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WIPS - COMPUTER CODE FOR WHIP AND IMPACT
ANALYSIS OF PIPING SYSTEMS

PART B

THEORY MANUAL
ABSTRACT

WIPS-ANAL is the structural analysis module of the WIPS code. WIPS-
ANAL incorporates a sophisticated solution strategy for nonlinear dynamic
analysis, and currently has a library of five structural elements (PIPE, BEAM,
UBAR, SHFELL and GAPF).

This manual describes the solution strategy, and presents the assumptions
and theory for each of the structural elements. Two of the sections (B2 on
material theory and BS on large dispiacements theory) present theoretical
material which is common to two or more elements.

A typical WIPS user will generally not be concerned with the theoretical
details of the elements. Nevertheless, a basic understanding of the assumptions
and procedures is desirable. A sufficient understanding for most applications
can be obtained by studying the first one or two chapters for each element type.
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Bl. SOLUTION STRATEGY

SUMMARY

WIPS-ANAL solves the nonlinear structural analysis problem by step-by-step integration
through time. This section describes the solution strategy.
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Bl.1. STEP-BY-STEP DYNAMICS

B1.1.1 GENERAL STRATEGY

WIPS-ANAL performs a step-by-step dynamic analysis accounting for both material and
geometric nonlinearities. The integration time step is automatically varied during the analysis,
following a strategy devised by Hibbitt and Karisson [B1.1]. The structural analysis is based on
the direct stifiness method, with substructuring. The analysis proceeds in a series of linear
steps, with modification of the structure tangent stiffness each time a significant nonlinearity
occurs.

Equilibrium iterations are not performed within a time step. Instead, an event-to-event
strategy is used to prevent substantial equilibrium errors from developing. In this strategy, the
analysis within any time step is performed as though the loading were staric. Within each step,
the proportion of the load required to produce the next significant nonlinear "event” (e g
material yield, gap closure) is determined, and that proportion of the load is applied (plus an
allowance to ensure that the event is passed). The remainder of the load is then applied, and
the process repeated. The event factors are calculated at the element level. Unbalanced loads
at the end of any time step are applied as corrections in the succeeding time step.

Two-level substructuring is used, with elbow, straight pipe and slab substructures consti-
tuting separate substructures at the lower level. The substructuring procedure is based on the
work of Row and Powell [B1.2].

Step-by-step integration is performed using either the well-known Newmark 8 method or
the Hilber-Hughes-Taylor extension [Bl 3] of this method. The Hilber-Hughes-Taylor (HHT)
procedure introduces energy dissipation through the numerical scheme. Viscous damping is
assumed to be zero for this method (except for the visco-plastic modeling of strain rate effects’.
For the Newmark method, dissipation is introduced by specifying a damping matrix propor-
tional to the initial elastic stiffness matrix.

B1.1.2 BASIC EQUATIONS

B1.1.2.1 Newmark Equations

The step-by-step solution strategy is based on the well-known constant average accelera-
tion assumption (Newmark 8 = 1/4) (Fig. B1.1.1). For linear behavior within a time step, the
solution is obtained from the following equations

[ﬁ;gﬁ %gﬁpla,r - AR + R, + AR, (B1.1.1)
AR, = 42.;."0‘* z‘_'.’o +2Crs, (B1.1.2)
A} = =2}, + f?a; (B1.1.3)
” R Ry
8F = <2, - 3 b+ o3 A (B1.14)

in which
Ky = tangent stiffness matrix;
Cr = tangent damping matrix;
M = mass matrix,



AR = external load increment during time step,

R, = unbalanced load, if equilibrium is not satisfied at beginning of step.
AR, = initial load for time step;

Forlo ™= veiocity and acceleration vectors at beginning of step;

Ar, Ar, A7 = displacement, velocity, and acceleration increments.
The unbalanced load, R,, at any time is given by:

R, = R~ Ry~— Rc~ Rx (B1.1.5)

in which

R = external load,

Ry = inertia forces,

Re = Jdamping forces; and

Rx = static resisting force for the structure.

For a linear problem, application of Eqns. Bi.l.1 - B1.1.4 ensures that dynamic equili-
brium is satisfied at the end of each time step, and hence, R, = 0. For a nonlinear problem,
equilibrium errors represented by R, may be present at the beginning of a step. These errors

can occur if the damping matrix changes at the end of the step, or if equilibrium errors due to
nonlinear behavior in the preceding step are not eliminated by iteration.

Energy dissipation is conveniently introduced by setting Cr = 8, K,, where K, = initial
(elastic) stiffness matrix and B, is a dissipation factor with units of time. Golafshani [B1.4) has
investigated this type of dissipation in detail and found that it has the desirable characteristic of
providing heavy damping for high frequency oscillations. The amount of dissipation is con-
veniently controlled by means of the dimensionless parameter 8,/A ¢, where A1 is the time step
(or, for a scheme with a variable step, the initial time step). The default value of 8,/A’ in
WIPS is 0.1.

B1.1.2.2 HHT Modification

Hilber, Hughes and Taylor [B1.1,B' 3] proposed an integration scheme which introduces
energy dissipation in the higher modes of vibration by numerical means. This type of energy
dissipation is especially desirable in pipe whip analyses because high frequency oscillations can
be generated when impact occurs. These oscillations have negligible effect on the overall struc-
tural response, but can cause major numerical difficulties.

For the HHT scheme with zero Cr, Eqns. B1.1.1 and B1.1.2 become:

[F; !!!+“+a)5r] Ar = (1+a)AR + R, + AR, (B1.1.6)
1 . ™
AR, = -‘-’l'zi-"* “,z.l (B1.1.7)
e B d i obi
Ar lu IIAt_r, ‘.r,+ pAr“’ (B1.1.8)
- 1 . 1 . ]
® e ), - o} P 19
Ar 2#"‘ “,.r. E;A.r (B1.1.9)
1_.. ao l=a? _1
Y= 3 a B T 3 € ac<€0 (B1.1.10)

in which a is the HHT dissipation factor (with a default value of -0.1 in WIPS).



The equations in the rest of this section are given for the HHT scheme. The equations
for the Newmark scheme are similar.

B1.1.3 CRITERION FOR TIME STEP SELECTION

For a linear problem, application of Eqn. B1.1.1 ensures that equilibrium is satisfied at the
time step intervals, but not within the time steps (if equilibrium were satisfied at all times, the
exact response would be obtained, which is not the cass). Hibbitt and Karlsson [B1.1] have
proposed a criterion for time step selection based on the equilibrium error at midstep. This cri-
terion assumes that if the "midstep error® (or “half step residual”) is small, then since the step
end error is zero, the overall effect of equilibrium errors should be small, and the response
computation should be accurate.

For a linear problem, the midstep error can be very easily calculated, as shown in Fig.
Bi.1.1. Because the midstep values of 7, 7, an' R are averages of the step end values (assum-
ing linear variation of R), the midstep error is related to the displacement Ar,. Specifically,
the midstep equilibrium error, AR, is

AR, = Kr - Ara (B1.1.11)
or
At "
AR, = T.&r'A_r (B1.1.12)

AR, is easily calculated from this equation. In WIPS the calculation (s performed at the ele-
ment level, and AR, is assembled from the element contributions. If the maximum norm of
AR, exceeds a user-specified upper tolerance, the time step is reduced (in WIPS, by a default
factor of 0.5); whereas if it is less than a lower tolerance, the time step is increased (in WIPS,
by a default factor of 2).

Equation B1.1.12 strictly applies only for linear behavior within a step. For nonlinear
behavior the criterion must be combined with the nonlinear solution strategy.

B1.1.4 NONLINEAR SOLUTION STRATEGY

B1.1.4.1 Event-to-Event Strategy

Hibbitt and Karisson appiied the time step selection strategy by iterating to convergence in
each step, then obtaining AR, by an explicit equilibrium error calculation at the midstep. In
WIPS, an cvent-to-event strategy is used, with no iteration, and AR, is calculated using Eqn.
Bl.1.12.

Fig. B1.1.2 illustrates behavior which is linear between well defined evenss. In a Newton-
Raphson iteration scheme, the solution would follow the path ABCD, whereas in an event-to-
event scheme the solution follows the path AB'C'D (which in this case is the true path). The
event-to-event scheme has the disadvantuge that extra computation is needed to determine the
events, and the advantage that it follows the true path more closely, and hence ends to be
more stable computationally. This advantage is particularly important when _he event
corresponds 1o a large increase in stiffness, for example, when a gap closes or when a yielding
element unloads.

Fig. B1.1.3 illustrates a more likely type of behavior, which is not exactly linear between
events. In this case the solution does not follow the exact path, and an equilibrium error, R,
is present at the end of the time step. In WIPS the event calculations are designed to keep this
error small, and R, is carried forward to the next time step (Eqn. B1.1.6). The event calcula-
tions typically allow a small amount of overshoot beyond the exact event, as illustrated in Fig.
B1.1.4. This also contributes to R, in the next time step.



B1.1.4.2 Midstep Error Calculation

If nc event occurs within a time step, AR,, is calculated by Eqn. B1.1.12. If one or more
events occur, a weighted value is calculated, as follows.

Let the event factors be such that the time step is divided into substeps f,Ar,
(1= £ a1 (=)= f3) f1A1, etc., where £, fa f3 etc. are event factors. Let the dis-
placement increments calculated for the substeps be Ar; in substep 1, Ar; in substep 2, elc.
For substep i, the velocity increment is calculated by modifying Eqn. B1.1.8 as follows:

-1
Foomm - 1— . -L_ A B o _L . ( 1.13)
Ar, l3!°+ .25 l'Ar_r,l /[-11“ f)+ Y Ar, Bl1.1.1
in which I1 indicates the product. The midstep error is then calculated as:
AR, = lZI.!Sr.A.r’.l %5 (B1.1.14)

in which Ky, = tangent stiffness for substep i.
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B1.2. THEORY FOR CONTACT ANALYSIS

B1.2.1 OUTLINE OF PROCEDURE

For variable configuration contact analysis, conditions of force equilibrium and geometric
compatibility must be satisfied at the contact interface. The solution procedure in WIPS is a
variation of the force (flexibility) method of structural analysis. The steps in the analysis are
essentially as follows.

(1) In any time step, first assume that the contact forces (normal and friction) remain con-
stant. Because this is generally not true, gaps and overlaps will develop between points
which were previously in contact. Determine the motion of the complete piping system,
and hence calculate these gaps and overlaps. Assembie in vector n.

(2) At each contact point, apply equal-and-opposite unit normal forces on the two contacting
structures. If friction is present, apply friction forces in conjunction with the normal
forces. These friction forces have values equal to the coefficient of friction, and directions
which oppose the current relative sliding motion.

(3)  For each unit force pair in turn, calculate the change in overlap at all contact points. The
result for unit force pair i is column i of a flexibility matrix. Construct the complete
matrix, F.

(4) Using the flexibility matrix and the calculated gaps and overlaps, determine the force
changes, A NV, required to re-establish compatibility, by solving

F-AN = n (B1.2.1)

(5)  Account for the effects of AN on the complete system, to obtain the state at the end of
the time step.

For a nonlinear system, the procedure follows essentially these steps, with modifications to
account for nonlinearity. In each time step, it is necessary to examine the geometrical relation-
ships between the two contacting surfaces, to formulate the flexibility matrix and solve for
changes in the interaction forces, to account for new contact and for separation; and to account
for nonlinear behavior. The procedures are described in the following sections.

B1.2.2 CONTACT SURFACE DEFINITION

B1.2.2.1 Primary and Secondary Surface:

For surface-to-surface contact, one surface is the primary surface and one is the secon-
dary. The primary surface must be a quadrilateral space grid, defined by structural nodes at the
grid points (Fig. B1.2.1). The secondary surface could, in general, be defined by any con-
venient set of structural nodes on the surface. In WIPS, however, only two options are pro-
vided for the secondary surface, namely, (a) a quadrilateral grid and (b) a sequence of nodes
along a line.

During the analysis, each node on the secondary surface is considered as a discrete point
The geometrical relationship of each node to the primary surface grid is determined. If any
secondary surface node penetrates the primary surface grid, contact is indicated. The problem
thus reduces to preventing discrete points (the secondary surface nodes) from penetrating a
three-dimensional space grid (defined by the current locations of the primary surface nodes).

B1.2.2.2 Primary Surface Geometry

Each quadrilateral of the primary surface grid has straight edges but may be arbitrarily
warped in space. The average point, 0, of any quadrilateral (Fig. B1.2.2) has giobal X,Y,Z coor-
dinates which are the averages of the corner node coordinates. Each quadrilateral is then
divided into four plane triangles, as shown. In addition, axes r and s are established, connect-
ing 0 to the midpoints of the sides. In general, each triangle will occupy a different plane. It is

9



assumed that no quadrilateral is severely distorted, so that no severe discontinuities are present
either within a single quadrilateral or between adjacent quadrilaterals.

The location of a point on the primary surface is defined by the quadrilateral in which it
lies, and the r.s coordinates within the quadrilateral. The coordinates r,s are nawral coordi-
nates similar to those used in isoparametric quadrilateral finite elements, with values ranging
from -1 to +1 in any quadrilateral (Fig. B1.2.2).

B1.2.3 LOCATION OF CONTACT POINT

B1.2.3.1 Sortest Distance to a Triangle

A secondary surface node makes initial contact with the primary surface when it first
penetrates one of the flat triangular facets.

Consider the geometrical relationship between a single triangle and a point in space (Fig.
B1.2.3). The triangle is defined by point 0 (the average point of the quadrilateral) and nodes
1,2. The point in space is node M. Vector n is a unit vector defining the outward normal to
the plane of the triangle. Points 0, I, and 2 are in right-hand screw sequence about vector n.
The projection of point M on the plane is point N,

The normal distance, d, of M from the plane is the length NM. This length is the dot
product

d = OM n (B1.2.2)

in which OM = vector OM. If d is positive, point M lies outside the surface, whereas if d is
negative, point M has penetrated the surface.

The location of N is conveniently described in terms of natural rrignguiar coordinates as
used in the theory of triangular finite elements. That is

e area(!2N’) e area(20N) i o area(0IN) (B1.2.2)
. area(012) © ' area(012) © *? area(012) e

The sum ag+ a; + a; is always unity. If all three values are between 0 and 1, point N hes
within the triangle; otherwise it lies outside.

If point N lies within the triangle, the distance d is the shortest distance between M and
the triangle. If N lies outside the triangle, the shortest distance, d', will be either (a) the shor-
test distance between M and one side of the triangle (the *S" zones, Fig. B1.2.4) or (b) the dis-
tance between M and a vertex (the "V" zones, Fig. Bl 2.4). The corresponding point on the tri-
angle will be N', with (riangular coordinates a'yp, @'y @’y The distances d and (if required) d’
and the coordinates a and a’ can be calculated without difficulty.

B1.2.3.2 Closest Approach to Surface

Fig. B1.2.5 shows a two-dimensional representation of a primary surface, with three
different secondary node locations (M,, M, and M. Each straight line of the primary surface
represents a triangle.

For each secondary node, a point of closest approach (N or N') and a corresponding dis-
tance (d or d') can be found for each triangle, using the procedure of the preceding section.
This is illustrated in Fig. B1.2.5. The point of closest approach to the primary surface is
assumed to be that point (N or N') for which the distance (d or d') is a minimum. This point
may be within a triangle (as for node M,) or on an edge or vertex of a triangle (as for node
M;). Node M, is similar to node M, in that the point of closest approach lies within a triangle,
but the distances d,, and d/, may be nearly equal. The smaller of the two is assumed to define
the point of closest approach. If the values happen to be identical, the first point tested (in the
computer logic) is arbitrarily ci;osen. The same is true for point M), in which the distances to
two triangles (or, in 3D, up to a possible 8 triangles) will be identical.

10



At any ume after contact first occurs, the noint of closest approach is assumed to be the
contact point

B1.2.3.3 Location Within Quadrilateral

The four triangles in any quadri'ateral can be identified as shown in Fig. B1.2.2. Given a
point (ay, a), a;) in one of the triangles, the corresponding coordinates (r,s) in the quadrila-
teral can be obtained as follows:

Triangle No.  Coordinate r  Coordinate s

1 1 = ay a = a
2 a - a l = ay

3 =] + ay a - a;
R a; = a =] + ay

Hence, given the contact point in terms of a triangle and the coordinates (ay, a;. a;)
within the triangle, the location can be defined in terms of a quadrilateral and the coordinates
(r,s) within the quadrilateral.

U1.2.4 STATE AT BEGINNING OF TIME STEP

B1.2.4.1 Conditions to be Satisfied

A contact pont is defined by a secondary surface node, a primary surface quadrilateral, and
a location in the quadrilateral (in terms of natural coordinates r.s). For each contact point there
is @ normal direction and a normal distance between the primary and secondary surfaces. There
1 also a normal contact force (along the normal direction) and, if friction is considered. a
tangential force. The conditions to be satisfied are as follows.

(1) The normal contact force must be compressive
(2) The normal distance must be zero.

(3)  The tangential force must oppose the relative sliding motion between the two surfaces at
the contact point.

(4)  The tangential force must equal the normal force multiplied by the coefficient of friction.

The normal and tangential forces must also, of course, be equal-and-opposite on the primary
and secondary surfaces.

B1.2.4.2 Current Geometry

The contact surfaces may both deform substantially It is assumed, however, that the sur-
faces deform only small amounts within any time step, and hence, that the geometry remains
constant during the step. 1 s allows geometrical calculations within any step to be performed
using small displacement kinematics.

For any time step. the nodal displacements at the end of the preceding step are assumed
to define the geometry for the time step. The contact point locations and normal directions are
calculated for this geometry and are assumed to remain unchanged throughout the step  Any
errors due to this assumption appear as unbalanced forces at the end of the step and are applied
as corrections in the following step.

1



B1.2.4.3 Compatibility and Equilibrium Vielations

The contact point relationships are calculated in the geometry at the beginning of each
ume step. Relationships are calculated for all actual contact points at the end of the preceding
step, and for any other points which have sufficiently small normal distances that contact is pos-
sible within the current siep.

In the solution of the contact problem in the preceding step, the normal distances at the
contact points were made (o be zero in the geomelry for that step. Because the geometry
changes between steps, the normal distances will generally not be zero but will indicate small
amounts of gap or overlap. Let the vector of these initial overlap values be 7,

The contact force magnitudes at the beginning of the current siep are assumed to be the
same as at the end of the preceding step. In the geometry of the preceding step, these forces
were exactly equal-and-opposite and were in equilibrium with the internal resisting forces of the
structure. In the new geometry, the forces will still be opposite in direction, but their points of
action will generally not have identical coordinates. Also, because of changes in the normal
directions between time steps, the contact forces will generally not be in equilibrium with the
internal resisting forces

B1.2.5 BASIC LOAD VECTOR

B1.2.5.1 General

In the step-by-step integration scheme, a basic load increment vector, AR, is calculated at
the beginning of each time step. This vector is given by

AR = (14a) (R, +R)~R + AR, - a(R'+R) (B124)

in which
a = HHT dissipation factor

R, = external Icad at the end of the current step, excluding any contact forces. In a
WIPS analysis, this will typically consist of the jet force only. This force may be changing
in both magnitude and direction

R’ = external load at the beginning of the current step

R. = exterr load due 10 contact forces at the beginning of the current step. The mag-
nitudes of t .ese forces are the magnitudes at the end of the preceding step. The locations
and directions are determined for the geometry at the beginning of the current step.

R’ = external load due to contact forces at the beginning of the preceding step.

R = internal resisting load (static element forces + inertia forces) at the beginning of
the current step

AR, = initial load required by the step-by-step iniegration scheme (Eqn B1.1.7).

The load R, + R, ~ R is the initial equilibrium unbalance for the current step, accounting for
(a) overshoot of element yield, gap closure, etc. in the preceding step. (b) change in magni-
tude and direction of the jet load. (¢) change in location and direction of the contact forces. and
(d) change in the structure geometry (large displacenient effects) in the preceding step.

The load vector, AR, is augmented by a vector (1 +a)AR. due to changes in the magni-
tudes of the contact forces during the step. These are the additional forces needed 10 prevent
overlap of the contacting surfaces, and constitute the only change made in AR, for the time
step. That is, no allowance is made for (a) changes in K, due to change in direction of the jet
force. (b) changes in R, due to changes in location or direction of the contact forces, or (¢) the
effect of time step subdivision on AR, In effect, AR is regarded as analogous 10 & static load,
and the solution for the step is obtained by the event-lo-event strategy. Because R, and R, will
actually change, and because AR, could be affected by time step subdivision, there will be
equilibrium unbalances at the end of the time step It is assumed that these unbalances are
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small, and they are carnied forward 1o the following time step

B1.2.52 Contact Force Vector

The vector R is built up from the interaction forces between pairs of contacting surfaces.
The interaction forces consist of pairs of equal and essentially opposite loads in the normal and
tangential directions at the contact points  The tangental forces are not exactly opposite,
because the coordinates of any pair of contact points are not exactly the same  However, any
errors are small and do not accumulate because K. is recalculated al each time step using the
new geometry

For the calculation of R . the contact force magnitudes at the end of the preceding step
are used. The normal and tangential contact forces are first transformed 1o globe! forces, using
the new normal directions.  For each secondary surface point, these global forces act directly on
the corresponding node  For each primary surface poini, with natural coordinates r.s. the
lorces are disiributed among the nodes of the corresponding quadrilateral, using the weli-known
interpolation relationship for a 4-noue isoparametnic guadrilateral

B1L.26 CONTACT FORCE CHANGES

B1.2.6.1 Overlap Changes
A solution is first obtained for the equation

K ar = AR (#1295

in which K" = effective tangent stiffness matrix (Eqn B1.16), and AR s given by Egn
Bl 24 Using the current geometry and small displacement kinematics, the displacement incre-
ments are transformed to increments of overlap distance at the current contact points (by calcu-
lating the differences in global displacements at each contact point pair and taking the dot pro-
duct with the normal vector. not by exact geometrical calculation)  For the primary surface,
the contact point displacements are oblained from the displacements at the quadrilateral nodes
using the interpolation relationship for an isoparametnic quadrilateral  Let the vector of overlap
increments be &n

B1L.2.6.2 Flexibility Matrix

Each contact point 1s considered in turn. At each point. a pair of equal-and-opposite wni
forces 1s applied in the normal direction. together with tangential forces with magnitudes equal
10 the fnction coefficient  The nodal displacements for each unit force set are determined by
solving the equilibrium equations, and these displacements are transformed to increments of
overlap distance (by the dot product procedure) For each unit force set, the increments in
overlap distance define & set of flexibility coefficients, making up one column of & flexibility
matrix, £ The set of coefficients for all contact points defines the complete Nlexibility matrix.

Note that the effective tangent stiffness matrix s used in these calculations, not just the
static stiffness matrix.

B1L2.6.3 Force Changes

From Section ||.z.umomdwwmnm.ummnw
between (ime steps, is g, From Section B1 26 1 the change in overlap values is &y Mence,
mm«mmmmrm.Au.mm:ommm.mmuum

£ AN = Ap 4+, Bl 26
subject to the condition that, for any contact point, |,
N+AN 20 man
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in which N = contact force magnitude at beginning of time step, compression positive. If
Egn. Bl 2.7 is not satisfied. separation is indicated. and a nonlinear "svent” occurs.

B1.2.6.4 Nodal Displacement Changes

For the current geometry, the contact force changes are transformed to » vector of globa!
force incremenis. The equilibrium equations are then solved once more to obtain nocda! dis-
placement increments These are added to the increments from the solution of Eqn. B1.2.5 10
obtain displacement increments for the time step

B1.2.7 EVENTS WITHIN TIME STEP

The displacement increment from Section Bl 2 6 4 is the increment for the time step, pro-
vided no events occur for displacements of this magnitude Fvents may be duc to (a) change
in state of any nonlinear element, (b) initiation of new contact, or (¢) separation.

Event factors for elemeni change of stale are for each element. Event factors for new
contact are determined by transforming the nodal displacements from Section Bl 264 to
changes in normal distance (using the dot product procedure)  |f the change for any potential
conlact point exceeds the current gap for that point, a new contact is indicated, and an event
factor is calculated Event factors for separation are determined by satisfying an equality in
Egn B1.27 The smallest event factor governs

The computer logic for the event-to-event procedure with contact is described in detail in
Section Bl 3 and will not be described here. One important point to note, however, is that dur-
ing the process of scaling by the event factor, the initial overlap vector, g, is aiso reduced.
The reason for this is that although the initial overlaps actually exist at the beginning of the
time step, for analysis purposcs they are assumed 1o develop during tne step in the same way as
An. This assumption is impheit in Egn Bl 26 Hence, if a part of the time step is "used up”
between events, part of g, 15 also used up  Note, further, that the geometry is assumed not to
change if & time step is divided into subsieps  The geometry at the beginning of the time step
is used for all substeps

BI2A FRICTION COEFFICIENT VARIATION

If the relative sliding velocity between the primary and secondary surfaces changes direc-
tion, the friction force also changes direction. Mence, if the sliding velocity is near zero, it iy
possible for small velocity changes to cause reversal of the friction forces, and hence, introduce
large unbalanced loads. Vo avord this, the friction coefficient is assumed 1o be zero al zero shd-
ing velocity and 1o increase so that it reaches its nominal value at a specified velocity tolerance.
Between zero velocity and the velocity tolerance, the coefficient is assumed 10 increase as a
cubic function of velocity (S-curve)
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FIG. B1.2.1 - REPRESENTATION OF PRIMARY CONTACT SURFACE

TRIANGLE 3

TRIANGLE |

774’:
7 “TRIANGLE 4

FIG. B1.2.2 « QUADRILATERAL GEOMETRY
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FI1G. B1.2.3 - DISTANCE FROM POINT TO TRIANGLE

FiG., B1.2.4 - SIDE AND VERTEX ZONES
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BL3. COMPUTATIONAL ALGORITHM

B1.3.1 GENERAL

The strategy is an extension of the static eveni-to-event procedure The pure event-io-
event procedure ensures zero equilibrium unbalance (ie the true load-displacement curve is
followed exactly). In the WIPS strategy, some equilibrium unbalance is allowed, but the events
are chosen 1o keep the unbalance small by allowing modest amounts of yield value overshool.
yield reversal, gap closure overshoot, and separation overshoot The amount of overshoot
allowed will be su-h that th: equilibrium error is small

mm&.nminwymhmonlhmﬁuumumwmmofmcmp
The amounts of o erlap and ' : contact force locations and magnitudes are determined for this

configuration using small displacement geometry Because the displacements in any step are
Mto.mnhMWMmuumm»flhomawnchmtmumlms
and directions of the contact forces This error is corrected in the succeeding time step

BLY2 LOAD VECTOR
Al the beginning of each new time step, a basic load increment is calculated  This is

AR = (1+a) (B,+R) ~ R +AR, - a(R}+ RD B1.3 1)

in which
a = HHT dissipation factor
K. = external load at end of new step, excluding contact forces. This will typically con-
sist of the jet forve only. This force may be changing in both magnitude and direction
R = external load at beginning of new step
R - external load due to contact forces &t beginning of new step. The magnitudes of
cmmmmmuuuummofmmmp. The locations and direc-
lons are determined for the geometry at the beginning of the new step
S - external load due to contact forces at beginning of preceding step
8= mmmmum+mrmmmumm.
AR, = initial load, required by step-by-step integration scheme (Eqn B1 |.7)
ThM‘.#‘.-‘.nmmwmmmmmm.muum (a)
overshoot of element

yield, gap closure, etc. in the preceding step, (b) change in magnitude
and direction of jet load, (c) change in location and

In structure geomelry (large displacement effects) in the preceding step The algorithm does

E
|
:
g
;

B1LAY STIFFNESS MATRIX

Tb“mth«hamm“m’u&.mm. For the
Hilber-Hughes- Taylor extension of (he Newmark method, the stiffness is'

K = (sa) K+ .-‘L',' W32
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in which

Ky = static tangent stiffness matrix

M = mass mairix

Al = ume step
In the event-to-event strategy, K, changes at each event, and X is reformed. To reduce the
computation time, evenis correspond only to those chang~s of state which can lead (0 substan-
tal equilibrium unbalances.

