51
4.6.5 Additional Output Features 51
4.6.6 Conclusion 53
4.7 LIST Utility 53
4.8 DUPER Utility 57
4.9 GARR Tape 58
4.10 Conclusion 60
REFERENCES 61
Appendix A: PROGRAM LISTINGS AND VARIABLE LISTS 65

LIST OF TABLES

Tabl Title Page
1 Mortality Data from United States 1969 Population 11
2 Proportional Bias, $(q-\hat{q}) / q$, in $\hat{q}=1-\left[{ }_{5} p_{x}^{0.2}\right]$ for VariousParametric Values of q and I13
3 Proportional Bias, $(q-\hat{q}) / q$ in $\hat{\hat{q}}$ for Various Parametric Values of q and I 14
4 Absolute Bias (\hat{I}. I) in \hat{I} for Various Values of q and I 15
5 Comparison of Age-Specific Survival Probabilities Given in NCHS Life Table to Those Calculated from GRADIJATE Life Table Produced by GARh 18
6 Nonsmoker Lung Cancer Death Rates in Deaths/100,000 Person-Year 20
7 Sensitivity Analysis: Males 25

LIST OF FIGURES

Figure Title Page
A Representative GARR Modeling Session iv
1 Sample Input Data File for GRADUATE and MULDEC 28
2 Sampie Output for GRADUATE 31
34Copy of NONSLC File Listing and RepresentativeOutput from SMOKER Program38
5 Representative Output from RADRISK Program:
A. Error Messages
B. Sensitivity File
C. Program Output, Including Model ParanaterizationD. Input File for File Option45
6 Three Alternative Parameterizations of RADRISK Model 52
7A Representative Output from LIST Utility for a GR File (Ages 0-45) 55
7B Representative Outpuc from LIST Utility for a MULDEC File (Ages 0-45) 56
8 Output Listing Files on Standard GARR Tape 59

I would like to thank William A. Mills for making me aware of the problems that this program package addresses and for his support during its development. My appreciation also goes to Jerome S. Puskin and Harold T. Peterson, Jr., for their review and discussions of this document throughout its development. Finally, thanks to Alice S. Whittemore and Naomi H. Harley, whose careful critiques greatly improved the clarity of my presentation.

1. INTRODUCTION

Radon gas presents a threat to public health because its short-lived "daughters" are potent lung carcinogens (Lundin, 1971). Activities in which concern for radon-related lung cancer risk arises include uranium mining, uranium mill tailings disposal, and the "tightening" of homes as a part of energy conservation efforts (USRPC; ICRP; Collé).

There is obvious diversity in both the conditions of exposure and the populations at risk in different activities and, as noted below, an even broader diversity in expert opinion as to the type of risk model and modifying factors that are appropriate in a given radon risk assessment.

Because of this spectrum of exposure conditions and expert opinion, the computer code presented here was developed to provide the user with the means to construct General Analyses of Radon Risk (thus its name: GARR), rather than to solve a particular risk model. Its basic structure derives from the cohort life table that has been useful in more general considerations of radiation health effects (Cook; Bunger). However, it differs from earlier approaches in several ways. First, it provides great flexibility in specifying the population at risk and, in particular, the smoking status of that population. Second, it allows one to specify such features of the model as age at first risk (most authors suggest that the risk of radon-induced lung cancer is effectively zero before a certain age), latency between exposure and response, the age-specific sensitivity to radon exposure, and the "discount rate" for past radon exposure (Harley, 1981). Third, it allows one to select either an absolute risk model (wherein lung cancer risk depends only on dose and is independent of the baseline lung cancer rate) or a relative risk model (wherein cancer risk is proportional to the baseline rate) and to specify the risk coefficient for the model selected. Finally, it allows specification of the relevant exposure parameters, age at first exposure, age at last exposure, and exposure level. This level of flexibility requires only a moderate amount of user input, but it is my belief that most models currently proposed for estimation of radonrelated lung cancer risk can be implemented.

The GARR code differs from previous radiation lisk assessment codes in another important way. It was developed on and is designed for execution by a relatively small microcomputer. Its present implementation is restricted to the Hewlett Packard model 75C portable computer. However, the language is a fairly standard version of BASIC, and the program listings given in Appendix A should be readily translated for use on other small computers or, for that matter, any computer that has a BASIC interpreter.

2. ISSUES IN RADON RISK ASSESSMENT

There is one point of unanimity in expert opinion regarding radon daughters: Radon daughters under some conditions pose a significant hazard to human health and the principal risk associated with this hazard is the development of radiogenic lung cancer. Beyond this, there is considerable divergence in opinion on almost every point of the particulars of calculating radon risk.
[Note: The following discussion assumes a familiarity with basic units of radon-daughter measurement. For amplification and clarification, see Evans.]

One of the most basic dichotomies is the question of the form of the risk model. The first comprehensive study of lung cancer in American uranium miners (Lundin, 1971) suggests that there is greater than additive interaction between smoking and radon in inducing lung cancer. However, the same authors (Lundin, 1979) later concluded that the principal differences between smokers and nonsmokers was in the time between exposure to radon and development of a lung tumor (latency) and that smoking and radon exposure were nearly additive in their effect on lung cancer risk. This view is supported by Radford who based his conclusion on a study of Swedish miners. More recent evaluations using proportional hazards models (Hornung; Whittemore) return to the original view that smoking and radon act multiplicatively, while Harley and Pasternack (1981) introduce a repair term in their model on the assumption that the effectiveness of a given exposure declines exponentially with time (i.e., there is repair of radiation damage).

Aside from these considerations, Cohen suggests that, since not all histologic types of lung cancer may be induced by exposure to radon daughters, one must be careful in specifying "baseline" lung cancer rates for relative risk models. (There is some evidence that this is true for adenocarcinomas (Kunz), but most histologic types seem to be elevated in radon-exposed populations (Archer; Kunz).)

Given that one can pick a risk model, the question arises as to which population to use to determine the risk coefficient. Two populations, the United States uranium miners (Lundin, 1971; 1979) and the Czech uranium miners (Kunz), form the principal basis for such exercises, but others such as the Swedish iron miners (Radford; Axelson) or the Canadian fluorospar miners (Wright; Morrison) have also been used to generate risk estimates. The National Academy of Sciences has reviewed these and other studies and concluded that absolute risk coefficients in the range of 6 to 47 lung cancers per $1,000,000$ personyears per working level month (WLM) express the range of risk estimates that can be developed from miner studies. A similar range for relative risk coefficients is not given explicitly but values in the range of 0.3 to 4 percent per WLM increase in baseline lung cancer rate approximate the spread of estimates derivable from miner populations.

The question of deriving estimates of risk for nonminer populations is complicated by the fact that miners represent an atypical group and exposure situation. As noted earlier, most miner populations have a rather high percentage of smokers, and it is quite possible that smoking and radon daughters interact multiplicatively in the induction of lung cancer. Another problem concerns the high prevalence of other forms of respiratory disease in miner populations (the American Miners nonmalignant respiratory disease is the second largest excess cause of death after lung cancer (Waxweiler)). This is a problem because we do not know the extent to which exposure to the agents, other than radon, responsible for these diseases (primarily rock dust) modifies lung cancer risk. Miners are also performing heavy manual labor, which modifies their breathing rate, and this may modify the actual dose to the lung for some given number of WLMs of exposure (Harley, 1982).

The last issue has a parallel in considering extrapolation to the general public because children have higher breathing rates than adults as well as anatomical differences, and there may also be some differences between men and women. These factors may modify delivered dose for a given WLM exposure (Harley, 1982; Hofmann). (Children may also be more sensitive to a given delivered dose, but there is no empirical evidence for or against this idea.)

Finally, there is an issue of conditions of exposure in that mine environments are rather dusty. This means that a high percentage of radon daughters are "attached" to particles (Evans). It may be that this attached fraction is much lower in some nonmine environments, and at least one author (Wise) has suggested that a large unattached fraction can dramatically increase the delivered dose per WLM.

This completes a synopsis of some of the major issues in radon risk assessment. Its purpose is to inform the reader of potential pitfalls rather than to suggest a particular risk modeling approach. Those looking for a more comprehensive review of issues, facts, and opinions should consult the following references: NAS; UNSCEAR; Peterson; and Thomas.

3. GARR ALGORITHMS

3.1 Brief Review of Cohort Risk Analysis

A cohort analysis asks the question: What would be the mortality experience of a group of people of the same age who have the same baseline mortality experience if they are uniformly exposed to some toxic agent that adds a certain amount of excess mortality to their baseline mortality? In this sort of analysis, two basic measures of effect can be calculated. The first, premature deaths, is the number of persons (usually per 100,000) who die earlier than they would have because of the toxic agent. The second, loss of life expectancy, is a measure of how premature the premature deaths really are. It is frequently expressed in one of two ways: (1) loss of life expectancy p.r exposed individual and (2) loss of life expectancy per premature death.

The basic quantity of interest in any cohort analysis is ${ }_{n} q_{x}$, the baseline probability of dying in an interval of n years beginning at some exact age x. For our calculations, n is always one. Thus we will refer simply to q_{x} which is the probability that a person exactly x years old will die in the next year. Its converse, $p_{x}=1-q_{x}$, is the probability of surviving from age x to age $x+1$. A final quantity, S_{x}, given by

$$
\begin{equation*}
S_{x}=\prod_{i=0}^{x-1} p_{i} ; \quad[x=1,2,3, \ldots, 100] \tag{1}
\end{equation*}
$$

(Π is the notation for the product $p_{0} \times p_{1} \ldots p_{x-1}$)
is the probability that a newborn is alive at age $x . S_{0}$ is taken as 1 .
Note also that the conditional probability of survival to age $x+m$, given that one is alive at age x, can be expressed as the ratio S_{x+m} / S_{x}.

Our models of radon risk are simplified because only one source of excess mortality, lung cancer, is of interest. Here, in an absolute risk model, the excess probability of death in age interval x to $x+1, q_{e x}$, is given by

$$
\begin{equation*}
q_{e x}=c d_{x} \tag{2}
\end{equation*}
$$

where C is a constant with units of lung cancer cases per person per year per unit dose and d_{x} is the effective exposure acting at age x (the concept of effective exposure is discussed in detail below).

In a relative risk model, the risk coefficient, A, has units of proportional increase per unit exposure, and $q_{e x}$ is a function of $q_{c x}$, the baseline risk. This model can take one of two forms. In the first

$$
\begin{equation*}
q_{e x}=A d_{x} q_{c x} \tag{3}
\end{equation*}
$$

This is here termed our multiplicative relative risk model because excess risk is a simple product of risk coefficient, exposure, and baseline risk. A second possible formulation is

$$
\begin{equation*}
q_{e x}=\left[(1+A)^{d x}-1\right] q_{c x} \tag{4}
\end{equation*}
$$

This is termed our exponential relative risk model because here risk increases exponentially with dose. It is equivalent to the form of relative risk assumed in the class of statistical models termed proportional hazard models (Cox). If A is small (less than 0.02) and exposure is fairly low (d is less than 20), Equations 3 and 4 will give nearly equivalent results. However, one should always be cautious in specifying exactly which model form one is talking about because the same inputs can give quite divergent results.

When an additional source of mortality q_{e} is acting, we first calculate modified survival probabilities S^{\prime} for ages beyond r, the age at first risk.

$$
\begin{equation*}
S_{i}^{\prime}=s_{r} \prod_{x=r+1}^{i}\left(p_{x}-q_{e x}\right) \tag{5}
\end{equation*}
$$

In the calculation of the probability of premature lung cancer death, R_{e}, one has

$$
\begin{equation*}
R_{e}=\frac{1}{S_{f}}\left[S_{r} q_{e r}+\sum_{t=r+1}^{100} S_{t}^{\prime} q_{e t}\right] \tag{6}
\end{equation*}
$$

In this expression, f is the age at first exposure and r is the age at first risk. (Note that, because we are working in discrete time, we adopt the convention that dose received at age f cannot be expressed until age $f+1$. Thus it is always true that $r>f$.)

The reciprocal of S_{f} converts the other survival probabilities into survival probabilities conditional on being alive at age f. Thus Equation 6 is simply the sum of the probabilities of surviving to all ages beyond exposure and dying of a premature lung cancer at those ages, which is the total probability of premature lung cancer death. This is easily converted to expected deaths per, say, 100,000 exposed by multiplication (i.e., $R_{0} \times 100,000$).

Life expectancy, $E_{b f}$, for a person at age f (here equivalent to age at first exposure) is calculated as follows:

$$
\begin{equation*}
E_{b f}=\frac{q_{f}}{2}+\left[\frac{1}{s_{f}} \sum_{x=f+1}^{99} s_{x}\left(1+\frac{q_{x}}{2}\right)\right] . \tag{7}
\end{equation*}
$$

Equation 7 assumes that survival to a particular age contributes 1 year to life expectancy, S_{x} / S_{f}, while death during a particular year of life contributes 1 half-year to life expectancy $\left(\left[S_{x} / S_{f}\right]\left[q_{x} / 2\right]\right)$. (The observant reader may have noticed that our calculations to this point are truncated at age 100. Corrections for this are introduced below.)

The new life expectancy, E_{ef}, is then

$$
\begin{align*}
E_{e f}= & \frac{q_{f}}{2}+\frac{1}{s_{f}}\left[\sum_{x=f+1}^{r} s_{x}\left(1+\frac{q_{x}}{2}\right)+s_{r} \frac{q_{e r}}{2}\right. \tag{8}\\
& \left.+\sum_{t=r+1}^{99} s_{t}^{\prime}\left(1+\frac{q_{t}+q_{e t}}{2}\right)\right] .
\end{align*}
$$

Equation 8, which takes into account the new source of mortality, is a simple modification of Equation 7. (Note Equation 5.)

Loss in life expectancy, E_{L}, is simply: $E_{L}=E_{b f}-E_{e f}$.

One peculiarity of human mortality is that, during the first year of life (starting at age 0), most of the deaths take place early on. Therefore, the contribution of deaths in this interval to total life expectancy is less than the 0.5 year assumed elsewhere. We use 0.1 year (i.e., $q_{0} / 10$) for calculations starting at age 0 . It is also true that persons dying in an age interval may live, on average, more or less than 0.5 year in the interval depending on the age interval and population considered, but for our purposes 0.5 is a more than adequate approximation.

Finally, a correction is made to both life axpectancy and risk of death calculations because it is assumed that no one lives beyond age 100 . The expected number of years, G, to be lived by a person reaching age 100 is taken as

$$
\mathrm{G}=0.8 / \mathrm{a}_{99},
$$

where $q_{g 9}$ is the probability of dying during the 99th year. This is used to modify life expectancy as follows:

$$
\begin{equation*}
E_{m}=E+\left(S_{100^{G}}\right) \tag{9}
\end{equation*}
$$

where E is the life expectancy before modification, E_{m} is modified life expectancy, and S_{100} is the probability of surviving to age 100 in our model population (i.e., conditional on being alive at age of first exposure and with excess lung cancer mortality in effect). The quantity G is also used to find q el00 for use in the excess risk calculation. In the absolute risk model

$$
\begin{equation*}
q_{e 100}=C d_{99+G} G \tag{10}
\end{equation*}
$$

where $d_{s}+G$ is the effective exposure acting at age $99+G$ vears and $q_{\text {el00 }}$ is the excess lung cancer death probability experienced by those over 100 years old.

The relative risk form of this correction is given by either

$$
\begin{align*}
& q_{e 100}= A d_{99+G} q_{c 100}, \tag{11}\\
& \text { or } \\
& q_{e 100}=\left[(1+A) d_{99+G}-1\right] q_{c 100},
\end{align*}
$$

where $q_{c 100}$ is the baseline probability of dying of lung cancer beyond one's 100 th birthday.

The probability of premature lung cancer death is modified as follows:

$$
\begin{equation*}
R_{e m}=R_{e}+S_{100} q_{e 100} . \tag{12}
\end{equation*}
$$

The net effect of each of these corrections is quite small, so much so that good results can be obtained by truncating at age 99 . The reason for their inclusion here is that they, at least in theory, improve our approximation to a cohort followed to extinction and do not greatly increase computational complexity.

This completes the calculations for the basic cohort risk calculation as used in GARR. Those wishing additional reading on cohort life tables can consult Elandt-Johnson; Keyfitz; or Bunger.

3.2 Specifying Population at Risk

In our model, the actuarial characteristics of the population at risk are specified by the age-specific probabilities of dying of lung cancer and the age-specific probabilities of dying of all other causes for the ages 0 to $100+$. These quantities can be obtained directly from sources such as the United States Decennial Life Tables (NCHS, 1975). If this option is selected, one simply looks up the q_{x} values for $x=0-99$ and sets q_{100} equal to one. Agespecific probabilities of lung cancer death can be obtained by the formula

$$
\begin{equation*}
q_{c x}=q_{x}\left(m_{c x} / m_{t x}\right) \tag{13}
\end{equation*}
$$

where $m_{c x}$ and $m_{t x}$ are the number of deaths from lung cancer and all causes occurring in persons of age x. The background mortality probability $q_{b x}$ is obtained by subtraction. That is

$$
\begin{equation*}
q_{b x}=q_{x}-q_{c x} \tag{14}
\end{equation*}
$$

This calculation is very simple but, for 1 -year intervals, requires rather detailed input data that are of somewhat limited availability (e.g., the last U.S. decennial life table available is for the years 1969-1971) and that are
rather laborious to input. The GARR code simplifies matters by providing two programs, GRADUATE and MULDEC, which generate a_{c} and q_{b} for single years using input data from NCHS 5-year abridged mortality data (e.g., NCHS, 1974).

3.3 Generating Single-Year Life Table: The GRADUATE Program

An excerpt from an NCHS abridged life table is shown in Table 1. It provides ${ }_{n}{ }^{q} x$ values for intervals $0-1,1-5$, and 5 -year intervals $5-10, \ldots, 80-85$. The problem is to use these data to find q_{x} values for $x=0-99$. For age 0 this is given. For ages 1 to 4 one can simply take

$$
\begin{equation*}
q_{x}=1-{ }_{4} p_{1}^{0.25} \tag{15}
\end{equation*}
$$

where $4^{p_{1}}=1-4_{1}{ }_{1}$.
Similarly for ages 5 to 9 and 10 to 14

$$
\begin{equation*}
q_{x+m}=1-{ }_{5} p_{x}^{0.2} \tag{16}
\end{equation*}
$$

where $m=0-4, x=5$ or 10 .

Beyond age 15 the annual probability of death changes with age. Thus to estimate q_{x} for higher ages, one must make some assumptions about how mortality behaves in the population under consideration. A variety of approaches are discussed by Keyfitz in Chapter 10; the one used in our program contains elements of several of these together with some unique aspects dictated by the necessity of being able to solve the problem fairly quickly on a small microcomputer.

