Appendix 3A. Tables

Table 3-1. Summary of Criteria - Structures

								Loading			
							S	eismic	Т	ornado	
Structure	Q.A. Req'd	Category	Normal Wind	Dead and Equipment	Live	Containment Accident Pressure	OBE	SSE	Wind	Missile ²	Remarks Including Any Environ- mental Requirements
Containment	х	I	-	Х	х	Х	Х	Х	-	-	Thermal Stresses and Partial Vacuum in Annulus. Equipment Missile Protected
Containment and Reactor Building Foundation Slab	х	I	Х	Х	х	Х	Х	Х	Х		Thermal Stresses
Containment Interior Concrete	х	I	-	Х	х	-	Х	Х	-	-	Differential Accident Pressure; Pipe Rupture Loads Thermal Stresses. Equipment Missile Protected
Containment Penetrations	Х	I	-	Х	Х	Х	Х	Х	-	-	Checked for Potential Pipe Whipping
Containment Structural Steel	Х	I	-	Х	Х	-	Х	Х	-	-	Thermal Stresses
Nuclear Service Water Pipe	х	I	Х	x	Х	-	х	х	х	Х	Soil and Water Pressures on Buried Portion. Hydraulic Pressures. Moving Equipment Loads. Static Seismic Analysis. Spec. By Mech. Section.
Nuclear Service Water Intake/Discharge/ Overflow Structures	Х	I	х	Х	Х	-	Х	Х	х	х	Soil and Water Pressures.
Standby Nuclear Service Water Pond Dam	Х	I	Х	Х	Х	-	Х	Х	Х	х	Newmark's Method for Seismic Analysis of Dams; Hurricane Winds
Auxiliary Building, Including	Х	I	Х	Х	Х	-	Х	Х	Х	Х	Soil and Water Pressures on Substructure; Tornado Pressure Drop; D/G Flywheel Reactor Missile
Diesel Bldg Fuel Pool (Concrete Walls, Liner Plate)											Thermal Stresses and Cask Drop
New Fuel Storage Vault	Х	I	-	Х	Х	-	Х	Х	Х	X ³	
Fuel Storage Racks	Х	I	-	Х	Х	-	Х	Х	-	-	Thermal Stresses

								Loading			
							S	eismic	Т	ornado	
Structure	Q.A. Req'd	Category	Normal Wind	Dead and Equipment	Live	Containment Accident Pressure	OBE	SSE	Wind	Missile ²	Remarks Including Any Environ- mental Requirements
Main Steam and Feedwater Supports, Through Isolation Valve and First Support Outside Reactor Building	x	I	x	x	Х	-	x	x	X	x	Pipe Loads, Pipe Rupture Loads
Reactor Building	х	I	Х	Х	Х	-	х	Х	Х	Х	Tornado Pressure Drop. Soil and Water Pressure on Substructure
Station Vent (Note 1)	-	I	Х	Х	Х	-	Х	Х	Х	-	
Refueling Water Storage Tank Foundations	х	Ι	Х	Х	Х	-	Х	Х	Х	-	
Refueling Water Storage Tank Pipe Trench		I	х	х	х	-	х	х	х	Х	
Reactor Refueling Water Storage Tank Missile Wall	х	I	х	х	х	-	х	х	х	х	Secondary Containment for Tank
Relay House			Х	Х	Х	-	-	-	-	-	
230 Kv Switch Station Steel and Fdts.		III	Х	Х	Х	-	-	-	-	-	
Step-Up and Auxiliary Transformer Foundations	-	III	х	Х	-	-	-	-	-	-	
Access Railroad, Including Structures	-		Х	Х	-	-	-	-	-	-	
Administration Building	-	III	Х	Х	-	-	-	-	-	-	
Heating Boiler Vent	-	III	Х	Х	-	-	-	-	-	-	
Condenser Cooling Water Pipe	-		Х	Х	-	-	-	-	-	-	Soil and Water Pressures. Moving Equipment Loads
Condenser Cooling Water Intake Structure	-	III	Х	Х	-	-	-	-	-	-	Soil and Water Pressures. Moving Equipment Loads

								Loading			
							S	eismic	т	ornado	
Structure	Q.A. Req'd	Category	Normal Wind	Dead and Equipment	Live	Containment Accident Pressure	OBE	SSE	Wind	Missile ²	— Remarks Including Any Environ- mental Requirements
Condenser Discharge Structure	-	III	Х	Х	-	-	-	-	-	-	Soil and Water Pressures. Moving Equipment Loads
Discharge Canal, Dike and Riprap	-	III	Х	Х	-	-	-	-	-	-	
Hydrogen and Nitrogen Houses	-	111	Х	Х	-	-	-	-	-	-	
Main Steam Line Supports, Excluding First Support Outside Reactor Building	-	III	x	Х	-	-	-	-	-	-	
Service Building	-		Х	Х	-	-	-	-	-	-	
Turbine Building Equipment Supports	-	III	-	Х	х	-	-	-	-	-	
Turbine Building Substructure	-	III	Х	Х	Х	-	-	-	-	-	
Turbine Building Superstructure	-	III	Х	Х	Х	-	-	-	-	-	Soil and Water Pressures
Turbine-Generator Foundation	-	III	-	Х	Х	-	-	-	-	-	
Yard Drainage	-	III	-	Х	х	-	-	-	-	-	Per Manufacturer's Recommendations Soll and Water Pressures, Moving Equipment Loads
Hot Machine Shop, Decontamination Rooms, Shipping and Receiving Areas	-	111	Х	x	Х	-	-	-	-	-	Soil and Water Pressures, Moving Equipment Loads
Waste Water Collection Basin Dam (Non- (Nuclear Waste)	-	111	х	Х	Х	-	-	-	-	-	
Units 1 and 2 Makeup Water Storage Tank Foundation	Х	I	х	Х	Х	-	Х	Х	х	-	

								Loading			
							S	eismic	Т	ornado	
Structure	Q.A. Req'd	Category	Normal Wind	Dead and Equipment	Live	Containment Accident Pressure	OBE	SSE	Wind	Missile ²	– Remarks Including Any Environ mental Requirements
Cowans Ford Auxiliary Intake Structure	-	111	Х	Х	х	-	-	-	-	-	
525 Kv Switch Station Steel and Foundations	-	111	Х	Х	Х	-	-	-	-	-	
Radwaste Building	Х	III	Х	Х	Х	-	-	-	-	-	Meets the require- ments of Reg. Guide 1.143
Symbols:											
OBE = Oper	rating Basis	Earthquake									
SSE = Safe	Shutdown	Earthquake									
X = Desi	gned For										
- = N	ot Designed	l For									
Note 1: The	Station Ve	nt is not design	ed for tornado	misiles.							
Note 2: Turl	bine missile	s are included	per section 3.5	5.1. <u>2</u>							
Note 3: Ref	erence Tab	le 3-63									

Table 3-2. Summary of Criteria - Equipment

			Quality Assurance					Seism	nic	Tornado		Remarks Including Any
Equipment	Sco	ре	Assurance Required	Category ³	Code		Rad ² Source	OBE	SSE	Wind	Missile ⁴	Environmental Requirements
Containment Polar Crane	D		X	11	ITTT, NEMA, NEC	С	-	X	X	-	-	Containment Accident Pressure, Dead and Equipment, Live Loads, Hold Down Device ¹
Fuel Handlin Bridge Crane			X	11	ITTT, NEMA, NEC	AB	-	Х	Х	-	-	Dead and Equipment, Live Loads, Hold Down Device ¹
Symbols:												
AB	= Auxilia	ry Bu	ilding									
С	= Contair	nmen	ıt									
D	= Duke											
X	= Design	ed Fo	or									
-	= Not De	signe	ed For									
OBE	= Operat	ing B	asis Earthqua	ke								
SSE	= Safe Sl	hutdo	own Earthquak	е								

4. Turbine missiles are included per section <u>3.5.1.2</u>

		Quality				Pad ²	Seism	nic	Tornad	olo	Remarks Including Any	
Equipment	Scope	Assurance Required	Category ³	Code	Location	Rad ² Source	OBE	SSE	Wind	Missile ⁴	Environmental Requirements	
Notes:												
1. Polar cra	ne and cask	crane designe	d for seismic	loads in u	nloaded cond	tion only.						
2. X = Sour	ce of radiatic	n										
- = No so	ource of radia	ition										
P = Poss	ible source c	of radiation										
3. Category	II & III Struc	tures are not s	afety related.									

(09 OCT 2015)

Table 3-3. Summary of Codes and Standards for Components of Water-Cooled Nuclear Power Units By NRC Quality Group Class and	
ANS Safety Class	

	Quality Group Class A ANS Safety Class 1, SC-1	Quality Group Class B ANS Safety Class 2, SC-2	Quality Group Class C ANS Safety Class 3, SC-3	Quality Group Class D ANS Non Nuclear Safety, NNS
Compone	ent	Codes	and Standards	
Pressure Vessels	ASME Boiler & Pressure Vessel Code, Section III, Class 1	ASME Boiler & Pressure Vessel Code, Section III, Class 2	ASME Boiler & Pressure Vessel Code, Section III, Class 3	ASME Boiler & Pressure Vessel Code, Section VIII, Division 1
0-15 psig Storage Tanks	_	ASME Boiler & Pressure Vessel Code, Section III, Class 2	ASME Boiler & Pressure Vessel Code, Section III, Class 3	API-620
Atmosphe Storage Tanks	eric –	ASME Boiler & Pressure Vessel Code, Section III, Class 2	ASME Boiler & Pressure Vessel Code, Section III, Class 3	API-650, AWWA D 100 or ANSI B96.1
Piping	ASME Boiler & Pressure Vessel Code, Section III, Class 1	ASME Boiler & Pressure Vessel Code, Section III, Class 2	ASME Boiler & Pressure Vessel Code, Section III, Class 3	ANSI B31.1.0 Power Piping
Pumps and Valves	ASME Boiler & Pressure Vessel Code, Section III, Class 1	ASME Boiler & Pressure Vessel Code, Section III, Class 2	ASME Boiler & Pressure Vessel Code, Section III, Class 3	Valves - ANSI B31.1.0 Pumps - Manufacturer's Standards

Table 3-4. Summary of Criteria - Mechanical System Components

		Safety		QA		Rad	Seis	mic ⁽¹⁾		Tornado
Component	Scope (2)	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Reactor Coolant System										
Reactor Vessel	W	1	III-1	Х	С	Х	Х	Х	Х	Х
Reactor Coolant Pumps	W	1	III-1	Х	С	Х	Х	Х	Х	Х
Steam Generators (Tube)	В	1	III-1	Х	С	Х	Х	Х	Х	Х
(Shell)	В	2	III-2	Х	С	Х	Х	Х	Х	Х
Pressurizer	W	1	III-1	Х	С	Х	Х	Х	Х	Х
Pressurizer Relief Valves	D	1	III-1	Х	С	Х	Х	Х	Х	Х
Pressurizer Safety Valves	W	1	III-1	Х	С	Х	Х	Х	Х	Х
Pressurizer Relief Tank	W	NNS	VIII	Х	С	Х	Х	Х	Х	Х
RC Pump Motor Drain Tanks	D	NNS	API-620	-	С	Р	-	-	Х	Х
RC Pump Motor Drain Tank Pump	D	NNS	-	-	С	Р	-	-	Х	Х
Valves	D	1,2,3, NNS	III-1,-2,-3 B31.1.0	Х	C,AB	Х	Х	Х	Х	Х
Safety Injection System										
Safety Injection Pumps	W	2	P&V-II	Х	AB	Р	Х	Х	Х	Х
Accumulators	W	2	III-C	Х	С	Р	Х	Х	Х	Х
Valves	D&W	1,2,3	III-1,2,3	Х	C,AB	Р	Х	Х	Х	Х
UHI Water Accumulators	W	2	III-2	Х	AB	Р	Х	Х	Х	Х
UHI Nitrogen Accumulator	W	2	P&V-II	Х	AB	Р	Х	Х	Х	Х
UHI Surge Tank	W	2	P&V-II	-	AB	Р	Х	Х	Х	Х
Gas/Water Inter. Membrane	W	2	P&V-II	Х	AB	Р	Х	Х	Х	Х
Residual Heat Removal System										
RHR Pumps	W	2	P&V-II	Х	AB	Р	Х	Х	Х	Х

		Safety		QA		Rad	Seisr	mic ⁽¹⁾		Tornado
Component	Scope		Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind	Missile (22)
RHR Heat Exchangers (Tube)	W	2	III-C	Х	AB	Р	Х	Х	Х	Х
(Shell)	W	3	VIII	Х	AB	Р	Х	Х	Х	Х
Valves	D	1,2	-1, -2	Х	C,AB	Р	Х	Х	Х	Х
Containment Spray System										
CS Pumps	D	2	III-2	Х	AB	Х	Х	Х	Х	Х
CS Heat Exchangers (Tube) ²⁰	D	2	IIIC	Х	AB	Х	Х	Х	Х	Х
(Shell) ²⁰	D	3	VIII	Х	AB	Р	Х	Х	Х	Х
CS Nozzles	D	2	-	Х	С	Р	Х	Х	Х	Х
Valves	D	2	III-2	Х	С	Р	Х	Х	Х	Х
Chemical & Volume Control System										
Pumps										
Charging, Reciprocating	W	2	P&V-II	Х	AB	Х	Х	Х	Х	Х
Charging, Centrifugal	W	2	P&V-II	Х	AB	Х	Х	Х	Х	Х
Boric Acid Transfer	W	3	P&V-III	Х	AB	Х	Х	Х	Х	Х
Heat Exchangers										
Regenerative	W	2	III-C	Х	С	Х	Х	Х	Х	Х
Letdown (Tube)	W	2	III-C	Х	AB	Х	Х	Х	Х	Х
(Shell)	W	3	VIII	Х	AB	Р	Х	Х	Х	Х
Excess Letdown (Tube)	W	2	III-C	Х	С	Х	Х	Х	Х	Х
(Shell)	W	2	III-C	Х	С	Р	Х	Х	Х	Х
Seal Water (Tube)	W	2	III-C	Х	AB	Х	Х	Х	Х	Х
(Shell)	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
Tanks										

		Safety		QA		Rad	Seisr	nic ⁽¹⁾		Tornado
Component	Scope (2)		Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Volume Control	W	2	III-C	Х	AB	Х	Х	Х	Х	Х
Boric Acid	D	3	VIII	Х	AB	Р	Х	Х	Х	Х
Boric Acid Batching	W	NA	VIII	-	AB	-	-	-	Х	Х
Chemical Mixing	W	NA	VIII	-	AB	-	-	-	Х	Х
Resin Fill	D	NA	VIII	-	AB	-	-	-	Х	Х
Suction Stabilizer on Recip. Charging Pump	D	2	III-2	х	AB	х	х	х	х	х
Demineralizers										
Mixed Bed	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
Cation	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
Filters										
Reactor Coolant	W	2	III-C	Х	AB	Х	Х	Х	Х	Х
Seal Water Return	W	2	III-C	Х	AB	Х	Х	Х	Х	Х
Seal Water Injection	W	2	III-C	Х	AB	Х	Х	Х	Х	Х
Boric Acid	W	3	III-C	Х	AB	-	Х	Х	Х	Х
Miscellaneous										
Letdown Orifices	W	2	III-2	Х	С	Х	Х	Х	Х	Х
Boric Acid Blender	W	3	III-3	Х	AB	-	Х	Х	Х	Х
Valves	D	1,2,3	-1, -2 -3	Х	C,AB	Х	Х	Х	Х	Х
Recip. Charging Pump Accum.	D	2	III-2	Х	AB	Х	Х	Х	Х	Х
Boron Recycle System										
Pumps										
Evaporator Feed	W	NNS	B31.1	-	AB	-	-	Х	Х	Х
Reactor Makeup Water	W	NNS	-	-	AB	-	-	-	Х	Х

		Safety		QA		Rad	Seisi	nic ⁽¹⁾		Tornado d Missile
Component	Scope		Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	
Recycle Evap. Concen. Pump	D	3	III-3	-	AB	Х	Х	Х	Х	Х
Seal Cooling Water Pump	D	NNS	-	-	AB	Р	-	-	Х	
Tanks										
Holdup ⁽¹¹⁾	D	3	D100	Х	AB	Х	Х	Х	Х	Х
Reactor Makeup Water Storage	D	NNS	D100	-	0	-	Х	Х	Х	-
Reagent	W	NNS	V111	-	AB	-	-	-	Х	Х
Seal Cooling Water Tank	D	NNS	-	-	AB	Р	-	-	Х	Х
Demineralizers										
Evaporator Feed	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
Evaporator Condensate	W	NNS	VIII	-	AB	Р	-	-	Х	Х
Filters										
Evaporator Feed	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
Evaporator Condensate	W	NNS	VIII	-	AB	Р	-	-	Х	Х
Evaporator Concentrates	W	NNS	VIII	-	AB	Р	-	-	Х	Х
Seal Cooling Water Filter	D	NNS	VIII	-	AB	Х	Х	Х	Х	Х
Miscellaneous										
Evaporator - Gas Stripper Pkg	W	NNS	B31.1	-	AB	Х	-	-	Х	Х
Evaporator Condensate Return Unit	D	NA	-	-	AB	-	-	-	-	-
Valves	D	2,3	III-2,III-3	Х	C,AB	Х	Х	Х	Х	Х
Seal Cooling Water HX (Tube)	D	NNS	VIII	-	AB	Р	-	-	Х	Х
(Shell)	D	NNS	VIII	-	AB	-	-	-	Х	Х

		Safety		QA		Rad	Seis	mic ⁽¹⁾		Tornado
Component	Scope (2)		Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind	Missile
Heat Exchangers										
Moderating (Tube)	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
(Shell)	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
Letdown Chiller (Tube)	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
(Shell)	W	NA	VIII	-	AB	-	Х	Х	Х	Х
Letdown Reheat (Tube)	W	2	III-C	Х	AB	Х	Х	Х	Х	Х
(Shell)	W	3	VIII	Х	AB	Х	Х	Х	Х	Х
Miscellaneous										
Chiller Units	W	NA	-	-	AB	-	-	-	Х	Х
Valves	D	2,3	III-C,III-3	Х	AB	Х	Х	Х	Х	Х
Chiller Surge Tank	W	NA	VIII	-	AB	-	-	-	Х	Х
Boron Chiller Pumps	W	NA	P&V-III	-	AB	-	-	-	Х	Х
NR Demin.	W	3	III-3	Х	AB	Х	Х	Х	Х	Х
Annulus Ventilation System										
Fans	D	3	AMCA ⁽¹²⁾	Х	AB	Р	Х	Х	Х	Х
Filters	D	3	_(13)	Х	AB	Р	Х	Х	Х	Х
Moisture Separator	D	3	_(13)	Х	AB	Р	Х	Х	Х	Х
Valves	D	3	III-3	Х	AB	Р	Х	Х	Х	Х
Ice Condenser Refrigeration System										
Ice Baskets	W	2	As Applicable	Х	С	Р	Х	Х	Х	Х
Ice Bed Doors	W	2	As Applicable	Х	С	Р	Х	Х	Х	Х
NF Refrigeration Units	W	NA	-	-	AB	-	-	-	Х	Х

		Safety		QA		Rad	Seis	mic ⁽¹⁾		Tornado
Component	Scope (2)		Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Ice Machine (Abandoned)	W	NA	-	-	AB	-	-	-	Х	Х
Ice Machine (New)	D	NA	-	-	0	-	-	-	-	-
Ice Condenser Bridge Crane	W	NA	-	-	С	-	-	-	Х	Х
Air Handling Units	W	NA	As Applicable	С		-	-	Х	Х	
Valves	D	2	III-2	Х	C,AB	Р	Х	Х	Х	Х
NF Glycol Pumps	W	NNS	-	-	AB	-	-	-	Х	Х
NF Glycol Mixing & Storage Pump	D	NNS	-	-	AB	-	-	-	Х	Х
Ice Solution Pumps	D	NNS	-	-	0	-	-	-	Х	Х
NF Floor Cooling Pumps	W	NNS	-	-	С	Х	Х	Х	Х	Х
NF Glycol Mixing & Storage Tank	D	NNS	VIII	-	AB	-	-	-	Х	Х
Ice Solution Mixing Tanks	D	NNS	-	-	0	-	-	-	Х	Х
NF Glycol Expansion Tank	W	NNS	-	-	С	-	-	-	Х	Х
Ice Bin & Annex Cond. Units	W	NA	-	-	AB	-	-	-	Х	Х
Ice Bin	W	NA	-	-	AB	-	-	-	Х	Х
Ice Annex	W	NA	-	-	AB	-	-	-	Х	Х
Ice Bin & Annex Air Handlers	W	NA	-	-	AB	-	-	-	Х	Х
Ice Blower Package	W	NA	-	-	AB	-	-	-	Х	Х
Ice Cond. Cyclone Receiver	W	NA	-	-	С	-	-	-	Х	Х
Rotary Valve Assembly	W	NA	-	-	AB	-	-	-	Х	Х
NF Floor Cooling Defrost Heater	W	NA	-	-	С	-	-	-	Х	Х
NF Slab Cooling	W	NA	B31.1	-	С	-	-	-	Х	Х
NF Glycol Bypass Strainer	W	NA	B31.1	-	AB	-	-	-	Х	Х
Lower Support Coolers	W	NA	-	-	С	-	-	-	Х	Х
Ice Machine Cooling Towers	D	NA	-	-	0	-	-	-	Х	Х