B1.3.4 TIME STEP CONTROL

Wtwnuebm.awhwummammmmbmwmmn-
able sccuracy This is done by estimating the equilibrium error at the midstep, considering the
effects of time step only (ie not considering unbalances due 1o nonlinear element response)
For a linear structure, the midstep error vector is

Be = Kr A7 AN TIRR]

where Ky = saric stiffness matrix and §/ = calculated velocity increment for the time step
I the maximum norm of K, exceeds an upper toleran-e, A7 is 100 big. The step is repeated,
with &7 halved If the norm is less than a lower tolerance, 47 can be increased If this happens
for two steps in succession, A7 is doubled for the following step. The solution scheme esti-
ma.lummmmmwmmwmwmmm

138 CONTACT FORCE CALCULATION

The ~ontact forces are determined by a Nexibility approach If points on contact surfac. B
overlap contact surface A, the following steps are followed

(1) For each overlapping point on surface B, the point of closest approach to surface A i
found This point is along the normal from the point to surface A The normal direction
and distance are calculated Let the vector of normal distances (overlaps) be p

(2)  For each pair of points, unit equal-and-opposite forces are applied 10 the two surfaces
slong the normal direction. plus corresponding friction forces in the tangential direction
The structure displacements due (o these forces are found, and hence, the change in the
normal distance. This change is o (dynamic) flexibility coefficient. When all pairs of
points are considered, a Nexibility matrix, F. results

(3)  The changes in the normal forces, AN, required to eliminate the overlap are found by
s iving

fF AN =2 TIREL
subject 1o the condition that at any point, |,
N+AN 20 miry

In order for the procedure to be compatible with the event-to-event sirategy, Il s neces
sary for the computed behavior o be linear within any time substep. This is because the com-
puted displacement increments are scaled proportionally 1o reach esch new event Hence, cer
Lain assumptions and approximations must be made, as follows




(2)  Small displacernent (linear) kinematics is used 1o determine the relationship between
nodal displacement increments and changes in overlap distance  This ensures that nodal

(3) If the contact point locations and normal directions remained constant in a time step, and

ensure zero overlap at the end of the step. However, these conditions are not actually
satisfied  As a result, when the overlap distances are computed for the updated structure
geometry at the beginning of each new ume step, the overlap distances will not gencrally
be zero.  This error is corrected in the following step It is assumed that the changes in
overlap distance are in three parts, namely (a) changes due 1o load AR, (b) changes due
10 the load AR, and (¢) a correction, p,. equal to the overlap at the beginning of the
time step. Al three are assumed 1o vary linearly in the step. In particular, the g, correc
won applied insiantaneously ai the beginning of the time step bul linearly during the

H
2

B1.36 DATA STORACE

The foliowing data blocks are used in the analysis
3. = eclement state information at deginning of time step
I, = contact state information at beginning of time step

S =  clement state information at some time within the time step.  This must

be
separately from §, because it may be necessary (o return 1o the beginning of the
and repeat with o smaller A1

T = contact state information within the time step

K. = structure suffness ot beginning of step This is the effective dynamic stiffness
-.-"-',umn»x.. Because of the dependence on A7, It may be necessary (o
assemble a complete new stiffness if A7 changes.

Kr' = current triangularized tangent stiffness

B = internal resisting load, made up of elastic, damping and inertis effects  This is
independent of &+ It is calculated only at the end of esch time step

K. = spplied external load  This is dete:mined by interpolating in the load time-histories
K. = applied external load due to contact forces

u.-muhnmmmummmm.mnm;';rn;—'ﬁt.l
This is calculated at the beginning of each time step only

AR = load increment for time step

142 = displacement, velocity and acceleration.

A7 = displacemient increment in any time substep

Az, = accumulated displacement increment over all substeps in current step

£ = internal resisting force for « single element. This sssembles into §,

AQ. = contribution 10 midstep error from an element. This is caleulated as &, 47 A /8 at the
ciement level and is the element force increment, linear , for a dis
placement increment &/ A ¢/K This is assembled into AR.. which is then sccumy-

kept
sep

B = the behavior is linear in any step, this becomes
Kraram uunnmmmjlumummm

for the full ume step. The



F = fNexibility matrix for the contact points. This is formed by applying unit equal-and-
opposite loads at each contact point in turn, solving for the nodal displacements, and
hence, determining the overlap distance changes The size depends on the number of
contact points at any time.

#, = overlap distances at contact points at beginning of time step (i.e. error due to changes
in contact point locations and structure geometry during preceding step)

Ap = changes in overlap distances during time step.

N = normal interaction forces at contact points, compression positive
AN = changes in normal interaction forces required (o restore compatibility.
R, = structure load vector corresponding to N

AR, = structure load vector corresponding 1o A N

B1.0.7 CONTROL PARAMETERS
The following control parameters are used

FACREM = proportion of &R not yet applied.

FACELM = clement event factor. In any t .ne substep, & displacement increment &7 is calcu-
lated 11, for any element, the full A7 can be applied without producing an event for
the element, then FACELM = | If an event occurs, FACELM is the proportion of
A7 required to reach the eveni

FACCON = contact even: factor, equal to proportion of remainder of time step at which new
contact occurs. The event calculation allows some overshoot

FACSEP = separation event factor, equal to proportion of remainder of time step at which
contact separation occurs  The event calculation allows some overshoot.

FACTOR = factor by which remainder of time step must be scaled to reach next event. Con-
trolled by smallest of other event factors.

LOTOL = indicator 10 show when A7 can be increased. lfthnmnmm:fof.nhhw
s lower tolerance (= 1/8 of that for which &4/ must be decreased), OL is zero
at the end of the step, otherwise it is |

INCDT = indicator which counts successive steps for whict OTOL = 0
NSUB =  substep number, when events occur within a time step

B1LAE STORAGE OF STATE INFORMATION

At the beginning of the step, the state is defined by the data blocks §, and J, After one
o inore substeps, the state is defined, in separate storage, by § and ] At the end of the time
step, § and I becorne 5, and T, for the next step.

In the first substep of any siep, the event factor calculation and the state determination
mhn!.d}.n‘hmmu-mm:&m[ For the second and sub-
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B2. MROZ MATERIAL THEORY

SUMMARY

The Mroz material model, extended to include rate dependence, is used in WIPS for pipe
elements and for shell elements in straight pipe, elbow, and slab substructures. This section
describes the theory and computstion procedure for the material model. Because of the impor-
tance of material behavior in pipe whip computations, this section also contains a review of the
principles of computational plasticity.

CONTENTS

B2.1 INTRODUCTION
B2.2 PRINCIPLES OF COMPUTATIONAL PLASTICITY
B2.2.1 VECTOR SPACES FOR STRESS AND STRAIN
B2.2.2 INGREDIENTS OF PLASTICITY THEORY
B2.2.3 YIELD CRITERION
B2.2.4 FLOW RULE
B2.2.5 HARDENING RULE
B2.2.6 LOADING/UNLOADING CRITERION
B2.3 RATE INDEPENDENT MROZ MODEL
B2.3.1 CONCEPT
B2.3.1.1 One-Dimensional Model
B2.3.1.2 Multi-Dimensional Extension
B2.3.1.3 Yield Surfaces
B2.3.1.4 Yield Surface Equations
B2.3.2 TANGENT FLEXIBIL!T
B2.3.2.1 General
B2.3.2.2 Stress and Strain Increments
B2.3.2.3 Flexibility Matrix
B2.3.2.4 Summary of Assumptions
B2.3.3 TANGENT STIFFNESS
B2.3.3.1 Direct Derivation
B2.3.3.2 Equivalence of Flexibiliiy and Stiffness Forms
B2.3.4 STKUCTURAL ANALOGY
B2.3.5 RELATIONSHIP BETWEEN K AND E,
B2.3.5.1 General
B2.3.5.2 Geometric Interpretation

25



B2.4

B2.5

B2.3.5.3 Mroz and von Mises Effective Values
B2.3.6 FORMULATIONS IN STRESS SUBSPACES
B2.3.6.1 General
B2.3.6.2 6D Stress Subspace
B2.3.6.3 Axisymmetric and Plane Strain
B2.3.6.4 Plane Stress
B2.3.7 HARDENING RULE
B2.3.8 UNLOADING
B2.3.9 STATE DETERMINATION
B2.3.9.1 General
B2.3.9.2 Unloading
B2.3.9.3 New Yield Surface
B2.3.9.4 Tolerance on Current Surface
B2.3.9.5 Scaling to Yield Surface
EXTENSION FOR RATE DEPENDENCE
B2.4.1 CONCEPT
B2.4.2 DASHPOT STIFFNESS
B2.4.3 ASSUMPTIONS
B2.4.3.1 Basic Equations
B2.4.3.2 Internal Time Integration
B2.44 DERIVATION OF EQUATIONS
B2.4.4.1 Finite Time Step
B2.4.4.2 Flexibility
B2.4.4.3 Stiffness
B2.4.4 4 Structural Analogy
B2.44.5 Relationship Between K, and E,
B2.4.5 REDUCED STRESS SPACES
B2.4.6 STATE DETERMINATION
REFERENCES

26



BZ.1 INTRODUCTION

A nonlinear kinematic harderning theory for modeling plasticity in metals has been pro-
posed by Mroz [B2.1,B2.2]. The theory permits essentially arbitrary stress-strain relationships,
is consistent with generally accepted principles of plasticity, and is coavenient to apply computa-
tionally. From an examination of available plasticity models, it was concluded that the Mroz
model was the most suitable for pipe whip analysis. The existing theory has been extended to
include rate-dependent plasticity and has been implemented as a "blck ocx" subroutine pack-
age. This package could be replaced by subroutines for different material models in the future.

Because of the importance of the material model in pipe whip computations, this section
contains a detailed description of principles, theory, and computational aspects. The principles
of computational plasticity are reviewed in Section B2.2. The rate-independent Mroz theory is
described in Section B2.3, and extended to include rate dependence in Section B2 4.
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B1.2 PRINCIPLES OF COMPUTATIONAL PLASTICITY

B2.2.1 VECTOR SPACES FOR STRESS AND STRAIN

A general three-dimensional state of stress and strain can be defined by the symmetrical
stress and strain tensors:

o o2 O
o - o) On o3 (B2.2.1a)
o3 O3 033

€)) € €3
€ = | €) € €n (B2.2.1b)
€3 €3 €33
or by the nine-component vectors:
gd = lopononopoyonoyayopl (B2.2.2a)
€/ = e enerener enen ey el (B2.2.2b)

Because of symmetry, it is more convenient computationally to use the six-component
vectors:

gd = loponoyrpryryl (B2.2.3a)
€ = lenenenynynynl (B2.2.3b)
in which
Ty = 0y (B2.2.4a)
and
Yy = €yte; = 2, (B2.2.4b)

The use of y, ("engineering” shear strain) in €4, rather than €, iS necessary to ensure
that g and €4 are conjugates in an energy sense. That is, ior a strain increment deg the work
done in a unit of volume of material is given by:

dW = z{dg_g - Z’Td!’ (B2.2.5)

The stress and strain vectors can be decomposed into deviatoric and volumetric (mean) vectors
as follows:

gy = So+ uyo, (B2.2.6a)

€9 = &9+ uge, (B2.2.6b)
in which
Sy = deviatoric stress vector
€9 = deviatoric strain vector

0||+Gn+033

O, ™ Mean stress =
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€ +entey
3

€, = mean strain = (B2.2.7b)
and
ul = [(111000000]) (B2.2.8)

It is easy to show that §I ug = 0, so the deviatoric and mean stress vectors are orthogonal. The
vectors o and €4 can be similarly decomposed.

Stresses may also be represented in three-dimensional principal stress space. This
representation is not convenient computationaily, but is useful for graphic illustration of princi-
ples and concepts. In ihis space the mean stress vector is parallel to the vector w; (the "space
diagonal”), where

uf = [111]
Deviatoric stress vectors thus lie in the plane perpendicular to u; (the " plane”).

B2.2.2 INGREDIENTS OF PLASTICITY THEORY

Plasticity theory assumes that the material is initially elastic. For metals, it is reasonable
to assume that this initial behavior is linearly elastic and isotropic. At some state of stress or
strain the material yields, and its subsequent behavior is elasto-plastic (i.e. partly elastic and
partly plastic). The plastic part of the behavior is characterized by flow of the material, with
non-recoverable plastic work. In this report, both the elastic and plastic strains are assumed to
be small. To formulate a theory, four ingredients are needed, as follows.

(1) An initial yield criterion.

(2) A plastic flow rule.

(3) A hardening rule.

(4) A loading/unloading criterion.

B2.2.3 YIELD CRITERION

The initial yield criterion defines the state at which the material first exhibits plastic
behavior. For metals, two widely used rules are the Maximum Shear (Tresca) and Distortion
Energy (von Mises) criteria. The von Mises criterion is generally accepted as being more accu-
rate and is used in the Mroz ‘hieory. The von Mises criterion has the additional advantage of
being defined by a single, continuous function, whereas the Tresca criterion involves some
discontinuities.

Initial yield according to the von Mises criterion occurs when:
% §is = o! (B2.2.9)
in which o, = yield stress in uniaxial tension (or compression).
In terms of the 6-component stress vector, the von Mises criterion is:
.;_ SI WS = o} (B2.2.10)
in which
W = diag(111222)

The criterion can also be written as:
3

flg) = ?§f§9—cr} -0 (B2.2.11)
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in which [ is the yield function. The material is elastic for f < 0, and yield begins when f=0.
Although it is not convenient for computation, the principal stress space is valuable because it
permits graphical representation of the yield function, as a yield surface. In 2D principal stress
space, the yield surface defines the well known von Mises ellipse (Fig. B2.2.1a). In 3D princi-
pa’ stress space, the yield surface is a cylinder (Fig. B2.2.1b). When projected on the = - plane,
the cylinder is a circle (Fig. B2.2.1¢).

B2.2.4 FLOW RULE

For any given post-yield state of stress and strain, the flow rule defines the nature of the
plastic flow. It can be postulated that a plastic potential function exists and that plastic flow
takes place in the direction of the gradient of this function. It is not necessary, however, to
determine the plastic potential function explicitly, since only the expression for its gradient is
required.

After yield, it is assumed that any strain increment can be divided into elastic and plastic
parts. That is,

The flow rule defines the direction (but not the magnitude) of de ;5 That is,
deyo = g9 dA (B2.2.13)
in which
g9 = vector defining direction of plastic flow (gradient of potential function): and
d\ = magnitude parameter.
For any given state, the flow rule defines &9 However, the magnitude, dA, must be deter-
mined usirg other relationships.

For metals, an associated flow rule is usually assumed, in which the plastic potential func-
tion is the same as the yield function. That is,

8 = [.o9 (B2.2.14)
in which
Ly = A AL ... 5 (B2.2.15)
8o, 90,

For the von Mises criterion, it follows from Eqn. B2.2.1} that:
Lios = 35 (B2.2.16)

lu geometrical terms, the associated flow rule means that the contours of the plastic potential
twnction comprise a family of curves geometrically simiiar 1o the yield function. The gradient
c* the potential function is normal to its contours, and thus normal to the yield function. This
g'omeirical interpretation applies not only in 9D s:ress space, but in all other spaces.
Nevertheless, care must be taken when performing computations in reduced spaces, for reasons
cewsidered later.

" Although [, 9 is defined in stress space (and, from Eqn. B2.2.16, has .he dimensions of
stris), it is used to define a direction in strain space (Eqn. B2.2.13). This is not inconsistent,
sinis: £, ,9 simply defines a direction. The change from dimensions of stress to dimensions of
stra.’) is achieved in Eqn. B2.2.13 by assigning dimensions of strainsstress to dA. An alternative
forn.is convenient computationally, as follows.

et ng be a dimensionless unit vector defined by:
Lios
(£.55L,00)"
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Eqn. B2.2.13 can now be written as:
deyy = ng- de, (B2.2.18)

in which de , is now a direct measure of the plastic strain magnitude.

B2.2.5 HARDENING RULE

For a material which is elastic-perfectly-plastic, the yield function remains unchanged after
yield. For strain-hardening materials, however, the yield function changes progressively. The
hardening rule defines how the function changes.

In geometrical terms, a change in the yield function corresponds to a change in the sjze,
shape and/or position of the yield surface in stress space. Two rules which have received
extensive use are the isotropic rule of Hill [B2.3] and the kinematic rule of Prager {B2.4,B2.5].
Geometrically, the isotropic hardening rule corresponds to expansion of the yield surface with
no change of shape and no shift of the origin, as illustrated in Fig. B2.2.2a for 3D principal
stress space. The kinematic hardening rule corresponds to translation of the yield surface with
no change of size or shape (Fig. B2.2.2b).

The differences in behavior piedicied by these two rules can be illustrated with reference
to a simple materiai subjecied to constant amplitude cyclic loading. Consider a material with
the bilinear stress-strain curve shown in Fig. B2.2.3a, and consider cyclic loading in uniaxial
tension and compression with: (a) a constant range of stress from o 4 to o g and (b) a constant
range of strain from ¢, to €3 For a constant stress range, the isotropic rule predicts com-
pletely elastic cycling after the first half cycle of loading (Fig. B2.2.3b), whereas the kinematic
rule predicts cycling around a stable hysteresis loop (Fib. B2.2.3¢). For a constant strain range,
the isotropic rule predicts inelastic cycling initially, with shake-down to completely elastic
cycling after a number of cycles (Fig. B2.2.3d), whereas the kinematic rule again predicts a
stable hysteresis loop (Fig. B2.2.3e).

Neither of the two rules predicts behavior which agrees exactly with sxperimetal obser-
vations. In particular, the isotropic rule is grossly incorrect in predicting elastic behavior for
constant stress cycling, and the kinematic rule is generally incorrect in predicting stable hys-
teresis loops.

Experimentally obtained hysteresis loops [B2.6] for cyclic loading of mild steel (ASTM
A106) are shown in Fig. B2.2.4. Figure B2.2 4a indicates that a stable loop is followed for con-
stant strain cycling, as predicted by kinematic hardening theory. However, Fig. B2.2.4b shows a
pronounced Bauschinger effect in the first cycle, and progressively expanding loops in later
cycles. Neither of these effects is predicted by pure kinematic hardening theory. Overall, how-
ever, the weaknesses of the kinematic hardening rule are less serious than those of the isotropic
rule. The kinematic rule is also more conservative for practical application in that it generally
predicts conservatively large strains for constant stress cycling. Hence, in the absence of a
more sophisticated formulation, the kinematic rule is to be preferred for practical analysis.

B2.2.6 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuing plastic flow to be distinguished from
elastic unloading, for any current plastic state and any specified strain increment. Two pro-
cedures are of general applicability, as follows.

(1) For the specified strain increment, calculate the magnitude parameter for the plastic strain
increment (i.e. A in Eqn. B2.2.13 or de, in Eqn. B2.2.18). A positive magnitude indi-
cates continuing plastic flow, and a negative magnitude indicates unloading.

(2) Postulate that the material has unloaded an infinitesimal amount, so that the current state
of stress lies just within the yield surface. Calculate the (elastic) stress increment, do,,
corresponding to the specified strain increment. If the state of stress moves outside the
yield surface, the assumed elastic state is incorrect, indicating continuing plastic flow. If
the state stays within the yield surface, the elastic assumption is correct, indicating
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unloading.

By the second of these two procedures, continued loading is indicated if do, has a positive
component along the outwa d normal, ng, of the yield surface. That is, continued loading
occurs if:

nd dg, > 0 (B2.2.19)

It is shown later that the first procedure leads to exactly the same equation.

A third possible procedure is to specify that loading continues if the increment of plastic
work is positive, and unloading occurs if the increment is negative. If the current stress vector
is o, and if the plastic strain increment is de ,, continued loading occurs if:

dW, = g7 - de, > 0 (B2.2.20)

Unfortunately, although this procedure may appear to be physically sound, it is not acceptable
for actual computation. Figure B2.2.5 shows a unizxial stress-strain relationship with linear
kinematic hardening. Or unlceding from peint B, the material reyiclds at point C. If it is
assumed that the total strain increment is the sum of plastic and elastic parts, it follows (Fig.
B2.2.5) that:

Be = Be,+ B, = B¢, + da/E (B2.2.21)

The plastic work (5 W,) and elastic work (8 W,) are thus as shown. Apparently, 8 W, is nega-
tive.

The corresponding situation is illustrated in Fig. B2.2.6 for the = - plane. From previous
kinematic hardening, the yield surface has moved so that it no longer encloses the origin.
Hence, for plastic flow at point C, Eqn. B2.2.20 gives dW, < 0.

It follows from this discussion that it is not necessary, for mathematical reasons, for W, to
increase monotonically. Rather, the quantity which must increase monotonically is € , If itis
required, for physical reasons, that W, increase monotonically, it will be necessary either to
revise the mathematical formuiation or to impose a restriction that the yield surface must
always enclose the origin.
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B2.3 RATE INDEPENDENT MROZ MODEL
B2.3.1 CONCEPT

B2.3.1.1 One-Dimensional Model

In uniaxial tension, the stress-strain relationship for the Mroz model must be approxi-
mated by a multilinear curve (Fig. B2.3.1). It is then convenient to separate the strains in elas-
tic and plastic parts and to model the uniaxial behavior with an elastic "spring” and a rigid-
plastic-hardening "spring” in series (Fig. B2.3.2). The relationship between any tangent
modulus, £, and the corresponding plastic modulus, E,, is then given by:

1 1 1

i NS Tk (B2.3.1a)
E"LE'E .
or
E,E,
5 (B2.3.1b)
il = 3

in which E, = elastic modulus.

B2.3.1.2 Multi-Dimensional Extension

In nine-dimensional stress space, the elastic spring models elastic deformations of the
material, and the plastic spring models plastic deformations. The elastic stress-strain relation-
ship can be written as:

dg9 - Q,odg,q (B2.3.2a)

or
de,y = Cpoday (B2.3.2b)

in which D, and C, are the well-known elastic constitutive matrices, assuming isotropic
behavior. A plastic constitutive matrix, Cp, is similarly defined, in flexibility form, by:

dg,q - _C:’ngg (B2.3.3)

The Mroz theory provides, among other things, a procedure for calculating C,o The complete
elasto-plastic relationship is then:

deg = (g,9+£'¢) dg_g - g,,qdaq (B2.3.4)

in which C, is the elasto-plastic constitutive matrix. The matrix C,¢ is singular, so that a
corresponding matrix D, does not exist. However, Eqn. B2.3.4 can be inverted to give:

dgy = Cobdey = D, deg (B2.3.5)

B2.3.1.3 Yield Surfaces

In multi-dimensional stress space, yielding of the rigid-plastic "spring" is governed by a
series of yield surfaces. For illustration, behavior in the two-dimensional o ;~0o ;; space will be
considered. Fig. B2.3.3 shows the yield surfaces in this space (assuming von Mises theory) for
the initial unstressed material. For a stress path along the o;; axis, as shown, the plastic
modulus changes each time a new yield surface i1s reached. The same is true for any other
stress path.

As the material yields, the yield surfaces translate in stress space, without change of size
or shape. For the stress path shown in Fig. B2.3.3a, the surfaces are displaced as shown in Fig.
B2.3.3.b. F r subsequent reloading, or for loading along the o, axis, behavior as shown in Fig.
B2.3.3b is obtained. The Mroz theory establishes rules for motion of the yield surfaces for
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general stress paths, as explained later. As indicated in Fig. B2.3.3, the yield surfaces make
contact with each other but are not aliowed to overlap.

B2.3.1.4 Yield Surface Equations

In the initial unstressed state, all yield surfaces are centered at the origin. After plastic
straining, the yield surface centers will be displaced. If the yield functions are initially /) (g,
falgy), etc., the functions after plastic straining become f,(gs—ay), filgs—a)), etc., in
which a,, a etc. are the locations of the yield surface centers. The functions f are defined by
Eqn. B2.2.11.

B2.3.2 TANGENT FLEXIBILITY

B2.3.2.1 General

An expression for C,e (Eqn. B2.3.3) is first developed. The matrix D,, (Eqn. B2.3.5), as
required for finite element analysis, then follows. A number of alternative procedures are con-
sidered.

B2.3.2.2 Stress and Strain Increments

Figure B2.3.4 shows a two-dimensional state of stress, in the o~ j; plane. The highest
numbered yield surface contacted at the current stress point is surface i. Increments of stress,
total strain, and plastic strain are shown. In general, these vectors can be in arbitrary direc-
tions. Note that although dog is in the o ;—o;; piane for this illustration, the strain vectors
will generally nct lie in the €;—€j; plane (becausec of Poisson’s effect). Figure B2.3.4 thus
shows only the projections of the strain vectors on the €,,—€; plane.

The normal vector to the current yield surface, ng, is given by Eqn. B2.2.17. Figure
B2.3.4 shows the projection of ng on the o, —o; plane. Because the active yield surfaces all
have similar shapes and do not overlap, they have common tangents and normals at the current
stress point.

