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LEGAL NOTICE

This report was prepared by the General Electric Company as an account
of work sponsored by the Nuclear Regulatory Commission, the Electric
Power Research Institute, and the General Electric Company. No person
acting on behalf of the NRC, the Institute, or members of the Institute,
or General Electric Company:

A. Makes any warranty or representation, express or implied, with
respect to the accuracy, completeness, or usefulness of the
information contained in this report, or that information,
apparatus, method of process disclosed in this report may not
infringe privately owned rights, or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method or

process disclosed in this report.



A new full height BWR system simulator has been built under the
Full-Integral-Simulation-Test (FIST) program to investigate the system
responses to various transients. The test program consists of two test

phases. This report provides a summary, discussions, highlights and

conclusions of the FIST Phase I tests.

Eight matrix tests were conducted in the FIST Phase 1. These tests
have investigated the large break, small break and steamline break
LOCA's, as well as natural circulation and power transients. Results and

governing phenomena of each test have been evaluated and discussed in

detail in this report.

Two of these tests tieback to tests conducted with the earlier TLTA
facility. Comparisons between the FIST and TLTA tests have been made.
The similarities and differences between the counterpart tests are
identified. Effects of the facility scaling compromises on the test

results are identified.

One of the FIST program objectives is to assess the TRAC code by
comparisons with test data. Two pretest predictions made with
TRACB0O2 are presented and compared with test data in this report. These
predictions agree very well with the test results. TRAC's capability to
correctly predict the system responses during the transient is

demonstrated.
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A nev full height BWR system simulator, FIST, built under the
Nl-lumn-gwouu-!nt program, has been used to experimentally
investigate the system responses to various transients. The test
program consists of two test phases; phase | was completed in 1983 and
phase 2 is to be performed in 1984. Test results and governing
phenomena observed in FIST phase | tests are discussed in this report.
In addition, two pretest predictions were carried out using the TRAC
code for two FIST phase | tests. This effort is to assess the TRAC
capability in analyzing the system responses during the transients,

Comparisons of the pretest predictions with test data are also
presented,

FIST phase | test series include the large break, small break and
steamline break LOCA's as well as natural cirvculation and power
transients. Test results have demonstrated the adequacy of GWR designs
anc responses to various transients. Test results, governing phenomena
and hightliights observed in the tests are briefly summarized below.

(A) LOCA Tests

Three LOCA trsts were conducted to investigate system responses to
various break sizes and locations. The large break simulates a double
ended break and the small break simulates & BWR break of 0.20 ft° in the
recirculation loop. The main steamline break test lnvest fgates a double
ended break upstream of the flow limiter in one of the four main
steamlines,

Test results indicate that the bundle {s uncovered in the large
break and small break, but s salways coversd 12 the ste-mline bradk,
Effectiveness of KCC cooling in limiting the fuel rod heatup s clearly
demonstrated in these tests, A peak cladding temperature of 110°F and
925°F 1a measured in the large break and small break, respectively, No
heatup s seen in the steamline break,

8«1



Comparisons of FIST tests with the counterpart tests conducted in
the Two-Loop~Test-Apparatus (TLTA) have shown effects of the jet pump
height on the system inventory responses. The full height jet pumps in
the FIST facility reduce the core inventory depletion during the
blowdown and refilling as compared to the TLTA. The system inventory is
recovered with ECC injection and the bundle is completely reflooded.

The counter-current-flow-limiting (CCFL) observed in many LOCA
tests performed in other test facilities is also seen in the FIST tests.
CCFL 1s again shown to be an important factor affecting the system
behavior. CCPL occurs at various locatfons in the FIST tests and CCFL
effects on the system responses during the transient are discussed,

The stored heat, particularly in the vessel wall, 1is a common
scaling compromise in a small scale test facility, It is found that
local thermal hydraulic responses in the bypass and guide tube reglons
are affected strongly by the stored heat in that region, particularly
during the reflood period. Flow oscillation {is seen in the
refilling/reflood phase in the large break test. MHowever, the peak
cladding temperature is measured long before the stored heat effect
begine to take place. The observed stored heat effect on the system
performance is attributed to the FIST design and is a FIST system
characteristic, The stored heat effect in a BWR (s expected to be

negligible,

(B) Natural Circulation Tests

A series of seven tests with bundle pewers of 0.5 to 3.0 MW vers
performed to investigate the natural circulation in FIST, Test results
generally agree with the natural circulation analysis results of a PWR,
The natural circulation is a function of water level and bundle power,
These tests provide an excallent set of natural circulation data which
can be used for code assessment,

-2



(C) Pover Transients

Three power transient tests were conducted to investigate BWR
system responses to the Main Steamline lIsolation Valve (MSIV) closure
without the control rod insertion, plus with or without High Pressure
Core Spray (HPCS) for a BWR/6 and a BWR/4,

As FIST uses electrically heated rods in the bundle, the kinetics
feedback in a BWR during power transients is not simulated., These tests
were conducted based on simulating the BWR core average power expected
in the event, The FIST bundle power was programmed to simulate the
calculated core average rod surface heat flux in a BWR,

Teat results have shown that the system responses are very similar
to the code analysis. The bundle was always covered and no rod heatup
was seen in these tests.

() Code Assessment

Two pretest predictions were performed using the TRAC code for the
FIST large break and small break tests. Comparisons of the pretest
predictions with test data are presented. TRAC predictions agree very
well with test results and TRAC's capability in correctly predicting the
system responses during the transients has been clearly demonstrated.

§-)



1.1 BACKGROUND

A major objective in power reactor design is to provide sufficient
cooling capability to keep fuel cladding temperature below specified
safety vaiues for a wide range of postulated events. These events are
loss-of ~coolant accidents (LOCA's), with various break wsizes,
operational transients involving loss~of-inventory, multiple system
fatlures and power transients,

Since 1974 a series of test programs have been carried out to
investigate system thermal-hydraulic and bundle heat transfer responses
over a wide range of the simulated BWR conditions. A BWR aystem
simulator, Two-Loop-Tes* Apparatus (TLTA), was first built under the
Blowdown Weat Transfer (BDNT) program to conduct LOCA system blowdown
tests, The TLTA was modified, under the BWR Blowdown/Emergency “ore
Cooling (BD/ECC) program to reflect changes in BWR designs and to extend
the investigations into the ECCS Infection peried of a LOCA. Results of
the above tests identified many TLTA scaling compromises. Consequently,
a nev test facility was bullt under the Pull<integral-Simulation-Test
(FIST) program, The FIST facility provides & more realistic simulation
of LOCA's, from break inttiation through refill/reflood, as well as
simulations of transient events. Ail of these test programs have been
funded jointly by the U. 8, Nuclear Regulatory Commission (USNRC),
Electric Power Research Institute (EPRI), and General Electric Company
e,

The FIOT tesr program consists of twe test phases, Phase | tests
wore completed In Juna 1983, This report presents the test resulen of
Phase | matrix tests, Detatled doscriptions of the FIST facility and
test plan of the entire test program are glven oluﬁnn‘n‘”).



1.2 REPORT OBJECTIVE AND CONTENT

The first objective of this report is to provide a summary, discus-
sion, highlights, and conclusions of the FIST phase 1 tests, based on
interpratations and evaluations of the observed phenomena in the tests.

Two TLTA tie<back tests, a large break and a small break, were
conducted in Phase 1. The second objective of this report is to provide
comparisons of these two tests with their TLTA counterpart tests.

One of the test program objectives is the assessment of the TRAC
code with test data. Two pretest predictions of Phase | tests were
performed uning the TRAC code. The third objective of this report is te
provide comparisons of the pretest predictions with test data.
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Table 2-1
FIST TESTS (PHASE 1)
Initial Available
Test Number Descripticno Power ECCS Highlights
6DBAIB BWR/6 DBA 5.05 HPCS, LPCS core inventory depletion
LPCI (1) reduced due to full heisht
jet pump, CCFL, PCT=710F,
reflood affected by stored
heat.
6SB2C SB, W/O HPCS 5.05  LECS, PCT = 925°F
LPCI (3)
6SB1 SB, STUCK SRV 4.64 LPCS, Responuesolinilar to 6SB2C,
LPCI (3) PCT = 720°F.
6MSB1 MS LINE BREAK 4.€4 HPCS, LPCS, CCFL, no core uncovery, no
LPC1 (1) heatup
6PNC1-1A Natural Cirec. 0.5 N/A Natural circulation flow
1-2B 1.0 affected by power and water
1-3 1.5 level. Internal circulation
1~-4 2.0 flow observed. Responses
1-5 2.5 similar to BWR anaiysis.
1-6 3.0
1-7A 2.0+SUB
6°MC1 BWR/6 MSIV Clos. 4.64 All Responses similar to BWR
analysis, no core uncovery,
no heatup.
6PMC2A BWR/6 MSIV Clos. 4.64 RCIC, LPCS, Responses similar to BWR
(w/o HPCS) LPCI (3) analysis, no core uncovery,
no heatup.
4PMC1 BWR/4 MSIV Clos. 4.35 All Responses similar to BWR
analysis, no core uncovery,
no heatup.
*6PMC2 Separate Effect 4.64 RCIC, LPCS, Upper bundle uncovered and
BWR/6 MSIV Clos. LPCI (3) heatup due tc high power,
(w/o HPCS, test terminated by bundle
6PMC1 power) protection.
*6SB2B SB, w/o HPCS 5.05 LPCS, Small ADS size, power off by
LPCI (3) bundle protection at 340 sec.,

*Not matrix tests. Data are

PCT = 950°F.

available in INEL data bank.