		Safety		QA		Rad	Seisr	nic ⁽¹⁾		Tornad
Component	Scope		Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Ice Machine Cooling Tower Pumps	D	NA	-	-	0	-	-	-	Х	Х
Containment Isolation System										
Valves	D	2	III-2	Х	C,AB	X,P	Х	Х	Х	Х
Containment Air Return & Hydrogen-Skimmer System										
Air Return Fans	D	2	AMCA ⁽¹³⁾	Х	С	-	Х	Х	Х	Х
Hydrogen Skimmer Fans	D	2	AMCA ⁽¹³⁾	Х	С	-	Х	Х	Х	Х
Valves	D	2	III-2	Х	С	-	Х	Х	Х	Х
Component Cooling System										
Pumps										
Cooling Water	В	3	III-3	Х	AB	Р	Х	Х	Х	Х
Drain Tank	D	NA	-	-	AB	Р	-	-	Х	Х
Heat Exchangers (Tube)	D	3	VIII	Х	AB	-	Х	Х	Х	Х
(Shell)	D	3	VIII	Х	AB	Р	Х	Х	Х	Х
Tanks										
Surge	D	3	III-3	Х	AB	Р	Х	Х	Х	Х
Drain	D	NA	-	-	AB	Р	-	-	Х	Х
Valves	D	2,3,NNS	III-2	Х	AB	Р	Х	Х	Х	Х
		-	III-3	Х	С	Р	Х	Х	Х	Х
		-	NA		AB	Р	Х	Х	Х	Х
Liquid Waste Disposal System Waste Collection Section										
1. Tanks										
Waste Evap. Feed	D	NNS	III-3	-	AB	Х	-	-	Х	Х

		Safety		QA		Rad	Seisr	nic ⁽¹⁾		Tornado
Component	Scope	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Waste Drain	D	NNS	B31.1	-	AB	Р	-	-	Х	Х
Laundry & Hot Shower	D	NNS	VIII	-	AB	Р	-	-	Х	Х
Reactor Coolant Drain	W	NNS	VIII	-	С	Х	-	-	Х	Х
Floor Drain	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Aux. Floor Drain Tank	D	NNS	D100	-	RF	Х	Х	Х	Х	Х
Aux. Waste Evap. Feed Tank	D	NNS	D100	-	RF	Х	Х	Х	Х	Х
2. Pumps										
Waste Evap. Feed Tank	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Waste Drain Tank	W&D	NNS	B31.1	-	AB	Х	-	-	Х	Х
Laundry & Hot Shower Tank	W	NNS	P&V-III	-	AB	Р	-	-	Х	Х
Floor Drain Tank	W	NNS	P&V-III	-	AB	Р	-	-	Х	Х
Reactor Coolant Drain Tank	W	NNS	P&V-III	-	С	Х	-	-	Х	Х
RHR & CS Pump Room Sump	D	NNS	-	-	AB	Р	-	-	Х	Х
Groundwater Drainage Sump	D	3	III-3	Х	AB	-	Х	Х	Х	Х
Waste Evap. Feed Tank Sump	D	NNS	-	-	AB	Р	-	-	Х	Х
Floor Drain Tank Sump	D	NNS	-	-	AB	Р	-	-	Х	Х
Containment Floor & Equipment Sump	D	NNS	-	-	С	Р	Х	Х	Х	Х
Incore Inst. Sump	D	NNS	-	-	С	Р	Х	Х	Х	Х
Aux. FDT Pump	D	NNS	VIII	-	RF	Х	-	-	Х	Х
Aux. WEFT Pump	D	NNS	VIII	-	RF	Х	-	-	Х	Х
IRF Sump Pump	D	NNS	-	-	RF	Р	-	-	Х	Х

			Safety		QA		Rad	Seisr	nic ⁽¹⁾		Tornado
Co	mponent	Scope	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind	Missile (22)
	IRF Pipe Trench Sump Pumps	D	NNS	-	-	RF	Р	-	-	Х	Х
	Laundry Machine Sump Pumps	D	NNS	-	-	CW	Х	-	-	Х	Х
	Decon Equipment Sump Pumps	D	NNS	-	-	CW	Х	-	-	Х	Х
3.	Strainers										
	Laundry & Hot Shower Tank	W	NNS	VIII	-	AB	Р	-	-	Х	Х
	Floor Drain Tank	W	NNS	VIII	-	AB	Р	-	-	Х	Х
4.	Filters										
	Laundry & Hot Shower										
	Tank Primary	W	NNS	VIII	-	AB	Р	-	-	Х	Х
	Tank Secondary	W	NNS	VIII	-	AB	Р	-	-	Х	Х
	Floor Drain Tank	W	NNS	VIII	-	AB	Р	-	-	Х	Х
5.	Miscellaneous										
	Reactor Coolant Drain Tank Heat Exchanger										
	(Tube)	W	NNS	VIII	-	С	Р	х	х	Х	х
	(Shell)	W	3	VIII	Х	С	Р	Х	Х	Х	Х
	Valves	W	2,3	III-3	Х	AB	Х	Х	Х	Х	Х
	Gas Sample Vessel	D	3	III-3	Х	AB	Х	Х	Х	Х	Х
W	aste Processing System										
1.	Tanks										
	Mixing and Settling	D	NNS	VIII	-	AB	Р	-	-	Х	Х
	Mixing and Settling Tank Reagent Tank	D	NA	-	-	AB	-	-	-	Х	Х

			Safety		QA		Rad	Seisi	mic ⁽¹⁾		Tornado
Co	mponent	Scope (2)	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
	Evaporator Conc. Lines Flush	D	NNS	VIII	-	AB	Х	-	-	Х	Х
	Seal Cooling Water Tank	D	NA	-	-	AB	Р	-	-	Х	Х
2.	Pumps										
	Mixing and Settling Tank	D	NNS	VIII	-	AB	Р	-	-	Х	Х
	Mixing and Settling Tank Sludge	D	NNS	VIII	-	AB	Р	-	-	Х	Х
	Waste Evapor. Concen. Pump	D	3	III-3	Х	AB	Х	Х	Х	Х	Х
	Seal Cooling Water Pump	D	NNS	-	-	AB	Р	-	-	Х	Х
	Seal Cooling Water Filter	D	NNS	VIII	-	AB	Р	-	-	Х	Х
	Seal Cooling Water HX (Tube)	D	NNS	VIII	-	AB	Р	-	-	Х	Х
	(Shell)	D	NNS	VIII	-	AB	Р	-	-	Х	Х
3.	Miscellaneous										
	Waste Evap. Condensate Return	D	NA	-	-	AB	-	-	-	Х	Х
	Waste Evaporator	W	NNS	B31.1	-	AB	Х	-	-	Х	Х
	Waste Evap. Cond. Demin.	W	NNS	VIII	-	AB	Р	-	-	Х	Х
	Waste Evap. Cond. Filter	W	NNS	VIII	-	AB	Р	-	-	Х	Х
	Waste Evap. Reagent Tank	W	NNS	VIII	-	AB	Р	-	-	Х	Х
	Waste Evap. Feed Filter	W&D	NNS	III-C,VIII	-	AB	Х	-	-	Х	Х
	Laundry & Hot Shower Carbon Filter	D	NNS	VIII	-	AB	Р	-	-	Х	Х
	Laundry & Hot Shower Demineralizer	D	NNS	VIII	-	AB	Р	-	-	Х	Х
	Laundry & Hot Shower Demin. Filter	D	NNS	VIII	-	AB	Р	-	-	Х	Х

		Safety		QA		Rad	Seis	nic ⁽¹⁾		Tornado
Component	Scope		Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Valves	D	3,NNS	III-3,B31.1.0	Х	AB	Х	Х	Х	Х	Х
Waste Monitor & Disp. Section										
1. Tanks										
Waste Monitor	D	NNS	VIII	-	AB	Р	-	-	Х	Х
Recycle Monitor Tank	D	NNS	VIII	-	AB	Р	-	-	Х	Х
Vent. Unit Cond. Dr. Tank	D	NNS	VIII	-	AB	Р	-	-	Х	Х
2. Pumps										
Vent. Unit Cond. Dr. Tank	D	NNS	-	-	AB	Р	-	-	Х	Х
Waste Monitor Tank	W	NNS	VIII	-	AB	Р	-	-	Х	Х
Recycle Monitor Tank	W&D	NNS	VIII	-	AB	Р	-	-	Х	Х
3. Miscellaneous										
Waste Monitor Demineralizer Filter	D	NNS	VIII	-	AB	Р	-	-	Х	Х
Valves	D	NNS	B31.1.0	-	AB	Х	-	-	Х	Х
Gaseous Waste Disposal System										
Waste Gas Compressor Pkg	W	NNS	B31.1.0	-	AB	Х	-	-	Х	Х
Waste Gas Tanks	D	3	VIII	Х	AB	Х	Х	Х	Х	Х
Hydrogen Recombiners	W	3	-	-	AB	Х	Х	Х	Х	Х
Auto Gas Analyzer	D	NNS	-	-	AB	Х	Х	Х	Х	Х
Gas Decay Tank Drain Pump	W	NNS	-	-	AB	Р	-	-	Х	Х
Gas Trap	W	NNS	-	-	AB	Р	-	-	Х	Х
Valves	D	2,3	III-2,III-3	Х	C,AB	Х	Х	Х	Х	Х
Solid Waste Disposal System										

		Safety		QA		Rad	Seisi	mic ⁽¹⁾		Tornado
Component	Scope (2)	Class	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile
Spent Resin Storage Tank	D	3	III-3	Х	AB	Х	Х	Х	Х	Х
Chemical Drain Tank	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Evaporator Concentrates Storage Tank	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Resin Batching Tank	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Evap. Concen. Batch Tank	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Binder Storage Tank	D	NA	-	-	В	-	-	-	-	-
2. Pumps										
Spent Resin Sluicing	W	NNS	-	-	AB	Х	-	-	Х	Х
Chemical Drain Tank	W		-	-	AB	Х	-	-	Х	Х
Resin Dewatering Pump	D	NNS	-	-	AB	Х	-	-	Х	Х
Binder Transfer Pump	D	NA	-	-	0	-	-	-	-	-
3. Miscellaneous										
Hydraulic Compactor	D	NNS	-	-	AB	Р	-	-	Х	Х
Spent Resin Sluicing Filter	W	NNS	VIII	-	AB	Х	-	Х	Х	Х
Valves	D	3,NNS	III-3,B31.1	Х	AB	Х	Х	Х	Х	Х
Radwaste Pump Skid Unit	D	NNS	B31.1	-	AB	Х	-	-	Х	Х
Fuel Pool Cooling & Cleanup System										
Cooling Pumps	В	3	III-3	Х	AB	Х	Х	Х	Х	Х
Cooling Heat Exchanger	D	3	VIII	Х	AB	Х	Х	Х	Х	Х
Cooling Strainers	D	3	VIII	Х	AB	Х	Х	Х	Х	Х
Demineralizer	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Filter	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Skimmer Pump	D	NNS	-	-	AB	Х	-	-	Х	Х

		Safety		QA		Rad	Seisi	mic ⁽¹⁾		Tornado
Component	Scope (2)	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Skimmer Filter	D	NNS	-	-	AB	Х	-	-	Х	Х
Valves	D	3,NNS	III-3,B31.1.0	Х,-	AB	Х	Х	Х	Х	Х
Diesel Generator Fuel Oil System										
Day Tanks	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Booster Pumps	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Drip Tanks, Pumps, & Filters	D	NNS	-	-	AB	-	-	-	Х	Х
Recirculation Pump	D	NNS	-	-	0	-	-	-	-	-
Recirculation Filter	D	NNS	-	-	0	-	-	-	-	-
Transfer Filters	D	3	III-3	Х	AB	-	Х	Х	Х	Х
Transfer Pumps	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Fuel Oil Tanks ⁽¹⁷⁾	D	3	VII	Х	В	-	Х	Х	Х	Х
Relief Valves	D	3,NNS	(18)	Х, -	AB, o	-	(18), -	(18), -	Х, -	Х, -
Valves (In-line & Others)	D	3,NNS	III-3, ⁽¹⁸⁾ , -	X, -	DB,B	-	Х	Х	Х	Х
Diesel Generator Cooling Water System										
Cooling Water Heat Exchangers	D	3	VIII	Х	AB	-	Х	Х	Х	Х
Intercooler Pumps	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Jacket Water Circulating Pumps	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Jacket Water Heaters	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Surge Tanks	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Temperature Regulating Valves	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Valves (In-line & Others)	D	3	III-3, ⁽¹⁸⁾	Х	AB	-	(18)	(18)	Х	Х

		Safety		QA		Rad	Seis	mic ⁽¹⁾		Tornado
Component	Scope (2)	Class (3)	Code (4)	Req'd	Location (6)	Source	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Dirty Lube Oil Tanks	D	NNS	-	-	TB	-	-	-	-	-
Heater Pumps	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Oil Heaters	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Full Flow Filters	D	3	VIII, ⁽¹⁸⁾	Х	AB	-	(18)	(18)	Х	Х
Lube Oil Coolers	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
B & A Lube Oil Pumps	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Intake Strainers	D	3	VIII	Х	AB	-	Х	Х	Х	Х
Temperature Regulating Valves	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Relief Valves	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Valves (In-line & Others)	D	3,NNS	III-3, ⁽¹⁸⁾ ,-	Х,-	AB,B	-	Х	Х	Х	Х
Diesel Generator Starting Air System										
Air Compressors	D	NNS	-	Х	AB	-	(18)	(18)	Х	Х
Starting Air Tanks	D	3	VIII, ⁽¹⁸⁾	Х	AB	-	(18)	(18)	Х	Х
Line Filters	D	3	III-3	Х	AB	-	Х	Х	Х	Х
Control Air Filters	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Filter - Moisture Traps	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Relief Valves	D	3 NNS	III-3, ⁽¹⁸⁾	Х	AB	-	X, ⁽¹⁸⁾	X, ⁽¹⁸⁾	Х	Х
Valves (In-line & Others)	D	3	III-3	Х	AB	-	Х	Х	Х	Х
Diesel Generator Intake and Exhaust System										
Intake Silencers	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Exhaust Silencers	D	3	(18)	Х	AB	-	(18)	(18)	Х	Х
Valves	D	3,NNS	III-3,-	Х	AB	-	Х	Х	Х	Х

		Safety		QA		Rad	Seisr	nic ⁽¹⁾		Tornado
Component	Scope (2)	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Diesel Generator Crankcase Vacuum System										
Vacuum Blowers	D	NNS	-	Х	AB	-	(18)	(18)	Х	Х
Diesel Generator Room Sump Pump System										
Generator Pit Sump Pumps	D	NNS	-	-	AB	-	-	-	Х	Х
Generator Room High Capacity Sump Pumps	D	3	(15)	Х	AB	-	Х	Х	Х	Х
Generator Room Low Capacity Sump Pumps	D	NNS	-	-	AB	-	-	-	Х	Х
Valves	D	3,NNS	III-3,-	Х,-	AB,AB	-	Х	Х	Х	Х
Nuclear Service Water System										
Pumps	D	3	III-3	Х	AB	-	Х	Х	Х	Х
Strainers	D	3	VIII	Х	AB	-	Х	Х	Х	Х
Valves	D	2,3	III-2,III-3	Х	AB,O	-	Х	Х	Х	Х
Conventional Service Water System										
Pumps	D	NA	-	-	SB	-	-	-	-	-
Strainers	D	NA	-	-	SB	-	-	-	-	-
Valves	D	NA	-	-	SB	-	-	-	-	-
Fuel Handling System										
Reactor Manipulator Crane	W	NNS	-	Х	С	-	-	Х	Х	Х
Fuel Transfer Tube	W	2	III-2	Х	C,AB	-	Х	Х	Х	Х
Underwater Fuel Conveyor	W	NNS	-	Х	C,AB	-	-	-	Х	Х
Spent Fuel Manipulator Crane	W	NNS	-	Х	AB	-	-	Х	Х	Х
Fuel Handling Tools	W	NNS	-	Х	C,AB	-	-	-	Х	Х

		Safety		QA		Rad	Seisi	nic ⁽¹⁾		Tornado
Component	Scope (2)	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Sampling System										
Sample Heat Exchanger	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Sample Vessel	D	NNS	VIII	-	AB	Х	-	-	Х	Х
Valves	D	2,3	III-2,III-3	Х	C,AB	Х	Х	Х	Х	Х
Refueling Water System										
Refueling Water Pump	D	NNS	-	-	AB	Р	-	-	Х	Х
Refueling Water Recirc. Pumps	D	NNS	-	-	AB	Р	-	-	Х	Х
Refueling Water Pump Strainer	D	NNS	-	-	AB	Р	-	-	Х	Х
Storage Tank	D	2	D100	Х	0	Р	Х	Х	Х	19
FW Pipe Trench Sump Pump	D	NA	-	-	0	-	-	-	-	-
Valves	D	2	III-2,	Х	C,AB	Р	Х	Х	Х	Х
			B31.1.0							
Equipment Decontamination System										
Pump	D	NNS	-	-	AB	-	-	-	Х	Х
Tank	D	NNS	D100	-	AB	-	-	-	Х	Х
Valves	D	NNS	(18)	Х	C,AB	-	Х	Х	Х	Х
Fire Protection System										
Fire Pumps	D	NA	(14)	-	0	-	-	-	-	-
Valves	D	NA	-	-	TB,SB,O B,AB	-	-	-	-	-
Station Ventilation Systems										
Containment Ventilation										
1. Containment Purge										
Fans	D	NNS	-	_	AB	Р	-	-	Х	Х

		Safety		QA		Rad	Seisr	nic ⁽¹⁾		Tornado
Component	Scope	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Filters	D	NNS	-	-	AB	Р	-	-	Х	Х
2. Other Systems ⁽¹⁶⁾										
Fan/Coil Units	D	NNS	-	-	С	Р	-	-	Х	Х
Filters	D	NNS	-	-	С	Р	-	-	Х	Х
CRDM Fans	D	NNS	-	-	С	Р	-	-	Х	Х
3. Auxiliary Bldg. Ventilation										
Fan/Coil Units	D	NA	-	-	AB	-	-	-	Х	Х
Filters (Charcoal)	D	3	-	Х	AB	Р	Х	Х	Х	Х
ES Air Handling Units	D	3	-	Х	AB	Р	Х	Х	Х	Х
4. Control Bldg. Ventilation										
Fan	D	3	-	Х	AB	Р	Х	Х	Х	Х
Filters	D	3	-	Х	AB	Р	Х	Х	Х	Х
Air Conditioning Unit	D	3	-	Х	AB	-	Х	Х	Х	Х
5. Diesel Bldg. Ventilation										
Fans	D	3	-	Х	AB	Р	Х	Х	Х	Х
Filters	D	3	-	Х	AB	Р	Х	Х	Х	Х
Main Steam System										
Isolation Valves	D	2	III-2	Х	DH	-	Х	Х	Х	Х
Feedwater System										
Isolation Valves	D	2	III-2	Х	DH	-	Х	Х	Х	Х
Auxiliary Feedwater System										
Motor Driven Pumps	D	3	III-3	Х	AB	-	Х	Х	Х	Х
Steam Turbine Driven Pumps	D	3	III-3	Х	AB	-	Х	Х	Х	Х
Valves	D	2,3	111-2,111-3	Х	AB,DH	-	Х	Х	Х	X

		Safety		QA		Rad	Seisi	mic ⁽¹⁾		Tornado
Component	Scope	Class (3)	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind	Missile (22)
Storage Tank	D	D-100	-	0	-	-	-	-	-	-
Steam Dump Systems										
Turbine Bypass	D	NA	-	-	TB	-	-	-	-	-
Relief Valves	D	2	III-2	Х	DH	-	Х	Х	Х	X ²³
Safety Valves	D	2	III-2	Х	DH	-	Х	Х	Х	X ²³
Steam Generator Blowdown Recycle System										
Note: Steam Generator Blowdow	n Recycle Sy	stem is no lo	nger in service	e. Flow path	has been per	manently isol	ated per NS	M MG-1/2-2	430.	
SG Blowdown HX	D	NNS	VIII	-	AB	Р	-	-	Х	Х
SG Blowdown Tank	D	NNS	VIII	-	AB	Р	-	-	Х	Х
SG Blowdown Pumps	D	NNS	-	-	AB	Р	-	-	Х	Х
SG Blowdown Recycle Demin.	D	NNS	VIII	-	AB	Р	-	-	Х	Х
Blowoff Tank	D	NNS	VIII	-	ТВ	-	-	-	-	-
Blowoff Tank Pumps	D	NNS	-	-	ТВ	-	-	-	-	-
Valves	D	2	III-2	Х	C,AB	Р	Х	Х	Х	Х
Condenser Circulating Water System										
Condenser Circulating Pumps	D	NA	-	-	0	-	-	-	-	-
Valves	D	NA	-	-	TB,O	-	-	-	-	-
Instrument Air System										
Compressors	D	NA	-	-	SB,O	-	-	-	-	-
After Coolers	D	NA	-	-	SB	-	-	-	-	-
Air Tanks (1A, 1B, 2A, 2B)	D	NA	III-3	-	AB	-	Х	Х	Х	Х
Air Receivers (A, B, C)	D	NA	VIII	-	SB	-	-	-	-	-
Air Dryers	D	2	VIII	-	SB	-	-	-	-	-

		Safety		QA		Rad	Seis	mic ⁽¹⁾		Tornado
Component	Scope (2)	Class	Code (4)	Req'd	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile
Valves	D	2	III-2	Х	C,AB	Р	Х	Х	Х	Х
Main Steam Isolation Valve										
Air Tanks	D	3	III-3	-	DH	-	-	-	Х	Х
Hydrogen System										
Hydrogen Vessels	D	NA	VIII	-	0	-	-	-	-	-
Valves	D	NA	-		AB	-	-	-	-	-
Nitrogen System										
Nitrogen Vessels	D	NA	VIII	-	0	-	-	-	-	-
Valves	D	NA	VIII	-	AT,TB	-	-	-	-	-
Containment Air Release and Addition System										
Filters	D	NNS	-	-	AB	Р	-	-	Х	Х
Valves	D	2	III-2	Х	AB,C	Р	Х	Х	Х	Х