The assumption made in our approach is that the annual q_{x} values tend to increase by a constant percentage from year to year, which is a good approximation to reality for many populations. That is

$$
\begin{equation*}
q_{x+1}=q_{x} I \tag{17}
\end{equation*}
$$

TABLE 1
MORTALITY DATA FROM UNITED STATES 1969 POPULATION (NCHS, 1974)
AGE
INTERVAL
PROBABILITY
OF DEATH $\left(n q_{x}\right)$

TOTAL DEATHS LUNG CANCER DEATHS

WHITE MALES

$0-1$	0.0213	32158	0
$1-5$	0.0033	5033	0
$5-10$	0.0024	4273	3
$10-15$	0.0024	4299	5
$15-20$	0.0077	12352	5
$20-25$	0.0101	13497	13
$25-30$	0.0086	9914	19
$30-35$	1.0092	8993	92
$35-40$	0.0132	12782	359
$40-45$	0.0210	22373	1133
$45-50$	0.0337	36257	2224
$50-55$	0.0540	53156	3938
$55-60$	0.0851	76206	6185
$60-65$	0.1294	97922	8045
$65-70$	0.1828	112983	8301
$70-75$	0.2655	124755	7147
$75-80$	0.3524	125861	4818
$80-85$	0.4630	102653	2156
$85-90$			60602
$90-95$		23182	696
$95-100$		5197	147
$100+$		633	18
			2

WHITE FEMALES
$0-1$
$1-5$
$5-10$
$10-15$
$15-20$
$20-25$
$25-30$
$30-35$
$35-40$
$40-45$
$45-50$
$50-55$
$55-60$
$60-65$
$65-70$
$70-75$
$75-80$
$80-85$
$85-90$
$90-95$
$95-100$
$100+$
0.0161

22950
$0.0028 \quad 4078$
$0.0016 \quad 2829$
$0.0015 \quad 2519$
4615 4
$4690 \quad 13$
$4177 \quad 16$
$4932 \quad 49$

$$
\begin{array}{lr}
0.0076 & 7591 \\
0.0120 & 12189
\end{array}
$$

$7591 \quad 162$
$12189 \quad 426$
20543 819
$28210 \quad 1165$
$38264 \quad 1511$
$49602 \quad 1447$
66888 1393
$90550 \quad 1263$
113486969
116612644
87714303
$41652 \quad 94$
$11393 \quad 14$
$1569 \quad 2$
0 4 1 2 4 $0.0033 \quad 4690$ 6

$$
0.0049
$$

$$
\begin{aligned}
& 62 \\
& 26
\end{aligned}
$$

0.0181220543
0.0402
0.0598
0.0940
0.1522
0.2352
$0.3671 \quad 116612$
*1 87714

0

3
5
5
13
19

$$
92
$$

$$
359
$$

1133
2224 6185 8045
8301 7147

4156 696 147 2
where I is a constant greater than 1 and generally in the range of 1.04 to 1.09 . This is approximately equivalent to assuming a Gompertz survival function (Elandt-Johnson). From this point, numerical arguments are used to derive estimates for q_{x} and I, assuming this process fits the data.

A preliminary estimator for q_{x+2} (the annual death probability at the midpoint of the interval defined by ${ }_{5} q_{x}$) is taken as

$$
\begin{equation*}
\hat{q}_{x+2}=1-{ }_{5} p_{x}^{0.2} \tag{18}
\end{equation*}
$$

where ${ }_{5} p_{x}=1-{ }_{5} q_{x}$.
A computer program was devised to examine the behavior of \hat{q}_{x+2} for various parametric values of q_{x+2} and I. The results of this computation are presented in Table 2.

Clearly, \hat{a}_{x+2} is consistently biased (that is, it overestimates q_{x+2}), and the the magnitude of the bias depends almost entirely on I. This observation suggests that the estimate of \hat{q}_{x+2} might be substantially improved by adding a correction based on 1 . The term chosen, B, which is derived from fitting a quadratic in I to the data in the second row of Table 2, is given by

$$
\begin{equation*}
\mathrm{B}=-0.778+1.571 \mathrm{I}-0.793 \mathrm{I}^{2} . \tag{19}
\end{equation*}
$$

This B is then used to construct a new estimator of q, $\hat{\hat{q}}$ which is given by

$$
\begin{equation*}
\hat{\hat{a}}_{x+2}=\hat{a}_{x+2}(1+B) \tag{20}
\end{equation*}
$$

The result of applying this correction to Table 2 is shown in Table 3. The correction is very successful in that $\hat{\hat{a}}_{x+2}$ and our parametric a_{x+2} agree almost exactly.

The foregoing assumes that I is known, but in practice it does not matter that it is not. An excellent estimate is given by

$$
\begin{equation*}
\hat{\mathrm{I}}=\left[\hat{\mathrm{a}}_{x} / \hat{\mathrm{a}}_{x-5}\right]^{0.2} \tag{21}
\end{equation*}
$$

TABLE 2
PROPORTIONAL BIAS, $(q-\hat{q}) / q$, in $\hat{q}=1-\left[{ }_{5} p_{x}^{0.2}\right]$ FOR VARIOUS PARAMETRIC VALUES OF q AND I

PARAMETRIC I

1.03
1.06
1.09
1.12

PARAMETRIC q

0.10	-0.00097	-0.00376	-0.00821	-0.01415
0.01	-0.00088	-0.00342	-0.00746	-0.01286
0.001	-0.00087	-0.00339	-0.00739	-0.01274

TABLE 3
PROPORTIONAL BIAS, $(q-q) / q$, in q FOR VARIOUS PARAMETRIC VALUES OF q AND I

PARAMETRIC I

1.03
1.06
1.09
1.12

PARAMETRIC q

0.10	-0.00010	-0.00032	-0.00078	-0.0013
0.01	-0.00001	-0.00002	-0.00003	-0.0000
0.001	-0.00000	-0.00005	-0.00004	-0.00012

Note: $\hat{q}={ }_{5} p_{x}^{0.2}$ and $\hat{q}=\hat{q}(1+c$) where c is a quadratic correction of the form $c=-0.778+1.5711-0.7931^{2}$.

Table 4 gives absolute bias in $\hat{I},(\hat{I}-1)$ for various parametric values of 9 and I. This bias is negligible.

Application of these formulae to generating a single-year life table for ages above 15 is as follows:

For each ${ }_{5}{ }^{9} x$

$$
\begin{equation*}
\hat{q}_{x+2}=1-{ }_{5} p_{x}^{0.2} \tag{22}
\end{equation*}
$$

\hat{I}_{x} is then calculated (for the interval $x-3$ to $x+2$) as in Equation 20.
Then $\hat{\hat{q}}_{x+2}$ is calculated using

$$
\begin{equation*}
I=\left(\hat{I}_{x}+\hat{I}_{x+5}\right) / 2 \tag{23}
\end{equation*}
$$

and Equations 18 and 19.
Intermediate values of $\hat{\hat{q}}_{x}$ are calculated using

$$
\begin{equation*}
\hat{\hat{q}}_{x+2+i}=\hat{\hat{q}}_{x+2} I_{x+5}^{i} \tag{24}
\end{equation*}
$$

for $\mathbf{i}=1-4$.

The final problem is extrapolating from $\hat{\hat{q}}_{82}$ to $\hat{\hat{q}}_{g 9}(q(100)=1)$.

Here I is taken as

$$
\begin{equation*}
\mathrm{I}=\left(\hat{\mathrm{I}}_{80}+\hat{\mathrm{I}}_{75}+\hat{\mathrm{I}}_{70}\right) / 3 \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\hat{q}}_{82+i}=\hat{\hat{q}}_{82^{\star}} I^{i} \tag{26}
\end{equation*}
$$

TABLE 4
ABSOLUTE BIAS ($\hat{\mathrm{I}}$ - I) IN $\hat{\mathrm{I}}$ FOR VARIOUS VALUES OF q AND I (All Entries Should Be Multiplied by 10^{-4}.)

PARAMETRIC I

1.03
1.06
1.09

1. 12

PARAMETRIC q

0.10
0.0403
0.3932
1.6371
4.8684
0.06
0.0218
0.2078
0.8404
2.4040
0.03
0.0101
0.0950
0.3768
1.0524
0.01
0.0032
0.0299
0.1172
0.3228

Teble 5 presents life expectancies calculated from Equation 7 with the modifications given in the text, and the survival function calculated as in Equation 1, both using q_{x} values derived from our procedure. Comparing these (labeled GARR) with the values taken directly from the relevant NCHS life tables suggests that the GRADUATE program does a good job of producing singleyear life tables that accurately represent the mortality experience of the population at risk.

3.4 Considering Multiple Causes of Death: The MULDEC Program

Table 1 also contains sex- and age-specific values for total mortality and for mortality from cancers of the trachea, bronchus, and lung. These, together with the G_{x} values from GRADUATE, allow calculation of $q_{c x}$, the annual probability of lung cancer death, for ages 0 through 100.

Because there are so few lung cancer deaths prior to age 20 , we will begin our consideration at age 20 and assume earlier $q_{c x}$ values are zero. However, it should be noted that the MULDEC program is capable of generating $q_{b x}$ and $q_{c x}$ values starting at age 0 and for an arbitrary number of excess causes of death (ste page 70, Appendix A). One can obtain the probability of dying of lung cancer in the 5 -year period beginning at age x, given that one has died, $5^{C} x$, as

$$
\begin{equation*}
5^{C} x=5^{m} c x / 5^{m} t x \tag{27}
\end{equation*}
$$

where m_{c} and m_{t} are defined as in Equation 13. One could simply apply this to all q_{x} values in the interval (as in Equation 13) to obtain $q_{c x}$ values. However, this has the rather unrealistic feature of applying a step function with 5-year intervals to our laboriously calculated single-year q_{x} schedule. Therefore we consider ${ }_{5} C_{x}$ to represent the value of C at the middle year of the interval (i.e., C_{x+2}) and obtain intermediate values by linear interpolation. That is,

TABLE 5
COMPARISON OF AGE-SPECIFIC SURVIVAL PROBABILITIES GIVEN IN NCHS EIFE TABLE TO THOSE CALCLLATED FROM GRADUATE LIFE TABLE PRODUCED BY GARR

POPULATIONS

15 20
25
30
35
40
45
50
55
60
65
70
75
80
85

0.9781	0.9781
0.9753	0.9754
0.9721	0.9723
0.9686	0.9687
0.9638	0.9639
0.9565	0.9566
0.9451	0.9452
0.9279	0.9281
0.9027	0.9029
0.8664	0.8665
0.8146	0.8143
0.7381	0.7373
0.6257	0.6255
0.4786	0.4777
0.3029	0.3024

0.9708
0.9708
$\begin{array}{ll}0.9527 & 0.9527 \\ 0.9415 & 0.9423 \\ 0.9231 & 0.9250 \\ 0.9023 & 0.9039 \\ 0.8761 & 0.8775 \\ 0.8421 & 0.8434 \\ 0.7977 & 0.7992 \\ 0.7429 & 0.7438 \\ 0.6718 & 0.6728 \\ 0.5840 & 0.5850 \\ 0.4813 & 0.4816 \\ 0.3631 & 0.3627 \\ 0.2362 & 0.2420 \\ 0.1575 & 0.1600 \\ 0.0997 & 0.1010\end{array}$

Note: White Females (WF), White Males (WM), and Nonwhite Males (NM) are shown. Numbers in parentheses are life expectancy at age 0.

$$
\begin{equation*}
c_{x+2+i}=\left[(5-i) c_{x+2}+i c_{x+7}\right] / 5 \tag{28}
\end{equation*}
$$

The values for $q_{c x}$ and $q_{b x}$ are thus

$$
\begin{align*}
q_{c x} & =q_{x} C_{x} \tag{29}\\
& \text { and } \\
q_{b x} & =q_{x}\left(1-c_{x}\right) \tag{30}
\end{align*}
$$

This process of separating the q_{x} values into their cause-specific components is called constructing a multiple-decrement life table (Chiang).

The reader should note that all these calculations make the assumption that causes of death are mutually exclusive (i.e., one can die of one and only one cause) and independent (i.e., deaths from one cause at one age do not modify the expected number of deaths from another cause at a later age).

3.5 Addressing Influence of Smoking: The SMOKER Program

The procedures described to this point will create values for background probabilities of death $\left(q_{b x}\right)$ and probability of lung cancer death $\left(q_{c x}\right)$ for ages 0 through 100+, given abridged mortality data of the form shown in Table 1. Should one have such data for a pure population of smokers or nonsmokers one could generate a population at risk in a straightforward manner using GRADUATE and MULDEC. In practice, such data are unavailable and one must resort to a modeling approach.

Certain information about the mortality experience of smokers versus nonsmokers is readily obtainable. From the 1979 Surgeon General's Report on smoking (U.S. Public Health Service), we can obtain information as to the proportion of the population who are smokers and the general mortality experience of smokers versus nonsmokers. Likewise, information about the lung cancer rates experienced by nonsmokers is available. Table 6 presents nonsmoker lung cancer rates for males and females derived from the American Cancer Society study of cancer in

TABLE 6

NONSMOKER LUNG CANCER DEATH RATES IN DEATHS/100,000 PERSON-YEAR (Garfinkel)

$\frac{\text { AGE }}{}$	MALE	FEMALE
$45-49$	4.55	3.60
$50-54$	7.63	5.30
$55-59$	10.13	7.07
$60-64$	17.26	13.60
$65-69$	27.43	16.17
$70-74$	25.97	20.83
$75-79$	44.27	34.70
$80-84$	68.87	45.80
$85-89$	94.80	52.47

nonsmokers (Garfinkel). This kind of information is used by a GARR program called SMOKER to create hypothetical populations of smokers and nonsmokers.

The first problem is to separate the general population q_{x} values into agespecific total mortality probabilities for smokers, $q_{s x}$, and nonsmokers, $q_{n x}$. To do this, SMOKER requires a general population life table like that generated by MULDEC, an estimate of the proportion of smokers in the population at age $35, \theta_{35}$, and a value for the all-cause standardized mortality ratio, M, (Fleiss) in smokers as compared to nonsmokers. We assume that the age-specific mortality ratio, M_{x}, which equals $q_{s x} / a_{n x}$, starts at 1 at age 34 and increases linearly to M at ages 45 and beyond.

By our definition,

$$
\begin{equation*}
q_{s x}=q_{n x} M_{x} \tag{31}
\end{equation*}
$$

Then at age x

$$
\begin{equation*}
q_{x}=\left(1-\theta_{x}\right) q_{n x}+\theta_{x} M_{x} q_{n x} \tag{32}
\end{equation*}
$$

and rearranging

$$
\begin{equation*}
q_{n x}=q_{x} /\left[\left(1-\theta_{x}\right)+\left(\theta_{x} M_{x}\right)\right] \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{s x}=m_{x} q_{n x} \tag{34}
\end{equation*}
$$

This approach can be applied iteratively for subsequent ages because we have assumed M_{x} known for all x (for x less than $35 M_{x}=1$ and $q_{s x}=q_{n x}=q_{x}$) and, assuming differential mortality is the only thing affecting the age-specific proportion of smokers in the population,

$$
\begin{equation*}
\theta_{s+1}=\theta_{x} p_{s x} /\left[\theta_{x} p_{s x}+(1-\theta) p_{n x}\right] \tag{35}
\end{equation*}
$$

(Here the p's are defined as in Equation 1.)

Age-specific lung cancer death probabilities for nonsmokers, $q_{n c x}$, are derived from the nonsmoker lung cancer death rates, $5^{r} x$, shown in Table 6 . We take

$$
\begin{equation*}
q_{n c x+2}=5^{r} x / 100000 \tag{36}
\end{equation*}
$$

These midpoint values are then used to generate I_{X} values as in Equation 21. And interpolation is performed as in Equations 24 through 26 . Ages 45 and 46 are handled as follows:

$$
\begin{equation*}
\hat{\mathrm{a}}_{\mathrm{nc} 47-\mathrm{i}}=\hat{\mathrm{a}}_{\mathrm{nc} 47} / \mathrm{I}_{50}^{i} \tag{37}
\end{equation*}
$$

where $i=1 ; 2$. The reader may note that rates are not precisely equivalent to probabilities, but in this case the difference is very small (less than 2 percent).

For ages less than $45, q_{n c x}=q_{c x}$ un?ess $q_{c x}$ is greater than $q_{n c 45}$. If this holds, $q_{n c x}$ is set equal to $q_{n c 45}$. At older ages ($90+$), a check is also made to determine whether $q_{n c x}$ is greater than $q_{c x}$. If this is true, $q_{n c x}$ is set equal to $q_{c x}$. (This makes the assumption that nonsmokers cannot have higher lung cancer probabilities than the jeneral population.)

The nonsmoker lung cancer death probabilities can also be modified by a usersupplied multiplier U that reflects the extent to which the calculated lung cancer death probabilities overestimate or underestimate risk in the nonsmoker population of interest. The new values are given by

$$
\begin{equation*}
q_{n c x}^{\prime}=q_{n c x} U . \tag{38}
\end{equation*}
$$

Age-specific nonsmoker probabilities, $q_{n b x}$, for background mortality are then determined by subtraction. That is

$$
\begin{equation*}
a_{n b x}=q_{n x}-a_{n c x} \tag{39}
\end{equation*}
$$

for all x.

At this point the only remaining quantities of interest are the age-specific probabilities of lung cancer death for smokers, $q_{s c x}$. These are developed as follows.

From values already calculated we can determine $a_{s x}$, the age-specific proportion of deaths who were smokers,

$$
\begin{equation*}
a_{s x}=\theta_{x}\left(q_{s x} / q_{x}\right) \tag{40}
\end{equation*}
$$

We can also find $a_{n c x}$, the proportion of deaths who were nonsmoking lung cancer:

$$
\begin{equation*}
a_{n c x}=\left(1-a_{s x}\right)\left(a_{n c x} / a_{n x}\right) \tag{41}
\end{equation*}
$$

Now we find $a_{s c x}$, the proportion of deaths who were smoking lung cancer:

$$
\begin{equation*}
a_{s c x}=\left(q_{c x} / q_{x}\right)-a_{n c x} \tag{42}
\end{equation*}
$$

Finally $q_{s c x}$ is calculated as:

$$
q_{s c x}=q_{s x}\left(a_{s c x} / a_{s x}\right)
$$

At the option of the user, an arbitrary minimum risk of lung cancer, R, in smokers relative to nonsmokers for ages 45 and above may be declared. In this case if
$q_{s c x}<R q_{\text {ncx }}$ then $q_{s c x}=R q_{\text {ncx }}$.
The last, trivial calculation is determining $q_{s b x}$ by subtraction in the same way as Equation 39, which completes both life tables.

At this point the reader may be concerned by some of the assumptions made in our development of smoker and nonsmoker populations. For example, the relative proportion of smokers versus nonsmokers at various ages is determined by much more than differential mortality (i.e., historical smoking "cohort" effects), and the all-cause standard mortality ratio for smokers is not constant across
ages. Nonetheless, any model is, to some extent, arbitrary (else it would be unwieldy), and the procedures outlined here generate reasonable actuarial populations for smokers and nonsmokers in that differences in life expectancy and lung cancer risk between smokers and nonsmokers agree with those reported in the Surgeon General's Report (U.S. Public Health Service) (see Table 7).

Further, if one is dissatisfied with these assumptiors, they are easily modified by using the same approach but providing parametric θ_{x} and M_{x} values explicitly for each x, or by performing a sensitivity analysis using the options for specifying θ (Equation 32), M (Equation 34), and U (Equation 38). An example of such an exercise is shown in Table 7. This illustrates the relative insensitivity of the actuarial characteristics of the smoker population generated to the choice of U and θ_{35}.

Likewise, it is true that our procedure could yield $q_{s x}$ values greater than 1 . However, in practice this does not happen, and the program provides adequate diagnostic information to assure the user that it has generated reasonable results.

3.6 Calculating Lung Cancer Risk from Radon-Daughter Exposure: The RADRISK Program

The calculation of radon-daughter-induced lung cancer risk is performed by the RADRISK progran. The basic functioning of this program is as described in the review of cohort risk analysis presented earlier. Required inputs include sets of $q_{b x}$ and $q_{c x}$ values defining the population at risk; C and A coefficients for the absolute and relative risk models, respectively; f, the age at first exposure; g, the age at last exposure; L, the latency or time between exposure and onset of risk; h, the age at first risk (a number of models assume risk is zero before some age regardless of age at exposure or latency); and w, the continuous exposure to radon daughters in working levels. One may also elect to assume that sensitivity, Z, varies across ages and that the effect of dose delivered decays exponentially with time by specifying a decay rate constant, r.