For an associated flow rule, the increment of plastic strain, de ,, is parallel to ng That is,
deyy = node, (B2.3.6)
in which the scalar de, is defined io be the Mroz effective plastic strain increment. Similarly, the
Mroz effective stress increment, do *, is defined as:
do” = nd dag (B2.3.7)
which is the component of dog along ns The relationship between the Mroz effective stress
and the von Mises effective stress is considered later.
The relationship between do ~ and de " is assumed to be:

de, = 7'(-40' (B2.3.8)

'

at the i yield surface, in which K, is constant between yield surfaces and is related to, but not
equal to, E,. The relationship is considered later.

B2.3.2.3 Flexibility Matrix
From Egns. B2.3.6, B2.3.8, and B2.3.7, it foliows that:

de s = %ﬁ dgs = Cpday (B2.3.9)

l

Hence, from Eqn. B2.3 4,
=
nony
Cw = Lot X,
40

(B2.3.10)



B2.3.2.4 Summary of Assumptions
The derivation of Eqn. B2.3.10 incorporaies the following assumptions:
1.  Plastic flow is normal to yield surface (Eqn. B2.3.6).

2. The Mroz effective plastic strain increment is the length of the plastic strain vector (Eqn.
B2.3.6).

3.  The Mroz effective stress increment is the component of the stress increment vector
along the yield surface normal (Eqn. B2.3.7).

4.  Increments of the Mroz effective stress and effective plastic strain are related by a linear
relationship (Eqn. B2.3.8). The stiffness X, in the relationship remains to be defined in
terms of the plastic modulus for the material, E,.

5. The total strain is the sum of elastic and plastic strains (Eqn. B2.2.12).
6.  Elastic strains are related to the total stresses by a constant elasticity matrix (Eqn. B2.3.2).

The derivation also depends cn the hardening rule, because the yield function, f,(zs—a ), and
hence ng depends on the amount of prior hardening.

B2.3.3 TANGENT STIFFNESS

B2.3.3.1 Direct Derivation

The stiffness matrix, D, can be obtained by inversion of C,e Alternatively, D,y can
be derived as follows.

From Eqns. B2.2.12, B2.3.2, and B2.3.6,

des = D3 dog+ nede, (B2.3.11)
Premultiply Eqn. B2.3.11 by D, to get:
D,sdey = dag+ Dngde, (B2.3.12)
Premultiply Eqn. B2.3.12 by nJ, substitute Eqns. B2.3.7 and B2.3.8, then solve for de,'to get:
. (D,qllg) r 4(9
de, = ———— (B2.3.13)
- 5(20959"’ Kl
Hence, substitute Eqn. B2.3.13 into Eqn. B2.3.12 and rearrange to get:
(Desng) (Dosng
dog = |D,g—-— = deyg = D,d (B2.3.14)
a9 Hes 2{Dans+ K, €9 = Lgydey

B2.3.3.2 Equivalence of Flexibility and Stiffness Forms

Let 4 be a nonsingular square matrix and let u be a vector. The Sherman-Morrison for-
mula (B2.7] states that:

T
-1 4 -l - [ Auu' A
47"+ uu" £ Wast
Put 4 = Dgyand u = ny/~JK,, and use Eqn. B2.3.15 to invert C,in Eqn. B2.3.10. The result
(not surprisingly) is D,,s in Eqn. B2.3.14.
Computationally, it is more efficient to obtain D,, using Eqn. B2.3.14 than by inversion of
the matrix C,,.

(B2.3.15)
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B2.3.4 STRUCTURAL ANALOGY

A one-dimensional model of the Mroz material is shown in Fig. B2.3.2. This model can
be extended to the multi-dimensional case, as shown in Fig. B2.3.5. The structural model has
degrees of freedom dej and de 59, as shown. However, because de 9 is constrained to be paral-
lel to nmg, the total number of degrees of freedom is only 10. The 10 x 10 structure stiffness
matrix can be constructed by assembling the stiffnesses for the elastic and plastic "springs”. The

equilibrium relationship is:
daol _ | Do ~Deong
0 ~ndDes nd{Dusne+ K,

dgo
{d‘;} (B2.3.16)

Static condensation of Eqn. B2.3.16 to a 9 x 9 matrix gives exactly Eqn. B2.3.14.
B2.3.5 RELATIONSHIP BETWEEN K AND £,

B2.3.5.1 General

The material properties are defined in terms of plastic moduli, £,, which are related to the
uniaxial elastic and tangent moduli by Eqn. B2.3.1. The tangent constitutive matrix, however,
is defined in terms of the Mroz modulus, K (Eqn. B2.3.8). Two alternative procedures are
used herein to obtain the relationship between E, and K. The first is based on elementary
geometric concepts, and the second makes use of von Mises effective stress and strain values.

B2.3.5.2 Geometric Interpretation

Consider a uniaxial stress path, along the o, axis. After scme plastic straining, the situa-
tion will be as shown in Fig. B2.3.6. The vector dgy is given by:

dod = <do,;00000000> (B2.3.17)
From Eqns. B2.2.6, B2.2.16, and B2.2.17, ny at first yield is given by:
1
nd 7 2-1-1000000> (B2.3.18)

For the stress path shown, the direction of ny does not change after yield. Hence, from Egn.
B2.3.7,

do’ = 723-“., (B2.3.19)
and from Egns. B2.3.8 and B2.3.6,
deyy = ﬂo‘ﬁz"dcu (B2.3.20)
so that
&, = 3—%40.. (B2.3.21)

Hence, the ielationship between K and £, must be:

Ke-2p (B2.3.22)

3
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B2.3.5.3 Mroz and von Mises Effective Values

The von Mises effective stress, &, and increment of effective plastic strain, de,, are
defined as:

]
7 - ‘%§J§.] (B2.3.23a)
2 .
de, = lj—dg,zdg,,l (B2.3.23b)

in which S¢ and eg are defined by Eqn. B2.2.6. The definition of these values ensures that for
uniaxial stress:

do = E,de, (B2.3.24)
in which E, = plastic modulus as defined by Eqn B2.3.1. From Eqn. B2.3.23a,
e (B2.3.25)
(S{ S9*

The directions of S and ng are parallel at first yield (Eqn. B2.2.16) and remain parallel pro-
vided the stress path is radial. Hence,

dG = [%]A nd S, (B2.3.26)
and because Sqand o, are orthogonal (Eqn. B2.2.6):
& - l%]%nggq - l%]h & (B2.3.27)
From Eqns. B2.3.6 and B2.3.23b,
&, - l%lh &, (B2.3.28)
Hence,
K= 2E (B2.3.29)

B2.3.6 FORMULATIONS IN STRESS SUBSPACES

B2.3.6.1 General

For full 3D stress it is computationally more efficient to work in 6D rather than 9D stress
space. For plane/axisymmetric strain and plane stress, it is more efficient to work in 4D and
3D stress spaces, respectively. It is important to recognize that the equations developed for 9D
space do not necessarily apply directly in reduced spaces.

B2.3.6.2 6D Stress Subspace

From the definitions of Eqns. B2.2.2, B2.2.3, and B2.2.4, transformations between the 9D
and 6D spaces can be written as follows.

dgg = Usday; dag = V]dog (B2.3.30)
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deg = Vides, dey = Ul deg (B2.3.31)

in which
100 0 0 0 0 0 0 0
tehiitili
- » 0 0
Ye=10 0 005050 0 0 0 (81.3.32)
0 0 0 0 0 05050 0
0 000 0 0 00505
100 0 0 0 0 0 0 0
SIERSEEE
- . 0 0
Ye=10 0 010100 0 0 0 (B1.3.33)
0 0 0 0 010100 0
0 0000 0 01010
and
VeUl = 1, & unit matrix. (B2.3.34)

The normal vectors f,, and n define the plastic flow direction in strain space and
transform according to Eqn. B2.3.31. Hence,
!Ll‘"’ o, Il"
(['07"4[-")% (I'aniy[.['oﬂ)“

B = Veng = (B2.3.35)

in which
Us Ul = diag [1.01.01.00.50.50.5)

That is, ne transforms 1o ne, which is parallel to £, ¢ but is not a unit vector. Equation B2.3.10
transforms to:

Lo = Lo "%'! (B2.3.36)

in which Cps = ¥ C,o ¥ is well known. Similarly, D,y in Eqn. B2.3.14 transforms to:

_ D19 Des 2 "
Do = Do 20 Dunet K, (B2.3.37)
in which D¢ = U; Dy Ul is well known.

B2.3.6.3 Axisymmetric and Plaue Strain

For arisymmetric and plane strain analysis, it is convenient to define the stress and strain
vectors {assuming motion in the 1-2 plane) as ¢, and ¢4, where

gl = l’n oentTn 03:] (B2.3.38)
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!cr" mnz?u!nl (B2.3.39)
Hence,
dogy = Uiday; dgy = V]da, (B2.3.40)
d!; - _V‘d!". ‘!9 - y[d_(_, (823‘”
in which
w100 0 00008
Ye=10 0 005050000 (B2.3.42)
0 100 0 00090
and
'o° 100 8 8 8 3 3 3
F4=10 0 010100000 (B2.3.43)
010 0 0 0000
Hence, Eqn. B2.3.10 transforms to;
Cot = Cu %"—I- (B2.3.44)
L
in which
Lot
ng = (B2.3.45)
- Uos U Ul £,09"
U Ul = diag [1.01.00.51.0)
and

Coo = ViCow ¥l is well known.
Equation B2.3.14 transforms similarly.

B2.3.6.4 Plane Stress

For plane stress, oy, is zero (but not €;y). Heace, .3 can be obtained as a submatrix of
Cepsr 01 D,y; can be obtained by static condensation of D.,e Alternatively, & direct relationship
can be obtained as follows.

In Eqn. B2.3.44, C,,; is obtained by ignoring the last row and column. That is,

Cor = G+ BE 4 (B2.3.46)
]
in which
Lior (B2.3.47)

e Yo U Ul £,00"

Note that all four components must be included in the denominator of Ecn. B2.3.47. Inversion
of Eqn. B2.3.46 by the Sherman-Morrison formula gives:
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(90353) ( Qc.li'c, J

(R2.3.48)
n{ Dans+ K,

.QO-‘ - D~

B2.3.7 HARDENING RULE

Figure B2.3.7 shows two successive yield surfaces (i and )} in the w-plane. Both surfaces
have moved from their initial positions, because of prior plastic straining. The yield surface
origins are located by vectors a, and a , respectively. The current state of stress is ¢, on yield
surface i. The stress increment is dg, moving surface i towards surface ).

An essential requirement is that surfaces i and j must never overlap. This means that
they must have a common tangent (or normal) at the point of contact. It is also desirable that
the point of contact be the current stress point (as in Fig. B2.3.8a) rather than some other point
(as in Fig. B2.3.8b). If the situation in Fig. B2.3.8b is permitted, two hardening rules must be
formulated, one governing the behavior before the yield surfaces make contact, and a second
governing the behavior after contact. The situation could become particularly complicated if
several surfaces were in contact, as in Fig. B2.3.8¢c. If, on the other hand, the yield surfaces are
constrained to move so that the current stress point is also the contact point, only one harden-
ing rule needs to be formulated, and multi-surface contacts will always be as shown in Fig.
B2.3.8d. The hardening rule used herein is that proposed by Mroz, which satisfies these condi-
tions.

In Fig. B2.3.7, the normal vector, n, to surface i at the current stress point is shown. A
point, ¢, on surface j can easily be found such that

£ £ % (B2.3.49)

Ty Ty

in which o ,, and o ,, are the uniaxial yield stresses for surfaces i and ), respectively. Hence,

g =g + == g—g.] (B2.3.50)
»

The instantaneous transiation of surface i is assumed to be parallel to ¢ — ¢. That is
da, = ¢ - o au (B2.3.51)

in which du is a scalar multiplier.

With this assumption, surfaces i and j will always make contact as shown in Fig. B2.3.8a.
For example, consider the situation in Fig. B2.3.9 with a linear stress path as shown. This
causes the stress point, @, to move around surface i, and hence for the direction of translation
of surface i to change. Changes in the position of surface i, and the path foilowed by its center,
are shown in Fig. B2.3.9.

The multiplier du is obtained from the requirement that the stress point must remain on
surface i. That is,

& =0 [ - 42_54 (B2.3.52)
Hence, from Eqns. B2.3.51 and B2.3.52

O dg ‘82.3.53)
lie 22

Note that Eqns. B2.3.51 and B2.3.52 define motion of the yield surface directly in stress space,
without reference to plastic strains or the plastic modulu~ With this formulation, the plastic
modulus enters through the tangent constitutive matrix, and is reflected in the stress increment
dg. As a result, the same geometric construction for hardening applies in all stress subspaces.
In particular, no special treatment is needed for plane stress. If the hardening rule is applied in
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2D principal stress space, it can easily be seen that for radial stress paths it corresponds to
Ziegler's ule (see, for example, Fig. B2.3.2).

B2.3.8 UNLOADING

From Section B2.2.6, continued loading occurs if the elastic stress increment has a zero or
positive component on the outward normal to the yield surface. That is, unloading is indicated
if

nd Dy des < 0 (B2.3.54)

Alternatively, unloading occurs if de , 1S negative, because c,' must increase monotonically. In
Egn. B2.3.13, the bottom line is

!J .009 Iy 4 Kl

which is >0 for K, positive, since D, is a positive definite matrix. Hence, the sign of de, is
the same as the sign of (D, ny) " des. This is the same criterion as Eqn. B2.3 54.

B2.3.9 STATE DETERMINATION

B2.3.9.1 General

The equations derived up to this point define the behavior for only infinitesimal strain
increments. In the computer program, however, finite increments of strain are determined in
each analysis step. It is necessary to calculate the finite stress increments and yield surface
translations which correspond to these strain increments. This is the "state determination” ca!-
culation.

The equation to be evaluated is of the type:
A

Ag = f_Q., de (B2.3.55)
0

in which Ag = stress increment corresponding to strain increment Ae.

If the stress path is parallel to the direction of yield surface translation (i.e. if Ag and Aa
are parallel), and if the plastic modulus remains constant, then D,, is constant and Eqn. B2.3.55
is easily evaluated. In general, however, the stress path may be arbitrarily inclined, so that the
normal vector, n, progressively changes. Also, if the stress point reaches a new yield surface,
the plastic modulus will suddenly change. As a result, D,, will generally not be constant. If
the changes in D,, are significant, and if these changes are not taken into account, significant
errors may result.

An "adaptable” Euler integration strategy is used. It is first assumed that D,, is constant,
equal to 'he value at the beginning of the step. A stress increment is then calculated as

Ag = D, Ac (B2.3.56)

It is then checked whether, for this Ag, any significant error results. Three sources of error are
checked, as described in the following sections.

B2.3.9.2 Unioading

If unloading occurs, the value of D,, at the beginning of the step will generally be grossly
incorrect. Unloading is checked using Eqn. B2.3.54. If unloading is indicated, D,, is changed
to the elastic constitutive matrix, D,, and the calculation continues.

Because of the large difference between D,, and D,, unloading can produce large unbal-
anced forces in inelastic analysis and can lead to serious numerical difficulties. For this reason,
WIPS looks ahead in each time step to determine whether significant "events" occur within the
step. If so, the step is subdivided to prevent large unbalanced forces from developing. In
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narticular, when unloading occurs only small unloading strains are permitted, and the unbal-
anced forces are small.

B2.3.9.3 New Yield Surface

Significant errors can occur if the new stress point, g+Ag, lies significantly beyond the
next yield surface, because of the change in D,, If the new stress point lies outside the next
yield surface but is within a tolerance zone (typically an overshoot of 2% of the yield surface
size is allowed), it is assumed that the material law has been followed sufficiently accurately.
The © 1l strain increment is then applied, and only a scaling correction is made (see Section
B2.3.9.5). If the new stress point lies outside the tolerance zone, the strain increment is scaled
to place the stress point at the limit of the zone. The matrix D,, is then reformed, and the pro-
cess is repeated for the balance of the strain increment.

B2.3.9.4 Tolerance on Current Surface

It is a'so possible for the new stress point, calculated assuming constant D,,, to lie
significantly outside the current yield surface. This will occur particularly when Ag and Aa are
distinctly nonparallel (Fig. B2.3.10). In this case, the calculation is again assumed to be
sufficiently accurate provided the new stress point lies within a tolerance zone (typically 2% of
the yield surface size). If not, Ae is scaled, D,, is reformed, and the calculation is repeated for
the balance of Ae.

The scale factor is conveniently determined by considering the "tangential error” shown in
Fig. B2.3.10. With the actual Ag, the new stress point is at A. If Ag were parallel to Aa, the
new stress point corresponding to the same amount of hardening would be at B. The vector
AB in stress space defines the "tangential error.” Assuming a locally quadratic surface, the rela-
tionship between the "tangential” and "radial” errors is approximately

e, = 0.5¢} (B2.3.57)

in which e, = length of 4B and e, = amount of stress overshoot at A. Hence, for a specified
value of e, a corresponding value of e, can be found. This allows the required strain scale fac-
tor to be determined.

B2.3.9.5 Scaling to Yield Surface

At the end of any application of Eqn. B2.3.55, the new stress point wiil generally not lie
exactly on the yield surface. The stress values are thus adjusted, by scaling towards the center
of the current yield surface so that the new stress point lies exactly on the surface. This avoids
logical difficulties which can occur if the stress point is allowed to be outside the yield surface.

The effect of this scaling is to producc small violations of the hardening rule. If the stress
values are reduced, then the elastic strains are also reduced. Because the total strains remain
constant, this implies an increase in the plastic strains. However, no movement of the yield
surface center is made to compensate for this increase.

Consideration has been given to compensating for this error. The change in stress due to
the scaling can be regarded as an initial stress, and its effect can be carried forward into the cal-
culations for the next time step. Analyses have shown, however, that the scaling produces only
small errors in the computed behavior. In view of the fact that the hardening rule will never be
known precisely for an actual material, it has been concluded that further corrections are not
warranted.
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B2.4 EXTENSION FOR RATE DEPENDENCE

B2.4.1 CONCEPT

A structural analogy for the Mroz material was considered in Section B2.3.5 and shown in
Fig. B2.3.6. This structural model can be extended to account for rate-dependent plasticity by
adding a dashpot in parallel with the rigid-plastic-hardening componert, as shown in Fig. B2.4.1

In this model, the elastic modulus and the initial yield stress are independent of strain
rate, and the resistance after yield depends on the plasric strain rate. If the model is subjected
to a constant rotal strain rate, the plastic strain rate is zero at first yield, then progressively
increases until a steady state is reached. For a typical material, with a small strain-hardening
modulus at high strains, the steady-state plastic strain rate will be essentially equal to the total
strain rate. The type of behavior predicted by the model is thus as shown in Fig. B2.4.2. Initial
yield occurs at the static yield strength. In the steady state the strength exceeds the static
strength by an amount which depends on the strain rate and the dashpot stiffness. Between
first yield and the steady state there is a transition region in which the plastic strain rate
increases from zero to the steady-state value

This type of behavior is not necessarily the same as that observed in actual materials. In
particular, tests on low carbon steel indicate an increase in initial yield strength as well as
steady-state strength (Fig. B2.4.2). In spite of this discrepancy, the extended Mroz model is
believed to be reasonable for predicting strain-rate effects and has been adopted for the WIPS
elements

B2.4.2 DASHPOT STIFFNESS

Figure B2.4.1 shows the properties which are assigned to the analogous structural model
The elastic and rigid-plastic components have properties exactly as for a rate-independent
model. The dashpot component is assumed to develop resistance which depends multi-linearly
on the rate of von Mises effective plastic strain. The dashpot stiffness can be assigned as foi-
lows

(a)  For the steel under consideration, experimental data must be available relating strength in
uniaxial tension to strain rate. Typical data is shown in Fig. B2.4.3a

(b) Plot this data as strength increase versus strain rate, as shown in Fig. B2.4.3b. Approxi-
mate by a multilinear curve, and define the dashpot stiffnesses, E,,, as shown. Note that
this assumes thal the steady-state plastic strain rate is equal to the total strain rate

B2.4.3 ASSUMPTIONS

B2.4.3.1 Basic Equations
The following basic relationships are used. The notation is as used in Chapter B2.3
(1) A total strain increment is the sum of elastic and plastic increments

deg = d_(_cq+dg_’g (B2.4.1)

(2) A total stress increment is the sum of plastic and dashpot increments

dgy = dg s+ do g (B2.4.2)

(3)  Plastic stresses are related to plastic strains as in the rate-independent theory

doy = nd do (B2.4.3)

Ny de, (B2.4.4)




do, = K, de, (B24.5)

(4) Total stresses are related to elastic strains by Hooke's law:

dogy = D,gdes (B2.4 6a)

dey = Cpoday (B2.4.6b)
(5) Dashpot stresses are related to plastic strain rates as follows:

do g = nf do g (B2.4.7)

do g = Ky déy (B2.4.8)

in which the Mroz dashpot stiffnesses, K, are related to but not equal to the uniaxial
stiffnesses, E,

B2.4.3.2 Internal Time Integration

in WIPS, the dynamic analysis problem is solved by step-by-step integration through ume.
To account for strain rate effects, it is also necessary to use st~p-by-step integration within the
material model calculations. .Compumiomlly. it is necessary to relate the plastic swrain rate
increment in a time step, A€, to the plastic srrain increment, Ae,

A family of first order, single parameter integration schemes has been studied in detail
(B2.8,B2.9) for integration of linear, first order differential equations. The strain increment,
Ae, in a time step, A, is computed as:

Ae = €, A1 (B249)

in which €,, = "average” strain rate during the step. This "average" rate is given by:
€0y = (1= )€, + [fé,44, (B2.4.10)

in which the parameter f controls the characteristics of the scheme. The value f = 0 defines an
explicit Euler scheme (forward difference). Values f = 1/2, = 2/3, and f = 1 define, respec-
tively, the trapezoidai, Galerkin, and backward difference schemes.

The trapezoidal scheme is consistent with the integration scheme used in WIPS at the
complete structure level. Schemes with f < 1 are known, however, to produce numerical oscil-
lation if the time step, Ar, exceeds certain limits. This is believed to be undesirable in the
present context because it could produce yielding-unloading cycles in the rigid-plastic com-
ponent. The backward difference scheme does not produce numerical oscillations. Hence,
although this scheme provides less accurate predictions of transient response, it is recom-
mended for use with the material model. The inaccuracy in the transient response calculation is
not believed to be a serious disadvantage.

From Egns. B2.4.9 and B2.4.10, it follows that:
prgn § 9—‘-—.‘,] (B2.4.11)

This equation provides the required relationship between Aé, and Ae,
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B2.4.4 DERIVATION OF EQUATIONS

B2.4.4.1 Finite Time Step

Equation B2.4.11 applies for a finite time step. In the following derivations, Ae, A1, elc.
are replaced by de, di, etc., for consistency with previous derivations. It should be remem-
bered that dr still represents a finite time increment.

B2.4.4.2 Flexibility

Premultiply Eqn. B2.4.2 by a{ to get:
nldas = ndda+ nddosp (B2.4.12)

Substitute Eqns. B2.4.3, B2.4.5, B2.4.7, B2.4.8, and B2.4.11 into Eqn. B2.4.12 and rearrange to
get

de, = - ,f( (B2.4.13)
—
K + 7 d
Hence, from Eqns. B2.4.4, B2.4.1, and B2.4.6,
n nJ I-K‘I(.P
des = (Coo+ — 2| dgy+ —-LK—L., (B2.4.14a)
K+ —L K+ —L
Sdr Sf-dt
or
dey = Cnday+ de,g (B2.4.14b)

The first term on the right of Eqn. B2.4.14 defines the rate-dependent material flexibility
matrix. Computationally, the second term is exactly like an initial strain. 1. depends on the
time step and the plastic strain rate, €, 2t the beginning of the time step.

B2.4.4.3 Stiffness

Solution of Eqn. B2.4.14 for dgy (using the Sherman-Morrison formula) gives the
stiffness form:

dgg = D,ndes+ dg .p (B2.4.15)
in which the rate-dependent material stiffness matrix is:
Dops = Des - (2"4’)(2"5’); (B2.4.16)
2 Dom+ K+ 70
and the initial stress term is:
dg o = Dpnde.n (B2.4.17)

B2.4.4.4 Structural Analogy

For the structural model in Fig. B2.4.1, the stiffncsses for the separate con.ponents can be
assembled to give the following equilibrium relationship:

% Lo ~Dens ""i (B2.4.18)

4 ° N- T K {
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Static condensation to a 9 x 9 matrix yields Eqn. B2.4.15.

B2.4.4.5 Relationship Between K, and £,

The relationship between the dashpot stiffnesses K, and E, is the same as that between
the plastic stiffnesses K and E,, as derived in Section B2.3.3. That is,

Ky = %Ea (B2.4.19)

B2.4.5 REDUCED STRESS SPACES
The formulations in reduced stress spaces are obtained exactly as in Section B2.3.7.

B2.4.6 STATE DETERMINATION
For a given strain increment, Ae, the stress increment can be evaluated from:

Ag = Ag,+ Ay = ‘T_D,,,Ag_ +Ac o (B2.4.20)
0

in which Ae ,, follows from Eqns. B2.4.17 and B2.4.14 with finite A, and all other terms have
been defined previously. Alternatively, the following equation may be used:

Ag = D,(Ae — A¢,) = TQ, de, (B2.4.21)
0

For the general case, integration of Eqn. B2.4.21 requires less numerical effort, and this
equation is used for the shell element. For the pipe element, however, it is necessary 0 satisfy
an equilibrium condition for the hoop stress, and this requires static condensation operations on
the material stiffness matrix. In this case, it is more convenient to use Eqn. B2.4.20. In both
cases, an "adaptable” Euler integration strategy, essentially as described in Section B2.39, is
used.
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B3. PIPE ELEMENT

SUMMARY

This section describes the theory of the pipe type element. The basic feaiures of the ele-
meni are described in Sections B3.1 and B3.2. Details of the theory and computational pro-
cedure are described in Section B3.3 for a curved (elbow) element and in Section B3.4 for a
straight element. A typical WIPS user should be familiar with the basic features of the element
but need not study the theoretical details.
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B3.1 INTRODUCTION

The pipe type element has the following features.
The element may be straight or curved, and arbitrarily oriented in space.

If the element is straight, it is treated as a three-dimensional beam column. Inelastic
behavior is considered by dividing the cross section into subelements (or fibers), and
monitoring the behavior of each subelement. Longitudinal, circumferential, and torsional
stresses are considered.

If the element is curved, it is similar in many respects to a straight element, but includes
additional deformations to account for ovalling. A number of simplifying assumptions are
made in developing the ovalling theory.

The Mroz material model is used, with allowance for strain rate dependence if desired.
The effects of internal pressure on ovalling stiffness and material yield are considered.

Large displacement effects may be considered, if desired, using an engineering theory (i.e.
not a consistent continuum mechanics approach).