3. FIST FACILITY DESCRIPTION

3.1 FIST TEST FACILITY

The FIST Facility is scaled to a BWR/6-218 standard plant. A full
size bundle with electrically heated rods is used to simulate the
reactor core. A scaling ratio of 1/624 is applied in the design of the
system components. A schematic of the FIST facility is shown in

Figure 3-1.

Major improvements over the TLTA, anu key features of the FIST

facility, include:

(1) Full height test vessel and internals

(2) Correctly scaled fluid volume distribution

(3) Simulation of Emergency Core Cooling System (ECCS), Safety
Relief Valves (S/RV], and Automatic Depressurization System

(ADS)
(4) Level trip capability

(5) Heated feedwater supply system, which provides the capability

for steady state operation.

Detailed descriptions of the FIST system are given in Reference 1.
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4. TEST SIMULATION STUDY

An extensive scaling study was carried out during the FIST design
to identify and minimize the scaling compromises in the facility.
Results of this study are discussed in Reference 1. Some scaling
compromises and facility capability limitations could not be completely
eliminated in FIST and may affect the system performance, depending upon
the tests. Areas of concern include excess fluid mass in the
recirculation loops, S/RV and ADS sizes, MSIV closure, feedwater supply

control, and power transient test simulation.

4,1 RECIRCULATION LOOP TSOLATION

FIST has two external recirculation loops for simulating the normal
and coastdown performance of the drive pump flow. Due to design
constraints, the FIST loops are overscaled in size and length and thus
contain excess fluid. In a depressurization transient the fluid in the
loops will flash and finteract with the fluid in the pressure vessel.
To improve the system post-flashing response, valves are installed in

the suction and drive lines to isolate each loop before flashing starts.

In most cases these valves are closed, and excess mass in the loops
is isclated from the pressure vessel, after the jet pump coastdown is
completed at about 20 secoads. However, in a rapid depressurization
transient, such as the large break or steamline break, the loop fluid
may begin to flash before the jet pump coastdown is completed. In such
cases, these valves are closed just before the occurrence of flashing.
Once the system begins to flash, the jet pump performance will be
dominated by the flashing effect and the coastdown simulation is no
longer important. Table 4-1 lists the loop isolation timings for the

Phase 1 tests.

b1
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Table 4-1
LOOP ISOLATION TIMES

Large Break Test (6DBAl)

- Based on TRAC Analysis, Loop Flashing at 14 Sec.
(A) Broken Loop: 0 sec
(B) 1Intact Loop: 13 sec

Small Break Tests (6SBl and 6SB2)

- No Loop Flashing before SRV/ADS
(A) Broken Loop: 0 sec
(B) Intact Loop: 20 sec

Fower Transient Tests (6PMC1, 6PMC2 and 4PMC1)
- No Loop Flashing
(A) Both Loops: 20 sec

Steamline Break Test (6MSB1)
- Based on Pretest Data, Loop Flashing at "8 Sec
(A) Both Loops: 7 sec

4=2



pefiminas,

GEAP-30496

4,2 S/RV AND ADS SIZES

Five S/RV valves with properly sized orifices (Tabl: 4.2-]1) are
used in the FIST to simulate the S/RV functional groups in a BWR. The
normal and low/low set operations of these groups in a BWR are
simulated (Tables 4.2-2 and 3). One of these valves is also used to
si ulate the ADS cperation. S/RV orifices are sized to simulate the
scaled S/RV flows. Two sets of S/RV orifices are used for the BWR/6 and
BWR/4 simulations (cases I and III of Table 4.2-1).

ADS is activated in a small break test, resulting a rapid system
depressurization, flashing, and mass redistribution. Major interest of
the small break test is to investigate these phenomena, and the
interactions of ECC injections with the svstem performance in the post
ADS period. Therefore, it 1is necessary to correctly simulate the
post-ADS depressurization., As discussed in Reference !, the FIST vessel
contains overscaled metal mass and stored heat, resulting in extra steam
generation during the system depressurization. An oversized ADS orifice
(Case 11 of Table 4.2-1) is used to discharge excess steam and to
achieve the simulation of the calculated BWR depressurization (Figure
4.2-1). 1Ir the power transient tests, the system is maintained at high
pressure and the vessel wall stored heat has a small effect on the

system performance.
4.3 MSIV CLOSURE

The Main Steamline Isolation Valve (MSIV) in a BWR takes about 4
seconds to complete the closing operation upon receiving the trip
sig!al. The FIST MSIV control cannot simulate this gradual closing
operation and a step closing is employed at 2 seconds after the trip
sigral. This givec a correct simulation of the total steam discharge

during the MSIV closure.
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Table 4.2-1
FIST S/RV AND ADS SIZES

S/RV Size, Dia. In.

BWR/6 BWR/6 BWR/4

S/RV ¥o. Case 1 Case 2 Case 3
i 0.183 0.23%* 0.235
2 0.183 0.23% 0.288
3 0.317 0.398%* 0.288
4 0.366 0.459% 0.333
5/ADS 0,482 0.607 0.333

FIST Test 6PMC1 6SB1

6PMC2A 6582C 4PMC1

*Not Activated in Tests 6SB?C and 6SBIl
**Not Activiated in Test 6SB2C



Table 4.2-2
FIST S/RV OPERATION (BWR/6)

Pressure Setpoint, Cpen/Close (PSIG)

S/RV No. Normal Relief Low/Low set Relief
1 1103/1003 1003/926
2 1113/1003 1073/936
3 1113/1003 1113/946
4 1113/1003 -
5 1123/1003 -

4-5



Table 4.2-3
FIST S/RV OPERATION (BWR/4)

Pressure Setpoint, Open/Close (PSIG)

S/RV No. Normal Relief
1 1115/985
2 11277997
3 1137/1007
4 1148/1018
5 1163/1033

Low/Low set Relief

1085/985

1097/997

1107/1007

1118/1018

1113/1033

*Normal to Low/Low Set at T = 10 Sec,, Based on REDY Susquehanna Plant

Inputs
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4.4 FLEDWATER SUPPLY

The FIST feedwater supply system includes a hot water line and a
cold water line. This system has been designed mainly for achieving a
steady state operation. The hot water supply is used for the water
level control, whiie the cold water supply is to maintain water

temperature in the downcomer.

The FIST is not capable of simulating the gradual closing and/or
control in a BWR feedwater system. Similar to the MSIV operation, the
FIST feedwater supply is activated to have a step closure at about the
half time of the expected closing duration, so the total feedwater

supply into the vessel is correctly simulated.

4.5 POWER TRANSIFNT TEST SIMULATION

In a BWR power transient the bundle power and its distribution is
strongly affected by local void fraction, due to the neutronic feedback.
FIST uses a bundle with electric heater rods, which has a fixed power
profile and peaking factor distribution among the rods. Therefore, the
kinetic feedback and coupling between the bundle power and void fraction
is not simulated in the FIST test. Because the primary objective and
interest of the power transient tests are to investigate the system
response, rather than local phenomena in the bundle, the test is based

on simulating the core average power expected in the event.

GE transient code analyses of the BWR power transiaents reported in
references 5 & 6 are used as bases for the FIST power transient test
simulation study. The FIST heater rods bundle power is programmed to
simulate the core average rod surface heat flux in a BWR as calculated

by the transient code.

A TRAC deck modeled with heater rods was developed and used to
determine the FIST power input. The power was obtained by matching the
TRAC calculated rod surface heat flux with that of the transient code.
(Figure &4.5-1).
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5. MEASUREMENT SYSTEM

The FIST measurement system has been developed to obtain sufficient
measurements to characterize the system responses to various transients
and to provide test data for assessing analytical codes. The
measurements obtained include: system pressure, nodal differential
pressure, flow differential pressure, fluid temperature, wall
temperature, rod c!adding temperature, conductivity probe signal, valve
position, pump speed, power, volumetric flow etc. More than 400

measurement channels are used to collect data in each test.

The output signals from the measuring devices are recorded on a
data tape with a Hewlett-Packard data acquisition system. Raw data is
reduced for further processing with the same H-P computer. Details of
measuresments, data acquisitfon data processing and application are given

in Reference 1.
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6. TEST DATA

Two types of data are presented in this report. They include the
direct measurements, as indicated in Section 5, and derived quantities.
Derived quantities are generally a result of combining one or more
measurements. While the direct measurements are self-evident to
interpret, understanding of the system response and governing phenomena
is required for interpreting the derived quantities. Derived quantities

include nodal density, mass, void fraction, water level and flow rate.

