
o
.

-

%

NUREG/CR-3686
UCRL-15597 Vol. 3

._ _ __ ;__ __ ; __ ___
_

1

WIPS Computer Code for Whip
and Impact Analysis of Piping
Systems
Part C Programmer's Manual

. - . .- - __ .. -. __. - - - - .

G. II. Powell, J. P. I follings, D. G. Row, P. Chen, F-C. Ilu, M. Mahasuverachai,
IL Mosatidad, P. Nicklin, S. Nour-Omid, C. Oughourlian, and A. Riahi;
University of California, ik rkeley, CA
Prepare (I for
U.S. Nuclear Regulatory Conunission

Lawrence
Livermore
National
Laboratory

0407110076 840630
' b-3C R PDR

_ _ _ - _ - _ _ _ _ _

i

*
.

*

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neitner the United States Government nor any agency thereof, or any of their
employees, makes any wacranty, es prened or rmphed, or assurnas any legal habihty of re-
sponsitehty for any third party's use, or the results of such use, of any information, apparatus,
product or process d,sclosed in this report. or represents that its use by such third party would
not infrmge privately owned rights

_ _ _ . _ _ _ _ _ _ _

|
NOTICE

| Avalabihty of Reference Materials Cited in NRC Pubhcations
i

Most documents ated in NRC pubhcations wdl be avadable from one of the following sources:

1 1. The NRC Pubhc Document Room,1717 H Street, N.W.
mshington. DC 20555

2. The NRCiGPO Sales Program, U S. Nuclear Regulatory Commission,
Washington. DC 20555

'
3 The National Technical Information Service. Springfield, VA 22161

Although the hsting that follows represents the majority of documents cited in NRC publications,
' it is not intended to be enhaustive,

i
; Refr enced documents available for inspection and copying for a fee from the NRC Public Docu

ment Room inc!ude NRC correspondence and internal NRC memoranda; NRC Of fice of inspection'

and Enforcement bulletins. circulars, information notices, inspection and investigation notices;
Licensee Event Reports. vendor reports and correspondence; Cemmission papers; and applicant and
licensee documents and correspondence.

The following ducuments in the NUREG series are available for purchase from the NRC/GPO Sales
| Program formal NRC staff and contractor reports, NRC sponsored conference proceedings, and
| NRC booklets and brochures Also available are Regulatory Guides, NRC regulations in the Code o'

Federal Regulations, and Naclear Regulatory Commission Issaances.

Documents asailable from the National Technical Information Service include NUREG series
reports and technical reports prepared by other federal agencies and reports prepared by the Atomic

! Energy Commission forerunner agency to the Nuclear Regulatory Commission.
!

| Occuments available from pubbc and special technical hbraries include all open literature items,
' such as books. journal and periodical articles, and transactions. Federal Register notices, federal and

state le$$lation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non NRC conference
proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draf t reports are available free, to the extent of supply, upon written request
to the Division of Technict Information and Document Control. U S. Nuclear Regulatory Com-
mission. Wehinmon, DC 20555.

Copies of industry codes and standards used in a substantive manner in the N RC regulatory process
are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are availabla
there for reference u,e by the public. Codes and standards are usually copyrighted and may be
purchased from the originating organization or, if they are American National Standards, from the
American National Standards Institute,1430 Broadway, New York, NY 10018.

_ ..__ _ ___ _

> ,,f ,

.. . - . . - .

l

.

,

NUREG/CR-3686

|
UCRL-15597 Vol. 3
Intramural #3371609

:
_ _

. _. . - _ _ - _ _ _ _ .

WIPS Computer Code for Whip
and Impact Analysis of Piping
Systems
Part C-Programmer's Manual

.. . - _ _. . _. -. -.

_ _ _ _ _ _

hianuscript Completed: hlarch 1983
Date Published: June 1984

Prepared by
C. H. Powell, J. P. Hollings, D. G. Row, P. Chen, F-C. Hu, hl. hiahasuverachal,
B. hiosaddad, P. Nicklin, S. Nour-Omid, C. Oughourlian, and A. Riahi;
University of California, Berkeley, CA

Lawrence Livermore National Laboratory
7000 East Avenue

; Livermore, CA 94550

|
| Prepared for

Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555
NRC FIN No. A0136

|

|
i

- - , - -- ,- - - - . - . . -- - - - - - , - - . - - - -. -, -

WIPS - COMPUTER CODE FOR WHIP AND IMPACT
ANALYSIS OF PIPING SYSTEMS

PART C

PROGRAMMER'S MANUAL

by
G. H. Powell, J. P. Hothngs, D. G. Row, P. Chen,

F C. Hu, M. Mahasuverachai, B. Mosaddad. P. Nickhn,
S. Nour-Omid, C. Oughourhan, and A. Riahi

University of California, -

Berkeley, California

Prepared for
Lawrence Livermore National Laboratory

Livermore, California
under LLL Subcontract No. 3371609

i

I

q

! '
,

.

/

|
1

i

I

I

-- , . _ _ - _ .

4 -. m. m m- .- J

l

ACENOWLEDGEMENTS
,

The authors wish to acknowledge the assistance and patience of Program Managers P.
Albrecht, M. Vagins, and G. Weidenhamer of the Nuclear Regulatory Commission and P.
Smith, C K. Chou, and T Y. Chuang of the Lawrence Livermore National Laboratory.

Special acknowledgement is due to R. Chun, Lawrence Livermore National Laboratory,
for his invaluable assistance in running examples on the CRAY computet and for his extremely
thorough review of the manuscript.

L. Calvin extended herself above and beyond the call of duty to prepare the manuscript.
The good figures were drafted by G. Feazell.

:

*
,.

I

i

i

!

l
,

}

4-

4

|

|

,

-. __. . . _ . -- .

\-

!

, 1

|
'

WIPS - COMPUTER CODE FOR WHIP AND IMPACT
ANALYSIS OF PIPING SYSTEMS

PART C .

PROGRAMMER'S MANUAL

ABSTRACT

,

This report presents information for use by programmers who may wish
to add new features to WIPS (particularly new element types). Information is

'

provided on the free form data input package; the data base manager used in
WIPS ANAL; the procedures required to add new element types to WIPS-
ANAL and to the WIPS INPT package; and the file strt.ctures in WIPS-INPT. .,

'

Information is also provided on computer system requirements.
#

h

to-

|

.s

fv
h

b (

I [e4

jfr

.

IW 9

4

a6J A
,

#'/'
-

,

c~
,

.

t

B

.c =

3

*
% W ;

/ j

, ' -
-

,

I * ')

(,

'
e

.

. , .

,l'/, '

|
' af

,
5'.* j,

, ,.

< t .

.<} s ' *

' > / ,r,

$
7 '. ;, p/ ,

f
ff

'' "p ; ye

k'*~ f

3. |g' ?,'- r;*_ |

"p?+
'

.: ,$ n
'

. - . _.

' '

i,
,.

, ; 11
'

'
i

s .-

TABLE OF CONTENTS
> ,,

a. ,

Page

/ ,

.

/;;;;..
i

I /j ABSTRACT .

iii
.... ** ..' '

' ' ,f TABLE OF CONTENTS
'

1
...C1. SYSTEM REQUIREMENTS . .,.

7.

C2. FREEFORM INPUT PACKAGE
'

3. , ."
.. . .

,s 17
.'# C3. DATA BASE MANAGERS

~

.

, 1 33
.- - - C4. ADDITION OF ELEMENTS

,

69
I 'C5. FILE STRUCTURE

i

4

'

.

!
''r

.

.

f

L

%p
4v

j*n

'' s <
*E

i s t; =

f h

i !
'~,

f, / |pt
,, ..

- &

(f .f/
'"

,
..

]

l

l

i

I

t

I

W 5,'

f, '.
* ,

L . ~8 -Q,

:| <

iii

. . /
i -

M
i n
'N

u .- - . ,

C1. SYSTEM REQUIREMENTS
1

|

SUMMARY

This section identifies the machine dependent features of the WIPS code as well as gen-
eral computer system requirements. Section Cl.1 is concerned mainly with the VAX-UNIX
' system which was used for code development and testing. Sections may need to be added for
other computer systems.

CONTENTS

C1.1 GENERAL REQUIREMENTS
Cl.l.1 PROGRAMMING LANGUAGE

C1.1.2 CORE REQUIREMENTS
Cl.l.3 WIPS-ANAL EXECUTION

C1.1.3.1 Mini Versus Mainframe
C1.1.3.2 ANAL Execution on VAX/ UNIX System

C1.1.3.3 ANAL Execution Stand-Alone

C1.1.4 OTHER SYSTEM DEPENDENT FEATURES

C1.1.4.1 WIPS-EXEC

Cl.l.4.2 WIPS-ANAL Execution
C1.1.4.3 Overlay

C1.1.4.4 New Line Suppression

Cl.l.4.5 Plot Package

C1.2 VAX/ UNIX SYSTEM AT U.C. BERKELEY

|

1

l

|

C1.1 GENERAL REQUIREMENTS

C1.1.1 PROGRAMMING LANGUAGE
All WIPS modules, except WIPS-ANAL, execute in interactive (foreground) mode.

l
These modules are coded in FORTRAN 77 and are heavily dependent on FORTRAN-77l

features. They would be very difficult to modify to execute under FORTRAN-66.
The WIPS ANAL module has been developed and tested using FORTRAN 77 but makes

only limited use of FORTRAN 77 features, specifically for file opening and closing. WIPS-|
ANAL also uses one random-access file. This module could be modified without major'

difficulty to execute under FORTRAN-66.

C1.1.2 CORE REQUIREMENTS
All WIPS modules, except WIPS-ANAL, make use of a simple in-core data base manager

(DBM) (see Section C3.1). Except for a few labelled COMMONS and short dimensioned
arrays, data is stored by the DBM in blank common (COMMON L(...)). The length of array L
is set in the main program of each module. The length required depends on the size of prob-
lem to be considered. In the basic version of WIPS, the length of L is 10000 in WIPS-MODL,
50000 in WIPS.RSLT, and 5000 in all other modules (except WIPS-ANAL). These lengths
should be adequate for both small and large problems. If the length is inadequate, a message

:
will be displayed by the DBM during execution.'

The WIPS ANAL module makes use of a more sophisticated DBM (see Section C3.2).
This DBM operates in-core if adequate blank COMMON length is dimensioned, with automatic
overflow to a single random access file (the PAUS file) if necessary.

For the VAX-UNIX virtual memory system used to develop WIPS, computational
efficiency suffers substantially when the random access file is used. A blank COMMON length
of 2 megabytes (i.e. COMMON L (500000)) has been used for most analyses on this system.
This permits "in-core" execution for problems of small and intermediate size (the system has 4
megabytes of core but in a multi user environment the core allocated per user is much less and
virtual memory paging occurs) but not for large problems involving straight pipe, elbow, or slab
substructures. On other systems, experimentation will be needed to determine the most
appropriate blank COMMON lengths.

C1.1.3 WIPS-ANAL EXECUTION

C1.1.3.1 Mint Versus Mainframe
All WIPS modules, except WIPS-ANAL, require only small execution times, and it is

appropriate to execute them on a mini-computer. WIPS-ANAL requires substantially longer
execution times, ranging from a few minutes (for small piping models using beam or p(pe ele-
ments) through a few hours (for larger models using beam or p(pe elements) up to tens or
hundreds of hours (for models incorporating straight pipe, elbow, or slab substructures).

It is appropriate to execute smaller problems on a mini computer, but large problems can
be executed more efficiently using a large scientific mainframe. This could be done by prepar-
ing the WIPS-ANAL files (DATA, ECHO, SLOG, RSLT, and, if needed, PAUS and PAUZ) ;

on a mini-computer, transferring these files to a mainframe for execution of WIPS-ANAL, then i

transferring them back for post processing. |

C1.1.3.2 ANAL Execution on VAX/ UNIX System
Execution of WIPS-ANAL on the VAX/ UNIX system at the University of California,

Berkeley, is initiated from WIPS-EXEC via a "C" program a.sh. This program questions the
user on the cpu time limit and whether background or batch execution is required. For back-
ground execution, the program uses the system program " limit" to assign the cpu limit, file size

3 I

. - - -

|

t

l

! limit (20 Mb), and coredump Se limit (5 Mb), then begins execution. For batch execution, it'

queries the user on whether day _or night priority is to be assigned, then creates the UNIX com-
mand:

batch -cpu =**" -file-10m -core-Sm -night -anal.sh
where "" - cpu time limit, and for day priority "-night"is omitted. The anal.sh file is a com-

!
;

; mand shell script which simply contains the command " anal".

C1.1.3.3 ANAL Execution Stand-Alone

Although it is convenient to initiate WIPS ANAL execution from WIPS-EXEC, this
requires a system-dependent procedure of the type described in the preceding section. A
simpler procedure is to execute WIPS-ANAL as a stand-alone program. The procedure is as
follows.

(1) Create a file "wipsdat" containing only the filename of the DATA file to be used, in A8
format (e.g. DATA 0102).

(2) Assign appropriate cpu and file size limits.
(3) Begin execution of ANAL.

C1.1.4 OTHER SYSTEM DEPENDENT FEATURES

C1.1.4.1 WIPS-EXEC

The WIPS EXEC module has a small number of system dependent features. These are
explained in Section CS.I.4.

C1.1.4.2 WIPS-ANAL Execution

In the basic version of WIPS, the WIPS-ANAL module is executed by a program call
from WIPS-EXEC. In general it may be preferable to execute WIPS-ANAL as a separate pro-
gram (see Section Cl.l.3).

C1.1.4.3 Overlay

The VAX/ UNIX system allows one program to be executed from another by means of a
" PROGRAM" call. Each WIPS module is thus set up as a separate program.

On systems which do not have this feature, it will be necessary to set up the modules as
overlays. WIPS-EXEC will be the root overlay, and each WIPS module will be a level 1 over-
lay. The " CALL PROGRAM" statements in WIPS EXEC must be replaced with " CALL
OVERLAY" statements. WIPS EXEC does not make use of blank COMMON.

C1.1.4.4 New Line Suppression

For interactive input, the sign "$" at the end of a r'ORMAT statement is used to force
continuation of the current line. This is not standard FORTRAN-77.

C1.1.4.5 Plot Package

The plotting routines used by WIPS-GEOM and WIPS RSLT are in FORTRAN 77 and
should not be system dependent. These routines apply for the Tektronix 4662 pen plotter,
4013 and 4015 graphics terminals, and 4027 colar graphics terminal. Provisions for CALCOMP
plotting have been included but not tested.

iThe plot package consists of a number of primitive routines for pen move, drawing of '

lines, and plotting of text. The records transmitted to the plot devices are automatically padded
with nonexecutable data to compensate for data transmission rates. Control information for
plotting is set in SUBROIRINE DEVICE.

|
|

4 |
i

I
.

.

C1.2 VAX/ UNIX SYSTEM AT U.C. BERKELEY

WIPS has been developed on the DEC VAX 11/780 at the University of California,
Berkeley. The configuration of this system is as follows:

Operating System: UNIX 7th edition,
Virtual VAX-Il Version,
Berkeley Software Distribution 4.0.

Core Capacity: 4 Mbytes

Maximum Process Size: 16 Mbytes

Disk Capacity: 141 Mbytes per filesystem

Number of Tape Drives: 2 (not used by WIPS)

;

|.

!
5

|
|

|

.-- - _ _ _ _

> |

|

:

| C2. FREEFORM INPUT PACKAGE

SUMMARY

iWIPS accepts lines of freeform data interactively and checks the data for syntax and data J

sequence errors. This section describes the subroutines which make up the data input package.

CONTENTS

C2.1 DATA FORMAT
C2.2 SUBROLTTINE PACKAGE

C2.2.1 SUBROUTINE DLIMIT
C2.2.1.1 Argument List

C2.2.1.2 Purpose

C2.2.2 SUBROUTINE FREEF
C2.2.2.1 Argument List

C2.2.2.2 Return of Data Items
C2.2.2.3 Default Values for Optional Data items

C2.2.3 SUBROUTINE GETLIN

C2.2.4 SUBROUTINE SETFOR

C2.2.5 SUBROUTINE SETOPT

C2.2.6 SUBROUTINE MESSG

C2.2.7 SUBROUTINE COMMNT

C2.2.8 SUBROUTINE ERROR

C2.2.9 SUBROUTINE YESNO
C2.2.9.1 Argument List

C2.2.9.2 Acceptable Responses

C2.2.10 SUBROUTINE HELP

i

|

7

'

,

e

C2.1 DATA FORMAT

The WIPS freeform input routine is for data input in an interactive mode. The routine
interprets an input data line in the form:

dl/d2/.../di/.../dn/OI-el/02-e2/.../Oi-ci/.../Om-em// optional comment

where
" positional" data item, identified by position in line. May be an integer, real, or alphadi -
word.
optional data item, identified by option code Oi. May be an integer, real, or alpha word.ei -

Oi - option code (alpha, I to 4 characters).
/- separator, consisting of a comma and/or one or more blanks (not a slash).
// - a specified number of consecutive blanks (currently 3), indicating end of data.

n- number of positional data items,

m - number of optional data items.
The optional comment is for the convenience of the user and is ignored.

Example:
TYP I ,3,7.5,6.E-3, A4GX, PROP -3,DX -2.2E8,LDIS - YES EX AMPLE LINE

The data may be any sequence of integer, real, and/or alpha words, as defined by the pro-
grammer. Data of the following modes may be interpreted:

(a) Integer (1): integer numbers only. No decimals or blanks.
(b) Real (R): any FORTRAN I, F, or E conversion.

(c) Alpha (A): 1 to 4 alphanumeric characters. No blanks.
Two consecutive commas (,,) denote a zero number or a blank word.

A single input line may be interpreted in a single pass or in a series of passes. A max-
imum of 10 words may be interpreted from a single data line.

For each line to be interpreted, one call must be made to subroutine DLIMIT, followed
by one or more calls to subroutine FREEF. In addition, subroutines, GETLIN, SETFOR,
SETOPT, MESSG, and YESNO may be called. Subroutine HELP must be provided by the pro-
grammer.

I

!

l

|

9

|

!

|

|
|

l

C2.2 SUBROUTINE PACKAGE

C2.2.1 SUBROUTINE DLIMIT

C2.2.1.1 Argument List

i The subroutine statement is as follows:

SUBROUTINE DLIMIT (IW,NWORDS,lHELP,1 COL,M AXB)

i. which
(a) IW(80) = character *1 array which holds the data line to be interpreted, in 80Al format.

Must be set before entry to DLIMIT.
(b) NWORDS = integet variable or constant, specifying number of words to be interpreted.

Must be set before entry to DLIMIT. Must not exceed 10.

IHELP = help code. Must be set before entry to DLIMIT. Must be an integer vari-(c)
able, not a constant, because its value may be changed in DLIMIT. If the first word in
the data line is " help," the following statements are executed in DLIMIT.