A general description of the element properties is presented in Section B3.2. Theoretical

details for the curved element are presented in Section B3.3, and for the straight element in
Chapter B3 4.
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B3.2 ELEMENT PROPERTIES

Beam-column finite elements based on assumed cubic displaced shapes are commonly
used for elastic and inelastic analysis. The straight pipe element is exactly of this iype, and the
curved pipe element is essentially of this type. However, there are several coraplicating factors
introduced when the element is curved rather than straight. The assumptions and properties
are described in physical terms in this chapter. Full theoretical details are presented in Sections
B3.3 and B3 4.

The element geometry and coordinate axes are shown in Fig. B3.2.1. Each element con-
nects two nodes, each with three translational and three rotational degrees of freedom. For a
straight element the assumed deformed shape is cubic. For a curved element, however, an
assumed cubic shape is inconsistent in a finite element sense. If cubic interpolation along the
element axis is assumed, then rigid body motions can be significantly restrained. If cubic inter-
polation along the element chord is assumed, constant strain states do not exist. For this rea-
son, the deformed shape is assumed to be the exact shape for a curved elasric element. This
shape can be calculated for any element geometry, as explained in Section B3.3. The element
stifiness is formed by numerical integration (Gauss quadrature). The detailed behavior is mon-
itored at two cross sections located at the Gauss points (Fig. B3.2.1). At each point the pipe
cross section is divided into a number of subelements (typically 12), as shown. The pipe wall at
each subelement is assumed to be subjected to hoop stress (due to pressure), axial stress (due
to pressure, bending moment and axial force), and shear stress (due to torsional moment).
The inelastic behavior of each subelement is monitored, using the Mroz material theory.

For a curved element a major factor in the behavior is ovalling of the pipe cross section.
For in-plane bending, the longitudinal tensions and compressions in the extreme fioers produce
opposing forces which compress or extend the pipe section, as shown in Fig. B3.2.2a. This
ovalling can substantially modify the longitudinal stress distribution, so that instead of a linear
stress variation over the pipe depth, the variation is strongly nonlinear, as indicated in Fig
B3.2.2a. This effect can greatly reduce the bending stiffness of the pipe, and because the oval-
ling is resisted if internal pressure is present in the pipe, this stiffness depends on the pressure.

Ovalling is also produced by out-of-plane bending of a curved element. However, the
ovalling deformation is inclined at 45 degrees to the moment axis, as shown in Fig. B3.2.2b.
This type of ovalling also reduces the bending stiffness and modifies the bending stress distribu-
tion.

In an actual curved pipe, the longitudinal, hoop, torsional and ovalling deformations all
interact with each other to produce very complex behavior. In the curved element theory, the
complexity is reduced by ignoring several of the interaction effects. In particular:

(1) In-plane and out-of-plane ovalling deformations are assumed to be uncoupled.

(2) Bending stresses in the pipe wall due to ovalling are assumed not to affect yield of the
pipe under the membrane stresses produced by internal pressure, bending and torsion in
the pipe (and vice versa).

(3) Owvalling at any cross section is assumed not to be affected by ovalling at any other cross
section. In particular, if a pipe elbow is connected to a straight pipe, the straight pipe is
assumed not to restrain the ovalling near the ends of the elbow.

In addition, only two ovalling "modes” are considered, namely, the in-plane and out-of-plane
modes shown in Fig. B3.2.2. Detailed analyses of pipe elbows have shown that it may be
necessary to consider higher order ovalling modes to obtain accurate elastic stress distributions.
It is assumed, in effect, thet these higher modes are less important for inelastic behavior.

In spite of the many simplifications which have been made, the curved element has
predicted results in close agreement with experiment. The curved element is also, in spite of
the simplifications, quite complex theoretically, as shown in Section B3.3. The straight element
is less complex, and the theory follows well-established procedures.
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B3.3 CURVED ELEMENT THEORY

B3.3.1 PROCEDURE AND ASSUMPTIONS

The stiffness and state determination calculations for the element are based on a combina-
tion of beam and shell theory.

The element is modelled as shown in Fig. B3.3.1. At each of the two Gauss integration
points a beam slice is considered, and each slice is divided into a number of cross-section
subelements. The subelement stiffnesses are constructed first, allowing for elasto-plastic
behavior of the pipe steel. The slice stiffnesses are constructed from the subelement stiffnesses
by summation. The complete element stiffness is then constructed from the slice stiffnesses by
Gauss quadrature.

The slice deformations consist of six beam-type deformations plus two ovalling deforma-
tions. The beam deformations consist of axial deformation, torsional twist, in-plane and out-
of-plane curvatures, and in-plane and out-of-plane flexural shear deformations. One ovalling
deformation is associated with in-plane bending, and the second with out-of-plane bending (Fig.
B3.3.2).

The beam deformations at each slice are related to the element node displacements by a
deformation shape function. The ovalling deformations in any slice are assumed to be indepen-
dent of the ovalling deformations at other slices. Hence, no shape function is assumed for vari-
ation of ovalling along the element length. The ovalling deformations are internal degrees of
freedom at each slice and are condensed out before the element stiffness is constiucted from
the slice stiffnesses.

Each subelement is assumed to be in a state of plane stress, with axial, hoop, and shear
stresses. The axial strain in any subelement is affected by axial deformation and curvature of
the slice and by the ovalling deformations. The effects of axial deformation and curvature are
determined assuming plane (but not necessarily circular) cross sections. The effects of ovalling
are determined using the membrane equations for an axisymmetric shell. The shear strair in
any subelement is assumed to be affected by torsional twist only. Flexural shear effects are
assumed to be negligible at the subelement level and are ignored (they are introduced at the
slice level;. The subelement shear strains due to twist are determined assuming plane, circular
cross sections.

Hoop strains are not determined from strain-displacement relationships. Rather, the hoop
stresses are governed by the equilibrium relationship between internal pressure and hoop siress.
The hoop strain in any subelement thus becomes an internal degree of freedom for the subele-
ment and is condensed out before the slice stiffness is constructed.

The hoop stress in equilibrium with the internal pressure is the average value over the
pipe wall thickness. In addition, ovalling induces pipe wall bending, and hence stresses which
vary through the pipe wall thickness. It is assumed that yielding of slice subelements is not
affected by pipe wall bending, and correspondingly that flexural yield of the pipe wall due to
ovalling is not affected by subelement yield. That is, it is assumed that membrane and bending
effects in the pipe wall are uncoupled.

Although it is not essential to the theory, it is assumed that the cenierline radiv of the
bend is large compared with the pipe radius. This is not generally true for piping elbows. How-
ever, in view of the many other assumptions made in developing the theory, this assumption is
belicved to be reasonable. Ford and Turner [B3.1] have shown that the assumption produces
only small errors.
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83.3.2 SLICE STIFFNESS

B3.3.2.1 Deformations and Actions
The siice deformation vector is v,, given by
wWee <8¢,y ¥,y 00,0, > (B3.3.1)

in which 8 = axial strain at pipe axis, ¢ = rate of torsional twist; ¢, = in-plane bending cur-
vature, ¥, = out-of-plane bending curvature, y, = in-plane flexural shear deformation; y, =
out-of-plane flexural shear deformation; w, = in-plane ovalling (Fig. B3.3.2), and w, = out-
of-plane ovalling.

The corresponding slice action vector is §,, where
Sl = <FM, VMV, TQ,0,> (B3.3.2)

in which F = axial force; T = torsional moment, M, = in-plane bending moment, M, =
out-of-plane bending moment, ¥, = in-plane flexural shear, V¥, = out-of-plane flexural shear,
1, = generalized force for in-plane ovalling, and ), = generalized force for out-of-plane
ovalling. The forces {1 , and (), are defined only in a virtual work sense.

B3.3.2.2 Subelement Strains due to Ovalling

The strain-displacement relationships for an axisymmetric membrane (Fig. B3.3.3) are as
follows [B3.2]):

o W (veos® + wsind) (B3.3.3a)
i[a
€, ol . -l (B3.3.3b)

in which €, = circumferential s'rain in membrane (axial strain in pipe) and €, = meridional
strain in membrane (hoop strain in pipe). If it is assumed that the bend radius is large com-
pared with the pipe radius, Eqn. B3.3 3a can be approximated by

— ’7(vmo + wsin) (83.3.3¢)

The two ovalling deformations are shown in Fig. B3.3.2. These deformations produce
both normal (w) and tangential (v) displacements. It is assumed that the hoop strains, e,,
associated with ovalling are zero. The shape functions for membrane displacement are thus
chosen as

w o= w, 0520 + w,s5in20 (B3.3.4a)
and
- -;- R P -;-..,mzo (B3.3.4b)
Hence, the strain-displacement relationships are
3
" » —!‘L"—’-‘-.,+ 2‘;"-1 (14 25in) w, (B3.3.52)

€, =0 (B3.3.5b)




B3.3.2.3 Strain-Deformation Relationships for Slice

Consider slice subelement i, located at angle @, (Fig. B3 3 1). The subelement membrane
strains, €, and y ,, are related to the slice deformations by

de, = B, dv, (B3.3.6)

in which v, is defined by Eqn. B3.3.1;
de| = < de, dy, > (B237)

and

-ﬂl'i' un'(l + htu’o‘)
v o (B3.3.8)

1 asir®, 0 -acost, 0 0

!‘ -

This transformation assumes that plane sections remain plane, that the change in cross section
shape due to ovalling is negligible, and that the ratio of cross section radius to bend radius (a/r)
is small. A modification of the transformation to allow for significant change of cross section
shape is considered later

Note that the shear deformations, y, and y,, are assumed not to influence the subele-
ment sirains. The effects of these deformations are considered separately.

B3.3.2.4 Stress-Strain Relationship for Slice Subelements

Each subelement is assumed to be in a state of membrane stress and strain (plane stress)
The hoop stress is controlled by the internal pressure, according to the well-known equation
(a-050 & !
!

pL (B339)

o, = P
. '

in which P = internal pressure, @ = radius to pipe wall mid-thickness. ¢ = wall thickness. and
a' = a-051

The Mroz plasticity theory is used. The details of the procedures used to implement this
theory are described in Section B2 of this manual For any given state ol subelement i, an
elasto-plastic stress-strain relationship is determined as

dg, = D de, (B3.3.10)

in which
dg = < do, dr, do, > (B3311)
de= < de,, dy, de, > (B33.12)

and in which D, = 3 x 3 elasto-plastic constitutive matrix and the stresses and strains are mem-
brane values. From Eqns. B3.? 10 and B3.3.9 it follows that

de ,, de ,,
(D) {dy, } = { dr, (B3 313
‘l., a' dP/
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in which dP is known. Hence, D, can be reduced, by static condensation, to a 2 x 2 matrix,
D,,, in terms of axial and shear stresses only If dP = 0, the result can be written as

!1), ] de a do a

(B33 14)
D) | 4 = B3.3.1

If dP is not zero. an initial stress effect must be included, as described later

B3.3.2.5 Stiffness Matrix

The transformation matrix 8 (Eqn. B3.3.8) considers the effects of axial deformation,
bending, and torsion, and the axial membrane strains due to ovalling. A partial tangent
stiffness matrix for the slice, k., which considers only these effects, is thus given by

»

-V

N
al ¢ 7 - .
- - "D, B (B3 3.15)
23 8D, 8

in which N = number of slice subelements around pipe circumference

The matrix kg has zero values in the rows and columns corresponding to the shear defor
mations y, and y ,, because the transformation B does not consider flexural shear effects. Itis
assumed that the flexural shear stiffness is not affected by yielding of the pipe wall, and hence,
that the elastic shear stiffness can be used. For an effective shear area equal to one-hall of the
cross section area, the shear stiffnesses are defined by

dV, = Gmat -dy, = k, ' dy, (B3.3.16a)

dV, = Gmat dy, = k, ~dy, (B3.3.16b)

y

in which G = elastic shear modulus. The stiffness coefficients kg (3,3) and kg ,(5,5) are set
equal to k.,

The slice stiffness matrix, k,, now includes the influence of ovalling on axial strains but
does not consider bending of the pipe wall due to ovalling. The matrix also does not consider
the effect of internal pressure on ovalling stiffness. These effects are included as follows

B3.3.2.6 Ovalling Resistance due to Pipe Wall Bending

Consider the ovalling deformation associated with in-plane bending (Fig. B3.3.2a). The
radial and iangential displacements, from Eqns. B3.3.4 are

W o coslh

l -
';m,,smlﬁ (B3.3.17p)

‘

From the strain-displacement relationships for an axisymmetric shell, the pipe wall curvature in
the hoop direction, ¢ ., 18

(B3.3.1%)

Hence, from Eqns. B3.3.17,

3
v, = —scoshw, (B3 3.19)
a’

It is assumed that the bending strength of the pipe wall is not affected by the presence of axial
and hoop membrane stresses. Hence, for any given stecl stress-strain relationship, a moment




curvature relationship can be determined for the pipe wall. For a given state of strain at loca-
tion @ on the pipe wall, let the moment-curvature relationship be

dm, = j, dé, (B3.3.20)
Hence, from Eqns. B3.3.19 and B3.3.20, a generalized ovalling stiffness can be defined by
2
df ,, = %fcoszu ‘ Jjy * adl  dw , (B3.3.21a)
a ",
or
N, = k., dw, (B3.3.21b)

By integrating around the pipe circumference, the relationship between f1,, and w, can be
determined. When normalized to /0, = | and w/w, = 1, where ), and w, = values at first
yield, the relationship depends on the steel stress-strain curve but is independent of the ratio of
pipe radius to wall thickness.

The normalized ()—w relationships have been calculated for three different stress-strain
curves, as shown in Fig. B3.34 It can be seen that the shapes of the curves do not vary
greatly. Hence, for any given stress-strain curve, the {)—w relationship can be estimated from
Fig. B3.3 4 without evaluating Eqn. B3.3.21.

For analysis, a trilinear relationship is assumed, as shown in Fig. B3.3.5. The same tri-
linear relationship is used for both in-plane and out-of-plane ovalling, and it is further assumed
that the ovalling deformations w, and w, are uncoupled. Hence, the ovalling stiffness, k_,. is
added to the diagonal terms k,,(7.7) and k,(8.8) of the slice stiffness matrix.

B3.3.2.7 Ovalling Stiffness due to Internal Pressure

The equilibrium relationship between internal pressure and hoop stress is given by Eqn.
B3.3.9. This assumes that the pipe radius, a, remains constant. As the cross section ovals,
however, the pipe radius changes, with the result that for constant hoop stress an equilibrium
error develops. This error can be regarded as an unbalanced internal pressure, which tends to
resist ovalling. -

Consider in-plane ovalling, w, (Fig. B33 2a). From Eqn B3.3.19, the change in hoop
curvature at location @ in the pipe wall is

¢ » %coﬂh, (83.3.22)

Hence, the unbalanced pressure, P, is given by
P, = a,ty, = Pla-050 ¢, (B3.3.23)

in which P = internal pressure. Assuming t/a is small, it follows from Eqns. B3.3.23 and
B3.3.22 that

p, = JTPcosuo, (B3.3.24)

Hence, the generalized force associated with P, is given by

3P
N, = chos’u ‘add - w, (B3.3.25a)

0, = Pre, = k,w, (B3.3.25b)




It is assumed that the same stiffness applies for both in-plane and out-of-plane ovalling and that
the stiffnesses are uncoupled. Hence, the stiffness k,, is added to the diagonal terms kg (7,7)
and kg (8,8) of the slice stiffness.

B3.3.2.8 Condensed Slice Stiffness

After addition of the ovalling stiffnesses, the partial siice stiffness, k,, becomes the slice
stiffness, k, The ovalling deformations are assumed to be internal degrees of freeGom for the
slice. Hence, the 8 x 8 matrix can be condensed to a 6 x 6 matrix, k,, in terms of the stress
resultants on the pipe cross section.

B3.3.3 ELEMENT STIFFNESS

B3.3.3.1 Choice of Shape Function

For straight beam elements, it is common to use a cubic shape function. For a curved
beam, however, the use of a cubic function may lead to substantial errors. For this reason, a
shape function is constructed which is exact for an elastic curved bean, element, and this same
shape function is assumed also to apply for the inelastic element. The determination of the
shape function requires additional calculation. However, this calculation 1s performed only
once, at the beginning of the analysis, and does not add significantly 1o the total cost. The pro-
cedure is as follows.

B3.3.3.2 Elastic Stiiffoess

Consider an elastic curved beam, with nodal degrees of free..m as shown in Fig. B3.3.6.
The 12 nodal displacements can be transformed to 6 symmetric-antisymmetric deformation pat-
terns (Fig. B3.3.7) plus © rigid-body displacements. The elastic stiffness in terms of the
symmetric-antisymmetric de >rmations can be obtained in closed form as follows.

The equilibrium relr onship between the slice stress resultants and the symmetric-
antisymmetric generalized rorces is

Sy = N (B3.3.26)
in which
Sl = <FM, V.MV, T> (B3.3.27)
N7 = < N, N; Ny Ny Ny Ng > (B3.3.28)
0 cost s in8/reine %
' rlcosB-cosé) -sing/sin®
I
in®
~ . 0 sing cosh/rs (83.3.29)
cosf sing ~cotésing
0 0 <1/rsind
i o Leggigeast
L o
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and B (positive or negative) defines the slice location (Fig. B3.3.7).
The elastic slice flexibility is defined by

Yo= L[S (B3.3.30)
in which
V= <BY, Y., Y, 0> (B3.3.31)
and
1 1 2 1 2 1
4 "“"lu aEl GA ol GA ZGII i

in which E = Young's modulus, G = shear modulus, A = cross section area, | = cross sec-
tion moment of inertia, and a = flexibility factor to account for ovalling. The flexibility factor
follows from the ovalling theory described in the preceding sections (from the reduced slice
stiffiness, k., for the elastic case, determine the effective EI value). The result is

9

a = |- ~ (B3.3.33)
10 + 12 ar 48 Pr?
1=-v? | &’ Ear

in which v = Poisson’s ratio. The flexibility factor given by the well-known von Karman
theory [B3.3] is (for P = 0)
& & fo et (B3.3.34)

10+ 12 | %
a

which is essentially identical to Eqn. B3.3.33.

From Eqns. B3.3.26 and B3.3.30, the element 6 x 6 flexibility matrix, Fy, in symmetric-
antisymmetric coordinates follows as

Iy = f oL £, by rdp (B3.3.35)
-

in which r and 8 are defined in Fig. B3.3.7. The flexibility coefficients can be obtained by
closed [orm integration. The matrix Fy uncouples intc two 2 x 2 plus two | x | submatrices,
so that only 8 coefficients need to be evaluated.

The element stiffness, Ky, in symmetric-antisymmetric coordinates is easily obtained by
inverting Fy.

B3.3.3.3 Displacement Transformation
The deformations at a slice, v, can be obtained as follows.
From Eqns. B3.3.30 and B83.3.26

Yo = [i b N (B3.3.36)
Hence,
Yo = LibvKvn = a.n (83.3.37)

in which n contains displacements corresponding to N. A transformation between the
symmetric-antisymmetric deformations and the 12 local displacements (Fig. B3.3.6a) can easily
be constructed. This can then be combined with the well-known coordinate rotation transfor-
mation from local to global displacements, r, (Fig. B3.3.6b). A combined transformation
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between symmetric-antisymmetric deformations and global displacements follows in the form
a2 = ar: (B3.3.38)

Hence, from Egqn. B3.3.37,
Vo = [OnKna, = g, (B3.3.39)

Matrix g, is the required transformation between nodal displacements and slice deformations.

B3.3.3.4 Element Stiffness

The transformation matrix, g, is formed for each slice (Gauss point) in the element.
The element stiffness then follows as

K=3walk,a, (B3.3.40)
]

in which w, = Gauss quadrature weighting function and k, is the 6 x 6 slice stiffness.
B3.3.4 INITIAL STRESS EFFECTS

B3.3.4.1 General

The effects of loads which originate at the element level are treated as initial stress effects.
Pipe elements can, in general, be subjected to initial stresses due to changes in temperature,
changes in internal pressure, and creep. Loads which originate at the element level are also
introduced when rate-dependent plasticity is considered. Temperature, pressure, and creep pro-
duce real initial stresses, with physical meanings. The initial siresses caused by strain rate
effects exist only in a mathematical sense.

Initial stresses affect the analysis in two ways. First, they contribute to the load vector,
and, second, they influence the state determination calculation. Initial stresses do not affect the
stiffness calculation.

In WIPS, pipe elements may be subjected to pressure only, and temperature effects are
ignored. Furthermore, the pressure is assumed to be constant with time and is taken into
account by initializing the hoop and axial stresses in the pipe wall to values given by simple
closed tube theory. For completeness, however, the theory allowing for temperature and pres-
sure changes is presented. Creep effects are not considered in this report.

B3.3.4.2 Pressure and Temperature Changes
At a slice subelement, i, the tangent stress-strain relationship, including initial stress
effects, is

do de , ~a
dr, | = |D) dy, (B3.3.41)
a'dP/ ‘l~-¢

in which dP = pressure increment, dT = temperature increment, and a = coefficient of ther-
mal expansion. Eqn. B3.3.4]1 can be condensed to the form

do de do 4
'd,:'l - [D,) {‘7‘l + l‘,‘l (B3.3.42)
or
dg, = D, de, + dg .. (B3.3.43)
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Application of the procedures of Section B3.3.2 produces the slice stiffness relationship
6: - 50 dv, + 6- (B3.3 44)
in which k, is as defined in Section B3.3.2.8, and

3
S

a, - il ] f BT dg .+ (B3.3.45)
~ -]

COO0CCOoOO

is the initial slice force. The last term in this equation is the axial force in the contained fluid
(pipe inside area times fluid pressure). Because the increment of slice ovalling forces is zero,
Eqn. B3.3.44 can be condensed to the form:

S, = ke dv, + &5, (B3.3.46)

By the procedure of Section B3.3.3, this relationship can be transformed to the following rela-
tionship in symmetric-antisymmetric coordinates:

dN = Kydn+ dN, (83.3.47)
in which N¥.n and K are as defined in Section B3.3.3.3, and
dN, = I w gl &5, (B3.3.48)

f

in which w, = Gauss weighting factor at slice i and the transformation g, is Jefined by Eqn.
B3.3.37. Finally, dN, is transformed to global coordinates using the transformation of Eqn.
B3.3.38.

B3.3.4.3 Strain Rate Effects

The general theory for material strain rate dependence has been presented in Section Bl
Certain additional assumptions have been made in applying this theory to the pipe element. A
summary of the assumptions is as follows.

(a) It is assumed that strain rate effects influence only the membrane stresses. The bending
stiffiness of the pipe wall is assumed to be rate independent.

(b)  Strain increments are divided into elastic and plastic components:

de = de, + de, (B3.3.49)
(c) Stress increments are divided into plastic and damping components:
dg = dg,+ dg, (B3.3.50)
(d) Total stress increments and elastic strain increments are related by Hooke's law:
dg = D,de, (B3.3.51)

(e) Mro: effective plastic stress increments are related to effective piastic strain increments by
the rate-independent Mroz model:

do, = n; dg, = Kde, (B3.3.52)
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in which do, = effective plastic stress increment, de , = effective plastic strain incre-
ment, n] = unit vector normal to the yield surface; and K = tangent plastic modulus.

(f) The damping stress increment is defined by

dg, = C l-:;q,-g,l (83.3.53)

in which C = damping coefficient, dt = time step, and ¢, is the plastic strain rate. This
equation assumes that the backward difference integration sch>me is used.

g) The flow rule is defined by:
de, = n, de, (B3.3 54)
With these assumptions, the governing equations are obtzined as follows. Premultiply

Eqn. B3.3.50 oy n)] and substitute Eqns. B3.3.52 - B1.3.54 into Egn. B3.3.50 1o get the
effective plastic strain increment as.

de, = é%t—g/%'r—’;ﬂ (B3.3.5%)
By virtue of Eqns. 83.3.51, B3.3.54, and B3.3.55, Eqn. B13.3.49 can be written as:
de = |D;'+ ;%%’r/—‘, dg + Fcf’%ﬁg. (B3.3.56)
Inversion of Eqn. B3.3.56 by the Sherman-Morrison formula resuits in:
dg = D de + dg, (B3.3.57)
in which
D = D, - C\(Dn,) Do)’ (B3.3.58)
dgo = ~CiCniéy Leto (B3.3.59)
and
-1
C, = |oseno+ K+ % (B3.3.60)

For a finite time step, dt is replaced by A:. The last term in Eqn. B3.3.57, dg ,,, is then trealed
as an initial stress. In each time step, the initial stresses, dg ,,, are transformed to initial ele-
ment forces and assembled into the effective load vector for the step.

B1.3.4.4 Round-Off in Mroz Material Calculations

In the state determination calculation for the Mroz material, the siresses calculated assum-
ing linear behavior are scaled so that the stress point lies exactly on the yield surface. This
mmﬂmthcakuhudhoopminmdianhbm&mmcmﬂymﬂy Egn
B3 3.9, If this error is not corrected, it may accumulate over a number of load increments and
reach a significant magnitude.

The error is corrected by determining, for each subelement, the internal pressure
corresponding to the calculated hoop stress. The difference between this pressure and the
actual pressure is then a pressure error. At each iteration, this value is added to dP in Eqn
B3.3.41 and treated as an initial stress effect. This prevents accumulation of error.
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B3.3.5 CHANGE OF SECTION GEOMETRY DUE TO OVALLING

Ovalling may produce significant changes in cross section geometry One result of this is
that an elbow is stronger for in-plane bending which increases the bend angle (and thus
stretches the cross section) than for bending which decreases the bend angle (and thus collapses
the section). This effect is taken into account as follows.

At each siffness reformulation, a deformed slice geometry is determined, taking into
account the total ovalling deformation. Modified strain-deformation relationships for the slice
element (Eqn. B3.3.6) are then written as

..q.‘g cor” (!uo‘o *)
ot A Ay thy) 0 b ean) 00— Lo ".‘ (83.3.61)
. .
0

in which
Xy ™ acosé,
Ax, = (w,c0820 )cosh, ~ 4 (w,8in20 ) sind,
Yoo ™ asiné,
Ay, = (w,c0820)sin8, ~ 'Alw, 8ind8 ) coss,

and w, is the total in-plane ovalling deformation. The slice stiffness is then formed using the
same procedures as before.