During the test, a standard data plot package was developed to
reduce the most important and useful measurements with the H-P computer.
These results were used to gquickly evaluate test results and judge the
test acceptance immediately after the tests. Most of the plots used in
this report are reduced with this standard package. Data of all Phase 1

matrix tests have been stored in the INFL data bank for further

applications.
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7. DISCUSSIONS AND RESULTS OF PHASE I MATRIX TESTS

FIST Phase I has a total of 8 matrix tests. Highlights, key system
responses, and governing phenomena observed in all tests are discussed
in this section. Two LOCA teste, 6DBAIB and 6SB2C, are TLTA tie-back
tests. Comparisons of these two tests with their TLTA counterpart tests
are discussed in Section 8. Pretest predictions performed with the TRAC

code for these two LOCA tests are discussed in Section 9,
7.1 LARGE BREAK TEST 6DBAIB

7.1.1 General Description

Test 6DBAIB is a recirculation suction line break test with a
"central average" bundle power of 5.05 MW and average ECC flow rate.
This test is a tie-back test of the TLTA reference test 6425/R2.
Sequence of significant events observed in the test is shown in Table

8.1-1, in comparing with the TLTA test results.

7.1.2 System Pressure

The system pressure transient is shown in Figure 7.1-1. The system
begins to depressurize very rapidly after the recirculation line suction
is uncovered at about 8 seconds. This depressurization leads to lower
plenum flashing beginning at about 11.5 seconds. HPCS injection begins
at 27 seconds and LPCS and LPCI at 64 and 75 seconds, respectively.

7.1.3 Rod Temperature

The rod temperatures measured at various elevations (Figure 7.1-2)
indicate that the bundle begins to heatup at about 40 seconds as the
bundle is uncovered. The rod temperature increase is limited by the
rewet due to ECC cooling and a PCT of 710°F is observed, All rods are
completely quenched before or during the bundle reflood at about 125

seconds.

7=1
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7.1.4 System Mass and Regional Mass

Figures 7.1-3 through 11 show the total system mass and regional
mass responses. The system inventory decreases rapidly during the
blowdown phase and begins to recover after ECCS are initiated.

The jet pump is nearly empty at about 40 seconds (Figures 7.1-4
and 5), indicating that the lower plenum water level uncovers the jet
pump exit. It begins to recover at about 90 seconds. Fluctuation is
seen in the jet pump mass response particularly beyond 200 seconds
during th; refill/reflood phase.

Similar mass fluctuations are observed in other regions during the
same period (Figures 7.1-4 to 12). The jet pump mass response is also
given in these plots, in order to compare the timings of peaks and
troughs of fluctuations among these regions. It can be seen that mass
fluctuation responses in regions of the jet pump, lower plenum, bundle
and upper plenum are generally in phase, while the bypass and guide tube
respond in different phase from the above group, This regional mass
fluctuation response is attributed mainly to stored heat in the

bypass/guide tube region. The governing phenomena are discussed below.

7.1.5 Bypass Stored Heat Effect and Govcrninl Phenomena

FIST has relatively heavy metal flanges, plates, and vessel wall
which contain over-scaled amounts of stored heat, particularly in the
lower bypass re~ion (figure 7.1-13). The excess stored heat is
transferred to the fluid to generate extra steam which affects the

system performance in the transient as the system depressurizes,

Figures 7.1-14 to 16 provide aids to explain the governing
phenomena of these mass fluctuations and interactions among various
regions. As the system blows down, large steam generation results in
CCFL at various locations, as shown in Figure 7.1-14, HPCS and LPCS
water is held in the upper pleanum by CCFL at the upper tieplate and top
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of the bypass. LPCl water injected into the bypass either vaporizes
when it contacts the bypass hot wall or is diverted into the upper
plenum by the large steam upflow coming from the lower bypass. No
significant increase of mass is seen in the bundle and bypass before 120
seconds (Fiyures 7.1-8 and 11), although LPCS and LPCI are initiated at

64 and 75 seconds, respectively.

Most ECC water is initially accumulated in the upper plenum. This
eventually becomes subcooled and leads to a subcooled CCFL breakdown at
both upper tieplate and top of the bypass at about 120 seconds. The
bundle and bypass are quickly refilled with ECC flow and water from the
upper plenum, while CCFL at the Side Entry Orifice (SE0) limits water
draining into the lower plenum from the bundle. Flow in the bundle and

bypass becomes stagnant once these two regions are ~ompletely refilled.

while flow in the bypass is stagnant, the vessel wall stored heat
vaporizes the water, particularly in the lower bypass region (Figure
7.1=15). As vapor moves upward, LPCI water is again diverted into the
upper plenum. Some water in the bypass is also driven into the lower
plenum and bundle as the vapor volume rapidly expands. Accumulation of
ECC water in the upper plenum results in an increase of water level
(i.e. the upper plenum-to-lower plenum pressure head) which is balanced
with a higher water level (or water head) in the jet pumps. Some water
in the jet pump may spill over into the downcomer. During this period,
regions of the jet pump, lower plenum, bundle and upper plenum show an

increase in mass, but the bypass and guide tube have a decrease in mass.

Vapor generated in the bypass rises and then collapses as it meets
subcooled LPC! water in the upper bypass region. ECC flow and water in
the upper plenum rushes into and again fills the bypass and guide tube
(Figure 7.1-16). This contributes to a decrease of water level in the
upper plenum. The jet pump water level subsequently drops to maintain a
pressure balance. Once the bypass refilling is completed the bypass
flow becomes stagnant and a new cycle of the above response starts
again. After several repeated cycles, a significant amount of stored heat

is removed and th- mass fluctuation and redistriburion subsides.

7-3
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Fluid temperatures measured in the bypass region (Figures 7.1-17
and 18) indicate the stored heat effects on movements of hot and cold
water in the bypass duriug the refilling and vaporizing process. When
the bypass is full of water, the lower region is affected by the stored
heat and becomes hotter than the upper region. Saturated fluid is
observed during che inventory depletion.

It should be noted that the above oscillation behavior, attributed
to stored heat, is a FIST characteristic and is not expected in a RWR,
Stored heat has negligible effect on the BWR bypass response during the
refill/reflood phase. In addition, the three-dimensional nature of BWR
bypass region allows LPCI flow and water in the upper plenum to drain
easily and continuously ‘nto the bypass. A smooth and earlier refill
and reflood of the core is therefore expected in a BWR,

7.1.6 Summary (Test 6DBALB)

Key phenomena observed in the FIST test 6DBAIB are similar to the
corresponding tests conducted in the TLTA and other facilities, except
for the stored heat effect during the reflood period. Test results can
be summarized a1s folliows:

(1) The system blows down very rapidly after the breazk is
uncove~ed. The system depressurization leads to a system

bulk flashing and eventually ECCS injections.

(2) CCFL is observed at various locations such as SEO, UTP, top of
the bypass and top of the guide tube.

(3) The jet pump exit {s uncovered at about 40 seconds and later

recovered due to the inventory makeup by ECC water.

(4) The bundle uncovery at about 40 seconds results in a general
bundle heatup. ECC cooling effectiveness is clearly
demonstrated in this test which limits the rod temperature
increase. A PCT of 710°F was measured.
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(5) The vessel wall stored heat affects and delays CCFL breakdown
at top of the bypass and hence delays the core refill/reflood.
Both the bundle and bypass are refilled mainly by subcooled
CCFL breakdown at top of the core.

(6) Flow oscillation is observed during the reflood period. This
is attributed to the stored heat effect in the bypass/guide
tube regions. This reflood response is a FIST facility effect
and is not expected in a BWR. The PCT is observed before the

ocurrenice of flow oscillation.

7=5
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Figure 7.1-13. FIST Bypass, Guide Tube and Bundle
Inlet Configuration

7-18



GEAP-30496

HPCS
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Break
Break
Figure 7.1=14. System Condition at About 60 seconds
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Figure 7.1-15. System Condition During The Bypass Vapor Generation
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Figure 7.1-16. System Condition During the Bypass Refilling
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7.2 SMALL BREAK TEST, 6SB2C

7.2.1 General vescription

The small break test, 6SB2C, simulates a BWR/6 recirculation
suction line break of 0,05 ftz with HPCS assumed to be unavailable.
This test is also a TLTA tieback test. Test conditions of the TLTA test
6432/R1 including an initial bundle power of 5.05 MW, core flow of 42
1b/sec, ADS time delay of 120 second, and ECC water temperature of 90°P.
are used in this test (Figure 7.2-1). In addition to the test results
discussed below, comparisons between this test and the TLTA counterpart
test, 6432/Rl are given in Section 8. A pretest prediction made using
the TRAC code for this test is discussed in Section 9.

