

DISTRIBUTION CENTRAL-FILED

AEB R/F MWoh1 WPasedag RWHouston

JUN 4 198

FROM

James Miller, Chief Standardization and Special Projects Branch, DOL

R. Wayne Houston, Chief & Accident Evaluation Branch, DSI

SUBJECT:

SMALL MODIFICATION OF ACCIDENT ANALYSIS FOR LICENSE RENEWAL -

Plant Name: University of California at Los Angeles (UCLA) Training Reactor

Docket No. 1 50-142

Responsible Branch: Standardization and Special Projects Branch

Project Manager: H. Bernard Review Status: AEB - Complete

Small modifications to the whole body and thyroid doses presented in the enclosure to the memorandum of March 17, 1981 have been made. A new page 8, to replace the page 8 of the enclosure to the March 17 memorandum, entitled "ACCIDENT ANALYSIS FOR SAFETY EVALUATION FOR LICENSE RENEWAL - UNIVERSITY OF CALIFORNIA AT LOS ANGELES TRAINING REACTOR," is attached.

Original Right by

R. Wayne Houston, Chief Accident Evaluation Branch Division of Systems Integration

Enclosure:

CC: Rt Mattson
W. E. Kreger
D. Eisenhut
W. Pasedag
TE Quay
H. Bernard
M. Wohl

8106150157

DSPACEN DSI: AEB

RAHOUSTON

......

A/2

Radionuclide Inventories*

Nuclide	Curies ***	Plume Concentration, Ci/m ³	Dose Equivalent, rem	- American
85mKr	2.1	4.1 x 10-6	0.08	7
85 _{Kr}	0.03	5.8 x 10-8		
87 _{Kr}	3.8	7.7 x 10-9	0.73	
88 _{Kr}	5.8	1.1 x 10-5	} to	o total body
133m _{Xe}	0.3	5.9 x 10-7		
133 _{Xe}	10.8	2.1 x 10-5	0.13	*
135mxe	1.7	3.3 x 10-4		
135 _{Xe}	10.7	2.1 x 10-3	0.44	
	whole-body dose	equivalent from		
noble	gases		1.38 rem	
131 _I	4.4	8.4 x 10-5	15.2	
132 ₁	6.6	1.3 x 10-5	0.8	
133 _I	10.8	2.1 x 10-5	10.6 } to	thyroid -
134 _I	11.4	2.2 x 10-5	0.7	. 1
135 _I	10.2	1.7 x 10-5	3.0	
Total	thyroid dose eq	uivalent from		
radioiodines			30.3 rem	

*Equivalent to the nominal exposed fuel surface area of all the plates of one element if all clad is stripped away.

***The volume of fuel from which the radiohuckdes escape is

Vesc = 1.37 x 10⁻³ cm x 10,500 cm² ≈ 14 cm³

The total fuel volume/element is 526 cm³. Thus, conservatively assuming a uniform volume distribution of fission products, the fraction of escaped radionuclides is 14/526 \$\times\$.027 or 2.7%.

^{**}Assumed that all activity produced within the range of the recoil particles (1.37 x 10-3cm) escapes; referenced to that fuel element containing the maximum inventory; steady-state operation for 36.5 MWd (inventories much smaller for 8-30 hr. duty cycle); uncorrected for burnup; instantaneous release assumed.