CALL HELP (IHELP)
IHELP = -IHELP
RETURN

Subroutine HELP must be provided, to print an appropriate guidance message. If a nega-
tive value is returned for IHELP, ask for the data line to be re-entered.

(d) ICOL(2,N), where N > NWORDS, = integer array for return of delimiting informa-
tion, as explained in the following section.

C2.2.1.2 Purpose
Subroutine DLIMIT breaks the data line into groups of columns, each group defining a

word. The numbers of the first and last columns of word I are stored in ICOL(1,1) and
ICOL(2,1). The ICOL array is used directly by subroutine FREEF and must not be changed.

A zero value for ICOL(1,1) indicates a zero or blank word. If the limit of MAXB con-
secutive blanks is reached before NWORDS groups of cahimns have been delimited, ICOL(1,1)
is set to zero for the remaining words.

C2.2.2 SUBROUTINE FREEF

C2.2.2.1 Argument List

The subroutine statement is as follows:
SUBROUTINE FREEF (IW,NWORDS,IFORM,LTITLE,lERR,1NTW,ALPHW,1Al,
REAW,ICOL,10PT,NOPT,10NO)

in which
(a) IW(80) = character *1 array holding data line, as before.
(b) NWORDS = number of words to be considered in this pass through FREEF (see array

IFORM).
'(c) IFORM(N), where N > NWORDS, - integer array defining data modes, such that

| IFORM(1) defines the data mode for word I, as follows:

0 - ignore

11

|

i
;

I

h 2 - real (R) data
3 - optional data (identified by an option code)

v n _ alpha (A) word of n characters (max. 4). If mere than n characters are input,} the first n characters are extracted and the remainder are ignored. If fewer than n
{ characters are input, trailing blanks are added.
-

Array iform must be set before entry to FREEF, either by means of a DATA statement
: or by calling subroutine SETFOR. -

1 (d) LTITLE - number of characters in the printed message requesting input of the data
! line. For example, if the message is

ENTER COORDS X,Y,Z:r
i

then LTITLE = 19. This is used for pointing to errors in the data line. If character I inr-
: the data line is incorrect, FREEF prints an error message and points to character
1 (1+LTITLE) in the line displayed on the screen.
N (e) IERR - error code, returned by FREEF. If IERR - 0, no error has been found; other-
E wise the data line contains an error, and the user must be requested to re-enter the line.
5 (f) INTW - one-dimensional integer array in which integer words are returned. See Sec-
y tion E12.3.2 for locations in INTW which are used.
5 (3) ALPHW = one-dimensional character *4 array in which alpha words are returned (see

Section E12.3.2).

(h) IAI - storage code for INTW and IALPH arrays. Specify zero if INTW and ALPHW
-; occupy separate storage. Specify 1 if INTW and ALPHW have the same first word

address. See Section E12.3.2.!

(i) REAW one-dimensional real array in which real words are returned. See Section
< -

}[
E12.3.2.

(j) ICOL(2,N) - delimiting array set by subroutine DLIMIT.
.

.

(k) IOPT (4,NOPT) - mixed alpha integer array defining optional data codes which may be1 used. Column I of IOPT contains information for option code I, as follows:j. IOPT(1,1) - alpha word (A4) defining option code (e.g. " prop")
I' lOPT(2,1) - acceptable abbreviation (e.g. "pr")

IOPT(3,1) - data mode (1-I; 2-R; -n=An).

IOPT(4,1) - location in corresponding data array (INTW for I; REAW for R; ALPHW
.

for A) in which data is to be placed (e.g. if IOPT(2,1) - 1 and IOPT(3,1) - 4, integer
data is to be extracted and placed in INTW (4)). See Section E12.3.2.

:
Array iopt must be set before entry to FREEF, either by means of a DATA statement or

y by calling subroutine SETOPT.
t

(1) IGNO - igrure code for optional data. For each optional data word (IFORM(I) - 3),{ the option code is compared with all codes in array IOPT. If a match is not obtained andi IGNO - 0, the data word is ignored. If a match is not obtained and IGNO - 1, an error
i message is printed (incorrect option) and IERR is set to 1.

C2.2.2.2 Return of Data Items
!

Subroutine FREEF extracts data items from the data line and returns them in arrays
INTW, ALPHW, and REAW.

The data modes are defined by arrays IFORM and IOPT. Positional items (1, 2, or -n in
array IFORM) are stored in the corresponding array in the order in which they appear in the

-

line (i.e. first integer word goes in INTW(1), first real word in REAW(1), etc.). The optional
items are placed in the corresponding array in the location defined by lOPT(3,1). This is neces-
sary because optional data items need not appear in any specified sequence.

12

P

k

w

$
1
a

b i

If the storage code, IAI, is set to 1, then INTW and ALPHW are assumed to share the
same storage locations. In this case, positional integer and alpha items are both counted to j i

determine their storage locations. For example, if the format array, IFORM,, is (1,-4,1), the i

| first integer item is stored in INTW(1), the alpha item in ALPIIW(2), and the second integer
bitem in INTW(3).

The storage code, IAl, is not considered by FREEF in storing optional data items. If $

INTW and ALPHW share the same s'.orage locations, this must be taken into account in setting
,

| Oup array IOPT.
- r

"
C2.2.2.3 Default Values for Optional Data items

If IGNO - 1, FREEF flags improper options and sets IERR - 1. Except for this, how-
ever FREEF does not indicate whether or not any particular option code has been used. The !. -

programmer must therefore devise means to ensure that default values are used if a particular v.
option is not exercised. One way is to initialize the appropriate locations in INTW, ALPHW, ,

1
'

and REAW to the default value before calling FREEF. Then, if any option is not exercised,
the default value is return (d.

C2.2.3 SUBROUTINE GETLIN
The subroutine statement is as follows:

?) I
SUBROUTINE GETLIN (IW) ,

in which IW(80) is a character") array holding the data line, as before. The subroutine reads a
data line. .

In many applications, the function of GETLIN can be performed l'y a read statement. In Y
WIPS, however, GETLIN also writes the data line to the WIPSLOG file so that a log of the ses- 4

sion can be printed. j.
%

C2.2.4 SUBROUTINE SETFOR p
The subroutine statement is as follows.

SUBROUTINE SETFOR (IFORM,II,12,I3,I4,IS,I6,17,I8,19,110)
k

in which
(a) IFORM(10) - integer array being set up to define data modes.
(b) II,12,etc. - integers defining data modes for up to 10 data items (1,2,3, or n). ;

Subroutine SETFOR simply puts 11,12, etc. in array IFORM. i ;

A [

! f
C2.2.5 SUBROUTINE SETOPT

fThe subroutine statement is as follows:

SUBROUTINE SETOPT (IOPT,NC, NAM,NAMA, MOD, LOC) J
where {
(a) IOPT(4,M) - integer array defining data codes (M - number of columns in array). j
(b) NC - column in IOPT to be set by this call. a

'

(c) NAM - A4 alpha word (e.g. " prop"). This is put in IOPT(1,NC).
(d) NAMA - acceptable abbreviation (e.g. "pr"). This is put in IOPT(2,NC). 4

7(e) MOD - data mode (1,2,3, or -n). This is put in IOPT(3,NC).
'

(f) LOC = location in INTW, ALPHW, or REAW array. This is put in IOPT(4,NC).

-

i|

.;
A
y.

13
,

1

b

ft

C2.2.6 SUBROUTINE MESSG

Subroutine MESSG may be called to print a user prompt or any other message. The sub-
routine statement is as follows:

SUBROUTINE MESSG (MM,LM,NS)
in which

(a) MM(80) - character *1 array containing the message to be printed. '

(b) LM message length (number of characters), which is returned by MESSG (this-

avoids counting the title length by hand for the call to FREEF).

(c) NS - number of blank lines to be printed before message.

In the call statement, the message may be of any length up to 80 characters. The last character
must be *$". If a carriage return is required after the message is displayed, the second-to-last
character must be "/". The message is both displayed and written in the WIPSLOG file.

! Examples:

CALL MESSG (' ENTER COORDS X,Y,Z, : $' ,LTITLE,0)

CALL MESSG (' ENTER VALUES AS FOLLOWS /$' ,K,2)

C2.2.7 SUBROUTINE COMMNT
Subroutine COMMNT may be called to print a command or explanatory message. The

subroutine statement is as follows:

SUBROUTINE COMMNT (MM)
in which MM(80) - character *1 array containing the comment to be printed. The last charac-
ter must be "$". The comment is both display:d and written in the WIPSLOG file.

Example: The statement

! CALL COMMNT (' ENTER VALUES AS FOLLOWS $')

C2.2.8 SUBROUTINE ERROR
Subroutine ERROR may be called to print an error message. The subroutine statement is

i as follows:

SUBROUTINE ERROR (MM)
in which MM(40) is i character *1 array containing the error message. The last character must
be "$".

Example: The statement

CALL ERROR (' INCORRECT C.P. TYPE $')
will display rne following line and also write it in the WIPSLOG fil::

*** ERROR - INCORRECT C.P. TYPE
,

C2.2.9 SUBROUTINE YESNO

C2.2.9.1 Argument List

Subroutine YESNO may be called to print a question and detect a "yes" or "no" reply. The'
subroutine statement is as follows

SUBROUTINE YESNO (MM,IY,NS)
'

in which

14

.,1
. - _ _ - - .

r

|

: ~

|

(a) MM(80) - character"1 array containing the question to be printed.

(b) lY - reply code returned by YESNO (1 "yes"; zero "no").

(c) NS - number of blank lines to be printed before message.
I In the call statement, the message may be any length up to 80 characters. The last character

must be "$''. The message is both displayed and written in the WIPSLOG file.

Example:
CALL YESNO (' LAST POINT ? : 5' ,1YN,2)

C2.2.9.2 Acceptable Responses

A "yes" or "y" response is interpreted as "yes". A "no", "n", or blank response is inter-
preted as "no". For any other response except " help", the message "ch?" is displayed, and the
response must be re entered. For a " help" response, the following call is made to subroutine
HELP:

CALL llELP (lY)
After the return from HELP, the question is repeated. If a help message is to be printed, the
value of lY must be set before calling YESNO.

C2.2.10 SUBROUTINE HELP
Subroutine HELP must be provided by the programmer. The subroutine statement is as

follows:

SUBROUTINE HELP (IHELP)

in which IHELP. - integer which identifies the message to be printed.
The value of IHELP must be set by the programmer in the calls to DLIMIT and/or

YESNO. The purpose of the subroutine is to print an appropriate message, then return.

15

.l
, \

I i

3
:
|i

C3. DATA BASE MANAGERS |
| ..

SUMMARY :

|
| WIPS makes use of two different data base packages, namely (1) a simple, in-core, j,

'

sequential data base (which is used by all modules except WIPS-ANAL) and (2) a sophisticated
hierarchical data base designed for finite element analysis (which is used by WIPS-ANAL). ,

The data structures and the programming procedures for use of the two data base managers are
'

described in Sections C3.1 and C3.2, respectively.

_

CONTENTS
'

C3.1 SIMPLE DATA BASE MANAGER .

C3.1.1 GENERAL .

C3.1.2 DATA AND DESCRIPTOR ARRAYS -

C3.1.3 OPERATIONS :
<

C3.1.3.1 General]
.

C3.1.3.2 DEFINE - Define New Array ';

C3.1.3.3 LOCATE -Locate Array j

C3.1.3.4 DELETE - Delete Array

C3.1.3.5 EXPAND - Expand Array ;
C3.1.3.6 FILE - Save on File ;
C3.1.3.7 RECALL - Recall from File
C3.1.3.8 GETPKT - Get Column of Data from an Array

C3.1.3.9 PUTPKT - Put Column of Data in an Array f
C3.1.3.10 DELPKT - Delete Column and Compact Array

C3.1.3.ll INSPKT - Insert Column and Expand Array .

C3.1.3.12 LOCPKT - Locate Column Containing a Data Word 7
C3.1.3.13 LOCPK2 - Locate Column Containing Two Data Words

.

C3.1.3.14 PRTARR - Print Array .~

.[} '
C3.1.4. INITIALIZATION

C3.2 WIPS-ANAL DATA BASE MANAGER
C3.2.1 GENERAL j.
C3.2.2 DATA STRUCTURE

C3.2.2.1 Records, Arrays, and Systems

C3.2.3 DBM STRUCTURE
*

C3.2.4 INTERFACE COMMANDS

C3.2.4.1 General l
i

17 |

|

_ _ _ _ _ - _ _

- _ .

C3.2.4.2 Basic Commands

C3.2.4.3 Alphanumeric Identifiers

C3.2.4.4 Activity Status

C3.2.4.5 Error Trace

C3.2.5 OTHER DATA TYPES

C3.2.5.1 Files and Packets

C3.2.5.2 Buffers

C3.2.5.3 Caution in Use of LOC"' Commands
C3.2.6 COMMAND FORMATS

C3.2.6.1 DEFSYS

C3.2.6.2 DELSYS

C3.2.6.3 ACTSYS

C3.2.6.4 DEASYS

C3.2.6.5 DEFARR
C3.2.6.6 DELARR
C3.2.6.7 ACTARR
C3.2.6.8 DEAARR
C3.2.6.9 DEFREC
C3.2.6.10 DELREC

C3.2.6.ll ACTREC
C3.2.6.12 DEAREC

C3.2.6.13 GETREC

C3.2.6.14 PUTREC

C3.2.6.15 LOCREC

C3.2.6.16 DEFFIL

C3.2.6.17 DELFIL
C3.2.6.18 ACTFIL

C3.2.6.19 DEAFIL

C3.2.6.20 GETFIL

C3.2.6.21 PUTFIL

C3.2.6.22 ACTBUF

C3.2.6.23 DEABUF

C3.2.6.24 LOCBUF

C3.2.7 DBM ERROR MESSAGES

|
|

|

,

!

|

18-

. _. .

- . .- - - .. . --

|

!

l

i

| C3.1 SIMPLE DATA BASE MANAGER

C3.1.1 GENERAL
All of the WIPS modules, exe:pt WIPS ANAL, have modest storage demands and exe-

cute in-core. Small amounts of dat, are stored in labeled COMMON storage and in arrays with
Axed dimensions. Most data is st ted in blank COMMON, with space allocation controlled by a
simple data base manager (DBM). The DBM was developed jointly by Structural Software

| Development, Inc., Berkeley, California, and Professor E. L. Wilson of the University of Cali-
fornia at Berkeley:

The DBM is simple to use and eff'ective for small problems, but it is not efficient for
: problems involving many arrays and large amounts of data. It includes provisions for storage of

data both in-core and on auxiliary storage. In the existing WIPS modules, only the in. core
options have been used.

C3.1.2 DATA AND DESCRIPTOR ARRAYS
Data arrays are stored . sequentially, in compacted form, in blank COMMON (array

L(MTOT)). Each array is preceded by a five word descriptor array (ID(5)). For an in-core
data array beginning at L(NA), the descriptor array contains the following:

ID (1) - L(NA 5) - Number of data words in array.
ID (2) - L(NA-4) - Precision (number of storage words per data word).

ID (3) - L(NA 3) - Number of columns in array.

ID (4) - L(NA 2) - Zero (= in-core).
ID (5) - L(NA-1) - Array name (alphanumeric identifier, maximum 4 characters
beginning with an alphabetic character).

where NA - first word address (fwa) of data array in L.

If an array is filed on auxiliary storage, the data and descriptor arrays are transferred to the
file. The descriptor is retained in-core in a modified form, and the data array is replaced by an
additional four-word descriptor array (llD(4)). The modified descriptor is as follows:

'

ID (1) - 4 (size of additional descriptor)
' ID (2) = 1 (precision of additional descriptor)

ID (3) - 1
ID (4) - Unit number on which array is stored.

ID (5) = Array name.

j The additional descriptor is as follows:

IID (1) - Size of data array.
IID (2) - Precision of data array.

IID (3) - Number of columns in data array.

IID (4) - Record number on file.

C3.1.3 OPERATIONS

| C3.1.3.1 General
' The DBM is used by making subroutine calls of a variety of types, as described in the fol-

lowing sections. Arguments marked by asterisks are returned by the subroutines.

;

19;

. - - . - _ __ _ _ ~ _ _.

C3.1.3.2 DEFINE - Define New Array
CALL DEFINE (NAME, LOC *,NROWS,NCOLS,IPREC)

where |

NAME = alphanumeric ariay name
LOC - fwa in L assigned to data array

NROWS- number of rows in data array
i

NCOLS- number of columns in data array I

IPREC precision code (1 - single; 2 - double)
New arrays are added at the end of the data base.

C3.1.3.3 LOCATE - Locate Array

CALL LOCATE (NAME, LOC',NROWS*,NCOLS*)
where

NAME = array name
LOC - fwa in L
NROWS- number of rows
NCOLS- number of columns

C3.1.3.4 DELETE - Delete Array

CALL DELETE (NAME)
where

NAME = array name

The descriptor and data arrays are deleted, and blank COMMON is compacted. Hence, array
locations may be changed.

C3.1.3.5 EXPAND - Expand Array

CALL EXPAND (NAME, LOC *,NROWS,NCOLS)
where

NAME = array name

LOC - new fwa in L
NROWS= new number of rows (not less than existing nur ber)

NCOLS- new number of columns (not less than existing number)

EXPAND involves deletion of the current array and relocation to the end of the data base.
Ilence, array locations may be changed. The DBM, as currently implemented, contains an
error and does not allow the number of rows to be changed.

C3.1.3.6 FILE - Save on File
CALL FILE (NAME,1 UNIT)

where !
NAME - array name

IUNIT - unit number
Arrays are stored sequentially on each file, one record per array.

20

|
,

!

I

C3.1.3.7 RECALL - Recall from File ,

CALL RECALL (NAME) |

I

where

NAME - array name

C3.1.3.8 GF"'KT - Get Column of Data from an Array
CALL GETPKT (DATA,NAME,NPKT)

where

DATA = array where data in column is to be placed

NAME = array name

NPKT packet (column) number to be extracted

C3.1.3.9 PUTPKT - Put Coluenn of Data in an Array

CALL PUTPKT (DATA,NAME,NPKT)

where

DATA - array from which data is to be taken
NAME = array name

i NPKT packet (column) number where data is to be placed

C3.1.3.10 DELPKT - Delete Column and Compact Array

CALL DELPKT (NAME,NPKT)

where

NAME - array name

NPKT - column number to be deleted
The array is not relocated. All columns beyond the deleted column are moved back one
column.

C3.1.3.11 INSPET -Insert Column and Expand Array
CALL INSPKT (DATA,NAME,NPKT)

where

j
DATA - array containing data to be inserted

NAME = array name

NPKT - column number where data is to be inserted
The array is automatically expanded, and hence also relocated. The columns beyond the added
column are all moved forward one column.

C3.1.3.12 LOCPET - Locate Column Containing a Data Word

CALL LOCPKT (NAME,NROW,IDATA,NPKT*)
;

where

NAME = array name

NROW - row to be searched
IDATA- single word (typically integer or alpha) for which match is required
NPKT = number of first column with a matching word in the specined row

21

,

i

_ ._.

