Appendix 3B. Figures

WIND PRESSURE DISTRIBUTION ON THE REA TOR BUILDING

Figure 3-1. Wind Pressure Distribution on Reactor Building

Figure 3-2. Turbine Building Tornado Wind Distributions

Figure 3-5. Loss of Reactor Coolant Accident Boundary Limits

Figure 3-6. Location of Postulated Breaks

Note:

References 3 and 4 provide the basis for eliminating the previously postulated reactor coolant system pipe breaks with the exception of those breaks at branch connections.

Figure 3-7. Analytical Method for Resolving Pipe Break Consequences

Figure 3-8. Deleted per 2001 Update

Figure 3-9. Main Steam and Feedwater Routing Plan Outside Containment. See <u>3-10</u> for Elevation View.

Figure 3-10. Main Steam and Feedwater Routing Elevation Outside Containment [Historical information, not required to be revised.]

Figure 3-11. Main Steam Routing Plan Outside Containment

Figure 3-12. Main Steam Routing Elevation Outside Containment Nearest Reactor Building Wall

Figure 3-13. Main Steam Routing Elevation Outside Containment Farthest From Reactor Building Wall

(14 OCT 2000)

Figure 3-14. Main Feedwater Routing Plan Outside Containment

Figure 3-15. Main Feedwater Routing Elevation A-A Outside Containment

SECTION	60)
SCALE IS 1-0"	

Figure 3-16. Response Acceleration Spectra [Historical information, not required to be revised.]

Figure 3-17. Response Acceleration Spectra [Historical information, not required to be revised.]

Figure 3-18. Response Acceleration Spectra [Historical information, not required to be revised.]

Figure 3-19. Multi-Degree of Freedom System with Support Motion

Figure 3-20. Reactor Building Interior Structure - Mass Model [Historical Information, not required to be revised.]

Figure 3-21. Auxilary Building Mass Model [Historical Information, not required to be revised.]

Figure 3-22. Reactor Building 1st and 2nd Horizontal Mode Shapes

Figure 3-24. Reactor Building - Shear Force (lb/in) Due to SSE [Historical information, not required to be revised.]

Figure 3-25. Reactor Building - Meridional Force N_0 (lb/in) Due to SSE [Historical information, not required to be revised.]

(14 OCT 2000)

Figure 3-26. Reactor Building - Meridional Moment M_0 (lb/in) Due to SSE [Historical information, not required to be revised.]

.

Figure 3-29. Reactor Building-Hoop Moment M_0 (in.lb/in) Due to SSE [Historical information, not required to be revised.]

(14 OCT 2000)

Figure 3-33. Containment Interior Structure Response Loads Due to SSE in the North-South Direction [Historical information, not required to be revised.]

Figure 3-37. Response Acceleration Spectrum, Damping = 0.02, Reactor Interior, North-South Direction, Elevation 789.47

Figure 3-38. Response Acceleration Spectrum, Damping = 0.02, Reactor Interior, North-South Direction, Elevation 817.92

Figure 3-41. Reactor Building First Horizontal Mode

MODE							
	FREQ.=4	.997 CPS	FREQ = 4.892CP5				
NODE	FIXED BASE		SOIL INTER				
	R	Z	R	<u>Z</u>			
1	0.1	- 0.6	0.5	-1.6			
2	83	-4.0	8.9	-4.9			
3	17.6	- 8,8	18.3	-9.5			
4	26.6	-12.9	27,2	-13.5	1		
5	36.3	-16.3	36.9	-16.7			
6	46.6	-18.9	47.0	-19.3			
7	56.8	-21.0	57.2	-21.3			
8	668	-22.4	67.1	-227			
9	77.1	-23.4	77.3	-23.6			
10	89.0	-24.1	89.0	-24.3			
4 11	92.8	-20.5	92.9	-20.6			
12	96.3	-15.1	96.4	-15.1			
13	99.0	-7.6	99.0	- 7.6			
14	100.0*	0.0	100.0*	0.0			

R DISPLACEMENT NORMALIZED TO 100.