7.2.2 Key Events and System Pressure

Key events observed in the test are listed in Table 7.2-1. Upon
break initiation and simultaneous start of bundle power decay, trip of
recirculation pumps, and trip of feedwater supply, the steam gereration
in the core begins to decrease. The system pressure (Figure 7.2-2),
however, is maintained nearly constant by the pressure regulator until
the Main Steam Isolation Valve (MSIV) is tripped to close at 75 seconds
when the water level reaches level !, The Aut. atic Depressurization
System (ADS) is also activated at level |, with a time delay of 120
seconds. The MSIV closure results in an increase of the system
pressure. The subsequent rapid depressurization by ADS leads to
initiations of LPCS and LPCI at 310 and 335 seconds, respectively,

7.2.3 Water Level and Scenario

Water level determined from differential pressure (DP) and
conductivity probe (CP) measurements in various regione is illustrated
in Figures 7.2-3 and 4. "Snap shot" views of system conditions during
the transient (Figures 7.2-5 to 13) provide aids for discussing the
scenario observed in this test,

7-24



GEAP-30496




GEAP-30496

different than the FIST large break test 6DBAIR as discussed in Section
7.1. In the test 6DBAIE, both the bundle and bypass were refilled at
about the same time by the subcooled CCFL breakdown at the top of the
core. Differences in steam generation and ECC flow affect the refilling
process in these two tests, as discussed below.

At the time of the LPCI injection, the steam generation in the
bypass region of the small break test is smaller than the large break
test 6DBAIB, due to less water being left in the bypass/guide tube
region (Figure 7.2-4) and a elower depressurization rate (Figure 7.2-2).
Test 6DBAIB was performed with one LPCI simulated, while this small
break test simulated 3 1PCI systems. The relatively large LPCI flow is
able to condense a significant amount of the steam upflow and change the
CCFL condition at the top of the bypass, allowing LPCS water in the
upper plenum to drain into the bypass. This leads to a quick refilling
of the bypass, while CCFL at the upper tieplate limits water draining
into the bundle from the upper plenum. Later in the transient, the
bundle 1is reflooded by both top-down and bottom-up refilling (Figure
7.2=11) which is also evident in the rod temperature response (Figure
7.2=14),

Afte. the core is reflooded the subcooled FCC water arrives at the
core inlet and results in a CCFL breakdown at the SFO. This leads to

lower plenum refill at 465 seconds (Figure 7.2-4 and 13).

7.2.4 Rod Temperature and Mass Responses

-

Figure 7.2-14 shows that all rods heatup during the bundle uncovery
and are completely quenched before or drring the bundle reflood (420
seconds). A PCT of 920°F is measured. The regional mass responses of
various regions are shown in Figures 7.2-15 to 24, The flashing surge
at ADS reeults {n a mass redistribution throughout the entire system,
These mass rerponses reflect the scenario and system performance

discussed in the previous sections,
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7.2.5 Summary (Test 6SB2C)

In summary, the following responses are observed in the FIST small

break test, 6SB2C:

(1) The system pressure does not reach the S/RV opening setpoint

(8)

after MSIV and there is no S/RV activation

The bundle and bypass are partially uncovered before ADS and
recovered at ADS by the flashing surge. These two regions are

completely uncovered after ADS and later refilled by ECC

water.

CCFL is observed at SE0, UTP, top of the bypass and top of the
jet pump during the post-ADS depressurization.

The downcomer water level remains relatively high after ADS.
The jet pump exit is uncovered and later recovered,

A relatively smooth refill/reflood in the bypass/guide tube is

observed.

The bundle is reflooded with top-down and bottom-up refilling.

A PCT of 925°F was measured.
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12,
13.
14,

15.

16,
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18.
19.
20,
21,
22,
23.
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Table /.2-1
KEY EVENTS, 6SB2C

Break Initiation

Bundle Power Trip

Jet Pump Trip

Feedwater Trip
Recirculation Loop Isolation
Water Level Reached LI
MSIV Closure

ADS Activation

Bundle Uncovery (Top)
(A) Before ADS

(B) After ADS

Bypass Uncovery (Top)
Jet Pump Suction Uncovery
Bundle Heatup Begins
Final Rod Rewet

LPCS Activation

LPCS Injection

LPCI Activation

LPCI Injection

Bypass Refill Begins
Bypass Refill Completed
Bundle Refi'l Begins
Bundle Refill Completed
Jet Pump Exit Uncovery
Jet Pump Exit Recovery
SEO CCFL Breakdown
Lower Plenum Refilled
PCT (925°F)

End of Test

7-28

Time (sec)
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20
75
77
195

155
237
133/235

165
250
420

35
310

35
335
362
380
370
420
290
420
465
465
400
510
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7.3 SMALL BREAK WITH STUCK SAFETY RELIEF VALVE TEST, 6SBl

7.3.1 General Description

Test 6SBl simulates a BWR/6 recirculatiun line break of 0.05 ft2
with a s*uck open safety relief valve. In addition, similar to test

6SB2C, HPCS is assumed to be unavailable.

Tesr 6SBl is performed with a BWR/6 core average power of 4.64 MW,
This power 1s slightly lower than the TLTA tieback test, 6SB2C, which
simulates a central average power of 5.05 MW. Consequently, the initial
core flow, steamline flow, and feedwater supply of this test are also
slightly different from test 6SB2C (Figures 7.3-1 vs 7.2-1). A nominal
ADS time delay of 105 seconds, rather than 120 seconds, is used in this
test., FCC water temperature is 120°F, 30°F higher than test 6SB2C.

It should be noted that, based on realistic operator guideline
calculations for a BWR/6 with 0.05 ftz break, the system pressure does
not reach the SRV opening setpoint during the period between MSIV
closure and ADS activation., Thus, the combination of a stuck open
safety relief valve with a 0.05 ftz break is not expected in a BWR.
However, the current licensing calculation, based on bounding
assumptions, indicates that SRV #1 is activated to open at 45 seconds
after the MSIV closure. The test 6SBl is conducted with the SRV#1

activated at 45 seconds after the L1 signal (or the MSIV closure).

7.3.2 Key Eveits and System Behavior

Key events observed in this test are summarized in Table 7.3-1.
Generally, the system performance and governing phenomena of this test
are similar to the test 6SB2C which is discussed in detail in section
7.2. Those discussions are not repeated here for this test, Compari-

sons between these two tests are shown {iu data plots to demonstrate the

similarity of the system behavior,
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7.3.3 System Pressure

The system pressucre is shown in Figure 7.3-2. The system pressure
in the early transient is identical to test 6SB2C. Upon activation of
SRVF#1, system pressure begins to decrease. The major depressurization
occurs at ADS, leading to the ECCS initiations (Figures 7.3-3 and 4).
The post ADS pressure response is similar to test 6SB2C. The slightly
lower pressure in this test is attributed to an earlie- ADS activation

(190 vs 195 seconds) and a lower pressure at ADS.

7.3.4 Rod Temperature

Figure 7.3-5 shows the rod temperatures measured at various
eievations. Similar to test 6SB2C, the entire bundle experiences rod
heatup during the bundle uncovery. The heatup in this test is

relatively mild due to the lower power and a PCT of 720°F is measured.

7.3.5 System Mass and Regional Mass

The total syster mass and regional mass are shown in Figures 7.3-6
to 16. These plots clearly demonstrate the similarity of the system
responses between the two small break tests. The earlier refill and
reflood in test 6S81 for various regions are due to the earlier ECC
initiations (Figures 7.2-2 and 4).

7.3.6 Summary (Test 6SB!)

bystem responses of the small (reak test with a stuck relief value,
6SBl, are found to be very similar to the test 6SB2C. The activation of
S/RV #1 has small effect on the system pciformance. Key phenomena
such as CCFL at various locations and uncovery/recovery of the bundle
observed in the tesi 6SR2C are also seen in this test. A PCT of 720°F

was measured.
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Table 7.3-1
KEY EVENTS, TEST 6SBl

Break Initiation

Bundle Power Trip
Feedwater Trip
Recirculation Pump Trip
Recirculation Loop Isolation
Level 1 Reached

MSIV Closure

SRV #1 Opens

ADS Opens

LPCS Begins

LPCI Begins

Jet Pump Exit Uncovered/Recovered

Lower Plenum Refill Completed

Bypass Refill Begins/Completed
Bundle Reflood Begins/Completed

Fnd of Test (Power Off)

7-55
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20
85
87
130
190
290
320
230/360
450
350/380
355/420
485
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7.4 MAIN STEAMLINE BREAK TEST 6MSBI

7.4.1 General Description

The main steamline break test 6MSBl simulates a BWR/6 response with
a double ended break upstream of the flow limiter in one of the four

main steamlines.