C3.1.3.13 LOCPK2 - Locate Column Containing Two Data Words

CALL LOCPK2 (NAME,NROW1,NROW2,IDATA1,lDATA2,NPKT*),

As for LOCPKT, but match two data words.

C3.1.3.14 PRTARR - Print Array

CALL PRTARR (NAME)
1where

NAME - array name

C3.1.4 INITIALIZATION
The following common blocks must be provided for by the host program, initialized, and

reserved solely for use by the DBM.
i

COMMON / DBMS /MTOT,NARA,NSIZ,NDIR

MTOT - Initialize to size of blank common.
NARA - Initialize to zero.
NSIZ - Initialize to 1.
NDIR - Initialize to S.

COM MON / TAPE /MINP,MO UT,NTP (10),N RP (10),NTR (10)
MINP - Initialize to input unit number (typically 5).
MOUT - Initialize to output unit number (typically 6).
NTP(10) - Initialize to acceptable scratch or permanent file unit numbers.

NRP(10) - Initialize to 1.
NTR(10) - Initialize to 1.

COMMON L (MTOT)

i

f

f,

3 i

>

7

I

t

!

(
22

i

I

J

|
L

. - - - -_

l-

C3.2 WIPS-ANAL DATA BASE MANAGER
|.
i

C3.2.1 GENERAL
WIPS ANAL incorporates a data base . manager (DBM) specifically designed for large

capacity finite element analysis. During WIPS ANAL execution, data is stored in blank COM-
MON (the corepood and (if necessary) on a random access file (the auxiliary storagepood. At a
pause in the analysis, blank COMMON is written to the PAUZ file. The random access file is
the PAUS file. With a virtual memory operating system, data in blank COMMON is not neces-
sarily in physical core at any given time.

C3.2.2 DATA STRUCTURE

C3.2.2.1 Records, Arrays, and Systems
The DBM uses a three-level hierarchical data structure. The levels in the hierarchy arc as

follows.
(1) RECORD: A record is the smallest module handled by the DBM. Typically it is a subset

of data pertaining to a particular entity. Each record contains actual data and is
identified by a sequence number.

(2) ARRAY: An array is a collection of one or more records which relate to a common
entity. Each array contains a directory of records and is identified by an
alphanumeric identifier. An array should not be confused with a FORTRAN-

data array.

(3) SYSTEM: A system is a collection of one or more related arrays. Each system contains a
directory of arrays and is identified by an afphanumeric identifier.

A request for a specific data module accesses a description pocket. Each description packet con-
tains information for recovery of the data module (its size, location, auxiliary storage parame-
ters, etc.). The hierarchal nature of the data requires that the description packets be organized
into a series of dependent directories. For example, a system has associated with it a dependent
array directory, consisting of a number of array description packets. The directories are con-
tained in three tables of adjustable length, one table for systems, one for arrays, and one for
records.

C3.2.3 DBM STRUCTURE
The DBM consists of four components managers, namely (1) the Directory Manager, (2)

,

| the Corepool Manager, (3) the I/O Manager, and (4) the Command Interpreter. All DBM sub-
routine names start with the characters "MN". Programs using the DBM should not use sub-
routine, function, or common block names beginning with "MN".

The tasks performed by the component managers are as follows. The Directory Manager
,

landles all data requests. Its primary purpose is the maintenance and control of indices to the'

individual data structures. This includes creation, deletion, compaction, and recovery. The
Corepool Manager controls in-core storage allocation. It maintains a list of active data records,

and controls allocation, deletion, and compaction of these records. The I/O Manager handles
all transfer of data between the corepool and the auxiliary storage pool. The Command Inter-
preter is the interface between the program and the DBM. It interprets commands to the DBM4

and translates them into operations to be performed by the DBM.

!

|- - 23
I
i

. . , . <- .n ~ e . . .- ~ -

- .

C3.2.4 INTERFACE COMMANDS

C3.2.4.1 General

The DBM is accessed by calls to a number of interface subroutines. The call statement
has the form:

CALL AAABBB (...)
lin which AAA represents the operation to be performed and BBB the type of data to be
;

operated on (record, array, etc.).

C3.2.4.2 Basic Commands

The basic commands are as follows.
DEI"" Defmes the size, nature, and other parameters for a new data module. If a module

has already been defined, the call serves to alter its parameters.
DEL *" Deletes all storage and references to the specified data module. A data module can-

not be accessed after a delete.

ACT*" Activates the specified data module to allow processing of its contents. If the data is
not currently in core, a transfer from auxiliary storage to core is performed.

DEA"* Deactivates the specified data module. Deactivation allows core storage presently
occupied by the module to be reallocated. If reallocation is actually performed, the
data module is written to auxiliary storage before the core space is freed.

G ET"' Transfers th'e specified data module from auxiliary storage to a specified location in
Core.

PUT"' Transfers the specified data module from core to auxiliary storage.

C3.2.4.3 Alphanumeric Identi8ers '

Arrays and systems are identified by alphanumeric words. Identifier words may have a
maximum of four characters, the first of which must be an alphabetic character or blank. The
locations of blanks are important (i.e. 4H.,,ABC and 4HABC, are not the same).

C3.2.4.4 Activity Status
!

A record, array, or system may be undt/fard, laset/w, actlyc. A data module is undeficed
if it has never been named in a DEF*" command or if it has been deleted by a DEL *" com-
mand. When it is first defined, a data module is initially inactive. It becomes active when

: named in an ACT"* command and inactive when named in a DEA"' command. An active
data module is " ready for action", whereas an inactive array is " waiting for action".i

C3.2.4.5 Error Trace

In any subroutine which calls the DBM, the programmer is required to identify the calling
subroutine and the locations in the subroutine from which the DBM calls are made. The pro-!

cedure is illustrated by the following example.

SUBROUTINE ADDLOD

CALL PRONAM (6HADDLOG)-

100 CALL ACTSYS (4HLOAD,100)

150 CALL DEFARR (4HLOAD,4HGRAV,1,NEQ,1,0,150)

24

!
. - - - - -

. _ _ . _ . . _ _

,

The call to PRONAM makes the current subroutine name available to the DBM. The line
number and corresponding value in the argument list then identify the location of each subse-
quent subroutine call. In this example, if an error were detected in ACTSYS, the following
message might be printed:

*** FATAL ERROR - (12) DETECTED BY MNACTS AT STATEMENT NUMBER 100 IN
ADDLOD"

|

Subroutine MNACTS is the DBM routine which detected the error. A description of the errors
is given in Section C3.2.7.

C3.2.5 OTHER DATA TYPES

C3.2.5.1 Files and Packets,

In addition to records, systems, and arrays, the DBM recognizes data FILES. A file is at
the same level as an array. However, whereas an' array may contain records of different length,
a Ale must consist of a number of equal length PACKETS. Each packet can contain any mix-
ture of real, integer, and alpha data. Physically, the packets making up a file are stored as a
number of records, typically with several files per record. The number of packets per record
must be specified when the Ale is deAned (DEFFIL command) and also the number of records
to be assigned initially to the Ale. If the total number of packets is known in advance, the
required number of records can be speciRed exactly. If the number of packets is not known,
the initial number should be a reasonable lower bound estimate. If this initial number is
exceeded, the DBM automatically increases the number of records.

Each file is automatically assigned a SLOT number at the time it is defined. Subsequent
,

GETFIL and PUTHL commands must then reference not the alphanumeric file name but the'

numeric slot number. This is done for computational efficiency to allow files to be located
quickly by the DBM without the directory search needed to locate an array.

The GETFIL and PUTFIL commands allow a specific packet to be extracted from a file.
Typically a large number of these commands will be used during program execution to gain<

access to many packets (for example, if a file contains node coordinates, the coordinates for a
single node will constitute a packet and access to the coordinates will typically be needed many
times). The GETHL command copies a-packet to a " reserved" location in core, typically a
labelled COMMON block or a dimensioned array. If the data in the packet is modified, the
PUTFIL command returns the packet to the file. Note that GETFIL and PUTFIL commands
typically will transfer data from one core location to another, not between core and auxiliary
storage.

C3.2.5.2 BuSers

|
Core storage can be " reserved" by setting up labelled COMMON blocks or dimensioned

| arrays. Storage can also be reserved by activating a BUFFER within the corepool. The
i ACTBUF command reserves a specified amount of core for a beder and asmans a slot number
l to the buffer. The Arst word address asmaned to the buffer can be obtained using the LOCBUF

command. The reserved area can then be used in any way desired by the programmer. The
programmer must take care not to use more than the reserved storage area.

|

! Labelled COMMON blocks will typically be used to reserve storage for short or well-
defined data packets. Buffers will typically be used if the amount of storage to be reserved is
large or is known only at execution time (for example, storage for a stiffness matrix).

25
|

- . _ _ _ _ - , . - _ _ . - - - _ . _ . - - , -- ,s , --

C3.2.5.3 Caution in Use of LOC" Commands
The DBM automatically compacts core storage if the total requested storage exceeds the

blank COMMON length. This process involves transferring low priority arrays and records to
auxiliary storage to release in-core spece. The compaction will change the core locations of
some or all of the data modules which remain in core. This requires that the programmer exer-
cise care in using LOC" commands. Consider, for example, the following sequence.

10 CALL ACTBUF (IBUF,ISIZ,10)

20 ILOC - LOCBUF (IBUF,20)
60 CALL ACTBUF OBUF,JSIZ,60)

70 JLOC - LOCBUF OBUF,70)

Statement 60 may initiate a compaction of core storage, which could affect the location of
IBUF. Because ILOC was set prior to the compaction, it would no longer be the first word
address of IBUF.

The following procedure is thus recommended:

(1) Activate all required arrays, buffers, etc.

(2) Locate all data.

For the above example, the following coding would be valid:

10 CALL ACTBUF (IBUF,lSIZ,10)
60 CALL ACTBUF OBUF,JSIZ,60)

20 ILOC - LOCBUF (IBUF,20)
70 JLOC - LOCBUF OBUF,70)

C3.2.6 COMMAND FORMATS

C3.2.6.1 DEFSYS (SYSTEM,NO.ARR. TRACE)
;

Define a new system. The system is inactive on completion of this command.
SYSTEM = Alphanumeric system identifier.

NO.ARR - Number of arrays in this system.

TRACE - Error trace (line number in calling routine).

C3.2.6.2 DELSYS (F YSTEM, TRACE)

Delete all references and storage associated with this system. The system is undefined on
completion of this command.

SYSTEM - Alphanumeri: system identifier.

TRACE - Error trace.

C3.2.6.3 ACTSYS (SYSTEM, TRACE)

Activate system for processing. A directory of associated arrays is opened and ready for
processing. The system is active on completion of this command.

SYSTEM = Alphanumeric system identifier.

TRACE - Error trace.

C3.2.6.4 DEASYS (SYSTEM, TRACE)

Deactivate system from processing. The system is inactive on completion of this com-
mand and not available for processing unless reactivated by an ACTSYS command. The

- storage occupied by this system may be reallocated by the DBM (in which case the system is
I copied to auxiliary storage).

26

r-

SYSTEM - Alphanumeric system identifier.

TRACE - Error trace.

C3.2.6.5 DEFARR (SYSTEM, ARRAY,NO. REC,NO. ROW,NO. COL,R. SIZE, TRACE)

Define a new array. The parent system must be active before any associated array can be
defined. The array is inactive on completion of this command.

SYSTEM - Alphanumeric system identifier.
ARRAY - Alphanumeric array identifier.
NO. REC - Number of records used to store this array.

NO. ROW = Number of rows in array.

NO. COL = Number of columns in array.
Record size (max.) used to store this array (default set by DBM usingR. SIZE -

NO. REC).

TRACE - Error trace.

C3.2.6.6 DELARR (SYSTEM, ARRAY, TRACE)
Delete all references and storage associated with this array. The array is undefined on

completion of this command. The storage occupied by array will be reallocated.

SYSTEM - Alphanumeric system identifier.
ARRAY = Alphanumeric array identifier.

TRACE - Error trace.

C3.2.6.7 ACTARR (SYSTEM, ARRAY,NO. REC,NO. ROW,NO. COL,R. SIZE, TRACE)

Activate array for processing. A directory of associated records is opened and ready for
processing. The parent system must be active prior to array activation. The array is active on
completion of this command.

;
SYSTEM = Alphanumeric system identifier.
ARRAY - Alphanumeric array identifier.
NO. REC * - Number of records used to store this array.

NO. ROW * - Number of rows in array.;

i
NO. COL * - Number of columns in array.

R. SIZE' - Maximum record size associated with this array.

TRACE - Error trace.
*The arguments marked by * are returned by ACTARR.

C3.2.6.8 DEAARR (SYSTEM, ARRAY, TRACE)

l Deactivate array from processing. The array is inactive on completion of this command
and not available for prccessing unless reactivated by an ACTARR commar d. The storage
occupied by the array may be reallocated by the DBM (in which case the array is copied to aux-
iliary storage).

| SYSTEM - Alphanumeric system identifier.
ARRAY - Alphanumeric array identifier.

| TRACE - Error trace.

27

- - . _. 1

. . _ . _ . . . __ . ._ _ _ .

:

C3.2.6.9 DEFREC (SYSTEM, ARRAY, RECORD, SIZE,F. COL,L. COL,E.BLE, TRACE) !

i Define new record to DBM. The parent array must be active before any associated record !
can be defmed. The record is inactive on completion of this command.

SYSTEM - Alphanumeric system identifier.
ARRAY - Alphanumeric array identifier.
RECORD - Record number of record being defined.

.; SIZE - Size of this record. Must be less than R. SIZE used in defining parent array.
'

F. COL - First column to be stored in record.
L. COL = Last column to be stored in record.
E.BLK - Effecting block (used for equation solving only).
TRACE - Error trace.

C3.2.6.10 DELREC (SYSTEM, ARRAY, RECORD, TRACE)

i Delete all references and storage associated with this record. The record is undefined on
completion of this command.

SYSTEM - Alphanumeric system identifier.

ARRAY - Alphanumeric array identifier.

RECORD - Record number to be deleted.
TRACE - Error trace.;

C3.2.6.11 ACTREC (SYSTEM, ARRAY, RECORD,F. COL,L. COL,E.BLK, TRACE)

Activate record for processing. The record data is brought into core, if necessary, ready
for processing. The parent array must be active prior to activating the record.

'

SYSTEM - Alphanumeric system identifier.
'

ARRAY - Alphanumeric array identifier.

RECORD = Number of record to be activated. '

F. COL * - First column stored in record,
i L. COL * - Last column stored in record.

E.BLK* - Effecting block (equation solving only).,

TRACE - Error trace.
'The arguments marked by * are returned by ACTREC.

C3.2.6.12 DEAREC (SYSTEM, ARRAY, RECORD, TRACE)

Deactivate record from processing. The record is inactive on completion of this command
and not available for processing unle,s reactivated by any ACTREC command. The storage

. occupied by the record may be reallocated by the DBM (in which case the record is copied to
{ auxiliary storage).

SYSTEM - Alphanumeric system identifier.
ARRAY = Alphanumeric array identifier.
RECORD - Record number being deactivated.

'

TRACE - Error trace.
!

28

,

_ ,_ - ,, __;,. .-- - - - -+-"t - * ** -"'''

-- -

C3.2.6.13 GETREC (DATA, SYSTEM, ARRAY, RECORD,F. COL,L. COL.E.BLE, TRACE)

Get a specified defined (but not necessarily active) record and copy it to a previously
reserved area of core. If the specified record does not exist, the reserved area is initialized to
zero. This command is designed to allow records to be copied to and from a buffer.

DATA - First word address of reserved area.
SYSTEM - Alphanumeric system identifier.
ARRAY - Alphanumeric array identifier.
RECORD - Record number to be copied.

F. COL * - First column ofincoming record.
L. COL * - Last column ofincoming record.

E.BLK* = Effecting block of incoming record.

TRACE - Error trace.
*The arguments marked by * are returned by GETREC.

C3.2.6.14 PUTREC (DATA, SYSTEM, ARRAY, RECORD,F. COL,L. COL,E.BLE, TRACE)

Put a specified record into DBM storage. If the record is not defined, PUTREC defines
the record prior to transfer. This command is designed to allow initialization of records through
the use of a buffer.

DATA - First word address of reserved area occupied by this record.

SYSTEM - Alphanumeric system identifier.
ARRAY - Alphanumeric array identifier.

RECORD - Record number to be transferred.
F. COL - First column stored in record.
L. COL - Last column stored in record.
E.BLK - Effecting block for this record.

TRACE - Error trace.

C3.2.6.15 LOCREC (SYSTEM, ARRAY, RECORD, TRACE)

Locate first word address of an active record.
LOCREC - First word address (function subprogram).

SYSTEM - Alphanumeric system identifier.

ARRAY = Alphanumeric array identifier.

RECORD - Record number to be located. l

TRACE - Error trace.)

C3.2.6.16 DEFFIL (SYSTEM, FILE,NO. REC,P. SIZE,P. FACT, TRACE)

Denne a Ale. FILES are stored identically to arrays but require special access calls. The 1
'

Ale is defined but inactive on completion of this command.

SYSTEM - Alphanumeric system identifier.

FILE - Alphanumeric file identifier.
NO. REC - Number of records initially assigned (can be automatically expanded by

|

DBM).

| P. SIZE - Packet size (size of data module to be manipulated).

29
i

- - - ._

P. FACT - Number of packets to be stored per record.

TRACE - Error trace.

C3.2.6.17 DELFIL (SYSTEM, FILE, TRACE)

Delete all references and storage associated with this file. The storage area occupied by
the file will be reallocated.

SYSTEM - Alphanumeric system identifier.
FILE = Alphanumeric file identifier.

TRACE - Error trace.

C3.2.6.18 ACTFIL (SYSTEM, FILE, SLOT, TRACE)

Activate file for processing. Reserve area i1 primary storage through which file records
may be processed. On activation, a unique numerical identifier (SLOT) is assigned to erch file.
Only 20 files may be active at any time.

SYSTEM - Alphanumeric system identifier.
FILE - Alphanumeric file identifier.

SLOT - Slot number assigned to this file (returned by ACTFIL).
TRACE - Error trace.

C3.2.6.19 DEAFIL (SYSTEM, FILE, SLOT TRACE)
|'

Deactivate file by releasing the assigned SLOT. The storage occupied by this file may be
reallocated by the DBM (in which case the file is copied to auxiliary storage).

SYSTEM - Alphanumeric system identifier.
FILE - Alphanumeric file identifier.
SLOT - File SLOT number.
TRACE - Error trace.

C3.2.6.20 GETFIL (DATA, SLOT, PACKET, TRACE)

Copy requested packet (PACKET) to reserved area (DATA) from file associated with slot
number SLOT.

DATA - First word address of reserved area to which packet is to be copied.|

SLOT - File SLOT number.
, PACKET - Packet number to be copied.
|

TRACE - Error trace.