			Scop	Safety		QA Req'		Rad	Seis	nic ⁽¹⁾		Tornado
Com	ponent		e (2)		Code (4)	d (5)	Location (6)	Source (7)	OBE (8)	SSE (8)	Wind (9)	Missile (22)
Note	s:											
			in the Containm Il not result in the					seismic loa	ding will b	e checke	d to verify	that fault
2.	D	=	Duke									
	В	=	Babcock & Wil	сох								
	W	=	Westinghouse									
3.	1	=	Safety Class 1									
	2	=	Safety Class 2	1								
	3	=	Safety Clas 3									
	NNS	=	Non-Nuclear S	Safety								
	NA	=	Not Applicable									
4.	III-1	=	ASME Boiler a	nd Pressu	re Vessel C	ode – Se	ction III, Cla	ss 1				
	III-2	=	ASME Boiler a	nd Pressu	re Vessel C	ode – Se	ction III, Cla	ss 2				
	III-3	=	ASME Boiler a	nd Pressu	re Vessel C	ode – Se	ection III, Cla	ss 3				
	VIII	=	ASME Boiler a	nd Pressu	re Vessel C	ode – Se	ction VIII					
	B31.1.0	=	ANSI B31.1.0	(1967)								
	D100	=	American Wate			Standard	for Steel Tar	nks, Standp	oipes, Res	ervoirs, a	nd Elevat	ed Tanks

			Scop	Safety		QA Req'		Rad	Seis	mic ⁽¹⁾		Tornado
Com	ponent		e (2)	Class Code (3) (4)		-		Source (7)	OBE (8)	SSE (8)	Wind	Missile (22)
	API- 620	=	American Petr Pressure Stora		itute Recon	nmended	Rules for De	esign and (Constructio	on of Larg	e Welded	Low
	ACI	=	American Con	crete Instit	ute							
	AMCA	=	Air Moving and	d Conditior	ing Associa	ation						
	NFUL	=	National Fire U	Jnderwrite	s Laborator	у						
	P&V-1	=	ASME Code for	or Pumps a	nd Valves	for Nuclea	ar Power, Cl	ass I				
	P&V-11	=	ASME Code for	or Pumps a	nd Valves	for Nuclea	ar Power, Cl	ass II				
	P&V-III	=	ASME Code for	or Pumps a	nd Valves	for Nuclea	ar Power, Cl	ass III				
	III-A	=	ASME Boiler a	and Pressu	re Vessel C	Code, Sec	tion III, Clas	s A				
	III-B	=	ASME Boiler a	and Pressu	re Vessel C	Code, Sec	tion III, Clas	s B				
	III-C	=	ASME Boiler a	and Pressu	re Vessel C	Code, Sec	tion III, Clas	s C				
	See Tab	le 3-5	57 for HVAC des	ign codes								
5.	Safety re	elated	l quality assuran	ce required	l: X = Yes;	- = No						
6.	С	=	Containment									
	RB	=	Reactor Buildi	ng								
	AB	=	Auxiliary Build	ing								
	ТВ	=	Turbine Buildir	ng								
	SB	=	Service Buildir	ng								
	DB	=	Diesel Building)								
	DH	=	Dog House									

			Scop	Safety		QA Req'		Rad	Seis	mic ⁽¹⁾		Tornado
Com	ponent		e (2)		Code (4)	d (5)	Location		OBE (8)	SSE (8)	Wind	
	0	=	Outdoors abov	ve ground								
	В	=	Buried in grou	nd								
	CW	=	Contaminated	warehouse	9							
	RF	=	Radwaste faci	lity								
7.	Х	=	Source of radi	ation								
	-	=	No source of r	adiation								
	Ρ	=	Possible source	ce of radiait	on							
8.	Х	=	Designed for									
	-	=	Not designed	for								
9.	Х	=	Protected by v	virtue of loc	ation in a st	tructure d	lesigned for	tornado wir	nd and mis	ssiles		
	-	=	No protection	required								
10.	R	edunda	int electrical heat	ters are su	oplied							
11.	Т	ank is p	rovided with dia	phragm me	mbrane for	· oxygen e	exclusion					
12.	A	MCA C	lass III and perfo	ormance tes	sted in acco	ordance w	/ith AMCA S	tandard Te	st Code fo	or air movi	ing device	es.
13.	Р	erforma	ance test required	d.								
14.	N	lational	Fire Protection A	ssociation	No. 20.							
15.	С	ode is e	this service des either unavailable onventional, non-	e or not as	suitable for	this serv						
16.	Т	his refe	rs to Upper and	Lower Con	tainment Ve	entilation	Systems.					
17.	Т	anks ar	e designed for a	ll external f	orces due t	o soil and	d water, inlcu	iding buoya	ancy.			
18.	Т	hese co	mponents were	not built to	applicable	codes an	d standards	, but have l	been quali	fied seism	nically.	

		Scop	Safety		QA Reg'	QA Reg'		Seismic ⁽¹⁾			Tornado
Compone	nt	е (2)		Code (4)	d (5)	Location (6)	Rad Source (7)	OBE (8)	SSE (8)	Wind	Missile
19.	The storage tar the tank to elev water is availab	ation 773+	1 to resist	any tornade	o generat	ted missile.	This wall a				
20.	CS HX was rep spray, III-B, and			Ų.		hanged to re	everse flow	patterns;	the shell	has conta	inment
21.	Lower Support	Coolers –	Function a	bandoned p	orior to st	art up. Now	air-cooled o	due to rad	liation.		
22.	Turbine missile	s are inclu	ded per se	ection <u>3.5.1.</u>	<u>2</u>						
23.	Reference Tabl	le 3-63									

Duke System Piping Class	NRC Quality Class	ANS Safety Class	Code Design Criteria	Designed For Seismic Loading
А	А	1	Class 1, ASME Section III, 1971	Yes
В	В	2	Class 2, ASME Section III, 1971	Yes
С	С	3	Class 3, ASME Section III, 1971 ¹	Yes
D	В	2	Class 2, ASME Section III, 1971	No
Е	D	NNS	ANSI B31.1.0 (1967)	No
F	D	NNS	ANSI B31.1.0 (1967)	Yes
G	-	-	ANSI B31.1.0 (1967)	No
Н	-	-	Duke Power Company Specifications	No

Table 3-5. System Piping Classification

Note:

Code Applicability: Due to the numerous code references located throughout this SAR, no attempt is made to revise these references as Codes are amended, superseded or substituted. The code references specified above are the basis for design and materials. Duke establishes an "effective code date" for the station in accordance with 10 CFR 50.55a, reviews and may elect to comply with portions of or all the latest versions of the above Codes unless material and/or design commitments have progressed to a stage of completion such that it is not practical to make a change. When only portions of Code Addenda are utilized, the appropriate engineering review of the entire addenda assures that the overall intent of the Code is still maintained.

1. The Nuclear Service Water System meets the requirements of ANSIB31.7, Class III, which was the required code at the time of initial design, procurement and installation.

Duke System Piping Class	NRC Quality Class	ANS Safety Class	Code Design Criteria	Designed For Seismic Loading
А	А	1	Class 1, ASME Section III, 1971	Yes
В	В	2	Class 2, ASME Section III, 1971	Yes
С	С	3	Class 3, ASME Section III, 1971	Yes
D	В	2	Class 2, ASME Section III, 1971	No
Е	D	NNS	ANSI B31.1.0 (1967)	No
F	D	NNS	ANSI B31.1.0 (1967)	Yes
G	-	-	ANSI B31.1.0 (1967)	No
Н	-	-	Duke Energy Specifications	No

Table 3-6. System Valve Classification

Table 3-7. Electrical Systems and Components Summary of Criteria

				Rad.		Tor	nado	
Equipment	Safety Class	QA Req'd	Location	Environ	Seismi c SSE	Wind	Missil e	Scope
Air Conditioning System (Control, Equipment, and Cable Room)								
Compressor Motors	1E	Х	AB	-	Х	Х	Х	D
Vent Fan Motors	1E	Х	AB	-	Х	Х	Х	D
Chill Water Pump Motors	1E	Х	AB	-	Х	Х	Х	D
Control Room Makeup Fan Motor	1E	Х	AB	-	Х	Х	Х	D
Equipment & Cable Room Makeup Fan Motor	1E	Х	AB	-	Х	Х	Х	D
Annulus Vent System								
Fan Motors	1E	Х	AB	Х	Х	Х	Х	D
Moisture Separator Electric Heaters	1E	Х	AB	Х	-	-	-	D
Air Operated Valves (Solenoids)	1E	Х	AB	-	Х	Х	Х	D
Auxiliary Building Vent System								
ESF Air Handling Unit Motors	1E	Х	AB	-	Х	Х	Х	D
Cabling Equipment (Essential Auxiliaries)								
Cable Support System	1E	Х	AB,C,RB	X(Inside Cont.)	Х	Х	Х	D
Cable	1E	Х	AB,C,RB	X(Inside Cont.)	-	Х	Х	D
Chemical and Volume Control System								
Chg. Pump Motor (Centrifugal)	1E	Х	AB	Х	Х	Х	Х	W

				Rad.		Tori	nado	
Equipment	Safety Class	QA Req'd	Location	Environ	Seismi c SSE	Wind	Missil e	Scope
Boric Acid Transfer Pump Motor	1E	Х	AB	-	Х	Х	Х	W
Selected MO Valve Motors	1E	Х	AB,C	Х	Х	Х	Х	D
Containment Air Return Systems								
Air Return Fan Motors	1E	Х	С	Х	Х	Х	Х	D
H ₂ Skimmer Fan Motors & MO Valve Motors	1E	Х	С	Х	Х	Х	Х	D
Containment Spray System								
Containment Spray Pump Motors	1E	Х	AB	Х	Х	Х	Х	D
Selected MO Valve Motors	1E	Х	AB	Х	Х	Х	Х	D
Containment Isolation Systems								
Containment Isolation Valve Motors	1E	Х	RB,C,AB	Х	Х	Х	Х	D
Component Cooling Water System								
Component Cooling Pump Motors	1E	Х	AB	-	Х	Х	Х	D
Selected M.O. Valve Motors	1E	Х	AB	-	Х	Х	Х	D
Diesel Building Ventilation System								
Diesel Room Supply Fan Motors	1E	Х	AB	-	Х	Х	Х	D
Proportioning Dampers	1E	Х	AB	-	Х	Х	Х	D
Emergency Disel Auxiliary Systems								
Emergency Diesel Generator	1E	Х	AB	-	Х	Х	Х	D
Diesel Crank Case VAC Pump Motor	1E	Х	AB	-	Х	Х	Х	D
Diesel F.O. Transfer Pump Motor	1E	Х	AB	-	Х	Х	Х	D

				Rad.		Tori	nado	
Equipment	Safety Class	QA Req'd	Location	Environ	Seismi c SSE	Wind	Missil e	Scope
Diesel Gen. F.O. Booster Pump Motors	1E	Х	AB	-	Х	Х	Х	D
Diesel L.O. Filter Pump Motor	1E	Х	AB	-	Х	Х	Х	D
Diesel 600/120V Panelboard	1E	Х	AB	-	Х	Х	Х	D
Diesel Lube Oil Pump Motors	1E	Х	AB	-	Х	Х	Х	D
Diesel Jacket & Intercooler Pump Mtr	1E	Х	AB	-	Х	Х	Х	D
Diesel Air Compressor Motors	1E	Х	AB	-	Х	Х	Х	D
Diesel Generator Battery & Charger	1E	Х	AB	-	Х	Х	Х	D
Auxiliary Feedwater System								
Auxiliary Feedwater Pump Motor	1E	Х	AB	-	Х	Х	Х	D
Spent Fuel Cooling System								
Cooling Pump Motors	1E	Х	AB	Х	-	-	-	D
Deleted Per 2008 Update								
Nuclear Instrumentation System								
Detectors	1E	Х	С	Х	Х	Х	Х	W/D
Amplifier Assembly	1E	Х	С	Х	Х	Х	Х	D
Nuclear Instrumentation Racks								
1. Source Range Equipment	1E	Х	AB	-	Х	Х	Х	D
2. Intermediate Range Equipment	1E	Х	AB	-	Х	Х	х	D
3. Power Range Equip.	1E	Х	AB	-	Х	Х	Х	W
Penetrations	1E	Х	C,RB	Х	Х	Х	Х	D

				Rad.		Tornado		
Equipment	Safety Class	QA Req'd	Location	Environ	Seismi c SSE	Wind	Missil e	- Scope
4 KV ES Aux Power System								
4 KV Metalclad Bus	1E	Х	AB	-	Х	Х	Х	D
4 KV Metalclad ES Switchgear	1E	Х	AB	-	Х	Х	Х	D
4160/600V Transformers	1E	Х	AB	-	Х	Х	Х	D
600V Essential Aux Power System								
600V ES Aux Power system	1E	Х	AB	-	Х	Х	Х	D
600V ES Motor Control Centers	1E	Х	AB	-	Х	Х	Х	D
600/208V Essential Transformers	1E	Х	AB	-	Х	Х	Х	D
125V DC Vital Instrumentation & Control Power System								
125VDC Battery Chargers	1E	Х	AB	-	Х	Х	Х	D
125VDC Batteries	1E	Х	AB	-	Х	Х	Х	D
125VDC Distribution Centers	1E	Х	AB	-	Х	Х	Х	D
125VDC Panelboards	1E	Х	AB	-	Х	Х	Х	D
120V AC Vital Power System								
125V DC/120V AC Static Inverters	1E	Х	AB	-	Х	Х	Х	D
120 AC Vital Power Panelboards	1E	Х	AB	-	Х	Х	Х	D
Process Inst. & Control System								
Process I & C Racks (Protection)	1E	Х	AB	-	Х	Х	Х	W
Pri Sys Detectors (Protective)	1E	Х	C,AB	Х	Х	Х	Х	W
Sec Sys Detectors (Protective)	1E	Х	AB	Х	Х	Х	Х	W

				Rad.		Tornado		
Equipment	Safety Class	QA Req'd	Location	Environ	Seismi c SSE	Wind	Missil e	Scope
Aux Sys Detectors (Protection)	1E	Х	C,AB	Х	Х	Х	Х	W/D
Control Panels (Class 1E Circuits)								
Main Control Board	1E	Х	AB	-	Х	Х	Х	D
RCP Volt/Freq Monitor Panel	1E	Х	AB	-	Х	Х	Х	D
Aux Feedwater Panels	1E	Х	AB	-	Х	Х	Х	D
Aux Shutdown Panels	1E	Х	AB	-	Х	Х	Х	D
Diesel Generator Control Panels	1E	Х	AB	-	Х	Х	Х	D
HVAC Control Panels	1E	Х	AB	-	Х	Х	Х	D
Misc Termination Cabinets	1E	Х	AB	-	Х	Х	Х	D
Radioactive Waste Systems								
RHR & CS Pump Room Sump Pump Motor	1E	Х	AB	Х	Х	Х	Х	D
Residual Heat Removal System								
RHR Pump Motors	1E	Х	AB	Х	Х	Х	Х	W
Selected M.O. Valve Motors	1E	Х	C,AB	Х	Х	Х	Х	D
Rod Control System								
Reactor Trip Switchgear	1E	Х	AB	-	Х	Х	Х	W
Safety Injection System								
Safety Injection Pump Motors	1E	Х	AB	Х	Х	Х	Х	W
Selected Solenoid Valves	1E	Х	AB	Х	Х	Х	Х	D
Selected M.O. Valve Motors	1E	Х	AB	Х	Х	Х	Х	D

			Location	Rad. Environ		Tornado		
Equipment	Safety Class	QA Req'd			Seismi c SSE	Wind	Missil e	Scope
Service Water System (Nuclear)								
Service Water Pump Motors	1E	Х	AB	-	Х	Х	Х	D
Motor Operated Valve Motors	1E	Х	AB	-	Х	Х	Х	D
Reactor Protection System & Engineered Safety Feature Actuation System								
Solid State Protection Sys Racks	1E	Х	AB	-	Х	Х	Х	W
ESF Test Cabinet	1E	Х	AB	-	Х	Х	Х	W
Auxiliary Safeguard Cabinets	1E	Х	AB	-	Х	Х	Х	W
Steam Supply System								
Main Steam Isolation Valve Solenoids	1E	Х	AB	-	Х	Х	Х	D
Note:								
The instrumentation described in Sections <u>7.2</u> thr Program.	ough <u>7.6</u> is	s subject t	o the pertiner	nt requireme	ents of the	Quality A	ssurance	9
EXPLANATION OF SYMBOLS								
Table Headings	Symbols	5						

5	Cynno	010	
Scope	W	= Westinghouse	
	D	= Duke	
Safety Class	1E	= Electrical Safety Class 1E	(Ref. <u>3.2.4.1</u>)
	2E	= Electrical Safety Class 2E	(Ref. <u>3.2.4.1</u>)
	3E	= Electrical Safety Class 3E	(Ref. <u>3.2.4.1</u>)
	4E	= Electrical Safety Class 4E	(Ref. <u>3.2.4.1</u>)

				Rad.	Tornad		nado	lo	
Equipment	Safety Class	QA Req'd	Location	Environ	Seismi c SSE	Wind	Missil e	Scope	
	- :	= No Safe	ty Class						
Q.A. Req'd	X :	= Yes							
	- :	= No							
Location	C :	= Containr	ment						
	RB :	= Reactor	Building						
	AB	= Aux. Bui	lding						
	TB =	= Turbine	Building						
	SB ÷	= Service	Building						
	0 :	= Outdoor	s Above Gro	und					
Rad Environ	X :	= Designe	d for Rad. Er	nvironment					
	- :	= Not Des	igned For						
Seismic	S.S.E	= Safe Sh	utdown Earth	iquake					
	X	= Designe	d For						
	- :	= Not Des	igned For						
Tornado			on Required (for tornado w			location i	in a struct	ture	
	- :	= No Prote	ection Requir	ed					
Equipment	ESF :	= Enginee	red Safety Fe	eatures					

Table 3-8. Design Basis Tornado Generated Missiles

Design Basis Tornado Missiles are as defined below:

- 1. A 2 in. by 4 in. by 12 ft board weighing 40 pounds per cubic foot, end on at a speed of 300 mph.
- 2. A cross-tie, 7 in. by 9 in. by 8.5 ft weighing 50 pounds per cubic foot at a speed of 300 mph.
- 3. An automobile weighing 2,000 pounds with an impact area of 20 sq. ft. at 20 ft. above grade at a speed of 100 mph.
- 4. A steel pipe 2 in. in diameter by 7 ft. long end on at 100 mph.

Note: Design basis tornado generated missile direction is horizontal only (i.e. with no vertical velocity component).

Structure	Types of Missiles Protected Against
Reactor Building	Tornado Missiles and Turbine-Generator Missiles
Containment Interior Structures	Internal Missiles
Diesel Generator Building	Tornado Missiles and Turbine-Generator Missiles
Block Dividing Wall	D/G Flywheel Missiles
Auxiliary Building (outside walls, roof, floors and some internal walls)	Tornado Missiles, Turbine-Generator Missiles and Selected Internal Missiles
Spent Fuel Pool	Tornado Missiles and Selected Internal Missiles, Turbine-Generator Missiles
Control Room (outside walls and roof)	Tornado Missiles and Turbine-Generator Missiles

Table 3-9. Category 1 Structures and Missiles Protected Against

Plug Weight: 11 lbs		
Plug O.D.: 2.75 in.		
Travel, x	Velocity, v	Kinetic Energy
(ft)	(ft/sec)	(ft/lb)
1	240	9,750
2	335	19,900
3	370	23,300
4	415	29,200
5	440	33,000

Table 3-10. CRDM Housing Plug Ejection

Table 3-11. Drive Shaft Ejection

Diameter = 1.75 in.				
Length = 300 in.				
Weight = 120 lbs.				
Drive Shaft Travel Outside Housing ¹ (ft)	Drive Shaft Velocity (ft/sec)	Drive Shaft Kinetic Energy (ft-lb)	Missile Shield ² Steel Plate Thickness (in.)	Missile Shield ² Additional Concrete Slab Thickness (in.)