B3.3.6 STATE DETERMINATION

Wken an increment of global displacement, Az, has been determined, the state determi-
nation proceeds as follows

(1) Calculate element deformation increment

Ap = g A; (B).162)
(2)  Calculate the beam-type deformation increments for ¢ ich slice:
Ay, = 9,4 (B3.36))
(3)  Calculate the ovalling deformation increments
".:fl = Loy + K 40, -a0) (B3.3.64)
in which J, is the transformation matrix obtained during condensation of the slice
stiffness from 8 x 8 10 6 x 6, X, Is the slice stiffness associated with ovalling deforma-

mm,um«:«ummm«m»muu-—-‘a’
state determination; and Af), are generalized initial forces from terms S,(7) and S (8
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)]

(5)

(6)

)
(8)

Calculate the generalized ovalling forces, {1 ,. associated with bending of the pipe wall
Update the ovalling stiffness, if necessary.
Calculate axial and shear strain increments using Eqn B3 3.6 or Egn B3.3.61 if change of
cross section due to ovalling is considered.

Calculate hoop strain increments from the axial and shear strain increments, taking Into
account any unbalanced hoop stresses due to cither internal pressure change or errors
from scaling the stresses to the yield surface. The hoop siress error can be oblained from:

A0 = 3'-"- -0u (83.3.65)

in which P = current internal pressure and o ,, = current hoop stress. Hence.
Qey = lAv., - Dy, Ae,, ~ Dy 67.'/05) (B3 3.66)

in which D, = term in the constitutive matrix [}
Obtair subelemen: siresses by Mroz material state determination.

Obtain slice forces by summing the stresses over the cross section. Add the axial force
inthe Nuid cclumn. Calculate the generalized ovalling forces as

0=0.+0.+0, (B3.).67)

in which (.. £l and ), arc ovalling forces associated with axial strain, pipe wall bend-
ing, and internal pressure, respectively. The force [l , is obained at Step (4) The [ ces
{1, and [}, are obtained from

~sin'e,
2. = lﬁflg,"' lo.s«o,tm'o,n)l e

0, = sn{:'} (83,3 69)

Because the generalized ovalling forces are asaigned zero values, it follows that
Q.= -0 (B3 370)

(9)  Calculate the element resisting forces in symmetric-antisymmetric modes

N=3 wals. (B33 71)

(10) Transform to global coordinates to ubtain the element rewisting force as

R' = o'N (83.3.12)



SLICES AT INTEGRATION POlNT/S

SUB-ELEMENT i

FIG. B3.3.1 - CURVED PIPE ELEMENT
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(b) OUT-OF - PLANE OVALLING

FIG. B3.3.2 - OVALLING DEFORMATIONS
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FIG. B3.3.3 - AXISYMMETRIC SHELL (TORUS)
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(a) LOCAL DISPLACEMENTS

¢

e n kn
B 71_1_-\\ 1 i
s \ ’
l/'c \ 1" 7 "o

7 J
\\ e // o
'/ '.z

0

(b) GLOBAL DISPLACEMENTS

FIG. B3.3.6 - CURVED ELEMENT DEGREES OF FREEDCM
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B3.4 STRAIGHT PIPE THEORY

B3.4.1 PROCEDURE AND ASSUMPTIONS

The stiffness and state determination calculations for the element are based essentially on
beam theory.

The element can be modeled as either a "Gauss slice” model (Fig. B3.4.1a) or as an "end
slice” model (Fig. B3 4.1b). For WIPS, the default option is the Gauss model. At each of the
two integration points, a beam slice is considered, and each slice is divided into a number of
cross section subelements. The subelement stiffnesses are constructed first, allowing for elasto-
plastic behavior of the pipe steel. The slice stiffnesses are constructed from the subelement
stiffnesses by summation. The complete element stiffness is then constructed from the siice
stiffnesses by either Gauss quadrature (for the Gauss model) or by closed form integration (for
the end slice model).

The slice deformations consist of six beam type deformations, namely axial deformation,
torsional twist, in-plane and out-of-plane curvatures, and in-plane and out-of-plane flexural
shear deformations.

The comp'ete element has six nodal degrees of freedom at each end (Fig. B3.4.2), which
provide six rigid body modes plus six element deformations. In addition, two internai degrees
of freedom are considered to allow linear variation of axial strain and torsional twist along the
element length These degrees of freedom are added to avoid excessive constraint by allowing
linear strain variation along the element axis. A typica! beam formulation allows only constant
strain, which 1s reasonable if the element axis is alsu the centroidal axis of the peam. In an ine-
lastic clement, however, the effective centroida! axis wi!l shift as the cross section yields.

The slice deformations are related to the element deformations by shape functions which
include the effects of shear deformation. Each subelement of a slice is assumed to be in a state
of plane stress, with axial, hoop, and shear stresses. The 2ffects of axial deformation and cur-
vature on axiai strains are determined assuming plane, circular cress sections  The shear sirain
is assumed 10 be affecred by torsiona’ twist only. Flexural shear effects are assumed (2 be
ragligible ai the subelemen. l¢ ¢l and are ignored (they are iniroduced at the slice levei). The
subelement shear strains due to (wist are determined assuming plane, circular cross sections.

Hoop strains are not determined from strain-displacement relationships. Rather the hoop
stresses are governed by the equilibrium relationship between internal pressure and hoop stress.
The hoop strain in any subelement thus becomes an internal degree of freedom for the subele-
ment and is condensed out before the siice stiffness is constructed.

B3.4.2 SLICE STIFFNESS

B3.4.2.1 Deformations and Actions
The slice deformation vector, v,, is given by:

.vlr - <3 v, *y")’v yg> (B34.1)

in which 8 = axial strain at pipe axis, ¢, = bending curvature about element z axis; ¢, =
bending curvature about y axis, ¢ = rate of torsional twist; y , = flexural shear deformation in
x-y plane; and y ., = flexural shear deformation in x-z plane.

The corresponding slice action vector is S,, where
ST = <FM,M, TV, V> (B3.4.2)

in which F = axial force;, M, and M, = bending moments, T = torsional moment; and V,,
and V. = flexural shear {orces.
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B3.4.2.2 Strain-Deformation Relationships for Slice

Consider slice subelement i, located at angle 6, (as for a curved element, Fig. B3.3.1).
The subelement membrane strains, €, and y, are related to the slice deformations by:

de, = B, dv, (B34.3)
in which v, is defined by Eqn. B3.4.1;
de| = <de,dy> (B3.4.4)
and
| asinf, —acos, ¢ 0 0
B=1 o 0 00 (B3.4.5)

This transformation assumes that plane sections remain plane and circular. It is also implied
that the pipe thickness is small compared to the pipe diameter.

Note that the slice shear deformations, y o and y ., are assumed not to influence the
subelement strains. The effects of these deformations are considered separately.

B3.4.2.3 Stress-Strain Relationships for Slice Subelement

Each subelement is assumed to be in a state of membrane stiess and strain (plane stress).
The hoop stiess is controlled by the internal pressure, accordirg to the well-known equation

- 0.5
(a '0,-1) o P:l (B3.4.6)

Uh-P

in which P = internal pressure; a = radius to pipe wall mid-thickness, t = wali thickness. anc
a = a~ 0.5

The Mro~ plasticity theory is used. The details of the procedures used to implement this
theory are d:scribed in Section Bl of this marval. For any given state of subelement i, an
elasto-plastic stress-strain relationship is determined as

do = D.de, (B34.7)

in which
dg” = < do,, dr, do , > (B3.4.8)
de = < de, dy, de, > (B3.49)

and in which D, = 3 x 3 elasto-plastic constitutive matrix and the stresses and strains are mem-
brane values. From Eqns. B3.4.7 and B3.4.6 it follows that

d‘.; da.,'
D, = {dy,} = { ar, (B3.4.10)
de adP/

in which dP is known. Hence, D, can be reduced, by static condensation, to a 2 x 2 matrix,
D, in terms of axial and shear stresses only. If dP = 0, the result can be written as:

d(.' dc‘
[Q..ll 474’ - [ ,,’] (B3.4.11)

If dP is not zero, an initial stress effect must be included, as described later.
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B3.4.2.4 Stiffness Matrix

The transformation matrix B (Eqn. B3.4.5) considers the effects of axial deformation,
bending, and torsion. A tangent stiffness matrix for the slice, k,, which considers only these
effects, is thus given by:

!

.k! - 2" _gzrgn g, (83412)

z|8
iM-

in which N = number of slice subeiements around pipe circumference.

The matrix k, has zero rows and columns corresponding to the shear deformations vy ,,
and y ., because the transformation B does not consider flexural shear effects. It is assumed
that the flexural shear stiffness is not affected by yielding of the pipe wall, and hence, that the
elastic shear stiffness can be used. For an effective shear area equal to one-half of the cross
section area, the shear stiffnesses are defined by:

dVy = Gmat - dy, = k, - dy, (B3.4.13a)

and
dVe, = Gmat " dy, = k, dyg (B3.4.13b)

in which G = elastic shear modulus. The stiffness coefficients k,(5,5) and k,(6,6) are set
equal to k..

B3.4.3 ELEMENT STIFFNESS

B3.4.3.1 Deformations and Actions
The element degrees of freedom, aiter deledon of the six rigid body modes, are given by:

v o= <y 0,0,0,0,0, u,0.,> (B3.4.14)

in which u, = axial extension, 8, = z-axis rotaiion at element end i; 9, = z-axis rotation at
end J, #, = torsional twist; @, = y-axis rotation at end i; 0,, = y-axis rotaticn at end j 1y, *
additional axial degree of freedom at element midpoint (displacemen: reiative 10 the element
ends); and 6., = additional torsionzl deformation at element midpoint (twist relauve to ele-
ment ends).

The corresponding element action vector is S, where
._S',,f - <FMM; T, MM, F,, T.n> (B3.4.15)

The forces F,,, and T, are defined only in a virtual work sense and are assigned zero values.

B3.4.3.2 Choice of Shape Function

For straight beam elements, it is common to use a cubic hermitian polynomial shape
function, which is exact for a uniform elustic beam. If shear deformations are included, the
shape can no longer be obtained from kinematic considerations only. Rather the equilibrium
relationship between moments and shears must pe considered, with the result that the shape
function depends on the ratio of the flexural and shear stiffnesses. If a shape function is deter-
mined using the elastic stiffness values, then when the beam becomes inelastic it is implied that
the ratio between the flexural and shear stiffnesses remains constant. This is unlikely to be
correct. A more reasonable assumption, in general, is that the flexural stiffness changes
whereas the shear stiffness remains constant. This assumption is made for the formulation of
the slice stiffness and must be retained at the element lev.. 10 avoid inconsistencies. For this
reason, the shape function is continually updated as the analysis proceeds, using a strain energy
minimization procedure as foilows.
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B3.4.3.3 Elastic Beam

A shape function is "exact” if it satisfies both the homogeneous governing equation for
the element and the displacement boundary conditions at the element ends. An important pro-
perty of an exact shape function is that it corresponds to a strain energy which is an "absolute”
minimum.

For a uniform elastic beam element ) .aded only at its ends, the governing equation is a
homogeneous fourth order differential e stion, and the exact displaced shape is at most cubic.
If shear deformations are ignored, the exact shape is the well-known cubic hermitian polyno-
mial. If shear deformations are considered, the exact shape can be obtained by solving the
differential equation directly, or alternatively by using a linear combination of polynomials up to
cubic and choosing the combination factors to minimize the strain energy.

For a finite element formulation, the alternative method is preferable. Consider a uni-
form beam in which both flexural and shear deformations are present. Impose a unit rotation
at the end x = 0, with the end x = L fixed (Fig. B3.4.3a). The beam will have bending defor-
mation plus a constant shear deformation. y. If v(x) defines the transverse displacement of
the beam axis, the boundary conditions are:

viD) = 0
vi0) = | -y
viL) = 0
V(L) = —y
A combination of cubic and quadratic polynemials which satisfies these bouncary conditions is'
X x I—-¢ ' x?
- - = b — - = 4.
vix) ¢ lx T + X 3 ‘x Ll (B3.4.16)
in which
c = 1=2y (F54.17)
Tke strain energy of the beam is:
U= %f EIv'(x))dx + hGAL(y ,)? (83.4.18)
0

Substitution of Eqns. B3.4.16 and B3.4.17 into Eqn. B3.4.18, and minimization with respect to ¢
results in:

l1+a,
ot = > - (B3.4.19)
in which
4 f 6x_ 31, o
a, Gil o EIIL, Lla 0 (B3.4.20)
and
2
4 f 6x 3 12E1
- apde 2 - S - =S (B3.4.21)
be = QD .,E’[L’ L]" GA'L?

These equations define the shape function.

98



B3.4.3.4 Inelastic Beam

For an inelastic beam, the stifiness along the element length can vary, and hence, the
governing differential equation is generally not known. Thus, it is not generally possible to
obtain e shape function by a closed form solution. A simple and effective procedure is to
apply strain energy minimization with certain assumptions. In Eqn. B3.4.16, the shape function
depends on the ratio of flexural stiffness to shear stiffness. As an approximation, the diagonal
terms of the slice stiffness matrix are assumed to Jefine effective flexural stiffnesses, and the
slice shear stiffnesses are assumed to remain constant. The shape function is then obtained, as
described in Section B3.4.3.6.

B3.4.3.5 Internal Degrees of Freedom

The two internal degrees of freedom, u,,, and 8, are included to allow for linear varia-
tion of axial and torsional deformations along the element axis. The shape functions associated
with these degrees of freedom do not involve flexural or shear deformations No strain energy
is associated with these deformations because the corresponding generalized forces are assigned
zero values.

B3.4.3.6 Shape Functions

Displacement shape functions relating element deformations to the longitudinal,
transverse, and twisting displacements along the element aie obtained by strain energy minimi-
zation. They can be expressed as:

du(x)
g:((f\)\ - Nix) dv, (B3.4.22)
de!l %)

in which u = jongitudinal displacement; v and w = transverse displacements in the y and z
directions, respectively, ¢ = twisi, 2nd N is given by:

Phb Y YS
¥ Np 0 0 &
0 0 0 x/'L G 0 0 ;V“
in which
Ny = Nq - -‘sz+4x
l+a, 2x? x B.~a, x
M=t Tt s T
l—a, | ¥* x? B.ta, lx’
Ms = 135, |0 Tt 2098, I—L__
l+ay sz x’ By-ay Xz
Ns=1%s, " T | 0%, 7T
N w 0l 2], Bte 183
7 148, (L7 L) 2048) | L

The shape functions relating the element degrees of freedom to the slice deformations are
obtained by differentiating the displacement shape functions. They can be expressed as:

dv, = a dv, (B3.4.24)
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in which dv, and dv,, are defined by Eqns. B3.4.1 and B3 .4.14, and

1 0 0 0 0 0 -8 o0

0apano 0 0 Oq 0
&S 110 0 0 0 a3 a3 0 0 (B3.4.25)
“ L10 0 0 1 0 0 0 -8¢

0 ds) 0530 0 0 0 0

0 0 0 Oagsaee 0 O

in which the transformation g is defined in terms of dimensionless coordinates q (Fig. B3.4.3b)

as:

~6(1+a,)
(1+8,) e

—6(l-a,)
oy » —pem————gy-l;

an = 1,

B +a,/
2(i+8, 200+8,)

@B,~a,)
- B,
% = 0+p,) =

B,+a,)
o 2(|+p,

2 f Lok

asy =

L,

GA LY,

GAL,}&(ZZ)q dg

7 L,fk(.‘”)qdq

B, = GA'L’ f k.(3,3)¢% dg
For the Gauss mode!, the integrals are obtained by Gauss quadrature. For the end slice model,
the integrals are evaluated in closed form, assuming that k, (2,2) and k, (3,3) vary linearly

along the element length.
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The shape function is updated at each eiement stiffness reformulation. If shear deforma-
tions are ignored, reforinulation is not necessary.

B3.4.3.7 Element Stiffness

For the Gauss model, the shape function, g, is formed at each slice (Gauss point) in the
element. The element stiffness then foliows as:

K=Y walk,a (B3.4.26)

in which w, = Gauss quadrature weighting function at slice i, and k,, is the 6 x 6 stiffness at
slice 1.

For the end slice model, the element stiffness is calculated assuming that the slice
stiffness, k,, varies linearly along the element length. Hence, the element stiffness can be
obtained by closed form integration as:

%

K=Lfa"kad (B3.4.27)
“in

The additional axial and torsional degrees of freedom at the element midpoint are internal
degrees of freedom for the element. The 8 x 8 element stiffness, K, is thus condensed to a 6 x
% matrix in terms of element actions at pipe ends. This stiffness is expanded to include ele-
ment rigid body displacements and then transformed to a 12 x 12 global stiffness. The transfor-
mations are well known and are not repeated here.

B3.4.4 STATE DETERMINA IO~

When an increment of global displacement, Ar, has been determined, the state determi-
nation proceeds as follows.

(1) Calculate element deformation increment:

Atm = g8 (B3.4.28)
(2) Calcuiate axial and torsional deformation incremen's at element midpoint:
[%g: l = Tayn+ K {.S..-§,.] (B3.4.29)

in which T is the transformation matrix obtained diring condensation of the element
stiffness from 8 x 8 to 6 x 6. K, is the element stifiness associated with axial and tor-
sional deformation at the element midpoint: S, is the equilibrium error in the general-
ized axial force and torsional moment at the element midpoint due to nonlinearities in the
preceding state determination; and S, is the equilibrium error in the generalized force and
moment due to initial stress effects.

(3) Calculate the slice deformation increment using Eqn. B3.4.24.
(4) Calculate axial and shear strain increments using Eqn. B3.4.3.

(5) Calculate hoop strain increments from the axial and shear strain increments, taking into
account any unbalanced hoop stresses due to either internal pressure change or errors
from scaling the hoop stresses to the yield s::rface. Use Eqns. C1.3.65 and C1.3.66.

(6) Obtain subelement stresses following the state determination procedure for the Mroz
material.

(7) Obtain the slice forces, S,, by summing the stresses over the cross section. The slice axial
force due to internal pressure is also added.

101



(8) Calculate the element resisting forces:

S, = Lf a’$,dg (B3.4.30)
S

For the Gauss slice model, the integral of Eqn. B3 4.25 is carried out using Gauss quadra-
ture and, for the end slice model, it is obtained in closed form issuming linear variations
of slice actions along the element length.

Because the generalized axial force and torsional moment at the element midpoint are
assigned zero values, it follows that:

} S,(7)
Spe = _l Txm] - ..ls.(s)l (B3.4.31)
(9) Transform the resisting forces at the pipe ends to global coordinates;
R' = 4s,, (B3.4.32)
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GAUSS POINTS

(a) GAUSS SLICE MODEL

I-J-K DEFINES
X-Y PLANE

END SLICES

(b) END SLICE MODEL

FIG. B3.4.1 - STRAIGHT PIPE ELEMENTS
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(c) GLOBAL DISPLACEMENTS

FIG. B3.4.2 - ELEMENT DEGREES OF FREEDOM
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(b) DIMENSIONLESS COORDINATES

FIG. B3.4.3 - LOCAL COORDINATES
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B4. BEAM ELEMENT

SUMMARY

This section describes the theory of the beam type elemernt. The basic features of the ele-
ment are described in Sections B4.1 and B4.2. Details of the theory and computational pro-
cedure are presented in Sections B4.3, B4 4, and B4.5. A typical WIPS user should be familiar
with the basic features of the element, but need noi study the theoretical details.
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B4.1 INTRODUCTION

The beam type element provides a more economical means of modeling inelastic pipe
behavior than the pipe type element.

In the pipe element, the stress-strain relationship for the pipe material is specified. The
inelastic material behavior is then monitored at several points on th2 pipe cross section, and the
moment-curvature and torque-twist relationships are calculated by the computer code. In the
beam element, the moment-curvature and torque-twist relationships must be specified by the
analyst, and the inelastic behavior is monitored for tne cross section as a whole, not at indivi-
_dual points. The beam element is more efficient computationally, but it is likely to be less
accurate than the pipe element, and less information is calculated on the stresses and strains in
the pipe. Only straight beam elements are permitted, and preliminary calculation is required to
determined the moment-curvature and torque-twist relationships.

The essential features of the elemen. are as follows:

(1) The element may be arbitrarily oriented in space, but it must be straight. Elbows can be
approximated using a number of straight elements.

(2) The element is an inelastic beam-column. Inelastic behavior is defined using stress
resultant-strain resultant (e.g. moment-curvature) relationships.

(3)  Multilinear stress resultant-strain resultant relationships may be specified. Kinematic
strain hardening is assumed for cyclic loading. Strain rate effects may be considered if
desired.

(4) Interaction beiween bending moments, torque and axiai force is considered by means of
yield interaction surfaces. The kinematic hardening rulc corresponds tc iranslation of the
yield surface without change of size or shape.

(5) The effects of cross section ovalling and internal pressure cannot be considered directly.
If these effects are important, they must be reflected in the stress resultant-strain resultant
relationships.

(6) Cross section plasticity is monitored at two cross sections in the elemeat and is assumed
to be distriouted over the element length. Element lengths must be chosen so that yield-
ing takes place more or less uniformly over the length of any element (i.e. is not concen-
trated in short plastic hinge regions at the element ends).

(7)  Large displacement effects may be considered, if desired, using an engineering theory (i.e.
not a consistent continuum mechanics approach).

A general description of the element properties is presented in Section B4.2. Theoretical details
are presented in Sections B4.3 and B4.4. Details of the computer logic are described in Section
B4.5.
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B4.2 ELEMENT PROPERTIES

B4.2.1 AXES

Element properties and results are specified in the local coordinate system x,y,z, defined
as shown in Fig. B4.2.1. If node K is not specified, its location is assumed as follows.

(a) If 1J is not vertical, node K is at Y = +oo. The xy plane is then the vertical plane con-
taining the element.

(b) If 1J is vertical, node K is at X = +oo. The xy plane is then parallel to the XY plane.
B4.2.2 MODELING OF INELASTIC BEHAVIOR

B4.2.2.1 General

It is assumed that yielding is distributed over the element. To satisfy this assumption in
regions of large moment gradient, it will generally be necessary to specify fairly short elements.

Yielding is monitored at two cross sections in the element, located at the Gauss points
(Fig. B4.2.1). Tangent stiffness relationships between the stress and strain resultants at the
Gauss points are modeled using a plasticity theory similar to the Mroz theory for yield of
metals. The element stiffness is then determined by Gauss integration (i.e. the conventional
finite element technique).

B4.2.2.2 Section Properties

The relationships between actions (stress resultants) an. deformations (strain resultanis)
raust be specified for the cross sections at the Gauss points. The relationships at the two poinis
in any element will typically be the same, but may be different if desired.

Relationships must be specified as shown in Fig. B4.2.2 for each of four action-
deformation pairs, namely (1) bending moment, M,, and corresponding curvature, ¥, (2)
bending moment, M., and corresponding curvature, ¢ ,; (3) torque, M,, and corresponding rate
of twist, ¢, and (4) axial force, F, and corresponding strz'n, €. Each relationship may have up
‘e four linear segments, as shown  The relationships may be of difieren: shape for each stress
resultant. For example, for mateiial with an elastic-perfectly-plastic stress-strain relationship,
the torque-twist and force-extension relationships will also be elastic-perfectly-plastic, whereas
the moment-curvature relationships will exhibit strain hardening behavior (Fig. B4.2.3). It is
necessary, however, for the deformation values at changes in stiffness to have the same ratios
for all relationships, as shown in Fig. B4.2.2. This restriction is necessary to avoid inconsisten-
cies in the plasticity theory, as explained later.

The relationships between actions and deformations may be determined by separate
analysis or may be obtained from experiments. If beam elements are used to represent pipe
elbows, the relationships should account for ovalling effects.

B4.2.2.3 Interaction Surface for First Yield

The actions M,, M,, M,, and F interact with each other to produce initial yield of the
cross section. For modeling of pipes, the influence of axial force on yield will usually be small
and can be ignored. For other applications, however. all four actions may have significant
effects. Because the beam element is not intended only for piping, a general theoretical formu-
lation is used. For the special case of piping, it is recommended that the influence of axial
force on yield be eliminated by specifying a very large value of S, (Fig. B4.2.2) for axial
effects.

The interaction effect is determined by an interaction surface (yield surface). To allow for
a variety of applications, provision is made in the theory for five different interaction sarfaces.
These surfaces are all four-dimensional (i.e. M,, M, M,, and F), and hence cannot be shown
easily using diagrams. The surfaces differ, however, mainly in the way in which the axial force
interacts with the three moments. Hence, the differences can be illustrated using the three-
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dimensional diagrams in Fig. B4.2.4. In these figures, the M, and M, axes indicate any two of
the moments, and the F axis indicates axial force. The equations defining the interaction sur-
faces are shown in the figure.

Surface | is elliptical and is the simplest mathematicaliy. Surfaces 2, 3, and 4 allow more
realistic modeling of moment-force interaction for cases in which axial force effects are substan-
tial. For all of these four surfaces, the interaction among M,, M, and M, is elliptical, and
only the force-moment interaction changes. For piping, the influence of axial force on yield
can be ignored, and hence the four surfaces are the same for practical purposes. Interaction
surface 5 is of a different form than the other four and is included for greater generality in spe-
cial cases. For piping, it is recommended that interaction surface 1 be specified, with a very
large value for yield under axial force.

B4.2.2.4 Interaction Surfaces for Subsequent Yield

For modeling a slice with nonlinear material properties, it is assumed that the behavior is
elastic-plastic-strain-hardening, as shown in Fig. B4.2.5. First yield is governed by the initial
yield surface; and for each change of stiffness, there is a corresponding "subsequent” yield sur-
face. These surfaces are assumed to have the same basic form as the surface for first yield.
However, because the action-deformation relationships may be of different shape for each
action, the surfaces for the first and subsequent yield will generally not have identical actual
shapes. An example in 2D stress resultant space is shown in Fig. B4.2.5. In this example, yield
surfaces considering axial force and moment are produced from corresponding force-strain and
moment-curvature relationships.

B4.2.2.5 Elastic and Plastic Stiffnesses

The initial siopes, K, for the uciion-deformation relationships are defined as the elas.ic
stiffnesses and are expressed as:

K, = diag | El, EI, GJ EA ) (B4.2.1)

where E = Young's modulus, G = shear modulus, | = flexural inertia, J = torsional inertia,
and A = section area. The slopes of subsequent segments of the action-deformation rzlation-
chips are deroted as K';, K, and K, and are defined as the post-vield stjffnesses. They must be
specified to provide appropriate post-yield behavior.

The assumed multi-linear action-deformation relationship for each force component can
be modeled as a set of springs, consisting of an elastic spring and a series of rigid plastic
springs, as shown in Fig. B4.2.6. The plastic stiffnesses, K, of the rigid-plastic springs can be
related to the post-yield stiffness values, K. The relationship between plastic stiffness, K, and
post-yield stiffnesses, K, and K,,,, can be obtained as:

K, Ky
Ry W gl (B4.2.2)
" Kr“ K»l
For each rigid plastic spring, a plastic stiffness matrix is defined as:
Ky, = diag | Ky Ky Ky, K¢ (B4.2.3)

where KAf,, KM,, KM,, and Ky are the plastic stiffinesses of the individual action-deformation
relationships, obtained from Eqn. B4.2.2.