7.4.2 Break Simulation

Figure 7.4~1 illustrates the steamline control response in a BWR
under the break condition. The turbine is isolated almost immediately
(0.1 sec) upon the break initiation. The effective break area consists
of one main steamline flow area and one steam line flow limiter, due to
back flow via the bypass header. The turbine bypass opens at about 1
second and the effective break flow area at this time also includes the
bypass line area. By about 5.5 seconds, the main steam isolation valve
is closed and the break is limited to one main steamline. For
simplifying the test operation, and having a bounding simulation, the
test was performed with full turbine bypass flow area from 0 to 5.5

seconds and one steamline flow area beyond 5.5 seconds.

7.4.2 Key Events and System Pressure

Table 7.4-1 lists timings of key events observed in this test. The
system pressure (Figure 7.4-2) drops very rapidly upon break initiation,
due to a large steam discharge through the break (Figure 7.4-3). The
depressurization rate is reduced as the break changes to a smaller size
at 5.5 seconds, HPCS injection begins at 27 seconds and LPCS and LPCI
at 88 and 95 seconds, respectively.

7.4.4 Water Level and Governing Phenomera

Mixture levels observed in various regions are shown in Figures

7.¢t-4 and 5. Void distribution derived from nodal AP's in the bundle
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and upper plenum is also shown in Figure 7.4-5. These plots plus "snap
shot" views of the system conditions (Figures 7.4-6 to 10) are used to

discuss the system performance.

A major result of fast depressurization upon the break initiation
is that water in various regions begins to flash into steam and the
water level swells up very rapidly. Two phase mixture level in the

downcomer reaches and covers the steamline inlet at about six seconds

(Figures 7.4-4 and 6).

As the initial flashing surge begins to subside, two phase mixture
levels are formed in the upper and lower downcomer regions (Figures
7.4=4 and 7). This is attributed to the large steam generaticn rate and
the FIST configuration in these regions, The strong steam upflow leads
to CCFL at lccations with small flow areas such as the top of the jet
pumps and top of the dryer skirt. 1In addition, the elbow shape
connection of the FIST side-arm downcomer vessel to the main vessel and
strong steam upflow retards fluid in the upper downcomer from draining
into the lower region (Figures 7.4~7 to 9). The steamline inlet is
uncovered at about 80 seconds. Following LPCS and LPCI injection the

system begins to accumulate inventory and the water level in the

downcomer begins to recover.

After the early flashing surge, a mixture level begins to fotm in
the lower plenum (Figure 7.4-5). The mixture level drops below the jet

pump exit at about 70 seconds and begins to recover after ECCS

injection.

CCFL at the SEO limits the core drainage into the lower plenum;
hence, and the core remains covered throughout the entire transient.
The void fraction distribution, shown in Figure 7.4-5, provides insight
into the thermal hydraulic performance in these regions during the
transient. A relatively uniform distribution of void fraction
throughout the bundle, due to the flashing surge, is seen in the early
period of the transient. As the flashing surge subsides, a stratified

void distribution is observed in the bundle.
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Although HPCS begins to inject water into the upper plenum at 27
seconds, the veid fraction in the upper plenum remains relatively high
for a long period of the transient. This indicates that HPCS flow does
not condense all steam upflow coming from the core and cold HPCS water
does not penetrate intc the lower regions. During this period, the void

fraction in the bundle continues to increase due to boil off.

Two phase mixture in the upper plenum becomes single phase
saturated water immediately following the LPCS and LPCI injections at
about 90 seconds. In this period of the transient the middle of the
bundle has a high void fraction. However, the rods are well cooled and
no heatup is seen in the bundle (Figures 7.4-11 and 12).

Continuous injection of subcooled ECC water eventually leads to
the upper plenum water becoming subcooled. The subcooled water reaches
the upper tieplate and results in a CCFL breakdown at that location at
150 seconds. Water drains into the bundle filling it with single phase
saturated water, with CCFL at the SEO holding the water in the bundle.

The water level rise in the lower plenum after 160 seconds is due
to the drainage at the SEO which, in turn, allows subcooled water in the
upper region to flow into the bundle. Most of the bundle is subcooled
beyond 180 seconds. A subcooled CCFL breakdown at the SEO occurs at
about 200 seconds which leads to a complete refill of the lower plenum.
A water level is seen in the upper plenum during the later transient of
the refill/reflood phase.

7.4.5 System Mass and Regional Mass

Figures /.4-13 to 25 are plots of the system total mass and
regional mass. Similar to the large break test 6DBAIB, fluctuations are
seen in the regional mass responses during the reflood period after
about 160 seconds. This is again attributed to stored heat in the
bypass/guide tube region. The governing phenomena are as discussed in

detail in Section 7.1.
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7.4.6 Summary (Test 6MSB1)

A summary of key phenomena observed in the steamline break test,
6MSB1, is given below:

(1) Upon the break initiation, water level swells and reaches the

steamline elevation. The steamline inlet is uncovered at 80

seconds.

(2) CCFL is observed at various locations such as SEO, top of the
dryer skirt and top of the jet pumps.

(3) The bundle is always covered with two phase misture and there

is no rod heatup.

(4) The jet pump exit is uncovered and recovered later.
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Table 7.4-1
KEY EVENTS, TEST 6MSBI

Break Initiation
Break Size Change
(0.00539 > 0.00406 FT>)

Power Trip
Feedwater Trip
Recirculation Pump Trip
ECCS

HPCS

LPCS Activation/Injection

LPCI Activation/Injection

Steamline Inlet Covered

Steamline Inlet Uncovered

Jet Pump Exit Uncovered
Jet Pump Exit Recovered

Lower Plenum Completely Refilled

End of Test (Power Off)

7-76

Time (Sec)

27
35./88.
35./95.

80

65
120

205

335
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At normal water level ( 37" BWR level), a natural circulation flow
of about 10 1bm/sec is measured for bundle power higher than 1.5 MW.

This flow is more than 25% of the core flow at normal operating

conditions.

7.5.4 Internal Circulation

1. addition to the natural circulation from the downcomer to the
core, there are several internal circulation flows. Figures 7.5-6 to 8
illustrate these internal flows with water level at three different
elevations, as observed in the 2.0 MW test. As water level drops, the
natural circulation flow from the downcomer decreases, but the
bypass-to-bundle flow increases. Increasing internal flow is due to an
increase in the driving head between the bypass and the bundle resulting

from a higher void fraction (Figures 7.5-9 and 11) in the bundle.

7.5.5 Water Level Measurements

In a BWR, water level in the downcomer is monitored with a wide
range water level measurement. Results given in Figures 7.5-4 and 5
show the same wide range water level measurement in FIST. Water level
can also be determined based on the uncovery of differential pressure
(DP) taps and conductivity probes (CP). Figure 7.5-12 shows that these

different measurements agree well with the wide range water level

measurement,

7.5.6 Summary (Test 6PNC1)

A series of natural circulation tests which cover a wide range of
bundle powers has been conducted in FIST. These tests provide ar

excellent set of natural circulation data which can be used for various

applications such as code qualification.
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Test results have demonstr:
adequate cooling in the ¢
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7.6 BWR/6 POWER TRANSIENT WITH MSIV CLCSURE TEST 6PMCl

7.6.1 General Description

Test 6PMCl simulates a BWR/6 Main Steamline Isolation Valve (MSIV)
closure without power scram. HPCS and RCIC are assumed to be
functional. This event is the severest case based on the BWR power
transient analysis reported in reference 5. As discussed in
Section 4.5, the power transient test simulation is based on a transient
code calculation for a BWR. Results of this BWR study are shown in
Table 7.6-1. Table 7.6-2 lists the test conditions and trips employed
in the test.

7.6.2 Key Events and Bundle Power

Timings of major events of the test are given in Table 7.6-3.
Figure 7.6-1 shows the bundle power applied in the test throughout the
transient and Figure 7.6-2 is a short term plot for the same power which

indicates a power surge to 7.3 MW at about 4 seconds.

7.6.3 Pressure Response and S/RV Operation

The system pressure is presented ir Figure 7.6-3. Following the
MSIV closure, the system iscolation and increasing steam generation rate
in the bundle causes the system pressure to increase rapidly, reaching
the opening setpoints (Table 4.2-2) of the normal relief of all five
S/RV's, Steam discharge through these five valves (Figure 7.6-4), plus
the reduction in the bundle power (Figure 7.6-2), decreases the system
pressure. As in a BWR, once the normal relief of S/RV #2, 3, 4, or 5 is
activated, the operation of all S/RV's is switched to the low/luw set
relief for the remainder of the transient. Thus, the system pressure is
maintained within the pressure range of the low/low set relief of S/RV's

bv opening and closing S/RV valves. (Figure 7.6-4).
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7.6.6 Summary (Test APMC1)

Results of the FIST power transient test, 6PMCl, are summarized

below:

(1) Water level in the downcomer drops and uncovers the top of the

jet pump.

(2) The bypass is partially uncovered. The bundle, however, is

always covered and there is no rod heatup.