1	151	42,900	1	
2	162	49,000	1	2.5
3	171	55,000	1	10
4	179	60,200	1	16
5	189	66,500	1	25
10	269	134,700		

Notes:

1. Distance from top of rod travel housing to bottom of missile shield.

2. These thicknesses are indicative only, and shield design can optimize between steel and concrete thicknesses.

Missile Weight: 1500 lbs Impact O.D.: 3.75 in.							
(ft)	(ft/sec)	(ft-lb)					
1	14.3	4,600					
2	20.2	9,200					
3	24.8	13,800					
4	28.6	18,400					
5	32.0	23,000					

Table 3-12. Drive Shaft and Mechanism Ejection

1. For a tear around the weld l	between the boss and the pipe	
Characteristics	"without well"	"with well"
Flow Discharge Area	0.11 in. ²	0.60 in. ²
Thrust Area	7.1 in. ²	9.6 in. ²
Missile Weight	11.0 lb	15.2 lb
Area of Impact	3.14 in. ²	3.14 in. ²
Missile Weight divided by Impact Area	3.5 psi	4.84 psi
Velocity	20 ft/sec	120 ft/sec
e	A	nt assembly and the boss for the "without he well for the "with well" element.
Flow Discharge Area	0.11 in ²	0.60 in ²
Thrust Area	3.14 in ²	3.14 in ²
Missile Weight	4.0 lb	6.1 lb
Area of Impact	3.14 in ²	3.14 in ²
Missile Weight divided by Impact Area	1.27 psi	1.94 psi
Velocity	72 ft/sec	120 ft/sec

Table 3-13. Temperature Element Assembly Characteristics

Table 3-14. Pressurizer Space Valve Missiles

		Weight	Flow Discharge Area	Thrust Area	Impact Area	Weight to Impact Area Ratio	Velocity
1.	Safety Relief Valve Bonnet (3" x 6")	350 lb	2.86 in. ²	80 in. ²	24 in. ²	14.6 psi	110 fps
2.	3" Motor Operated Isolation Valve Bonnet (plus Motor and Stem)	400 lb	5.5 in. ²	113 in. ²	28.3 in. ²	14.1 psi	135 fps
3.	2" Air Operated Relief Valve Bonnet (plus stem)	75 lb	1.8 in. ²	20.7 in. ²	20 in. ²	3.75 psi	115 fps
4.	3" Air Operated Spray Valve Bonnet (plus stem)	120 lb	5.5 in. ²	50.3 in. ²	50 in. ²	2.4 psi	190 fps
5.	4" Air Operated Spray Valve	200 lb	9.3 in. ²	50.3 in. ²	50 in. ²	4 psi	190 fps

		Initial	nitial Exit		Missile Area ft ²⁽¹⁾		
Missile	Weight (lb)	Velocity fps	Velocity fps	Energy (ft-lb) 10 ⁶	A ₁	A ₂	A ₃
Disc No. 1	3521			Missile Contained			
Disc No. 2	3611	665	341	6.5	4.77	2.55	3.28
Disc No. 3	2741		Missile Contained				
Disc No. 4	3194	629	312	4.8	2.4	1.96	3.60
Disc No. 5	3961	574	345	7.3	3.03	2.52	4.00

Table 3-15. Properties of Credible Turbine Missiles

Notes:

1. See <u>Figure 3-4</u>.

2. Disc No. 5 controls the thickness of the barrier.

3. or more details on the turbine missile properties, see Section 3.5, Reference No. 4.

Table 3-16. Internal Missiles. (1)(4)

Missile	Penetration Depth "t" Inches	Minimum Barrier Thickness Required, D=3t Inches
CRDM Housing Plug Ejection (FSAR <u>Table 3-</u> <u>10</u>)	2.1	6.3
Drive Shaft Ejection (FSAR <u>Table 3-11</u>)	1.1	3.3
Drive Shaft and Mechanism Ejection (FSAR Table 3-11)	1.112	3.336
Temperature Element Assembly Missiles (FSAR <u>Table 3-13</u>)	0.54	1.62
Safety Relief Valve Bonnet (Table 3-14)	1.96	5.88
3" Motor Operated Isolation Valve Bonnet Plus Motor and Stem (<u>Table 3-14</u>)	1.81	5.43
2" Air Operated Relief Valve Bonnet Plus Stem (<u>Table 3-14</u>)	0.38	1.14
3" Air Operated Spray Valve Bonnet plus Stem (<u>Table 3-14</u>)	0.65	1.95
4" Air Operated Spray Valve (Table 3-14)	1.04	3.12
Turbine M	issiles ^{(2) (4)}	
Disc No. 5 of the Turbine	8.29	24.9
Diesel Gener	ator Missiles ⁽⁵⁾	
A 10# Section of the D/G Flywheel	1.7	5.1
Design Basis Tornado C	Generated Missi	les ⁽³⁾⁽⁴⁾⁽⁶⁾
A 2" x 4" wooden board @300 mph	3.50	10.50
A Cross Tie 6" x 9" x 8.5' @ 300 mph	3.13	9.39
An Automobile 2000 lbs at speed of 100 mph	0.109	0.327
A steel pipe 2" diameter, 7' long @ 100 mph	2.03	6.09

	Penetration Depth "t" Minimum Barrier Thi	
Missile	Inches	Required, D=3t Inches

Notes:

- Barriers for internal missiles include reinforced concrete walls, slabs and other components of the interior structure subjected to the paths of these missiles. Whenever a steel barrier is encountered by the missile, the required thickness of this barrier becomes 1/12 of the thickness required for a reinforced concrete barrier (see Reference <u>2</u>).
- 2. Barriers are 1) Reactor Building dome and 2) Auxiliary Building roof.
- 3. Barriers are reinforced concrete slabs and walls, e.g.,: a) Reactor Building dome, b) Reactor Building shell, and c) Auxiliary Building roof and appropriate side walls.
- 4. The penetration depths of the reinforced concrete missile barriers are based on a concrete strength of 5000 psi.
- 5. Barrier is the reinforced block wall separating Diesel Generator Rooms A from B.
- 6. Design basis tornado generated missile direction is horizontal only (i.e. with no vertical velocity component).

Structure	Minimum Reinforced Concrete Missile Barriers Thickness Inches			
Reactor Building Cylindrical Shell	36			
Reactor Building Dome	27			
Reactor Building Interior Structure				
1. Walls	24			
2. Slabs	24			
Auxiliary Building				
1. Main Building				
Roof	28(1)			
Walls	12			
2. Diesel Generator Building				
Roof	28			
Walls	36			
Dividing Wall	12 ⁽²⁾			
3. Spent Fuel Storage Area				
Roof	28			
Walls	24			
4. New Fuel Storage Vault				
Roof	30			
Walls	24			
5. RN Manway Missile Barrier	12			

Table 3-17. Minimum Barrier Thicknesses for all Category 1 Structures For Which MissileProtection Is Provided

Notes:

1. The thickness provided is considered as one independent thickness or the accumulation of several successive slabs.

2. Thickness is for grout filled, reinforced concrete masonry wall.

Table 3-18. High Energy Mechanical Piping Systems Analyzed for Consequences of Postulated	
Piping Breaks	

System or Portion Thereof Operating During	System	Pipe Break
Normal Reactor Operation	Identification	Protection Method
High Energy Safety Related Systems		
Steam Generator Blowdown Recycle System	BB	(a) (b)
Auxiliary Feedwater System (Motor Driven Pump Portion)	СА	(a) (b)
Nitrogen System	GN	(a)(b)
Reactor Coolant System	NC	(a) (b)
Residual Heat Removal System	ND	(a) (b)
Safety Injection System	NI	(a) (b)
Nuclear Sampling System	NM	(a) (b)
Boron Thermal Regeneration System	NR	(a)
Chemical and Volume Control System (Letdown Portion and Sealwater Injection)	NV	(a) (b)
Other High Energy Systems		
Feedwater System	CF	(a) (b) (c)
Main Steam Supply to Auxiliary Equipment	SA	(a)
Main Steam System	SM	(a) (b) (c)
Main Steam Vent to Atmosphere System	SV	(a)

Pipe Whip Protection Methods Legend:				
(a)	Physical Separation			
(b)	Piping Restraints			
(c)	Enclosures, structural, guard pipes, etc., (designed specifically for pipe break).			
Note:				

1. High Energy Systems may contain moderate energy portions; however, for brevity, high energy systems are only listed in this table.

Table 3-19. Moderate Energy Mechanical Piping Systems Analyzed for Consequences of
Postulated Piping Breaks

System or Portion Thereof Operating During Normal Reactor Operation	System Identificatio n	Pipe Break Protection Method
Moderate Energy Safety Related Systems		
Auxiliary Feedwater System (Turbine Driven Portion)	CA	(a)
Diesel Fuel Oil System	FD	(a)
Refueling Water system	FW	(a)
Component Cooling System	KC	(a)
Diesel Generator Cooling Water System	KD	(a)
Spent Fuel Cooling System	KF	(a)
Diesel Generator Lube Oil System	LD	(a)
Boron Recycle System	NB	(a)
Residual Heat Removal System	ND	(a)
Containment Spray System	NS	(a)
Nuclear Service Water System	RN	(a)
Containment Ventilation Cooling Water System	RV	(a)
Main Steam Supply to Aux. Equipment	SA	(a)
FWP Turbine Exhaust	TE	(a)
Diesel Generator Starting Air System	VG	(a)
Gaseous Waste Recycle System	WG	(a)
Liquid Waste Recycle System	WL	(a)
Solid Waste Disposal System	WS	(a)
Deleted Per 2015 Update		
Other Moderate Energy Systems		
Auxiliary Steam System	AS	(a)
Recirculated Cooling Water System	KR	(a)
Ice Condenser Refrigeration System	NF	(a)
Fire Protection System	RF	(a)
Equipment Decontamination System	WE	(a)
Liquid Waste Monitor & Disposal System	WM	(a)
Chemical Addition System	YA	(a)

System or Portion Thereof Operating During Normal Reactor Operation	System Identificatio n	Pipe Break Protection Method	
Control Area Chilled Water System	YC	(a)	
Plant Heating System	YH	(a)	
Make-up Demineralizer System	YM	(a)	
Pipe Whip Protection Methods Legends:			
(a) Physical Separation			
(b) Piping Restraints			

(c)	Enclosures.	structural.	quard pipes.	etc., (Designed	specifically	for pipe break)
(-)	,	,	J	, (

NRC Criteria	Duke Criteria		
APCSB 3-1, Section B.2.c	SAR Section 3.6.2.2		
Section B.2.c. requires that piping between containment isolation valves be provided with pipe whip restraints capable of resisting	Duke criteria is roughly equivalent to NRC criteria as clarified below:		
bending and torsional moments produced by a postulated failure either upstream or downstream of the valves. Also, the restraints should be designed to withstand the loadings from postulated failures so that neither isolation valve operability nor the leaktight integrity of the	The containment structural integrity is provided for all postulated pipe ruptures. In addition, for any postulated rupture classified as a loss of coolant accident, the design leaktightness of the containment fission product barrier will be maintained.		
containment will be impaired. Terminal ends should be considered to originate at a point adjacent to	Penetration design is discussed in SAR Section $3.9.2.8$. This section also discussed penetration guard pipe design criteria.		
the required pipe whip restraints.	Terminal ends are defined as piping originating at structure or component that act as rigid constraint to the piping thermal expansion		
APCSB 3-1, Section B.2.d	SAR Section 5.2.8		
1. The protective measures, structures, and guard pipes should not prevent the access required to conduct inservice inspection	Duke criteria is different than the NRC criteria due to the code effective date as described below:		
examination.	ASME Class 2 piping welds will be inspected in accordance with		
2. For portions of piping between containment isolation valves, the extent of inservice examinations completed during each inspection interval should provide 100 percent volumetric examination of circumferential and longitudinal pipe welds.	Tables ISC-251 of Section XI (1971), through Winter 1971 Adden of the ASME Code, as accessibility permits. Inservice inspection program requirements are given in SAR Section $5.2.8$.		
3. Inspection ports should be provided in guard pipes to permit the required examination of circumferential welds. Inspection ports should not be located in that portion of guard pipe passing through the annulus.			
4. The areas subject to examination should be defined in accordance with Examination Categories C-F and C-G for Class 2 piping welds in Tables IWC-2520.			

 Table 3-20. Comparison of Duke Pipe Rupture Criteria And NRC Requirements Of Branch Technical Positions APCSB 3-1 (November 1975), MEB 3-1 (July 1981), and NRC Regulatory Guide 1.46 (May 1973)

NRC Criteria	Duke Criteria		
APCSB 3-1, Appendix A	SAR Section 3.6.1.2		
High Energy fluid systems are defined as those systems that, during normal plant conditions, are either in operation or maintained	Duke criteria is the same as NRC criteria with expansion of definition as clarified below:		
 pressurized under conditions where either or both of the following are met: 1. maximum operating temperature exceeds 200°F, or 2. maximum operating pressure exceeds 275 psig. 	 Non-liquid systems with a maximum normal pressure less than 275 psig are not considered high energy regardless of the temperature. Such low pressure system (i.e., Auxiliary Steam, 50 psig, 340°F) do not contain sufficient sensible energy to develop sudden, catastrophic failures. Propagation of a crack to a full failure is extremely unlikely. 		
	2. Exception to the 200°F threshold for high energy systems is taken for non-water systems such as ethylene glycol. Such systems that operate at less than their boiling temperature are considered moderate energy.		
APCSB 3-1, Appendix A	SAR Section <u>3.6.2.2.1</u>		
In piping runs which are maintained pressurized during normal plant conditions for only a portion of the run (i.e., up to the first normally	Duke criteria is different from NRC criteria as described and justified below:		
shut valve) a terminal end of such runs is the piping connection to this closed valve.	Terminal ends are considered at piping originating at structure or components that act as rigid constraint to the piping thermal expansion. Typically, the anchors assumed for the code stress analysis would be terminal ends. Stresses in the system either side of the closed valve will be about the same; therefore, terminal end classification based on constraint and high stresses are not applicable.		

NI	RC Criteria	Duke Criteria
M	EB 3-1, Section B.1.b(6)	SAR Section 3.9.2.8
	ection B.1.b(6) requires that guard pipe assemblies between intainment isolation valves meet the following requirements:	Duke criteria is different from NRC criteria as described and justified below:
1.	The design pressure and temperature should not be less than the maximum operating temperature and pressure of the enclosed pipe under normal plant conditions.	Guard pipes provided between containment isolation valves is designed in accordance with SAR Section <u>3.9.2.8</u> . Guardpipe thicknesses were developed using the criteria of ASME Code Case
2.	The design stress limits of Paragraph NE-3131(c) should not be exceeded under the loading associated with design pressure and temperature in combination with the safe shutdown earthquakes.	1606 and the appropriate loading combination and stress limits of <u>Table 3-48</u> . Guard pipes are subjected to a pressure test as required by the material specification before welding to the penetration assembly.
3.	Guard pipe assemblies should be subjected to a single pressure test at a pressure equal to design pressure.	It is impractical to test guard pipes in the finished penetration assembly due to the configuration and potential damage to internal process pipe and associated insulation. Independent design analysis have been conducted to provide assurance that Duke penetration designs are acceptable. In addition, the extent of NDT conducted on guard pipes to flued head butt weld is such to assure integrity of design.

NRC Criteria	Duke Criteria		
<u>MEB 3-1, Sections B.1.c(3)</u>	SAR Section 3.6.2.2.1		
Breaks in non-nuclear piping should be postulated at the following location:	Duke criteria is roughly equivalent to NRC criteria as described and justified below:		
1. Terminal ends,	Breaks in Duke Class F piping (non-nuclear, seismic) are postulated at terminal ends and at intermediate locations based on the use of ASME		
2. At each intermediate pipe fitting, welded attachment, and valve.	Section III analysis techniques, the same as Duke Class B and C		
Note: PER GENERIC LETTER 87-11, ARBITRARY INTERMEDIATE BREAKS ARE <u>NOT</u> REQUIRED TO BE POSTULATED.	piping. Duke Class F piping is constructed in accordance with ANSI B31.1 and is dynamically analyzed and restrained for seismic loadings similar to ASME Section III piping. Materials are specified, procured, received, stored, and issued under Duke's QA program similar to ASME Section III materials except that certificate of compliance in lieu of mill test reports are acceptable on minor components, and construction documentation for erected materials is not uniquely maintained. Construction documentation for erected materials is generically maintained. MTR are required for the bulk of piping materials.		
MEB 3-1, Section B.2.e	SAR Section 3.6.1.2		
Thru-wall cracks may be postulated instead of breaks in those fluid	Duke criteria is roughly equivalent to NRC criteria as clarified below:		
systems that qualify as high energy fluid systems for short operational periods. This operational period is defined as about 2 percent of the time that the system operates as a moderate energy fluid system.	The operational period that classifies such systems as moderate energy in either:		
the that the system operates as a moderate energy fund system.	1. One percent of the normal operating lifespan of the plant, or		
	2. Two percent of the time period required to accomplish its system design function.		

NRC Criteria	Duke Criteria		
Regulatory Guide 1.46	SAR Section <u>3.6.2.2.1</u>		
Longitudinal breaks are postulated in piping runs 4 inches nominal pipe size and larger. Circumferential breaks are postulated in piping runs exceeding 1 inch nominal pipe size.	Duke criteria is the same as NRC Branch Technical Position APCSB 3-1 and roughly equivalent to Regulatory Guide 1.46 with expansion of definition as described below:		
	Longitudinal breaks are postulated in piping runs 4 inches nominal pipe size and larger except that longitudinal breaks are not postulated at terminal ends where the piping has no longitudinal welds.		
Regulatory Guide 1.46	SAR Section <u>3.6.2.2</u> Item 10		
A whipping pipe should be considered capable of rupturing an impacted pipe of smaller nominal pipe size and lighter wall thickness.	Duke criteria is the same as NRC Branch Technical Position APCSB 3-1 and roughly equivalent to Regulatory Guide 1.46 with expansion of definition as described below:		
	The energy associated with a whipping pipe is considered capable of (a) rupturing impacted pipes of smaller nominal pipe sizes, and (b) developing thru-wall cracks in larger nominal pipe sizes with thinner wall thicknesses.		
Regulatory Guide 1.46	SAR Section 3.6.1.2		
Measures for restraint against pipe whipping need not be provided for piping where:	Duke criteria is roughly equivalent to NRC Branch Technical Position APCSB 3-1 and differs from Regulatory Guide 1.46 with expansion of		
1. the design temperature is 200°F or less, and	definition as described below:		
2. the design pressure is 275 psig or less.	High energy piping is reviewed for pipe whipping and is defined as those systems that during normal plant conditions are either in operation or maintained pressurized under conditions where either or both of the following are met:		
	1. maximum temperature exceeds 200°F, or		
	2. maximum pressure exceeds 275 psig, except that (1) non-liquid piping system with a maximum pressure less than or equal to 275 psig are not considered high energy regardless of the temperature, and (2) for liquid systems other than water, the atmospheric boiling temperature can be applied.		

NRC Criteria	Duke Criteria		
	Systems are classified as moderate energy if the total time that either of the above conditions are met is less than either:		
	1. one (1) percent of the operating lifespan of the plant, or		
	2. two (2) percent of the time period required to accomplish its system design function.		
Note:	system design function.		

1. Pipe breaks in the RCS primary loop are not considered in certain aspects of plant design, as defined in <u>Reference 3</u> of Section <u>3.6.6</u>.

Lo	cation of Postulated Rupture	Туре
1.	Reactor Vessel Inlet Nozzle ¹	Circumferential
2.	Reactor Vessel Outlet Nozzle ¹	Circumferential
3.	Steam Generator Inlet Nozzle ¹	Circumferential
4.	Steam Generator Outlet Nozzle ¹	Circumferential
5.	Reactor Coolant Pump Inlet Nozzle ¹	Circumferential
6.	Reactor Coolant Pump Outlet Nozzle ¹	Circumferential
7.	50° Elbow on the Intrados ¹	Longitudinal
8.	Loop Closure Weld in Crossover Leg ¹	Circumferential
9.	Residual Heat Removal (RHR) Line/Primary Coolant Loop Connection	Circumferential (Viewed from the RHR line)
10.	Accumulator (ACC) Line/Primary Coolant Loop Connection	Circumferential (Viewed from ACC line)
11.	Pressurizer Surge (PS) Line/Primary Coolant Loop Connection	Circumferential (Viewed from the PS line)

Table 3-21. Postulated Break Locations in Reactor Coolant Loops

1. Reference <u>1</u> of Section <u>3.6.6</u> defines the original basis for postulating pipe breaks in the Reactor Coolant System Primary Loop. References <u>3</u> and <u>4</u> of Section <u>3.6.6</u> provide the basis for eliminating the previously postulated reactor coolant system pipe breaks with the exception of those breaks at branch connections from certain aspects of design considerations.

	Fatigue Analysis		Loadings Used In Fatigue Analysis		McGuire Loadings		
Node No. ¹	Cumula Usag Facto	e	SI/S _m ¹	M _i (in-lbs) (OBE Moments)	M _i (in-lbs) (Thermal Expansion Moments)	M _i (in-lbs) (OBE Moments)	M _i (in-lbs) (Thermal Expansion Moments)
404	.632	94,772	5.26	.341 x 10 ⁸	.243 x 10 ⁸	.0164 x 10 ⁸	.199 x 10 ⁸
413	.0093	65,509	3.64	.243 x 10 ⁸	.163 x 10 ⁸	.0113 x 10 ⁸	.122 x 10 ⁸
415	.2656	75,528	4.19	.243 x 10 ⁸	.203 x 10 ⁸	.0200 x 10 ⁸	.153 x 10 ⁸
438	.0382	70,744	3.94	.266 x 10 ⁸	.536 x 10 ⁷	.0538 x 10 ⁸	.047 x 10 ⁸
459	.000	33,406	1.85	.211 x 10 ⁸	.837 x 10 ⁸	.1363 x 10 ⁷	.073 x 10 ⁸
468	.0060	61,100	3.39	.29 x 10 ⁸	.729 x 10 ⁷	.0849 x 10 ⁸	.050 x 10 ⁸
484	.0959	81,820	4.54	.29 x 10 ⁸	.811 x 10 ⁷	.1150 x 10 ⁸	.057 x 10 ⁸

Table 3-22. Comparison of Actual Moments To Reference Fatigue Analysis Moments

Notes:

1. The loop closure weld, RHR line connection, accumulator line connection and surge line connection locations have not been included in this table since selection of these locations for postulated breaks is independent of detailed stress and fatigue analyses. Also, node numbers are defined in WCAP-8172.

SI = maximum primary plus secondary stress intensity range computed using Equation 10 of paragraph NB3653 of ASME, Section III. When 3S_m, the limit of Equation 10, is exceeded, the requirements is NB3653.6 are used. Specifically, Equations 12 and 13 are satisfied and a factor K_e is used in the fatigue analysis (Equation 14).