B4.2.2.6 Hardening Behavior

After first yield, the yield surfaces are assumed to translate in stress resultant space, obey-
ing a kinematic hardening rule (translation without change of shape or size). An extension of
the Mroz theory of material piasticity is used to define the hardening behavior. Because the
interaction surfaces are generally not exactly similar, overlapping of the surfaces can occur (as
described in detail in Section B4.3.7); and, as a result, the hardening behavior is more complex
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than in the basic Mro? theory. For example, in Fig. B4.2.5b, the current stress resultant point,
A, lies on yield surfaces ¥S,, ¥5), and YS; Hence, all three plastic springs (Fig. B4.2.6) have
yielded, and the direction of plastic flow is a combination of the normal vectors n,, n, and »n;

B4.2.2.7 Plastic Fiow

Interaction among the stress resultants is considered as shown diagrammatically in Fig.
B4.2.5. Yield begins when the firs: yield surface is reached. The surface then translates in
stress resultant space, the motion being governed by the plastic flow of this first yield surface.
Translation of the first surface continues until the second surface is reached. Both surfaces
then translate together, governed by a combination of plastic flow on both of the surfaces. For
any yield surface, plastic flow is assumed to take place normal to that surface. If two or more
surfaces are moving together, the total plastic deformation is equal to the sum of the individual
plastic deformations for each yield surface, directed along the respective normal directions at
the action point. After some arbitrary amount of plastic deformation, the situation might be as
illustrated in Fig. B4.2.5b.

On unloading, the elastic stiffness values, K, govern until the first surface is again
reached (Fig. B4.2.5b). The surface then translates as before.
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(E) SURFACE TYPE 5

FIG. R4,2.4 - INTERACTION SURFACES (CONT'D)
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ELASTIC RIGID- PLASTIC

FIG. B4.2.6 - ONE-DIMENSIONAL PHYSICAL MODEL
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B4.3 THEORY

B4.3.1 DEGREES OF FREEDOM

The element has two external nodes and two internal Gauss stations, as shown in Fig.
B4.3.1a. The external nodes connect to the complete struciure and have six degrees of freedom

each, three giobal translations and three global rotations. After deletion of the six

rigid body

modes for the complete element and transformation to the local element coordinates, the six

deformation degrees of frecdom shown in Fig. B4.3.1b remain.
The transformation from global displacements to element deformations is:

i B ¥
in which
vT = [v,v3 - vg are the element deformations (Fig. B4.3.1b);

#7 = lry,ry -+ - 13 are the global displacements (Fig. B4.3.1a);
and the transformation g is well known.

B4.3.2 SHAPE FUNCTIONS

(B4.3.1)

The element slice at each Gauss station has six deformations, namely, axial deformation,
rotational deformation about each of the local x, y, z axes, and shear deformation along the y
and z axes. These deformations are arranged in the vector w, where wl o= [y, Wy oy Wl
The shape functions for a uniform elastic beam are assumed t0 be applicabie, in both the elastic

and yielded states. These shape functions define the deformations at 2n;, location as:

wix) = B(x)y
in which
% 8% 0 0 o0 0]
0 0 By B, 0 O
o o o0 0 1A 0
B) -
6o 0 0 0 0 1A
B, & 0 0 0 0
CIEE T T
and
e . 1 .
Bu= g FUL+6L-B/Y;
e ey ¥ 2 E
Bu= g [WL+sxL 8/,
e 2 .
By %8, —4/L+6x/L*+B,/L};
MR St @ 2 1
Bu= Tag- FYL+6x/LI+BIL;
e AR IR
By = By 200+8)"°

B:
By = Bu = =338,
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12El,
G
12E1,
GA, L
-B, .
200+8,)°
= -8, .
. 2(0+8)°

&

wly = [wi(x), wyx),...,wg(x)] = deformations at location x in the element; and
v’ = [y, vy, vgd = element deformations defined by Eqn. B4.3.1.
The slice deformations are simply the deformations at the slice locaticns.

B4.3.3 SLICE FLEXIBILITY

B4.3.3.1 General

In one-dimensional stress resultant space, a slice can be modeled as an elastic spring con-
nected in series with rigid-plastic springs (Fig. B4.2.6). This concept can be expanded to
multi-dimensional space, as follows.

The tangent slice stiffness changes as the cross section yields. For any state of the ele-
ment, a 4 x 4 elastic slice flexibility matrix is first formed, in terms of the section actions
(stress resultants) M,, M,, M,, and F, at each Gauss station This matrix is then modified by
adding in the plastic flexibility on each active yield sv-face to give a 4 x 4 elasto-plastic slice
flexibility. This flexibility is inverted to obtain a 4 x 4 slice stiffness (computationally, the
Sherman-Morrison formula rather than inversion is used). This stiffness is then expanded to a
6 x 6 slice stiffness by adding stiffnesses to account for shear deformations along the y and 2z
axes. These stiffnesses are

K, = GA, (B4.3.4)
K, = GA, (B4.3.5)

in which GA, = effective shear rigidity along the y axis and GA, = effective shear rigidity
along the z axis.

In the elasto-plastic state, it is assumed that any deformation increment can be divided
into elastic and plastic parts. That is,

dw = dw, + Ydw, (B4.3.6)
i

in which
i = active yield surface number;
dw = total deformation increment,
dw, = elastic deformation increment; and,
dw, = plastic deformation increment for each active yield surface.
The slice flexibility relationship can thus be written as:

dw = [, d§ = l.[.+2".[.,!a§ (B4.3.7)

in which
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L = total slice flexibility,

L = elastic slice flexibility (diagonal, containing inverses of the elastic stiffnesses,
K,), and,

Ly, = plastic flexibilities of each active yield surface.

It is necessary to determine L, for each active yield surface and then sum to obtain the total
plastic flexibility /.

B4.3.3.2 Yield Function

Each slice is affected by four stress resultants (M,, M,, M,, and F) with four correspond-
ing deformations. The behavior is elastic-plastic-strain-hardening for each stress resultant indi-
vidually, as shown in Fig. B4.2.2. Different yield values and stiffnesses may be specified for
each stress resultant.

Initial yield of any slie is governed by a yield function (interaction relationship). Any
one of five different yield functions may be specified, as considered in Section B4.2. After
yield, each slice follows a kinematic hardening rule (that is, the yield surface ‘ranslates in stress
resultant space without change of shape or size). The hardening theory is a modification of the
Mroz theory for plasticity in metals.

B4.3.3.3 Plastic Fiexibility for a Single Yield Surface
Consider a cingle yield surface. Let S be the vector of stress resultants, where

ST - [M, M, M, fl (B4.3.8)

Assume that the slice is rigid-plastic, and let w, be the vector of plastic siice deformations.
That is, w,; = plastic flexural deformation about axis y, w,, = plastic flexural deformation
about axis z, w,;, = plastic rate of twist about axis x; and w,, = plastic rate of extension along
axis x.

A flexibility relationship for the slice is required in the form
dw, = [y dS (B4.3.9)

in which f, = slice flexibility matr'x. The following assumptions are made:

(1) Let ¢ be the yield function, as considered in Section B4.3.3.2. The yield surface
translates in stress resultant space. After some amount of hardening has taken place, the
yield function is ¢(S—a), where a = vector defining the new location of the yield sur-
face origin. In two-dimensional space, this is illustrated in Fig. B4.3.2.

(2)  From any given plastic state (i.e. a point on the yield surface), any action increment (dS)
will produce increments of deformation (dw,) and yield surface translation (da). The
direction of dS may be arbitrary. It is assumed that the direction of dw, is normal to the
yield surface (i.e. an associated flow rule is assumed). The direction of da is determined
by the hardening rule (as defined later) and is not necessarily parallel to either dS or dw,.
This is illustrated in Fig. B4.3.2 for a two-dimensional space.

(3) The direction of the outward normal to the yield surface is the gradient of the yield func-
tion. That is,

b
n=- (B4.3.10)
le.7¢.)
in which
¢l - I“/GM, 9¢/°M, eb/6M, u/afl (B4.3.11)

= yield function gradient; and
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n = unit normal vector.
Hence, the deformation increment, dw, is given by
dw, = n-aw, (B4.3.12)

in which dw, = scalar which defines the magnitude of the plastic deformation.
(4) Let the component of 4S in the direction of n be dS, (Fig. B4.3.2). Hence,

ds, = n-(n"-dS) (B4.3.13)
(5) Assume that dS, and dw, are related by
ds, = K,dw, (B4.3.14)
in which
Ky, = diaglKy Ky, Ky, Kl (B4.3.15)

is a diagonal matrix of the plastic stiffnesses from the individual action-deformation rela-
tionships for the slice, as defined in Section B4.2.2.5.

(6) From the definition of dS, (Eqn. B4.3.13), it follows that

n’dS = n'ds, (B4.3.16)
Substitute Eqns. B4.3.14 and B4.3.12 into Eqn. B4.3.16 to get
n" - dS = n" Ky on-dw, (B4.3.17)
(7) Solve for dv, as
: T.dS
aw, - —— 2 (B4.3.18)
' k'8

(8) Hence, substitute Eqn. B4.3.18 into Eqn. B4.3.12 and use Eqn. B4.3.9 to get

. R dS = [, dS (B4.3.19)
- p" Ky'n " ww L

Equation B4.3.19 is the required plastic flexibility relationship for any active yield surface.

B4.3.3.4 Elasto-Plastic Flexibility for Multipie Yield Surfaces
The 4 x 4 elasto-plastic flexibility of the slice, f,, follows from Eqn. B4.3.7 as:

FALSE LD A (B4.3.20)

where i = active yield surface. The flexibility for any active yield surface, as derived in Section
B4.3.3.3, can be written as:

il ant (B4.3.21)
in which

n, = normal vector to the surface; and,
Ky, = plastic stiffness matrix for the surface.
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B4.3.3.5 Relationship to Basic Mroz Theory

In the special case where the action-deformation relationships for the four actions are all
directly proportional to each other, the yield surfaces are all of the same shape and the plastic
stiffnesses for each active yield surface are in the same proportion. The plastic stiffness matrix
for each active yield surface can then be formed in terms of the elastic stiffness matrix. That
is,

Ky = a K, (B4.3.22)

where a, defines the plastic stiffness as a proportion of the elastic stiffness. The plastic flexibil-
ity of a slice can then be written as:

[y = 2.[7, - Z".l;ll-

T

A (B4.3.23)
o K, n

Because all the yield surfaces are the same shape, the n, are all the same. Hence, if n, = 2,
Egn. B4.3.23 can be written as:

 f

n-n
- (B4.3.24)
Iw ﬂ”(za:)_&c'ﬂ

The flexibility given by this equation is the same as that from the basic Mroz material
theory. This shows that the Mroz material throry is a special case of ithe extended theory
derived here.

B4.3.4 SLICE STIFFNESS CALCULATION
For a nonlinear slice, a tangent action-deformation relationship is required in the form:

dS = C, dw (B4.3.25)
in which
C,, = tangent stiffness matrix for a slice.

The procedure used is to develop a tangent flexibility matrix, then invert this flexibility to
obtain the stiffness matrix, C,, Computationally, the Sherman-Morrison formula is used rather
than direct inversion. The flexibility of any active yield surface is:

r
o n
Lo, = L’:r'g.‘ .'!"' (B4.3.26)
Define
y - -T—-"——T (B4.3.27)
‘I!t '5., '!.'t]

The elasto-plastic flexibility can thus be expressed as:
fi= fetr T Lo = Lt T uu (B4.3.28)

The Sherman-Morrison formula states that:
A-' U l!TA-I

A+uuN' = 4"~ 3.
At uu PRITY (B4.3.29)
Application of the formula to the inversion of f, gives:
T
C = Gunn~ HEERELY (B4.3.30)

Wi+
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in which / = current highest active yield surface.
-1 is obtained using the recursion relationships:

Ci= L' = K, (B4.3.31a)
r
Co = Cn - w (B4.3.31b)

y;’.Cm-ny. +1
Hence, substitute Eqn. B4.3.27 into Eqn. B4.3.30 to get:

Coir-nmal Cii)
- oy = —EDBB ity (B4.3.32)
& = Lurn 2/ Cmnm + 2/ Ky,

The stiffness C, is a 4 x 4 matrix. It is expanded t0 a 6 x 6 mairix by adding the shear
stiffnesses along the y and z axes. The resulting tangent stiffness matrix for the slice, G, has
the form:

- .
b Sz Cua Cpe 0 0
Cear S22 23 G4 0 O
hen Bas B & o o
S Cn Cen
£ ° (B4.3.33)
Cear a2 Craz Cpae 0 O
© ©°© o 0o e o
©o 0o 0o o o &
- .

in which
Cy = /(i) in matrix C,
GA,' = shear rigidity along the element y axis; and.
GA, = shear rigidity along the element z axis.

B4.3.5 ELEMENT STIFFNESS
The element tangent stiffness matrix is given by

K - J;l'.(:.l dx (B4.3.34)

in which
Cu = tangent stiffness matrix for an element slice at any point; and,

B = transformation relating node displacements to slice deformations, defined by Eqn.
B432

The integration is carried out numerically using Gauss Quadrature. Hence, tangent stiffnesses
are needed only for the two slices at the Gauss stations.

B4.3.6 EQUILIBRIUM NODAL LOADS
Nodal loads in equilibrium with the slice actions in any given state are given by

R=[B5a (B4.3.35)
L
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in which
ST = |8, 55 83 Su S5, ¢

(i.e. the actions corresponding to the element deformations v); and the matrix B is given by
Eqn. B4.3.2. The integral is evaluated numerically using Gauss quadrature.

B4.3.7 HARDENING RULE

B4.3.7.1 Geometrical Interpretation

The relationship between the actions and deformations at a slice is multi-linear. The
interaction among the stress resuitants (M,, M,, M,, and F) is defined by the yield interaction
function, as described earlier. After initial yicld occurs, the behavior at a slice obeys a
kinematic hardening rule (that is, the yield surface translates in action space without change of
shape or size). The specific rule followed is a modification of the Mroz strain hardening rule
which has been proposed for yield in metals.

B4.3.7.2 Modified Mroz Hardening Rule

For purposes of illustration, consider a two-dimensional M-F space as shown in Fig
B4.3.3a. In this figure, it is assumed that the current state (point P,) is on yield surface YS,
and that loading is taking place towards surface YS, It is necessary to define the direction in
which surface YS. translates.

As indicated in Fig. B4.3 3a, corresponding points P, and P, can be identified on ¥S, and
¥S, The relationship between the actions at these two points (S, at P, and S, at P) is
obtained as {oilows.

Figure B4.3.3b shows a yield surface transformed into a normalized action space. In this
space, surfaces YS, and YS, have identical shapes. Hence, points P, and P, coincide. The loca-
tions of P, and P, in Fig. B4.3.3a follow by transforming back to the natural action space. If
the vector of actions at P, is §,, it follows that the vector of actions at P, is given by:

S = -uu!;gi -a)+g (B4.3.36)
in which
S, = vector of stress resultants at point P,

a,and @, = vectors defining the current origins, O,and O, of yield surfaces
¥YS, and YS,, respectively,

M M T T,
- il el il i

It is assumed that the dirc~tion of translation of yield surface YS, is along the line connecting
point P, to point P,, as shown in Fig. B4.3.3a. That is, the direction of motion of surface S, is
defined by:

da, = 8~ §)da’ (B4.3.37)

in which
da' = scalar which defines the magnitude of translation of yield surface YS,
da, = vector defining the incremental shift of the origin of yield surface Y5,

The magnitude of da ' is determined as explained in the following section. For the hardening
rule originally formulated by Mroz, all yield surfaces are geometrically similar in natural action
space. The rule then ensures that the surfaces never overlap. For the modified Mroz rule, the
yield surfaces are assumed to be geometrically similar only in normalized action space. As a
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result, overlapping of yield surfaces is allowed. This aspect of the model is considered further
in a later section.

B4.3.7.3 Mathematical Formulation
Substitute Eqn. B4.3.36 in Eqn. B4.3.37 to get:
&, - l‘§w-_l)§.- (§.,g,—g_,),4a‘ (B4.3.38)
The usual normality rule for plastic flow is assumed. That is. the plastic deformation incre-

ment, dw,, is assumed to be directed along the outward normal to the yield surface at point P,
The yield surface can be defined by:

¢S —a) =1 (B4.3.39)
The requirement that the action point remain on the yield surface is:
dp = 0 = ¢7-d5,~¢ ! da, (B4.3.40)
Substitute Eqns. B4.3.37 and B4.3.38 into Eqn. B4.3.40 10 get:
da’ .4 (B4.3.41)

¢ (Su=D5 - Sua,~a)
Hence, substitute Eqn. B4.3.41 into Eqn. B4.3.37 to get da, as:
|Sur-0$. - Suara)]elas
da, = ;
8|SurDS - Sumi~a)]

For any current state, defined by S, a,, and a,, Eqn. B4.3.42 defines, for an action increment
dS,, the translation of yield surface YS, for loading towards surface ¥s,

(B4.3.42)

B4.3.7.4 Last Yield Surface

For the case when the action point lies on the largest yield surface, the hardening rule can
be obtained by assuming that an additional infinitely large yield surface exists. The direction of
translation for this case is then along the radial direction connecting the origin of the current
yield surface to the current action point. This is exactly Ziegler's hardening rule. It can be
expressed as:

da, = (§,~-a,da’ (B4.3.43)
in which

n = number of largest yield surface;

da’ = scalar which defines the magnitude of translation of the yield surface, as before:

a, = vector defining the yield surface origin;

da, = vector defining the incremental shift of the origin.

For this case, Eqn. B4.3.42 becomes:
¥
da, = Sialg, &, (B4.3 44)
!.l(sn-ﬂn)
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B4.3.7.5 Overlapping of Yield Surfaces

In the original Mroz hardening rule, it is assumed that the yield surface, ¥S, is geometri-
cally similar to the yield surface ¥S, This assumption is reasonable for metal plasticity in stress
space because it is reasonable to assume as isotropic material. However, for dealing with stress
resultants, each action-deformation relationship (M,~y,, M.~¢,, M,~¢,, and F—e), depends
on the cross section shape in a different way, and the behavior is not isotropic in action space.
That is, the yield surfaces will, in general, not be geometrically similar. The authors have con-
sidered a number of strategies in an attempt to obtain "correct” behavior while preventing yield
surface overlap. None of these strategies proved satisfactory, and it was finally concluded that
overlapping should be allowed.

B4.3.8 PLASTIC DEFORMATIONS

The equations or calculation of plastic strain resultants are derived as foliows. The defor-
mation increment for a slice is given by:

dw = [, dS+ dw, (B4.3.45)
in which
dw, = Y dw, is the increment of plastic deformation, summed over all active yield sur-
'

faces.
Premultiply Eqn. B4.3.45 by f, K, to get:
LoKedw = [odS+ [ K dw, (B4.3.46)
in which

Lo = L [y is the plastic flexibility of the slice; and,
'

LodS = dw, (B4.3.47)
Substitute Eqn. B4.3.47 into Eqn. B4.3.46 o0 get:
I+ foKa) dw, = [ Kudw (B4.3.48)

From Eqn. B4.3.48, the plastic deformation increments can be obtained in terms of the total
deformation increment as:

d, = (14 LK) [ Koo dw (B4.3.49)

B4.3.9 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuing plastic flow to be distinguished from
elastic unloading, for any current plastic state and any specified deformation increment. Two
procedures are of general applicability, as follows.

(1) Postulate that the slice has unloaded an infinitesimal amount, so that the current state lies
just within the yield surface Calculate the elastic actior: increment, dS,, corresponding to
the specified deformation increment. If the state moves outsids the yield surface, the
assumed elastic state is incorrect, indicating continuing plastic flow. If the state moves
within the yield surface, the elastic assumption is correct, indicating unioading.

(2)  For the specified deformation increment, calculate the magnitude parameter for the plastic
deformatic:: increment. A positive magnitude indicates continuing plastic flow, and a
negative magnitude indicates unloading.

By the first of these two procedurss, continued loading on yield surface i is indicated if dS, has
a positive component along the outward normal, n, of the yield surface. That is, continued
loading occurs if
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a’-ds, 2 0 (B4.3.50)

To consider the second procedure, first assume that the current plastic flow directions of
all active yield surfaces are the same (that is, n, = n for all i). Hence, the plastic deformation
increment for the slice is given by:

dw, = n dw, (B4.3.51)
Premuitiply Eqn. B4.3.45by n” -, - K, to get:
T
vy = —L Loku (B4.3.52)
1+n ‘Lo Ke'n
Substitute Eqn. B4.3.21 into Eqn. B4.3.52 to get:
T
- nn 60
oy = S (B4.3.53)
in which 7, and r, are scalars defined as follows:
nT'K. ‘n
& 2’ n" Ky'n
S e s— (B4.3.55)

i !r‘.’fu'i'

Because the matrices K, and K, are always positive Jefinite, the scalars r, and r; alvays
exceed zero. Hence, the sign of ¢ dw is the same as the sign of n” *dS,. This is the same cri-
terion as Eqn. B4.3.50.

In general, the plnuc flow directions for the active yield surfaces are not the same.
Hence, it is possible for n, :§, to be greater than zero for some yield surfaces and less than
zero for others (i.e. continued loading on some, but unloading on others). This possibility is
illustrated in Fig. B4.3.4, For computation, it is assumed that unloading is governed by the
highest active yield surface. If unloading occurs on this surface, unloading is assumed to occur
on all active surfaces. If the situation happens to be as shown in Fig. B4.3.4 (which is
unlikely), reloading will immediately occur on one or more of the lower yield surfaces, and the
analysis will continue.
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B4.4 STRAIN RATE EFFECTS

B4.4.1 GENERAL

Th: mathematical formulation for an element slice with rate-independent elasto-plastic
behavior was presented in the preceding chapter. An extension to include strain rate effects is
presented in this chapter.

A physical model for a slice is first constructed for one-dimensional behavior. This model
is then generalized for the multi-dimensional case.

B4.4.2 MODELING OF STRAIN RATE EFFECTS

B4.4.2.1 Physical Model

In one dimension, elasto-plastic-strain-hardzning behavior can be modeled using a linear
spring in series with a number of rigid-plastic springs (Fig. B4.2.6). To include strain rate
effects, a dashpot is added 'o the assemblage as shown in Fig. B4.4.1. With this model, the
elastic behavior ‘s independent of the strain rate, but the post-yield resistance is the sum of the
statiz resistance plus that of the dashpot. The dashpot resistance depends on its stiffness and on
the plastic strain rate in the material.

B4.4.2.2 Dashpot Properties

In order to establish a stiffness coefficient for the dashpot, information is needed on the
strength increase of the element ior different plastic deformation rates. If the physical model
represents steel loaded in uniaxial tension or compression, the dashpot coefficient can be
obtained rom test results measuring the strength of the steel as a function of strain rate.
Aithough the plastic strain rate is not necessarily equal to the total strain rate, the two will be
essentially equal as the maximum strength 1s approached. Hence, a graph of strength increase
versus total strain rate can, for practical purposes, be assumed to be the same as a graph of
strength increase versus plastic strain rate. Such a graph might be as shown in Fig. B4.4.2,

For numerical analysis, the graph is assumed to be approximated by linear segments, as
shown in Fig. B442  The relationship between force in the dashpot and the dashpot deforma-
tion rate can be written, for any linear segment, as:

64 - C,dﬂ.', . (B44 1)

in which
dS, = increment in dashpot force,
dw, = increment in dashpot defcrmation rate; and
C, = slope of segment.

For application to the beam element, this concept is generalized to the multi-dimensional
action-deformation case and implemented nume-ically.

B4.4.2.3 Damping Matrix for a Slice

For a slice of a beam element, a relationship in the form of L ,a. B4.4.1 is required, relat-
ing damping action increments to corresponding increments of piastic deformation rate. That
is, the relationship must be in the form:

ds; = C, dv, (8442)
in which
dS, = vector of damping action increments,
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dw, = vector of plastic deformation rate increments corresponding to dS,. and

C, = diagonal matrix containing the slopes of the individual relationships between
action and deformation rate (dashpot coefficient values).

For axial force, F, the strain rate effect is the same as that of the beam material. For
bending moment, however, a somewhat different relationship can be expected, because the
strain rate varies over the cross section as the beam bends (the strain rate effect can thus be
expected to be relatively somewhat less for bending than for axial force). For torque, a
different strain rate effect may also be obtained, because it depends on the relationship between
shear strength and shear strain rate, which may be different from that for behavior in tension.
In practice, it is unlikely that detailed knowledge of the strain rate effects will be available.
Hence, for simplicity in the theoretical formulation, different dashpot coefficient values are not
allowed for each of the four actions. Instead, a single generalized relationship is used for all
four actions. The relationship is derived as follows.

(1) For the steel of which the pipe is made, first obtain the o , versus €, relationship (stress
increase versus strain rate) as in Fig. B4.4.3.

(2) Reduce to a dimensionless relationship (except for time) by dividing o, by the yield
stress (or nominal yield stress) of the steel and dividing €, by the yield strain (yield stress
divided by Young's modulus).

(3) Approximate the relationship by a multi-linear curve. Let the slope of any segment be
C,. a generalized dashpot coefficient relating dimensionless stress to dimensionless strain
rate increment. That is,

d(" ® d(

- .-t
o, C, 7 (B4.4.3)

in which o, = yield stress and E = Young's modulus.
Hence,
doy, = C E dé,
so that, from Eqns. B4.4.2 and B4 4.3,
C, = CE
(4)  Assume that the same dimensionless relationship can be extended to actions and deforma-

tions of a slice, as illustrated in Fig. B4.44. For example, for bending about the z axis,
assume the relationship is:

M, = C El, dv, (B4.4.4)

in which C, is as before. It follows that the matrix C, is given by:
C = C'K,. (B4.4.5)

in which K, = elastic (diagonal) slice stiffness matrix.
B4.4.3 MATHEMATICAL FORMULATION

B4.4.3.1 Basic Equations
The equations for strain rate effects are derived « follows.

(1) Force Equilibrium:
dS = d§, = dS, + dS, (B4.4.6)

in which
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dS = total action increment,

dS, = elastic action increment,

dS, = action increment due to plastic deformation;
dS, = action increment due to strain rate effects.