C3.2.6.21 PUTFIL (DATA SLOT, TRACE)
l Copy specified packet (PACKET) from reserved area (DATA) to file associated with

identifier slot number SLOT. Each time a packet is updated it must be PUT to ensure that the
DBM has the latest copy.

DATA - First word address of reserved area holding packet to be copied.

SLOT - File SLOT number.
TRACE - Error trace.

>

| C3.2.6.22 ACTBUF (SLOT, SIZE. TRACE)

Reserve an area of size SIZE in core to be used as a buffer for processing. This buffer is ,
assigned a unique numerical identifier SLOT. '

i30

n

|

SLOT - SLOT number assigned to this buffer (returned by ACTBUF).

| SIZE - Buffer length.
TRACE - Error trace.

| C3.2.6.23 DEABUF (SLOT, TRACE)
! Deactivate buffer by deleting the reserved storage and releasing the assigned SLOT. The

storage occupied by the buffer will be reallocated. The data in the buffer is not retained.

SLOT - SLOT number for buffer.
TRACE - Error trace.

C3.2.6.24 LOCBUF (SLOT, TRACE)
Locate first word address of buffer assigned to slot SLOT. Note that buffer addresses may

be changed by other calls such as ACT*** and DEA ***. Hence, all such calls should be per-
formed prior to locating any first word addresses.

LOCBUF - First word address (function subprogram).

SLOT - SLOT number of buffer.
TRACE - Error trace.

C3.2.7 DBM ERROR MESSAGES

ERROR NO. DESCRIPTION

101 lilegal system access packet number
102 System access table full
103 Undefined system
104 Inactive system
105 System array directory full
106 Undefined array
107 Inactive array
108 Illegal array access packet number
109 Array table full
110 Expansion of record size not currently available
til Record size exceeds maximum or <0 for this field length
112 lilegal record access packet number
113 Record table full
114 havalid priority value
115 Illegal core access packet number
116 Blank common exhausted
117 Unable to free file slot
118 Record undefined
119 Record inactive
120 Attempt to recover undefined record
121 Invalid slot number (<0 or >10)
122 Invalid block number (<0)
123 Illegal file name
124 Illegal buffer number,

| 125 Incocaistent array name and buffer number
126 All buffer slots reserved. |

.

f 31

. ,
'

,

l

~ ,.,c
.

,

.

.

. . , .

pS

C4. ADPITION OF ELEMENTS ,y~
.

,

. . s'*

',
+

iSUMMARY a-

,

.

If a new element type is to be added to WIPS, new subroutines must be developed for the
j WIPS MODL and WIPS-ANAL modules; modifications must be made to WIPS-RSLT and
|

WIPS-EXEC; and a module to read in element property' data must be developed. The chapters
in this section describe the procedures to be followed.

)- ,

.

- -
.-

. -
. -

CONTENTS -

" '
* f-.,,

. , . .
!

C4.1 INTRODUCTION
-

C4.1.1 GENERAL
' *' '"

C4.1.2 PRECISION - -
,

C4.2 FILE MANAGEMENT ...-<# ,

C4.2.1 FILE DEFINITION 6
C4.2.2 MANIPULATION OF FILE PACKETS

C4.3 FILES REQUIRED FOR ELEMENT PROCESilEG ,./ f.h
C4.3.1 LIST OF FILES AND ASSOCIATED COMMON BLOCKS |/ ,

" ' ''

C4.3.2 ELEMENT GROUP DATA (FIXED) .
-

C4.3.3 ELEMENT CONTROL DATA (FIXED)-
C4.3.4 GENERAL ELEMENT DATA (FIXED) .

C4.3.5 MATERIAL DATA (FREE)
C4.3.6 GEOMETRIC DATA (FREE)

C4.3.7 NODE COORDINATE DATA (FREE) _,

., ,

C4.3.8 OTilER LABELLED BLOCKS
'

C4.4 ELEMENT SUBROUTINES FOR WIPS-ANAL .' "
,

'

C4.4.1 SUBROUTINE NAMES AND FUNCTIONS / -

'
*

C4.4.2 ELIID" - GROUP DATA INPUT -
.,,

' '
'

C4.4.2.1 Subrout ne Statement
-

i _-
,

,

C4.4.2.2 Common Blocks
'

,,,

C4.4.2.3. Tasks to be Performed .p -41- >-r s ,

C4.4.3 ELRD" - ELEMENT DATA INPUT
'

,

' ' '
C4.4.3.1 Subroutine Statement i& ,

,
,.

C4.4.3.2 Common Blocks p c .

C4.4.3.3 Tasks to be Performed

C4.4.4 ELIN" - ELEMENT DATA INITIALIZATION ; ,.

.< . . ,
,,_

% /'

u? r. ' /
/33 ,

#d
i n.e a

f
.

,s*** j,

~. *; ,;

- '6
~

;- ,
.,

'
/

', (, , '

| C4.4.4.1 Subroutine Statement,

' '

-j C4.4.4.2 Common Blocks
. .d '; , C4.4.4.3 Data Available on Entry

. f[C4.4.4.4 Tasks to be Performed

'4 C4.4.4.5 D.O.F. Code i

d' C4.4.4.6 Conversion of LCON |
C4.4.5 STIF" - ELEMENT STIFFNESS CHANGE-

'

:j C4.4.5.1 Purpose 1

C4.4.5.2 Common Blocks)
'("

,

'

e4.4.5.3 Tasks to be Performed
? C4.4.6 STAT"- STATE DETERMINATION

C4.4.6.1 Subroutine Statement,.
,

M' C4.4.6.2 Common Blocksp
*# 4 C4.4.6.3 Tasks to be Performed

N C4.4.7 RINT" INTERNAL RESISTING LOAD
d i C4.4.7.1 Subroutine Statement
!" # C4.4."'.2 Common Blocks,,
#

C4.4.7.3 Tasks to be Performed

C4.4.8 DYLD" - INITIAL DYNAMIC LOAD
' C4.4.8.1 Subroutine Statement

- C4.4.8.2 Common Blocks

C4.4.8.3 Tasks to be Performed
#$ C4.4.9 FACT" - EVENT FACTOR CALCULATION

y C4.4.9.1 Subroutine Statement

3 C4.4.9.2 Common Blocks

I[- C4.4.9.3 Tasks to be Performed

C4.4.10 MERR" - MIDSTEP ERROR CALCULATION
_ C4.4.10.1 Subroutine Statement

- C4.4.10.2 Common Blocks

C4.4.10.3 Tasks to be Performed
'

.' C4.4.11 ENVE" - ENVELOPE UPDATE
C4.4.ll.1 Subroutine Statement

'

C4.4.ll.2 Common Blocks
'

C4.4.11.3 Tasks to be Performed

C4.4.12 OUTH" - TIME HISTORY SAVING FOR.WIPS-RSLT

C4.4.12.1 Subroutine Statement

C4.4.12.2 Common Blocks

C4.4.12.3 Tasks to be Performed

C4.4.13 EPRN" - ENVELOPE VALUE PRINTOUT -
;

C4.4.13.1 Subroutine Statement

i
i

34

:

|

.-

.

C4.4.13.2 Common Blocks

C4.4.13.3 Tasks to be Performed

C4.4.14 PRIN" - CURRENT STATE PRINTOUT
C4.4.14.1 Subroutine Statement

C4.4.14.2 Common Blocks

C4.4.14.3 Tasks to be Performed

C4.5 ELEMENT SUBROUTINES FOR WIPS MODL

C4.5.1 GENERAL

C4.5.2 SUBROUTINE OP""
C4.5.2.1 Call Statement

C4.5.2.2 Subroutine Statement
C4.5.2.3 The IOPT Array

C4.5.3 COMPUTATIONS IN OP""
C4.5.3.1 Typical Logic

C4.5.3.2 Set Units Factors

C4.5.3.3 Print Data
C4.5.3.4 Check Length

C4.5.3.5 Set Default Values

C4.5.3.6 Extract Command Data ,

C4.5.3.7 Check for Missing Data
,

C4.5.3.8 Check Boundary Code'

C4.5.3.9 Check Property Set

C4.5.3.10 Check Other Data

C4.5.3.ll Scale RKDAT

C4.5.4 SUBROUTINE DA""'

C4.5.4.1 Call Statement

C4.5.4.2 Subroutine Statement

C4.5.4.3 Tasks to be Performed

C4.6 MISCELLANEOUS WIPS-MODL AND WIPS-RSLT MODIFICATIONS
C4.6.1 ELEMENT TYPE PATA

C4.6.2 OUTPUT UNITS

C4.7 WIPS-EXEC MODIFICATIONS

C4.7.1 PARAMETERS

(C4.7.2 COMMAND ADDITION
C4.7.3 FILE TYPE ADDITION

C4.8 DATA INPUT MODULES
C4.8.1 PURPOSE

C4.8.2 PROCEDURE |

|

|

|
35

|
[

- .

.

C4.1 INTRODUCTION

l
'

C4.1.1 GENERAL
If a new structural e ement is added to WIPS, new subro- es must be developed for the

WIPS-ANAL, WIPS-MODL, and WIPS-RSLT modules; modihcations must be made to WIPS-
EXEC; and a module to read in the element property data must be developed.

WIPS-ANAL is the central analysis module of WIPS. It consists of a base code to which
is added a library of element subroutine packages. WIPS-ANAL is designed to allow the addi-
tion of new elements with minimum knowledge of the base code. Each element subroutine
package for WIPS-ANAL must contain certain subroutines with standard names and argument
lists. These subroutines may call other subroutines if desired. Each standard subroutine per-
forms well-defined processing tasks.

WIPS-ANAL uses a data management system (DMS) for all data storage and recall func-
tions. The programmer is required to have some knowledge of the FILE management aspect of
the DMS, but otherwise need not make use of the DMS. A description of the FILE manage-
ment procedures is presented in Chapter C4.2. The particular FILES required for the element
processing, and their contents, are described in Chapter C4.3. The required element subrou-
tines, and the functions that they must perform, are outlined in Chapter C4.4.

WIPS-MODL and WIPS-RSLT also censist of base codes to which element subroutines
must be added. However, whereas the element subroutines in WIPS-ANAL perform structural
analysis calculations, the subroutines in WIPS-MODL are for interactive input of element data
and preparation of data " cards" for WIPS-ANAL, and the subroutines in WIPS-RSLT are for
output of element results. The procedures for adding new subroutines are described in
Chapters C4.5 and C4.6, respectively.

WIPS-EXEC controls the execution and maintains the problem data base. The procedures
for modifying WIPS-EXEC to add new file types and data input modules are described in
Chapter C4.7. Notes on the coding of new data input modules are in Chapter C4.8.

C4.1.2 PRECISION
For WIPS-ANAL, all real variables are double precision, except a s noted for subroutine

OUTil". For WIPS-MODL and WIPS-RSLT, all real variables are sings ,,cecision. WIPS-
EXEC does not use real variables.

|

| |

! !

|

37

1

C4.2 FILE MANAGEMENT

C4.2.1 FILE DEFINITION
A FILE in the DMS is a matrix of data consisting of a number of equal sized PACKETS.

Fhe FILE is stored automatically in the DATA BASE by the DMS. The data can be accessed
only in single PACKET units. A PACKET can be any collection of data (mixed integer, alpha
and real words). A PACKET is made available to any subroutine by moving it from the DATA
BASE to a labelled common block, To develop new element subroutines, the programmer
needs only to be concerned with the procedure for moving data PACKETS to and from the
DATA BASE.

C4.2.2 MANIPULATION OF FILE PACKETS
Consider a labelled common block, / SAMPLE /, as follows:

COMMON / SAMPLE / INTE(ND,FLOT(NF)

where N1,NF are constants defining the sizes of the FORTRAN arrays INTE and FLOT, con-
taining integer and real variables, respectively. The content of / SAMPLE / is a PACKET of
data. A PACKET can be moved to and from a FILE (which resides in the DATA HASE) as
follows:
(1) CALL GETFIL(INTE,KSAM,NPAC,lTAG)

This call to the DMS moves the PACKET from the DATA BASE to the / SAMPLE /
block.

(2) CALL PUTFIL(INTE,KSAM,NPAC,lTAG)

This call to the DMS moves the PACKET from the / SAMPLE / block to the DATA
BASE.

The arguments in the GETFIL and PUTFIL subroutines are as follows:

INTE - First word address to or from which the PACKET is to be passed (usually this will
be the first word in the common block).

KSAM - FILE SLOT number. This SLOT number is an integer which is established when'

the FILE is activated some time prior to these calls. SLOT numbers required for
element addition are automatically established in the WIPS ANAL base code, and
passed to the element subroutines, as explained subsequently.

NPAC - The number of the PACKET being moved. For example,if the FILE contains one
packet for each element, NPAC is the element number.

ITAG - User chosen integer number, which is unique to this cubroutine, to help with error
tracing. If the DMS detects an error, a message ccntaining ITAG is printed.

|

l

39

C4.3 FILES REQUIRED FOR ELEMENT PROCESSING

C4.3.I LIST OF FILES AND ASSOCIATED COMMON BLOCKS
The following FILES and associated labelled common blocks are used for element pro-

cessing. When an element subroutine is called, certain PACKETS will already be resident in
their respective blocks. These PACKETS are referred to as FIXED in the following list. The
element programmer does not need to move data between these blocks and the data base.
Other FILES are referred to as FREE. Data PACKETS in these FILES must be moved to and
from their blocks, using the subroutine calls described in Chapter C4.2.

FILE Contents PACKET Status Labelled Common Block

1. Element Group Data FIXED /CEGC/

2. Element Control Data FIXED /CEIN/

3. General Element Data FIXED /CSHP/

4. Material Data FREE /CMAT/

5. Geometric Data FREE /CPRP/

6. Node Coordinates FREE /CXYZ/

C4.3.2 ELEMENT GROUP DATA (FIXED)
One element group data PACKET is set up for each elemant group. The PACKET con-

tains the following:
COMMON /CEGC/ NGRP,IGRP,NELS,NFST,NDGR,MFER,
M FS R ,NPSil,NEK U,l EG C(S),FEGC (4),NI EIN,N FEIN

where

NGRP - Element group number.

Element type number.IGRP -

NELS - Number of elements in group.

NFST = Element number of first element in group.

NDGR - Maximum number of nodes for any element in group (max. 21).

MFER = PACKET number minus 1, in Element Control Data FILE, of first element in
group (i.e. PACKET numbers for elements are MFER+1, MFER+2, etc.).

MFSR - PACKET number minus 1, in General Element Data FILE, of first element in !
'

group.
!

NPSil - Number of PACKETS to be recalled from the General Element Data FILE for

|
each element in group.

NEKU - Number of elements in group with tangent stiffness matrices which have changed
l since the last global stiffness reformulation.

IEGC(5) - Integer control data for element group, which varies with element type.
FEGC(4) - Real control data for element group, which varies with element type.

NIEIN - Number of integer items on each element data " card" (max. 6).

| 41

_ _ _

NFEIN = Number of real items on each element data " card" (max. 9).
This data is all preset by WIPS-ANAL and must not be modified in the element subroutine.,

C4.3.3 ELEMENT CONTROL DATA (FIXED)
One element control data PACKET is set up for each element. The PACKET contains

the following:

COMMON /CEIN/ IELN,NNOD,LCON(21),LUPD,lEIN(6),FEIN(9) |
where I
IELN Element number.=

NNOD = Number of nodes for element (generally equals NDGR).

LCON(1) = for I - 1, NNOD, contains coded data on the node number and degree of free- i

dom numbers for element node L The form of the data is described later.
LUPD = Element stiffness update indicator.

0 = element stiffness unchanged since last global stiffness reformulation;

1 = element stiffness changed.

IEIN(6) Optional integer data for element, which varies with element type.-

FEIN(9) Optional real data for element, which varies with element type.-

C4.3.4 GENERAL ELEMENT DATA (FIXED)
One general element data PACKET is set up for each element. The data contained in the

packet varies with the element type. The PACKET must contain all data necessary to monitor
the nonlinear response of this element. The general form is:

COMMON /CSilP/ ISilP(NI),FSHP(NF)
where

Ni and NF = constants. NI must be rounded up to be an even integer (to allow for double
precision conversion).

ISIIP(NI) alpha and/or integer data.=

FSHP(NF) real data.=

C4.3.5 MATERIAL DATA (FREE)

One or more material data FILES is stored by the DMS. Any PACKET may be recalled,
using a GETFIL call. A PACKET contains the following:

COMMON /CMAT/ EMAT(64)
where

EMAT(64) - Material data. This may be data of any type, but typically will be used to
define the strength and stiffness properties of elements. The dimension of 64
is a maximum; frequently the actual length will be smaller.

C4.3.6 GEOMETRIC DATA (FREE)

One or more geometric data FILES is stored by the DMS. Any PACKET may be recalled
using a GETFIL call. A PACKET contains the following:

COMMON /CPRP/ PROP (16)
where

PROP (16) = Geometric data. This may be data of any type, but typically will be used to
define geometric properties for elements. The dimension of 16 is a maximum.

42

.

| C4.3.7 NODE COORDINATE DATA (FREE)

! FILES of node coordinates are stored by the DMS. Any PACKET may be recalled using
a GETFIL call. A node coordinate data PACKET contains the following:

COMMON /CXYZ/ X',Y,Z

where, for PACKET number 1,

X - X-coordinate for internal node number I
Y - Y-coordinate for internal node number I
Z - Z coordinate for internal node number i

Internal node numbers are assigned by the base code, one for each external node.

C4.3.8 OTHER LABELLED BLOCKS
Three other labelled COMMON blocks may need to be used, as follows:

(1) Input-Output Block: COMMON /CIOC/ MDATA,MECHO,MSLOG,MIOC(9)

where
MDATA - Input unit number (e.g. READ (MDATA,1000)...) for reading data from the

DATA file.
MECHO - Data echo unit number for echo-printing input data (the ECHO file).

MSLOG - Solution log unit number (the SLOG files).
MlOC(9) - Other units used by WIPS ANAL.
The variables in this block must not be changed. MDATA and MECHO will typically be
used for input and output. MSLOG is used for results envelopes and may be used for
other special purposes (e.g. debugging). The other units should not be used.

(2) Scratch Data Block: COMMON /CWRK/ IWRK(512), FWRK(512)

where

IWRK(512)- any temporary alpha or integer data.

FWRK(512)- any temporary real data.

A programmer can use this block to hold temporary data in any subroutine during a single
entry to that subroutine. The data is not preserved from one entry to the next.

(3) Command Block: COMMON /CMND/ ICMD,MALP(3), MINT (6),FLOT(5),JCMD(5)

where:

ICMD - Command word (e.g. 4HLOOP).
MALP(l) - Subcommand word within the main command (e.g. 4HMERR).

MALP(2) - Print key, to trigger diagnostic printing (4HPRIN or blank).

MALP(3) - Optional additional alpha key.
MINT (6) - Optional integer keys (e.g. number of cycles in LOOP).

FLOT(5) - Optional real keys (e.g. convergence tolerance).