At first glance, this large number of possible inputs would seem to make for a very complicated model; but, in fact, all these complications can be incorporated

TABLE 7
 SENSITIVITY ANALYSIS: MALES

$\mathrm{M}=1.75$
NONSMOKER LUNG CANCER

| OEATH PROBABILITIES | |
| :--- | :--- | :--- |
| OBSERVED | $2 \times$ OBSERVED |

Proportion Smokers at Age 35
0.40

LE	70.0	64.6	70.0	64.6
LC	668	10656	1280	9764

0.50

LE	70.5	65.1	70.6	65.1
LC	698	8633	1334	$803 \hat{c}$
0.60	71.1	65.6	71.1	65.6
LE	731	7306	1392	6904

Note: $L E=$ Life Expectancy; LC $=$ Expected Lifetime Lung Cancer Deaths Per 100,000; $\mathrm{S}=$ Smokers $;$ NS $=$ Nonsmokers.
into one term, d_{x}, the effective exposure acting at age x. Otherwise, our calculation is a straightforward application of Equations 1 through 12.

RADRISK assumes a constant annual exposure, d_{y}, given in working level months, for the period of exposure.

The exposure acting at age t, d_{t}, is for the simplest case (continuous exposure)

$$
\begin{equation*}
d_{t}=(t-f) d_{y} \tag{43}
\end{equation*}
$$

i.e., the difference between the age at present and the age at first exposure times the annual exposure.

More generally,

$$
\begin{aligned}
& d_{t}=\sum_{i=m}^{k} d^{2} z_{i-L-1} e^{-r(t-i+L)} ; t \geq m \\
& d_{t}=0 ; t<m
\end{aligned}
$$

Here $m=f+L+1$ and $k=t$ if $t<g$; otherwise $k=g$. Verbally, this says that the exposure active at time t is a function of the age-specific sensitivity at the age it was received and that risk from exposure received in the past decays exponentially from the time it was received. Further, only exposure received at least $L+1$ years in the past is effective in determining risk (if exposure begins at age f, risk cannot commence until age $f+1$). Finally, a restriction not reflected by Equation 45 is that if $t<h$, the age at first risk, then $d_{t}=0$.

This completes the description of the new algorithms used in RADRISK (remember, the rest of RADRISK follows Equations 1 through 8) and thus the algorithmic description of GARR as a whole.

4. RUNNING GARR ON THE HP-75

4.1 HP-75 System

The following discussion assumes a minimal configuration of an HP-75C portable computer with an 8k memory expansion module (24 k RAM total), an HP 82161A digital cassette drive, and an HP 821622A thermal printer. When the HP-IL interface loop is configured (refer to Section 9 of your HP-75 Cwner's Manual (Hewlett Packard)), the cassette drive should be named ":CA" and the printer should be named ":PR." Note also that the printer must be declared as the system print device. The command

PRINTER IS ":PR"
must be executed.

The following discussion assumes that the reader is somewhat familiar with the HP-75 and its Owner's Manual. For example, we always assume that adequate memory is available for program execution. However, if one copies a large number of files to memory, at some point an error \#16, "not enough memory," will be generated. These errors can be avoided by judicious use of the PURGE and COPY commands, but we do not treat such problems explicitly here. For questions of this sort, the reader is referred to the HP-75 Owner's Manual.

4.2 Preparing Input File for GRADUATE and MULDEC

Figure 1 reproduces a representative input file for use in both GRADUATE and MULDEC. Line 10 is an optional comment line. Line 15 is a mandatory title (this is included to force the user to add a title), which can be up to 32 characters in length. Lines 20 and 30 are the DATA statements containing the $19{ }_{5} q_{x}$ values from the abridged life table arranged from $x=0$ to $x=85$. Line 32 is an optional comment line. Line 35 is a DATA statement giving the number of disease-specific causes of death (for our purposes it is always 1). Line 40 is an optional comment line. Lines 50 and 60 contain the 225^{m} tx values from the mortality compilation ($x=0,1,5,10, \ldots 90,95,100$) arranged

SAMPLE INPUT DATA FILE FOR GRADUATE AND MULDEC

```
10 ! HORTRLITY SCNEDULE
FOR MF,1969
15 BRTA *MORTALITY MF 19
69*
20 DRTG .8161,,8828,.88!
6,.8015,.8829, ,8833, .093
5,.8049,.8076,.812
38 BRTA .0181,.8272,.848
2,.8598,.694,.1522,.2352
..3671,1
32 ! MUM&ER OF SPECIFIC
CRUSES OF BEATH
35 BRTA 1
48 ! TOTML DEATHS &F 69
50 ВАTด 22950,4078,2829,
2519,4615,4690,4177,4932
,7519,13189,20543
68 DATA 28218,38264,4960
2,66888,98558,113486,116
612,87714,41662,11393,15
6 9
78 ! LUNG CANCER DEATHS
HF}6
80 D.PTA 0,8,0,8,0,13,16,
49,162,426,819,1165
98 #@TA 1511,1477,1393,1
263,969,644,383,94,14,2
```

from $x=0$ to $x=85$. Line 70 is an optional comment line. Lines 80 and 90 contain the $225^{m} c x$ values arranged in the same fashion as the $5^{m} t x$ values.

The reader who is fluent in BASIC can refer to the program listings for GRADUATE and MULDEC (Appendix A, pp. 67-70) to determine the necessary features of the input file. Others are urged to follow exactily the format of the sample file shown in Figure 1 since this will always work. Details of creating data files can be found in the HP-75 Owner's Manual.

4.3 Running GRADUATE Program

To run the GRADUATE program, first determine that the program is in memory. Also make sure a file of input data like that discussed in the previous section is in memory. (Execute the CAT ALL command to scan the file directory.) If GRADUATE is not in memory, it must be loaded from cassette. The relevant command is

> COPY "GRADUATE: CA" TO "GRADUATE"

Similar comments apply to the data file. To run the GRADUATE program, enter

> EDIT "GRADUATE"
and then

RUN
or simply enter

> RUN "GRADUATE"
(These comments apply to the other prograins in GARR as well.) The computer will display the prompt

FILE FOR ABRIDGED?>

Enter the name of a file configured as in Figure 1 . If the file is not configured properly or does not exist, the error message

BAD OR NONEXISTENT FILE

will be generated on the printer, and you will receive the prompt for a file. At this point two possibilities are raised. First, you may have mistyped the file name. In this case simply reenter the correct name. Second, there may be something wrong with the file. In this case enter

EDIT "FILE"

where "FILE" is the desired file name.

The computer should reply

FILE	B	564	tt:tt	$00 / 00 / 00$
Desired	Basic	Length	time	date
file		in bytes	created	created

where the fields have the meanings indicated by the labels. The two most important fields are the length in bytes, which should be about 564 , and the file type, which should always be B for BASIC. If the length is zero, this means the file is not in memory. Consult the HP-75 Owner's Manual (Hewlett Packard), pp. 135-136, for the procedures involved in copying it to memory. A file type other than B probably means you have referenced the wrong file. Consult the HP-75 Owner's Manual, Appendix B, for information on file types.

If an appropriate file has been specified, an output like that in Figure 2 is generated. The first line is the name of the file referenced, in this case "WFLC." The second line gives the title read from the input file. This serves as a check that the appropriate file has been referenced. Following this are q_{x} values for $x=(17 ; 22 ; 27 \cdots 77 ; 82)$, the B values used to correct the q_{x} values (Equation 19), and the I values used to perform geometric interpolation (Equation 23). The last four items output are the I value used to

GRRDUATE LIFE TABLE *******************	$\begin{aligned} & x(52)=.8189 \\ & B=-.88899 \\ & I=1.899 \end{aligned}$
	$\begin{aligned} & \mathrm{ex}(57)=.0175 \\ & \mathrm{~B}=-.80822 \end{aligned}$
IHPUT FILE = MMLC	$\mathrm{I}=1.895$
TITLE MORTALITY M 1969	
	$\mathbf{e x}(62)=.8272$
$\mathbf{4 x}(17)=.8815$	$\mathrm{B}=-.80656$
$8=-.82219$	$\mathrm{I}=1.884$
$\mathrm{I}=1.168$	
	ex(67) $=.8393$
4x(22) $=.8828$	$8=-.80616$
$8=0.80008$	$\mathrm{I}=1.882$
$\mathrm{I}=1.812$	
	ax(72) $=.8595$
ex(27) $=.8817$	$\mathrm{B}=-.88556$
$\mathrm{B}=8.68898$	$\mathrm{I}=1.877$
$\mathrm{I}=.991$	
	$4 x(77)=.8829$
$4 \mathrm{x}(32)=.0818$	$\mathrm{B}=-.08452$
$8=-.88193$	$\mathrm{I}=1.869$
$\mathrm{I}=1.944$	
ex(37) $=, 0826$	$B=-.08495$
$8=-$,80691	$\mathrm{I}=1.873$
$\mathrm{I}=1.887$	
	$I(85+)=1.675$
$B=-.08895$	
I $=1.899$	
	P OF BEATH 108=
4x(47) $=.0068$	
$\mathrm{B}=-.09918$	
$\mathrm{I}=1.101$	PROB OF SURVIVAL
	$\text { TO } 180=. .80164$
	$L E=67.8241$

GRADUATE LIFE TABLE

IMPUT FILE=MMLC
TITLE = MORTALITY M 1969
$\mathbf{4 x}(17)=.0815$
$8=-.82219$
$I=1.168$
ex(22) $=.8828$
$8=0.80008$
$I=1.812$
$\mathbf{e x}(27)=., 8017$
$\mathrm{B}=8.68898$
I= . 991
$4 x(32)=.0918$
$B=-.88193$
I= 1.844
ex(37) $=.0026$
$8=-$. 80691
$\mathrm{I}=1.887$
ex(42) $=.0942$
$\mathrm{B}=-.08895$
I $=1.899$
4x(47) $=.0068$
B=-. 00918
$I=1.181$
$4 x(52)=.8189$
$B=-, 08899$
$I=1.899$
$\mathbf{e x}(57)=.0175$
$B=-.06822$
$I=1.895$
ex(62) $=., 8272$
$\mathrm{B}=-.88656$
$I=1.884$
$\mathbf{x}(67)=.8393$
$8=-.88616$
$I=1.882$
$\times(72)=.8595$
$\mathrm{B}=-.08556$
$I=1.877$
$4 x(77)=.8829$
$B=-.08452$
I= 1.669
$\mathrm{ex}(82)=.1164$
$\mathrm{B}=-.08495$
$\mathrm{I}=1.873$
$I(85+)=1.675$

P OF BEATH 10日 $=.398$

PROB OF SURVIVQL
TO $180=.88164$
LE $=67.8241$
extrapolate q_{x} from $x=82$ to $x=99$, the probability of death during the 100th year of life (age 59), the probability of surviving to one's 100 th birthday, and the calculated life expectancy at birth (Equation 5). These quantities are provided to allow the user to check the validity of the generated single-year life table. In general, I values should be in the range of 1.06 to 1.12 for ages 32 and above, and the q_{x} values should agree closely with those obtained by manual application of Equation 17. Finally, the life expectancy should be within 0.5 year of the life expectancy given for the abridged life table. A single-year life table produced by a GRADUATE run that satisfies these criteria can be assumed to be reasonably accurate.

At the end of a GRADUATE run, consult the file directory (enter CAT ALL) and you will find a new file with the name

FILEGR

i.e., the name of the input file plus the letters GR. For the case of our example (Figure 2), this will be named WFLCGR. This file contains the singleyear life table that will be used by MULDEC.

Attempting to list this file will generate the message

WARNING: line too long

This does not mean there is any problem with the file. Rather, the file has been generated to occupy the minimum amount of memory and is not fully listable on the display. For a discussion of this point, see the HP-75 Owner's Manual, p. 228. These files can be listed using the GARR LIST utility described below.

This completes our discussion of the GRADUATE program. A program listing for GRADUATE is given in Appendix A.

4.4 Running MULDEC Program

To run the MULDEC program, follow the same initial steps outlined for GRADUATE. A minimum of two additional files, one like that used for input to GRADUATE and

MLIDEC (Figure 1) and a "GR" file containing q_{x} values for ages 0 to $100+$, must be in memory. After you enter

RUN "MULDEC"
you will get the prompt

SINGLE YR LIFE TABLE FILE?>

This asks for the name of a "GR" file of the form generated by GRADUATE. For our example we would reply

WFLCGR.

If there were a problem with this name, a

BAD OR NONEXISTENT FILE
message would be generated and should be handled as in the GRADUATE program. (MULDEC will continue prompting for a file until execution is halted or a valid file name is entered.)

Following entry of a valid "GR" file, you will get the prompt

FILE FOR DEATH DATA?>

This asks for an input file of the format described under Section 4.2, "Preparing Int ut File for GRADUATE and MULDEC." Invalid file names will be handled in the manner described above.

For our example, the input file name would usually be

WFLC

That is the same file used to generate the GR file. (However, here we are interested in the death data that are used as in Equation 26.) The option
of entering a different file name is provided because it might be of interest to generate multiple-decrement life tables with the basic mortality experience of one population but with the proportional mortality experience of another. An example might be "what would a population with the life expectancy of women and the proportional lung cancer experience of men look like in our risk model?".

If a valid file name is entered (or else "BAD OR NONEXISTENT FILE" will be generated), the prompt

HEADING FOR OUTPUT?>
will appear.

This asks for a string of up to 32 characters, which will be written on the first line of the output file. This is used to label the file and may contain whatever information the user chooses.

Following this, you will get the prompt

OUTPUT FILE NAME?
which asks for the name under which you wish to store the multiple-decrement life table that will be generated. For our example (Figure 3), the name chosen is

WFLCMD

After this information has been generated, the computer will display the word

> WORKING
for about 30 seconds. During this period, the $q_{b x}$ and $q_{c x}$ values are calculated and the output file is created.

FIGURE 3
SAMPLE OUTPUT FROM MULDEC, INCLUDING PARTIAL LISTING OF LIFE TABLE (AGES 0-43)

********z*******CWSTRJC					
CWSTRUCT MULDEC ****************			20	6.23E-98c	1.84E-88t
RORTALITY FILE $=$ MFLCGR			21	6.38E-884	1.42E-886
DEATH DATA=WFLC			22	6.55E-964	$1.82 \mathrm{E}-806$
OUTFILE $=$ MFLCMD			23	6.67E-884	2.89E-896
	ab	4cx	24	6.74E-804	2.16E-896
	1.61E-882 8	8.88E+888	25	6.82E-894	2.33E-806
	7.81E-894	8.89E+806	26	6. 98E-904	$2.51 E-866$
	7.81F-884 8	9.89E+898	27	6.98E-904	2.69E-806
	7.81E-984 8	8. 888 +888	28	7.45E-904	3.78E-986
	7.81E-884 8	8.88E +890	29	7.96E-804	5.82E-986
	3.28E-894	9.89E+980	30	3.50E-994	6.42E-886
	$3.29 \mathrm{E}-894$	8. $8985+808$	31	9.88E-804	7.99E-806
	3.29E-804	8. $805+888$	32	9.70E-804	$9.74 E-886$
9	3.28E-894	8.88E+608	33	1.85E-603	$1.31 E-885$
	3.20E-804	8. $88 \mathrm{E}+888$	34	1.15E-803	1.79E-805
	3.88E-084	8.80E+800	35	1.25E-803	$2.15 E-985$
11	3.88E-984	8.80E+880	36	1.36E-983	2.67E-885
12	3.80E-984	8.88E+86e	37	1.48E-803	3.26E-805
13	3.80E-984	8.88E+809	38	1.62E-803	3.93E-905
	3.80E-894	8.88E+908	39	1.77E-803	4.79E-805
15	4.43E-804	8.88E+906	48	1.94E-803	5.57E-805
16	5.86E-804	8. $2.8 \mathrm{E}+888$	41	2.12E-883	6.58E-805
	5.77E-884	4.88E+800	42	2.31E-903	7.73E-985
	5.92E-084	$43.285-887$	43	$2.51 E-803$	8.79E-885

The prompt

LIST MULDEC?>
will now appear. If you answer N, no listing will be produced and the message EXECUTION ENDS
will appear. If your answer is Y, the message

HIT ANY KEY TO STOP
will appear, and a listing of $q_{b x}$ and $q_{c x}$ values will commence (see Figure 3).

As the message implies, hitting any key will cause listing to stop and the message

EXECUTION ENDS

will appear. Note that if you do not list the file at this point and wish to list it later, you must use the GARR LIST utility. Otherwise, the message

WARNING: line too long
will be generated as it was for the "GR" file produced by GRADUATE.

One additional comment regarding MULDEC should be made. If iung cancer mortality is input before sotal mortality, the message

FAILED CONSISTENCY CHECK
ORIER OF CAUSES WRONG?
will be generated on the printer and execution will terminate. If this happens, make sure that total deaths precede lung cancer deaths in the input file (Figure 1) and try again.

This completes our discussion of the MULDEC program. A program listing is given in Appendix A.

4.5 Running SMOKER Program

To run the SMOKER program, follow the same initial steps outlined for GRADUATE. A minimum of two additional files must be in memory. The first of these is a file containing $q_{b x}$ and $q_{c x}$ values for ages 0 to $100+$ in the format generated by MULDEC. The second file must be named "NONSLC" and contains the nonsmoker death rates for the ages shown in Table 6 arranged in the format shown in Figure 4 (if one wishes to use Table 6 , Figure 4 may simply be copied). The first prompt is

FILE FOR MULDEC?
which ast; for the name of the file containing the $q_{b x}$ and $q_{c x}$ values. An invalid file name will generate the now familiar

BAD OR NONEXISTENT FILE

Following this, the program looks for the NONSLC file. If this is not found, the message

NONSLC INVALID OR MISSING
is generated on the printer and the prompt

LOAD FROM CA?>
will appear in the display. To continue execution, place a cassette containing a copy of NONSLC in the tape drive and answer Y. The file will then be loaded into memory.

