Grouping of Light Water Reactors for Evaluation of Decay Heat Removal Capability

•

Prepared by R. Karol, A. Fresco, K. R. Perkins

Brookhaven National Laboratory

Prepared for U.S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- The NRC Public Document Room, 1717 Street, N.W. Washington, DC 20555
- The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports, vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and parior cal articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

NUREG/CR-3713 BNL-NUREG-51752

Grouping of Light Water Reactors for Evaluation of Decay Heat Removal Capability

Manuscript Completed: November 1982 Date Published: June 1984

Prepared by R. Karol, A. Fresco, K. R. Perkins

Brookhaven National Laboratory Upton, NY 11973

Prepared for Division of Safety Technology Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN A3381

ABSTRACT

This grouping report provides a compilation of decay heat removal systems (DHRS) data for operating commercial light water reactors. The reactors have been divided into 12 groups based on similarity of the DHRS and related systems as part of the NRC Task Action Plan on Shutdown Decay Heat Removal Requirements.

TABLE OF CONTENTS

																																Page
ABS	TRAC	т									•																					111
SUM	MARY																	ķ	ų						÷							1
1.	INT	RODUC	TI	ON.																										7		2
2.	GRO	UPING	М	ЕТН	OD	0L	OG	Υ.									ļ															3
	2.1	Ris	k	Cri	tei	ri	a.																						į,			3
	2.2	Sco Per	pe fo	of rma	ti	he e	G	ite	up er	in ia	g .	Sti	udy	۷.	:	:	:	:	:	:	:	:	:	•	•	:	:	:	:	:	:	3 5
3.	WES	TINGH	00	SE	PL)	AN	Т	GR	00	PI	NG																					6
	3.1	Gro	up	#1 #2	:	•	•	•			•	1		•	•	•	•		•	•	1	•	ł	•		•		•	•	•	•	7
	3.3	Gro	up	#3 #4	:	:	•	•	:	:	:	:	•		:	:	•	:	:	•	:	:	:	•	:	•	:	•	:	•	:	9 10
4.	GEN	ERAL	ELI	ECT	RI	C I	PL	AN'	г	GR	001	PII	NG	•																		12
	4.1	Grou	up	#1 #2	:	:	•	•	•	:		:	•	•	•	•	:	•	:	:	•	:	•	•	•	:	•	•	•	•	•	13 13
	4.3	Grou	qu	#3 #4	:	:	:	•	•	:	;	•	:	:	•	•	:	•	:	•	•	•	:	•	•	•	•	•	•	:	:	14 14
	4.5	Grou	qL	#5	•	•	*	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
5.	COM	BOZII	JN	EN	GII	NEI	ER.	IN	a l	PL/	AN	F (GRO	001	211	VG	•	Ľ,	•	•	•	•	•	•	•	•	•	•	•	•	•	16
	5.1	Grou	dr	#1 #2	:	:	•	:	•	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	16 17
6.	BAB	COCK &	\$ 1	VIL(:0)	K 1	PLA	AN'	Т (GR	DUF	II	٩G			•	•	•	•			•	•	•	•				•		•	18
	6.1	Grou	q	#1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
7.	NEW	PLANT	rs.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	20
ACK	NOWLI	EDGEME	ENT	rs	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•				•		22
REF	EREN	CES.																														23