JCMD(5) - Not currently used.
The data in this block must not be changed. It is unlikely that a programmer will need to
make use of this block. The block needs to be referenced only if the computational algo-
rithm of WIPS ANAL is modified.

1

43

!

!

. _ _

C4.4 ELEMENT SUBROUTINES FOR WIPS-ANAL

C4.4.1 SUBROUTINE NAMES AND FUNCTIONS
Thirteen subroutines which are called from the base code must be provided. The names

of these subroutines and their functions are as follows:

SUBROUTINE NAME FUNCTION

(1) ELHD" Read element group data " card" and set up Element Group Data.

(2) ELRD" Read element data " cards".

(3) ELIN" Initialize General Element Data.

(4) STIF" Compute change in element tangent stiffness.

(5) STAT" Perform element sta.e de:ermination calculations.

(6) RINT" Calculate internal resisting loads.

(7) DYLD" Calculate initial dynamic loads for time step.

(8) FACT" Calculate factor for next significant nonlinear " event".

(9) MERR" Calculate midstep equilibrium error.

(10) ENVE" Update element results envelope (maximum) values. Envelope
values are typically not used by WIPS, so that this will usually
be a dummy subroutine.

(11) OUTH" Set up element results for writing by WIPS-ANAL
to the RSLT file.

(12) EPRN" Write envelope results (to SLOG file). Usually a dummy sub-
routine.

(13) PRIN" Write et iient results to ECHO file (typically used
for debugging only).

In each subroutine name, " is a number which identifies the element type. For example, the
names of subroutines for element type 5 must be:

ELH D05,EL RD05,ELIN05,STIF05,etc.

Any additional subroutines which are called by the above interface subroutines may be assigned
any convenient names. It is suggested, however, that all have the same type number identifier
in the subroutine name.

Explanations of the tasks to be performed by each of the subroutines, and descriptions of
their argument lists, are given in the following sections. For illustration purposes, element type
5 is assumed.

.

45

. -

C4.4.2 ELHD"- GROUP DATA INPUT

_
C4.4.2.1 Subroutine Statement

Subroutine ELHD" is called from the base code once for each element group. Its pur-
pose is to initialize data in the /CEGC/ block and to write a group heading to the ECHO file.
The subroutine statement must be of the form:

SUBROUTINE ELHD05

C4.4.2.2 Common Blocks

The /CEGC/ and /CIOC/ blocks must be included. The /CWRK/ block may be used but
is not likely to be needed.

C4.4.2.3 Tasks to be Performed
The following tasks must be performed.

(1) Set NPSH in /CEGC/. The General Element Data is stored as NPSH packets of data,
each consisting of 128 4 byte words.

(2) Set NDGR, NIEIN, and NFEIN in /CEGC/.

(3) Write, on unit MECHO, a heading identifying the element type. For example:
WRITE (MECHO,1000)

1000 FORMAT (5X,14HU-BAR ELEMENTS)
I

C4.4.3 ELRD" - ELEMENT DATA INPUT

C4.4.3.1 Subroutine Statement

Subroutine ELRD" is called from the base code once for each element, or (if elements
are generated) once for each generated set of elements. Its purpose is to read the element data
" card" (or cards). The subroutine statement must be of the form:

| SUBROUTINE ELRD05(JFEL,JLEL,JDIF,JNOD,JN,lEIN, REIN,lA)
where

JFEL = Number of element, or of first element in a generated set.

JLEL = Number of last element in generated set.

JDIF = Element number difference between successive elements in generated set.

JNOD = Node number difference between successive elements in generated set.

JN Array into which NDGR node numbers are to be read (max. dimension = 21).=

IEIN = Array into which optional integer data are to be read (max. dimension - 6).

FEIN = Array into which optional real data are to be read (max. dimension = 9).

IA Not currently used.-

C4.4.3.2 Common Blocks

The /CEGC/ block must be included. The /CWRK/ block may be used.

C4.4.3.3 Tasks to be Performed

The following tasks must be performed.

(a) Read one element card containing up to 16 integer data items in 1615 format. The data
consists of JFEL, JLEL, JDIF, and JNOD followed immediately by JN and IEIN. The
total number of integer items to be read is: 4+NDGR+NIEIN.- The first card contains
the first 16 items.

46

. _ .

|

l
l

(b) If JFEL = 0, this is the end of the element data. Return, without reading further cards.

(c) Read the balance of the integer items (if any), in 1615 format.

(d) If NFEIN > 0, read NFEIN real data items, in SE15.0 format.

C4.4.4 ELIN" - ELEMENT DATA INITIALIZATION

C4.4.4.1 Subroutine Statement
Subroutine ELIN" is called from the base code once for each element of the correspond-

ing element type. Its purpose is to initialize the data in the /CEIN/ and /CSHP/ blocks. The
subroutine statement must be of the form:

SUBROUTINE ELIN05(KXYZ,KMAT,KPRP)

where

KXYZ - Node coordinate SLOT number.
KMAT - Material data SLOT number.
KPRP = Geometric data SLOT number.

These slot numbers are assigned by the base code and must not be changed.

C4.4.4.2 Common Blocks
The /CEIN/ and /CSHP/ blocks must be included. The /CXYZ/, /CMAT/, and /CPRP/

blocks will generally, although not necessarily, be used. The /CIOC/ and /CWRK/ blocks may
be included, if necessary.

C4.4.4.3 Data Available on Entry
The values of IELN, LCON, IEIN, and FEIN in /CEIN/ are set before entry. LCON

contains the element node numbers at this stage.

C4.4.4.4 Tasks to be Performed
The following tasks must be performed.

(a) Set NNOD in /CEIN/.
(b) Set values for all variables in the /CSHP/ block, including zero initial values for all ele-

ment forces, etc. The values in arrays LCON and IEIN will identify PACKET numbers
which can be used to move packets to the /CXYZ/, /CMAT/, and /CPRP/ blocks
(together with the SLOT numbers KXYZ, KMAT, and KPRP). Note, however, that only
GETFIL calls should be used. Data should not be moved back using PUTFIL calls.

(c) Modify the LCON array to contain coded degree of freedom data for each node. The pro-
cedure is as follows.

C4.4.4.5 D.O.F. Code
The D.O.F. code for element node I is a six word array, KDI(6), which identifies the

translational and rotational displacements which are active degrees of freedom at node I. The
degrees of freedom may be in a local element coordinate system or the global (substructure)
coordinate system.

For example, the D.O.F. code for a 3D truss bar, in the global system, is (1,1,1,0,0,0).
The sequence of terms is always the X, Y, Z, XX, YY, and ZZ displacements, respectively. In
the D.O.F. code,1 indicates that the displacement is an element degree of freedom, and 0 that
the displacement has no effect on the element.

47

C4.4.4.6 Conversion of LCON |
The FORTRAN function KODE converts an element node number and D.O.F. code to a l

single integer containing information on both. Modification of LCON(I) is typica'!y performed
with the following statements: |

NODI - LCON(1)
LCON(1) - KODE(KDI, NODI)

where

KODE = function name.
KDI(6) - D.O.F. code for element node I. This code will typically be the same for all nodes

of an element, but may change from node to node, if desired. It must be set by the
element programmer.

NODI = internal node number corresponding to element node I.

C4.4.5 STIF" - ELEMENT STIFFNESS CHANGE

C4.4.5.1 Purpose

Subroutines STIF" are called from the base code whenever a substructure stiffness
matrix is to be modified. The purpose of the subroutine is to compute the change in element
stiffness since the last entry to the subroutine. This subroutine is called only for elements with
stiffnesses which have changed (as indicated by the variable LUPD in /CEIN/).

The subroutine statement must be of the form:
SUBROUTINE STIF05(IDUM,DUM(3))

where IDUM and DUM are not currently used.

C4.4.5.2 Common Blocks

The /CEIN/ and /CSilP/ blocks must be included. The /CEGC/ block may be needed.
The /CWRK/ block will usually be used for the SE array (s e below).

C4.4.5.3 Tasks to be Performed
The following tasks must be performed.

(a). Compute the change in element stiffness, and store in an array SE of appropriate size.

(b) Update any data in /CSHP/ which has changed. In general, this will be stiffness data and
.

|

codes which indicate the element state.

(c) Call the stiffness assembly subroutine as follows:-

CALL STFBLK(ITYP,lROT,1,NDOF,LCON, ROT,LE,SE)

where

ITYP = Stiffness storage scheme indicator for element, as follows:

0 = square symmetric;

1 = upper triangle, compacted column wise;

2 = column compacted, irregular skyline profile.

IROT - Local-Global Indicator:
0 - stiffness formed in global coordinates;

I - stiffness formed in local coordinates.
NDOF - Number of element degrees of freedom (number of rows in stiffness matrix).

48

l,

c

LCON - Node D.O.F. and connectivity array, as before.
3 x 3 local to global rotational transformation (required only if IROT - 1).ROT -

Profile indicator array, giving locations of diagonal coefficients (required only ifLE -

ITYP - 2).
Element stiffness matrix.SE -

C4.4.6 STAT" - STATE DETERMINATION

C4.4.6.1 Subroutine Statement
Subroutine STAT" is called for each element at frequent intervals during the analysis.

Its purpose is to compute the element deformations (strains) and actions (stresses), and hence
update the element state information. The subroutine statement must be of the form:

SUBROUTINE STAT 05(D,V,A,DUM(3))

where

D,V, A - Increments in displacement, velocity, and acceleration at the element nodes, in the
global cirections. The arrays are passed to the subroutine in the form
D(6,NNOD), V(6,NNOD), A(6,NNOD), where NNOD is the number of element
nodes.

DUM(3) - Not currently used.

C4.4.6.2 Common Blocks
The /CSHP/ block must be included. The /CEGC/ and /CEIN/ blocks will usually be

needed. The /CWRK/ and other blocks may be used.

C4.4.6.3 Tasks to be Performed
The specific state determination calculations to be performed vary with element type. In

general, the element deformations are determined using the D array, and all element state
quantities in the /CSilP/ block are then calculated and updated. The V and A arrays may be
needed for some element types.

If the element changes such that its status is different from the status at the last stiffness
update (because of material yielding, unloading, etc.), the stiffness update code, LUPD, in
/CEIN/ must be set to 1. If large displacement effects are included for the element, LUPD will
usually always be set to I (unless tolerances on change of shape are used).

C4.4.7 RINT"-INTERNAL RESISTING LOAD

C4.4.7.1 Subroutine Statement
Subroutine RINT" is called for each element at frequent intervals during the analysis. Its

purpose is to compute the nodal loads which are in equilibrium with the current state of stress.
The subroutine statement must be of the form:

SUBROUTINE RINTOS(FE,FD,FM,lDUM)

where

| FE,FD,FM - nodal clastic, viscous damping, and inertia forces to be returned by this sub-
! routine. These are the external forces in equilibrium with the cu rent state of

stress in global coordinates. These forces must be transferred in the form
FE(6,NNOD), FD(6,NNOD,' FM(6,NNOD), where NNOD - number of
element nodes.

49

)

e

|

Currently not used.IDUM -

*

C4.4.7.2 Common Blocks
The /CEIN/ and /CSHP/ blocks will usually be needed. Other blocks may be used.

C4.4.7.3 Tasks to be Performed
The current " clastic", damping (if any), and inertia (if any) nodal loads on the element

must ae calculated and returned in FE, FD, and FM, respectively. These loads are the external
loads required to be applied to the elementto satisfy element equilibrium.

C4.4.8 DYLD"-INITIAL DYNAMIC LOAD

C4.4.8.1 Subroutine Statement
Subroutine DYLD" is called for each element at the beginning of each time step. Its

purpose is to compute the initial loads due to dynamic effects for the next time step. The sub-
routine statement must be of the form:

SUBROUTINE DYLDOS(V,A,FI,DUM(4),lDUM)

where

V,A - Velocity and acceleration, as before.
.

FI - Initial load to be returned, in the form FI(6,NNOD).

DUM(4),lDUM - Not currently used.

C4.4.8.2 Common Blocks
;

The blocks /CEIN/ and /CSHP/ will generally be required. Other blocks may be used if;

needed.

C4.4.8.3 Tasks to be Performed
Calculate the contribution of this element to the initial load for the time step (the vector

AR, in Section B1). For the existing WIPS elements, there are no contributions from internal
element inertia, and damping contributions are present only when strain rate effects are con-
sidered. The precise procedure to be followed depends on the element characteristics. The
existing DYLD" subroutines illustrate typical procedures.

C4.4.9 FACT ** - EVENT FACTOR CALCULATION

C4.4.9.1 Subroutine Statement
Subroutine FACT" is called for each element at frequent intervals during the analysis.

Its purpose is to calculate the proportion of a specified displacement increment which can be
applied to an element before a significant nonlinear " event" occurs. Typical events are gap clo-
sure and inelastic unloading. The subroutine statement must be of the form:

SUBROUTINE FACTOS(D,V,A,IDUM,EFAC,lVNT)

where

D,V,A - Displacement, velocity, and acceleration, as before.

IDUM - Not currently used.

EFAC - Event factor (the proportion of D required to produce the event, plus a small
tolerance to ensure that the event is passed), to be returned. Return a value
1.0 if no event occurs.

50

1
%

IVNT(5) - Alpha description of event (SA4 up to 20 characters). to be returned. Leave
unchanged for no event. If this event governs, the description is written to the
SLOG file to provide a record of the events.

C4.4.9.2 Common Blocks
The blocks /CEIN/ and /CSilP/ will generally be required. Other blocks may be used as

needed.

C4.4.9.3 Tasks to be Performed
The following tasks must be performed.

(a) Calculate the event factor, EFAC. The decision on what type of nonlinearity to classify as
an " event" must be made by the programmer. As a minimum, gap closure and inelastic
unloading should be treated as events. Add a tolerance to the event factor to allow
overshoot of the event. The tolerance should be chosen to allow only a small equilibrium
error due to overshoot.

(b) If an event occurs, return a description (to be included in the SLOG file) of the event in
IVNT(5).

C4.4.10 MERR" . MIDSTEP ERROR CALCULATION

C4.4.10.1 Subroutine Statement
Subroutine MERR" is called for each element at frequent intervals during the analysis.

Its purpose is to calculate an approximation to the midstep equilibrium error, for use in time
step selection by the base code. The subroutine statement must be of the form:

SUBROUTINE MERR (DV,DT,FM,lDUM)

where

DV = Increment of element nodal velocities (NNOD global values).

DT = Current time step.

FM - Midstep error to be returned (NNOD global fcrees).

IDUM= Not used.

C4.4.10.2 Common Blocks

The blocks /CEIN/ and /CSilP/ will usually be needed. Other blocks may be used

C4.4.10.3 Tasks to be Performed
The midstep error vector, FM, is to be calculated as

FM - K, D}' DT/8
where K, = element tangent stiffness.

C4.4.Il ENVE" . ENVELOPE UPDATE

C4.4.11.1 Subroutine Statement

Subroutine ENVE" is called for each element at the end of each time step. Its purpose is
to accumulate envelope (peak) values of the element deformations (strains), actions (stresses),
and any other element response quantities. This task is optional, depending on whether or not
the programmer decides to store envelope values in the /CSIIP/ block. The subroutine state.
ment is as follows:

i
|

51

-

SUBROUTINE ENVE05(TIME)
where -

TIME - Current time. The value is set by the base program.
I
|

C4.4.II.2 Common Blocks

The blocks /CEIN/ and /CSilP/ will usually be needed. Other blocks may be used.

C4.4.ll.3 Tasks to be Performed

Envelope values will be stored in /CSilP/. The quantities to be enveloped must be
chosen by the programmer. If the current value of any quantity exceeds the envelope value,
the envelope value is replaced by the current value.

C4.4.12 OUTH"- TIME HISTORY SAVING FOR WIPS-RSLT

C4.4.12.1 Subroutine Statement

Subroutine OUTil" is called for each element at specified output intervals. Its purpose is
to set up a selection of current element quantities to be saved on the RSLT file for subsequent
post. proc:ssing by WIPS-RSLT. The subroutine statement must be of the form:

SUBROUTINE OUTil05(NVAL, VAL)
where

NVAL number of values saved.

VAL = single precision array in which the values are placed.

C4.4.12.2 Common Blocks

The blocks /CEIN/ and /CSilP/ will be needed.

C4.4.12.3 Tasks to be Performed

Set the value of NVAL, and set up the selected quantities in array VAL.

C4.4.13 EPRN" - ENVELOPE VALUE PRINTOUT

C4.4.13.1 Subroutine Statement

Subroutine EPRN" is called for each element at specified envelope output intervals. Its
purpose is to write the current envelope values on unit MSLOG (the SLOG file). The subrou.
tine statement must be of the form:

SUBROUTINE EPRN05(TIME)
in which

TIME = Current time.

C4.4.13.2 Common Blocks
The blocks /CEIN/, /CSilP/, and /CIOC/ will be needed.

C4.4.13.3 Tasks to be Performed

Write the envelope values (formatted) on unit MSLOG. The data will appear at intervals
on the SLOG file. Note that envelope values can also be obtained in WIPS.RSLT from the
values saved on the RSLT file. The usual option in WIPS will be to omit envelope printout
using the EPRN" subroutine.

52

-

.

C4.4.14 PRIN** - CURRENT STATE PRINTOUT

C4.4.14.1 Subroutine Statement
Subroutine PRIN" is called for each element at the specified output intervals. Its pur-

pose is to write the current element results (status codes, stresses and strains, etc.) on the
ECllO file. The subroutine statement must be of the form:

SUBROUTINE PRIN05(TIME)

where

TIME - Current time.

C4.4.14.2 Common Blocks
The blocks /CEIN/, /CSiiP/, and /CIOC/ will be needed. Other blocks may be used.

C4.4.14.3 Tasks to be Performed
Write the data to be output (formatted) on unit MECHO. The data will appear in the

ECllO file. The ECHO file will typically be used for debugging purposes only.

.

53
|

!

l

, , - . . - - -,

. _ . _ _ _ . _ _ ._ ._ -- _. -_ _ _

;

i C4.5 ELEMENT SUBROUTINES FOR WIPS-MODL
:

!
'

C4.5.1 GENERAL
j In the WIPS-MODL module, the analysis model is defined by means of a series of com- j

mands. Each command specifies data for either: (a) a single control point in a pipe run (a zero |

Ararth command); or (b) some part of a pipe run between two nodes (a nonzero length com-
mand). The data in each command specifies: (a) the last control point in the region covered by
the cortmand; (b) the element or substructure type; and (c) a number of optional data items,

i which are different for each element type. Because of the differences in the optional data, the
commands must be interpreted differently for euh element type. This requires that a new
interpretation subroutine be added to WIPS MODL for each new element or substructure type.
These subroutines are named OP"", where "" identifies the element or substructure type
(e.g. OPPIPE, OPELBO).

,

l The WIPS MODL module also sets up formatted MODL files, which become data for the
j WIPS-ANAL module. The form of this data is described in Section C5. In the ELEMENT

part of this data, " cards" specifying the elements must be set up. Because the required data
varies for each element type, a new data card subroutine must be added to WIPS-MODL for
each new element type. These subroutines are named DA"" (e.g. DAPIPE).