18 ! HONSMOKER DEATH RAT
ES IN DEATHS
28 ! PER 189808 PEOPLE.
SOURCE : GARFINKEL (1981)
30 ! MALES FIRST
48 DАTA 4.55,7.63,19.13,
$17.26,27.43,25.97,44.27$,
$68.87,94.8$
58 ! THEN FEMALES
68 ВคТค 3.6,5.3,7.87,13. $6,16.17,26.83,34.7,45.8$, 52.47

78 ! END

SMOK/NONS: LUNGC-MULDEC

IMFILE=WMLC

BAD OR NONEXISTANT FILE

INFILE=WMLCMD
SEX=MALE
ERROR
$U=8.088$
OUT OF RRNGE . $5<U<3$
$U=1$
ERROR
$P=45.898$
OUT OF RANGE . $1<P<.9$
\% SHOKERS $=.45$
ERROR
SKR $=10.880$
OUT OF RANGE 1 <SMR <5
$S M R=1.75$
ERROR
RELRISK $=48.880$
OUT OF RANGE $1<R R<2 \theta$
MIH RELRISK-L.C. $=5$
\% SMOKERS VS. RGE
RGE $=48 \quad P=4.49 E-881$
RGE $=58 \quad \mathrm{P}=4.41 \mathrm{E}-081$
AGE $=68 \quad P=4,19 E-881$
AGE $=70 \quad P=3.67 \mathrm{E}-801$
RGE $=88 \quad \mathrm{P}=2.58 \mathrm{E}-801$
$A G E=98 \quad P=8.89 E-982$
AGE $=39$
P. OF D. - N. S. $=2.72 E-803$
P. OF D. $-5,=3.74 E-803$
R.R. - L.C. $=5.86 E+068$ SMR $($ TOTAL $)=1.38 \mathrm{E}+600$

AGE $=49$
P. OF D. - N.S. $=6,16 E-093$
P. OF D. $-S .=1.88 \mathrm{E}-882$
R.R. $-L \quad C .=2.87 E+881$

SMR $($ TOTAL $)=1.75 E+900$

AGE $=59$
P. OF D. - H. S. $=1.58 \mathrm{E}-902$
P. OF D. $-5 .=2.77 \mathrm{E}-882$
R.R. - L.C. $=3.86 E+861$

SMR $($ TOTAL $)=1.75 E+880$

ASE $=69$
P. OF D. - N. S. $=3.61 \mathrm{E}-002$
P. OF D. $-S_{.}=6.32 \mathrm{E}-882$
R.R.-L.C. $=2.88 \mathrm{E}+881$

SMR $($ TOTAL $)=1.75 E+808$

RGE $=79$
P. OF D. - N. S. $=7.82 E-882$
P. OF D. - S. $=1.37 \mathrm{E}-801$
R.R.-L. $C,=1.72 E+801$

SMR $($ TOTRL $)=1.75 E+600$

AGE $=89$
P. OF D. $-\mathrm{N} . \mathrm{S} .=1.77 \mathrm{E}-991$
P. OF D. - S. $=3.89 \mathrm{E}-801$
R.R.-L.C. $=6,56 E+880$

SHR $($ TOTAL $)=1.75 E+900$

ACE $=99$
P. OF D. - K. S. $=3,96 \mathrm{E}-001$
P. OF D. $-5 .=6,93 E-881$
R.R. - L.C. $=5.86 E+9 日 6$
$\operatorname{SMR}($ TOTAL $)=1.75 E+80 \theta$
NOHS. FILE $=$ NONS
SHOK. FILE=SMOK
LIFE EXPECTANCIES NOMSMOKERS FIRST
$L E=78.29$
PROB. OF SURYIVAL
TO $188=2.97 E-803$
$L E=64.81$
PROB. OF SURUIVAL
T0 $180=9.6$ SE-806

The prompt

MULTIPLIER FOR NONS. L.C.?>
is now given. This asks for a multiplier in the range of .5 to 3 that is used, as in Equation 37, to modify nonsmoker lung cancer death probabilities. An answer of 1 leaves these quantities unmodified. An anewer outside the range of 0.5 to 3 generates an error message (Figure 4) and causes the prompt to repeat.

The next prompt is

MALE OR FEMALE?>

One may answer M or F to select male or female lung cancer rates from NONSLC. An answer other than M or F causes females to be selected by default.

The next prompt

STARTING P OF SMOKERS?>
asks for the proportion of 35 -year-old smokers in the population. Your reply must be a number in the range of 0.2 to 0.9 . If this range is exceeded, an error message of the form shown in Figure 4 is generated and the prompt is repeated.

The next prompt is

SMOKER VS NS. TOTAL SMR?>

This asks for the all-cause smoking mortality ratio for smokers versus nonsmokers at ages 45 and above. A number in the range of 1 to 5 is expected. Exceeding this range will generate an error message (Figure 4) and cause the prompt to repeat.

The next prompt is

MIN RELRISK L.C.?>

This asks for a minimum value of the relative risk of lung cancer in smokers versus nonsmokers at ages 45 and above. Your answer must be in the range of 1 to 20 (see Figure 4).

Two final sets of prompts are

HEADING FOR NONS.?>
and
FILE NAME FOR NONS.?>

These ask for the heading (up to 32 characters) that will be written at the top of the nonsmoker file and the name of the file into which the nonsmoker file should be written. Similar prompts appear for the smoker file.

After this information is provided, the life expectancies for smokers and nonsmokers as well as their probabilities of surviving to $100\left(\mathrm{~S}_{100}\right)$ are printed and the message

EXECUTION ENDS

appears on the display. Program execution is now complete.

Returning to the output of SMOKER reproduced in Figure 4, we start with the title

SMOK/NONS: LUNGC-MULDEC

This is followed by the phrase

INPUT FILE $=$ WMLC
and the error message

BAD OR NONEXISTENT FILE

Taken together, these tell us that we attempted to access an inappropriate file named WMLC.

Then we see
INPUT FILE = WMLCMD
followed by

$$
S E X=i A L E
$$

The first phrase says that our input rile is named WMLCMD; the second says that we selected the male portion of NONSLC.

Following these is an error message that says
ERROR
$P=45.00$
OUT OF RANGE. $1<P<.9$
and the phrase

$$
\% \text { SMOKERS }=.45
$$

These tell us that we attempted to declare 45 as the proportion of smokers at age 35 and that we corrected this to 0.45 . Similar error messages appear for the all-cause standard mortality ratio (SMR) and for the minimum relative risk of lung cancer.

The next section of output is labeled
\% SMOKERS VS. AGE

This gives the calculated age-specific proportion of smokers in the population (Equation 34) at 10 -year intervals starting with age 40 . Here the proportion of smokers falls from 0.449 at age 40 to 0.089 at age 90 .

Most of the remaining output is devoted to displaying the age-specific probability of death, q_{x}, in nonsmokers (P. OF D. - N.S.), age-specific probability of death in smokers (P. OF D. - S), age-specific relative risk of lung cancer in smokers versus nonsmokers (R.R. - L.C.), and the age-specific all-cause SMR of smokers versus nonsmokers (SMR(TOTAL)) for 10 -year intervals starting at age 39. This information is provided to give the user some insight as to the characteristics of the populations generated. Note that, for ages 49 and above, the all-cause SMR equals the SMR specified in setting up the progran (1.75 in this case).

The final pieces of information provided are the names of the nonsmoker and smoker files generated (for our example, NONS and SMOK, respectively) and life expectancies and probabilities of survival to 100 for nonsmokers and smokers.

Note that both output files from SMOKER are the same format as that produced by MULDEC. Therefore, they too must be listed using the GARR LIST utility.

This completes our discussion of the SMOKER program. A program listing is given in Appendix A.

4.6 Running RADRISK Program

To run the RADRISK program, verify that it is in memory and enter

RUN "RADRISK"

After a few seconds (which are required for initialization), you will receive the prompt

INPUT: KEYBD. (K) or FILE (F)?>

This pronipt asks whether you wish to parameterize the model by inputting values from the keyboard or by providing a data file containing the necessary inputs. We will consider input from the keyboard first, i.e., we assume that the option K is selected.

4.6.1 Input from Keyboard

The first prompt is

AGE AT FIRST RISK?>

which asks for the first age at which excess lung cancer risk can be greater than zero. The reply expected is a number in the range of 5 to 50 . Ages outside this range cause the message

```
AGE AT FIRST RISK (nnn)
OUT OF BOUNDS; 4 < AO < 51,
```

where $n n n$ is the faulty input, to appear on the printer and the prompt for age at first risk to be repeated.

The next prompt

AGE AT FIRST EXPOSURE?>

is self-explanatory. If 2 number less than 0 is entered, the age at first exposure is set equal to 0 ; if a number greater than 99 is entered, age at first exposure is set equal to 99.

The prompt

AGE AT LAST EXPOSURE?>

follows logically. If the reply is less than 1 , age at last exposure is set equal to 0 . If the reply is greater than 100 , it is set equal to 100 .

Following entry of age at first exposure and age at last exposure, RADRISK checks to make sure that the former is less than or equal to the latter. If this is not the case, an error message of the form

AGE F.E. (nnn) > AGE L.E. (mmm),

where $n \mathrm{nn}$ and mmm are the ages at first and last exposure that cause the problem, appears on the printer and the prompts for ages at first and last exposure are repeated. Following this, the prompt
RISK/WLM - R.R. ?>
asks for the value for the relative risk coefficient. Your response must be in the range of 0 to 0.2 . A reply outside this range causes an error message similar to that generated for an "out of bounds" age at first risk (see Figure 5A) to appear on the printer. When a relative risk coefficient greater than zero is entered, the prompt

R.R. OPTION (M, E, OR B)?>

appears. Entering M in reply causes the multiplicative form of the relative risk model (Equation 3) to be executed. Similarly, if E is entered, the exponential form of the model (Equation 4) is executed. A reply of B calls up both models as will replies other than M, P, or B. (That is, B is the default option.)

The next prompt

```
RISK/WLM - A.R. ?>
```

asks for a value for the absolute risk coefficient. This must be in the range of 0 to 0.0002 or an "out of bounds" error message (Figure 5A) will appear on the printer.

FIGURE 5
REPRESENTATIVE OUTPUT FROM RADRISK PROGRAM：
A．ERROR MESSAGES，B．SENSITIVITY FILE，
C．PROGRAM OUTPUT，INCLUDING MODEL PARAMETERIZATION， D．INPUT FILE FOR FILE OPTION

A．
AGE AT FIRST RISK（ 2）
OUT OF BOUNDS； $4<R 8<51$
AGE F．E．（ 99））AGE L．E．（ 1）

RELATIVE RISK（1．$\theta 8 E+88 \theta$ ） OUT OF BOIINDS：BLRLS． 2

AESOLUTE RISK（2，日BE－894）
OUT OF BNDS； $\operatorname{B}<R 2<2 E-4$
LATENCY（ 50.800 ）
OUT OF BOUHDS；$\theta<=77<46$
EXPOSURE LEVEL $(50$, 日最＋+ Q 01）
OUT OF BOUNDS；G＜Ki＜188

B．

5 ：AGE SPECIFIC SENSITI VITIES FOR RADRISK
18 BATA $3,3,3,3,3,3,3,3$ ，
$3,3,2,5,2,1,5,1,1,1,1,1$ ，
1，1，1，1，1，1，1，：
28 DRTA $1,1,1,1,1,1,1,1$ ． $1,1,1,1,1,1,1,1,1,1,1,1$ ， $1,1,1,1,1,1,1,1$
38 DATR $1,1,1,1,1,1,1,1$ ， $1,1,1,1,1,1,1,1,1,1,1,1$ ， 1，1，1，1，1，1，1，1
48 Data $1,1,1,1,1,1,1,1$ ，
1，1，1，1，1，1，1，1，1，1，1，1， 1，1，1，1，1，1，1，1
50 DRTR $1,1,1,1,1,1,1,1$ ． 1，1，1，1，1，1，1，1，1，1，1，1， $1,1,1,1,1,1,1,1$

C．

RADON RISK MODEL
R．R． COEF $=1.00 E-802$／WL K OPTION＝8
A．R．$=1.88 \mathrm{E}-885 /$ PY／WLM
AGE AT F．E $=\theta$
AGE AT L．E．$=10$ P
AGE RT FIRST RISK $=30$
WLL PER YR．$=18.88 \mathrm{E}-881$
LATENCY $=16$
EXPONENT COR $=-1.80 E-802$
AGE SP．SEN＝SENS
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
POP． $1=$ MHSHMD
BASELINE
L．E．$=65$ ． 881
DEATHS／18＾5－LC $=8632.8$

RELRISK MODEL－M
L．E，$=6+6$ ． 67
LOSS LE（MONS）$=5.69$
D $/ 18^{\wedge} 5=12591.2$
EXCESS $D / 10^{\wedge} 5=4255.4$

RELRISK MODEL－E

L．E，$=64.475$
LOSS LE（MONS）$=7.27$
$\mathrm{D} / 10^{\wedge} 5=13721.5$
EXCESS D／10＾5 $=5469.3$
gBSRISK MODEL
L．E．$=64.760$
LOSS LE（MOHS $)=3.86$
D／18＾5 $=10118.4$
EXCESS $1 / 10^{\wedge} 5=1621.0$

POP． $2=$ HKNSHD
BASELINE
L．E．$=76.567$
DEATHS $/ 16^{\wedge} 5-L C=698.5$

RELRISK MODEL－M
L．E．$=70.523$
LOSS $\operatorname{LE}($ MONS $)=.53$
D $/ 18^{\wedge} 5=1864.1$
EXCESS D／10＾5 $=367.8$

RELRISK MODEL－E
L．E．$=70.518$
LOSS LE（MONS）$=.68$
D／18＾5＝ 1179.8
EXCESS D $18^{\wedge} 5=483.5$

RBSRISK MODEL
L．E．$=76.136$
LOSS LE（MONS）$=5.17$
$D / 18 \wedge 5=2598.4$
EXCESS $0 / 10^{\wedge} 5=1913.0$

D．

16 ！STANDARD INPUT PRRC
METERS FGR RADRISK
20 DRTR $30,8,188, .81,8$, ．
88001，18， $1, Y,-.81, Y$, SENS

It should be noted that if either the relative or absolute risk coefficient is specified as zero, RADRISK skips execution of that model because no effect is assumed a priori.

The program next asks for

LATENCY IN YEARS?>

The reply must be in the range of 0 to 45 or an "out of bounds" error will appear on the printer (see Figure $5 A$).

The next quantity requesced is

ANNUAL EXPOSURE IN WLM?>

This asks for the constant working level month per year exposure that is assumed. Replies in the range of 0 to 100 are accepted. Otherwise, an "out of bounds" error is generated (Figure 5A).

The next query is

EXPONENTIAL CORRECTION?>

If your reply is Y, the prompt
EXPONENT=?>
appears. This asks for a constant in the range of -0.2 to 0 , which is used to decrease effective exposure (the r of Equation 45) over time.

Replying N to the query "EXPONENTIAL CORRECTION" results in no correction (i.e., $r=0$).

The next prompt in the sequence is

AGE SPECIFIC SENSITIVITIES?>

This asks whether a data file containing 101 numbers specifying age-specific sensitivities for the ages 0 to $100+$ is to be read $i n$. If the answer is Y, the query

FILE FOR AGE SENS?>
asks for the name of the file. At this point, one can either provide a valid file name or reply

NONE
which aborts the request for a sensitivity file and assumes all age-specific sensitivities are unity. A sample input file for this option is shown in Figure 5B. This file assumes that children under 10 are 3 times as sensitive to radon damage as those who are older and that sensitivity declines to 1 at ages 13 and beyond.

4.6.2 Designation of Population at Risk and Interpretation of Output

At this point the model parameterization (Figure 5 C) is listed, and the prompt

FILE NAME FOR INPUT?>
asks for the file containing the multiple-decrement life table that describes the mortality experience of the population assumed at risk (e.g., an output file of MULDEC or SMOKER). If the name NONE is entered, the "NEW INITIAL CONDITIONS?>" prompt described below is displayed because RADRISK assumes that you do not want to run any populations at the exposure regime specified. Obviously, you cannot name a valid input file NONE.

Following the entry of a valid file, the prompt

PURGE INPUT FILE?>

appears. If your answer is Y, the input file will be erased from memory; otherwise, it will be retained in memory. This feature is included to prevent memory overflow when a number of input files are loaded from tape (described below under Section 4.6.4). After this, the output shown in Figure 5 C is generated.

In the model parameterization shown in Figure 5C, the relative risk coefficient is 0.01 ; both forms of the relative risk model have been selected; the absolute risk coefficient is 0.00001 ; age at first exposure is 0 ; age at last exposure is 100 (lifetime exposure is assumed); age at first risk is 30 ; the exposure is 1 WLM per year; latency is 10 years; an exponential correction (r) of -0.01 is assumed; and age-specific sensitivities of the form shown in Figure 5B are input from a file called SENS.

The first population entered is WMSMMD, a population of male smokers. The part of the output labeled BASELINE shows that with no radon exposure the life expectancy of this population is about 64.8 years, and 9,529 lung cancer deaths per 100,000 are expected. The section labeled RELRISK MOJEL-M shows that, under our multiplicative relative risk model, life expectancy is reduced 6.41 months, and $4,855.7$ premature lung cancer deaths (EXCESS DEATHS/10^5) per 100,000 persons at risk are expected. The next section, labeled RELRISK MODEL-P, shows that the proportional form of the relative risk model predicts somewhat greater effects. Here the loss in life expectancy is 8.26 months, and the premature deaths are $6,294.8$. The section labeled ABS RISK MODEL shows that for the absolute risk model loss in life expectancy is 3.95 months, and the premature deaths are 1,670.7.

Close inspection of the output shown in Figure 5 also makes the point that premature lung cancer deaths are not precisely the same thing as excess lung cancer deaths. As noted above, the premature deaths under the multiplicative relative risk model equal $4,855.7$. If we instead tried subtracting total lung
cancer deaths expected in the absence of exposure from total lung cancer deaths expected in the presence of exposure ($D / 10^{\wedge} 4$), we get
$14005.6-9529.9=4475.7$
or a difference of 380 deaths from our "premature" figure. Similar differences are apparent in our other models. This illustrates the fact that, because an excess source of cancer mortality "competes" with the baseline level of the cancer, the total cancer observed in the exposed population is always less than would be expected from summing $b i j e l i n e$ and premature cancer deaths.

After the output for population 1 (WMSMMD) is generated, we receive the prompt RUN ANOTHER POPULATION?>

In our example we answered Y, which generated

FILE NAME FOR INPUT?>

Our reply was WMNSMD, which specified a file for male nonsmokers and generated the finai section of the output using the new population and the previously entered model specification.

RADRISK will process populations for a given set of input parameters until one answers N to "RUN ANOTHER POPULATION?>." At this point, the prompt

NEW INITIAL CONDITIONS?>
appears. An answer of N stops execution and causes the message

EXECUTION ENDS
to appear on the display. An answer of Y returns us to the prompt "INPUT:
KEYBD. (K) OR FILE (F)?>."

4.6.3 Input Via File

If we answer F to the prompt just mentioned, we are asked

FILE NAME?>

which requests the name of a file configured as in Figure 5D. If the answer to this prompt is "NONE," you will be returned to keyboard input. The only necessary part of such a file is the data statement which contains, in this order, age at first risk, age at first exposure, age at last exposure, the relative risk coefficient, the choice of relative risk models (a reply must be included; if the relative risk coefficient is zero, use B), the absolute risk coefficient, latency, exposure level in WL, the answer to whether or not an exponential reduction factor is desired, a value for the exponential factor (this must be included; if a reduction is not specified, use zero), the answer to whether or not a file of age-specific sersitivities is to be used, and the name of such a file (here, too, a name must be given; if the preceding answer is N, use the name "NONE"). For the example file, the reader can verify that we have specified the same model parameterization used in our example output for RADRISK. If this format is not followed, error messages will be generated as described in the following section.

A useful feature of output from a file is that all the error checks provided for keyboard input are in effect for file input. Thus one will be asked for substitute values for any bad arguments (but only for bad arguments). A specific example might be reversing age at first and last exposure. This generates the message

$$
\text { AGE F.E. }(\mathrm{nnn})>\text { AGE L.E. }(\mathrm{mmm})
$$

on the printer and prompts for revised ages of first and last exposure. Such an "error" could be of practical use. Say that we want to consider the same risk models for individuals exposed at different age ranges (as in an occupational setting). We can construct an input file with the age of first exposure greater than the age of last exposure. Each time we run the model we specify this file and are prompted only for ages of first and last exposure. In practice this saves a bit of time and typing.