LIST OF TABLES

Table	Title	Page
1	SUMMARY OF KEY DHRS GROUPING CHARACTERISTICS FOR BWRs	24
2	SUMMARY OF KEY DHRS GROUPING CHARACTERISTICS FOR PWRs	25
3	PRINCIPAL DECAY HEAT REMOVAL SYSTEMS CONSIDERED IN THE GROUPING STUDY	26
4	WESTINGHOUSE DECAY HEAT REMOVAL SYSTEMS	27
5	WESTINGHOUSE GROUP #1 SIMILAR TO SURRY	30
6	WESTINGHOUSE GROUP #2 SIMILAR TO SEQUOYAH	31
7	WESTINGHOUSE GROUP #3	33
8	WESTINGHOUSE GROUP #4 MISCELLANEOUS PLANTS	34
9	DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #1	35
10	DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #2	39
11	DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #3	43
12	DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #4	47
13	DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #5	51
14	ABBREVIATIONS FOR GE GROUPINGS	54
15	GENERAL ELECTRIC GROUP #1	55
16	GENERAL ELECTRIC GROUP #2 SIMILAR TO MILLSTONE	56
17	GENERAL ELECTRIC GROUP #3 SIMILAR TO PEACH BOTTOM	57
18	GENERAL ELECTRIC GROUP #4 SIMILAR TO LIMERICK	58
19	GENERAL ELECTRIC GROUP #5 SIMILAR TO GRAND GULF	59
20	DHR SYSTEMS DATA FOR COMBUSTION ENGINEERING PLANTS IN GROUP #1.	60
21	DHR SYSTEMS DATA FOR COMBUSTION ENGINEERING PLANTS IN GROUP #2.	63
22	COMBUSTION ENGINEERING GROUP #1 SIMILAR TO CALVERT CLIFFS 1&2 .	66

vi

LIST OF TABLES (Cont.)

Table	Title	Page
23	COMBUSTION ENGINEERING GROUP #2 SIMILAR TO ARKANSAS NUCLEAR	
	UNE = #2	67
24	DHR SYSTEMS DATA FOR BABCOCK AND WILCOX PLANTS	68
25	BABCOCK AND WILCOX PLANTS SIMILAR TO ARKANSAS NUCLEAR ONE - 1 .	73

SUMMARY

The decay heat removal systems (DHRS) data have been compiled for the operating commercial light water reactors (LWRs) including those which were anticipated to be operating by 1982. In addition, several plants under construction with associated PRAs were included. These reactors have been divided into groups based on similarity of the DHRS and related systems. In summary, the Westinghouse plants have been divided into four groups; the General Electric plants have been divided into five groups; the Combustion Engineering plants have been divided into two groups; and the Babcock & Wilcox plants have been left as one group. Thus, a total of 12 groups have been identified. With the exception of plants in operation by 1970 (which are the subject of the Systematic Evaluation Program at the NRC), each group is quite cohesive and with minor exceptions, the decay heat removal system-related failures should be similar for each member within a group.

The key grouping characteristics for the BWRs are summarized in Table 1. Groups GE-1 and 2 are the older BWR units and many of them are the subject of the NRCs Systematic Evaluation Program. GE-3 and 4 comprise the bulk of the operating BWRs (17 of 24 units). The major difference between Groups 3 and 4 is the capability to operate the RHR system in the steam condensing mode which is estimated (NUREG/CR-1659 Vol. 4) to improve long-term availability by a factor of 10. GE-5 is comprised of the current generation BWRs.

The key grouping characteristics for the PWRs are summarized in Table 2. Groups W-2, C-E-2 and B&W-1 include the current generation plants from the respective PWR vendors. Group W-4 consists of the oldest units, all of which are being reviewed under the NRCs Systematic Evaluation Program. The units in Groups W-1 and W-3 have high auxiliary feedwater reliability but have distinctly different safety injection systems. The units in W-2 have moderate reliability for their auxiliary feed systems and a third type of safety injection system. Note that the current generation plants can accomplish feed and bleed cooling at operating pressures if both of the charging pumps are operating at rated flow, but if only one train is available, the units must depressurize to allow a safety injection pump to operate. Only Groups W-4 and B&W-1 can accomplish feed and bleed decay heat removal (1.0% power) with one safety injection train at operating pressures. The auxiliary feedwater reliability is emphasized in the PWR grouping scheme since neither the type nor number of auxiliary feedwater pumps correlates well with the previously assessed reliability.