Ζ

1 1

R

Figure 3-42. Reactor Building Second Horizontal Mode

MODE 2							
	FREQ =13	.82 CPS	FREQ=13.31 CPS				
NODE	FIXED BASE -		SOIL INTER				
	Ŕ	Z	R	Z			
1	+ 0,1	- 0.4	- 12.1	- 0.7			
2	-27.3	- 3.4	-39,9	-4.3			
3	- 66. 7	-10.6	-75.3	-11.8			
4	-95.0	-20,1	- 97.5	-21.4			
5	-108.3	-37.3	⊣05.6	-32.4			
6	-105,5	-43,2	-99.1	-43.8			
7	- 87, 5	-54.7	-79.2	-54.6			
8	- 56.3	-64.7	- 48.2	- 64,0			
9	0.5	- 72.9	4.4	- 71,5			
10	88.2	- 80.3	83.8	- 7 8 .1			
11	65.5	-119.2	67.3	-108,1			
12	69.9	-123.0	73,5	-107.2			
13	92.1	-64.2	93,1	- 55.2			
14	100,0*	00	100.0*	0.0	ļ		

R DISPLACEMENT NORMALIZED TO 100.

Figure 3-44. Combined Interaction Model Response Acceleration Spectrum, Damping = 0.02, Reactor Interior, East-West Direction, Elevation 738.22

Figure 3-45. Reduced Model of Interior Building Response Acceleration Spectrum, Damping = 0.02, Reactor Interior, East-West Direction, Elevation 777.60

Figure 3-46. Combined Interaction Model Response Acceleration Spectrum, Damping = 0.02, Reactor Interior, East-West Direction, Elevation 777.60

Figure 3-48. Combined Interaction Model, Response Acceleration Spectrum, Damping = 0.02, Reactor Building, North-South Direction, Elevation 768.30

Figure 3-50. Dynamic Analysis Model of Typical Piping System

Figure 3-51. Dynamic Analysis Model of Typical Piping System

Figure 3-52. Typical Envelope Horizontal Response Spectra for Analysis Comparison

Figure 3-53. Typical Verticle Response Spectra for Analysis Comparison

TYPICAL VERTICAL RESPONSE SPECTRA PERIOD IN SECONDS

Figure 3-54. Typical Reactor Building and Containment Vessel Details

Figure 3-55. Reactor Building, Base Slab, Reinforcing, Bottom Radial Bars, Bottom Layer El. 717' + 4 3/4"

Figure 3-56. Reactor Building, Base Slab, Reinforcing Bottom Radial Bars, Top Layer Elevation 717' + 7 1/2"

Figure 3-57. Reactor Building, Base Slab, Reinforcing Top Radial Bars, Bottom Layer Elevation 721' + 10 3/4"

Figure 3-58. Reactor Building, Base Slab El. 723' + 0", Reinforcing, El. 717' +6", El. 717' +9", 722' + 0" and El. 722' + 3"

Figure 3-59. Reactor Building, Base Slab, Reinforcing Top Radial Bars, Top Layer Elevation 722' + 1 1/2"

Figure 3-60. Reactor Building, Concrete Shell, Developed Elevation - Reinforcing El. 722 + 6 Thru El. 875 + 4 1/2

Figure 3-61. Reactor Building, Concrete Shell, Developed Elevation - Reinforcing El. 722 + 6 Thru El. 875 + 4 1/2

Figure 3-62. Reactor Building - Equipment Hatch Reinforcing

Figure 3-64. Reactor Building, Outer Plan of Dome, Reinforcing

Figure 3-65. Analysis of Reactor Building Penetration Space Frame Mathematical Model

Figure 3-66. Containment Vessel and Equipment Anchorage Details

Figure 3-67. Personnel Lock and Equipment Hatch Details

Figure 3-68. Typical Penetration Details

Figure 3-69. Reactor Building Containment Vessel, Cylinder Plate Layout and Penetration Location

Figure 3-71. Reactor Building Containment Vessel, Base Liner Plate, Anchors and Embedded Items

Figure 3-72. Reactor Building Containment Vessel, Base Liner Plate, Test Channel Layout

Figure 3-73. Containment Vessel As Built Overall Dimensions and Plate Thicknesses

-}t

Figure 3-75. Break in Element No. 1 - Ice Condenser, Transient Pressure in Compartments 7, 8, and 9

Figure 3-76. Break in Element No. 1 - Ice Condensor, Pressure Transients in Compartments 10, 11, and 12

Figure 3-77. Break in Element No. 1 - Ice Condensor, Pressure Transients in Compartments 13, 14, and 15

Figure 3-78. Break in Element No. 1 - Ice Condensor, Pressure Transients in Compartments 16, 17, and 18