4.6.4 Error Handling and Loading Input Files from Cassette

Thus far in our discussion of input files, we have assumed that valid files were resident in memory. If this is not the case, the message

FILE XXXX???

will appear on the printer, where XXXX is the problem file name, and the prompt

ON CASSETTE? $>$
appears. This sequence means either that there is something wrong with the file format of XXXX or that it is not in memory. If your response is Y , RADRISK attempts to load the file named $X X X X$ from cassette. The user should be cautious in answering Y to the last prompt. That is, make sure a cassette containing the file of interest is in the drive. If this is not the case, a further error occurs and RADRISK, having determined the the necessary file is not in memory or on cassette, halts execution and displays the mess ge

EXECUTION ENDS

To prevent such a termination, reply N and you will be returned to the prompt asking for the relevant information (e.g., either "INPUT: KEYBD (K) OR FILE (F)?>," "FILE FOR AGE SENS?>," OR "FILE NAME FOR INPUT?>"). The first two of these may be aborted by answering "NONE." The last must be answered with a valid file name. If no valid input file for the population exists, one must be created using GRADUATE, MULDEC, and SMOKER.

4.6.5 Additional Output Features

Figure 6 displays 3 additional outputs from RADRISK. These are intended to illustrate how changes in model specification affect the output. In the first, the model specification is the same as shown in Figure 5 except that age at first exposure is changed to 10 , the exponential form of the relative risk model is specified, and the absolute risk coefficient is given as zero. Note that, as stated earlier, specifying the coefficient as zero prevents execution

FIGURE 6
THREE ALTERNATIVE PARAMETERIZATIONS OF RADRISK MODEL

RADOK RISK MODEL
R．R．COEF $=1.9 \theta E-982 /$ WL． h OPTION $=E$
A．R．$=6 . \theta \theta E+8 \theta \theta / P Y / W L M$
AGE AT F．E．$=10$
AGE AT L．E．$=180$
AGE AT FIRST RISK＝ 30
WLH PER YR．$=18.00 E-201$
LATENCY $=18$
EXPONENT COR $=-1.09 E-802$
SENSITIYITY＝1

POP． $1=$ WMSMMD

BRSELINE
i．$E_{0}=56,848$
DEATHS $/ 10^{\wedge} 5-L C=8871.1$

RELRISK MODEL－E
L．E．$=56.598$
LOSS LE（MONS）$=4.18$
D／18＾5 $=11998.1$
EXCESS $D / 18^{\wedge} 5=3344.0$

＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

RADON RISK MODEL
R．R．$C O E F=0.96 E+9 B A / W L H$ OPTION＝
$A_{1} R_{2}=1.00 \mathrm{E}-805 / \mathrm{PY} / \mathrm{KL}$ LH
AGE AT F．E．$=30$
AGE AT L．E．$=186$
AGE AT FIRST RISK＝ 30
HL ${ }^{*}$ PER YR．$=10.08 E-081$
LATENCY＝16
EXPONENT COR $=98.00 \mathrm{E}-801$
SENSITIVITY＝1

POP， $1=$ WMSMMD
BASEL INE
L．E．$=38.189$
DEATHS $/ 10^{\wedge} 5-L C=9117.1$

ABSRISK MODEL

RADON RISK MODEL
R．R．$C O E F=0 . \theta 日 E+\theta 日 G /$ WL M OPTION＝
A．R．$=\theta, 8 B E+988 / P Y /$ WLM
AGE RT F．E．$=0$
AGE AT L．E．$=100$
RGE AT FIRST RISK $=30$
WLH PER YR．$=60 . \theta \theta E-801$
LATENCY＝16
EXPONENT COR $=80,00 E-801$
SENSITIVITY＝1

POP， $1=$ WMSMMD
BASEL INE
L．E．$=65.881$
DERTHS $/ 1 \wedge^{\wedge} 5-L C=8632.8$

L．E．$=38.852$
LOSS $\operatorname{LE}($ MONS $)=.68$
D $/ 10 \times 5=9553.4$
EXCESS $D / 10^{\wedge} 5=470.3$
of the absolute risk model and that specifying the age at first exposure as 10 changes life expectancy to 56.57 years. The latter change is because we are now calculating life expectancy at age 10 rather than at age 0 .

The next two outputs drop the exponential correction and age-specific sensitivities, change age at first exposure to 30 and 50 , respectively, and suppress execution of first the relative risk and then both models.

4.6.6 Conclusion

This completes what is designed to be a tutorial on running the RADRISK model. Review of this material should enable even persons with little prior knowledge of computers or computer programming to run RADRISK and thus produce a wide variety of radon risk models. A program listing is given in Appendix A.

4.7 LIST Utility

We noted earlier that GRADUATE, MULDEC, and SMOKER all generate output ${ }^{\text {ciles }}$ that cannot be listed using the system LIST command. This section describes the LIST utility that allows review of both file types (remember, MULDEC and SMOKER generate the same file format). To use LIST, simply enter

> RUN "LIST"

You will (assuming the file is in memory) receive the prompt

PRINTER (P) OR DISPLAY (D)?>
if you answer D, the file will be listed on the display; if you answer P, the file will be listed on the printer (other replies cause the printer to be selected by default).

Following this, you will receive the prompt

FILE NAME?>

If the answer is the name of a GRADUATE output file, you will get the output shown in Figure 7A; if the answer is the name of a MULDEC or SMOKER output file, you will get the output shown in Figure 7B.

In either case, as soon as output begins, you will receive the message

HIT ANY KEY TO STOP

As the message implies, hitting any alphanumeric key will stop the file from listing and will generate the prompt

LIST ANOTHER FILE?>

If this is answered Y, you return to the PRINTER (P) OR DISPLAY (D)?> prompt; otherwise

EXECUTION ENDS

appears on the display.

In the event that you enter a name that is invalid, you will receive the message

BAD OR NONEXISTENT FILE
on the printer and will be prompted for a revised file name. LIST cannot load files from tape, so any files you wish to list must be in memory.

A final problem that may arise is that, if the ATTN key is hit during the listing of a file on the display, subsequent print operations will be directed to the display. To remedy this, enter

> PRINTER IS ":PR"
or

FIGURE 7A
REPRESENTATIVE OUTPUT FROM LIST UTILITY FOR A GR FILE (AGES 0-45)

	$\begin{aligned} & E=W M L C G R \\ & E=G R \end{aligned}$	22	1.985-903
AGE	ax	23	1.96E-903
8	$2.13 E-802$	24	1.98E-983
1	8.26E-894	25	$1.84 \mathrm{E}-803$
2	8.26E-984	26	1.78E-883
3	8.26E-884	27	1.73E-803
4	8.26E-694	28	1.75E-803
5	4.80E-884	29	1.77E-803
6	4.88E-864	30	1.88E-803
7	4.88E-064	31	$1.82 \mathrm{E}-803$
8	4.88E-884	32	1.85E-803
9	4.89E-884	33	1.98E-803
18	4.89E-884	34	2.13E-893
11	4.89E-804	35	2.29E-803
12	4.88E-884	36	$2.46 \mathrm{E}-303$
13	4.88E-984	37	2.65E-803
14	4.88E-804	38	2.89E-893
15	9.47E-864	39	3.185-883
16	1.20E-983	48	3.49E-803
17	1.51E-893	41	3.83E-803
18	1.68E-903	42	4.21E-903
19	1.695-893	43	4.62E-893
28	1.78E-983	44	5.88E-893
	1.88E-963	45	5.59E-893

FIGURE 7B
REPRESENTATIVE OUTPUT FROM LIST UTILITY FOR A MULDEC FILE (AGES 0-45)

$\begin{aligned} & \text { NAME =WRLCMD } \\ & \text { TYPE }=\text { MULDEC } \end{aligned}$			21	1.88E-803 $1.45 \mathrm{E}-866$	
			22	1.98E-083	1.91E-986
HEADING=					
Wh 69 LC			23	1.96E-903	2.27E-966
AGE	abx	acx	24	1.98E-083	$2.56 \mathrm{E}-966$
(2) 2.13E-062 $0.80 \mathrm{E}+980$			25	$1.84 E-803$	2.83E-966
$18.26 \mathrm{E}-9849.99 \mathrm{E}+900$			26	$1.78 \mathrm{E}-883$	$3.98 \mathrm{E}-806$
$28.26 E-984 \quad 9.00 E+6 \theta \theta$			27	$1.72 \mathrm{E}-983$	$3.31 E-966$
$3 \quad 8.26 E-864 \quad 9.9 \theta E+6 \theta \theta$			28	$1.74 \mathrm{E}-9836$	6.26E-606
$48.26 E-8 \theta 4 \quad \theta .9 \theta E+9 \theta \theta$			29	$1.76 \mathrm{E}-903$	9.30E-906
5 4.88E-884		$9.80 E+888$	30	$1.79 \mathrm{E}-903$	$1.24 E-825$
6	4.80E-884	9.8BE+880	31	$1.81 \mathrm{E}-903$	$1.565-90^{5}$
7	4.88E-884	$9.88 E+808$	32	$1.83 E-963$	$1.89 E-985$
8	4.88E-804	9.90E+800	33	$1.95 \mathrm{E}-883$	$2.73 \mathrm{E}-965$
9	4.88E-884	9. $68 \mathrm{E}+606$	34	$2.89 \mathrm{E}-883$	$3.70 E-905$
18	4.89E-884	8.88E+808	35	$2.24 E-693$	4.80E-985
11	4.80E-084	8.88E+888	36	2.49E-903	6.04E-905
12	4.88E-904	9.89E+906	37	$2.57 E-803$	7.44E-885
13	4.88E-984	9.08E +989	38	$2.88 \mathrm{E}-863$	9.43E-805
14	4.88E-064	9.08E+9日8	39	3.86E-803	1.18E-884
15	9.47E-804	9.80E +980	48	3. $34 E-803$	$1.45 E-964$
16	1.28E-983	3.8.80E+8B8	41	$3.65 \mathrm{E}-803$	$1.77 \mathrm{E}-884$
17	1.51E-093	$38.00 \mathrm{E}+980$	42	$3.99 \mathrm{E}-883$	$2.13 E-864$
18	1.68E-093	$33.67 \mathrm{E}-007$	43	4.37E-903	$2.44 E-064$
19	1.68E-883	$36.49 \mathrm{~F}-887$	44	4.80E-893	$2.79 E-864$
			45	5. 275 -明	7. 195-and

followed by the ATTN key in answer to the first prompt. Either sequence will reactivate the printer.

This completes the discussion of the LIST utility. A program listing is given in Appendix A.

4.8 DUPER Utility

The last program to be included in the GARR package provides the means for making a backup copy of all the files included in the GARR standard tape (see listing in Figure 8). To run this program, enter
copy "DUPER:CA" TO "DUPER"
(make sure the GARR tape is in the drive; also make sure at least 16,000 bytes of memory are free before DUPER is copied). Then enter

RUN "DUPER"

Several minutes will elapse while the tape drive loads files from tape to memory. The HP-75 will beep when this operation is completed and the message

CHANGE CASSETTE (GARR>BACK) AND ENTER Y WHEN READY
will appear on the printer along with the prompt

READY?
on the display. When this occurs, remove the GARR tape from the drive, replace it with the tape that will contain the backup copy, and enter

Y
to the prompt.

Several more minutes will elapse while files are written to the backup tape. When writing is completed, the HP-75 will beep again and print the message

CHANGE CASSETTE (BACK>GARR) ENTER Y WHEN READY

and the display will prompt

READY?

When this occurs, change cassettes and enter

Y

Several more minutes will elapse while the remaining programs are copied to memory. The message to change from the GARR tape to the backup tape is then printed, and the READY prompt appears. Remove the GARR tape, insert the backup, and enter a final Y. The tape drive will be busy for a few more minutes. When it stops, the backup tape contains a copy of the GARR tape. This can be verified by entering
CAT ": CA"
which allows you to scan the file directory of the cassette.

This completes our discussion of DUPER. A program listing is given in Appendix A.

4.9 GARR Tape

The final section describes the files resident on the GARR tape as created by DUPER. The listing of files shown in Figure 8 gives the contents of the GARR tape.

The first two files, GRADUATE and MULDEC, contain the GARR programs of the same name. The next, NONSLC, contains a copy of the nonsmoker lung cancer rate file shown in Figure 4. Following this is SMOKER, which contains the

```
\CAT * CR*
    Nane Tyne Len Tine
    Date
GRADUGTE B 2568 49:18
18/18/83
MULDEC B 256星16:33
11/g1/83
NOHSLC B 512 16:44
06/21/83
SHOKER B 5376 16:29
11/91/83
STANDARD B 256 10:22
09/14/83
RADRISK 96144 11:25
11/87/83
SENS 8 768 16:45
11/82/83
MMLC B }768\quad11:2
11/84/83
HFLC B 768 13:14
04/19/83
LIST B 1280 11:46
11/84/83
DUPER B 768 15:34
11/84/83
```

GARR program of the same name. The STANDARD file contains a copy of the input file for RADRISK parameters shown in Figure 5A. The RADRISK file contains our risk assessment model. The SENS file contains the age-specific sensitivity file whose listing appears in Figure 5B. The files WMLC and WFLC contain the type of mortality input files required by GRADUATE and MULDEC (WFLC is listed in Figure 1). Finally, LIST and DUPER contain the GARR utilities of the same names.

Taken together, these files contain all the information needed to work through the examples given in the preceding sections and should enable new users to rapidly verify that they understand how to run the various GARR programs.

4.10 Conclusion

This concludes our discussion of GARR on the HP-75. At this point, the reader has a firlii grasp of how to go about constructing radon risk models. I would greatly appreciate user feedback as to the truth of the last statement. Can you construct input files that work? Is the syntax confusing? Does the SMOKER program provide sufficient flexibility in specifying smoker versus nonsmoker populations? Has your favorite radon health risk model been omitted from RADRISK? Answers to these questions and any other comments the user may have would be greatly appreciated. In the meantime, I hope that the present form of GARR is a useful tool for radon risk assessment.

REFERENCES

Archer, V.E., G. Saccomanno, and J.H. Jones, "Frequency of Different Histologic Types of Bronchogenic Carcinoma As Related to Radiation Exposure," Cancer 34:2056-2060, 1974.

Axelson, O., and L. Sundell, "Mining Lung Cancer and Smoking," Scandinavian Journal of Work and Environment 4:46-52, 1973.

Bunger, B.M., J.R. Cook, and M.K. Barrick, "Life Table Methodology for Evaluating Radiation Risk: An Application Based on Occupational Exposures," Health Physics 40:439-455, 1981.

Chiang, C.L., Introduction to Stochastic Processes in Biostatistics, John Wiley and Sons, NY, 1968.

Cohen, B.L., "Failures and Critique of the BEIR III Lung Cancer Risk Estimates," Health Physics 42:267-283, 1982.

Collé, R., and P.E. McNall, Jr. (eds.), "Radon in Buildings," National Bureau of Standards Special Publication 581, 1980.

Cook, J.R., B.M. Bunger, and M.K. Barrick, "A Computer Code for Cohort Analysis of Increased Risks of Death," United States Envirormental Protection Agency; Office of Radiation Programs Technical Report 520/4-78-012, 1978.

Cox, D.R., "Regression Models and Life Tables (with discussion)," Journal of the Royal Statistical Society, Series B, 34:187-220, 1972.

Elandt-Johnson, R.C., and N.L. Johnson, Survival Models and Data Analysis, John Wiley and Sons, NY, 1980.

Evans, R.C., "Engineers' Guide to the Elementary Behavior of Radon Daughters," Health Physics 38:1173-1197, 1980.

Fleiss, J.L., Statistical Methods for Rates and Proportions, John Wiley and Sons, NY, 1981.

Garfinke1, L. "Time Trends in Lung Cancer Mortality Among Nonsmokers and a Note on Passive Smoking," JNCI 66:1061-1066, 1981.

Harley, N.H., and B.S. Pasternack, "A Model for Predicting Lung Cancer Risks Induced by Environmental Levels of Radon Daughters," Health Physics 40: 301-316, 1981.

Harley, N.H., and B.S. Pasternack, "Environmental Radon Daughter Dose Factors in a Five-Lobed Human Lung," Health Physics 42:789-799, 1982.

Hewlett Packard, HP-75 Owner's Manual, Hewlett Packard Company, 1982.

Hofmann, W., "Dose Calculations for the Respiratory Tract from Inhaled Natural Radioactive Nuclides As a Function of Age II: Basal Cell Dose Distributions and Associated Lung Cancer Risk," Health Physics 43:31-44, 1982.

Hornung, R.W., and S.S. Samuels, "Survivorship Models for Lung Cancer Mortality in Uranium Miners - Is Cumulative Dose an Appropriate Measure of Exposure?" in Radiation Hazards in Mining: Control, Measurement, and Medical Aspects, M. Gomez (ed.), Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., NY, pp. 363-368, 1981.

ICRP, "Limits for Inhalation of Radon Daughters by Workers," Annals of the ICRP (Publication 32), Pergamon Press, NY, 1981.

Keyfitz, N. , Introduction to the Mathematics of Population, Addison-Wesley, Reading, MA, 1977.

Kunz, E., J. Sevc, V. Placek, and J. Horacek, "Lung Cancer in Man in Relation to Different Time Distribution of Radiation Exposure," Health Physics 36:699-706, 1979.

Lundin, F.E., J.K. Wagoner, and V.E. Archer, "Radon Daughter Exposure and Respiratory Cancer Quantitative and Temporal Aspects," United States Public Health Service, NIOSH-NIEHS Joint Monograph No. 1, 1971.

Lundin, F.E., V.E. Archer, and J.K. Wagoner, "An Exposure-Time-Response Model for Lung Cancer Mortality in Uranium Miners: Effects of Radiation Exposure, Age, and Cigarette Smoking," in Energy and Health, N.E. Breslow and A.S. Whittemore (eds.), Society for Industrial and Applied Mathematics, Philadelphia, PA, pp. 243-264, 1979.

Morrison, H.I., D.T. Wigle, H. Stocker, and A.J. de Villiers, "Lung Cancer Mortality and Radiation Exposure Among the Newfoundland Fluorspar Miners," in Radiation Hazards in Mining: Control, Measurement, and Medical Aspects, M. Gomez (ed.), Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., NY, pp. 372-376, 1981.

NAS, The Effects on Populations of Exposure to Low Levels of Ionizing Radiation: 1980, National Academy Press, Washington, DC, 1980.

NCHS, "Vital Statistics of the United States 1969," Volume II, Mortality, Part A, United States Department of Health, Education, and Welfare Publication No. (HRA) 74-1101, National Center for Health Statistics, Rockville, MD, 1974.

NCHS, United States Decennial Life Tables for 1969-1971," Volume 1, No. 1, United States Department of Health, Education, and Welfare Publication No. (HRA) 75-1150, National Center for Health Statistics, Rockville, MD, 1975.

Peterson, G.R., and L.E. Sever, "An Appraisal of Selected Epidemiologic Issues from Studies of Lung Cancer Among Uranium and Hard Rock Miners," Hanford Environmental Health Foundation Report USUR-02, Hanford, WA, 1982.

Radford, E.P., and K. G. St. Clair Renard, "Lung Cancer in Swedish Iron Miners Exposed to Low Doses of Radon Daughters," New England Journal of Medicine 310: 1485-1494, 1984.

Thomas, D.C., and K.G. McNeill, "Risk Estimates for the Health Effects of Alpha Radiation," Research Report INFO-0081, Atomi، Energy Control Board, Ottawa, Canada, 1982.

UNSCEAR, "Sources and Effects of Ionizing Radiation," United Nations Scientific Committee on the Effects of Atomic Radiation 1977 Report to the General Assembly, United Nations, NY, 1977.