1. INTRODUCTION

The objective of this study is to divide the existing nuclear plants into groups based on the design features of the DHRS for each plant. The groups will be defined such that front line DHR systems performance will be nearly identical within each group. While there are clearly design details (e.g., header and valve placement) that vary greatly from plant to plant, it is the expectation that commonality of function in major components will provide sufficient basis for grouping.

The results of the Reactor Safety Study (WASH-1400) and subsequent probabilistic risk assessments (PRAs) have indicated that failure of the decay heat removal system (DHRS) is a prominent contributor to the risk for the reactors studied. The Generic Issues Branch of the NRC has developed a plan(1) to assess the adequacy of decay heat removal systems in both existing and future light water reactors. While plant specific PRAs provide a direct measure of risk to the public, the perceived urgency of the problem precludes waiting until a PRA is developed for each plant. By separating the individual plants into groups having nearly identical DHR systems, it is expected that any decisions which affect DHR systems that can be justified on the basis of a plant specific PRA will apply to other members of the same DHRS group.

2. GROUPING METHODOLOGY

Many alternative approaches to grouping were considered but the fundamental requirement is that within one group the plants should perform identically (or nearly so) to identical DHRS challenges. Thus, the emphasis has been to group according to similarity of front line DHR systems as listed in Table 3. While the front line systems are similar among the various vendors, the response to DHRS challenges differs radically between vendors and no attempt has been made to incorporate more than one vendor in each group.

The recommended grouping scheme emphasizes the reliability of the auxiliary feedwater systems rather than specific design characteristics but important exceptions to the general classification are identified.

Due to the lack of reliability evaluations for individual safety injection systems, the groupings have used feed and bleed capability and redundancy as key indicators of high pressure injection (HPI) system performance.

2.1 Risk Criteria

Due to inherent uncertainties in consequence analysis and the variations in containment designs and population densities, we do not believe that the existing plants can be assembled into a small number of groups for which the consequence analyses in a given PRA would apply directly to each member of that group. Thus, rather than addressing societal risk directly, this investigation has concentrated on developing groups which can be expected to have similar core melt sequences. The acceptance criterion will then be core melt frequency. For example, Cave(2) has suggested an acceptable frequency of 2.5 x 10-5 for large-scale core melts per reactor year due to DHRS-related failures. Even if core melt frequency alone is later judged to be an inadequate measure for determining "undue risk to the health and safety of the public", the comparison should still be useful. For any given plant, the margin below the acceptable core melt frequency will provide an indication of whether a complete consequence analysis is required to judge acceptability of the risk. For plants that do not meet the criterion, the Task Action Plan(1) will determine whether upgrades to existing systems or dedicated DHR systems should be recommended.

2.2 Scope of the Grouping Study

The grouping study compiled data on the decay heat removal systems (as defined in Table 3) and the related support systems. Note that the Atmospheric Dump Valves (ADVs) on the steam generator have not been considered in the initial grouping study. On some plants the unreliability of the ADVs and their associated motive power may be a significant contributor to the unavailability of the steam generators during shutdown heat removal and Sandia and Oak Ridge are extending the grouping study to include the ADVs. Consideration of ADV reliability and degraded capacity (e.g., failure to open one valve) will be particularly important if credit is to be given to low pressure sources (e.g., fire protection pumps) for steam generator feedwater. Consideration was given only to the basic mechanical configuration of the DHRS, such as number and capacity of pumps, heat exchangers, etc. and whether electrical drawn from redundant Class IE electrical trains. Specific piping arrangment, electrical, instrumentation and controls details were not considered.

The grouping study does not address DHRS failures caused by external events (fires, fluods, tornadoes, etc.). Qualitative criteria such as separation and diversity will be developed at Sandia as part of the Task Action Plan (I) to cover such special emergencies.