Figure 3-79. Break in Element No. 1 - Ice Condensor, Pressure Transients in Compartments 19, 20, and 21

Figure 3-80. Break in Element No. 1 - Ice Condensor, Pressure Transients in Compartments 22, 23, and 24

Figure 3-81. Break in Element No.1 - Ice Condensor, Pressure Transients in Compartments 25, 29, and 33

Figure 3-83. Compartment Layout - Plan at Equipment Rooms Elevation

Figure 3-84. Compartment Layout - Containment Section View

Figure 3-85. Layout of Containment Shell

Figure 3-86. Civil-Environmental Division Partial Organizational Chart [HISTORICAL INFORMATION NOT REQUIRED TO BE REVISED]

Figure 3-89. Containment Vessel, First Horizontal Mode, f = 9.284 cps (Kalnin's)

G

```
Figure 3-90. Containment Vessel, First Horizontal Mode, f = 9.3234 cps (Finite Elements)
```


Figure 3-94. Containment Vessel, First Vertical Mode

Figure 3-96. Operating Deck Strudl Finite Elements Representation

Figure 3-97. Comparison of Program Results Fixed Boundary Conditions

Figure 3-99. Pressure Seals and Gaskets

Figure 3-100. Pressure Seals and Gaskets

This figure is currently unavailable in an electronic format. It can be located in a hardcopy version of the UFSAR.

Figure 3-102. Diesel Generator Area, General Arrangement Floor Plan, El. 736 +6, Roof Plan, El. 764 + 7

Figure 3-103. Diesel Generator Area, General Arrangement Cross Section

Figure 3-104. Auxiliary Building, Fuel Building, General Arrangement Plan at El. 760+6

Figure 3-105. Auxiliary Building, Fuel Building, General Arrangement Plan at El. 778+10

Figure 3-106. Auxiliary Building, Fuel Building, General Arrangement, Longitudinal Section Thru Fuel Pool
Figure 3-107. Auxiliary Building, Fuel Building, General Arrangement, Transverse Section at Cask Area

Figure 3-108. Auxiliary Building, Floor El. 733 + 0, General Arrangement, Battery Room Plan

Figure 3-109. Auxiliary Building, El. 750 + 0, General Arrangement, Cable Room Plan

Figure 3-110. Auxiliary Building, El. 767 + 0, General Arrangement, Control Room Plan

/

Figure 3-112. Reinforcement Arrangement Between the Auxiliary Building Foundation and a Typical Vertical Wall