The requirements for these subroutines are described in this section.

; C4.5.2 SUBROUTINE OP""
:

C4.5.2.1 Call Statement
A CALL statement must be added in SUBROUTINE KOMINP, following the calls to the

existing OP"" subroutines. The call statement has exactly the same form as the existing
statements, except that "** becomes the 4-cha:acter element type identifier.

,

;
- C4.5.2.2 Subroutine Statement

The SUBROUTINE statement is as follows:

| SUBROUTINE OP**" (IKDAT,RKDAT,lERR,1ZL,lDFLT,1CPD,LICPD.CPD,
LCPD,NCPD,NCP I ,NCP2,UN FAC,UNLFAC,UNFFAC)'

! The variables are as follows:

IKDAT (12) - Array for integer and/or alpha (a4) command data. See Section C5.6.

RKDAT (6) - Array for real command data. See Section C5.6.
' IERR - Error code, to be set to 1 if data errors are detected.

I IZL - Lent ' code. If IZL - 0, this element must have zero length (e.g. "ubar" type);
. whereas if 121 = 1, the element must have nonzero length (e.g. " pipe" type). See later
} for method of use.

IDFLT = code for controlling the initialization of IKDAT and RKDAT, and for keying,

| the print phase. See later for method of use.

[ICPD (LICPD, NCPD) = Integer array from the COOR Ale. See Section C5 for array
i contents.

CPD (LCPD, NCPD) = Real array from the COOR Ale. See Section C5.

| NCPI, NCP2 - Column numbers in the ICPD and CPD arrays of the control points
from the immediately preceding command and the current command, respectively. These'

variables may be used to check for data errors (e.g. specifying straight elements in a
curved pipe segment).

55

'
1

l '

, - - - -n -, n - , , , - - - ~ , - - - , - - - . - - .-,- - - - . - - - ~ ~ - - - - - - ~ , , - - , - , - - - , , - , - + e-

UNFAC(6) - Array of units scale factors, one for each item in RKDAT. See later for
method of use.

UNLFAC - Units scale factor for length.

UNFFAC - Units scale factor for force.
Variables IKDAT, RKDAT, UNFAC, and (if an error is found) IERR must be set in the
OP"" subroutine. The other variables are all set before entry, and must not be changed.

C4.5.2.3 The IOPT Array
In the subroutine, an array IOPT (4,NOPT) must be dimensioned. The value of NOPT is

the number of optional data items which may be specified for this element type. The contents
|

of each column of IOPT are as follows: |
IOPT(1) - 4-character word (a4) denning option (e.g. 4HPROP for property set number;

4HBCON for boundary condition code).

IOPT(2) = 2 character word defining acceptable short form of option (e.g. 2HPR,2HBC).

IOPT(3) - data mode (1 - integer; 2 = real; -n - n-character alpha word, max = 4).
IOPT(4) - location in IKDAT or RKDAT were data is to be stored. Integer and alpha

data must be placed in IKDAT, and real data in RKDAT.

For example, if IOPT(1) - 411BCON, IOPT(3) - 1, and IOPT(4) - 2, the data following'

"BCON " in the command is to be read as an integer and placed in IKDAT(2). See the
existing OPBEAM and OPUBAR subroutines for further examples. The following restrictions
must be observed:

(1) Column 1 of IOPT must be 4HPROP,2HPR,1,1.
(2) Column 2 of IOPT must be 4HBCON,2HBC,1, 2.
Otherwise the optional data may be placed in any convenient locations in IKDAT and RKDAT.

C4.5.3 COMPUTATIONS IN OP""

C4.5.3.1 Typical Logle

Typical logic for the subroutine is shown in Table C4.1. The details can best be obtained'

by studying. for example, the existing OPBEAM and OPUBAR subroutines. The major
requirements are described in the following sections.

C4.5.3.2 Set Units Factors

For each item in RKDAT, set the value of the units factors in UNFAC, using the factors
UNLFAC and UNFFAC. For examric, if the item in RKDAT(2) is a pressure, set UNFAC(2)
- UNFFAC/UNLFAC"2.

C4.5.3.3 Print Data ,

if IDFLT - 2, then only a call to SUBROUTINE OPTPR is to be made. This subroutine
! sets up information on the optional data, for subsequent printing. The only reason for routing

this call through OP"" is to gain access to the IOPT array. The CALL statement is as follows:

CALL OPTPR (IOPT, NOPT, IKDAT, RKDAT, UNFAC)

C4.5.3.4 Check Length

The variable IZL is set in the calling routine, if the control point in a command is the
same as in the preceding command, then a single node element type (e.g. a U bar) must be
specified, and IZL is set to zero. If the control point is not the same as in the preceding com-
mand, a finite length of pipe run is covered by the current command, a two node element type
(e.g. a pipe) must be specified. and IZL is set to 1. If IZL does not have an appropriate value
for the specified element type, call SUBROUTINE WRONGL as follows:

56

|

. -

.. -. . -. . . - _ _ ..

..

CALL WRONGL 0,IERR)
where I - 1 for a two-node element type (e.g. in OPPIPE) and I - 2 for a one node element
type (e.g. in OPUBAR). Subroutine WRONGL prints an entor message and sets IERR - 1.

C4.5.3.5 Set Defamit Values
In the calling routine, a check is made whether this is the first command in which this ele-

ment type appears, or whether this element type has appeared in an earlier command. If the
element type has appeared previously, the arrays IKDAT and RKDAT are initialized to the
values in the nearest preceding commandwith that element type, and IDFLT is set to 1. If the
element type has not been previously used, IKDAT and RKDAT are not initialized, and
IDFLT - 0. The data is defaulted in this way so that it is not necessary to specify all optional
data in each command, and less data needs to be input by the user.

In any OP"" subroutine, four types of optional data may be recognized, as follows.

(a) Type 1: The data must be specined in the current command (i.e. no default). This is
rare.

(b) Type 2: The data must be specined, but can default to the preceding element of the same
type (e.g. property set number).

(c) Type 3: The data may or may not be specified. If it is not specified it can default to the
I preceding element of the same type. If no such preceding element exists,it can default to

a standard value (typically zero). An example of this is LOCL for a beam type element.

(d) Type 4: The data may or may not be specified. If it is not specified, it defaults to a stan-
dard value, regardless of whether or not a preceding element of the same type exists. An
example of this is BCON. In the current version of WIPS MODL, the BCON value
defaults to zero (no constraint) at all nodes unless a specific value is input.

;
The value of IDFLT is used to control the initialization of IKDAT and RKDAT as follows:
(1) Always initialize Type i values to -1, and Type 4 values to the standard default.;

i (2) If IDFLT - 0, then in addition initialize Type 2 values to -1, and Type 3 values to the
standard default.

When the optional data is extracted from the command, any specified de'a will override'

: the default values, and any nonspecified data will leave the default values unchanged. The -1
| values must be changed, otherwise some required data has been omitted (assuming -1 is not
i valid data: if so, initialize to some invalid value). This can be used to detect that required data

is missing.
;

C4.5.3.6 Extract Command Data
! Extract the optional data from the command, and store in IKDAT and RKDAT, by cal-

ling SUBROUTINE GETOPT. The CALL statement is as follows:
CALL GETOPT (IOPT, NOPT, IKDAT, RKDAT, IERR)

;

if data errors are detected (for example, real data in an integer field) an error message will be
,

printed and IERR will be set to I in GETOPT, followed immediately by a return to OP"". In'

! most cases, if IERR is I on return from GETOIT, OP"" should immediately return also.
The user will be requested to re enter the command. .

;

C4.5.3.7 Check for Missing Data
Check for missing required data. If any Type 1 or Type 4 data is still initialized to 1, call

SUBROUTINE MISOPT as follows: !

CALL MISOFT (IOPT (1,1), IERR)

; where IOPT(1,1) is the option name for the missing data. Subroutine MISOPT prints an error
message and sets IERR = 1.

57

|
._ - - - - - . -- - - -_ , . - . . ._- -- .- .

_-

i

C4.5.3. ' ? beek Beendary Code

Check the boundary condition code. If IKDAT(2) is not zero, call CHKBC as follows:
CALL CHKBC (IKDAT (2), IERR)

Subroutine CHKBC checks that the code has the correct form (e.g. contains only ones and
i zeros). If the code is incorrect, an error message is printed and IERR is set to 1.

; C4.5.3.9 Cbeek Property Set

Check the property set number in IKDAT(1) by calling CHKSET as follows:
CALL CHKSETUKDAT(1), IERR)

If the specified property set number exceeds the number of available property sets for this ele-
ment type, an error message is printed and IERR is set to 1.

C4.5.3.10 Check Other Data

Perform other data checks as appropriate for the element type. It is important that no
errors be permitted, to ensure that the data cards set up for WIPS-ANAL are error free.

! C4.5.3.11 Scale REDAT

Multiply each item in RKDAT by the corresponding value in UNFAC.

C4.5.4 SUBROUTINE DA""

! C4.5.4.1 Call Statement

A CALL statement must be added in SUBROUTINE DAELEM, following the calls to the
existing DA"" subroutines. The call statement has exactly the same form as the existing
statements, except that "" becomes the 4-character element type identifier.

C4.5.4.2 Subroutine Statement

The SUBROUTINE statement is as follows:
i SUBROUTINE DA"" (NUME,NAMN,NESET,IUNIT,KOM,1KDAT,

RKDAT,XYZ,WGT,EMAT,LMAT,1CURV)
;

The variables are as follows:

NUME - Elenient number in element group. See WIPS ANAL data structure for definition
of an element group. In WIPS, all elements of a given type constitute a group.

NAMN(1) -Node number at element end i.
NAMN(2) -Node number at element end j (if element is a two-node type).,

NESET - Material type number (the packet number in the EMAT array containing the pro-.

| perties for this element).

IUNIT - Unit number for DATA Ale. The data " card' for the element must be written on,
'

thisAle.

KOM(10) -KOM data for this element (see WIPS MODL data structure).

IKDAT(12) -lKDAT data for this element (see WIPS MODL data structure).
RKDAT(6) -RKDAT data for this element (see WIPS MODL data structure).

; XYZ(3,1) =X,Y,Z coordinates of node i.

XYZ(3,2) -X,Y,Z coordinates of node j, if used.

XYZ(3,3) -X,Y,Z coordinates of bend center, if this element lies on a bend in the pipe run.,

|

,

! 58

i

I
_ . _ _ _ _ . _ _ . _ _ _ _ __- . _ _ . _ . . _ ___. , , - . . _ _ _ _

WGT(3,1) -Element weight contributions sa node i, in X,Y,Z directions (the same in all 3
directions for WIPS).

WGT(3,2) -Element weight contributions at node j, if used.
EMAT(LMAT) -EMAT data for this element (i.e. column NESET of the complete EMAT

array).

All variables except WGT are set in the calling routine and must not be changed.

C4.5.4.3 Tasks to be Performed
The tasks to be performed are as follows:

(1) Set up the JN, IEIN, and REIN data for the element (see Section C4.4.3). Write the
WIPS ANAL data " cards" for this element on IUNIT.

(2) Calculate the weight (not mass) contributions of the element at nodes i and j, and return
in array WGT.

The computations are typically simple. The existing DA"" subroutines illustrate the pro-
cedure.

I

h

i

i

,

59

C4.6 MISCELLANEOUS WIPS MODL AND WIPS-RSLT MODIFICATIONS

C4.6.1 ELEMENT TYPE DATA
WIPS MODL and WIPS RSLT contain labelled COMMON blocks /ELTNAM/ and

/OUTEL/, containing element type names and the number of output items for each element
type. Prcvision is currently made for four element types (BEAM, UBAR, PIPE, and GAPF),
plus the shell element (SIIL4). Space is allocated for 15 more elements in arrays KEEEE(2,15)
and 1000(15).

If a new element type is added, make the following changes in BLOCK DATA subroutine
ESBLK in WIPS-MODL and WIPS-RSLT.
(1) Insert a variable K""(2) into /ELTNAM/, where *"* - element type name.
(2) Reduce the second dimension of KEEEE by 1.

(3) Initialize K"" to the element type name, using a DATA statement as for the existing
element types.

(4) Increase NUMET by 1.
(5) Insert a variable 10"" into /OUTEL/, where "" - element type name.
(6) Reduce the dimension of 1000 by 1.
(7) Initialize 10"" to the number of output items for the element, using a DATA statement.

C4.6.2 OUTPUT UNITS
The force and length units must be specified on each entry to any WIPS module.

Labelled COMMON block /UNITEL/ in BLOCK DATA subroutine ESBLK of WIPS-RSLT
contains units conversion arrays for results processing.

Add an array IU""(2,NITEMS) to /UNITEL/ in ESBLK and subroutine TABELM,
where "" - element type name and NITEMS = number of output items per element. This
array contains units conversion data, as follows.

IU""(1,N) = length power in units for output item N.
IU""(2,N) - force power in units for output item N.

For example, if output item 3 is stress, then:

1U""(1,3) 2

1U""(2,3) -1

Initialize IU"" in ESBLK of WIPS RSLT. In addition, at the end of TABELM, add a units
conversion statement, following the same procedure as for the existing elements.i

|

| 61

!

!
'

'

_ _ , - _ , _ _

C4.7 WIPS EXEC MODIFICATIONS

C4.7.1 PARAMETERS
WIPS EXEC makes use of FORTRAN PARAMETER statements. Key parameters in

WIPS-EXEC are represented by the following symbols:

GENERAL:
PARAMETER (ARB-1)
PARAMETER (MAINPG-10)
PARAMETER (MAXFIL-100)
PARAMETER (NO-0)
PARAMETER (YES-1)

CONTROL CH ARACTERS:

PARAMETER (EOF-CIIAR(4))
PARAMETER (EOL ''')
PAR AMETER (EOS="')

PARAMETER (NEWLIN-CIIAR(10))
PAR AMETER (TAB-CIIAR(9))

4 CHARACTER STRING LENGTHS:
PARAMETER (AROLEN-22)'

PARAMETER (CMDLEN-21)
PARAMET ER (INBFSZ-82)

PARAMETER (NUMLEN-10)
PARAMETER (PBNMSZ-21)

INPUT / OUTPUT:
PARAMETER (APPEND-6)
PARAMETER (BUFSIZ-21)
PARAMETER (DELFIL-1)
PARAMETER (KEEPFL-0)
PARAMETER (NEWFIL-4)
PARAMETER (OLDFIL-5)
PARAMETER (READMD-1)
PARAMETER (RECLEN=80)

PARAMETER (UNKNOW-9)
PAR AMETER (WRITMD-2)

READ / WRITE LOGICAL UNIT NUMBERS:
,

PARAMETER (DELFD-15)
PARAMETER (NEWFFD-16) |

63

. . --_ --

PARAMETER (OLDFFD-17)
PARAMETER (STDERR-0)
PARAMETER (STDIN-5)
PARAMETER (STDOUT-6)
PARAMETER (WIPLFD-18)
PARAMETER (WIPSFD-19)

USER COMMAND 5i:

PARAMETER (UNKNCM-100)
PARAMETER (CATLCM-105)
PARAMETER (DELTCM-Il0)
PARAMETER (HELPCM-120)

! PARAMETER (LISTCM-130)
PARAMETER (LISPCM-140)
PARAMETER (LISACM-150)
PARAMETER (LISCCM-155)

PARAMETER (QUITCM-160)
PARAMETER (PROBCM-170)

PARAMETER (ANALCM-200)
PARAMETER (BEAMCM-210)
PARAMETER (DATACM-215)
PARAMETER (ELBOCM-220)
PARAMETER (FRECCM-230)
PARAMETER (GAPFCM-240)

; PARAMETER (MODLCM-250)
PARAMETER (MATLCM-255)
PARAMETER (PIPECM-260)
PARAMETER (GEOMCM-270)
PARAMETER (SLABCM-275)
PARAMETER (STRPCM-280)
PARAMETER (UBARCM-290)
PARAMETER (RSLTCM-300)

C4.7.2 COMMAND ADDITION
The procedure for adding commands (i.e. calls to new modules) to WIPS EXEC is as fol-

lows.

1. Create a symbolic parameter "XXXXCM", where "XXXX" is the name of the command,
and assign it a unique numeric command constant. For example, the " list" parameter is

i LISTCM with an associated constant of 130. The fortran PARAMETER statement takes
the form:

PARAMETER (LISTCM-130)
2. Insert the PARAMETER statement into the main program and function LOOKUP.

!

64

- ._ _ - - _

3. Create variable "SXXXX" in function LOOKUP, wh-re "XXXX" represents the name of
the command, and initialize it with a data statement.

4. Add the following code to the if then else statement in function LOOKUP:
'

ELSE IF (EQSTR(COMAND,SXXXX) .EQ. YES) THEN

LOOKUP = XXXXCM
S. Add the following code to the if-then-else statement in the main program:

ELSE IF (CMD .EQ. XXXXCM) THEN
'

CALL PROGRM('XXXX")
6. Update subroutine HELP to extend the list of commands.

C4.7.3 FILE TYPE ADDITION
See Section C5.1 for a description of the WIPS-EXEC file structure.

2

j

4

I

i
i

|
:

:
1

f'

65

i

- - . _ . - _ _ . - . _ - _ _ - . - - . . -...-- - . - - . . - - - - - - - -

. . - -. - -- _- - . - - . -

{.

C4.8 DATA INPUT MODULES
1.

C4.8.1 PURPOSE
Each data input module (e.g. WIPS-PIPE, WIPS BEAM, etc.) accepts property set data

interactively and stores each set as two records in a Ale of the same name'(i.e. I'lPE, BEAM,
etc.). The first record must contain the following:

4 .

LEMAT: integer word, equal to length of EM AT array.

IENAM(10): character *4 array containing property set description.

5 The second record must contain the real array EMAT (LEMAT). This array contains all data
for the property set. The maximum value of LEMAT is 64. Note that because EMAT is real,

| any integer property set items must be converted to real variables.
The data in EMAT varies *.vith the element type. The EMAT contents are described for

the currently available elements in Section C5.

I~ C4.8.2 PROCEDURE
! The detailed procedure varies with the element type. The module will typically make use

of the freeform input package and may make use of the small data base manager. The pro- ,

j cedure can best be learned by studying the existing modules.

It is important that the data input module perform exhaustive checks on the input data to
i ensure that the EMAT array contains correct and consistent information. The EMAT array is

incorporated directly in the MODL Ale in the WIPS MODL phase (and hence into the DATA
'

! Ale in the WIPS DATA phase). Typically, no further consistency checks will be' made in
WIPS MODL, so that errors must be detected in the input phase. If incorrect data is present in i,

the DATA Ale, it may cause improper execution of WIPS ANAL. Because of the complexity
i of WIPS-ANAL, data errors can be very difHeult to locate.

4,

i.

t

b

;l

.i
;

I

>

b

4

:
,

I

|

67

i.