The diesel generators and associated lube oil, cooling water and electrical equipment were not considered since these systems are being addressed in the NRC's Generic Issue A-44 (Station Blackout). NUREG/CR-3226⁽⁴⁾, Station Blackout report has taken a generic approach which indicates that for the typical PWR with two divisions of emergency power and two divisions of shutdown heat removal, blackout initiators become important. However, if the exclude the Systematic Evaluation Plants (pre-1970), give credit for multiple pumps on the same power division and credit for sharing of power and coolant systems between units, then there are only about 10 units which do not exceed the reference plant capability in some significant way. For BWRs with two emergency AC divisions and one or two AC independent condenser systems (representing about half of the existing BWRs), NUREG/CR-3226 indicates that blackout is an important contributor to core melt.

Consideration of containment cooling and related systems is beyond the scope of the present study. The effect of containment-related systems on core melt frequency and consequence analysis will be addressed in the Severe Accident Research and the Accident Sequence Evaluation Programs in the NRC Risk Analysis Division.

The specific plant data and recommended groupings for each reactor vendor are discussed below. The grouping criteria emphasizes similarity of the primary shutdown heat removal systems (auxiliary feedwater systems for the PWRs and isolation cooling for BWRs) but consideration is also given to other systems (high and low pressure coolant injection and RHR systems) as well as thermal hydraulic response (core size, steam generator size, number of loops, etc.). Although the NRC has not yet taken a position on the viability of feed and bleed as a heat removal method, considerable attention is paid to the feed and bleed capability as an indicator of the high pressure ECC system performance capability.

It is a basic belief that while the shutdown heat removal systems may be similar from one vendor to another, the design criteria and thermal/hydraulic response differ so much that any attempt to group more than one vendor together would be misleading. All of these considerations would appear to make grouping an impossible task except that the reactor designs evolved gradually to meet changing design and licensing criteria. This is particularly true of Westinghouse and General Electric whose early entries into the commercial reactor market are dramatically different from their current designs.

2.3 Performance Criteria

The performance criteria indicated in the FSAR are included with the plant data listing but it should be noted that these criteria are conservatively applied for a broad spectrum of accidents and they tend to be more conservative than the best estimate success criteria as currently used in the PRA's and auxiliary feedwater reliability assessments. In particular, the FSAR for most Westinghouse plants require two motor-driven pumps or one turbine pump for scucessful operation of the auxiliary feedwater system, but the reliability assessment (NUREG-0611) is based on the assumption that one pump is sufficient. Likewise, many of the Westinghouse plants require two out of four injection pumps to preclude core damage for the complete spectrum of small breaks, but the converse (that less than two operational HPI pumps will result in core melt) is clearly not the case. Combustion Engineering sizes their HPI pumps so that one is sufficient to remove decay heat but one pump does not preclude the core from being partially uncovered. General Electric also uses conservative performance criteria and neglects the mitigating effects of RCIC on loss-of-coolant accidents in their safety analysis reports but they have also documented (NEDO-24708) the systems performance capability for other than design transients. While many Westinghouse and Babcock & Wilcox units have three HPI pumps, only two of the three are power by emergency buses. The third pump is often used for maintenance.

3. WESTINGHOUSE PLANT GROUPING

The compilation of systems information for the various Westinghouse plants is given in Table 4. All information is based on the FSARs currently on file at BNL's Nuclear Safety Library and on the LWR safety systems survey performed at Oak Ridge.(3)

All currently operating Westinghouse PWRs were considered, but the following plants have sketchy data due to lack of nard-copy FSARs (or PSARs) at BNL: Haddam Neck Unit 1, North Anna Units 1 and 2, and San Onofre Unit 1.

The following Westinghouse PWRs which are expected to have an operating license by the end of 1982 were also considered: Callaway (SNUPPS) Units 1 and 2, Commanche Peak Units 1 and 2, Diablo Canyon Units 1 and 2, McGuire Units 1 and 2, and Virgil C. Summer Unit 1.

The total number of units considered was thirty-nine (39).