Figure 3-114. Vibration Checkout Functional Test Inspection Points

FEATURES TO BE EXAMINED

1	THERMOCOUPLE CONDUIT CLAMPS INSIDE THE THERMOCOUPLE COLUMN.	19	OUTLET NOZZLE INTERFACE SURFACE CONDITION.
2	CIRCUIT SWAGELOK FITTINGS, THEIR BANDINGS,	20	NEUTRON SHIELD PANEL DOWEL PIN COVER PLATE WELDS
		21	NEUTRON SHIELD PANEL SCREW LOCKING DEVICES.
3	CLAMP ARRANGEMENTS AT THE MOUNTING BRACKET LOCATIONS.	22	INTERFACE SURFACES AT THE SPACER PADS ALONG THE TOP AND BOTTOM ENDS OF THE NEUTRON PANELS
4	PLUG TO CONDUIT WELD AT THE FOUR SUPPORT COLUMNS ADJACENT TO THE THERMOCOUPLE COLUMNS.	23	BAFFLE ASSEMBLY SCREW LOCKING ARRANGEMENTS
5	ACCESSIBLE ANGLE CONDUIT CLAMPS INSIDE THE		AT THE TWO TOP AND THE TWO BOTTOM FORMER ELEVATIONS.
6	ACCESSIBLE WELD JOINTS AT THE THERMOCOUPLE STOP FOR THE SELF INSTRUMENTED COLUMNS.	24	LOWER CORE PLATE TO CORE BARREL FLANGE SCREW LOCKING DEVICES ACCESSIBLE AT THE 0°, 90°, 180°, AND 270° AXES.
7	WELD JOINTS ON ACCESSIBLE SUPPORT COLUMN AND MIXING DEVICE GUSSETS (THERMOCOUPLE SUPPORT	25	CORE SUPPORT COLUMNS AND THEIR SCREW LOCKING DEVICES.
	NARDWARE).	26	CORE SUPPORT COLUMN ADJUSTING SLEEVES.
8	RIGIDITY OF EXPOSED PORTION OF THERMOCOUPLE CONDUIT RUNS, AT ACCESSIBLE LOCATIONS.	27	ACCESSIBLE (2) INSTRUMENTATION GUIDE COLUMN
9	RIGIDNESS OF THE ACCESSIBLE PROTRUDING THERMOCOUPLE TIPS.	28	LOCKING DEVICES AND CONTACT OF THE CRUCIFORM
10	THERMOCOUPLE COLUMN AND GUIDE TUBE SCREW LOCKING DEVICES.		WHERE ATTACHED TO THE CORE SUPPORT AND TIE PLATES.
11	ACCESSIBLE SUPPORT COLUMN, MIXING DEVICE, ORIFICE PLATE, AND CORE PLATE INSERT SCREW LOCKING DEVICES.	29	LOCKING DEVICES OF THE SECONDARY CORE SUPPORT BUTT COLUMNS AT THE CORE SUPPORT, TIE PLATE AND BASE PLATE.
12	UPPER CORE PLATE INSERTS.	30	RADIAL SUPPORT KEY WELDS.
13	DEEP BEAM WELDS AT THE SKIRT AND AT THE OUTER HOLLOW ROUNDS.	31	RADIAL SUPPORT KEY LOCKING ARRANGEMENTS AND BEARING SURFACES.
14	ACCESSIBLE GUIDE TUBE WELDS.	32	HEAD AND VESSEL ALIGNING PIN SCREW LOCKING
15	UPPER BARREL TO FLANGE GIRTH WELD.	-	DEVICES AND BEAKING SURFACES.
16	UPPER BARREL TO LOWER BARREL GIRTH WELD.	33	IRRADIATION SPECIMEN GUIDE SCREW LOCKING DEVICES AND DOWEL PINS
17	LOWER BARREL TO CORE SUPPORT GIRTH WELD.	34	VESSEL NOZZLE INTERFACE SURFACE CONDITION.
18	UPPER CORE PLATE ALIGNING PIN WELDS AND BEARING SURFACES.	35	VESSEL CLEVIS LOCKING ARRANGEMENTS AND BEARING SURFACES.

Figure 3-115. Time-History Dynamic Solution for LOCA Loading

Figure 3-116. Theoretical Solution [Historical information, not required to be revised.]

Significant response parameters, calculated in accordance with Biggs' solution with intermediate steps to 5 significant figures:

$$y_m = 0.3041''$$

 $t_m = 0.0665 \text{ sec.}$
 $Tn = 0.1107 \text{ sec.}$
 $y_{max}^{-y}min = 0.3669 \text{ sec}$

Reference: John M. Biggs, <u>Introduction to Structural Dynamics</u>, McGraw-Hill, Figure 2.22, 1964 Figure 3-117. PWhip Verification Example Inelastic Pipe Element [Historical information, not required to be revised.]

Figure 3-118. PWhip Verification Example Inelastic Yield (U-Bar) Element Plastic Behavior [Historical information, not required to be revised.]

M = 0.0259 kip-sec $^2/in$.

Theoretical Solution:

Time of initial impact, $t_0 = 0.071982$ sec. Velocity at initial impact, $y_0 = 27.785$ in/sec. Time to zero velocity (maximum deflection y_m), $t_m = 0.10037$ sec. Maximum displacement of mass m, $y_m = 1.55063$ in.

Reference: William T. Thomson, <u>Vibration Theory and Application</u>, Prentice-Hall, Example 4.6-1, 1965.

Figure 3-120. PWhip Verification Example Inelastic Yield (U-Bar) Element Initial Gap Effect [Historical information, not required to be revised.]

U-Bar stiffness, k = 1973.92 lb/in Mass, m =0.5 lb-sec²/in Gravitational acceleration, g = 386 in/sec² Initial gap, h = 1.0"

Figure 3-121. Test Chamber Temperature Profile for Accident Environment Simulation

Figure 3-122. Reactor Coolant Loop Model for Steam Generator Replacement

Figure 3-123. Reactor Coolant Loop Model for Steam Generator Replacement

Figure 3-124. Reactor Coolant Loop Model for Steam Generator Replacement

Figure 3-125. Reactor Coolant Loop Model for Steam Generator Replacement

Figure 3-131. Hydrodynamic Masses in Vessel/Barel Downcomer Annulus

Figure 3-132. Containment Vessel Mathematical Model