Table 3-23. Deleted Per 2002 Update

System	Exception	Reason for Exception	Alternative to Criteria
Safety Injection (10" accumulator lines)	Pipe break restraints are not provided for postulated breaks at eight locations in the 10" accumulator lines inside containment.	Construction of restraints would transfer large loads to the shield wall requiring a number of large anchor bolts. Since the shield wall is heavily reinforced, installation of high tension anchor bolts is impossible. Extreme congestion in the area further prohibits an adequate restraint design.	Inservice inspection with the addition of monitoring unidentified RCS Leakage utilizing the RCS Leakage Detection System is provided for the postulated break locations. These measures are considered equivalent to a rupture restraint, and therefore, adequate protection is provided for the postulated

	Damping (Percent of Critical)			
	Normal / Upset Conditions	Faulted Condition		
Item	OBE	SSE/DBA		
Primary Coolant Loop System - Components	2	4 ⁽³⁾		
Primary Coolant Loop System - Large Piping ¹	2 ⁽⁷⁾	4(7)		
Small Piping	1/2, 1 ⁽²⁾	2		
Welded Steel Structures	2	4 ⁽⁵⁾		
Bolted and/or Riveted Steel Structures	4	7(4)		
Control Rod Drive, Mechanisms & Support System	5(5)	5 ⁽³⁾		
Fuel Assemblies	7 ⁽⁵⁾	9 ⁽³⁾		

Table 3-25. Damping Values for Westinghouse Supplied Equipment⁽⁶⁾

Note:

- 1. Generally applicable to 12" or larger piping
- 2. For multiple hanger supported piping
- 3. Damping of 3% used for steam generator replacement analysis
- 4. Damping of 5% used for steam generator replacement analysis
- 5. Damping of 2% used for steam generator replacement analysis
- 6. Also includes the BWI supplied replacement steam generators
- 7. N-411 damping used for OBE & SSE steam generator replacement analyses

	Peak A		
Mass Location	Fixed Base	Combined Interaction	Percent Increase
Reactor Vessel Support	0.498	0.493	-0.1
Steam Generator Support	1.724	1.692	-1.85
Penetration Support	1.074	1.176	+9.5

Table 3-26. Reactor Building and Interior Structure Comparison of Peak Responses

	Accelerations (G's)		Moments (X10 ⁴ Ft-K)		Shears (X10 ³ Kips)	
Mass Point	Response Spectrum	Time- History	Response Spectrum	Time- History	Response Spectrum	Time- History
1	.0467	.1174	27.26	30.97	4.72	6.28
2	.0638	.1278	23.21	25.86	4.47	5.60
3	.0872	.1434	18.63	20.21	4.35	5.31
4	.1125	.1601	14.43	15.16	4.16	4.94
5	.1344	.1766	11.81	12.13	3.79	4.32
6	.1407	.1811	10.94	11.14	3.70	4.18
7	.1818	.2138	7.51	7.57	2.91	3.00
8	.2247	.2458	4.60	4.64	2.43	2.45
9	.2645	.2750	2.35	2.37	1.88	1.89
10	.2785	.2848	1.73	1.75	1.38	1.39
11	.3028	.3002	0.91	0.92	1.13	1.14
12	.3284	.3153	0.32	0.32	0.74	0.75
13	.3528	.3301	0.0	0.0	0.37	0.37

Table 3-27. Comparison of Response Spectrum And Time-History Responses⁽¹⁾⁽²⁾

Notes:

1. Refer to Figure 3-20 for mathematical model

2. Values for Response Spectrum Technique are based on the original analysis (MCC-1134.02-00-0003), before Steam Generator replacement and Ice Condenser mass adjustments.

Loading	Maximum Value	Break Location	Time
OVERTURNING MOMENT	280,950 FT-K	ELEMENT NO. 1 ⁽¹⁾	0.312 SEC.
HORIZONTAL SHEAR	3,977 KIPS	ELEMENT NO. 1 ⁽¹⁾	0.312 SEC.
UPLIFT	6,354 KIPS	ELEMENT NO. 2 ⁽¹⁾	0.222 SEC
Note			

Table 3-28. Maximum Blowdown LOCA Load Resultants for the Containment Interior Structure

Note:

1. The blowdown history and structural geometry for Elements No. 1 and No. 6, No. 2 and No. 5 are the same, therefore, the maximums for No. 1 apply to No. 6 and the maximums for No. 2 apply to No. 5.

Refer to Table 6-1 through Table 6-6 for Containment Interior Structure blowdown model

Design Diff Pressure

Table 3-29 McGuire Nuclear Station - Containment Subcompartment Pressures Calculated Values of differential Pressure (psi)-Across Compartments

	BETWEEN							·	
COMP	AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
1	2	0.7158E+01	0.0190	H.L. 1	-0.5517E+01	0.0190	H.L. 2	0.1002E+02	-0.7723E+01
1	6	0.1099E+02	0.0640	H.L. 1	-0.1086E+02	0.0550	H.L. 6	0.1539E+02	-0.1520E+02
1	7	0.1040E+02	0.2700	C.L. 1	-0.2167E+00	0.0370	C.L. 6	0.1456E+02	-0.3033E+00
1	8	0.1168E+02	0.2340	C.L. 1	-0.2000E+00	0.0280	H.L. 6	0.1634E+02	-0.2800E+00
1	9	0.1064E+02	0.2340	C.L. 1	-0.1917E+00	0.0280	H.L. 6	0.1490E+02	-0.2683E+00
1	25	0.1245E+02	0.0730	H.L. 1	-0.1917E+00	0.0280	H.L. 6	0.1743E+02	-0.2683E+00
1	26	0.1237E+02	0.0730	H.L. 1	-0.4250E+00	2.5020	C.L. 6	0.1731E+02	-0.5950E+00
1	27	0.1113E+02	0.0640	H.L. 1	-01917E+00	0.0280	H.L. 6	0.1557E+02	-0.2683E+00
1	28	0.1236E+02	0.0730	H.L. 1	-0.4250E+00	2.5020	C.L. 6	0.1730E+02	-0.5950E+00
1	33	0.1119E+02	0.0550	H.L. 1	-0.2458E+01	0.1450	H.L. 6	0.1567E+02	-0.3442E+01
1	34	0.1238E+02	0.0730	H.L. 1	-0.4167E+00	2.6280	C.L. 6	0.1732E+02	-0.5833E+00
*******	*****	II			II				
2	1	0.5517E+01	0.0190	H.L. 2	-0.7158E+01	0.0190	H.L. 1	0.7723E+01	-0.1002E+02
2	3	0.6350E+01	0.0640	H.L. 1	-0.4767E+01	0.0280	H.L. 3	0.8890E+01	-0.6673E+01
2	10	0.7783E+01	0.2880	C.L. 2	0.0	0.0100	C.L. 6	0.1090E+02	0.0
2	11	0.8867E+01	0.2340	C.L. 2	0.0	0.0100	C.L. 6	0.1241E+02	0.0
2	12	0.8117E+01	0.2340	C.L. 2	0.0	0.0100	C.L. 6	0.1136E+02	0.0
2	25	0.8775E+01	0.1270	C.L. 2	0.0	0.0100	C.L. 6	0.1228E+02	0.0
2	26	0.8583E+01	0.0910	H.L. 1	-0.4333E+00	2.4840	C.L. 6	0.1202E+02	-0.6067E+00
2	27	0.7192E+01	0.0460	H.L. 2	-0.1500E+00	2.4840	C.L. 6	0.1007E+02	-0.2100E+00
2	28	0.8567E+02	0.0910	H.L. 1	-0.4333E+00	2.4840	C.L. 6	0.1199E+02	-0.6067E+00
2	33	0.6975E+01	0.0370	H.L. 2	-0.1992E+01	0.0910	H.L. 5	0.9765E+02	-0.2788E+01

Design Diff Press (= 1.4 x Diff Press										
СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM	
******	****				11		I			
3	2	0.4767E+01	0.0280	H.L. 3	-0.6350E+01	0.0640	H.L. 1	0.6673E+01	-0.8890E+01	
3	4	0.4675E+01	0.0280	H.L. 3	-0.5725E+01	0.0190	H.L. 4	0.6545E+01	-0.8015E+01	
3	13	0.5850E+01	0.2880	C.L. 3	-0.3333E-01	0.0010	C.L. 3	0.8190E+01	-0.4667E-01	
3	14	0.7083E+01	0.2520	C.L. 3	-0.3333E-01	0.0010	C.L. 3	0.9917E+01	-0.4667E-01	
3	15	0.6583E+01	0.2520	C.L. 3	-0.3333E-01	0.0010	C.L. 3	0.9217E+01	-0.4667E-01	
3	25	0.6700E+01	0.0640	H.L. 3	-0.3333E-01	0.0010	C.L. 3	0.9380E+01	-0.4667E-01	
3	27	0.6550E+01	0.0550	H.L. 3	-0.5583E+00	2.2140	C.L. 1	0.9170E+01	-0.7817E+00	
3	28	0.6717E+01	0.2700	C.L. 3	-0.4083E+00	2.5380	C.L. 6	0.9403E+01	-0.5717E+00	
3	29	0.7317E+01	0.2880	C.L. 3	-0.4333E+00	2.5380	C.L. 6	0.1024E+02	-0.6067E+00	
3	30	0.6667E+01	0.0640	H.L. 3	-0.4167E+00	2.5560	C.L. 6	0.9333E+01	-0.5833E+00	
3	33	0.5683E+01	0.0370	H.L. 3	-0.1183E+01	0.0820	H.L. 6	0.7957E+01	-0.1657E+01	
3	35	0.6858E+01	0.2700	C.L. 3	-0.4000E+00	2.5380	C.L. 6	0.9602E+01	-0.5600E+00	
******	****				11		11			
4	3	0.5725E+01	0.0190	H.L. 4	-0.4675E+01	0.0280	H.L. 3	0.8015E+01	-0.6545E+01	
4	5	0.5717E+01	0.0190	H.L. 4	-0.5558E+01	0.0190	H.L. 5	0.8003E+01	-0.7782E+01	
4	16	0.6217E+01	0.2880	C.L. 4	-0.3917E+00	0.0550	C.L. 4	0.8703E+01	-0.5483E+00	
4	17	0.7500E+01	0.2340	C.L. 4	0.0	0.0010	C.L. 6	0.1050E+02	0.0	
4	18	0.6900E+01	0.2340	C.L. 4	0.0	0.0010	C.L. 6	0.9660E+01	0.0	
4	25	0.6783E+01	0.0460	H.L. 4	0.0	0.0010	C.L. 6	0.9497E+01	0.0	
4	29	0.7383E+01	0.3060	C.L. 4	-0.5083E+00	2.5200	C.L. 1	0.1034E+02	-0.7117E+00	
4	30	0.6908E+01	0.2880	C.L. 4	-0.4917E+00	2.5200	C.L. 1	0.9672E+01	-0.6883E+00	
4	31	0.6758E+01	0.0370	H.L. 4	-0.4417E+00	2.4120	C.L. 6	0.9462E+01	-0.6183E+00	
4	33	0.6475E+01	0.0370	H.L. 4	-0.1317E+01	0.0730	H.L. 2	0.9065E+01	-0.1843E+01	

Design Diff Pressure

	BETWEEN							, , , , , , , , , , , , , , , , , , ,	iff Pressure)
СОМР	AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
4	36	0.6950E+01	0.2520	C.L. 4	-0.4750E+00	2.5200	C.L. 1	0.9730E+01	-0.6650E+00
******	*****	11			11				
5	4	0.5558E+01	0.0190	H.L. 5	-0.5717E+01	0.0190	H.L. 4	0.7782E+01	-0.8003E+01
5	6	0.5367E+01	0.0190	H.L. 5	-0.7433E+01	0.0190	H.L. 6	0.7513E+01	-0.1041E+02
5	19	0.7458E+01	0.2880	C.L. 5	0.0	0.0010	C.L. 6	0.1044E+02	0.0
5	20	0.8567E+01	0.2340	C.L. 5	0.0	0.0010	C.L. 6	0.1199E+02	0.0
5	21	0.7817E+01	0.2160	C.L. 5	0.0	0.0010	C.L. 6	0.1094E+02	0.0
5	25	0.8617E+01	0.1180	C.L. 5	0.0	0.0010	C.L. 6	0.1206E+02	0.0
5	30	0.8417E+01	0.1000	H.L. 6	-0.5333E+00	2.3940	C.L. 1	0.1178E+02	-0.7467E+00
5	31	0.7025E+01	0.0460	H.L. 5	-0.1667E+00	2.3760	C.L. 1	0.9835E+01	-0.2333E+00
5	32	0.8417E+01	0.1000	H.L. 6	-0.5250E+00	2.4300	C.L. 1	0.1178E+02	-0.7350E+00
5	33	0.6758E+01	0.0370	H.L. 5	-0.2125E+01	0.0910	H.L. 2	0.9462E+01	-0.2975E+01
******	*****	II			II				
6	5	0.7433E+01	0.0190	H.L. 6	-0.5367E+01	0.0190	H.L. 5	0.1041E+02	-0.7513E+01
6	22	0.9958E+01	0.2700	C.L. 6	-0.2250E+00	0.0370	C.L. 1	0.1394E+02	-0.3150E+00
6	23	0.1521E+02	0.3040	C.L. 6	-0.2100E+00	0.0360	C.L. 1	0.2129E+02	-0.2940E+00
6	24	0.1023E+02	0.0460	C.L. 6	-0.1833E+00	0.0370	C.L. 1	0.1431E+02	-0.2567E+00
6	25	0.1210E+02	0.0730	H.L. 6	-0.1833E+00	0.0370	C.L. 1	0.1694E+02	-0.2567E+00
6	30	0.1201E+02	0.0730	H.L. 6	-0.5250E+00	2.5200	C.L. 1	0.1682E+02	-0.7350E+00
6	31	0.1091E+02	0.0550	H.L. 6	-0.1833E+00	0.0370	C.L. 1	0.1527E+02	-0.2567E+00
6	32	0.1201E+02	0.0730	H.L. 6	-0.5250E+00	2.4300	C.L. 1	0.1681E+02	-0.7350E+00
6	33	0.1090E+02	0.0550	H.L. 6	-0.2842E+01	0.1450	H.L. 1	0.1526+02	-0.3978E+0
6	37	0.1199E+02	0.0730	H.L. 6	-0.3833E+00	2.4660	C.L. 1	0.1679E+02	-0.5367E+00

(= 1.4 x Diff Prese										
СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM	
******	****				I I		<u> </u>			
7	1	0.2167E+00	0.0370	C.L. 6	-0.1040E+02	0.2700	C.L. 1	0.3033E+00	-0.1456E+0	
7	2	0.1550E+01	0.0280	H.L. 1	-0.7950E+01	0.2700	C.L. 1	0.2170E+01	-0.1113E+0	
7	8	0.3275E+01	0.0460	H.L. 1	-0.9333E+00	0.4860	H.L. 1	0.4585E+01	-0.1307E+0	
7	10	0.4592E+01	0.0460	H.L. 1	-0.3425E+01	0.0460	H.L. 2	0.6428E+01	-0.4795E+0	
7	25	0.8242E+01	0.0820	H.L. 1	-0.2417E+01	0.2520	H.L. 1	0.1154E+02	-0.3383E+0	
7	27	0.6550E+01	0.0730	H.L. 1	-0.5875E+01	0.2340	H.L. 1	0.9170E+01	-0.8225E+0	
7	34	0.8125E+01	0.0820	H.L. 1	-0.3025E+01	2.1600	C.L. 2	0.1137E+02	-0.4235E+0	
******	*****									
8	1	0.2000E+00	0.0280	H.L. 6	-0.1168E+02	0.2340	C.L. 1	0.2800E+00	-0.1634E+0	
8	7	0.9333E+01	0.4860	H.L. 1	-0.3275E+01	0.0460	H.L. 1	0.1307E+01	-0.4585E+0	
8	9	0.2408E+01	0.0640	H.L. 1	-0.1558E+01	0.6300	C.L. 1	0.3372E+01	-0.2182E+0	
8	11	0.3500E+01	0.0640	H.L. 1	-0.2892E+01	0.1990	H.L. 1	0.4900E+01	-0.4048E+0	
8	25	0.5850E+01	0.0820	H.L. 1	-0.2592E+01	0.2340	H.L. 1	0.8190E+01	-0.3628E+0	
******	****									
9	1	0.1917E+00	0.0280	H.L. 6	-0.1064E+02	0.2340	C.L. 1	0.2683E+00	-0.1490E+0	
9	8	0.1558E+01	0.6300	C.L. 1	-0.2408E+01	0.0640	H.L. 1	0.2182E+01	-0.3372E+0	
9	12	0.2450E+01	0.0730	H.L. 1	-0.1975E+01	0.1990	H.L. 1	0.3430E+01	-0.2765E+0	
9	25	0.3608E+01	0.1270	H.L. 2	-0.1442E+01	0.2340	H.L. 1	0.5052E+01	-0.2018E+0	
******	****			I			11		I	
10	2	0.0	0.0100	C.L. 6	-0.7783E+01	0.2880	C.L. 2	0.0	-0.1090E+0	
10	7	0.3425E+01	0.0460	H.L. 2	-0.4592E+01	0.0460	H.L. 1	0.4795E+01	-0.6428E+0	
10	11	0.2567E+01	0.0460	H.L. 2	-0.6583E+00	0.4860	H.L. 2	0.3593E+01	-0.9217E+0	
10	13	0.4583E+01	0.0910	H.L. 1	-0.3658E+01	0.0550	H.L. 3	0.6417E+01	-0.5122E+0	

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES CALCULATED VALUES OF DIFFERENTIAL PRESSURE (PSI) – ACROSS COMPARTMENTS

								Design Dif (= 1.4 x Dif	ff Pressure ff Pressure)
СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
10	25	0.6825E+01	0.1090	H.L. 1	-0.1525E+01	0.2520	H.L. 2	0.9555E+01	-0.2135E+01
10	27	0.4858E+01	0.0550	H.L. 2	-0.4492E+01	0.2880	C.L. 2	0.6802E+01	-0.6288E+01
*****	****	11			Ι		1		
11	2	0.0	0.0100	C.L. 6	-0.8867E+01	0.2340	C.L. 2	0.0	-0.1241E+02
11	8	0.2892E+01	0.1990	H.L. 1	-0.3500E+01	0.0640	H.L. 1	0.4048E+01	-0.4900E+01
11	10	0.6583E+00	0.4860	H.L. 2	-0.2567E+01	0.0460	H.L. 2	0.9217E+00	-0.3593E+01
11	12	0.2108E+01	0.1000	H.L. 1	-0.1383E+01	0.6840	C.L. 2	0.2952E+01	-0.1937E+01
11	14	0.3575E+01	0.1000	H.L. 1	-0.2900E+01	0.0730	H.L. 3	0.5005E+01	-0.4060E+01
11	25	0.5208E+01	0.1180	H.L. 1	-0.1783E+01	0.2340	H.L. 2	0.7292E+01	-0.2497E+0
******	****	II			II		1 1		
12	2	0.0	0.0100	C.L. 6	-0.8117E+01	0.2340	C.L. 2	0.0	-0.1136e+02
12	9	0.1975e+01	0.1990	H.L. 1	-0.2450E+01	0.0730	H.L. 1	0.2765E+01	-0.3430E+01
12	11	0.1383E+01	0.6840	C.L. 2	-0.2108E+01	0.1000	H.L. 1	0.1937E+01	-0.2952E+01
12	15	0.2408E+01	0.1180	H.L. 1	-0.2017E+01	0.0820	H.L. 3	0.3372E+01	-0.2823E+01
12	25	0.3392E+01	0.1270	H.L. 1	-0.9667E+00	0.2520	H.L. 2	0.4748E+01	-0.1353E+01
******	****								
13	3	0.3333E-01	0.0010	C.L. 3	-0.5850E+01	0.2880	C.L. 3	0.4667E-01	-0.8190E+01
13	10	0.3658E+01	0.0550	H.L. 3	-0.4583E+01	0.0910	H.L. 1	0.5122E+01	-0.6417E+01
13	14	0.2308E+01	0.0460	H.L. 3	-0.2417E+00	0.4500	H.L. 3	0.3232E+01	-0.3383E+00
13	16	0.3575E+01	0.0550	H.L. 3	-0.4200E+01	0.0550	H.L. 4	0.5005E+01	-0.5880E+0
13	25	0.5592E+01	0.0820	H.L. 3	-0.6417E+00	0.9720	H.L. 3	0.7828E+01	-0.8983E+00
13	27	0.4817E+01	0.0640	H.L. 3	-0.3725E+01	1.2600	C.L. 2	0.6743E+01	-0.5215E+0
13	29	0.5625E+01	0.0820	H.L. 3	-0.2508E+01	1.7460	C.L. 4	0.7875E+01	-0.3512E+0
13	35	0.5525E+01	0.0820	H.L. 3	-0.2583E+01	1.2780	C.L. 2	0.7735E+01	-0.3617E+0

(13 APR 2008)

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES CALCULATED VALUES OF DIFFERENTIAL PRESSURE (PSI) – ACROSS COMPARTMENTS

СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
******	****								
14	3	0.3333E-01	0.0010	C.L. 3	-0.7083E+01	0.2520	C.L. 3	0.4667E-01	-0.9917E+01
14	11	0.2900E+01	0.0730	H.L. 3	-0.3575E+01	0.1000	H.L. 1	0.4060E+01	-0.5005E+0
14	13	0.2417E+00	0.4500	H.L. 3	-0.2308E+01	0.0460	H.L. 3	0.3383E+00	-0.3232E+01
14	15	0.1783E+01	0.0730	H.L. 3	-0.1267E+01	0.7920	C.L. 3	0.2497E+01	-0.1773E+01
14	17	0.2833E+01	0.0730	H.L. 3	-0.3275E+01	0.0730	H.L. 4	0.3967E+01	-0.4585E+01
14	25	0.4333E+01	0.0910	H.L. 3	-0.1392E+01	0.7920	C.L. 3	0.6067E+01	-0.1948E+01
******	****	I			ΙΙ				
15	3	0.3333E-01	0.0010	C.L. 3	-0.6583E+01	0.2520	C.L. 3	0.4667E-01	-0.9217E+0
15	12	0.2017E+01	0.0820	H.L. 3	-0.2408E+01	0.1180	H.L. 1	0.2823E+01	-0.3372E+0
15	14	0.1267E+01	0.7920	C.L. 3	-0.1783E+01	0.0730	H.L. 3	0.1773E+01	-0.2497E+0
15	18	0.1975E+01	0.0820	H.L. 3	-0.2317E+01	0.0820	H.L. 4	0.2765E+01	-0.3243E+0
15	25	0.2817E+01	0.0910	H.L. 3	-0.6417E+00	0.2340	H.L. 3	0.3943E+01	-0.8983E+00
******	****	I			ΙΙ				
16	4	0.3917E+00	0.0550	C.L. 4	-0.6217E+01	0.2880	C.L. 4	0.5483E+00	-0.8703E+0
16	13	0.4200E+01	0.0550	H.L. 4	-0.3575E+01	0.0550	H.L. 3	0.5880E+01	-0.5005E+0
16	17	0.2558E+01	0.0370	H.L. 4	-0.3583E+00	0.4680	H.L. 4	0.3582E+01	-0.5017E+00
16	19	0.3800E+01	0.0460	H.L. 4	-0.3883E+01	0.0820	H.L. 6	0.5320E+01	-0.5437E+0
16	25	0.5733E+01	0.0730	H.L. 4	-0.7417E+00	0.8280	H.L. 4	0.8027E+01	-0.1038E+0
16	29	0.5750E+01	0.0730	H.L. 4	-0.2508E+01	1.7820	C.L. 3	0.8050E+01	-0.3512E+0
16	31	0.4900E+01	0.0550	H.L. 4	-0.3767E+01	1.0440	C.L. 5	0.6860E+01	-0.5273E+0
16	36	0.5667E+01	0.0730	H.L. 4	-0.2558E+01	1,2600	C.L. 6	0.7933E+01	-0.3582E+0
******	****			I			11		l
17	4	0.0	0.0010	C.L. 6	-0.7500E+01	0.2340	C.L. 4	0.0	-0.1050E+02

									ff Pressure ff Pressure)
СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
17	14	0.3275E+01	0.0730	H.L. 4	-0.2833E+01	0.0730	H.L. 3	0.4585E+01	-0.3967E+0
17	16	0.3583E+00	0.4680	H.L. 4	-0.2558E+01	0.0370	H.L. 4	0.5017E+00	-0.3582E+0
17	18	0.1925E+01	0.0640	H.L. 4	-0.1342E+01	0.7020	C.L. 4	0.2695E+01	-0.1878E+0
17	20	0.2942E+01	0.0640	H.L. 4	-0.3042E+01	0.1000	H.L. 6	0.4118E+01	-0.4258E+0
17	25	0.4500E+01	0.0820	H.L. 4	-0.1458E+01	0.2160	H.L. 4	0.6300E+01	-0.2042E+0
******	*****								
18	4	0.0	0.0010	C.L. 6	-0.6900E+01	0.2340	C.L. 4	0.0	-0.9660E+0
18	15	0.2317E+01	0.0820	H.L. 4	-0.1975E+01	0.0820	H.L. 3	0.3243E+01	-0.2765E+0
18	17	0.1342E+01	0.7020	C.L. 4	-0.1925E+01	0.0640	H.L. 4	0.1878E+01	-0.2695E+0
18	21	0.2033E+01	0.3040	H.L. 6	-0.2240E+01	0.3760	C.L. 3	0.2814E+01	-0.3136E+0
18	25	0.2992E+01	0.0910	H.L 4	-0.7583E+00	0.2340	H.L. 4	0.4188E+01	-0.1062E+0
******	*****								
19	5	0.0	0.0010	C.L. 6	-0.7458E+01	0.2880	C.L. 5	0.0	-0.1044E+0
19	16	0.3883E+01	0.0820	H.L. 6	-0.3800E+01	0.0460	H.L. 4	0.5437E+01	-0.5320E+0
19	20	0.2533E+01	0.0460	H.L. 5	-0.6750E+00	0.3060	H.L. 5	0.3547E+01	-0.9450E+0
19	22	0.3300E+01	0.0460	H.L. 5	-0.4683E+01	0.0460	H.L. 6	0.4620E+01	-0.6557E+0
19	25	0.6708E+01	0.1090	H.L. 6	-0.1558E+01	0.2520	H.L. 5	0.9392E+01	-0.2182E+0
19	31	0.4733E+01	0.0550	H.L. 5	-0.4442E+01	0.2880	C.L. 5	0.6627E+01	-0.6218E+0
******	*****								
20	5	0.0	0.0010	C.L. 6	-0.8567E+01	0.2340	C.L. 5	0.0	-0.1199E+0
20	17	0.3042E+01	0.1000	H.L. 6	-0.2942E+01	0.0640	H.L. 4	0.4258E+01	-0.4118E+0
20	19	0.6750E+00	0.3060	H.L. 5	-0.2533E+01	0.0460	H.L. 5	0.9450E+00	-0.3547E+0
20	21	0.2050E+01	0.1000	H.L. 6	-0.1400E+01	0.6840	C.L. 5	0.2870E+01	-0.1960E+0
20	23	0.2983E+01	0.1900	H.L. 6	-0.3542E+01	0.0640	H.L. 6	0.4177E+01	-0.4958E+0

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES

Design Diff Pressure

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES CALCULATED VALUES OF DIFFERENTIAL PRESSURE (PSI) – ACROSS COMPARTMENTS

СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
20	25	0.5100E+01	0.1180	H.L. 6	-0.1850E+01	0.2340	H.L. 5	0.7140E+01	-0.2590E+01
*******	*****	*			1 1		-		
21	5	0.0	0.0010	C.L. 6	-0.7817E+01	0.2160	C.L. 5	0.0	-0.1094E+02
21	18	0.2083E+01	0.1090	H.L. 6	-0.2033E+01	0.0730	H.L. 4	0.2917E+01	-0.2847E+0
21	20	0.1400E+01	0.6840	C.L. 5	-0.2050E+01	0.1000	H.L. 6	0.1960E+01	-0.2870E+0
21	24	0.2042E+01	0.1999	H.L. 6	-0.2492E+01	0.0730	H.L. 6	0.2858E+01	-0.3488E+01
21	25	0.3300E+01	0.1270	H.L. 6	-0.9750E+00	0.2340	H.L. 5	0.4620E+01	-0.1365E+01
*******	*****	II			11		<u> </u>		
22	6	0.2250E+00	0.0370	C.L. 1	-0.9958E+01	0.2700	C.L. 6	0.3150E+00	-0.1394E+02
22	19	0.4683E+01	0.0460	H.L. 6	-0.3300E+01	0.0460	H.L. 5	0.6557E+01	-0.4620E+0
22	23	0.3317E+01	0.0460	H.L. 6	-0.1008E+01	0.4860	C.L. 6	0.4643E+01	-0.1412E+01
22	25	0.8183E+01	0.0820	H.L. 6	-0.2492E+01	0.2340	H.L. 6	0.1146E+02	-0.3488E+01
22	31	0.6508E+01	0.0640	H.L. 6	-0.5850E+01	0.2340	H.L. 6	0.9112E+01	-0.8190E+01
22	37	0.8033E+01	0.0820	H.L. 6	-0.3217E+01	1.7280	C.L. 5	0.1125E+02	-0.4503E+01
*******	*****	II			II				
23	6	0.2000E+00	0.0370	C.L. 1	-0.1095E+02	0.2160	C.L. 6	0.2800E+00	-0.1533E+02
23	20	0.3542E+01	0.0640	H.L. 6	-0.2983E+01	0.1900	H.L. 6	0.4958E+01	-0.4177E+01
23	22	0.1050E+01	0.2500	H.L. 6	-0.3450E+01	0.1080	H.L. 5	0.1470E+01	-0.4830E+01
23	24	0.2417E+01	0.0640	H.L. 6	-0.1533E+01	0.6120	C.L. 6	0.3383E+01	-0.2147E+0
23	25	0.5850E+01	0.0820	H.L. 6	-0.2567E+01	0.2340	H.L. 6	0.8190E+01	-0.3593E+0
*******	****	<u>I </u>		1	11		1		l
24	6	0.1833E+00	0.0370	C.L. 1	-0.1023E+02	0.0460	H.L. 6	0.2567E+00	-0.1431E+02
24	21	0.2492E+01	0.0730	H.L. 6	-0.2042E+01	0.1990	H.L. 6	0.3488E+01	-0.2868E+0
24	23	0.1533E+01	0.6120	C.L. 6	-0.2417E+01	0.0640	H.L. 6	0.2147E+01	-0.3383E+01

Design Diff Pressure

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES CALCULATED VALUES OF DIFFERENTIAL PRESSURE (PSI) – ACROSS COMPARTMENTS

									ff Pressure)
СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
24	25	0.3583E+01	0.0910	H.L. 6	-0.1433E+01	0.2340	H.L. 6	0.5017E+01	-0.2007E+01
******	****	II			11				I
25	25	0.0	2.9520	C.L. 6	0.0	2.9520	C.L. 6	0.0	0.0
******	****	II			11				I
26	1	0.4250E+00	2.5020	C.L. 6	-0.1237E+02	0.0730	H.L. 1	0.5950E+00	-0.1731E+02
26	27	0.2917E+00	2.5920	C.L. 6	-0.4700E+01	0.2520	C.L. 1	4083E+00	-0.6580E+01
26	28	0.2083E+00	0.5040	C.L. 3	-0.2417E+00	0.3240	C.L. 2	0.2917E+00	-0.3383E+00
26	32	0.6417E+00	0.4860	C.L. 3	-0.5583E+00	0.2700	H.L. 2	0.8983E+00	-0.7817E+00
26	34	0.2000E+00	0.3060	H.L. 2	-0.6667E-01	0.9180	C.L. 5	0.2800E+00	-0.9333E-01
******	****	II			11		1 1		I
27	1	0.1917E+00	0.0280	H.L. 6	-0.1113E+02	0.0640	H.L. 1	0.2683E+00	-0.1557E+02
27	2	0.1500E+00	2.4840	C.L. 6	-0.7192E+01	0.0460	H.L. 2	0.2100E+00	-0.1007E+02
27	3	0.5583E+00	2.2140	C.L. 1	-0.6550E+01	0.0550	H.L. 3	0.7817E+00	-0.9170E+01
27	10	0.4492E+01	0.2880	C.L. 2	-0.4858E+01	0.0550	H.L. 2	0.6288E+01	-0.6802E+01
27	26	0.4700E+01	0.2520	C.L. 1	-0.2917E+00	2.5920	C.L. 6	0.6580E+01	-0.4083E+00
27	28	0.4648E+01	0.2340	C.L. 1	-0.2917E+00	2.5920	C.L. 6	0.6522E+01	-0.4083E+00
27	34	0.4792E+01	0.2700	C.L. 1	-0.2750E+00	2.6460	C.L. 6	0.6708E+01	-0.3850E+00
27	35	0.4475E+01	0.2700	C.L. 1	-0.2750E+00	2.6460	C.L. 6	0.6256E+01	-0.3850E+00
******	****				<u> </u>				
28	2	0.4333E+00	2.4840	C.L. 6	-0.8567E+01	0.0910	H.L. 1	0.6067E+00	-0.1199E+02
28	3	0.4083E+00	2.5380	C.L. 6	-0.6717E+01	0.2700	C.L. 3	0.5717E+00	-0.9403E+01
28	26	0.2417E+00	0.3240	C.L. 2	-0.2083E+00	0.5040	C.L. 3	0.3383E+00	-0.2917E+00
28	27	0.2917E+00	2.5920	C.L. 6	-0.4658E+01	0.2340	C.L. 1	0.4083E+00	-0.6522E+01
28	29	0.1833E+01	1.0260	C.L. 1	-0.3333E-01	1.8180	C.L. 4	0.2567E+01	-0.4667E-01

(13 APR 2008)

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES CALCULATED VALUES OF DIFFERENTIAL PRESSURE (PSI) – ACROSS COMPARTMENTS

								(III x DI	ff Pressure)
COMP	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM
28	30	0.4417E+00	0.2520	H.L. 5	-0.4833E+00	0.2700	H.L. 2	0.6183E+00	-0.6767E+0
28	35	0.5500E+00	0.5940	C.L. 6	-0.2417E+00	0.2340	H.L. 1	0.7700E+00	-0.3383E+0
*******	****	I I			II		1		
29	3	0.4333E+00	2.5380	C.L. 6	-0.7317E+01	0.2880	C.L. 3	0.6067E+00	-0.1024E+0
29	4	0.5083E+00	2.5200	C.L. 1	-0.7383E+01	0.3060	C.L. 4	0.7117E+00	-0.1034E+0
29	13	0.2508E+01	1.7460	C.L. 4	-0.5625E+01	0.0820	H.L. 4	0.3512E+01	-0.8050E+0
29	16	0.2508E+01	1.7820	C.L. 3	-0.5750E+01	0.0730	H.L. 4	0.3512E+01	-0.8050E+0
29	28	0.3333E-01	1.8180	C.L. 4	-0.1833E+01	1.0260	C.L. 1	0.4667E-01	-0.2567E+0
29	30	0.3333E-01	2.0520	H.L. 4	-0.1850E+01	0.7560	C.L. 1	0.4667E-01	-0.2590E+0
29	35	0.3333E-01	2.5920	C.L. 6	-0.1542E+01	0.5940	C.L. 1	0.4667E-01	-0.2158E+0
29	36	0.4167E-01	2.9160	C.L. 1	-0.1483E+01	0.5580	C.L. 6	0.5833E-01	-0.2077E+0
******	****								
30	3	0.4167E+00	2.5560	C.L. 6	-0.6667E+01	0.0640	H.L. 3	0.5833E+00	-0.9333E+0
30	4	0.4917E+00	2.5200	C.L. 1	-0.6908E+01	0.2880	C.L. 4	0.6883E+00	-0.9672E+0
30	5	0.5333E+00	2.3940	C.L. 1	-0.8417E+01	0.1000	H.L. 6	0.7467E+00	-0.1178E+0
30	28	0.4833E+00	0.2700	H.L. 2	-0.4417E+00	0.2520	H.L. 5	0.6767E+00	-0.6183E+0
30	29	0.1850E+01	0.7560	C.L. 1	-0.3333E-01	2.0520	H.L. 4	0.2590E+01	-0.4667E-0
30	31	0.3667E+00	2.5560	C.L. 1	-0.4642E+01	0.2340	C.L. 6	0.5133E+00	-0.6498E+0
30	32	0.9167E-01	0.6840	C.L. 1	-0.1000E+00	0.4860	C.L. 2	0.1283E+00	-0.1400E+0
30	36	0.5750E+00	0.5760	C.L. 1	-0.2667E+00	0.2340	C.L. 6	0.8050E+00	-0.3733E+0
*******	****				<u> </u>				
31	4	0.4417E+00	2.4120	C.L. 6	-0.6758E+01	0.0370	H.L. 4	0.6183E+00	-0.9462E+0
31	5	0.1667E+00	2.3760	C.L. 1	-0.7025E+01	0.0460	H.L. 5	0.2333E+00	-0.9835E+0
31	6	0.1833E+00	0.0370	C.L. 1	-0.1091E+02	0.0550	H.L. 6	0.2567E+00	-0.1527E+0

								(= 1.4 x Dif	ff Pressure ff Pressure)
COMP	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUN
31	16	0.3767E+01	1.0440	C.L. 5	-0.4900E+01	0.0550	H.L. 4	0.5273E+01	-0.6860E+0
31	19	0.4442E+01	0.2880	C.L. 5	-0.4733E+01	0.0550	H.L. 5	0.6218E+01	-0.6627E+0
31	22	0.5850E+01	0.2340	H.L. 6	-0.6508E+01	0.0640	H.L. 6	0.8190E+01	-0.9112E+0
31	30	0.4642E+01	0.2340	C.L. 6	-0.3667E+00	2.5560	C.L. 1	0.6498E+01	-0.5133E+0
31	32	0.4592E+01	0.2340	C.L. 6	-0.3667E+00	2.4480	C.L. 1	0.6428E-01	-0.5133E+0
31	36	0.4425E+01	0.2160	C.L. 6	-0.3500E+00	2.5560	C.L. 1	0.6195E+01	-0.4900E+0
31	37	0.4408E+01	0.2340	C.L. 6	-0.2167E+00	2,7900	C.L. 1	0.6172E+01	-0.3033E+0
******	****	II			ΙΙ		11		
32	5	0.5250E+00	2.4300	C.L. 1	-0.8417E+01	0.1000	H.L. 6	0.7350E+00	-0.1178E+0
32	6	0.5250E+00	2.4300	C.L. 1	-0.1201E+02	0.0730	H.L. 6	0.7350E+00	-0.1681E+0
32	26	0.5583E+00	0.2700	H.L. 2	-0.6417E+00	0.4860	C.L. 3	0.7817E+00	-0.8983E+0
32	30	0.1000E+00	0.4860	C.L. 2	-0.9167E-01	0.6840	C.L. 1	0.1400E+00	-0.1283E+0
32	31	0.3667E+00	2.4480	C.L. 1	-0.4592E+01	0.2340	C.L. 6	0.5133E+00	-0.6428E+0
32	37	0.1500E+00	0.5760	C.L. 3	-0.4833E+00	0.6120	C.L. 4	0.2100E+00	-0.6767E+0
*****	****				L L		1 1		
33	1	0.2458E+01	0.1450	H.L. 6	-0.1119E+02	0.0550	H.L. 1	0.3442E+01	-0.1567E+0
33	2	0.1992E+01	0.0910	H.L. 5	-0.6975E+01	0.0370	H.L. 2	0.2788E+01	-0.9765E+0
33	3	0.1183E+01	0.0820	H.L. 6	-0.5683E+01	0.0370	H.L. 3	0.1657E+01	-0.7957E+0
33	4	0.1317E+01	0.0730	H.L. 2	-0.6475E+01	0.0370	H.L. 4	0.1843E+01	-0.9065E+0
33	5	0.2125E+01	0.0910	H.L. 2	-0.6758E+01	0.0370	H.L. 6	0.2975E+01	-0.9462E+0
33	6	0.2842E+01	0.1450	H.L. 1	-0.1090E+02	0.0550	H.L. 6	0.3978E+01	-0.1526E+0
33	25	0.6075E+01	0.2340	C.L. 1	-0.2000E+00	0.0370	H.L. 6	0.8505E+01	-0.2800E+0
******	****	11		1	1		1 1		

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES

MCGUIRE NUCLEAR STATION CONTAINMENT SUBCOMPARTMENT PRESSURES CALCULATED VALUES OF DIFFERENTIAL PRESSURE (PSI) – ACROSS COMPARTMENTS

					· · · · · · · · · · · · · · · · · · ·			Design Diff Pressure (= 1.4 x Diff Pressure)		
СОМР	BETWEEN AND COMP	MAXIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MINIMUM DIFF PRESSURE	TIME (SEC)	ELEMENT	MAXIMUM	MINIMUM	
34	7	0.3025E+01	2.1600	C.L. 2	-0.8125E+01	0.0820	H.L. 1	0.4235E+01	-0.1137E+02	
34	25	0.2758E+01	1.7100	C.L. 3	-0.1058E+01	0.3060	H.L. 2	0.3862E+01	-0.1482E+0	
34	26	0.6667E-01	0.9180	C.L. 5	-0.2000E+00	0.3060	H.L. 2	0.9333E-01	-0.2800E+0	
34	27	0.2750E+00	2.6460	C.L. 6	-0.4792E+01	0.2700	C.L. 1	0.3850E+00	-0.6708E+0	
*******	*****									
35	3	0.4000E+00	2.5380	C.L. 6	-0.6858E+01	0.2700	C.L. 3	0.5600E+00	-0.9602E+0	
35	13	0.2583E+01	1.2780	C.L. 2	-0.5525E+01	0.0820	H.L. 3	0.3617E+01	-0.7735E+0	
35	27	0.2750E+00	2.6460	C.L. 6	-0.4475E+01	0.2700	C.L. 1	0.3850E+00	-0.6265E+0	
35	28	0.2417E+00	0.2340	H.L. 1	-0.5500E+00	0.5940	C.L. 5	0.3383E+00	-0.7700E+0	
35	29	0.1542E+01	0.5940	C.L. 1	-0.3333E-01	2.5920	C.L. 6	0.2158E+01	-0.4667E-01	
******	*****									
36	4	0.4750E+00	2.5200	C.L. 1	-0.6950E+01	0.2520	C.L. 4	0.6650E+00	-0.9730E+0	
36	16	0.2558E+01	1.2600	C.L. 6	-0.5667E+01	0.0730	H.L. 4	0.3582E+01	-0.7933E+0	
36	29	0.1483E+01	0.5580	C.L. 6	-0.4167E-01	2.9160	C.L. 1	0.2077E+01	-0.5833E-01	
36	30	0.2667E+00	0.2340	C.L. 6	-0.5750E+00	0.5760	C.L. 1	0.3733E+00	-0.8050E+00	
36	31	0.3500E+00	2.5560	C.L. 1	-0.4425E+01	0.2160	C.L. 6	0.4900E+00	-0.6195E+0	
******	*****									
37	6	0.3833E+00	2.4660	C.L. 1	-0.1199E+02	0.0730	H.L. 6	0.5367E+00	-0.1679E+02	
37	22	0.3217E+01	1.7280	C.L. 5	-0.8033E+01	0.0820	H.L. 6	0.4503E+01	-0.1125E+02	
37	25	0.2842E+01	1.6380	C.L. 4	-0.8750E+00	0.3060	H.L. 4	0.3978E+01	-0.1225E+0	
37	31	0.2167E+00	2.7900	C.L. 1	-0.4408E+01	0.2340	C.L. 6	0.3033E+00	-0.6172E+0	
37	32	0.4833E+00	0.6120	C.L. 4	-0.1500E+00	0.5760	C.L. 3	0.6767E+00	-0.2100E+0	

Table 3-30. Design Loading Conditions

The operating condition categories are defined as follows from ASME III, NB 3113.