The following systems were considered: high pressure safety injection, CVCS charging (excluding boric acid tanks and pumps), low pressure safety injection, residual heat removal, auxiliary feedwater, component cooling, and essential service water.

In addition to the DHRS, there are also several plant design configurations which have an important impact upon the performance for DHRS failures and the atmospheric release, given that a core melt has occurred. In particular. Westinghouse reactors incorporate:

- Two basic containment designs (ice condenser or large dry) and several containment cooling systems which affect the release fraction. However, neither the containment type nor the containment cooling systems directly affect DHRS-related core melt frequency, and they have not been considered in the grouping.
- 2. Three different steam generator designs which affect accident progression for loss-of-feedwater events. The small inventory steam generators (Series 27 and 44) require twice the feedwater flow to prevent dryout as compared to the latter version (Series 51). The exception is Yankee Rowe, which has a very low heat load (150 MWt) for each of its four Series 27 steam generators.

It should be noted that the Sequoyah and Surry PRAs indicate that DHRS failures are dominant contributors to core melt events for Westinghouse plants if and only if the high and low pressure injection systems are included as part of the DHRS. The suggested grouping is shown in Tables 5 through 8 and the grouping criteria are discussed below.

3.1 Group #1

Group #1 contains all of the three loop plants except San Onofre, Robinson, and Turkey Point.

Criteria:

- All of the 8 units have been characterized as having high auxiliary feed reliability (NUREG-0611).
- All HPI systems are designed with sufficient head to lift the pressurizer relief valves with sufficient flow to remove one percent decay heat.
- All of the plants have two motor driven auxiliary feed pumps and one steam driven auxiliary feed pump.
- All of the plants have 157 fuel assemblies and primary system inventories which are sized proportionately to the full power level. This leads to similar thermal hydraulic behavior for identical accident sequences.
- 5. Each of the turbine driven auxiliary feed pumps is sized to deliver 200% of the decay heat load, while the motor driven pumps are sized to deliver 100% of the decay heat load.

Special Considerations:

1. All units have dry containments.

Conclusions:

With minor exceptions, the Surry DHRS seems to be very representative of the systems for the other plants in Westinghouse Group #1. Since Surry meets the suggested core melt criterion (slightly less than 2×10^{-5} DHRS-related core melts per year), the other plants in Group #1 should also be capable of meeting the criterion.

3.2 Group #2

Group #2 consists of the Westinghouse current generation four-loop plants, including eight units scheduled to begin operation by 1983.

Criteria:

 The plants in Group #2, for which the auxiliary feed systems have been evaluated, were judged (NUREG-0611) to have moderate reliability (a factor of 10 or more lower than the plants in Group #1), except the DC Cook units which have high reliability. Unfortunately, there is no specific design difference which accounts for this poor reliability. Rather, there was an assemblage of faults which led to the assessed lower reliability. This has two important ramifications:

- DHRS failures in other group #2 plants will be at least as important as they are in Surry.
- Auxiliary feedwater reliability evaluations of the new plants (not performed in NUREG-0611) should be conducted. This is presently being done in conjunction with the NRC Safety Evaluation Report for each new plant.
- 2. None of the operating four-loop plants have sufficient HPI head to lift the relief valves at flow rates capable of removing decay heat. However, the safety grade charging pumps appear to have sufficient capacity to accomplish feed and bleed heat removal at 1% decay heat for all but the Indian Point units which must first depressurize. Depressurization before injection may be preferable for some transients, but the PORVs are typically not safety grade and one or more failures may leave insufficient capacity for depressurization.
- 3. Most units have 2 motor driven auxiliary feed pumps and one turbine driven auxiliary feed pump, except DC Cook which is still judged (NUREG-0611) to have high auxiliary feed reliability due to sharing of the one motor driven pump per unit, and Trojan which has one diesel driven pump and one turbine driven pump, but a third auxiliary feed pump (motor driven) has been added. Since all of the plants have 3 auxiliary feedwater pumps per unit (except DC Cook), we conclude that they all should have high reliability like group W-1.
- All of the plants have 193 fuel assemblies and primary inventories which are sized in proportion to the design power level. This leads to similar thermal hydraulic behavior for identical accident sequences.
- Each of the steam driven auxiliary feed pumps delivers twice the motor driven pump capacity.
- All of the units have Series 51 steam generators with correspondingly large dryout times (about 35 minutes) except the Indian Point units, which have Series 44 steam generators and shorter dryout times (about 20 minutes).