USRPC, "Report of the Task Force on Radon in Structures," United States Radiation Policy Council Publication RPC-80-002, 1980.
U.S. Public Health Service, "Smoking and Health, A Report of the Surgeon General," United States Department of Health, Education, and Welfare Publication PHS-79-50066, 1202 pp. , 1979.

Waxweiler, R.J., R.J. Roscoe, V.E. Archer, M.J. Thun, J.K. Wagoner, and F.E. Lundin, Jr., "Mortality Follow-up Through 1977 of the White Underground Uranium Miners Cohort Examined by the United States Public Health Service," in Radiation Hazards in Mining: Control, Measurement, and Medical Aspects, M. Gomez (ed.), Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., NY, pp. 823-830, 1981.

Whittemore, A.S., and A. MCMillan, "Lung Cancer Among U.S. Uranium Miners: A Reappraisal," JNCI 71:489-499, 1983.

Wise, K.N., "Dose Conversion Factors for Radon Daughters in Underground and Open Cut Mine Atmospheres," Health Physics 43:53-64, 1982.

Wright, E.S., and C.M. Couves, "Radiation-Induced Carcinoma of the Lung - The St. Lawrence Tragedy," Journal of Thoracic and Cardiovascular Surgery 74:495-498, 1977.

APPENDIX A

PROGRAM LISTINGS AND VARIABLE LISTS

VARIABLE
 C1
 C7
 F1\$
 F2\$
 I
 19
 J
 K, K1, K2
 L.
 L1, L2
 L9
 Q1(18)
 Q2(100)
 S
 S1(18)
 S9
 T7\$
 V1

DESCRIPTION
Step increment
Quadratic correction term
Abridged input file name
Output file name
Loop counter
Flag variable
Loop counter; delimiter
Working variables, age-specific
probability of death
Loop counter
Loop delimiters
Life expectancy
Abridged life table
Graduated life table
Step incrementer (line 510); years 1 ived beyond 100 th birthday (line 830)
Age-specific step increments
Survival
Abridged file title
Age variable

10 ! GRRDIJRTE STANDARD A BRIGED LIFE TABLE TO 0 T 0 1804
15 ! FINAL REYISION 10/! 8/83
28 PRINT USING 38
3 IMAGE //**********\&**
*******/"GRADUATE LIFE
TABLE*/"****************
****//!
$48 \operatorname{DIM}$ Q1 (18), Q2 (108), S!
(18)

50 INPUT •FILE FOR ABRIG ED?) *; F1
68 PRINT *INPUT FILE=*; F 1
$78 \mathrm{~F} 2 \mathrm{~s}=515 \mathrm{~s}$ "GR*
80 ON ERROR GOSUB 1980 . GOTO 58
90 RSSIGN 1 TO F1S
180 READ 1 1; T75
118 READ 1 ; 81() AS
SIGN 1 TO *
120 OFF ERROR
125 DISP "WORKING*
130 PRINT "TITLE $=$ *;T7\$ e PRINT **
140 ! DO INTERVAL AGE

8-1

$150-92(\theta)=01$ (0)
160 ! DO INTERYAL I AGE
1-4
$170 K=(1-81(1))^{\wedge}, 250=$ 1-K
188 FOR $I=1$ TO 4
198 Q2(I) $=\mathrm{K}$
208 HEXT I
218 ! RESCALE INTERYALS 2-18
228 ! TO RNMUML RUERAGE
(GEOMETRIC) RISK OF
238 ! DEATH AND GET GE?
METRIC INCREMENTS (SI) F OR INTERPOLATION
$24801(2)=1-(1-81(2))^{\wedge} .2$
$25081(3)=1-(1-91(3))^{\wedge} .2$
268 FOR I=4 TO 17
$27081(\mathrm{I})=1-(1-\theta 1(\mathrm{I}))^{\wedge} .2$
$288 \mathrm{Sl}(\mathrm{I})=(91(1) / \theta 1(1-1)$ $)^{\wedge} .2$
298 NEXT I
$388 \$ 1(18)=(\$ 1(17)+\$ 1(16$
) +5 ($(15)) / 3$
319 ! CORRECT Q1 FOR S
326 FOR $I=4$ TO 17
$330 \mathrm{CI}=(\mathrm{S} 1(\mathrm{I})+\mathrm{S} 1(\mathrm{I}+1)) / 2$
340 IF $\mathrm{Cl}<1.84$ THEN $\mathrm{C} 7=0$
e GOTO 378
$350 \mathrm{C} 7=-.77816+1.57115+\mathrm{C}$
$1-.79272 * 1^{\wedge} 2$
$360 \mathrm{Q1}(\mathrm{I})=\mathrm{C} 7+01(\mathrm{I})+91(\mathrm{I})$
$370 \mathrm{VI}=(1-1) * 5+2$
380 PRINT USING 390 ; VI
, Q1(1), C7,C1
398 IMAGE **x(*, dd $\left.{ }^{*}\right)={ }^{*}$,
d. $d d d d /{ }^{*} B z^{*}$, d, $d d d d d / /^{*}[=*$
,dd.ddd/
488 NEXT I
418 : DO INTERVQLS 2-3 0
GES 5-14
426 FOR $I=1$ TO 2
$438 \mathrm{~L}=5 * 1$
$448 \mathrm{~L}=\mathrm{L} \mathrm{L}+4$
450 FOR J=L1 T0 L2
468 Q2(J) $=01(1+1)$
470 NEXT J
488 NEXT I
490 ! DO INTERYALS 4-17
AGES 15-82
$500 \mathrm{~K} 1=0!(3) \times K 2=0!(4)$
$510 \mathrm{~S}=\mathrm{S} 1(4)$
$520 \mathrm{Q} 2(15)=\mathrm{K} 2 / \mathrm{S}^{\wedge} 2$
$53002(16)=k 2 / \$$
540 Q2(17) $=\mathrm{k} 2$
$550 \mathrm{~J}=13$
560 FOR $I=5$ TO 17
$578 \mathrm{~K} 1=\mathrm{K}_{2}$ - $\mathrm{K} 2=81(1)$
$580 \mathrm{~S}=\mathrm{S} 1(\mathrm{I})$
590 $J=J+5$ - $K=J+4$
600 FOR $L=J$ TO K
$618 \mathrm{KL}=\mathrm{K} 1 * \mathrm{~S}$ Q2(L)$=\mathrm{K} 1$
628 NEXT L
638 NEXT I
648 ! PREPRRE EXTRRP, 83
-1004
$650 \mathrm{~S}=\mathrm{S} 1(18)$

668 PRINT USING 678 ; $\$$
670 IMRGE $/ \bullet I(85+)=*, d d$.ddd/
$680 \mathrm{KI}=Q 2(82)$
$69019=9$
706 FOR $[=83$ T0 99
$718 \mathrm{KI}=\mathrm{K} 1 * \mathrm{~S}$
720 Q2(I) $=\mathrm{K} 1$
730 IF $92(1)<1$ THEN 780
740 IF $19=0$ THEN PRINT U
SING 750 ; I
750 IMAGE / ${ }^{\circ}$ FIRST I AT f GE * , ddd./
$760 \quad 19=1$
770 Q2(1) $=1$
780 NEXT I
790 PRINT USING 809 ; 02
(99)

808 IMAGE /ーP OF DEATH !
$\theta \theta=*, d, d d d /$
810 Q2(190) $=$!
828! **FINISHED** . .NOW
CHECK LE
838 S=,8/Q2(99)
840 S9 $=1-92(9) \quad .9=59+\theta$
2(8)*,1
850 FOR I=1 T0 99
860 L9 $=.5 * 59 * 92(1)+L 9$
870 S9=59* (1-Q2(I))
$880 \mathrm{~L} 9=\mathrm{L} 9+59$
898 NEXT I
990 IMAGE "LE=*,dd.dddd
918 L9 2 L9 9 S 9 *S
928 PRINT USING 938 ; $\$ 9$
930 IMRGE $/=$ PRDB OF SURV
IVAL*/*TO 108=*,d.ddddd/
940 PRINT USING 988 ; L9
950 ASSIGN : 1 TO F2
960 PRINT 1 ; Q2 ()
978 ASSIGH 1 TO *
980 DISP *EXECUTION ENDS
998 END
1880 PRINT USING 1818
1818 IHAGE / $/$ BARD DR NON
EXISTENT*/*FILE"//
1828 ASSIGN 1 TO *
1838 RETURN

VARIABLE	DESCRIPTION
A\$	Answer to prompt line 930
D1 $(2,21)$	Deaths array - converted to probabilities (line 330)
F1\$	General input file name
F2\$	Output file name
H1\$	Heading for output
I	Loop counter
J	Loop counter
K	Number of specific causes of death (always 1)
K\$	Keyboard variable
L1, L2	Loop delimiters
M	Loop counter
N	Index variable (line 530), loop counter (line 640)
Q2	Single-year life table; working array (line 870)
Q3 $(2,100)$	Multiple-decrement life table
S	Additive step increment
\$\$	Format variable
${ }_{2}^{\mathrm{T} 1(21)}$	Working array--reads in death data Working variable

$18 \mathrm{~s}=* /=$
28 ! MULDEC CALCULATES * ULTIPLE
30 ! DECPENENT LIFETABLE FROM INPUTS FROH
40 I DEATH FILE GND OUTF ILE OF GRADUATE
45 ! FINQL. REVISION 11/1 183
50 PRINT USING 68
60 IMAGE $/ 1,{ }^{* * * * * * * * * * * * ~}$
******/-COHSTRUCT MULDEC

70 DIM D1 (2,21),02(108), $\mathrm{Ti}(21), 03(2,109)$
80 INPUT "SINGLE YR LIFE TRBLE FILE?)= FFIS
98 PRINT - MORTQLITY FILE **F15
100 OH ERROR GOSUB 1098 - GOTO 88

110 IMAGE ddd, $2 \mathrm{X}, \mathrm{d}$.ddde
128 ASSIGN I I TO Fis
130 READ I 1 ; 22()
148 ASSIGN I I TO *
150 IMPUT -FILE FOR DEAT
H DATA?) *; FIS
168 ON ERROR GOSUB 1118 - GOTO 158

178 PRINT *.
180 PRINT -DEATH DATA=*, F1
190 ASSIGN I : TO FIS
206 RERD ; 1,35 ; K
218 OFF ERROR
220 FOR $I=8$ TO K
230 READ 11 : T1 ()
$248 \mathrm{FOR} \mathrm{J}=0 \mathrm{TO} 21$
$250 \mathrm{DI}(\mathrm{I}, \mathrm{J})=\mathrm{TL}(\mathrm{J})$
260 NEXT J
270 HEXT I
288 ! SCALE DEATHS TO P9
OPORTIOHS
298 ASSICN : 1 TO *
300 FOR $J=8$ TO 21
$3102=1$
315 OH ERROR GOTO 1148
320 FOR I=1 TO K
$330 \mathrm{D} 1(\mathrm{~L}, \mathrm{~J})=\mathrm{DI}(\mathrm{L}, \mathrm{J}) / \mathrm{DL}(\mathrm{M}$
, J)
$3482=2-D 1(1, \mathrm{~J})$
350 NEXT I
368 IF $2(0$ THEN GOTO 114
θ
$37801(0, j)=2$
388 NEXT J
398 INPUT HEADING FOR 0
UTPUT?) * ; H 15
408 IMPUT *OUTPUT FILE N
AME?*; F2s
418 Print ..
420 PRINT *OUTFILE $=* ;$ F2
$\$$
438 PRINT ..
448 DISP "MORKTNG"
458 ! SCALE DEATH P'S θ
T0 180
468 FOR $\mathrm{I}=\mathrm{E}$ TO K
$478 \mathrm{Q}(\mathrm{t}, 8)=\mathrm{D}(\mathrm{t}, 8)$
488 FOR $\mathrm{j}=1$ TO 4
$49803(\mathrm{I}, \mathrm{J})=\mathrm{D}(\mathrm{I}, \mathrm{I})$
508 NEXT J
510 ! DO INTEPVALS 2-3 R
GES 5-14
520 FOR $\quad n=1$ T0 2
$530 \mathrm{~L}=5$ + H — $\mathrm{L} 2=\mathrm{L} 1+4 \mathrm{~N}$

548 FOR J=LI TO L2
$55803(1, \mathrm{~J})=\mathrm{D}(\mathrm{I}, \mathrm{N})$
560 NEXT J
578 MEXT M
588 ! DO INTERVALS 4-28.
AGES 15-97
$590 \mathrm{~S}=(\mathrm{D1}(1,4)-\mathrm{D} 1(1,3))$
5
$60003(\mathrm{~L}, 15)=01(\mathrm{I}, 4)-245$
$61003(1,16)=D 1(1,4)-S$
$62003(1,17)=D 1(1,4)$
$630 \mathrm{~L} 1=13$
640 FOR $N=5$ T0 20
$658 \mathrm{z}=\mathrm{H}-1$
$668 \mathrm{~S}=(\mathrm{D} 1(1, W)-\mathrm{DI}(1,2))$,
5

$[3=01(1,2)$

680 FOR J=L 1 TC L2
$690 \mathrm{~T}=13+\$ 93(1, J)=13$
780 NEXT J
718 NEXT N
720 Q3(1,98) $=03(1,97)+5$
730 Q3 $(1,99)=03(1,98)+$ §
740 Q3(I, 188) $=01(1,21)$
750 NEXT I
768 I CREATE DERTH PROB. S BY CRUJSE
779 FOR I=8 TO K
788 FOR $J=8$ T0 180
790 Q3(I, J) $=03(\mathrm{I}, \mathrm{J})=92(\mathrm{~J}$
)
880 NEXT J
810 NEXT I
820 ! COPY TO OUTFILE AS IMSTRUCTED
830 ASSIGN I I TO F2S
840 PRINT I I ; HIS.K
850 FOR $I=0$ TO K
860 FOR $\mathrm{J}=8 \mathrm{TO} 180$
878 Q2(J) $=03(\mathrm{~L}, \mathrm{~J})$
880 NEXT J
898 PRINT 11 ; Q2()
990 MEXT I
910 DISP ${ }^{2}$ DONE
928 INPUT *LIST MULDEC?

- ias

930 IF As $=$-Y* THEN 958
948 GOTO 1868
950 DISP *HIT QNY KEY TO STOP-
968 PRINT "AGE abx 4CX* PRINT *
970 FOR J= J TO 180
980 Ki=KEYs (IF Ks ()**
THEN 1060
998 PRINT Ji
180日 FOR I= TO K
1010 PRINT USING 1020 ,
Q3(I, J);
1820 IMAGE $1 \mathrm{X}, \mathrm{d}$. dde
1030 NEXT I
1048 PRINT USING $\$ \$$
1850 NEXT J

MULDEC PROGRAM LISTING (continued)

1060 D!SP -EXECUTION END §*
1010 CLEAR VARS
1080 END
1098 PRINT USING 1120
1108 RETURN
1110 PRINT USTNG 1128
1120 IMACE $/ \sim B A D$ OR NONE
XISTANT FILE*'
1130 RETURN
1148 PRINT USING 1150
1150 IMAGE //"FAILED CON SISTANCY CHECK*/*OPDER O F CAUSES WROHG7*/I
1168 END

VARIABLE
A2, A3
A\$
A7\$
D $(1,8)$
F1\$
H1\$
I
J
K1, K2
K
L
L1, L2
L9
19

N

01
02
P
P2
D3
P4
P5
Q(100)
Q0, Q1
Q2 $(1,100)$
Q3
S

S9
T
U
2
Z9

DESCRIPTION

Working variables
Answer to prompt line 160
Answer to prompt line 2080
Nonsmoker lung cancer death rates
General input/output file name
Headings for output files
Loop counter
Loop counter
Working constants
Loop delimiter
Loop counter
Loop delimiters
Life expectancy
Minimum relative risk of lung cancer, smoker versus nonsmoker
Flag variable (male, female)
Relative risk of lung cancer, smoker versus nonsmoker
Age-specific SMR
Proportion of smokers in the population
Proportion of deaths which are due :o lung cancer
Proportion of deaths who were smokers
Proportion of deaths who were nonsmokers who died of lung cancer
Proportion of deaths who are smokers who died of lung cancer
Working array
Working mortality variables
Nonsmoker multiple decrement lifetable, working array (line 1860)
Input and smoker (line 1660) multiple decrement lifetable
Multiplicative increment-graduation of nonsmoking lung cancer (line 240), smoker versus nonsmoker SMR
(line 660), expected number of years lived beyond 100 th birthday (line 1930)
Smoker versus nonsmoker SMR, survival (line 1920)
Additive increment, all-cause SMR
Multiplier for nonsmoker lung cancer
Constant equal to 1
Counter for age-specific output

18 ！MAKE LUNG CAN．MULT －DECREMENT LIFE TRBLES 20 ！HOHS．AND SMOK． 30 PRINT USING 48
40 IMRGE／／＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊＊も＊＊＊ UNGC－MULDEC＊／＊＊＊＊＊＊＊＊＊＊ ＊＊＊
50 DIh D1（1，8），92（1，188）
，83（ 1,109 ），$\theta(108)$
68 INPUT＊FILE FOR 䚑DE C？）－；F1s
78 PRINT－INFILE＝＊；F15 88 ON ERROR GOSUB 1818 e GOTO 68
99 ASSIGN ！！TO FIS
100 READ 11 ； $77 \$ 1,03$（ ，）
110 RSSIGH 1 TO＊
128 ON ERROR GOTO 2868
130 ASSIGN 1 TO＊NONSL． C＊

143 RERD 1 ；D1（ $)$
158 RSSIGN ： 1 TO＊
155 GFF ERROR © $\mathrm{N}=1$
168 INPUT－mALE OR FEMAL E？（M／F）$>=$ ；A
170 IF $\boldsymbol{A} \mathbf{\$}=$＂*＊THEN $N=8$ 180 IF $\$={ }^{-h *}$ THEN PRINT ＊SEX＝MRLE＊ELSE PRINT＊ SEX＝FEMALE＊
182 INPUT－MULTIPLIER FO R NONS．L．C．？$)^{*}$ ；U
184 IF UK． 5 OR U） 3 THEN
186 ELSE 198
186 PRINT USING 188 ；U e GOTO 182
188 IMRGE／＊＊＊＊ERROR＊＊＊＊
$/ \approx U={ }^{\prime,}$ dd，ddd／＂OUT OF RR
NGE ． $5<$ U ${ }^{\prime} 3^{*} /$
198 PRINT＊ $\mathrm{U}=\cdot$ ； U
195 ！SCMLE RATE TO PRCB
200 FOR $I=0$ TO 8
$218 \mathrm{Bl}(\mathrm{N}, \mathrm{I})=\mathrm{D} 1(\mathrm{~N}, \mathrm{I}) / 1886$
00 e $11(N, I)=1(N, 1) * U$ 228 NEXT I
238 ！ 30 HGES 45－1暍
$248 \mathrm{KI}=\mathrm{D} 1(\mathrm{~N}, 8)$ © $\mathrm{K} 2=\mathrm{DI}(\mathrm{N}$
，1） $\mathrm{S}=(\mathrm{K} 2 / \mathrm{K} 1)^{\wedge} .2$
$268 \quad 82(1,45)=K 1 / \$^{\wedge} 2$
270 Q2 $(1,46)=k 1 / \$$
$280 \mathrm{Q} 2(1,47)=\mathrm{K}$ ！
$290 \mathrm{~K} 2=\mathrm{D!}(\mathrm{~N}, \mathrm{\theta})$
$308 \mathrm{~J}=43$
318 FOR $I=1$ TO 8
$320 \mathrm{KI}=\mathrm{K} 2$ \＆ $\mathrm{K} 2=\mathrm{D} 1(\mathrm{~N}, \mathrm{I})$
$338 \mathrm{~S}=(\mathrm{K} 2 / \mathrm{K} 1)^{\wedge} .2$
$348 \mathrm{~J}=\mathrm{J}+5$ ह $K=J+4$
350 FOR $L=J$ TO K