<u>Normal Conditions</u> - Normal conditions are any conditions in the course of system startup, operation in the design power range, hot standby and system shutdown, other than Upset, Emergency, Faulted or Testing Conditions.

<u>Upset Conditions</u> (Incidents of Moderate Frequency) - Any deviations from Normal Conditions anticipated to occur often enough that design should include a capability to withstand the conditions without operational impairment. The Upset Conditions include those transients which result from any single operator error or control malfunction, transients caused by a fault in a system component requiring its isolation from the system and transients due to loss of load or power. Upset Conditions include any abnormal incidents not resulting in a forced outage and also forced outages for which the corrective action does not include any repair of mechanical damage. The estimated duration of an Upset Condition shall be included in the Design Specifications.

<u>Emergency Conditions</u> (Infrequent Incidents) - Those deviations from Normal Conditions which require shutdown for correction of the conditions or repair of damage in the system. These conditions have a low probability of occurrence but are included to provide assurance that no gross loss of structural integrity will result as a concomitant effect of any damage developed in the system. The total number of postulated occurrences for such events shall not cause more than 25 stress cycles having an S_a value greater than that for 10^6 cycles from the applicable fatigue design curves of Figures 1-9.0.

<u>Faulted Conditions</u> (limiting Faults) - Those combinations of conditions associated with extremelylow-probability, postulated events whose consequences are such that the integrity and operability of the nuclear energy system may be impaired to the extent that considerations of public health and safety are involved. Such considerations require compliance with safety criteria as may be specified by jurisdictional authorities.

Note:

Definition of Terms from the ASME Boiler and Pressure Vessel Code, Section III, 1971

Structural Component	Design Codes and Specifications
Concrete	ACI 318-63
	ACI 307-69 ⁽¹⁾
	Regulatory Guide 1.15
Concrete Reinforcement	ASTM A615, Grades 40 and 60
Cadwelds	Regulatory Guide 1.10 ⁽²⁾
Structural Steel and Plates	ASTM A-36
	AISC, 7th Edition ⁽³⁾
Containment Vessel Shell	Subsection B Section III of the ASME Code 1968 Edition Including all the addenda through the Summer of 1970. (The high strength embedded anchor bolts for the steam generator enclosure walls meet the requirements of Section A for normal operation and 1986 Code, Appendix 'F', for faulted condition.)
Steel Pipes	USS T-1

Table 3-31. Codes and Specifications for Design of Category 1 Structures and Equipment Supports

Note:

1. For the design of the Reactor Building for Temperature effects.

2. Valid test results are used. A test is not considered valid if a failure occurs in the bar or near testing machine grips. Test samples for B Series Splices are sister splices only.

3. For visual inspection of structural welds, reference the "Visual Weld Acceptance Criteria For Structural Welding at Nuclear Power Plants", NCIG-01, Rev. 2 dated 5/7/85.

Loading Combination	Code or Stress Requirements
1. DL + CL	WSD, stresses in reinforcement and concrete are
2. $DL + OL + OBE$	in accordance with Chapter 10, ACI 318 - 1963 Code. AISC with allowable stresses of F _s .
3. $DL + OL + DBA$	
4. $DL + OL + W$	
5. $DL + OL + SSE$	ACI-318, USD with no factors applied to
6. $DL + OL + W_t$	loadings. AISC with allowable stress of 1.5 F_s or 0.9 F_y whichever is less.
7. $DL + OL + SSE + DBA + Y$	
DL = Dead Load, including weight of perman	nent equipments attached to the Reactor Building.
CL = Construction Loads.	
	due to plant operation such as thermal loads and actions on the building. OL also includes Live Loads
OBE = Operating Basis Earthquake Load, iner	tia forces due to base excitation of 8 percent G.
SSE = Safe Shutdown Earthquake Load, inert	a forces due to base excitation of 15 percent G.
DBA = Design Basis Accident, includes the dif associated thermal loads.	ferential pressures on the Reactor Building and the
W = Normal wind loads.	
Y = Loading on structure due to pipe ruptur	e.
W _t = Tornado Loading as defined in Section	<u>3.3.2.2</u> .
ACI- = "Building Code Requirements for Rein 318	forced Concrete," June 1963.
AISC = "Specification for the Design, Fabrication	on and Erection of Structural Steel Buildings," 1969.
F_s = Steel allowable stresses as specified in	AISC, Part 1.
WSD = "Working Stress Design" Method.	
F_y = Steel specified yield stress.	
USD = "Ultimate Strength Design" method.	
As a minimum, the margin of safety as specified in	the above codes and specifications is met in the

Table 3-32. Reactor Building Loading Combinations and Code Requirements

As a minimum, the margin of safety as specified in the above codes and specifications is met in the design of the Reactor Building.

AISC is used for the design of structural steel embedments and pipe sleeves through the Reactor Building wall.

In addition to the Design conditions defined above, the roof has been investigated, spot checked, and found structurally adequate for the following loading condition: U = DL + OL + SL

where SL = Severe snow and ice loads and is defined in Section <u>2.4.10</u>.

Loadin	ig Con	ombination Code Reference				
DL + C	ĽL	ASME - Normal Condition				
DL + C	DL + D	DBA ASME - Normal Condition				
DL + C	DL + O	OBE ASME - Normal Condition				
DL + C	DL + O	OBE + P' ASME - Normal Condition				
DL + C	DL + S	SSE ASME - Emergency Condition				
DL + C	DL + S	SSE + DBA ASME - Emergency Condition				
DL + C	DL + S	SSE + P' ASME - Emergency Condition				
ASME	=	ASME Boiler and Pressure Vessel Code, Section III, Subsection B, 1968, including a addenda through Summer of 1970.				
DL	 Own weight of the Containment Vessel and all the permanent attachments to the Containment. 					
CL	=	Construction Loads.				
DBA	=	Design Basis Accident which includes temperature and pressure effects.				
OBE	=	Operating Basis Earthquake, 8 percent G.				
SSE	=	Safe Shutdown Earthquake, 15 percent G.				
OL	=	 Normal Operating Loads of the Containment Vessel, including Live Loads, thermal loads and operating pipe reactions. 				
Р'	External pressure due to the internal vacuum created by accidental trip of the Containment Spray System.					

Table 3-33. Containment Vessel Loading Combination and Code Requirements

all loading combinations.

Material Location	Material Specification
Base Liners	SA-516, Grade 60 or 70
Base Liner Embedments	SA-516, Grade 60 and/or ASTM A36
Knuckle Plate	SA-516, Grade 60 or 70
Shell and Dome Plate	SA-516, Grade 60 or 70
Penetrations (Piping and Electrical)	SA-106, Grade B and/or SA-516, Grade 60
Personnel Locks	SA-516, Grade 60 and/or Grade 70
Stiffeners	SA-516, Grade 60 or 70
Equipment Hatch	SA-516, Grade 60 and/or Grade 70
Anchor Bolts	SA 320-L43
Anchor Bolt Anchor Plates	SA-516, Grade 60

Table 3-34. Containment Materials

Table 3-35. Deleted Per 1998 Update

Table 3-36 Factors of Safety Against Buckling of Shell Panels for the McGuire Containment Vessel

		Shearing	Safety Factor Against Buckling	
Point*	Axial kips/inch	Load kips/inch	Shell Panels Treated as Flat Plates	Shell Panels Treated as Curved Plates
1	-5.70	5.28	6.00	3.27
2	-3.99	5.31	8.60	4.43
3	-3.02	4.47	11.42	5.93
4	-4.49	1.75	8.36	4.93
5	-4.53	1.08	8.33	4.97
6	-4.13	1.22	9.13	5.43

* See Figure 3-132

Structural Barrier	Actual Design Diff. Pressures (psi) (= 1.4 X Diff. Press.)	Latest Calculated Diff. Pressures (psi)	Pressure Values Used for Design
Ice Condenser Floor	11.37	8.12	12.74
	6.80	5.67	12.74
	6.74	4.60	7.84
	6.74	4.52	7.84
	7.88	6.52	12.74
	8.05	6.79	12.74
	7.93	7.15	12.74
	6.86	6.40	7.84
	6.63	4.44	7.84
	9.11	4.55	12.74
	11.25	7.97	12.74
Operating Floor	17.43	14.13	15.51
	12.28	11.35	15.51
	9.38	9.19	15.51
	9.49	9.53	15.51
	12.06	11.25	15.51
	16.94	13.57	15.51
Wingwalls	6.71	5.74	10.00
	6.27	7.36	10.00
	2.16	5.16	10.00
	2.08	5.20	10.00
	6.19	7.17	10.00
	6.17	5.55	10.00
Crane Wall	See Note 1.		

 Table 3-37. Comparison Between the Actual Design Differential Pressures and the Latest Design

 Differential Pressures For the Major Structural Barriers of the Interior Structure

Note:

1. The Crane Wall is designed to sustain several critical loading combinations. The differential pressures comprise part of these combinations, hence it is not practical to single out these differential pressures on the crane wall for comparison purposes.

	Mode	Kalnin's	Finite Elements
		Reactor Building	
N = 1	1	4.964768	4.9748
-	2	13.66	13.729
	(Containment Vessel	
N = 0	1	24.9259	24.97
N = 1	1	9.284	9.3234
	2	25.69	25.660

Table 3-38. Compar	rison Between	Kalnin's Program	Results and Finite	e Elements Results w (cps)
					,

Loading Combin	nation	Code or Stress Requirements	
 DL + CL DL + OL + P 	a	WSD, stresses in reinforcement and concrete are in accordance with Chapter 10, ACI-318 - 1963 Code. AISC with allowable stresses of F _s .	
3. Deleted			
4. DL + OL + O			
5. $DL + OL + S$	SE	ACI-318, USD with no factors applied to loadings, AISC with allowable stress of 1.5 F _s or	
6. DL + OL + S	SE + Ta	0.90 Fy whichever is less.	
7. $DL + OL + S$	SE + Pa + Y		
DL =	Dead Load, including weight o	f permanent equipment.	
CL =	Construction Loads.		
OL =	Normal Operating Loads, these including Live Loads.	e loads are associated with the plant operation,	
Pa =	Differential Pressure across the Coolant Accident.	e individual Internal Structures due to a Loss-of-	
Y =	Loading on structure due to pip	be rupture.	
Ta =	Thermal loads on the Internal S Accident.	Structures Components due to a Loss-of Coolant	
OBE =	Operating Basis Earthquake Lo G.	pad, inertia forces due to base excitation of 8 percent	
SSE =	Safe Shutdown Earthquake Load, inertia forces due to base excitation of 15 percent G.		
ACI-318 =	"Building Code Requirements for Reinforced Concrete," June 1963.		
AISC =	"Specification for the Design, Fabrication and Erection of Structural Steel Buildings," 1969.		
WSD =	"Working Stress Design" Method.		
USD =	"Ultimate Strength Design" method.		
F _y =	Yield stress of steel.		
F _s =	Allowable stresses in steel as s	pecified in AISC, Part 1.	
Note:			
Pa and Ta do not	act simultaneously on the structu	re	

Table 3-39. Containment Interior Structures Loading Combinations and Code Requirements

Table 3-40. Design Properties of Seals

	Durometer	Tensile	Elongation	Compression Set
1. Membrane	Seals:			
Initial	65 (approx.)	2260 psi	470%	14.1%
2. Compressi	ble Seals:			
Initial	40	1400 psi	800%	12.88%
Note:				

1. All tests are in accordance with ASTM D-2000-XX. XX = The current ASTM D-2000 revision at the time of procurement.

Membrane Type Seals	Tensile Strength		
Mk 10	39.7 lbs.		
Mk 11	39.7 lbs.		
Mk 12	10.6 lbs.		
Mk 13	288 lbs.		
Mk 20	42.4 lbs.		
Compression Type			
Seals	Tensile Strength	Elongation	Durometer
40 Duro	575 psi	350%	+5 pts. from initial
60 Duro	1333 psi	387%	+5 pts. from initial

Table 3-41. Divider Barrier Seals Minimum Acceptable Physical Properties

Table 3-42. Auxiliary Building Loading Conditions

Area	Loading Conditions	Remarks
Compartments at El. 695	A, G, H	Soil and water pressure. See Note ¹ .
Compartments at El. 716	A, G, H	Soil and water pressure. See Note ¹ .
Compartments at El. 733 and Equipment Rooms and Switchgear Rooms	A, G, H	Soil and water pressure. See Note ¹ .
Diesel Generator Rooms	A, B, C, F, G, H	Soil and water pressure.
Fuel Pool	A, B, C, G, H.	*See Note ² .
Fuel Pool Racks	A, G, H	See Note ¹ .
Control Room	A, B, C, F, G, H	
Hot Machine Shop	А	
Laboratory Area	А	
Personnel Decontamination	А	
Waste Shipping Area	А	
Fuel Shipping Area	А	
Isolation Valve Area	A, B, C, F, G, H, I	Soil and water pressure.
New Fuel Racks	A, G, H	

Area	Loading Conditions	Remarks
Note:		
1. Enclosed by envelo	ping structure designed for wind, tornado wind, torn	ado missiles and turbine missile, as applicable.
2. Designed for therm	al stresses and cask drop accident.	
A = All normal dead, e	quipment, live and wind loads.	
B = Normal dead and e	quipment loads plus tornado loadings	
C = Tornado missiles.		
F = Turbine-Generator	missile (or Diesel-Generator missile).	
G = Normal dead and e	quipment loads plus operating seismic loads.	
H = Normal dead and equipment loads plus design seismic loads.		
I = Normal dead and equilation	uipment loads plus design seismic loads plus pipe ru	pture and pressure loads.
* = Soil and water pres	sure, pressure due to equipment or railroad ramp.	

Loading Conditions ⁵	Load Combination
A,G	U = 1.5D + 1.8L
	U = 1.25 (D + L + W)
	U = 0.9D + R + 1.1E
	U = 1.25 (D + R + E)
B,H	U = 1.25 (D + R) + E'
	$U = 1.25D + W_t$
C,F	Analyzed on bases of "Design of Protective Structures," Amirikian, A., Bureau of Yards and Docks, Department of the Navy, NAVDOCKS P-51, 1950.
Ι	U = 1.25 (D + R) + P + E' + Y
U = Required Ultimate Load Capacity of Sec	tion
D = Dead Load (including equipment load an	nd normal operating pipe loads)
L = Operating Live Load	
W = Wind Load	
W _t = Tornado Loading	
E = Operating Basis Earthquake Load	
E' = Safe Shutdown Earthquake Load	
R = Piping Seismic Reactions	
P = Peak compartment pressure generated by	a postulated pipe break
Y = Equivalent static load on structure from p	pipe break (including a dynamic load factor of 2.0)
F_s = Allowable stresses in steel in accordance	e to AISC, Part 1.
F_y = Allowable yield stress in steel	

Table 3-43. Auxiliary Building Loading Combinations

Loading Conditions ⁵	Load Combination
8	

- 1. Design Strengths are in accordance with ACI 318-63, Sections 1504 and 1505 for concrete and reinforcing steel.
- 2. Concrete design is based on the Ultimate Strength Method in accordance with the June 1963 version of ACI 318. For design of those structural elements not covered in ACI 318-63, the ACI Standard 318-71 is used.
- 3. Structural Steel design is based on Part 1 of the February, 1969 version of the AISC Specification except that for those loading conditions including W_t, E', P and Y, the maximum allowable steel stress is permitted to be 1.5 F_s or 0.9 Fy, whichever is less.
- 4. In addition to the Design conditions as defined above, the roof has been investigated, spot checked, and found structurally adequate for the following loading condition: U = D + L + SL

where SL = severe snow and ice loads and is defined in Section <u>2.4.10</u>.

5. See UFSAR <u>Table 3-42</u>, (Page 2 of 2) for the explanation of the Symbols (A thru I) used in Loading Conditions.

Loading Conditions ⁴	Load Combination
A, G	U=1.5D + 1.8L
	U=1.25 (D + L + W)
	U=0.9D + R + 1.1E
	U=1.25 (D + R + E)
B, H	U=1.25 (D+R) + E'
	$U=1.25D + W_t$
С	Analyzed on bases of "Design of Protective Structures," Amirikian, A., Bureau of Yards and Docks, Depart of the Navy, NAVDOCKS P-51, 1950.
Ι	U=1.25 (D + R) + P + E' + Y
U = Required Ultimate Load Cap	pacity of Section
D = Dead Load (including equip	ment load and normal operating pipe loads)
L = Live Load	
W = Wind Load	
W _t = Tornado Loading	
E = Operating Basis Earthquake	Load
E' = Safe Shutdown Earthquake I	Load
R = Piping Seismic Reactions	
P = Peak compartment pressure	generated by a postulated pipe break
Y = Equivalent static load on stru	acture from pipe break (including a dynamic load factor of 2.0)
1. Design Strengths are in accordar reinforcing steel.	nce with ACI 318-63, Sections 1504 and 1505 for concrete and
	Ultimate Strength Method in accordance with the June 1963 of those structural elements not covered in ACI 318-63, the ACI
	on Part 1 of the February, 1969 version of the AISC Specification ditions including W_t , E', P and Y, the maximum allowable steel 0.9 F_y .
4. See UFSAR <u>Table 3-42</u> (Page 2 Loading Conditions.	of 2) for the explanation of the Symbols (A through I) used in

Table 3-44 .	. New Fuel	Storage	Vault Loading	Combinations
---------------------	------------	---------	---------------	--------------

	Factor of Safety	
Structure	Overturning	Sliding
Reactor Building Complex	2.3	2.24
Main Auxiliary Building	9.23	2.82
Diesel Generator Building	8.2	3.7
Main Steam Line Isolation Valve Enclosure	1.10	1.22
New Fuel Vault	1.23	1.15
SNSW Intake	2.44	1.18
SNSW Discharge	2.72	1.24
SNSW Overflow Spillway	1.05	1.28

Table 3-45. Factors of Safety for Category 1 Structures Against Overturning and Sliding

Table 3-46. Piping Systems Included in Vibration Test Program

System

Reactor Coolant System

Safety Injection System

Residual Heat Removal System

Containment Spray System

Chemical and Volume Control System

Boron Recycle System

Boron Thermal Regeneration System

Component Cooling System

Liquid Waste Disposal System

Fuel Pool Cooling and Cleanup System

Diesel Generator Fuel Oil System

Diesel Generator Cooling Water System

System

Diesel Generator Lube Oil System

Nuclear Service Water System

Refueling Water System

Main Steam System

Feedwater System

Auxiliary Feedwater System

Steam Dump System

Containment Ventilation Cooling Water System

Control Area Chilled Water System

Steam Generator Blowdown Recycle System

Recirculated Cooling Water System

Condition		Loads	Code Compliance Criteria	
1.	Sustained Loads ⁵	Pressure	Σ Primary stresses \leq S _h ³ , ⁷ , ⁸	
		Weight		
		Other Sustained		
		Mechanical loads		
2.	Thermal Expansion	Thermal Expansion	Maximum Secondary Stress Envelope 3, 7, 8	
		Thermal Anchor Movements		
3.	Upset Loads	Pressure	Σ (Primary Stresses) \leq 1.2 S _h ⁻⁷ , ⁸	
		Weight		
		OBE (Inertia)		
		OBE (Anchor Movements) ¹		
		DFL ²		
		Wind ⁴		
4.				
	a. Faulted Loads	Pressure	Σ (Primary Stresses) \leq 2.4 S _h ⁻⁷ , ⁸	
		Weight		
		SSE (Inertia)		
		DFL ²		
		Tornado ⁴		
	b. Faulted Loads	Pressure Weight Pipe Rupture ⁶	Σ (Primary Stresses) \leq 2.4 S _h ⁻⁷ , ⁸	

Table 3-47. Design Conditions, Load Combinations, and Code Compliance Criteria for Duke Classes B, C, and F Piping

Condition	Loads	Code Compliance Criteria

Notes:

- 1. Stresses due to seismic displacements such as anchor movements may alternatively be considered as secondary stresses and combined with thermal expansion.
- 2. Dynamic Internal Fluid Loads are occasional loads such as relief valve thrust, steamhammer, waterhammer or loads associated with Plant Upset or Faulted Condition where appropriate.
- 3. The allowable stress, S_A, may be increased when primary stresses due to sustained loads are less than S_h per ASME Section III, Subsection NC-3611.1(b)⁴(a).
- 4. Wind as defined in UFSAR Section <u>3.3.1.1</u> is applicable to the Upset Condition, but not concurrent with seismic loads inertia or anchor movement loadings per ASME III 1971, Subsection NC-3622.

Tornado as defined in UFSAR Section <u>3.3.2.1</u> is applicable to the Faulted Condition, but not concurrent with seismic loads inertia or anchor movement loadings per ASME III 1971, Subsection NC-3622.