Special Considerations:

- Most units have large dry containments except Sequoyah, DC Cook and McGuire, which have ice condensers.
- 2. The flow from one motor driven pump for the Indian Point units is insufficient to prevent dryout for the loss of main feedwater transient. This in turn would cause overpressurization of the primary system and lifting of the pressurizer relief valves. The possibility of a stuck open relief valve leads a loss of main feedwater to a small break transient.

- Changes to the auxiliary feed systems to improve the reliability of the Indian Point, Zion, Salem and Trojan units were suggested by the NRC (NUREG-0611), but the net effect on the relative reliability has not been assessed.
- 4. Full PRAs have been performed for the Zion and Indian Point units by the industry. These industry PRAs should help to establish the relative importance of design variations within the group. Such design variations will be important to consider in assessing DHRS adequacy (Subtask 3.2 of the Task Action Plan(1)) whether or not multiple PRAs are available for a specific group.

Conclusions:

The DHR systems for Westinghouse Group #2 plants appear to be well represented by Sequoyah. With two or more diesels per unit, emergency power availability can also be expected to be similar. The RSSMAP study estimates DHRS-related failures (including small break sequences) to slightly exceed the suggested(2) core melt criterion (2.5 x 10⁻⁵ per reactor year). Thus, plants in this group warrant special attention, particularly those judged to have lower AC power or auxiliary feedwater reliability than Sequoyah. Fortunately, the availability of industry PRAs for other units and Indian Point should aid in determining the cohesiveness of the group.

3.3 Group #3

Group #3 consists of the six small two-loop units and three three-loop units. Because there are no reference plants in this group for which a PRA is anticipated to be available, they are compared to Surry.

- Most of the auxiliary feed systems have been characterized as having high reliability (NUREG-0611) except the Prairie Island units which had a deficiency in technical specifications which has apparently been corrected.
- None of the HPI systems have sufficient head to lift the relief valves for feed and bleed operation, but the PORVs appear to have sufficient capacity to depressurize to the injection point (bleed and feed).
- 3. The three dual unit plants have only two auxiliary feed pumps per unit. However, sharing of the auxiliary feedwater between units is judged (NUREG-0611) to still give them high reliability. Ginna, Robinson and Kewaunee have one steam driven and two motor driven auxiliary feed pumps, as does Surry.
- 4. The steam driven auxiliary feed pumps are sized to prevent dryout for loss of main feedwater transients. Thus, steam driven auxiliary feed pumps for those units with the small steam generators have twice the flow of their respective motor driven pumps.