(2) Deformation Compcubility:l
dw = dw, + dw, = dw, + 2@;4 (B4.4.7)
]

in which
dw, = elastic deformation in~rement,
dw, = plastic deformation increment,
dw, = plastic deformation increment for active yield surfacz i, and
i = active yield surface number.
(3) Rate Independent Flow Rule:

dw, = n, dw, (B4.4.8)

in which
n, = normal vector for current active yield surface i, and

dw, = scalar which Gefines the magnitude of plastic deformation along the normal
direction of yield surface i.

(4) Step-by-Step Integration:

The dashpot relationship depends on the step-by-step integration rule being used. Two
options have been considered, as follows:

(a) Backwards difference rule:
dw : dw, .
Sy = 9'—;—,’- aE-7 Bl 5.5'-7} - w,i (B4.4.9a)

in which
£, = diagonal matrix of dashpot coefficients, as defined previously.
(b) Trapezoidal rule:

dw,
sy = lf.l%-‘j{- - ;v,l (B4.4.9p)

These equations strictly apply only for finite time increments, Ar. The theory is
developed on terms of dt for consistency with previous equations, but a finite A/ is used
for actual numerical implementation. The backwards difference rule is used in the follow-
ing derivations and is recommended for use in actual computation.

(5)  Plastic Relationships:

al
dw, = I:.I.,G. -3 _,!‘_Jl_ ds, (B4.4.10)

i o 'K.,‘Jl
Define:
lo = III.,
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Hence,

dw, = [, dS, (B4.4.11)
(6) Elastic Relationships:
as, = K, dw, (B4.4.12)
or
dw, = [ dS, (B4.4.13)

in which K, and [, are the elastic slice stiffness and flexibility matrices, respectively.

B4.4.3.2 Derivation of Stiffness Equation
Substitute Eqns. B4.4.11 and B4.4.13 into .'gn. B4.4.7 10 get:

dw = [ dS+ [, dS, (B4.4.14)
Substitute Eqns. B4.4.6 into Eqn. B4.4.14 to get:
dw = ([ + [y) d5 - [, dS, (B4.4.15)

Substitute Eqns. B4.4.9, B4.4.7, and B4.4.13 into Eqn. B4.4.15 and rearrange to get:
. 1 1 .
Unt Lot Lol L) dS = U+ [pC ) dw = [, 6 3, (B4.4.16)

Substitute Eqn. B4.4.5 into Eqn. B4.4.16 to get:

c .
(Le+ U+ f)dS = (.l+,[,_(_.’,-‘l’—')dj_v-[.§,z, (B4.4.17)
Premultiply Eqn. B4.4.17 by (£, + (1+ C,7d0) f,) " 10 obtain:
dS = C dw+ dS, (B4.4.18)
in which
C = (fue+ 1+ %)[,)"' U+ LoC, %) (B4.4.19)
and
C'. _| .
s, = =(f.+ (+ 7'-)[,) LoC' %, (B4.4.20)

Eqn. B4.4.18 is the required tangent stiffness relationship for a slice, inciuding the effects
of plastic strain rate. The term C, is the tangent stiffness of the slice. The term dS, is an ini-
tial stress effect associated with the strain rate effect. Fo: a finite time step, A, an initial stress
term A S, is included in the element effective load vector for the time step.

When strain rate effects are zero, the terms C,'and dS, become zero, and the relationship
of Eqn. B4.4.18 becomes the rate-independent relationship:

s = C,dw (B4.4.21)

in which
C = ([u+ [.)_l (B4.4.22)
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B4.4.3.3 Plastic Deformation

The plastic deformation increments are obtained as follows. Substitute Eqns. B4.4.13 and
B4.4.6 into Eqn. B4.4.7 1o get:

dw = [.(dS,+ dS,) + dw, (B4.4.23)
Premultiply Eqn. B4.4.23 by f K, to get:
LoKedw = [odS)+ [ dSy+ [y K dW, (B4.4.24)
Substitute Eqns. B4.4.9 and B4.4.11 into Eqn. B4.4.24 and rearrange to obtain:
I+ L€ ot Lo K dwy = Lo Kudw+ [, C, 35, (B4.4.25)
or
dwy = U+ g€t Lo K™ Ly Kudw+ £y C, ) (B4.4.26)

Eqn. B4.4.26 gives the plastic deformation increment in terms of the total deformation incre-
ment, including strain rate effects.

B4.4.4 LOADING/UNLOADING CRITERION
The unloading criterion remains unchanged from the rate-independent case. That is,

nf-dS, 20 (B4.4.27)

indicates cor.tinued loading, in which n, is the normal vector for the highest active yield sur-
face.
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B4.5 COMPUTER LOGIC

B4.5.1 STATE DETERMINATION

The state determination calculation for an inelastic element requires evaluation of the

equation

AS -]'Ld_y (B45 1)
0

in which

(1)

()

(3)

4)

AS = finite action increment for element corresponding to the finite deformation incre-
ment 4 v, and

K, = element tangent stiffness, which in genera! varies during the increment.
The computation procedure for state determination of the element is as follows:

From the given nodal disolacement increments, calculate the element deformation incre-
ments from

Ay = g Ar (B4.5.2)
in which
Ar = vector of nodal displacement increments, in global system,
Ay = vector of element deformation increments, in local system; and
@ = displacement transformation matrix.
Calculate the slice deformation increments at the Gauss stations from
Aw = BAy (B4.5.3)
in which
Aw = slice deformation increment,
Ay = element deformation increment, and
B = shape function matrix defined by Eqn. B4.3.2.
Perform state determination calculations at each slice, as follows:

(a) Check unloading. If unloading occurs, do elastic state determination. Otherwise,
continue.

(b) Calculate plastic deformation, A w,, using Eqn. B4.4.26.
(¢) Calculate dashpot forces, AS,, using Eqn. B4.4 9.
(d) Calculate total force increments, A S, using:

AS = K.(Aw~-Aw,) (B4.5 4)
(e) Calculate plastic force increments, A S,, using:
AS, = AS - A5, (B4.5.5)

The new action point, §,+AS,, must lie on the yield surface. If the error is within
a specified tolerance, the state determination is complete. If the error exceeds the
tolerance, or if a new yield event occurs, the deformation increments are subdivided
into smaller increments. The procedure is described in the following section

Calculate the internal resisting forces for the clement from the slice forces, using

L= ,tl':ﬁ (B4.5.6)
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in which
S = slice force vector, and
B = strain displacement transformation matrix defined by Eqn B4.3.2.

B4.5.2 YIELD SURFACE TOLERANCE

It is possible for the new action point, calculated assuming constant K, to he significantly
outside the current yield surface. This will occur particularly when A5 and Ag are distinctly
nonparallel (Fig. B4.5.1). In this case, the calculation is assumed to be sufficieatly accurate,
provided the new action point lies within a tolerance zone (typically 1% of the yield surface
size). If not, Aw is scaled, K, is reformed, and the calculation is repeated for the balance of
Aw.

The scale factor is conveniently determined by the procedure illustrated for M-F space in
Fig. B4.5 1 In this figure, the current action point is P, and the new action point, obtsined by
applying Eqn. B4 54, is at Q Hardening is affected only by the component of AS parallel 10
the yield surface normal.  Hence, the yield surface translates as shown. Point Q lies outside the
new yield surface, the amount being defined by e,, which is the length of the “radial” error vec-
wr, ¢, This error must not exceed the allowable tolerance.

Computationally, it is convenient to consider the "tangential® error, ¢,, which is the length
of vector P'Q. If the yield surface is assumed o be locally quadratic, then

e, = 05¢) (B4 57)

The value of ¢, is calculated from this equation. If e, is within the allow.ble tolerance, point Q
is scaled to the new yield surface and the computation continues (this scaling introduces an
error which 1s assumed to be acceptable). If e, exceeds the allowable tolerance, it is assumed
that e, varies linearly with slice deformation. A scale factor 10 set e, equal to the tolerance is
then calculated using Eqn B4.5.7, the AS and Ag increments are scaled by this factor, and the
new action point is scaled to the yield surface. slice stiffness is then reformed, and the
process is repeated for the remainder of the deformation increment. If A is paralle! to §~a,
no scaling will be required. If A5 makes a large angle with §~ g, the slice deformation incre-
ment may be subdivided into severs! subincrements, depending on the magnitude of Aw and
the value specified for the error tolerance.

The slice deformation increment is also subdivided if a new yield surface is reached. In
this case, the new action point is permitted to go beyond the yield surface by an amount equal
to ¢y allowable radial error. The provortion of the deformation increment required to reach
this state is calculated, the new action point is scaled to the yield surface; the slice stiffness is
reformed. and the calculation proceeds for the remainder of the defor.aation increrrent.
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BS. LARGE DISPLACEMENT THEORY

SUMMARY

This section describes the theory used to account for large displacement effects. An

"engineering” formulation (as distinct from a continuum mechanics formulation) is used. The
same procedure is used for straight pipe, curved pipe and straight beam elements.
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BS.1 LARGE DISPLACEMENTS OF PIPE AND BEAM ELEMENTS

BS.1.1 GENERAL

Computations for nonlinear analysis are carried out in two main phases, namely lineariza-
tion and state determination. In the linearization phase, element tangent stiffnesses are com-
puted and assembled to give the structure tangent stiffness. In the state determination phase,
changes in the element staies are computed, given the existing state and an increment of nodal
displacement. These two phases are considered separately in the following sections. The com-
putational procedures are based on "engineering” formulations of large displacement theory, not
on consistent continuum mechanics formulations.

B5.1.2 LINEARIZATION

Sections B3 and B4 have described the procedures for calculating the tangent stiffnesses of
the pipe and beam elemeats, considering inelastic behavior but assuming only small structure
displacements. When large displacements must be considered, the tangent stiffness can be
approximaied as the sum of (1) the small displacements stiffness, formulated in the current
deformed configuration of the element and (2) an initial stress (geometric) stiffness, formu-
lated for the current configuration and state of stress.

The tangent stiffness formulated in this way is approximate because large deformation
effects within the element are ignored. For example, for the purposes of formulating the tzngent
stiffness for a straigk beam element, it is assumed that the element in the deformed
configuration is still straight. If long, slender elements are specified, this assumption may lead
to substantial error. However, if only short elements are permitted, the error is small. For
pipe whip analyses, it is necessary to specify short elements so that wave propagation and
spread of plasticity along the piping can be modeled accurately. Hence, it is reasonable to
assume small element deformations.

A straight beam or pipe element is a three-dimensional beam-column element for struc-
tural analysis purposes, and the initial stress stiffness is affected not only by the axia! force but
also by the shear forces and the torsional and bending moments in the element. A tangent
stiffness theory which accounts for all of these effects has been formulated by Argyris et al
(B5.1,B5.2] using potential energy concepts. The same tangent stiffness has been derived by
Riahi [B5.3], using equilibrium concepts. Both the theory and the resulting matrix are com-
plex. Studies by Riahi have shown that if relatively long elements are permitted, the contribu-
tions of the shear and moment terms can be substantial. However, if only short elements are
allowed, the only significant terms are those originating with the axial force. The initial stress
stiffness then reduces to that for an axially loaded truss bar, which is simple and well-known.
For the WIPS pipe and beam elements, only this simple form of the initial stress stiffness is
used.

The exact tangent stiffness for a curved element is extremely compiex, and no attempt
has been made to derive it. It is assumed for WIPS curved pipe elements that the initial stress
stiffness is the same as for a straight pipe element which lies along :he chord of the actual
curved element.

The axial force used to calculate the initial stress stiffness is the net axial force at the ele-
ment center. The next axial force is the axial force in the pipe wall plus (for pipe elements)
the (compression) force in the contained fluid due to internal pressure.
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B5.1.3 STATE DETERMINATION

B5.1.3.1 General

The state determination procedures described for the pipe and beam elements in Sections
B3 and B4 assume small element deformations (with the exception of allowances for large oval-
ling deformations). This is consistent with the assumption made in the linearization phase and
is necessary to avoid undue complications.

For any nodal displacement increment, in the global X,Y,Z system, it is necessary to per-
form the following tasks:

(1) Determine element displacement increments in the local element coordinate system. This
requires a transiormation from global coordinates to local coordinates. The transforma-
tion changes progressively as the nodes displace.

(2) Determine element deformation increments, and hence, element action increments. The
procedures are as described in Sections B3 and B4.

(3) Determine the element resisting force vector in the g'obal system. This again requires a
transformation from global to local coordinates.

B5.1.3.2 Local Axes

The local element x,y,z axes are as shown in Fig. BS.1. The local x axis passes through
the element ends, and hence, is easily determined. The local y axis is known in the unde-
formed configuration and remains normal to the x axis as the element displaces. The direction
of the y axis is affected, however, by rotation of the element about the x axis (rigid body tor-
sional rotation). For any given set of global displacement increments at the nodes, a procedure
is needed to determine the new orientation of the local y axis.

BS5.1.3.3 Updating of Axes: Straight Element

A straight element is assumed to remain straight and to undergo negligible torsional
deformation (but not necessarily negligible rigid body rotation). For an infinitesimal increment
of nodal displacements (in the global system), the component of rotation about the current
local x axis is easily determined for any node. The average of these rotations for nodes I and J
is assumed to define the increment of rigid body torsional rotation. The motion of the eloment
during the increment is then assumed to be made up of four separate motions, using the fol-
lowing procedure. A more detailed discussion can be found in [BS.3].

(1) The node locations at the beginning and end of the increment (I,J and i’,)" - Fig. BS.2)
define two locations of the x axis, and hence, two vectors, X, and X,. The vector n
which is mutually orthogonal to Xoand X is determined.

(2) The element is assumed first to undergo pure translation until node I reaches its final
location (I',J"" - Fig. B5.2). This involves no change in orientation of the x,y,z axes.

(3) The element is assumed to rotate as a rigid body about axis n, keeping node I fixed, until
axis x reaches its final orientation. This involves changes in the direction cosines of the
X, ¥, and z axes which are easily computed.

{4) The elemenrt is assumed to undergo the computed rigid body torsional rotation. This
involves changes in the direction cosines of the y and z axes, which are again easy to
compute. The new orientations of the x,y,z axes are thus known.

(5) Finally, the element is assumed to deform (flexurally, torsionally, and axially). This does
not affect the orientations of the local axes.

Because products of direction cosine matrices are commutative, the same final orientations are
obtained by the above process regardless of the sequence in which the rigid body motions are
performed. In particular, the toisional rotation may be imposed first or last. This remains true
for finite displacement increments, provided the torsional rotation is pre-defined. That is, if the
torsional rotation is determined from the node rotations using the starting x axis orientation,
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then it is immaterial whether this rotation is imposed first or last. The sequence is similarly
immaterial if the torsional rotation is determined using the ending x axis orientation. However,
the numerical values of the torsicnal rotations will be different in these two cases, and hence,
aiso the new orientations of the axes.

For WIPS, it is assumed that the displacement increment for any state determination will
be small, and hence, that the rigid body torsional rowation increments are essentially the same
whether the x axis at the beginning or end of the increment is used. The calculation uses the
beginning orientation.

B5.1.3.4 Upuating of Axes: Curved Element

I'he local y axis for a curved pipe element lies initially in the plane of the bend. As the
element deforms, WIPS assumes that the orientations of the local axes are updated as if the
element were straight, using exactly the procedure of the preceding section. An alternative pro-
cedure based on identifying the "plane of the bend" for a deformed element was considered but
not implemented.

B5.1.3.5 Element Deformations

The element deformation increments (curvatures, etc.) follow from the local displacement
increments by applying the element shape functions. The local displacement increments are
obtained from the global displacement increments using the transformation from global to loca!
coordinates. In WIPS, the transformation at the beginning of the increment is used. This is
equivalent to assuming negligibly small displacement increments. The alternative of using the
transformation at the middle of the increment was considercd but not used. The mid-step
transformation is more "accurate” but has the disadvantage that spuriously large axial deforma-
tions may be computed. These deformations can be of sufficient magnitude to produce large
unbalanced axial loads and to also cause unwanted axial yield.
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B6. U-BAR RESTRAINT ELEMENT

SUMMARY

This section describes the theory of the U-bar restraint element. The eiement is intended
primarily for modeling actual U-bar restraints but can be used to model other restraints with
similar resisting force characteristics. The basic features of the element are described in Sec-
tions B6.1 and B6.2. Details of the theory and computational procedure are presented in Sec-
tion B6.3. A typical WIPS user should be familiar with the basic features of the element but
need not study the theoretical details.
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B6.1 INTRODUCTION

The ubar type element is intended primarily for modeling U-bar pipe whip restraints of

General Electric type. However, the element may be suitable for modeling restraints of other
types. The essential features are as follows.

(1)

()

3)
(4)
(5)

(6)

7N

Idealization as an inelastic bar, arbitrarily oriented in space. Resistance along restraint
axis only.

Multilinea: force-extension relationship in tension (up to 6 linear segments), with initial
gap. Inelastic unloading. Zero stiffness in compression.

Option for large displacement analysis, 10 allow for changes in direction of restraint axis.
Anchorage to a fixed point is required.

Option for pipe displacements perpendicular to U-bar plane to be ignored, to allow unres-
trained axial movement of pipe.

Option to “onsider strain rate effects using a nonlinear relationship between yield stress
and strain rate.

Assumed to have negligible mass.

The features of the element are described in physical terms in Section B6.2. The element
theory is presenied in Section B6.3.
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B6.2 ELEMENT PROPERTIES

B6.2.1 GENERAL CHARACTERISTICS

A restraining device in the form of a U-bar has been designed for use as a pipe whip res-
traint by the General Electric Company. The device is illustrated diagrammatically in Fig. B6.1.

For analysis, the restraint is idealized as an inelastic bar, as shown in Fig. B6.2. The bar
possesses only axial stiffness and exerts a restraining force only along the axis of the restraint.
This is a simplified idealization which ignores such effects as bending of the U-bar and friction
between the U-bar and the pipe. The idealization may be inaccurate if the pipe displacement is
not paralle! to the initial U-bar axis.

A restraint element may i e arbitrarily oriented in space. The orientation is defined by
specifying two nodes at the element ends (Fig. B6.2) or by directly specifying the direction of
the element axis in space. Node I is a node of the pipe system. Node J must be a fixed anchor
point. Two or more elements may be connected to a single pipe node if desired.

For zero strain rate, the relationship between axial force and axial extension is assumed 0
be multi-linear, with up to six linear segments (Fig. B6.3). The stiffness must progressively
decrease with increasing extension. The unloading stiffness is assumed to be equal to the
stiffness of the first segment.

Strain rate effects can be considered, using a nonlinear visco-plastic model. The U-bar
element is modele as shown in Fig. B6.4, using four main subelements, as follows.

(a) A gap element which is rigid when the gap is closed but has no stiffness when the gap is
open.

(b) A linear e!astic spring element.

(c) A rigid-plastic-strain-hardening element.

(d) A dashpot in parallel with the rigid-plastic element.

The damping coefficient of the dashpot can be specified to vary with the dashpot deforma-
tion rate, so that the strength of the element varies with the strain rate. Details are presented
in Section B6.2.3.

In practice, U-bar restraint elements may be quite short in length, so that displacements
of the pipe which are not parallel to the initial restraint axis may produce substantial rotations
of the element. That is, for structural analysis purposes the displacements may be large, and
the influence of change in geometry must be taken into account. The user may specify either
that small displacements of the res:raint be assumed or that large displacements be taken into
account.

B6.2.2 NORMAL DISPLACEMENT OPTION

Figure B6.5 shows a typical restraint, in which the axis of the pipe is normal to the plane
of the U-bar. In some cases, there may be significant pipe displacements along the pipe axis as
well as in the U-bar plane.

When the large displacement option is used, the element extension is the difference
between the current and initial element lengths. All displacements of the restrained node,
including the component along the pipe axis, thus contribute to the calculated extension. If the
U-bar is placed between collars on the pipe, then the bar will rotate as the pipe moves axially,
and the calculated extension will be correct. However, if there are no collars present, the U-bar
will not be affected by axial movements of the pipe. In particular, closure of the initial gap will
be governed only by pipe movements in the U-bar plane.

To allow for this effect, an option is provided to allow node displacements normal to the
U-bar plane (i.e. axial movements of the pipe) to be ignored, up to the time the initial gap
closes.
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Figure B6.5 shows a length of pipe and a U-bar restraint. The restraint element is defined
by nodes | and J, as before. In addition, a third node, K, may be specified, such that the IJK
plane is ncrmal to the U-bar plane. Typically, the U-bar will be at right angles to the pipe, and
node K will be a node on the pipe. The angle JIK wili then be a right angle, and the direction
of tt : free movement will be along IK. More generally, K may be any point in the piane nor-
mal to the U-bar piane, as shown, in which case the free movement is along line IK’, where K’
is in the LJK plane and angle JIK' is a right angle. Point K’ is determined automatically by the
WIPS code.

If node K is specified to be nonzero in the input data, pipe displacements along /K" are
ignored in computing the new axial iength of the element. This is done until the new axial
length exceeds the original length plus the clearance. The U-bar then functions to restrain the
pipe. After this time, all pipe displacements are used to calculate the axial length of the ele-
ment (that is, the bar is assumed not to slip alo g the pipe) until such time as the gap reopens.

B6.2.3 VISCO-PLASTIC OPTION

Strain rate dependence can be introduced through the nonlinear dashpot in parallel with
the rigid-plastic element (Fig. B6.4). The damping coefficient may be specified to vary with the
dashpot deformation rate (i.e. the deformation rate of the rigid-plastic element) as shown in
Fig. B6.6a. The force in the dashpot thus varies with plastic deformation rate as shown in Fig.
B6.6b. This dashpot force represents the increase in the strength of the U-bar due to strain rate
effects.

A typical relationship between total strain rate and increase in yield stress is shown in Fig.
B6.7. A similar relationship between deformation rate and strength increase can be expected
for U-bar restraints. It can be assumed for practical purposes that the total and plastic strain
rates are equal. The element then permits a trilinear approximation of the curve, as indicated
in Fig. B6.7. This approximation should be sufficiently accurate for practical purposes.

B6.2.4 STIFFNESS REFORMULATION TOLERANCE

With the WIPS strategy for nonlinear analysis, the structure stiffness matrix is modified
only when changes occur in one or more elements. If the behavior of the structure is piecewise
linear, as is often the case for small displacement analyses, the structure stiffness is modified
only at each yield event. For large displacement analyses, the element stiffnesses change con-
tinuously, and hence the structure stiffness should strictly be modified in every time step. In
many cases, however, the stiffness change from one s*ep to the next may be small, and it may
be reasonable to retain the same stiffness for several steps. To allow this, some of the WIPS
elements contain stiffness reformulation tolerances, which enable the user to control the fre-
quency of stiffness reformulation.

For the U-bar element, stiffness changes occur when the tangent stiffness changes and as
the orientation of the element changes (iarge displacements option). The reformulation toler-
ance applies to the change of orientation. If the change of orientation is small, the stiffness
change will be small, and a modification of the structure stiffness will not be necessary. The
refornzulation tolerance is an angle. Each time the element stiffness is changed, the direction
of the eie:rent is saved. If the angle between the current direction and the previous direction is
less than the toierance angle, the stiffness is not changed. An angle of about 0.1 radians IS sug-
gested.
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B6.3 THEORY AND COMPUTATIONAL PROCEDURE

B6.3.1 ELEMENT STIFFNESS

B6.3.1.1 Stiffness Matrix
The matrix of direction cosines of the line from node J to node 1 (Fig. B6.2) is

T = <d. dd.> (B6.3.1)

where d,, d,, d. = direction cosines with respect 10 the global X,Y,Z axes. For the large dis-
placements option, the direction cosines are continually updated. For the small displacements
option, they remain constant.

For any given state of the element, the current extensional stiffness, K, is determined

(equal to zero for an open gap. a nonzero value depending on the force in the element when
the gap is closed). Hence, the element stiffness matrix, K, is

K=TI""K'T (B6.3.2)

B6.3.1.2 Current Extensional Stiffness

The total load-extension relationship for zero strain rate (Fig. B6.3) can be decomposed
into a linear relationship for the linear spring and a rigid-nonlinear-plastic relationship for the
rigid-plastic element. For a trilinear relationship, the decomposition is illustrated in Fig. B6.8.
The stiffnesses K, (i = 2,3,etc.) of the rigid-plastic element are given by

1 1 1
£ SN S X 33)
il 7 ? (B6.3.3
or

” K,

K = Kg—% (B6.3.4)

The dashpot in parallel with the rigid-plastic element has the effect of modifying its stiffness.
The modification depends on the step-by-step integration scheme being used, and on the
integration time step. For the trapezoidal integration rule, which is consistent with the tra-
pezoidal scheme used for the step-by-step analysis of the complete structure, the stiffness is

£ ervde (B6.3.5)

At

in which C = current value of the dashpot coefficient. Analyses have shown that for large
values of A, the results given by the trapezoidal rule may oscillate numerically. Accordingly,
the integration within the element is based on the backwards difference rule, for which

R K4 C (B6.3.6)
Al
The effective extensional stiffness, K, is then given by
1 1

1
-— -t — 3.7
s D (B6.3.7)
or
x:
K = Ki——— (86.3.8)
YK\ + K,
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B6.3.1.3 Damping Losd

When viscous damping effects are accounted for by modifying the element stiffness, an
additional load term must also be introduced. For the dashpot in parallel with the rigid-plastic
element, the additional load term, A F,, is

AF, = aCA, (B6.3.9)

in which A, = deformation rate of dashpot at beginning of time step; and @ = 2 for the tra-
pezoidal rule or 1 for the backwards difference rule. The force A F, acts in the dashpot, and
hence acts on point M (Fig. B6.4). For application to the structure, it must be converted to an
equivalent load on node I. This is done by static condensation, giving the force

K,

AF =« ——
K|+K|

‘AF, (B6.3.10)

The force AF is transformed to global coordinates and added to the global load vector in
each time step.

B6.3.2 GEOMETRIC STIFFNESS

For large displacements analysis, a geometric stiffness is included. The geometric stiffness
matrix in terms of global translations of riode I is assumed to be

Fl100

K= —1010 (B6.3.11)
c 1001

where F is the current axial force; and I, is the current length of the element.

This matrix is not strictly correct for an engineering large displacements formulation.
However, it is sufficieniy accurate, and is convenient to use because it is invariant with respect
to element orientation.

B6.3.3 STIFFNESS REFORMULATION

The stiffness reformulation code is set if (a) the extensional stiffness, K, changes, or (b)
the angle between the current restraint axis and the axis when the stiffness was last reformed
exceeds the user-specified tolerance (the latter for the large displacements option only).

B6.3.4 DISPLACEMENTS NORMAL TO U-BAR PLANE

If node K is specified and the gap is open, the components of nodal displacement parallel
to the /K’ direction (Fig. B6.5) are ignored for calculating element deformations and direction
cosines.