- 5. If, during operation, the system normally carries a medium other than water (air, gas, steam), sustained loads should be checked for weight loads during hydrotest as well as normal operation weight loads.
- 6. Pipe rupture loadings include LOCA and MSLB as applicable.
- 7. ASME Code Case N-318-4, "Procedure for Evaluation of the Design of Rectangular Cross Section Attachments on Class 2 or 3 Piping, Section III, Division 1", may be used in case of pipe welded attachment qualification. It should be documented in appropriate calculations.
- 8. ASME Code Case N-392-1, "Procedure for Evaluation of the Design of Hollow Circular Cross Section Welded Attachments on Class 2 or 3 Piping, Section III, Division 1", may be used in case of pipe welded attachment qualification. It should be documented in appropriate calculations

Condition	Piping Loads	Criteria	
1. Normal	Thermal Displacement Pressure Weight	ASME III, Class 2	
2. Upset	Thermal Displacement OBE (Displacement) Pressure Weight OBE	(Secondary Stresses) ≤S _A	
	(Inertia)	(Primary Stresses) $\leq 1.2 \text{ S}_{h}$	
3. Faulted	Thermal Displacement ¹ SSE (Displacement) ¹ Pressure Weight SSE (Inertia) Pipe Rupture	(Primary Stresses) ≤2.4 S _h	

Note:

1. For the faulted condition, the displacement induced stresses are considered primary stresses.

Condition	Piping Loads	Criteria
1. Normal	Thermal Displacement Pressure (As Applicable) Weight	ASME III, Class 1
2. Upset	Thermal Displacement OBE (Displacement) Pressure (As Applicable) Weight OBE (Inertia)	ASME III, Class 1
3. Faulted	Thermal Displacement SSE (Displacement) Pressure (As Applicable) Weight SSE (Inertia) Pipe Rupture	(Primary Stresses) ≤ Yield Stress At Operating Temperature or ASME III, Class 1 ¹
4. Faulted	Thermal Displacement SSE (Displacement) Pressure (As Applicable) Weight SSE (Inertia) Pipe Rupture	(Primary Stresses) ≤ Yield Stress At Operating Temperature or ASME III, Class 1 ¹
Note:		

Table 3-49. Stress Criteria For Supports, Restraints, and Anchors Duke Class A

1. ASME III, Class 1 allowables (i.e. Level D) may be used for standard vendor supplied pipe support components provided a certified Design Report Summary (DRS) or Load Capacity Data Sheet (LCDS) is available for the component.

Condition	Piping Loads	Criteria	
1. Normal	Thermal Displacement Pressure (As Applicable) Weight	ASME III, Class 2	
2. Upset	Thermal Displacement OBE (Displacement) Pressure (As Applicable) Weight OBE (Inertia) wind ¹	ASME III, Class 2	
3. Faulted	Thermal Displacement SSE (Displacement) Pressure (As Applicable) Weight SSE (Inertia) tornado ¹	(Primary Stresses) ≤ Yield Stress At Operating Temperature or ASME III, Class 2 ²	
4. Faulted	Thermal Displacement SSE (Displacement) Pressure (As Applicable) Weight SSE (Inertia) Pipe Rupture	(Primary Stresses) ≤ Yield Stress At Operating Temperature or ASME III, Class 2 ²	
	Tornado ¹		

Table 3-50. Stress Criteria For Supports, Restraints, and Anchors Duke Classes B, C, and F

Note:

1. Wind as defined in UFSAR Section <u>3.3.1.1</u> is applicable to the Upset Condition, but not concurrent with seismic loads inertia or anchor movement loadings per ASME III 1971, Subsection NC-3622.

Tornado as defined in UFSAR Section <u>3.3.2.1</u> is applicable to the Faulted Condition, but not concurrent with seismic loads inertia or anchor movement loadings per ASME III 1971, Subsection NC-3622.

2. ASME III, Class 2 allowables (i.e. Level D) may be used for standard vendor supplied components provided a certified Design Report Summary (DRS) or Load Capacity Data Sheet (LCDS) is available for the component.

Co	ndition	Loads	Criteria
1.	Normal & Upset	Nozzle Loads	ASME Section III Class 2 or 3 (See Table
	(includes Normal	Pressure	<u>3-4</u>)
	Operating Effects Plus	Weight	
	<u>OBE</u> Effects)	Support Reactions	
2.	Faulted (includes	Nozzle Loads	Pressure Boundary - ASME Section III,
	Normal Operating	Pressure	Class 2 and 3 and Par. NB-3225
	Effects Plus <u>SSE</u>	Weight	
	Effects)	Support Reactions	
	,	11	<u>Supports</u> - (Primary Stresses) \leq Yield
			Stress At Operating Temperature

Table 3-51. Stress Criteria For Safety Class 2 and 3 Cylindrical Shell Type Equipment and Components And Their Supports

Condition	Vessels/Tanks	Pumps	
Normal	$P_m \le 1.0S$	ASME Section III Subsection NC-3400 and ND-3400	
	$P_{\rm m} + P_{\rm b} \le 3.0 \mathrm{S}$		
Upset	$P_{\rm m} \le 1.0S$	$P_{\rm m} \le 1.0S$	
	$P_{\rm m} + P_{\rm b} \le 3.0 \mathrm{S}$	$P_{\rm m} + P_{\rm b} \le 1.5 \mathrm{S}$	
Faulted	$P_{\rm m} \le 1.5S$	$P_{\rm m} \leq 1.2S$	
	$P_{\rm m} + P_{\rm b} \le 3.0 \mathrm{S}$	$P_m P_b \le 1.8S$	
S = Allow	able stress for the material at temperature	erature as given in ASME Section III	
	prane stress, i.e., the component of the solid section under consi	normal stress which is uniformly distributed across the deration.	
	ng stress, i.e., the linearly variable section under consideration.	component of normal stress across the thickness of the	
ASME			
CLASS	LOADING COMBINATION	CONDITION CLASSIFICATION	
2	1. Pressure + Deadweight + Thermal (Nozzle loads only	Normal 7)	
	2. Pressure + Deadweight + OBE	Upset	
	3. Pressure + Deadweight + SSE	Faulted	
3	1. Pressure + Deadweight + Thermal (Nozzle loads only	Normal	
	2. Pressure + Deadweight + SSE	Faulted	

Table 3-52. Westinghouse Design Criteria for ASME Class 2 and 3 Components

	Process			Ratio:
Penetration Mk. No.	Pipe Size (NPS)	System	Energy Classification of Process Pipe	Design Pressure Pressure Rating Note ¹
154	34"	SM - Main Steam - A	High Energy	1.22
261	34"	SM - Main Steam - B	High Energy	1.22
393	34"	SM - Main Steam - C	High Energy	1.22
441	34"	SM - Main Steam - D	High Energy	1.22
329	3"	NV - Charging Pumps to Regenerative Hx.	High Energy	1.55
339	2"	NV - Sealwater Injection	High Energy	1.56
343	2"	NV - Sealwater Injection	High Energy	1.56
344	2"	NV - Sealwater Injection	High Energy	1.56
350	2"	NV - Sealwater Injection	High Energy	1.56
316	4"	NI - Safety Injection - A	Moderate Energy	1.56
319	4"	NI - Safety Injection - B	Moderate Energy	1.56
348	2"	NI - UHI Check Valve Flush	Moderate Energy	1.56
351	3"	NI - From Boron Injection Tank	Moderate Energy	1.56
352	4"	NI - Safety Injection - A & B	Moderate Energy	1.56
N/A Note ²	34"	SM - Main Steam	High Energy	1.43
N/A Note ²	18"	CF - Feedwater	High Energy	1.39

Table 3-53. Guard Pipe Designs Relying on ASME Code Case 1606

Note:

1. Design Pressure refers to the maximum operating pressure during normal plant conditions. Pressure rating refers to allowable pressure utilizing Eq (3) of Paragraph NC-3641-1 of ASME Section III, 1971 Edition through Winter 1971 Add.

2. This guard pipe encloses process pipe in areas other than penetrations.

Response	Theoretical Prediction ¹	PWHIP Prediction ²	Conclusion
Maximum Displacement y _{max} @ t _m	0.8041" @ 0.0668 sec.	0.8038" @ 0.067 sec.	Predicted y_{max} and t_m are "exact" within three significant figures of accuracy.
Peak-to-Peak Elastic Displacement Range y _{max} - y _{min}	0.3669"	0.3679"	Predicted response is within 0.3% of theoretical.
Elastic Natural Period of Free Vibration T _n	0.1107 sec.	0.112 sec.	Predicted response is within 1.2% of theoretical.

 Table 3-54. Comparison of Predicted PWHIP Response - Inelastic Pipe Element. (Example Problem:

 Figure 3-117

Note:

1. Theoretical response based on the solution by Biggs, *Introduction to Structural Dynamics*, McGraw-Hill, 1964, recomputed with intermediate calculations to 5 significant figures.

2. PWHIP response calculated using a numerical integration time step of 0.001 seconds and output at that time interval.

[HISTORICAL INFORMATION – NOT REQUIRED TO BE REVISED]

Response	Theoretical Prediction ¹	PWHIP Prediction ²	Conclusion
Maximum Displacement	0.8041" @ 0.0668 sec.	0.8051" $@$ 0.067 sec. (0.8043" when corrected for initial gap ³	PWHIP response exact within 3 significant figures of accuracy.
y _{max} @ t _m			
Peak-to-Peak Elastic Displacement Range y _{max} - y _{min}	0.3669"	0.3670"	PWHIP response exact within 3 significant figures of accuracy.
Elastic Natural Period of Free Vibration T _n	0.1107 sec.	0.1105 sec.	PWHIP response exact within 3 significant figures of accuracy.

Table 3-55. Comparison of Predicted PWHIP Response - Inelastic Yield Element. (Example Problem: Figure 3-118)

Note:

1. Theoretical response based on the solution by Biggs, Introduction to Structural Dynamics, McGraw-Hill, 1964, recomputed with intermediate calculations to 5 significant figures.

- 2. PWHIP response calculated using a numerical integration time step of 0.0005 seconds
- 3. PWHIP model included an initial gap of 0.0005". It is calculated that initial kinetic energy at the time of impact (0.0015 seconds) increases maximum displacement by 0.0003". Therefore, the initial gap resulted in a maximum displacement 0.0008" greater than that of a zero gap model.

[HISTORICAL INFORMATION – NOT REQUIRED TO BE REVISED]

Response	Theoretical Prediction ¹	PWHIP Prediction ²	Conclusion
Time of initial	0.07198 sec.	y = .9867" @ $t = 0.072$ sec.	PWHIP response is within one integration time
impact $(y = h)$		y = 1.0145" @ $t = 0.073$ sec.	step of theoretical.
to			
Velocity at	27.785 in/sec.	$\frac{1.0145''9867''}{.001} = 27.70 \text{ in/sec}$	PWHIP response is exact within three significant
initial impact		$\frac{1}{.001 \text{ sec.}} = 27.70 \text{ m/sec}$	figures of accuracy.
Уo			
Time to zero	0.10037 sec.	0.101 sec.	PWHIP response is within one integration time
velocity			step of theoretical.
t _m			
Maximum	1.5506 in.	1.5514 in.	PWHIP response is exact within three significant
displacement			figures of accuracy.
y _m			
Notes:			
1 Theoretical	response based on the solution by	Thomason, Vibration Theory and Applica	tion Prentice-Hall 1965

Table 3-56. Comparison of Predicted PWHIP Response - Inelastic Yield Element. (Example Problem: Figure 3-120)

2. PWHIP response calculated using a numerical integration time step of 0.001 seconds.

[HISTORICAL INFORMATION – NOT REQUIRED TO BE REVISED]

Table 3-57. HVAC Design Codes

Co	omponent	Design Code
1.	Standard for Installation of Air Cond'g. & Ventilation Systems	NFPA 90A
2.	Central Station Air Handling Units	ARI 430-66
3.	Chillers:	ASHRAE 30-60
		ARI 555-63
		ARI 550-66
4.	Coils:	ARI 410-64
		ASHRAE 33-64
5.	Fans:	AMCA 99
		AMCA 210-67
6.	Fire Dampers	UL 555-1968
7.	Electric Coils:	UL 499-1968
		NEMA HE-1-1966
8.	Carbon Filters	ANSI/ASME N509- 1976
9.	Dampers	Refer to system purchase specification

Table 3-58. Maximum Deflections for Reactor Internals Under Blowdown and Seismic Excitation (1-Millisecond Double-Ended Break) [HISTORICAL INFORMATION – NOT REQUIRED TO BE REVISED]

Hot Leg 0.057 0.029 0.015	Seismic Deflection, (Inches)	Direction Horizontal Horizontal Vertical	Maximum Total Deflection, (Inches) 0.059 0.460	Allowable Deflection, (Inches) 4.1 0.5	No Loss of Function, (Inches) 8.2 1.0
0.029	0.002	Horizontal	0.460		
0.029	0.002	Horizontal	0.460		
				0.5	1.0
0.015	0	Vertical			1.0
			0.016	0.100 ¹	0.150
<allowable< td=""><td>0.010</td><td>Horizontal</td><td><allowable< td=""><td>1.0</td><td>1.60 to 1.75</td></allowable<></td></allowable<>	0.010	Horizontal	<allowable< td=""><td>1.0</td><td>1.60 to 1.75</td></allowable<>	1.0	1.60 to 1.75
<n.l.f< td=""><td>0.010</td><td>Horizontal</td><td><n.l.f< td=""><td>1.0</td><td>1.60 to 1.75</td></n.l.f<></td></n.l.f<>	0.010	Horizontal	<n.l.f< td=""><td>1.0</td><td>1.60 to 1.75</td></n.l.f<>	1.0	1.60 to 1.75
>Allowable			>Allowable		
>N.L.F.	0.010	Horizontal	>N.L.F	1.0	1.60 to 1.75
~0	~0	Horizontal	~0	0.036	0.072
	>N.L.F.	>N.L.F. 0.010	>N.L.F. 0.010 Horizontal	>N.L.F. 0.010 Horizontal >N.L.F	>N.L.F. 0.010 Horizontal >N.L.F 1.0

1. Only to assure that the plate will not touch a guide tube.

	В	LOWDOWN	STRESSES, I	PSI		
	Hot Leg Break		Cold Leg Break		-	
Component	Maximum Membrane	Maximum Total	Maximum Membrane	Maximum Total	Direct Seismic ¹ <u>Stress, psi</u> Vertical/horiz	Maximum Total Blowdown Plus Seismic psi
Barrel (Grith Weld)	21,440	31,340	38,900	46,200	100/400	46,700
Barrel (Flange Weld)	19,820	29,720	18,430	47,400	410/600	48,710
Upper Support Columns (1)	6,200	39,200			/	39,200
(55)	6,200	<20,300			/	<20,300
Fuel Assembly - Top Nozzle Plate		28,700		8,000	0/0	28,700
Fuel Assembly - Bottom Nozzle Plate		38,700		40,800	400/	41,200
Fuel Assembly Thimbles	6,600	6,600	2,300	2,300	/	6,600
Allowable Stress						
Maximum Membrane	Pm	$+2.4 \text{ S}_{\text{m}}+39$,800 psi			
Maximum Total	mum Total $P_m + P_b = 3.0 \text{ S}_m = 48,000 \text{ psi}$					
S (evaluated at 588°F) = 16,600 psi (per	Winter Addenda	ASME Section	on III Code)			
Note:						

Table 3-59. Maximum Stress Intensities for Reactor Internals (1-Millisecond Pipe Break and Seismics) [HISTORICAL INFORMATION – NOT REQUIRED TO BE REVISED]

1. Values are for high level seismic plant.

Equipment ⁴	Base Load Levels ³	Freq. Range (Hz) ¹
<u>Air Conditioning System (Control, Equipment & Cable</u> Room)		
Compressor Motors	Note 2	
Vent Fan Motors	Note 2	-
		-
Chill Water Pump Motors	Note 2	-
Control Room Makeup Fan Motor	Note 2	-
Equipment & Cable Room Makeup Fan Motor	Note 2	-
Annulus Vent System		
Fan Motors	Note 2	-
Air Operated Valves (Solenoids)	0.5g	1 to 33
Aux. Bldg. Vent System		
EFS Air Handling Unit Motors	Note 2	-
Chemical & Volume Control System		
Selected M.O. Valve Motors	0.5g	5 to 200
Containment Air Return System		
Air Return Fan Motors	Note 2	-
H ₂ Skimmer Fan Motors	Note 2	-
Containment Spray System		
Containment Spray Pump Motors	Note 2	-
Selected M.O. Valve Motors	0.5g	5 to 200
Containment Isolation System		
Containment Isolation Valve Motors	0.5g	5 to 200
Component Cooling Water System		
Comp. Cooling Pump Motors	Note 2	-
Selected M.O. Valve Motors	0.5g	5 to 200
Deisel Bldg. Vent. System		
Diesel Room Supply Fan Motors		
Emergency diesel Aux. Systems		
Emerg. Diesel Generator	Note 2	-
Dsl. Crank Case Vac. Pump Motor	0.25g	0.5 to 40

Table 3-60. Electrical Systems & Components Seismic Criteria [HISTORICAL INFORMATION – NOT REQUIRED TO BE REVISED]

Equipment ⁴	Base Load Levels ³	Freq. Range (Hz) ¹
Dsl. F.O. Transfer Pump Motor	0.25g	0.5 to 30
Dsl. L.O. Filter	0.25g	0.5 to 40
Dsl. 600/120V Pnl. Board	0.25g	0.5 to 40
Dsl. Lube Oil Pump Motors	0.25g	0.5 to 40
Dsl. Jacket & Intercoolant Pump Motor	0.25g	0.5 to 40
Dsl. Air Compressor Motors	0.25g	0.5 to 40
Auxiliary Feedwater System		
Aux. Feedwater Pump Motor	Note 2	-
Penetrations	0.25, 2.1 or 3.75g depending on location	0.5 to 40
4KV ES Aux. Power System		
4KV Metalclad ES Switchgear	0.8g	0.5 to 50
4160/600V Transformers	0.8g	0.5 to 50
600V Essential Aux. Power System		
600V ES Motor Control Centers	1.2g	1 to 40
600/208V Essential Transformers	0.4g	0.5 to 40
125V DC Vital Inst. & Cont. Power System		
125V DC Battery Chargers	0.4g	0.5 to 40
125V DC Batteries	0.4g	0.5 to 40
125V DC Distribution Centers	1.2g	1 to 40
125V DC Panelboards	1.2g	1 to 40
120V AC Vital Power System		
125VDC/120V AC Static Inverters	0.4g	0.5 to 40
120VAC Vital Pwr Panelboards	1.2g	1 to 40
Radioactive Waste Systems		
RHR & CS Pump Room Sump Pump Motor	Note 2	-
Residual Heat Removal System		
Selected M.O. Valve Motors	0.5g	5 to 200
Safety Injection System		
	0.5g	5 to 200

Equipment ⁴	Base Load Levels ³	Freq. Range (Hz) ¹
Main Steam Iso. Valve Solenoids	Note 2	-
Notes:		

1. Hertz

2. Seismic qualification being accomplished by analyses

3. Meaning maximum horizontal ground or floor acceleration level for SSE

4. For other equipment see references sited in Section 3.1

Equipment Name	Operating Mode	Required Duration of Operation
INSTRUMENTATION		
Pressurizer pressure channels (4)	Continuous	SI Initiation
Pressurizer level channels (3)	Continuous	Two weeks
Steam generator level channels N/R (16)	Continuous	Four months
Reactor Coolant system pressure W/R (2) ¹	Continuous	Two weeks
Reactor Coolant RTD N/R	Continuous	Reactor Trip
Reactor Coolant System RTD W/R	Continuous	Two weeks
Containment Sump Level ¹	Continuous	Four months
Containment Pressure ¹	Continuous	Three months
VALVES & OPERATORS		
SIS motor operated valves, high head injection line (4)	Continuous	Five minutes
Containment isolation valves, motor operated & solenoid operated	Operate on signal	Five minutes
Containment air return & H ₂ skimmer system valves	Open on signal	Five minutes
OTHER EQUIPMENT		
Deleted Per 2008 Update		
Safeguard equipment power, control and instrument cable	Continuous	4 mo.
Containment Air Return and H ₂ Skimmer Fans and Motors	Continuous	2 mo.
Penetrations	As indicated for above listed equipment	As indicated for above listed equipment
Containment High Range Radiation Monitor Detections	Continuous	Two weeks
Acoustical Valve Position Monitor Sensors & Amps	Continuous	Two weeks

Table 3-61. Post-Accident Equipment (Inside Containment) Operational Requirements

Equipment Name	Operating Mode	Required Duration of Operation
Limit Switches	Continuous	Five minutes
Pressure Switches	Continuous	Five minutes
Note:		
1. Transmitters for these signals are located outside of the	Containment.	

2. See FSAR <u>Figure 1-9</u> through <u>Figure 1-16</u> for location of Equipment.

Control Complex Area	Temperature ¹	Relative Humidity ¹
Control Room	75°F	45%
Cable Room	85°F	30%
Battery and Equipment Room	80°F	50%
Switchgear Rooms	85°F	30%
Motor Control Center Rooms	85°F	30%
Ventilation Equipment Rooms	100°F	30%
Electrical Penetration Rooms (EL 767)	85°F	30%

Table 3-62. Control Complex Areas Ventilation Systems Analysis Results

Note:

1. The temperature and relative humidity values are nominal and may vary by $\pm 5^{\circ}$ F and $\pm 10\%$ RH respectively.

Table 3-63. Structures, Systems and Components Included in TORMIS Analysis Not Designed for Design Basis Tornado Generated Missiles³

Category 1 SSC

Unit 1 & 2 Main Steam Safety Valves (MSSVs) Exhaust Piping and associated supports¹²

Unit 1 & 2 Steam Generator Power Operated Relief Valves (PORVs) and associated piping and supports¹²

Unit 1 & 2 Turbine Driven Auxiliary Feedwater (TD AFW) Exhaust (TE) Pipe²

Unit 1 & 2 Control Room Air Ventilation System (CRAVS) Intakes (VC/YC Intakes)²

Unit 1 & 2 Spent Fuel Building (north facing wall)

Notes:

- 1. The SSCs located in the Unit 1 Exterior Doghouse are not included as they have positive tornado missile protection.
- 2. Only the portion of the Structure that is not protected from the Design Basis tornado generated missiles are included. The Design Basis tornado generated missiles have a horizontal only projection.
- 3. Additional details and target areas can be found in Section 3.5.6 Reference 7.