(3) Water level is completely recovered by HPCS and RCIC

injections,
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Table 7.6-1
BWR/6 RESPONSES OF TRANSTENT CODE CALCULATION

Time (Sec)
o MISV Closure 0-4
o Pressure and Power Rise Begins
o Power Transient High Pressure (1113 PSIG) Reached 4
o Relief Valve Lift
o Vessel Pressure Peaks
o Feedwater Limit Tnitiated 29
o Feedwater Stop 44
o L2 Reached 55
o HPCS/RCIC Initiation 75
o Maximum Neutron Flux (Z) 638
o Maximum Vessel Bottom Pressure (PSIG) 129
o Maximum Average Heat Flux (%) 154
o Fuel Remains Covered at all Times
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Table 7.6-2
POWER TRANSIENT TEST, 6PMCI1

o BWR/6 MSIV Closure Without Scram

o No ADS

o HPCS and RCIC Function

o Programmed Bundle Power

o Trips

.

To Simulate the Calculated Rod Surface Heat Flux

HPCS On/Off: L2 + 20 Sec/L8
RCIC On/Off: L2 + 20 Sec/L8

SRV Open/Close:

Pressure Setpoints

Pump Off: L2 or 1150 PSIC

Feedwater Off:
Loop Isclation:

22.5 Sec (44 Sec)
Pump Trip + 20 Sec
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Table 7.6-3
MAJOR EVENT TIMING 6PMCI

Event

Programmed Power Started

Steam Valve Closure

Pump Trip

First Opening of SRV

Feed Water Termination
hot
cold

Level 2

Loops Isolated

HPCS, RCIC Initiated
Minimum Level

Level 8, (HPCS, RCIC Off)

Bundle Power Terminated

7-122

Time (s)

0.0
0.0
1

1.5

22
40
50
600
1,355
1,580
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7.7 BWR/6 POWER TRANSIENT WITH MSIV CLOSURE AND NO HPCS TEST, 6PMC2A

7.7.1 General Description

Test conditions of *he test 6PMC2A are identical to the test 6PMCI
except that HPCS is assumed to be unavailable. Only the RCIC system is
available to supply the make-up water into the downcomer during the
test. Without HPCS water entering the core in a BWR, the void fraction

in the bundle remains high and thus the bundle power remains at a lower

level for the transient.

7.7.2 Bundle Power

Similar to power transient test 6PMCl, the bundle power employed
in this test (Figure 7.7-1) is based on a BWR transient code
calculation. The bundle power for this test is lower than test 6PMCI

beyond 75 seconds, the calculated HPCS initiation time.

7.7.3 System Pressure and S/RV Operation

Smaller steam generation is expected in this test due to the lower
bundle power. A smooth system pressure response (Figure 7.7-2) and no

S/RV operation (Figure 7.7-3) are seen beyond about 130 seconds.

7.7.4 Water Level

Water level in the downcomer (Figure 7.7-4) Jdecreases very rapidly
in the early transient due to the inventory loss through S/RV
activation. Shortly after RCIC initiation (Figure 7.7-5), water level

begins to recover and increases continuously until the end of the test.

7.7.5 Nodal Density

Severzl nodal densities measured in the downcomer, bypass, and
bundle are shown in figures 7.7-6 to 9. It can be seen that the node of

Downcomer EL 316", (Figure 7.7-6) is always covered and water level
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remains above the jet pump (E1.311") The bundle and bypass are also
covered throughout the transient. As in test 6PMCl, there is no heatup
in this test.

7.7.6 Summary (Test 6PMC2A)

The power transient test, 6PMC2A, demonstrates that the power
transient without HPCS is much milder than the case with HPCS. Without
HPCS water entering the bundle, the bundle void fraction remains high
and thus, the bundle power is kept low throughout the transient. This
results in less steam generation. S/RV operations and inventory loss
are significantly reduced. Water level remains above the jet pump.
The core is never uncovered and there is no rod heatup. Water level is

completely recovered by RCIC flow.
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7.8 BWR/4 POWER TRANSIENT WITH MSIV CLOSURE TEST, 4PMCI

7.8.1 General Description and .est Simulation

Test 4PMCl is a power transient simulation test for a BWR/4 with
MSIV closure and without power scram. This test is similar to the BWR/6
counterpart test, 6PMCl, which 1s discussed in Section 7.6. Test
conditions and trips of key events are given in Table 7.8-1.

Several components in FIST were modified for simulating a BWR/4.
Both HPCI and RCIC flows in this test were injected through the
feedwater line into the downcomer, whereas in the BWR/6 test HPCS was
directly injected into the upper plenum. The orifice size and pressure
setpoints of S/RV's (Tables 4.2-1 and 3) were changed to reflect the
S/RV operation in a BWR/4.

Similar to two previous power transient tests, the bundle power
used in this test was based on a transient ccde analysis for a BWR/4
power transient reported in reference ¢. Figure 7.8~! shows the bundle
power employed in the test which simulates the calculated core average
rod surface heat flux of a BWR/4 response.

7.8.2 Key Events and Pressure

Timings of major events observed in the test are shown in Table
7.8-2, Following the MSIV closure, the system pressure (Figure 7.8-2)
increases very rapidly due to system isclation and steam generation from
the bundle power surge, All five S/RV's open (Figure 7,8-3), resulting
in a decreasing system pressure, The S/RV operation switches to the
low/low set control at 10 seconds. The system pressure is then kept
within the pressure range of the low/low set control by operating the
§/RV valves,
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7.8.3 Water Level

Water level response in the downcomer (Figure 7.8-4) indicates that
level 2 is reached at 29 seconds, which activates the HPCI/RCIC
injection with a time delay of 20 seconds (Figure 7.8-5). The injection
of makeup water leads to the level increasing beyond 50 seconds and
water level eventually reaches level 8 at 965 seconds. As in a BWR/4,
HPCI/RCIC flow is terminated at level 8.

7.8.4 Bundle Response

As observed in the BWR/6 power transient test, the bundle is always
covered and no rod heatup is observed in this test. Nodal void fraction
responses in the bundle are shown in Figures 7.8-6 to 10. Void fraction
of the nodes in the middle of the bundle shows only small variations in

response to the system pressure and power swings (Figures 7.8-1 and 2).

7.8.5 Summary (Test 4PMCI)

Similar to the previous two tests, results of the present test show
that the core of a BWR/4 is always covered and there is ho rod heatup
during a power transient., The system inventory is completely recovered

with HPCI and RCIC injections.
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Table 7.8-1
BWR/4 POWER TRANSTENT TEST, 4PMCI

MSIV Closure Without Power Scram

No ADS Activation

HPCI/RCIC Functional

Programmed Bundle Power

Trips

- Power: 0 Sec

- Pump: L2 or P = 1150 PSIG
- HPCI/RCIC: L2 + 20 Sec

- Feedwater: B8 Sec

- BWR/4 S/RV Setpoints

7=148




Table 7.8-2
MAJOR EVENT TIMING 4PMCI

Event

Start of Programmed Power
Steamline Valve Closure

First Opening of SRV
Pump Trip
Maximum Pressure in Vessel

Feedwater Teruination

Hot
Cold

Level 2

RCIC and HPCI Initiation
Minimum Level

Level 8

RCIC and HPCI Off

Bundle Power Off

Test Termination

7-149

Time (Sec)

29
49
49
965
965

1587

1640
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8. COMPARISONS OF TLTA TIEBACK TESTS

The FIST phase I includes two TLTA tieback tests: a large break,
6DBA.S, and a small break, 6SB2C. These tests were performed to

identify similarities and/or differences in the system responses between

the corresponding tests.
Details of the system performance and governing phenomena of each
test are given in References 3 and 4 for the TLTA tests and Sections % !

and 7.2 of this report for the FIST tests. Highlights and comparisons

of these tests are discussed in this section.
8.1 LARGE BREAK TESTS, FIST 6DBALB VS. TLTA 6425/R2

8.1.1 General Description

Large break test, 6DBAIB, is a counterpart test of the TLTA
reference test, 6425/R2. Both tests were conducted with similar test

conditions, except for initial water level elevation due to facility

differences.
8.1.2 Pressure

Good agreement in the system pressure is seen in Figure 8.1-1,

which leads to the same ECCS initiations and performance (Figures 8.1-2

to 4) in both tests.

8.1.3 Mass Distriburicn

Comparison of total system mass (Figure 8.1-5) indicates that more
vater remains in FIST, particularly during the refill/reflood phase cf
the transient. This is mainly attributed to the larger jet pump height.
FIST has full height jet pumps, whereas the TLTA jet pumps are
relatively short. Thus, the FIST jet pumps hold more water inside the

shroud, resulting in less inventory loss through the break.
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This jet pump effect on mass transfer across the shroud can be seen
cl2arly in the regional mass comparisons (Figures 8.1-6 to 11). While
FIST has less mass in the downcomer, more mass is seen in the lower
plenum, bundle, and upper plenum as compared with the TLTA test.
Fluctuations in the regional mass responses observed in FIST during the
reflood period are discussed in Section 7.1 These fluctuations are
caused by stored heat, particularly in the bypass region. A smooth
refill/reflood is seen in the TLTA core region. Since the TLTA bypass
consisted of four tubes which were separated from the vessel wall and
bundle channel, there was no stored heat effect on the TLTA bypass

hydraulic response.