Let djx be the direction cosine matrix of /K’ This matrix is calculated for the initial
configuration and is assumed to remain constant during the analysis. Let the vector of incre-
ments in nodal translations at | be A ;. The components of this displacement increment paral-
lel to IK' are given by

Arg = dix - dix - Ar (B6.3.12)

Hence, a modified displacement increment is calculated as
Arj = Ar = Ar (B6.3.13)

This modified increnient is used to calculate the element extension and to update the element
orientation.
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B7. SHELL ELEMENT

SUMMARY

This section describes the theory of the shell element used to model straight pipe, elbow,
and flat slab substructures. The basic features of the element are described in Sections B7.1
and B7.2. Details of the theory are presented in Section B7.3. A typical WIPS user should be
familiar with the basic features of the element but need not study the theoretical details.
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B7.1 INTRODUCTION

B7.1.1 GENERAL

Shell elements cannot be specified directly in the WIPS input but are used when pipe,
elbow and slab substructures are defined

The shell element is essentially a 4-node quadrilateral with six degrees of freedom per
node. Three of the degrees of freedom are translations at the shell midsurface. The remaining
three degrees of freedom are relative translations between the midsurface and the top surface
The formulation is based on rigorous continuum mechanics theory. There are no restrictions
on the magnitudes of the element displacements. However, small strain plasticity theory is
currently assumed to apply, relating Green strain and second Piola-Kirchoff stress. The Mroz
material model, with strain rate dependence, is currently the only model allowed

The element characteristics and assumptions are described in physical terms in Chapter
B7.2. A brief outline of the shell theory is given in Chapter B7.3. Reference is made to other
publications for details of the theory

.1.2 ELEMENT FEATURES
Warped quadrilateral geometry, with nodes at element corners only

Eight nodes, four nodes on the midsurface and four on the top surface. Three transla
tional degrees of freedom at each midsurface node and three relative translational degrecs
of freedom at each top surface node

Applicable to thin and moderately thick shells
Thickness may vary over element

Large displacements may be included as an option
Elastic or inelastic (Mroz) material model

Integration order tiirough thickness may be varied to monitor spread of plasticity

Care must be taken in defining conne.lions to finite elements of other types because rela-
tive translations, not total translations, are used as degrees of freedom at the surface
nodes. Connection to beam-type elements is considered automatically in WIPS




B7.2 ELEMENT PROPERTIES

B7.2.1 BASIC ASSUMPTIONS

The inelastic shell element is an extension of the large displacement elastic shell element
developed by Kanoknukuichai [B7.1). This element, in turn, is based on a small displacement
elastic shell element developed by Kanoknukulchai [B7.2] and a small displacement elastic plate
element developed by Hughes et al [B7.3]. A small displacement elastic shell element based on
similar principles has also been developed by MacNeal [B7.4), apparently independently. An
axisymmetric shell element based on similar concepts has been described by Zienkiewicz [B7.5).

The theory of the element is complex, and it is not necessary for a WIPS user to be fami-
liar with the detailed derivations involved. It is, however, desirable for a user to recognize the
assumptions on which the element is based. These assumptions can be explained quite simply,
with reference to a beam element, as follows.

Consider a beam element constructed by degenerating a 4-node rectangular element, as
shown in Fig. B7.1. The most important feature is that independent interpolation functions are
defined for rotations and displacements, whereas in normal beam theory rotations and displace-
ments are not independent. With independent functions, it is necessary to satisfy only C? con-
tinuity, and hence, linear interpolation is sufficient.

For simplicity the axial displacements can be ignored in the following discussion, because
the exact solution is obtained and because axial effects are uncoupled from bending effects in a
straight elastic beam. Hence, consider a beam with only two rotations #t the ends (Fig. B7.2).
This beam has two distinct deformation shapes, one for symmetrical bending and the other for
antisymmetrical bending, as shown in Fig. B7.3.

Because the detormed shapes involve substantial shear strains, the basic element will ke
grossly overstiff, unless only very short elements are used. However, the shear strain energy
can be reduced by applying reduced (one-point) Gaussian integration for shear effects. This
reduced integration gives zero shear strain energy in the symmetrical deformation mode (Fig.
B7 3a). Hence, the constant bending behavior of the beam is obtained exactly. However, the
stiffness of the antisymmetrical mode (Fig. B7.3b) is still overestimated, and hence the linear
bending behavior is not correctly obtained.

The effect of using reduced integration is shown in Table B7.1. This table also shows a
further modification introduced by MacNeal [B7.4), in which an artificially reduced shear
modulus is specified to obtain the exact stiffnesses for both symmetrical and antisymmetrical
bending. MacNeal extended this approach to a shell element for small displacements elastic
analysis. The approach has not been used in the element described herein, because of compli-
cations when yielding and/or large displacements are considered.

B7.2.2 NUMERICAL ASPECTS

Shape f actions and integration schemes of similar types have been applied to finite ele-
ments for iates, axisymmetric shells, and arbitrary shells [B7.2,R7.3,B7.4,B7.5]. The
effectiveness of the approach was first demonstrated by Hughes et al [B7.3] for a flat plate ele-
ment. This work identified an interesting problem of numerical sensitivity for extremely thin
elements. The shear stiffness (in effect, the antisymmetrical stiffness in Table B7.1) is of the
order of (L/d)? times the bending (symmetrical) stifiness, where L = element length and d =
thickness. For very large L/d ratios, the shear stiffness can dominate to the extent that compu-
tational precision is affected. Fortunately, the problem does not arise for realistic element pro-
portions and typical computer word lengths.

A further problem identified by Hughes et al is that the plate elemnent stiffness has five
zero eigenvalues, two more than required to allow unrestrained rigid body motion. The reason
is that the reduced shear integration introduces two zero energy deformation modes, as shown
in Fig. B7.4. The shell element described herein has similar zero energy modes. Fortunately, it
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is very unlikely that a singular stiffness matrix will result for a practical finite element assem-
blage, because zero energy modes in one element are almost always restrained by adjacent ele-
ments. The problem is thus considered unimportant and is ignored herein.

B7.2.3 SHELL ELEMENT

B7.2.3.1 Degrees of Freedom

The shell element is based on a natural extension of the principles discussed for the beam
element. The shell element is essentially an arbitrary 8-node solid with 24 translational degrees
of freedom, equivalent to a four-node solid with three translational and three rotational degrees
of freedom per node. For small displacements analysis, the 4-node form can be used. For
large displacemenits analysis, the form with eight nodes is used. Four of these nodes are at the
corners of the shell midsurface, with three translational degrees of freedom each. The remain-
ing four are at the corners of the top surface, each with three translational degrees of freedom
relative to the translations of the midsurface nodes. These relative translations replace the rota-
tional degrees of frecdom used in the small displacement element, as indicated in Fig. B7.S.
Note that for the simple geometry in this figure, only horizontal relative displacements are
needed to represent the rotations. For general geometry, however, the vertical relative dis-
placements must also be considered. The effects of these degrees of freedom are discussed
later.

The use of relative translational degrees of freedom, rather than rotations, greatly
simplifies the large displacements formulation. For smal!l displacement shell elements, the rota-
tions are infinitesimal. Hence, each rotation can be regarded as a vector. For large displace-
ment analysis, however, the rotations can be finite and can no longer be treated as vectors,
because the rules for vector transformation do not apply. Translational degrees of freedom can,
however, always be treated as vectors and become a natural choice for large deformation ele-
ments based on continuum mechanics theory. The change is not without penalties, however, as
considered in the following sections.

B7.2.3.2 Through-Thickness Stiffness

For a simple element with its edges paraliel to the global axis (Fig. B7.5), the X and Y
relative displacements define rotations of the shell normal, and the Z relative displacement
defines through-the-thickness extension. For this case, the Z stiffness is of the order (L/d)?
times the X and Y stiffnesses, where L = length of element side and d = shell thickness. For
an element which is arbitrarily oriented in space, the three stiffnesses are transformed and com-
bined to obtain the global stiffness. It is important, therefore, to ensure that the through-
thickness stiffness does not dominate to the extent that numerical inaccuracy is produced.

In the shell element, through-thickness stresses are assumed not to be significant in pro-
ducing inelastic behavior (if they were, a substantially more sophisticated element, with full 3D
capability, would be needed). Hence, through-thickness strains need rot be computed exactly,
and an exact through-thickness stiffness is not needed. It is necessary only to ensure that this
stiffness is sufficiently large that the through-thickness extensions are insignificantly small com-
pared with the rotations of the shell normals. Hence, an artificial stiffness is assigned in the
through-thickness directions. This stiffness is made sufficiently large to ensure that through-
thickness extensions are insignificant, but sufficiently small to ensure that numerical sensitivity
is avoided. The procedure has been developed and described by Kanoknukulchai [B7.2).

It is interesting to note that the through-thickness problem encountered in the present
element is the counterpar( of the rotation-about-the-normal problem encountered in shell ele-
ments in which rotational degrees of freedom are used. In this latter case, however, the prob-
lem is one of providing stiffness where none exists, rather than avoiding excessively high
stiffness.
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B7.2.3.3 Shells With Discontinuity

For simple shell geometries, it is not difficult to select the outer surface and midthickness
nodes to lie essentially on the same shell normal (Fig. B7.6a). However, if the shell is folded
(Fig. B7.6b) or multiply connected (Fig. B7.6c), the elements may be substantially distorted
At the time of writing, little is known about the effects of this distortion. In WIPS, only
smoothly curved shells without branches have been considered, and no probiems have arisen
For more general applications, it would be advisable to specify short elements close to the
discontinuity, and to make ti.em elastic, allowing yielding to occur only in the adjacent, better-
shaped elements. The calculated stresses in the poorly shaped elastic elements may be grossly
inaccurate. However. such local inaccuracy is acceptable. Note that the state of stress close (o
a discontinuity will be complex and cannot be modeled using shell elements

B7.2.3.4 Connection to Other Elements

Because the degrees of freedom at the surface nodes are relative displacements, not total
displacements, the shell element cannot generally be connected to finite elements of other
types

In WIPS, pipe and elbow substructures may be connected to beam-type pipe elements
This is done by slaving the midthickness shell nodes at the substructure ends to the
corresponding beam nodes. This slaving essentially constrains the end cross sections of the
substructure to remain plane and circular. To obtain exactly plane sections, the relative degrees
of freedom at the shell surface nodes should strictly be slaved also. However, the error intro-
duced by not slaving them is small, and is localized near the substructure ends Hence, in
WIPS these degrees of freedom are left unconstrained

B7.2.4 PLASTICITY

Any point in the shell is assumed to be in a state of plane stress, considering in-plane nor-
mal stresses and membrane shear stress. Through-thickness stresses are assumed to be negligi-
ble and are not considered. Flexural shear stresses are assumed to be small, so that (a) they do
not influence yield and (b) the element remains elastic for flexural shear

The element stiffness is determined using 2 x 2 Gauss integration over the element sur-
face. Spread of yield through the shell thickness is considered by monitoring the behavior at
Gauss integration points through the thickness. For an element which is known to remain elas-
tic, or which has negligible bending, two integration points through the thickness are sufficient
For el>ments in which significant inelastic bending is expected, a larger number of points must
be used. In WIPS, the default is five points, and up to seven points may be specified if desired

At each integration point, the material is assumed to follow the Mroz theory, includir.g
strain rate effects. The user is required to specify a multi-linear uniaxial stress-strain law, with
a maximum of six linear segments. The numerical implementation of the Mroz theory is
presented in detail in Section B2. The theory strictly applies for small strains only For the
shel! element, it is assumed to relate Green strain to second Piola-Kirchoff stress




B7.3 THEORY

B7.3.1 BACKGROUND

The large displacements theory has been presented in detail by Kanoknukulchai (B7.1]
Only a summary of the theory is presented herein.

B7.3.2 SHAPE FUNCTION

The element geometry is defined by natural coordinates r,s,t, such that a unit cube is
uniquely mapped into the shell element (Fig. B7.7). The displacement vector at any point
(r,s,t) in the element is expressed in terms of the nodal degrees of freedom as

8
ulr,s,1) = 3 N°(r,s,1) u°

o=l

(B7.3.1)

where (u” a = 1.4) refers to absolute displacements at the four midsurface (reference) nodes
and (u° a = 58) refers to relative displacements at the four outer surface (relative) nodes

The shape function is given by

N(r,s,t) = :—(l+r°r)(l+s‘s) a=14

(B7.3.2a)

§4l+r'n<a+s°s) a=5.8 (B7.3.2b)

The element is isoparametric
that

Relative position vectors are used for the four relative nodes, so

.
x(r,s,1) = 2 Ne(r,s,1) x°

a=i

(B7.3.3)

in which x? (a = 1,4) is the position vector of reference node a, and x? (a = 5,8) is the posi-
tion vector of relative node a relative to its reference node

B7.3.3 CONSTITUTIVE EQUATIONS

The tai:gent stress-strain relationship at any point has the form
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For the elastic case, D), = Dy = Y+ 2u, Dy ™ Dys ™ Dy = . and Xyo = Xy = 0, in
which u is the shear modulus and ¥ is Lame's constant for plane stress, given by

y = vE/(1 -9 (B7.3.5)

The value of Dj;; must be large enough so that the relative degrees of freedom accurately
define rotations, but not so large as to overwhelm the in-plane stiffness. A method for deter-
mining Dy, is given [B7.1]. The value depends on the element aspect ratio. For the inelastic
case, "y, Dss, and Dg are assumed to remain constant. whereas D,,, D, Dy, and Dy
change according to the Mroz theory, and X, X,, become nonzero.




The constitutive relationship is assumed to relate second Piola-Kirchoff stresses and
Green strains.

B7.3.4 ELEMENT STIFFNESS: SMALL DISPLACEMENTS
For small displacements, the finite element stiffness is given by the standard equation

K* = [B DB & (B7.3.6)
in which D is the material constitutive matrix and B is given by
[ o3 ]

a.;

"

wt oat (B7.3.7)
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The element stiffness is integrated numerically, using a selective reduced integration tech-
nique. The transverse shear terms are integrated using one-point quadratuse, end toe remain-
ing terms using two-point quadrature in each direction. By under-integrating the transverse
shear, terms which cause shear locking are omitted. This improves the behavior of the element
and extends its applicability to a wide range of aspect ratios. For inelastic problems, the
number of integration points is increased through the shell thickness.

B7.3.5 LARGE DISPLACEMENTS

The extension of the small displacements element to consider large displacements follows
nonlinear continuum mechanics principles. The theory is based on the total Lagrangian formu-
lation, in which the deformations are measured with respect to the undeformed configuration.
The undeformed body is used as the material coordinate system:. Hence, the elasticity tensor
has a simple form (for a linear isotropic elastic material it contains a number of zero elements).

The Green strain tensor is used as a measure of deformation, ‘efined as
E, = 3 |FuFu-3) (B7.3.8)

in which 8 ; is the Kronecker delta; and F, is the deformation gradient defined as
FU - ‘U + u (B7.3.9)

The second Piola-Kirchoff stress tensor is conjugate to the Green strain tensor and is used in
the computations.
The tangent stiffness in the defo/n.ed configuration is given by
£P = [ B DB &+ [ (NI SION) oy 1 (87.3.10)
L

5

in which B! indicates integration over the undeformed configuration of the element; the
transformation matrix B is defined as

184



-
@
.'l
u.;
T .
£ W3 il .
& & 'u 22 2 \57 % e | 1)
"z "l
F F ¥
. . 13 23 n
] | }
3 2 —— ——
T
. ) F
| ™3 %1 ) i

and D is the material constitutive matrix. The transformation in Eqn. B7.3.11 becomes ident-
cal to the small displacement transformation for the initial configuration, because the deforma-
tion grad ent matrix F reduces to the identity matsix. The second term in Eqn. B7.3.10 is tne
initial siress stiffness, for which S is the second Pioia-Kirchoff stress, and V N is defined as

b
UN® = IN, (B7.3.i2)
[N,
The internal force vector used in the state deiermination is given by
P = [FSUN (B7.3.13)
B!

B7.3.6 INTERNAL PRESSUR’

B7.3.6.1 General

Internal pressure affects the behavior of pipes (a) by introducing hoop and axial tension
stresszs which influence the onset of yield and (b) by increasins. the ovalling resistance of the
pipe. These effects are taken into account in WIPS by an approximaie procedure. An impor-
tant restriction of the procedure is that it permits only a constant iniernal oressure.

B7.3.6.2 Procedure
Internal pressure for straight pipe and elbow substructures may be syt fed separately for

each substructure but is assumed to be the same for all shell eleme- ny substructure and
to remain constant during the analysis. In the initial undeformed & 1o, . ‘s assumec thai hoop
and axial membrane stresses are produced in the pipe wall b ¢ e These stresses are
calculated as:
PD

oy g0 (B7.3.14)
and

o, = 050, (B7.3.15)

in which o, = hooyp stress, o, = axial stress, ? ~ internal pressure; D = inside pipe diame-
ter; and t = pipe wall thickness.
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For each element, the element internal force vector, P®, corresponding to stresses o,
and o, is calculated from Eqn. B7.3.13. A force vector R® corresponding to the pressure
forces on the element nodes is also calculated using a simple tributary area procedure. The
sum of P* and R’ when assembled for the complete substructure, is essentially zero, because
equilibrium is essentially satisfied in the initial state. The sum for any particular element, F
is not zero, however. This sum is stored for each element. The initial stiffiness for the element
also includes the initial stress stiffness corresponding to stresses o, and o ,.

During the analysis, each element deforms and undergoes rigid body displacement. The
stress state for an element at zero deformation is defined by o , and o ,, so that the initial stress
point is not at the origin of the stress space. The state determination calculations for the Mroz
material are carried out starting at this point, with the result that the strains required to cause
yield are different from those for an initially unstressed element.

At each step of the analysis, the resisting force, P?, and pressure force, R, are calculated
for the new stress state and displaced configuration. If the sum of these vectors is R“ for any
element, the different R* - R, when assembled for the complete substructure, defines the
change in the substructure internal force vector. This change accounts for stress changes, large
displacements of the substructure, and change in direction of the pressure forces. This internal

force change becomes the internal force vector for calculating the unbalanced load on the sub-
structure.

It may be noted that the effect of the modification on the complete substructure is typi-
cally not large because most of the pressure nonlinearity is accounted for by the element initial
stress stifinesses. The procedure is used because it does not require that the pressure forces
appear as loads on the substructure nodes, and hence, substantially simplifies the analysis.

186



TABLE B7.1
FINITE ELEMENT APPROXIMATIONS FOR BEAM BENDING

Symmetric Antisymmetric
Case Stiffness Stiffness
(Fig. B7.3a) (Fig. B7.3b)
281 "
(1) Thick beam theory L L + 2
("exact” result). 6EI L GA'L
GAL
() 2 x 2 Gauss | 2EI GAL 2
integration (no reduc- L 6
tion).
Exact GiL
(3) 2 x 2 Gauss for 2
axial stress; | point
Gauss for shear.
G'AL
(4) Case (3) with Mac- | EXact N e Exact
Neal modification on G
(see Note 1).
Note 1.
Specify reduced shear modulus,

-1
REST N O e
¢=qlem’ GA’L]

| = flexural moment of inertia
A = Cross section area
A' = effective shear area = S5A/6
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FIG. B7.1 - DEGENERATION OF 4-NODE ELEMENT

C ._.__‘__._._i\)

FIG. B7.2 - ELEMENT WITH ROTATIONS ONLY

(a) CONSTANT BENDING (b) LINEAR BENDING
(SYMM) (ANTI-SYMM)

FIG. B7.3 - DEFORMATION MODES

(a) HOUR GLASS (b) IN-PLANE TWIST

FIG. B7.4 - ZERO ENERGY MODES
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FIG. B7.5 - CHANGE FROM ROTATIONS TO RELATIVE DISPLACEMENTS

(¢) MULTIPLE CONNECTION

FIG. B7.6 - ELEMENT DISTORTION
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FIG. B7.7 - SHELL ELEMENT
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B8. GAP-FRICTION ELEMENT

SUMMARY

Ttis section describes the theory of the gap-friction element. The element is intendeu for
modeling the restraining effects of walls or similar barriers, particularly if friction effects are
important. Slab substructures provide a more accurate means of modeling such barriers, but
the gap-friction element is more efficient computationally.

The basic features of the element are described in Section B8.1. Details of the theory are
presented in Section B8.2. A typicat WIPS user should be familiar with the basic features of
the element but need not study the theoretical details.

CONTENTS

B8.1 ELEMENT PROPERTIES
B8.1.1 INTRODUCTION
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B8.2.2.3 WIPS Stiffness and State Determination
B8.2.2.4 Global Stiffness
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B8.1 ELEMENT PROPERTIES

B8.1.1 INTRODUCTION

The gap-friction element provides a computationally efficient means of modeling walls or
similar barriers. The essential features of the element are as follows.

(1) Idealization as a system of springs oriented normal and tangent to the barrier piane.
(2) Barrier plane may be arbitrarily oriented in space.

(3) Normal and tangent springs have zero stiffness when gap is open.

(4) Normal spring has constant stiffness after gap closes (i.e. linear normal behavior).

(5) Tangent springs have specified stiffness : tangent force is less than the slip force (i.e. less
than normal force multiplied by friction coefficient).

(6) Tangent spring properties are modified to allow slip when tangent force reaches the slip
force.

(7)  Slip force changes continuously as the normal force changes.
(8) Element is assumed to have zero mass.

B8.1.2 GEOMETRY AND PROPERTIES

B8.1.2.1 Location of Barrier Plane

Each element affects a single node of the pipe system. If several nodes strike the barrier
plane, one element must be specified for each such node.

The barrier plane is assumed to be infinitely wide. The element resists deformation nor-
mal and tangent to the barrier plane. The element consists of two separate components,
namely (1) a bearing compone..i acting normal to the barrier plane and (2) a friction com-
ponent acting tangent to the plane.

The element is oriented as shown in Fig. B8.1. The local z axis is norrial to the barricr
plane, directed towards the piping system node. The local x and y axes lie in the barrier plane.
The plane is located by the direction cosines of the element x,y,z axes, and the distance (gap)
from the piping system node. 2 VIPS user specifies the direction of the z axis (the input data
actually defines the -z direction). [he x and y axes are then located as follows:

(1) If the element z axis is not parallel to the global X axis, the element x axis is in the plane
containing the global X and local z axes, with a positive projection on the X axis. This
situation is illustrated in Fig. B8.1.

(2) If the element z axis is parallel to the global X axis, the element x axis is parallel to the
global Y axis. In both cases the element y axis is mutually perpendicular to the x and z
axes (Fig. B8 1)

B8.1.2.2 Component Stiffnesses

The bearing component is modeled with an elastic normal spring oriented along the ele-
ment z axis. The friction component is modeled by a pair of inelastic tangent springs in the xy
plane. The spring stiffnesses must be specified by the WIPS user (in the WIPS-GAPF module)
and should be realistic values (i.c. not artificially large because no barrier can be actually rigid).

When the gap is open, the springs all have zero stiffness. If the gap is closed but there is
no slip, the tangent springs are oriented along the element x and y axes (Fig. B8.2a). If the
resultant force in the tangent springs exceeds the slip force (bearing force multiplied by friction
coefficient), the tangent springs are modified 1o provide zero resistance to slip in the radial
direction (Fig. B8.2b). If the normal force decreases or the direction of slip reverses, the
tangent springs return to the non-slip state.
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B8.2 THEORY

B8.2.1 SLIP SURFACE

Let the force in the normal spring be F,, and in the tangential springs be F, and F,. If
the gap is closed, the boundary between the no-slip and slip regimes is defined by a slip surface
(Fig. B8.3). The equation of the slip surface is:

¢(F,F,F) = (Fl+ F)"+uF, = 0 (B8.2.1)
in which ¢ = slip function, u = friction coefficient, and F, is positive in tension.
B8.2.2 ELEMENT STIFFNESS

B8.2.2.1 Stiffnesses Before Slip

Let the normal spring stiffness be K,, and let the stiffness in each tangent direction (x
and y) before slip be K. The element stiffness relationship in element coordinates for the no-
slip case is thus:

d’.l n a}
d[ - {dF, |} = du,

y

- K, dy, (B8.2.2)

K
0
0

oxo
moo

du,

L]
in which u, = normal deformation; w,,u, = tangent deformatioas, K, = “elastic" s'iffness
matrix, and du, = "elastic” deformation increment.

B8.2.2.2 Stiffness After Slip
If slip occurs, the condition dé = 0 must be satisfied. That is, for any force increment

dF,
¢ . FdF = 0 (B8.2.3)
in which
/8 F, "
¢.r = {00/0F, } = { ~FJuF, (B8.2.4)
¢/ F, ~F,/uF,

During slip, any element deformation increment consists partly of elastic deformation and
partly of slip deformation. That is,

dy = du, + du, (B8.2.5)

in which du,,du, = <lastic and slip deformations, respectively. The slip deformation must be
in the direction of the resultant of F, and F,. That is,

0
du, = { ~FJuF, }u = gu (B8.2.6)
=FJukF,

in which g = a unit vector along the slip direction and u, = the amount of slip (a scalar).
From Eqns. B8.2.3, B8.2.2, B8.2.5, and B8.2.6, it follows that:

0~ :'E o !',.EOQ L ",.Ecl uy (B8.2.7)
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Eu... B8.2.7 can be solved for u, to give:

. o FK. du
. (B8.2.8)
“ !-[50‘

Hence, from Eqns. B8.2.2, B8.2.5, and B8.2.7:

!lltv ; K'
¢ IE:‘

Eqn. B8.2.9 defines the "elastic-slipping” stiffness matrix, K., In expanded form, this matrix is:

K, 0 0
K,FJF, KFYu'F} ~—KF.F/u'F]
K,F/F, ~KF.F/Ju'F} KFYu'F}

dF = IE(' ]Q - K. du (B8.2.9)

Ky = (8.2.10)

B8.2.2.3 WIPS Stiffness and State Determination

Matrix K,, is unsymmetrical. Because WIPS can consider only symmetrical matrices, the
terms K, (2,1) and K.(3,1) are ignored in assembling the structure stiffness. For the state
determination phase, however, the unsymmetrical stiffness (i.e. Eqn. B8.2.9) is used. This
means that unbalanced loads can develop. The unbalance in any time step is eliminated in the
following step by applying a corrective load.

When the terms K, (2,1) and K,(3,1) are assumed to be zero, the stiffness matrix
corresponds to the physical situation shown in Fig. B8.2b.

B8.2.2.4 Glcbal Stiffness

The glubal stiffness matrix follows from the local stiffness matrix, K, or K,,, by applying
a routine direction cosine transformation.
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