378 NEXT L
380 NEXT I
390 ！PREPRRE EXTRAP． 88
$-180+$
$480 \mathrm{KI}=\mathrm{DI}(\mathrm{N}, 8)$
410 FOR I＝88 T0 99
$428 \mathrm{~K} 1=\mathrm{K} 1 * S$
438 Q2 $(1,1)=K 1$
448 HEXT I
458 FOR $I=8$ TO 44
468 FOR $J=8$ TO 1
$478 Q_{2}(\mathrm{~J}, \mathrm{I})=93(\mathrm{~J}, \mathrm{I})$
488 NEXT J
498 NEXT I
500 FOR $I=35$ TO 44
510 IF Q3（1，1）＞Q2 $(1,45)$
THEN $Q 2(1,1)=Q 2(1,45)$
520 NEXT I
538 FOR $I=86$ TO 99
548 IF $03(1, I)<Q 2(1, I) T$
HEN $Q 2(1, I)=03(1, I)$
55.8 MEXT I
$56802(1,180)=Q 3(1,188)$
578 ！GRADUATION OF NONS
－L．C．COMPLETE
589 ！
598 ！BEGIN SMOKE－N．S．©
MLC．
688 INPUT－STARTING P OF SMOKERS？${ }^{*}$ ； P
618 IF P）． 1 AND P（． 9 THE H 658
620 PRINT USING 630 ；P
638 IMRGE／＊＊＊＊ERROR＊＊＊＊
／－ $\mathrm{P}=$－，ddd．ddd／＊OUT OF

648 GOTO 688

658 PRINT＊\％SMOKERS＝＊；P
668 INPUT＊SMOKER US．NS
－TOTAL SMR？）＊：$\$$
678 IF S $) 1$ AND S 55 THEN 718
688 PRINT USING 698 ；S
69 IMRGE／＊＊＊＊ERROR＊＊＊＂
$/$＂SMR $=$＊，ddd．ddd／＂OUT OF
RQNGE 1＜SMR＜5＊／
780 GOTO 668
？12 PRINT－SMP＝＊iS
728 INPUT－HIN RELRISK L ．C．？）＊＊～M9
730 IF M9）1 AND M9（20 TH EN 778
748 PRINT USING 750 ；M9
75 IMRGE／＊＊＊＊ERROR＊＊＊＊
$/ *$ RELRISK $=*$ ，ddd． $\mathrm{ddd} /{ }^{\circ}$ OU
T OF RANGE $I<R P<28^{*} /$
768 GOTD 728
770 PRINT＊HIN RELRISK－L ．C．$=$＂；${ }^{\text {M9 }}$
788 DISP－WORKIMG－
790 ！ADJUST INTERVMLS 3
5－43
800 OFF ERROR
$810 \mathrm{~T}=(\mathrm{S}-1) / 18$ S $9=1+\mathrm{T}$
$820 \mathrm{~L}=35$ ㄹ $\mathrm{L} 2=43$
$838 \quad 29=48$
848 ！CALL NESSM
856 GOSU8 1450
868 ！NOW DO 44－99
$878 \mathrm{~T}=\mathrm{8} \mathrm{S} 9=\mathrm{S}$
880 LI＝44 $\quad L 2=99$
890 ！CALL NESSH
990 COSU8 1458
910 ！DO INTERVAL 168 NO NSHOKERS IST
$92808=02(0,99)+02(0,98)$
$930 \mathrm{Q}_{1}=92(1,99)+02(1,98)$
940 Q2（ 0,180$)=08 /(\theta \theta+Q 1)$
950 Q2（1，108）$=1-Q 2(0,100$ ）
$968 Q 0=03(0,99)+Q 3(0,98)$
970 Q1 $=Q 3(1,99)+Q 3(1,98)$
$980 Q 3(0,180)=Q 8 /(0 \theta+Q 1)$
$99803(1,100)=1-93(0,100$

1888 FOR I=39 T0 99 STEF 18
1018 A2 $=Q 2(8,1)+Q 2(1,1)$
1828 IF R2>1 THEN PRINT
*N.S. P)I AT AGE * I
1838 A3 $=Q 3(8,1)+Q 3(1,1)$
1848 IF A3>! THEN PRINT
-SmekEr P>1 at age *il
$185801=03(1,1) / 82(1,1)$
$186802=$ R3/ $/ 22$
1878 PRINT USING 1880 ;
1, A2, A3, 01
1888 IMAGE $/$-AGE $=*$, $\mathrm{ddd} / /^{-}$
P. OF D. -N.S. $={ }^{*}$, d.dde/ $/$ P
. Of $\mathrm{D}_{1}-\mathrm{S}_{\mathrm{s}} \pi^{*}, \mathrm{~d} . \mathrm{dde} /{ }^{\circ} \mathrm{R}, \mathrm{R}$.
-L.C. ${ }^{*}$, d.dide
1698 PRINT USING 1180 ;
02
1100 IMAGE -SMP (TOTAL) $=\cdot$,d.dde/
1118 NEXT I
$1128 \quad z=1$
1138 ! PREPARE TO OUTPUT
1148 IMPUT -HE:RDING FOR
HONS. ?)*; HI
1158 INPUT -FILE KNME FO R MONS.?)*; F1s
1168 ASSIGN : 1 TO F15
1178 DISP ${ }^{-W O R K I N G}$.
1188 PRINT -NONS. FILE=* ;F15
1198 PRINT : $1 ;$ HIS,2
1288 FOR $I=8$ TO 1
1218 FOR $J=8$ TO 180
$1228 Q(\mathrm{~J})=02(\mathrm{I}, \mathrm{J})$
1238 HEXT J
1248 PRINT ($1 ; Q()$
1258 MEXT I
1268 ASSIGN : 1 TO *
1278 IMPUT -HEADING FOR
SHOK.?)*; HIs
1280 INPUT -FILE NRAE FE
R SMOK.? ? ${ }^{*}$; F1
1298 ! SUBROUTINE NESSM
1300 RSSIGH 1 TC F1s
1318 DISP "WORKING"
132 PRINT -SMOK. FILE=• ; ${ }^{1 \%}$

1330 PRINT 1 ; His,2
1348 FOR $I=8$ TO 1
1358 FOR $J=8$ TO 180
$1368 Q(J)=Q 3(1, J)$
1378 NEXT J
1388 PRINT $1 ; Q()$
1398 NEXT I
1480 ASSIGN i TO *
1418 GOSUB 1848
1420 DISP *EXFCUTION END S*
1430 CLEAR VARS
1448 END
1458 IF L.1)35 THEN 1480
1468 PRINT **
1470 PRINT ${ }^{2} \%$ SMOKERS US

- AGE*

1486 FOR I $=\mathrm{L}!$ TO L2
1498 ! FIND TOTAL DERTH P-GEN POP
$1508 Q 6=Q 3(0,1)+Q 3(1, I)$
1510 ! FIND TOTAL DEATH
P-MONS.
1520 Q1 $=90 /(1-P+59 * P)$
1530 ! GET BACKGROUND NO
HS.
1548 Q2($0, \mathrm{I})=01-Q 2(1, \mathrm{~S})$
1558 ! FIND \% DERTHS DUE TO L.C.
$1568 \mathrm{P} 2=93(1,1) / Q 8$
1578 ! FIND \% DEATHS WHO SMOKE
1588 P3 $=$ P* $01 * S 9 / 08$
1598 ! FIND \& DEATHS N.S
--L.C.
$1608 P \mathbf{4}=(1-P 3) * Q 2(1,1) /($
$02(\theta, 1)+\theta 2(1, I))$
1618 ! FIND \% DERTH SH.-
L.C.

1628 P5 $=P 2-P 4$
1638 ! FIND P. OF DEATH-
TOTAL FOR SMOK,
1648 Q8=59*Q1
1650 ! FIND P. OF D. SMO KER-L.C.
1668 Q $3(1,1)=Q 0 \pm P 5 / P 3$
$167801=03(1,1) / 02(1,1)$

1580 IF 01 <M9 AND I)45 T
HEN $Q 3(1,1)=$ M9* $82(1,1)$
1690 ! GET SMOKER B9CKG?
OUND
1700 Q3($0, \mathrm{I})=96-83(1, \mathrm{I})$
1710 S9=59+T
$172 \theta Q \theta=1-\theta \theta$ e $Q 1=1-\theta 1$
$1730 P=P * Q 8 /(P * Q 8+(1-P) *$ Q1)
$1748 \mathrm{Q}(1)=P$
1750 IF Z9>I THEN GOTO :
798
1768 PRINT USING 1770 ;
1, 1
1770 IMRGE *RGE $=*$, $d d, 2 X$,

- $P=*$-d.dde
$1788 \quad 29=29+10$
1798 NEXT I
1880 RETURN
1818 PRINT USING 1820
1820 IMAGE //*BRD OR NON
EXISTENT FILE*//
1838 RETURN
1848 ! FIND LIFE EXPECTA
HCY NONS. ; SMOK.
1858 FOR $J=0$ TO 180
1868 Q2 ($\mathrm{B}, \mathrm{J})=\theta 2(\mathrm{I}, \mathrm{J})+\theta 2($

8. J)

1870 Q2(1, J) $=03(0, J)+03($
1, J)
1888 NEXT J
1890 PRINT USING 1998
1980 IMACE / LIFE EXPECT
AMCIES*/*NONSMOKERS FIRS
T*'
1910 FOR $\mathrm{I}=8$ TO 1
1928 L9=0 $\mathrm{S} 9=1$
$1938 \mathrm{~S}=1 / 22(\mathrm{I}, 99)$
1948 FOR $J=8$ TO 99
1958 L9 $=$ L9 $9.5 * S 9 * Q 2(\mathrm{I}, \mathrm{J})$
1968 S9=S9*(1-92(I, J))
1970 L9 $=$ L9+S9
1988 NEXT J
1990 L9 $\mathrm{L} .9+\mathrm{S} 9 * \mathrm{~S}-.4 * 92(\mathrm{I}$,
0)

2008 IMAGE *LE = - $\mathrm{dd} . \mathrm{dd}$

SMOKER PROGRAM LISTING (continued)

```
2018 PRINT USING 2090;
L9
2028 IMRGE *PROB. OF SUR
VIVAL. "/,"TO 120=*,d.dde
f
2838 PRINT USING 2020;
$9
2040 NEXT I
2056 RETURN
2860 PRINT **
2070 PRINT *HONSLC INVAL
ID OR MISSING*
2075 PRINT **
2088 INPUT *LOAD FROH CA
    ?>* ;A7$
2890 IF A7$=*Y* THEN 210
8 ELSE 2138
2188 PURGE *NONSLC*
2110 COPY "HONSLS.CA* TO
    *NONSLC*
2128 GOTO 138
2130 DISP -EXECUTION END
S*
2148 END
```


VARIABLE

A
A0
A3
A5
A9
A3 \$
CO
C2
C8
C9
DO
D1

D2

D9(100)
E8
E9
F\$
F4\$
F/\$
G9
H5
H6
I
J
KO
K1
K2
K6
M5
M\$
LO
11
12
19
Q $(1,100)$
Q5
Q9

DESCRIPTION

Loop counter
Age at first risk
AO-1
Age at last exposure
Age at first exposure
Answer to prompt line 110
Lung cancer death probability
Baseline lung cancer deaths
Excess lung cancer probability
Lung cancer death probability
Dose variable
Baseline lung cancer deaths RR and AR Models
Excess lung cancer deaths RR and AR Models
Dose array
Excess lung cancer mortality
Total lung cancer mortality
General input file name
File name - error handling subroutine
File name - sensitivities file
Coefficient for exponential correction
Dose range delimiter
Dose range delimiter
Loop counter
Loop range delimiter-dose subroutine
Age at first exposure plus latency
Loop range delimiter
Loop range delimiter
Working variable
Model specifier flag
Model indicator for output
Life expectancy
Life expectancy
Loss in life expectancy
Life expectancy
Multiple-decrement life table Probability of death at age 100
Total age-specific probability of death

VARIABLE

R1
R2
R9
R5\$
SO
S7(100)
S9
S\$
\$7 \$
T7
W1
Y1
Z
27
Z\$

DESCRIPTION

Relative risk coefficient Absolute risk coefficient Local risk coefficient
Answer to prompt line 710 Survival
Sensitivity array
Survival
Answer to prompt line 2170
Answer to prompt line 790
Latency
Exposure in WLM/year
Approximate number of years lived beyond the 100th birthday
Number of excess causes of death (Always 1)
Flag variable
Answer to prompt line 1110

10 ！FINAL VERSION $11 / 1$ ． 83	268 INPUT－AGE AT FIRST
20 ！RADON RISK CALCULAT	EXPOSJRE？）－ R9 $^{\text {a }}$
IOH FOR ABSOLUTE RND RE：	278 IF RYく8 THEN $\mathrm{P} 9=8$
ATIVE RISK	288 IF A9）99 THEN R9 999
38 ！SHOKERS，HOWSHOKERS．	298 If $27=1$ THEN 310
AND GENERAL POP．－MALES	
AND FEMALES	310 INPUT＊RGE RT LRST E
48 IMAGE／／＂RADON RISK M	XPOSURE？）－；A5
ODEL $* / /{ }^{\circ}$ R．R．COEF $={ }^{*}$ ，d．dd	328 27＝8
	338 IF R5＜1 THEN R5 $=8$
．R．$=^{*}$ ，d．dde，${ }^{*} /$ PY／ULM＊	348 IF A5＞180 THEN $95=16$
58 IMAGE＊RGE AT F，E，$=$＊，	8
	350 IF A9 $=$ O 5 THEN 418
AGE AT FIRST RISK＝＊ ，ddd	368 PRINT USING 376 ；A9
68 IMRGE＊WLM PER YR． ＊$^{\text {，}}$	，A5
dd．dde／＂LATENCY＝＊，dd／＊EX	378 IMGGE／＊RGE F．E．（＊，d
PONENT COR ${ }^{*}$ ，dd．${ }^{\text {d }}$ de	dd，＊））AGE L．E．（＊，ddd，＊）
70 SHORT D9（180），S7（100）	－
80 DIh Q 11,100 ）	388 27＝1
9869 68	398 GOTO 268
$18027=8$	408 ！GET RISK COEFFICIE
118 INPUT－IMPUT：KEYBD．	NTS
（K）OR FILE（F）？）－A33	418 IF $\mathrm{A} 3 \mathbf{3}\rangle$－K＊THEN 430
129 IF A3s $=$＊${ }^{*}$＊THEN 218	420 INPUT－RISK／WLH－R．R．
130 ON ERROR GOSUB 2138	？）＊ R 1
－G0TO 116	438 IF R1）$=0$ AND R1＜．2 ${ }^{\text {T }}$
140 INPUT＂FILE NAME？${ }^{\text {P }}$	HEN 478
；${ }^{\text {\％}}$	440 PRINT USING 45月 ；R！
150 IF $\mathrm{F} \%=0$ HONE＊THEN $\mathrm{R}^{\text {3 }}$	458 IMACE／－RELATIVE RIS
\＄ ＊K $^{\text {－}}$	K（＊）d．dde，＊）＊／＂OUT OF BC
168 IF A3s $=^{\circ} \mathrm{K}^{*}$ THEN 218	UNDS；8＜R1く．2＊
170 ASSIGN 11 TO F\＄	468 GQTO 428
188 READ 1 ； 98 ， 199, A5，	478 IF R1＝6 THEN MS $=*$
R1， Hs ，R2，T7，W1，R5s，G9，${ }^{\text {S }}$ ？	（26070 518
\＄，57\＄	475 IF R3s＜＞＊K＊THEN 490
190 ASSIGN 1 TO OF	488 IMPUT－R．R．OPTION（N
F ERROR	，E，OR B）？）＊；${ }_{\text {H }}$
210 INPUT＊GGE AT FIRST	THEN 518
RISK？${ }^{\text {－}}$ ；$月 0$	$508 \mathrm{H}={ }^{-8} \mathrm{~B}^{*}$
228 IF $10<5$ OR M0＞50 THE	518 IF A3s 3 ¢＊K＊THEN 538
H 238 ELSE 258	528 INPUT ${ }^{\text {R }}$ RISK／WLM／PY－A
238 PkINT USING 248 ；A0	．R．？）－；R2
－GOTO 218	538 IF R2）$=0$ AND R2 2.006
240 IMAGE／＊AGE AT FIRST	2 THEN 570
	548 PRINT USING 558 ；R2
BOUNDS；4＜Ag＞51＊	558 IMAGE／＊RBSOLUTE RIS
	K（＊）d．dde，＊）＊／•OUT OF BN BS；8 $<$ R2 2 2E－4＊

18 ! FINAL VERSION $11 / 1$.
83
20 ! RADON RISK CALCULAT
IOH FOR ABSOLUTE RND RE
ATIVE RISK
SH0rchs, nonsharers
AND GENERAL POP.-MALES
OND FEMRLES
40 IMAGE //*RADON RISK
OBEL"//*R.R. COEF=*, d.dd

.R. $=^{*}$,d.dde, ${ }^{* / P Y / W L W * ~}$
58 IMAGE *RGE AT F,E, =*,
ddd/"RGE RT L.E. º', $^{\text {d }}$ ddd/*
AGE AT FIRST RISK=*, ddd
60 InRGE MLH PER YR. $=$
PONENT COR $=*$, dd.dde
78 SHORT D9(180),S7(108)
88 DIM Q $(1,188)$
98 69=8
$10827=8$
118 INPUT - INPUT: KEYBD,
(K) OR FILE(F)?) *;A3\$
120 IF $\mathrm{A} 3 \mathrm{~s}=\mathrm{*}^{-K}$ * THEN 218
130 ON ERROR GOSUB 2138

- GOTO 116
148 INPUT ${ }^{\circ} F$ ILE NARE??
150 IF $\mathrm{F} \xi={ }^{*}$ HONE* THEN A 3
$\$={ }^{*} \mathrm{~K} *$
16e IF A3s $={ }^{\circ} \mathrm{K} \cdot$ THEN 218
170 ASSIGN 1 TO F\$
188 READ 1 ; AB, R9, 95 ,
R1, W\$, R2, T7, M1,R5s, G9, S?
\$,F7\$
190 ASSIGN 1 TO * OF
F ERROR
200 IF $\mathrm{A} 3 \boldsymbol{3}\left\rangle{ }^{\circ} \mathrm{K}^{*}\right.$ THEN 229
210 INPUT *RGE AT FIRST
RISK? > ";月0

H 238 ELSE 258
238 PKINT USING 248 ; A
e GOTO 218
240 IMAGE /*AGE AT FIRST
RISK (", ddd,*)"/*OUT OF
BOUNDS; 4<月9 551^{*}

256 IF $\operatorname{ATs}\left\rangle *{ }^{-1}\right.$－THEN 278
260 INPUT＊RGE AT FIRST
EXPOSJRE？＊；R9
270 IF A 9 （8 THEN $\mathrm{P} 9=8$
288 IF A9） 99 THEN R9 999
290 If $27=1$ THEN 316
318 INPUT－RGE RT LRST E
XPOSURE？）＊；A5
320 27＝8
338 IF R5＜1 THEN $95=8$
348 IF A5 180 THEN A5 $=16$
0
350 IF $\mathrm{A} 9<=$ R 5 THEN 418
368 PRINT USING 376 ；A9
， 15
378 IMAGE／＊AGE F．E．（＊，d dd，＊））AGE L．E．（＊，ddd，＊）