Another significant effect of the bypass configuration and stored
heat is on the bundle refill/reflood process. Both the bundle and
bypass of FIST are refilled at about the same time by subcooled CCFL
breakdown at the top of the core. The bypass in TLTA is refilled
first, immediately following LPCI injection, and the bundle is then
reflooded with water entering from the bypass leakage and the upper tie
plate. Governing phenomena for these refilling and reflooding processes

are discussed in Reference 3 and Section 7.1 of this report.

B.1.4 Rod Temperature

Rod temperature responses are compared in Figures 8.1-12 to 8.1-16.
Both tests show red heatups and similar responses. The measured PCT is
less than BOO°F in both tests.

B.1.5 Key Events

Table B.1~1 is a comparison of timings of key events observed in
the two experimen.s. The blowdown vesponses and ECCS initiations
between the two tests are nearly identical. Differences in the
refilling/reflood processes affect the hydraulic responses in the core
during that period. The FIST test has a slight delay in beginning the
cove refill. However, both tests complete the core reflood at about the

same time,
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8.1.6 Summary

These comparisons, plus a review of the test responses and

governing phemomena discussed in Reference 2 and Section 7.1 of this

report, «dentify the similarity and difference between the FIST and TLTA

large break tests. These obse vations are summarized in Table 8.1-2.
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Table 8.1-1

SEQUENCE OF EVENTS FOR TLTA 6425 RUN 2 AND FIST 6DBALB

Events

Blowdown Valves Open

Bundle Power Decay
Initiated

Bypass Flow Reverses
Jet Pump Suction Uncovers

Recirc. Suction Line Begins
To Uncover

Lower Plenum Bulk Flashing
Guide Tube Flashing

Loop 1 Isolated

HPCS Injection Begins
LPCS, LPCl Activated

LPCS Flow Begins

LPCl Flew Begins

8ypass/Guide Tube Region
Begins to Retill

CCFL Break Down at Bypass
Outlet

Bundle Begins to Rafill
Bypsss Region Refilled

Bundle Reflood with Two-
Phase Mixture

CCFL Breaks Down at Upper
Tie Plate

Bundle Quenched

End of Test

TLTA 6425/R2
Time (sec)

0.0

0.5

1.7
6.7

9.4

125.0

150.0

480.0

FIST 6DBA1B

Time (sec)

0.0

0.1

l.o
5.0

8.0

11.5
12.0
13.0
27.0
35.G
64.0
75.0

115.0

115.0

125.0
125.0

125.0

125.0

12%5.0

320.0



TABLE 8.1-2

SUMMARY (FIST 6DBALB VS. TLTA 6425/R2)

Similar Blowdown Responses

- CCFL at SEO, UTP, Top of Guide Tube and Top of Bypass

- Rod Heatup

CCFL Breakdown

- TLTA: First at Top of Bypass After LPCI, Then at UTP
After Bypass Refilled

- FIST: Both Top of Bypass and UTP by Upper Plenum Subcooled
Water

Bundle Refill/Reflood

- TLTA: Refill by Bypass Leakage Plus Drainage at UTP,
Later by CCFL Breakdown at UTP

- FIST: Major Refill by CCFL Breakdown at UTP

Wall Stored Heat Affects Hydraulic Responses During Reflood
in FIST

More Mass Remains in FIST during Refill/Reflood
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8.2 SMALL BREAK TESTS, FIST 6SB2C VS TLTA 6432/Rl

8.2.1 General Description

The FIST small break test, 6SB2C, is a counterpart of the TLTA
test, 6432/R1. Both tests simulate a BWR/6-218 recirculation line small
break of 0.05 ft°

simulation approaches employed in these two tests are different, in

with HPCS assumed unavailable. However, the test

order to overcome scaling compromises in the facilities. The FIST small
break test is discussed in Section 7.2. To help in understanding the
comparisons, the TLTA test simulation, detailed in reference 4, is
briefly discussed here.

8.2.2 TLTA Test Simulation

TLTA was designed mainly to conduct large break LOCA tests. There
are many scaling compromises ir. the TLTA for performing a small break
test. Table 8.2-1 lists the key compromises identi®ied in this facility
and Figure 8.2-1 shows an elevation comparison of TLTA with a BWR. In
order to overcome these scaling compromises, and perform a meaningful
test, it was necessary to modify the test facility and test operation.
It was decided to simulate the TLTA small break test based on the
calculated BWR/6 response. Simulations of the downcomer water level and
system pressure required for different periods of the transient dictated
modifications made to the test facility and test operation (Table
8.2-2),

Prior to the ADS activation, the system performance is strongly
affected by the inside/outside water interaction. Thus, the test
simulated the calculated BWR/6 waier level transient. The MSIV closure
and ADS activation were controlled with a timer, based on calculation,

rather than by the level | signal as in the FIST test,

The system depressurizes very rapidly upon ADS activation, which
leads to system flashing and mass redistribution. It is necessary to
simulate the system pressure response beyond ADS actuation. Because of

excess fluid mass and overscaled stored heat, the steam generation in

8-22
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Figure 3.2~4 shows good agreement in the ADS depressurization which
leads to similar LPCS (Figure 8.2-5) and LPCI (Figure 8.2-6)
performance,

The total mass and region mass comparisons are given in Figures
8.2-7 through 13. At the ADS activation, TLTA contains almost twice the
amount of fluid mass in FIST (Figure 8.2-7). This excess mass is mainly

contributed hy the overscaled downcomer flow area (Figure 8.2.8).

Regional mass plots indicate that a strong inventory redistribution
takes place at ADS due to the flashing surge caused by the rapid
depressurization. The inventory redistributions amcng various regions
appear to be very similar between the TLTA and FIST tests. Mass
differences shown in the guide tube and bypass between T.TA and FIST
(Figures 8,2~12 and 13) during the early transient are due to the
bypass/guide *ube interface location being defined differently in these
two facilities.

Shortly after the ADS flashing surge, the lower plenum, bundle, and
bypass (Figure 8.2-9, 10 and 12) in FIST indicates a mass recovery or
termination of mass depletion in these regions, In TLTA, water level in
the downcomer remained relatively high due to large excess fluid mass
and covers the jet pump throughout the transient. The jet pump is
relatively short and full of water. This liquid coutinuum in the lower
plenum~to-downcomer flow path had a relatively high hydrostatic head
which held more inventory in the core as compared with FIST. Therefore,
the bundle was full of two phase mixture and there was no rod heatup in
TLTA. Upon ECCS initiation, both tests show inventory recovery

in various regions until the ends of the tests.

Comparisons of the FIST and TLTA small break tests are summarized

as follows:

8-24



(1)

(2)

(3)

Timings of level | signal, MSIV closure and ADS actuation
between the two tests are different. These differences are
due to the test simulation approaches required in the tests.

Several similar responses are seen during the ADS
depressurization, These include the pressure transient,
inventory redistribution at the ADS flashing surge and CCFL at

various locations,

The TLTA scaling compromises of nverscaled mass and jet pump
height affect the post-ADS level response. This, in turn,
affects the core hydraulic performance and the associated rod
temperature response. No rod heatup is observed in the TLTA
test, while a PCT of 720°F is seen in the FIST test.

8-25
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Table 8.2-1

TLTA MAJOR SCALINC COMPROMISES

Underscaled height in regions above and below the core

Overscaled flow areas in Lower Plenum, Downcomer, Upper Plenum

and Steam Dome

Short Jet Pumps

Overscaled Metal Mass

No Level Trip

8-26
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Table R, 2-2

KEY SIMULATIONS IN TLTA SMALL BREAK

Pressure controlled by a pressure regulator before MSIV

MSIV and ADS Timings

-~ Activated with a Jimer (166 Sec ard 286 Sec)

Level Transient before ADS

-~ Delav (140 Sec) in Break Initiation

= Two Breaks (0.125" ¢ + 0.153" ¢) before ADS

~ One Break (0.125" ¢) after ADS

Pressure Response after ADS

-~ Oversized ADS (0.677" ¢)



Table 8.2-3
SUMMARY (FIST 6SB2C VS TLTA £432/R1)

Tizinge of L', MSIV and ADLS

Similar Pressvre Response After ADS

Similar CCFl. Characteristics

Similar Response of Regional Mase Redistribution at ADS

Activation
TLTA Scaling Compromises of Overscaled Mass and Jet Pump

Height Affect the Post-ADS lLevel Responses and Rod

Temperature

8-29
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9, PRETEST PREDICTIONS
(Md. Alamgir and W. A. Sutherland)

9.1 GENERAL DESCRIPTION

One of the FIST program objectives iz to assess the TRAC code with
test data. This task has been carried out by performing pretest
pradictions of two LOCA tests, the large break 6DBAIB and the small
break 65B2C, in FIST phase I. The BWR-TRACBO2 version was used to make
these pretest predictions. Results of the calculations were issued to
the PMC before conducting these tests (References 7 and 8) and most of
the following discussions have been published in Reference 9,

9.2 SYSTEM DEFINITION INPUT MODELING

The one ring FIST vessel model used in TRAC (Figure 9.2-1) has two
theta sections, one to represent the region Inside the core shroud and
the other for the downcomer. The vessel is divided into 23 axial vessel
levels to provide geometric definition of the six principal regions in
the system (e.g. lower plenum), correspondence with measurement
locations, flow modeling detail (e.g., jet pump exit), and nodalization
consistency (e.g. vessel cell to component junction locations).
Component models represent the channel, steam separator, jet pumps and
tail pipes, guide tube, and recirculation loops and pumps. Additional
components model the connecting pipes, such as the ECC systems.