{-

,_ .-. , _ _ _ _ . _ , . _ _ _ ._- _ _ _ . __.. _ _ _ _ _ __ _ _ ~ . _ . _ _ _. -

.

t

TABLE C4.1 - FLOW DIAGRAM FOR OP2*** SUBROUTINE

'

''Initia'lize 10PT a'rray.'
(typically use DATA statement)

Set units factors.,.

.

IDFLT = 2? Yes..

4 (printonly)
; ,. No

4 ,

~No Correct length code for Call OPTPRa

(error) this element type?
j\ j

Return
Call WRONGL ,Yes.

f4

Initialize Type 1 and 4
Return entries in IKDAT RKDAT

I
IDFLT = I? Yes

j (Defaultsto
No preceding

(mustinitialize) element of'

sane type.)

Initialize Type 2 and 3
entries in IKDAT,RKDAT

Extract optional data for command.
(Call GETOPT)

: Check for missing data.
(Call MISOPT)

!

| Check boundary condition code.
(Call CHKBC)

1
!

Check p(roperty set number.Call CHKSET)
i.

: Perfonn other data checks as necessary.
j Set IERR=1 if error detected.- '

I

j RETURN

68
.,

.- p - _

C5. FILE STRUCTURE

SUMMARY

In order to make modifications to the WIPS code, a programmer may require knowledge
of the data contained in the WIPS EXEC data base. The chapters in this section describe the
data structures for all files cxcept those associated with WIPS-ANAL. The data structure for
WIPS ANAL is described separately in Sections C6.

CONTENTS

C5.1 WIPS-EXEC FILES

C5.1.1 DATA STRUCTURE
C5.1.1.1 General

C5.1.1.2 WIPSCAT File Format

C5.1.1.3 Problem Table Format

C5.1.2 DATA STRUCTURE MANAGEMENT,

C5.1.3 STRING REPRESENTATION

C5.1.4 SYSTEM DEPENDENT FEATURES

C5.1.4.1 Subtask Execution

C5.1.4.2 Date

C5.1.4.3 Newline Suppression

C5.1.5 FILES

C5.2 WIPS-GEOM DATA FILES

C5.2.1 GENERAL
C5.2.2 GEOM FILE

C5.2.2.1 Control Record
C5.2.2.2 Integer Data Record

C5.2.2.3 Real Data Record

C5.2.3 COOR FILE'

C5.2.3.1 Control Record

C5.2.3.2 Integer Data Record

C5.2.3.3 Real Data Record

C5.3 ELEMENT PROPERTY SETS

C5.3.1 FILE STRUCTURE

C5.3.2 PIPE ELEMENT

C5.3.3 BEAM ELEMENT
>

69

.

C5.3.4 UBAR ELEMENT

C5.3.5 GAPF ELEMENT

C5.4 SUBSTRUCTURE PROPERTY SETS

C5.4.1 GENERAL
C5.4.2 STRP SUBSTRUCTURE

C5.4.3 ELBO SUBSTRUCTURE

C5.4.4 SLAB SUBSTRUCTURE

C5.5 MATL AND FREC FILES
C5.5.1 MATL FILE

C5.5.2 FREC FILE

C5.6 WIPS MODL DATA STRUCTURE
C5.6.1 COMMAND STRUCTURE

C5.6.1.1 3eneral
C5.6.l.2 Arrays
C5.6.1.3 Control Array

C5.6.1.4 Command Data
C5.6.1.5 KOM Array

C5.6.1.6 IKDAT Record

C5.6.1.7 RKDAT Record

C5.6.1.8 Units

C5.6.2 MODL FILE STRUCTURE
C5.6.2.1 WIPS-ANAL Input Data

C5.6.2.2 WIPS-DATA Control Information

C5.6.2.3 Control Record
C5.6.2.4 NODAT Array

C5.6.2.5 Substructure Data

C5.6.2.6 Main Structure Node Data

C5.6.2.7 Element Data

C5.6.2.8 Impact Data

C5.6.2.9 First Word Addresses

C5.7 WIPS-DATA OPERATIONS

C5.7.1 GENERAL
C5.7.2 RSLT FILE

70

|
-

-
-

?
9

C5.1 WIPS-EXEC Fl.' ES _

_

a
C5.1.1 DATA STRUCTURE "

C5.1.1.1 General
-

The WIPS-EXEC WIPSCAT file stores information about the data files produced by the _-_
WIPS computational modules. Each file is automatically cataloged by WIPS-EXEC, with its y
type, problem number, sequence number (if needed), date and time of creation, and an w

+
optional comment provided by the user. This information is grouped together in problem
tables, several of which may be stored in the WIPSCAT file. 4

2
C5.1.1.2 WIPSCAT File Format g

WIPSCAT is a direct access unformatted file with a record length of 50 characters. Each .

problem table is preceded by a record which contains the table number and description, plus a -

_

pointer to the next table. The record layout is shown in Fig. C5.1.1. The size of each problem 4
table is controlled by the MAXFIL parameter. Changing this parameter will not affect the use 7

_'_of existing problem tables.

C5.1.1.3 Problem Table Format
On entry to WIPS EXEC, the first problem table in the WIPSCAT file is .opied into [

memory to allow rapid access. Each record in the problem table contains the following vari. {
z

ables:

Variable Description Length (Bytes) 7
e

FILENO File Number 4 -

FTYPE File Type 5 =

DATSTR Date String 25

DESCRP Comment about the File 36 i
"-

Unused 10

Unused records in the problem table are flagged by a zero file number.
J=

C5.1.2 DATA STRUCTURE MANAGEMENT [
The data modules are manipulated by the following routines:

1_

WIPSCAT FILE:
-

FNDPRB - finds the position of a problem table in the WIPSCAT file corresponding to a par- I
ticular problem number. - _ -

LODPRB - copies a problem table from the WIPSCAT file into core. [
LSTCAT - prints information about the active file: in all the problem tables held in the

'-

WIPSCAT file. ..

LSTPRB - prints the titles of all the problem tables held in the WIPSCAT file. 18

NAKPRB - makes a new problem table in the WIPSCAT file.
-

-

SAVPRB - copies the current problem table from core to the WIPSCAT fite.)
i

PROBLEM TABLE: ;5
CATLOG - catalogs a file in the problem table. (
DELETE - removes a file and its catalog entry from the problem table. I
INPROB - locates a file name in the problem table. h

--&

71 ,

__ . _ _ _ _ _

INSTAL - puts information about a file into the problem table.
LIST - prints information about the active files in the current problem table.

LSTALL prints information about all the files in the current problem table, including-

deleted files.

PRNTAB copies the current problem table to the "oldiiles" file.

REPLAC - replaces file information in the problem table.

C5.1.3 STRING REPRESENTATION
Character strings are stored in character arrays and are terminated by a special character

which is represented by the EDS symbolic constant. EDS translates into " char ('")" when the
program is compiled.

C5.1.4 SYSTEM DEPENDENT FEATURES C5.1.4.1 Subtask Execution
WIPS-EXEC executes the computational modules which constitute the WIPS system by

issuing calls to the operating system via subroutine "execut". On the DEC VAX 11-780, sub-
tasks may be spawned via a system call (" call system" in the UNIX operating system; " call
sys$creprc" in the VMS operating system). If subtask spawning is not available, the computa-
tional modules may need to be run via an overlay mechanism.

C5.1.4.2 Bate

Subroutine "fdate" fills a 24-character array with the date and time in the format shown by
the following example. All the fields have constant width.

C5.1.4.3 Newline Suppression

The dollar sign ($) format control specifier suppresses the newline at the end of the last)
record of a formatted sequential write. It is typically used for terminal prompts.

C5.1.5 FILES
WIPSCAT - catalogs WIPS files.

WIPSLOG - records the input / output transactions from a WIPS interactive session.

newfiles passes updated file information from a WIPS computational module to the-

WIPS-EXEC program.

oidfiles - passes file information from the WIPS-EXEC program to a WIPS computa-
tional module.

72

_ - _ _ _

_ ._ _____ ____ _______ _ _ _____ _
.

Record No.

1 Number oi Problem Tables'

2 Problem Table Header
Record
Pointer

Number Description

3 Problem Table

.

.

.

.

.

.

MAXFIL+2 Problem Table HeaderRecord
MAXFIL+3 Pointer

Number Description

Problem Table

MAXFIL+4

.

.

.

.

.

.

2*MAXFIL+3

2*MAXFIL+4
EOF

FIG. C5.1.1 - WIPSCAT FILE FORMAT

73

. _ - _ - - - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _

C5-2 WIPS GEOM DATA FILES

C5.2.1 GENERAL
Data files of GEOM and COOR type are produced by the WIPS-GEOM module. A

GEOM data file contains essentially the control point coordinate data as input, with only minor
processing. A COOR file is obtained by processing a GEOM file and contains the global coordi-
nates of all control points and extra nodes, plus other data. GEOM files can be recalled for
editing. COOR files cannot be modified.

Both files are wtformatted.

C5.2.2 GEOM FILE
'

C5.2.2.1 Control Record
I

A GEOM file consists of a control record plus two data records. The control record con-
tains the following variables.

NCPS - number of control points

LICP - 8 - number of rows in integer data array ICP(LICP,NCPS)

LCP = 4 - number of rows in real data array CP(LCP,NCPS)

NRUNS - number of pipe runs

IPREC - precision ofICP array (1 - REAL*4; 2 - REAL*8)

C5.2.2.2 Integer Data Record
The first data record contains array ICP(LICP,NCPS). The column for each control point

(c.p.) contains the following data:

ICP(l) - c.p. name (A4)

ICP(2) - c.p. type (A2) (DI, TI, TN, BR, or RF)

ICP(3) - coordinate option (A2) (DI, OF, TN, DU, ST, CU)

ICP(4) - number of extra nodes in preceding segment

ICP(5) - name of generation point i, if needed (A4)

ICP(6) - name of generation pointj, if needed (A4)

ICP(7) - pipe run number

ICP(8) - uniqueness code for c.p. name (0 - unique; I - repeated elsewhere)

C5.2.2.3 Real Data Record
The second data record contains array CP(LCP,NCPS). The column for each c.p. con-

tains the following data:

CP(l) - first coordinate data item, as input

CP(2) - second item

CP(3) - third item
CP(4) - bend radius (Tl points only, otherwise zero)

75

L - - - _

_ _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ -

!

C5.2.3 COOR FILE

C5.2.3.1 Control Record
A COOR file consists of a control record plus two data records. The control record con-

tains the following variables.

NPTS - number of columns in ICPD, CPD arrays

LICPD - 13 - number of rows in integer data array ICPD(LICPD,NPTS)

LCPD - 5 - number of rows in real data array CPD(LCPD,NPTS)

NRUNS - number of pipe runs
IPREC precision of CPD array (1 - REAL*4; 2 - REAL'8)

C5.2.3.2 Integer Data Record

The first data record contains array ICPD(LICPD,NPTS). The column for each node con-
tains the following data.

ICPD(1) - c.p. name (A4); blank'- extra node.
ICPD(2) pipe run number.

ICPD(3) - c.p. type, as a number (1 - Dl; 2 - TI; 3 - TN; 4 - BR; 6 - RF;
7 - center of curve (immediately follows TI); O - extra node).

ICPD(4) node number

ICPD(5) - type of preceding element (1 - straight; 2 - curved).
The remaining entries in ICPD are used only for node coordinate generation in WIPS-GEOM.

I
'

C5.2.3.3 Real Data Record
The second data record contains array CPD(LCPD,NPTS). The column for each node

contains the following data.

CPD(1) - X coordinate
CPD(2) - Y coordinate
CPD(3) - Z coordinate
CPD(4) - bend radius (Tl points only)

CPD(5) = distance from beginning of pipe run.

.

76

+

__
_

C5.3 ELEMENT PROPERTY SETS

C5.3.1 FILE STRUCTURE
The data for each element property set consists of two records, as follows.

Record 1:
(1) LEMAT: Integer. Length of EMAT array. Max. 64.

(2) IENAM(10): Character *4. Property set description.

Record 2:
(1) EMAT(LEMAT): Reel. Property set data.

All values are stored in kip and inch units.

C5.3.2 PIPE ELEMENT
LEMAT - 36. EMAT as follows.

1: Number of yield surfaces for matcrial (min.1, max. 2).

2: Poisson's ratio.

3-5: Material moduli for up to 3 segments.

6-7: Yield stresses.

8: Not used.

9: Radial error tolerance for material.

10: Angle tolerance for material.

11: Number of subelements in cross section.

12: Number of Gauss slices.. Usually 2.

13: Ovalling code (0-small; 1 -targe).

14: Number of ovalling hardening ratios (max. 2).

15: Scale factor for ovalling stiffness. Typically 1.0.

16: Scale factor for ovalling strength. Typically 1.0.

17: Outside diameter.

18: Wall thickness.

19: Self weight per unit length.

20: Not used.

21 22: Ovalling nardening ratios.

23: Number of dashpot stiffnesses for material rate dependence (max. 3).

24-26: Dashpot stiffnesses.

27 29: Corresponding stress increases (last very large).

30: Strain rate tolerance for material. Not used.

31: Fwctor controlling ovalling geometric stiffness. Default value - 0.64.

32-36: Not used.

C5.3.3 BEAM ELEMENT
LEMAT - 64. EMAT as follows.

1: Yield surface type. Typically 1.

77

2: Angle tolerance for Stiffness reformulation.
3-6: Yield surface exponents ai- a4 Typically unused.
7: Overshoot tolerance for yield event (proportion of Y).i
8: Reversal tolerance for unloading event (proportion of Y).i
9-16: K , K,K). K4. Y:, Y Y), GA' for M .i 2 2 y

17-24: K , K , K , K , Y , Y , Y , GA' for M,.i 2 3 4 i 2 3

25-31: K , K , K , K , Y , Y , Y for M .i 2 3 4 i 2 3 o

32: Not used.

33 39: K ,K,K). K4. Y , Y , Y for F,.i 2 i 2 3

40: Strain rate tolerance.
41: Number of dashpot stiffnesses for rate dependence (max. 3).

42-44: Dimensionless rates for dashpot stiffness changes.

43 47: Dimensionless strength increases.
48: Weight per unit length.

49-64: Not used.

C5.3.4 UBAR ELEMENT

LEMAT - 64. EMAT as follows.
1: Number of segments in static force-extension curve (NSEG). Min. 2; Max. 6.
2: Number of segments in curve of force increase versos extension rate (NSEGV). Min. 0;

Max. 3.
3: Default gap clearance.

4: Angle tolerance for stiffness reformulation.
5: Static stiffnesses (NSEG values).

5 +NSEG: Static yield forces (NSEG values, last very large).
5 +2*NSEG: Dashpot stiffnesses (NSEGV values).

3 +2'NSEG +NSEGV: Dashpot " yield" forces (NSEGV values, last very large).

5 +2'NSEG +2*NSEGV: Overshoot tolerance for gap closure and yield events (force units).
6 +2*NSEG +2'NSEGV: Reversal tolerance for unloading event (force units).

7 +2'NSEG +2*NSEGV: Separation tolerance for separation event (force units).
Rest not used.

C5.3.5 GAPF ELEMENT

LEMAT - 64. EMAT as follows.
1: Friction coefficient.
2: Tangent stiffness.

3: Not used.

4: Normal yield force (set very high).
5: Not used.

6: Normal stiffness.
78 Not used.

78

_ _ _ _ _ _ _ _ _ _ _ _ _ __ _

1

|
|

9: Angle tolerance for stiffness reformu'ation.

10: Gap closure tolerance (force units).

11: Not used.

12: Friction unloading tolerance (fonce units).

la: Friction yield (slip) tolerance (force units).

14: Gap opening tolerance (force units).

15-64: Not used.

C5.3.6 SHELL ELEMENT
LEM AT - 64. EM AT as follows.

1: Number of yield surfaces for material (min.1. max. 4).

2: Number of dashpot stiffnesses for material rate dependence (min. O, max. 3).

3: Radial error tolerance for material.

4: Angle tolerance for material.

5: Poisson ratio.

6: Weight density.

7: Strain rate tolerance.

8-9: Not used.

10-14: Static moduli (2 to 5 values).

15: Not used.

16-20: Static yield stresses (2 to 5 values; last must be very large).

21: Not used.

22-24: Material dashpot stiffnesses (0 to 3 values).

25 27: Stress increases at changes in dashpot stiffnesses (0 to values; last very large).

28-64: Not used.

79

. _ .

,

C5.4 SUBSTRUCTURE PROPERTY SETS

C5.4.1 GENERAL
The data for each substructure property set varies with the substructure type. All values

are stored in kip and inch units. All real sariables are single precision.

C5.4.2 STRF SUBSTRUCTURE
Five records for each property set, as follows. Variables beginning with I through N are

integer unless noted; all others are real.

Record 1: Control Record

(1) ISNAM(10): Character *4. Property set description.

(2) NREC: Number of following records (-4).

Record 2: Substructure Dimensions
(1) SI,SE,S2: Lengths of segments I,2, and 3 of substructure.

(2) Dl,TI: Pipe diameter and wall tha.kness in segment 1.
(3) DE,TE: Pipe diameter and wall thickness in segment 2.'

(4) D2,T2: Pipe diameter and wall thickness in segment 3.

(5) FI,F2: Mesh expansion factors in segments I and 2.

(6) ISNAM(10): Character *4. Property set description.

(7) N1,NE,N2: Numbers of longitudinal mesh divisions in segments 1, 2, and 3.

(8) NDIV: Number of circumferential mesh divisions.
(9) MTY(3): Material type identifiers for segments 1,2, and 3 (currently 1, - standard

Mroz).
(10) NMT(3): Material property set numbers (in MATL file) for segments 1, 2, and 3.

(11) DENS (3): Material weight densities for segments 1,2, and 3.

(12) NOAUS(3): Numbers of Gauss points through thickness for segments I,2, and 3.

(13) NETY: Type number in WIPS-ANAL element library for shell element (-20).

Record 3: EMAT Array for Shell Elements in Segment 1

LEMAT - 36. EMAT as follows.
1: Number of yield surfaces for material (min.1; max. 5).

2: Number of dashpot stiffnesses for strain rate effect (min. 0; max. 3).

3: Radial error tolerance for yield event (typically 0.02).

4: Angle tolerance for stiftness reformulation (typically 0.05 radians).

5: Poisson's ratio.

6: Weight density.

7 9: Not used.

10 15: Static moduli.
16 21: Yield stresses (last very large).

22 24: Dashpot stiffnesses.
* 25 27: Corresponding stress increases (last very large).

28.30: Coordinates (r,s,t) of output point 1 (0.,0.,1.).

81

n

_ _ - _ _ _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ - __ . -

!

I
| 31-33: Coordinates (r,s,t) of output point 2 (0.,0.,-1.).
f 34-36: Not used.
:

Record 4: EMAT Array for.Shell Elements in Segment 2
As for Record 3.

Record 5: EMAT Array for Shell Elements in Segment 3
As for record 3.

C5.4.3 ELBO SUBSTRUCTURE

Five records for each property set, as follows. Variables beginning with I through N are
integer unless noted; all others are real.