380 27＝1
398 GOTO 268
408 ！GET RISK COEFFICIE
NTS
418 IF A3s 3 •＊＊＊THEN 430
420 INPUT＂RISK／WLH－R．R．
？）＂ R 1
438 IF R1）$=$ OND R1＜．2 T
HEN 478
448 PRINT USING 45 B ；R！
458 IMRGE／ンRELATIVE RIS
k（ d ．dde， ）
468 GOTO 428
470 IF R1＝6 THEN Ms＝＊
e GOTO 518

488 IHPUT－R．R．OPTION（M
，E，OR B）？）＂；${ }^{\text {M }}$

THEN 518
ก
If R3s
．R．？）－；R2
538 IF R2）＝0 AND R2 2.806 2 THEN 570
548 PRINT USING 558 ；R2
558 ［MAGE／＊RBSOLUTE RIS
K（＊，didde，＂）＊／＊OUT OF BN
BS；0＜R2 2 2E－4＊

560 G0T0 528
578 ！GET LATENCY
588 IF A3s（ ）＊K ${ }^{*}$ THEN 686
598 INPUT＊LATENCY IN YE
ARS？）－；T7
688 IF $T 7\rangle=8$ RND $T 7\langle 46 T$
HEN 648
610 PRINT USING 620； 17 －GOTO 578
628 IMRGE／＊LATENCY（＊）dd d．ddd，${ }^{\circ} \cdot \boldsymbol{\prime}$＂OUT OF BOUNDS ；$\theta<=\mathrm{T} 7<46^{\circ}$
630 ！GET CONTINUOUS EXF
OSURE AND CONVERT TO MLM
640 IF A3s \langle ）＊$K=$ THEN 660
658 INPUT＂RNNUAL EXPOSU
RE IN MLW？${ }^{*} ; \mathrm{WI}$
660 IF W1（0 OR H1）99 THE N 678 ELSE 708
678 PRINT USING 680 ； H
688 INRGE／EXPOSURE LE
VEL（＊，dd．dde，＊）＂／＊OUT OF
BOUNDS；8＜M1＜188＊
690 GOTO 658
708 IF R3s $\left\rangle={ }^{-1}\right.$＊THEN 728
710 INPUT＊EXPONENTIAL C
ORRECTION？）＊；R5\＄
72 IF R5\＄ 3$\rangle=Y=$ THEN 780
738 IF R3s＜$>$－K ${ }^{*}$ THEN 758
748 INPUT－EXPONENT＝？）－
； 69
750 If G9（0 AND G9）－． 2 T
HEN 788
760 PRINT USING 778 ； 69 －GOTO 748
770 IMAGE $/ \bullet$ EXPOHENTIAL（
＊，dd．ddE，＊）＂／＂OUT OF BOU
NDS；－．2（G9（ 0°
780 IF R3\＄（）＊K＊THEN 888
798 INPUT－QGE SPECIFIC
SENSITIVITIES？＊；$\$ 7 \$$
888 IF $57 \$\rangle *$ Y THEN 896
818 ON ERROR GOSUB 2138
－GOTO 230
828 IF A3s $\left\rangle{ }^{\circ} \mathrm{K}^{*}\right.$ THEN 848
838 INPUT－FILE FOR AGE
SENS．？）＊；F7\＄
848 IF F7 $\$={ }^{*}$ NONE＊THEN 8 98 ELSE F $\$=77$

858 ASSIGH 1 TO Fs	1150 PrINT .-
868 READ 1 1 ; S7()	1168! DO SURVIVAL TO AG
878 ASSIGH - 1 TO * 80 O	E AT FIRST RISK
F ERROR	$1178 \mathrm{Kg}=\mathrm{R9} 9+17$
880 COTO 928	1188 IF Kgiteo THEN 1210
898 FOR I $=8$ TO 188	1198 PRINT USIHG 1298
$988 \mathrm{S7}(\mathrm{~L})=1$	COTO 1698
918 NEXT I	1288 IMAGE //-H0 RISK-*/
928 PRINT -************	-RGE AT FIRST*/-RISK G.E
********	. 188*/
936 PRINT ************	$1218 \mathrm{k} 1=$ ¢ 9
*******	1228 A3= $\mathrm{Cl}-1$
948 PRINT USING 48; R1,	1230 IF K9>A3 THEN K2=K¢
Ms, R2	ELSE K2=A3
958 PRINT USING 50 ; A9.	$1248 \mathrm{S9}=1$ - $\mathrm{L} 9=8$ ¢ $\mathrm{C} 9=8$
A5, AB	1258 GOSUB 1748
968 PRINT USING 60 ; W1,	1268 ! DO BASELIHE K2+1
T7,69	T0 99
978 IF S73 2 - ${ }^{\text {c }}$ THEN 998	$1278 \mathrm{kl}=\mathrm{k} 2+1$
988 PRINT -SENSITIVITY=1	1288 S $8=59$ - $\mathrm{LB}=\mathrm{L} 9$ \& $\mathrm{C} 日=$
- COTO 1888	C9. K2 $2=99$
998 PRINT -AGE SP.SEN=*;	1298 GOSUE 1748
F7s	1300 ! FINISH BASELINE
1808 PRINT -***********	$1318 \mathrm{YI}=.8 / 89$
*********	1328 L9 $=$ L9+59*Y1
1828 FOR $A=1$ T0 66	
1838 ! GET POPULATIOH	$1348 \mathrm{LI}=\mathrm{L} 9 \mathrm{C}=\mathrm{C} 9 * 10888$
1848 ON ERROR GOSUB 213R	θ
- GOTO 1868	1358 PRINT USING 1360;
1658 PRINT -************	L1,C2
********	1368 IMAGE -BASELIME* $/ \bullet$ L
1868 INPUT -FILE NAME FO	.E. $=*$, dd. $\mathrm{ddd} /{ }^{-}$DERTHS/18^
R IMPUT? - ; F\%	$5-L C=*$, ddddd.d//
1865 IF $\mathrm{Fs}=$ - ${ }^{\text {HONE* }}$ THEN I	1378 ! GET DOSE DISTRIB!
698	TION BY AGE
1878 ASSIGN : 1 TO F\$	1388 IF A)! THEN 1488
1888 READ 1 1 ; H\$Z.es,	1398 GOSUE 2258
)	1489 ! NOW DO R.R. MODEL
1890 ASSIGN 1 TO *	1410! MULTIPLICATIVE VE
1188 OFF ERROR	RSION FIRST
1118 IMPUT PPURGE IHPUT	1428 IF R1=8 THEN 1568
FILE?) - 2 \%	1430 IF $\mathrm{HS}==^{-E}$ - THEN 1518
1120 If $2 \mathbf{z}=$ - $\%$ - THEN PURG	ELSE 1448
EF\$	1448 L9 $=18$ \& $\mathrm{S} 9=58$ © $\mathrm{C} 9=$
1138 DISP - 002 KING .	
1148 PRINT -POP.*; ; $^{\text {- }}$ * $;$	($\mathrm{H} \leqslant={ }^{-H}$
Fs	1450 COSUB 1988

1468 PRINT USIMG 1478 ; H\$, L9,L2, D2
1478 IMAGE -RELRISK MODE
 OSS LE(MONS) $=*$, ddd. $d d / \bullet D$
$10^{\wedge} 5=^{*}$, ddddd. d
1488 PRINT USING 1498 ;
D1
1498 IRAGE ${ }^{\circ}$ EXCESS D/18^ $5=^{*}$, ddddd.d//
1598 ! THEN DO EXPONENTI AL. VERSION-R.R.
 ELSE 1520
$1528 L 9=L 0$ S9 58 © $C 9=$ C8 © $\mathrm{C} 8=8$ \& $\mathrm{R} 9=\mathrm{R} 1+1$ \& M 5

1538 COSUB 1988
1548 PRINT USING 1478 ;
H $\$$, L9, L2, D2
1558 PRINT USING 1490 ; D1
1568 ! DO A.R. MONEL
1578 IF R2=8 THEN 1648
$1580 \mathrm{~L} 9=\mathrm{L}, \mathrm{S} 9=\mathrm{S} 0$ © $\mathrm{C} 9=$
C8 C8=8 R $\mathrm{R} 9=\mathrm{R} 2 \mathrm{M} 5=1$
1598 GOSUB 1988
1680 PRINT USING 1610 ;
L9, L2, D2
1618 IHAGE -ABSRISK MODE
L*/*L.E. =*, dd. ddd/*LOSS
LE(MOHS) $=*, d d d . d d /{ }^{-D} / 18^{\wedge}$
$5=*$, ddddd.d
1628 PRINT USING 1638 ;
01
1630 [AAGGE ${ }^{\circ}$ EXCESS D/ 10^{\wedge}
$5={ }^{*}$, ddddd.d//
1648 INPUT -RUN ANOTHER
POPULATION? - ; As
1658 IF $\mathrm{A}=$ = Y - THEN 1668
ELSE 1678
1668 MEXT A
1678 PRINT -************

$1688 \quad F=3$

```
1698 INPUT -NEK INITIAL
COWDITIONS?\ *;脜
1708 IF As=*Y* THEN 98 E
LSE }171
1710 DISP -EXECUTION END
s*
1728 END
1730 : anaAaAAMAaAaAaAa
1748 ! SUSROUTINE LC EAS
E
1758 IF K1>0 THEN 1890
1768 09=0(8,8)+8(1,8)
1778 59=59*(1-89)
1788 L9=[9+09*.1+59
1798 kl=k!+1
1800 FOR I=K1 TO K2
1818Q9=Q(0,1)+Q(1,i)
1820 L9=L9+09*59*.5
183e C9=C9+59*Q(1,1)
1840 $9=$9*(1-09)
1850 L9 = L9+59
1868 HEXT I
1878 RETURN
1880 ! manamamamamaama
1898 ! RISK SU8ROUTINE
1900 FOR I=K1 TO K2
1918 IF M5(2 THEN K9=1 E
LSE K9=Q(1,I)
1928 IF M5<3 THEN E8=D9(
I)*R9*K9 ELSE E8=(R9^D9!
1)-1)*k9
1938 E9=E8+Q(1,I)
1948 Q9=Q(0,1)+E9
1958 L9=L9+09*59*.5
1968 C8=C8+59*E8
1970 C9=C9+59*E9
1988 59=59*(1-89)
1990 L9=L9+59
2000 NEXT I
2910 Y1=,8/Q9
2928 IF M5<2 THEN K9=1 E
LSE K9=Q(1,100)
2938 IF M5<3 THEN E8=D9(
180)*R9*K9 ELSE E8=(R9^D
9(180)-1)*K9
2048 E9=E8+Q(1,108)
2958 C8=C8+59*E8
1698 INPUT－NEW INITIAL CONDITIONS？）＊；As
```

2868 C9 $9=-9+59 * E 9$
2878 L9 $=$ L9 9 S9＊Y 1
$2888 \mathrm{~L} 2=(\mathrm{L} 1-\mathrm{L} 9) * 12$
$2998 \mathrm{DI}=\mathrm{C8*109888}$
$2108 \mathrm{DZ}=\mathrm{C9} 9108068$
2118 RETURN
2128 ！anaanaanaaxaa
2138 ！ERROR HANDLING FO
R DATA INPUT
2148 PRINT－．
2150 PRINT ${ }^{\circ}$ FILE \cdot ；F\＄；${ }^{*}$ ？？？＊
2160 PRINT－＊
2178 IMPUT－ON CASSETTE？ ）－；$\$$
2189 IF $\$ \approx$（ $) \cdot Y$－THEN 223 8
$2198 \mathrm{~F} 45=\mathrm{F} 5 \mathbf{t}^{-}$： CR －
2208 PURGE FS
2218 ON ERROR GOTO 1718
2228 COPY F45 TO FS
2230 RETURH
2248 ！anaaaaaaaaaaaaan
2258 ！DOSE SUBROUTIME
$2260 \quad 05=Q(8,99)+Q(1,99)$
2278 Q5 $=.8 / 05$
$2288 \mathrm{DE}=\mathrm{W} 1 * 57$（ R 9 ） $\mathrm{H} 5=$ ด
$9+\Gamma 7+1$－ $\mathrm{H} 6=05+77$
2298 IF R5 $\$=-Y$－THEN 240
θ
2300 FOR I＝H5 TO K2
$2318 \mathrm{D9}(\mathrm{I})=\mathrm{De}$
2328 IF I）H6 THEN 2348
$2338 \mathrm{D} 日=\mathrm{Dg}+\mathrm{W} 1 * \mathrm{~S} 7(\mathrm{I}-\mathrm{T} 7)$
2348 MEXT I
2358 IF $\mathrm{A} 5=108$ AND $\mathrm{H} 5 \times 18$
8 THEN 2378 ELSE 2368
$2368 \mathrm{D9}(180)=\mathrm{Dg}(99) \approx 60$
TO 2598
$2378 \mathrm{Dg}(188)=\mathrm{D8}+05 * \boldsymbol{H} 1 * S ?$
（100）
2380 GOTO 2598
2398 ！EXPONENTIRL CORRE CTION
$2488 \mathrm{C9}=\mathrm{EXP}(\mathrm{G9})$
$2408 \mathrm{G9}=\mathrm{EXP}(\mathrm{G9})$
$2410 \mathrm{DE}=\mathrm{W} 1 * 57(\mathrm{Ag}) * 69 \wedge 77$
2428 FOR I $=\mathrm{H} 5$ TO K2
$2438 \mathrm{B9}(\mathrm{I})=\mathrm{D9}$
$2448 \mathrm{DB}=\mathrm{D} \boldsymbol{\theta} * \mathrm{C9}$
2450 IF IDHG THEN 2478
 9×17
2478 NEXT I
2480 IF P5 $=108$ AND $\mathrm{H} 5 \times 10$
8 THEN 2508 ELSE 2498
$2490 \mathrm{DE}=\mathrm{De}=\mathrm{G} 9^{\wedge}(05-1)$ C
0702588
$2508 \mathrm{~J}=\mathrm{IP}(05+.5)-1$
2518 IF K1 THEN 2588
2528 FOR $I=1$ TO J
$2538 \mathrm{~K} 6=1-\mathrm{T} 7+99$
2548 IF K6＞188 THEN K6＝1 89
$2558 \mathrm{D} 日=\mathrm{D} 8 * \mathrm{C9}$

77
2578 NEXT I
2588 D9（108）＝D8
2598 RETURN

VARIABLE
A1\$
$D \$$
$F \$$
$H \$$
I
J
K
$K \$$
$Q(100)$
$Q 3(1,100)$
$\$ \$$

DESCRIPTION

Reply to prompt line 120
Reply to prompt line 30
Input file name
MULDEC heading
Loop counter
Loop counter
Loop delimiter--read from MULDEC file Keyboard variable
Array for GR file
Array for MULDEC file
Format string

```
10 ! LIST UTILITY FOR GA
RR
28 DIK Q(108),03(1,100)
25 PRINTER IS *:PR"
30 IHPUT -PRINTER(f) OR
DISPLRY(D)?> *;D$
4 0 \text { IF D \$=*D* THEN PRINTE}
R IS *
60 INPUT *FILE NOME?\*;F
$
7 6 \text { COSUB 208}
128 INPUT *LIST QNOTHER
FILE?*;G1$
138 IF A1$()*Y* THEN 178
148 PRINT USING }15
150 IMAGE ///
168 Gero 25
1 7 8 ~ D I S P ~ - ~ E X C C U T I O N ~ E N D S ~
.
175 PRINTER IS *:PR*
180 END
190! manamamaamaaaaaman
208 OH ERROR GOSUB 370 &
GOTO 348
210 PRINT ** PRINT *NA
ME=*;F$
228 ASSIGN :1 TO Fs
230 RERD & 1; Q()
248 ASSIGN : 1 TO *
245 IRINT -TYPE=GR" PPR
INT **
258 OFF ERROR
268 DISP *HIT RNY KEY TO
sTOP.
278 PRINT *AGE ax* & P
RINT **
280 FOR J=0 T0 108
285 MAIT .2
298 K$=KEYs & IF K$<>**
THEN }34
300 PRINT J;
310 PRINT USING 320 ; Q\
J)
```

320 IMRGE $1 \mathrm{X}, \mathrm{d} . \mathrm{dde}{ }^{\prime}$
336 NEXT J
348 RETURN
358
368 !
378 ON ERROR GOSUB 580 ?
GOTO 68
375 RESTORE 1
488 READ 11 ; H\$, K, Q3 ,
)
418 ASSIGN 11 TO *
428 OFF ERROR
425 PRINT *TYPE=MULDEC*
430 PRINT ". PRINT "HE
ADING=* PRINT HS \& PRI
NT "
448 S $\$={ }^{-1 /}$
450 DISP *HIT RNY KEY TO STOP-
468 PRINT * AGE $4 b x$ aCX* PRINT ..
470 FOR $\mathrm{J}=8$ TO 106
475 MAIT . 2
$480 \mathrm{~K} \$=\mathrm{KEY}$ © IF K $\$\rangle=*$
THEN 568
490 PRINT J;
508 FOR $I=0$ TO K
518 PRINT USING $528 ; 03$
(I, J);
528 IMAGE $1 x$, d.dde
538 NEXT I
548 PRINT USING S
558 NEXT J
568 RETURN
576 ! aAaAaAaAaAaAaAaAaAAA
580 ! ERROR HANDLING SUB
598 PRINT USING 680
680 IMRGE /"BAD OR NONEX
ISTENT FILE*/
610 RETURN

VARIABLE
 DESCRIPTION

Reply to prompts lines 130,230
Internal file name
Cassette file name
Loop counter
Loop counter

```
10 ! DUPER COPIES GRRR T
O BACKUP TROE
28 FOR K=1 T0 2
30 IF K=1 THEN RESTORE 2
98 ELSE RESTORE 30G
40 FOR I=0 TO 4
50 RERD F$
68G5=F镍*:CA*
78 ON ERROR GOSUB 278 E
GOTO 88
80 COPY G$ TO FS
9 8 \text { NEXT I}
100 IF K=1 THEN PESTORE
290 ELSE RESTORE 398
118 BEEP BEEP & BEF
120 PRINT -CHANGE CASSET
TE (GARR>BACK) AND ENTER
    Y MHEN RERDY-
138 INPUT *READY?*;D$
148 FOR I=8 TO 4
150 READ F$
160 COPY F$ TO *:CR*
170 PUPGE F%
180 NEXT I
198 IF K=2 THEN 248
200 BEEP BEEP & BEEP
2 1 8 \text { PRINT USING 228}
22% IMAGE *CHONGE CASSET
IE (BACK)GRRR)*/=ENTER Y
    HHEN READY*
238 INPUT -RERDY?*;DS
248 MEXT K
258 COPY "DUPER* TO *:CR
.
260 END
278 PURGE F$
280 RETURN
298 DATA "GRGDUATE","KUL
MEC*,"HONSLC*,"SMOKER",*
STGNDARD*
309 BRTA -RADRISK*,-SENS
*,*MMLC*,*MFLC*,*LIST*
```


NAC FORM $335 \quad 17771$

UNITED STATES NUCLEAR REGULATORY COMMISSION

```
120555078877
US NRC 1 IANIRH
ADM-DIV OF TIDC
POLICY \& PUB MOC
W- 501 PUB MGT BR-PDR NUREG
WA SHINGTON
DC 20555
```