Vessel wall stored heat is modeled with double sided heat slab
components between the principal regions and the environment, augmented
by lumped heat capacity slabs to model heavy section flanges. Tn the
calculation, the heat loss to the environment was specified using an
outside surface heat transfer coefficient determined from system
characterization tests by measuring the steady state regional heat
losses. System characterization tests at full power steady state
conditions also quantified the as-built single-phase flow loss

coefficients throughout the system,
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Particular attention is given in system definition modeling to the
jet pump exit region, the vessel stored heat, and the break location
geometry. In cases where the two-phase level in the lower plenum is
expected to drop to the jet pump exit plane, flow modeling detail is
needed to capture the exit uncovery and subsequent flow split of eteam
between the jet pump and core regions. The level tracking option, which
determines two-phase level location within a vessel cell, is used
throughout the system and {s particularly needed in the jet pump exit
region. Vessel wall and flanges absorb energy from the fluid following
a pressurization by an {solation and add energy to the fluid following a
depressurization, thus attenuating system pressure response. Heat slab

modeling detail is needed to capture this effect in small svstems such
as the FIST facility,

9.3 CALCULATION RESULTS OF LARGE BREAK TEST, 6DBALB

System response following the break initiation is characterized by
the sudden reversal of the broken loop jet pump and the corresponding
decrease in core inlet flow. Pressure i{s maintained by the pressure
control system for about eight seconds as core power decreases, and the
core flow decreases to natural circulation rates. TRACBO2 predicts the
eystem thermal-hydraulic response during this period very well, as shown
in Figure 9.3-1 for the broken loop jet pump flow and Figure 9.3-2 for

the intact jet pump flow.

The downcomer level decreases, due to inventory loss, until the
break is uncovered and the system depressurizes. As shown in Figure
9.3-3, the level uncovery time and initial depressurization are well
predicted. The predicted pressure response after about 40 seconds is
lower than measured, which is attributed to underprediction of liquid
drops entrained in the steam flow up the jet pumps and out the break.
FCCS injection occurs when system pressure decreases below the pump
shut=-off head, The test facility head-flow characteristic is found to
be slightly higher than used in the calculation, which offsets the lower
calculated system pressure. The start of injection by the ECC systems
in the test and in the calculation are about the same. The satisfactory
prediction of the pressure response following break uncovery, which is

9-3
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dependent on predicting the critical steam flow as well as the energy
input to the fluid from the core and vesse! walls, leads to a
satisfactory prediction of ECCS injection time.

The lower plenum remains essentially full during the first few
seconds of the transient, and is then partially voided due to flashing
as a result of system depressurization., As seen in Figure 9.3-4, the
resulting lower plenum two-phase level is well predicted. This leads to
correct calculation of the fraction of mass discharged to the downcomer
and to the bundle.

The bundle i{nventorv, shown In Figure 9.3-5, 1s well predicted
throughout the {nventory loss and initial system refill sequence. The
later oscillations in the calculation are due to shortcomings in "water
packing" detection logic in the code. The liquid inventory in the
bundle is seen to be depleted at 40 to 50 seconds, and refill by the ECC
system shows a positive effect at about 100 seconds. TRAC also predicts
very well the inventory depletion and refilling in the bypass (Figure
9.3-6).

Figure 9,3-7 shows the calculated average rod surface temperature
at the bundle mid-plane compared with the average of the ten
measurements at that elevation, The temperature remains essentially at
saturarion throughout the transient., The bundle uncovery results in a
mid-plane dryout at 40 seconds. The average measured rod heatup, about
50°F above saturation, 1s on the same order as calculated by TRACBO2,
FCCS Injection into the upper plenum region is predicted, and observed,
to attenuate the rod heat-up. The individual temperature measurements
at the bundle mid-plane are compared with the calculated average
temperature in Figure 9.3-8. One thermocouple indicates a peak
temperature of about 700°F, The remaining nine measurements, similar to
the ca'culated average, show little or no heat up. The individual rod
temperatures exhibit a variability in local rod surface rewet,
apparently from non-uniform planar fluid conditions in the bundle, until
the bundle is reflooded. The analysis satisfactorily predicts the
bundle dryout, Although the bundle heat transfer model is not expected
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to predict individual rod rewet behavior, the reflood inventory response
in the bundle adequately bounds the quenching period. The calculated
temperature represents the average response based on planar average

fluid conditions.
9.4 CALCULATION RFSULTS OF SMALL BREAK TFEST, 6SB2C

System pressure following the break init{ation is maintained by the
pressure control system as core power decreases to decay power level and
the core flow decreases due to thc pump coastdown., The downccmer level
begins to decrease due to inventorvy lose through the break. As would be
expected, TRACBO. adequately predicits the system thermal-hydraulic
response during this period, which lasts about three minutes.

The downcomer level fe calculated to reach the level 1 trip point
at 60 seconds, which closes the MSIV and starts the 120 second time
delav for the ADS system. As indicated in Figure 9.4-], the measured
time for level 1 trip is 75 seconds; this difference is attributed to a
20% over prediction of jubcooled critical fiow mass flux during this
period. The calculated system pressurization following the main steam
line isolation {is slightly greater than measured, which may be due ton
heat slab modeling or potential incomplete isolation of the facility
steam line. After the 120 second delay, the ADS svystem is activated
(Figure 9.4-2), pressurizing the system. The difference bhetween
calculated ctime and measured time for ADS activation correspends to the
difference in times for reaching level 1. FECCS injecrion begins when
system pressure decreases below the pump shut-off head. The test
facility head-flow characteristics are found to be slightly higher than
that used in the calculation. The satisfactory prediction of the
pressure response following ADS, which is dependent on predicting the
critical steam flow as well as the energy input to the fluid from the

core and vessel walls, leads to satisfactory prediction of ECTS

injection time.

The downcomer inventory, shown in Figure 9.4-3 by the equivalent
density head measured in the test facility, shows very good

correspondence. The difference in the rate of cecrease is due to the
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prediction of higher subcooled critical flow mase fiux discussed above.
It is seen that the calculated level reaches the top of the jet pumps at
130 seconds and the measured level at 165 seconds. The change in level
decrease rate beyoend that time is due to the reduced flow area below
this elevation. The apparent stepwise response in the calculation is
due to a numerical modeling limitation. The downcomer inventory
comparison shows satisfactory agreement during the post ADS flashing
surge period (flow surge up the jet pumps) and post ECC injection period
(1iquid spill over from the jet pumps).

The bypass remains essentially full during the first 100 seconds of
the transient (Figure 9.4-4). When the dowacomer level falls below the
top of the core region, the bypass inventory has a corresponding
decrease. The difference showa in Figure 9.4-4 for the starting time
for bypass level decrease corresponds to the difference in downcomer
level decrease, The subsequent bypass inventory and refill is well
predicted. The noticeable oscillations in the predicted trace is due
to a limitation in the "water packing" detection logic.

The lower plenum remains essentially full during the transient
before the ADS actuation, and is then partially voided due to flashing
as a result of system depressurization. The offset is again due to the
difference in ADS actuation time. As seen in Figure 9.4-5, the
resulting lower plenum mass inventory is well predicted, as is the
fraction of mass discharged to the downcomer, Figure 9.4.3, and to the
bundle, Figure 9.4-6,

The bundle inventory, shown in Figure 9.4-6, is well predicted
throughout the entire inventory loss and system refill sequence. The
offset during the 80 second to 180 secoud period is againr due to the
downcomer inventory difference discussed above, and the later
oscillations are due to sho:tcomings in "water packing" detection legic

in the code,
Figures 9.4-7 to 9 show the calculated rod surface temperatures at

various locations coupared with the average of measured temperatures at

the corvespending e.evations. TRAC predicts these temperature responses
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A small rod heatup » in the upper bundle, just before
tec the bundle partiall
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