Record I: Control Record

(1) ISNAM(10): Character *4. Property set description.
(2) NREC: Number of following records (=4).

Record 2: Substructure Dimensions
(1) S1,52: Lengths of tangents 1 and 2.

(2) RAD, THETA: Bend radius and ar.gle.

(3) Dl,Tl: Pipe diameter and wall thickness in tangent 1.
(4) DE,TE: Pipe diameter and wall thickness in elbow.

(5) D2,T2: Pipe diameter and wall thickness in tangent 2.
(6) F1,F2: Mesh expansion factors in tangents I and 2.

(7) ISNAM(10): Character *4. Property set description.

(8) N1,NE,N2: Numbers of longitudinal mesh divisions in tangent I, elbow, and
tangent 2.

(9) NDIV: Number of circumferential mesh divi. ions. {
(10) MTY(3): hiaterial type identifiers for tangent 1, elbow, and tangent 2 (currently 1,

standard Mroz).

(11) NMT(3): Material property set number (in MATL file) for tangent 1, elbow, and
tangent 2.

(12) DENS (3): Material weight densities for tangent 1, elbow, and tangent 2.

(13) NGAUS(3): Numbers of Gauss points through thickness for tangent 1, elbow, and
tangent 2.

(14) NETY: Type number in WIPS-ANAL element library for shell element (-20).
Record 3: EMAT Array for Shell Elements in Tangent 1

As for Record 3 in STRP substructure.
Record 4: EMAT Array for Shell Elements in Elbow

As for Record 3.,

Record 5: EMAT Array for Shell Elements in Tangent 2
As for Record 3.

C5.4.4 SLAB SUBSTRUCTURE

Three records for each property set, as follows. Variables beginning with I through N are
integer unless noted; all others are real.

Record 1: Control Record

82

. _ .
..

_ _ _ - _ _ _ _ _ - . _ -

-- -
. . . .

(1) ISNAM(10): Character *4. Property set description.

(2) NREC: Number of following records (-2).

Record 2: Substructure Dimensions
(1) DIM (2): Lengths of OA, OB.

,

(2) PROP (3,2): Column 1 = first, center, and last strip widths as proportions of OA.
Column 2 - same for OB.
(3) NDIV(3,2): Column 1 = number of divisions in first, center, and last strips along
OA. Column 2 = same for OB.
(4) FEXP(3,2): Provision for mesh expansion factors. Not used.
(5) DCOSS(3,3): Row I - direction cosines of slab x axis with global X,Y,Z. Rows 2,3
- same for slab y,z axes.

(6) ORIG (3): Default coordinates of O.

(7) TillCK: Stab thickness.
(8) DENS: Weight density.

(9) ISNAM(10): Character *4. Prope.ty set description.

(10) MTY: Material type (currently 1 = standard Mroz).

(11) NMT: Material property set number.
(12) NGAUS(2): Number of Gauss points through thickness in center region and outer
regions.

(13) IBCOD(4): Character *4. Boundary condition types for OA, BC, OB, AC.

(14) NDIVT(2): Total subdivisions along OA,OB.

(15) NNODT: Total number of grid points.

(16) NETY: Type number in WIPS-ANAL element library for shell element (-20).

Record 3: EMAT Array for Shell Elements

As for Record 3 in STRP substructure.

83

-- - . ___ __ __ _
__

_ _ _ _ _ _ _ _ _ ________ -

|
!

C5.5 MATL AND FREC FILES

C5.5.1 MATL FILE
Two records for each property set, as follows. Variables beginning with I through N are

integer unless noted; all others are real.

Record 1: Control Record
(1) LEMAT: Length of EMAT array (-36),
(2) MTYP: Character *4. Material type name. Currently "MROZ".

(3) MDESC(10): Character *4. Property set description.

Record 2: Property Data (EMAT Array)

Array EMAT(LEMAT) contains the following data.

I: Number of yield surfaces.

2: Number of strain rate segments.

3: Radial error tolerance (multiple of yield stress).

4: Angle tolerance for stiffness reformulation.

5: Poisson ratio.

6: Weight density. I
7: Strain rate toler nce (multiple of strain rate).

8: Yield reversal tolerance (multiple of yield stress).

9: Not used.

10-15: Static moduli.
16-20: Yield stresses.

21: Not used.

22 24: Strein rate stiffnesses.
25 27: Corresponding strain rate limits (last very large).

28 36: Not used.

C5.5.2 FREC FILE
Two records for each record, as follows.

Record 1: Control Record

(1) NAMR: Character *4. Record name.

(2) NPAIR: Number of time force pairs.

(3) ITITL(10): Character *4. Record description.

Record 2: Time Force Values
Array RECV(2,NPAIR). First item in each column - time; second = force.

85

, . .
- _ _ _ - _-

,,m. _ , . , , , , .. , . . _ _ _ . ._

_

:-

E

E C5.6 WIPS MODL DATA STRUCTURE
.

C5.6.1 COMMAND STRUCTURE

5 C5.6.1.1 General
_

WIPS MODL accepts the definition of an analysis model as a series of commands. The
commands are stored in a number of arrays which constitute the command table. When this

_

table is complete, the commands are processed to produce a MODL file. The commands are:
extensively checked for consistency as they are input, to ensure that the MODL file contains no:

_

errors..i
- Consideration has been given to saving the command table (as a CMND file), to allow the

table to be recalled and edited. This did not prove to be practicable, mainly because of the;
difficulty of checking an edited table for consistency. IIence, there is no provision for editing;

F
commands in the current version of WIPS. Certain features of the command table have, how-

i ever, been chosen with future extensions of WIPS in mind to allow editing.

} C5.6.1.2 Arrays
- The command table consists of four arrays, namely a control array plus three arrays con-

taining command data."

C5.6.1.3 Control Array
,

The control array consists of two words per command, as follows.y

Word No. Variable Description
.

;

5 1 NKOM Number of commands (columns) in command table.
+

j 2 KOMI Column number of first command. This allows for
- a subsequent extension of WIPS MODL to 1::clude

editing of commands. Currently - 1.
L
E
C5.6.1.4 Command Data

2 The command data consists of three arrays, namely, KOM(10,NKOM),
7 IKDAT(12,NKOM), and RKDAT(6,NKOM).
-

C5.6.1.5 KOM Array
Each column of KOM contains integer or alpha data for the corresponding command, ast-

follows.-

Row No. Datag

1 Line number. Lines are numbered sequentially in each
- segment.

E 2 Column number of next command.
a

3 Pipe run number.

4 Control point name (A4)."

5 Element or substructure type name (A4). Blank - none.

w
w

87

_ _ _ _ _ _ .___________ _ _____ __

6 Column number in ICPD and CPD arrays (see COOR
file) for control point.

7 Element or substructure type number. Positive - ele-
ment; negative - sabstructure; zero aone; 99 - zero
element (e.g. 2 - UBAR; -2 - STRP).

8 Column number of preceding command.

9 Symmetry code (0 - full 3D; +1 positive side of YZ
plane; -1 negative side of YZ plane; etc.).

10 Segment number.

C5.6.1.6 IKDAT Record

Each column of IKDAT contains integer or alpha data (optional command data, see Sec-
tion A8), as follows.

Row No. Data

1 Property set number for element or substructure.

2 Boundary condition code.

3 Name (A4) if a substructure.

48 Varies with element type. Determined by IOPT
array in OP*"* subroutine. ;

9 Longitudinal symmetry code (A4) (blank or
"yes").

10 Not used.

11 Transverse symmetry code for STRP or ELBO
(0 none; 1 = use first half; 2 - use second
half).

12 Longitudinal symmetry type (0 - none; I - YZ
plane; 2 - ZX; 3 - XY).

C5.6.1.7 RKDAT Record

Each column of RKDAT contains real data (optional command data, see Section A8), as
follows.

Row No. Data

1 Lumped weight (weight units) at control point.

12-6 Varies with element type. Determined by lOli -
array in OP"" subroutine.

80

.. _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ - _ - -

. . - - _ _

E
_

_

i

C5.6.1.8 Units
All values are stored in kip and inch units. Unit conversions are made immediately after i

input and immediately before output.
T

C5.6.2 MODL FILE STRUCTURE
-

C5.6.2.1 WIPS-ANAL Input Data C
C-The MODL file is formatted, mostly in 20A4 format. The file contains the same data as -

the DATA file (see Section C6) from the GBUILD command through the IMPACT data, with
the following differences. -=

;

(1) The VELO data (if any) immediately follows the IMPACT data (or, if there is none, the
--

MBUILD data).
(2) Following the VELO data is a LAST command. This separates the WIPS-ANAL data sec-

t;an of the MODL file from certain control information used by WIPS-DATA. 1
(3) Following the LAST command is control information for use by WIPS-DATA, as

described in the following sections. h
_.

C5.6.2.2 WIPS-DATA ControlIoformation
The control information consists of the following: "-

(1) One control record. J

(2) A name-number comparison array (NODAT array). =

(3) One set of records for each substructure. [
(4) One record for each node in the main structure.

'

-

(5) One record for each output element.
--

(6) One record for each impact surface pair (if any).

C5.6.2.3 Control Record '. -
The control record format is (815,110). The items in the record are as follows.

(1) NNODAT: Number of rows in array NODAT.

(2) NMAINO: Number of main structure nodes. .-

(3) NITMN: Number of output items per main structure node (=9).
-

(4) NSUBO: Number of su'; structures for which results are output.

(5) MNSUB: Largest number of nodes in any substructure.
'

(6) NELMO: Total number of elements for which results are output.

(7) NIMPO: Number of impact surface pairs.

(8) NITIMP: Number of output items per impact surface pair (-6). -

(9) LBUFO: Length of results output buffer (total number of output items per output time).

C5.6.2.4 NODAT Array ;
The NODAT array is written in (IX,A4,15) format. The array contains, for each node in

the main structure, the node number (from the COOR file) and the corresponding control
point name. The COOR file node numbers are used to identify nodes in the DATA file. The
NODAT array is used by WIPS-DATA to c. telate c.p. names with node numbers for setting
up DYLOAD data in the DATA file.

~

89
..

-

___m ______ _ ._. _. . _ . . _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ . _ . _ .

--- ..

C5.6.2.5 Substructure Data

For each of the NSUBO output substructures, one control record is written plus one coor-'

dinate record for each substructure node. The control record is written in
(2(lX,A4),15,110,815) format and contains the following items.

(1) Substructure name.
(2) Substructure type.

(3) Number of output nodes (currently all nodes).

(4) First word address in output buffer of results for first node.
(5) Number of output items per node (=3).

(6) Number of circumferential (or OA) sebdivisions.
(7) Number of longitudinal subdivis;ons in segment 1 (or number of OB subdivisions).
(8) Number of subdivisions in segment 2.

(9) Number of subdivisions in segment 3.

(10) Total length of element output data (number of shell elements multiplied by 28).

(11) Transverse svmmetry code (0 = 3D; 1 = first circumferential half; 2 = second half).

(12) Longitudinal symmetry code (0 = none; 1 = YZ plane; 2 = ZX plane; 3 - XY plane).
Each coordinate record is written in (3E15.8) format and contains the undeformed X,Y,Z coor-

| dinates of the corresponding node.

C5.6.2.6 Main Structure Node Data
1

One record is written for each main structure node in (IX,A4,IS,110,15,3E15.7) format.
Each record contains the following items. '

(1) Contro! point name.

(2) Node number (from COOR file).
(3) First word address in output buffer of results for this node.

(4) Pipe run number, set negative if node is at the beginning of a new model segment.
(5) Undeformed X coordinate.
(6) Y coordinate.
(7) Z coordinate.

C5.6.2.7 Element Data

One record is written for each output element in (215,Il0,1X,A4,215) format. Each
record contains the following items.

(1) Substructure number (0 = main structure).
(2) Element type number in WIPS-ANAL element library.
(3) First word address in output buffer of "sults for this element.

(4) Cmtrol point name at J end of element (main structure elements only).

(5) Circumferential (or OA) mesh location of element ifin a substructure. Node number at Jend if in main structure.
(6) Longitudinal (or OB) mesh location.

C5.6.2.8 Impact Data

One record is written for each impact surface pair in (IX,A4,15) format. Each record
contains the following items.

|
|

90

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _____
. . ..

1

(1) Surface pair name.
(2) First word address in output bufer of results for this surface.

C5.6.2.9 First Word Addresses
Records containing first word addresses are written for use in setting up the THOUT data

in the DATA file. One record is written for the main structure, plus one for each output sub-
structure (if any), plus one for each impact surface pair (if any).

The main structure and substructure records are written in (2110,415) format. Each
record contains the following items.

(1) First word address in output buffer of results for first node.

(2) First word address of results for first element.
(3) Displacement / velocity / acceleration code. Set to 3 for main structure (all 3 quantities at

each node) and I for substructures (displacements only).

(4) Rotation code. Set to I for both the main structure and substructures (rotations are not
output).

(56) Not used.
The impact surface records are written in (110,315) format. Each record contains the following |
items.

(1) First word address in output buffer of results for this surface pair. -

(2) Results type code. Currently - 1 (6 output items per surface pair).

(3-4) Not used.

|

91-

1

l

|
! C5.7 WIPS-DATA OPERATIONS |

C5.7.1 GENERAL
,

WIPS DATA reads a MODL Ale, accepts additional data on loading and time step control,
and produces a DATA Ale for WIPS ANAL. In addition, WIPS-DATA initializes ECHO,
SLOO, an'i RSLT Ales and creates empty PAUS and PAUZ Ales (if needed).

The DATA Ale is created by copying the MODL Ale (with some reorganization) and
adding load and solution control data. The form of the DATA Ale is described in Section C6.
The ECHO and SLOG Ales are merely created and initialized with a four-line description of the
analysis. The RSLT file is initishzed with the same analysis description plus a number of
records which enable WIPS RSLT to interpret the time history records created by WIPS-ANAI..

C5.7.2 RSLT FILE
Following the four line analysis description, the RSLT Ale is initialized with the following

data.

(I) The control record described in Section C5.6.2.3, excluding NNODAT.

(2) The substructure data described in Section C5.6.2.5.

(3) The main structure data described in Section C5.6.2.6.

(4) The element data described in Section C5.6.2.7. I

(5) The impact data described in Section C5.6.2.8.

(6) A record containing the word "LAST".

The NODAT array described in Section C5.6.2.4 is used by WIPS-DATA, then discarded. The
Arst word address data described in Section C5.6.2.9 is used by WIPS-DATA to construct the

,

THOUT command in the DATA Ale. |

|

|

93

. eSO*

-_ . .

. -

- - . ._-

DISCLAIMER

i

"T his document nas prepared as an account of work sponsored by an agency of the United States Goiernment. Neither
the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expreswd

or implied, or swumes any legal liability or responsibility for the accuracy, completeness, or usefulnew of any
information, apparatus, product, or proceu diwlowd, or reprewnes that its uw would not infringe privately owned
rights. Reference herein to any specific commercial product process, or wrtice by trade name, trademark, mar. fac-
turer, or othernIw, does not necessarily constitute or imply its endorwment, recommendation, or fatoring by the United

States Government or any agency thereof.The ,iews and opinions of authors espreswd herein do not necessarily state
or reflect thow cf the United States Goternment or any agency thereof.

This work was supported by the United States Nuclear Regulatory Comminion under a Memorandum of
Underwanding with the United States Department of Energy.

.

Assilande from
GPO Sale * Program

Diiision of Technical Infortantion and Document Control
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555

and

National Technical Information Sersice
Springfield. Virginia 22161

)

_ ______ _ _
.-

. . . , . . _ . m, . ;. - , . , . , . , , , , , , . , , - . ,. . , , , . , , . . , , , -

I .'IRC r om 335 1 nl t Ou r u *.'sE 4 s u snea o. Dbc-
U S NUCL E A R RE GUL A T CJH Y CC#.P.ilSSIONn ,,, fiUREG/CR-3686, Vol . 3
BIBLIOGRAPHIC DATA SHEET llCRL-15597

4 TI T L E A N D SUB it T LE (A cd Votume No , o f arorcer,a nel 2 (L eave tn an a l

WIPS--Compu 3r Code for Whip and Impact Analysis of Piping
Systems - rt C- Progr aimer's Manual 3 RECl S ACCESSION NO'

7. AUT HOHISI 5 DA REPORT COMPLE TE D

| YEAR/P , ,N T H1 arch 1983Graham H. Powel et al *
[DATE REPORT ISSUED9. PE HF OHMING OHG ANI, ilON N AME AND M AILING ADDHESS Itaciude 2,p Couct

Lawrence Livermor. flational Laboratory | YEARco~rw
JunePost Office Box 80 L-46 * Subcontractor. 1984

Livermore, Californ 94550 'Jniversity of California 6 " '' ' o'*" "

Berkeley, CA
(8 (Leave bianal

12. SPONSOHING ORG ANIZ ATION N, 4E AND M AILING ADDRESS (Include 2.0 Co $ p

Division of Engineering Tt hnology n CONTRACT NOOffice of fluclear Regulato Research
U.S. fluclear Regulatory Comn ssion
Washington, D.C. 20555 A0383-3

13 TYPE OF REPORT [[PE RioD cove at o (inclusive darest

Technical f
15. SUPPLEMEN T ARY NOTES 14 ft,,,, of,,i n

16. ABSTR AC T (200 words or lessi JY

tem $') is a special purpose computer code for theWIPS (Whip and Impact of Piping S s

structural analysis of pipe whip dynami effects following a postulated pipe ruptu,re.
WIPS has been developed primarily to p ide support for the pipe whip analysis proce-
dures described in Section 3.6.2 of t U. . fluclear Regulatory Commission Standard
Review Plan.

This report summarizes the purposh and ope of the WIPS development effort, identi-
fying those clauses in the standard R,eview P n which refer to pipe whip analysis, and
indicating how the WIPS code can befhsed to p vide supporting data. Detailed informa-
tion on use of the code is containeil in accomp ying reports which cover (1) use instrut -

tions, (2) theory, (3) programmin ' procedures, < d (4) verification examples.

1
I
!!y

[17e DES IPTORS17. KEY WORDS AND DOCUMENT ANALYSIS

oipe whip analysis J
structural analysis | '.nPs co e

i
i

17b. IDENTIFIERS! OPE N ENDE D TERMS

18 AVAILABILITY STATEMENT 19. SECURITY CLASS (This report / 21 NO OF PAGES
IIPC]gggiMgd

20. SECURITY CLASS (Th,s pap / 22. PRICE

N RC PORM 33$ (7 7 H

_ _ _ _ . ._ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ . _ _ _ _ __ -._

i

UNITED STATES
NUCLEAR RE3OLATORY COMMISSION [[37,[([^,55 ",^ ','73 ,3WASHINGTON, D.C. 2G25 usuc

,

| WASM aC
j Pt J ur f %,, 2 31

OFriCIAL BUSif.ESS
PEN ALT V FOA PR:V ATE USE, 04

I
_