Special Considerations

- 1. All of the units have dry containments.
- Six of the units (Ginna, Robinson, Turkey Point and Point Beach) have the small (Series 44) steam generators and short dryout times (16 to 20 minutes), although the estimates in NUREG-0611 are somewhat inconsistent.
- 3. The longevity of these plants and the corresponding statistical evidence will allow for a DHRS reliability evaluation with a high degree of confidence in the result. This implies that the Precursor Program in the NRC Research Division will be useful in identifying whether severe accident sequences for this group are well represented by the Surry PRA. Based on operating experience from all commercial reactors the Precursor Report (NUREG/CR-2497) indicates that the overall risk per reactor year may be higher than indicated by the Surry PRA. However, it would appear more useful to apply the precursor results to cohesive groups of plants with extensive operating experience (e.g., Group #1 and #3 of the Westinghouse plants). As a minimum, a division between start-up experience and mature plants (greater than 2 years) should also be considered.
- 4. The Point Beach and Turkey Point units with only one diesel per unit should be more susceptible to blackout initiators than Surry. At Point Beach and Turkey Point two diesels are shared between two units, and one diesel can supply emergency load in one unit and shutdown loads in the other. In addition, susceptibility to blackout depends on offsite power system reliability as well as diesel generator system reliability and redundancy. The A-44 program is grouping plants into categories related to the susceptibility to station blackout.
- 5. The lack of diversity in the auxiliary feed trains for Turkey Point (each pump is turbine powered) necessitates special consideration of possible common cause failures. The Turkey Point units are apparently special cases which have less than two auxiliary feed trains per unit but satisfy present reliability requirements. They do not, however, satisfy motive power diversity suggested in the new Branch Technical Position.

Conclusions

The auxiliary feedwater reliability of Westinghouse Group #3 plants is well represented by Surry. However, the short steam generator dryout times for most of the units, the lack of feed and bleed capability in any of the units, and the lack of thermal/hydraulic similarity make Surry a poor reference plant for the group. As previously noted, the availability of operating data can provide a DHRS reliability evaluation which is characterized by a low degree of uncertainty. These reliability studies along with the ongoing systematic evaluation program will help quantify differences between these units and Surry.

3.4 Group #4

Group #4 consists of the three oldest plants, none of which fits logically into any of the previous groups.

Criteria:

- 1. They all have small steam generators (Series 27).
- They all were assessed (NUREG-0611) to have low auxiliary feed reliability.
- They have two auxiliary feed pumps, except Yankee Rowe which has added two motor driven pumps since the NUREG-0611 assessment.
- 4. They have high head pumps capable of lifting the safety valves for bleed and feed, except Yankee Rowe which cannot. The PORVs in Yankee Rowe appear to have sufficient capacity to depressurize to the injection point (bleed and feed).
- 5. All of the units have dry containments.

Special Considerations:

- No reference plant exists which has sufficient similarity for the PRA to apply to these plants.
- Each of these plants has been reviewed in the systematic evaluation program to examine the extent to which they meet current design criteria.

Conclusions

Although there is no reference plant for Westinghouse Group #4, the low auxiliary feedwater reliability would seem to make it unlikely that the members of this group can meet the DHRS core melt criterion. Again, evaluations of DHRS reliability from operating data may be useful and the ongoing Systematic Evaluation Program of these plants should provide valuable information as to the capability and limitations of the DHR systems.

4. GENERAL ELECTRIC PLANT GROUPING

- All currently operating General Electric BWRs were considered. Humbolt Bay, which has been shutdown permanently and is scheduled to be dismantled, was not included.
- The following General Electric plants which are expected to have an operating license by the end of 1982 were also considered: LaSalle Units 1 and 2, Shoreham and Zimmer.
- Limerick Unit 1 was considered since it has an industry PRA completed. It is the reference plant for BWR Group 4 plants. This plant is expected to be licensed in 1985.
- The total number of General Electric plants considered was thirty (30).
- LaCrosse is a small (50 MW) non-GE BWR which is not included in the grouping.
- 6. The following systems were considered:
 - Isolation condenser or reactor core isolation cooling;
 - RCIC steam condensing mode (generally considered to be an RHR mode)
 - High pressure core spray, high pressure coolant injection, feedwater coolant injection;
 - Automatic depressurization system;
 - Low pressure coolant injection;
 - Low pressure core spray;
 - Reactor shutdown cooling (residual heat removal);
 - Reactor vessel head cooling;
 - Suppression pool cooling;
 - Support systems related to cooling of components (i.e., RHR service water, emergency service water, reactor building cooling water, etc.).
- 7. The compilation of systems information for the various General Electric plants is shown in Tables 9 through 13. All information is based on the FSARs currently on file at BNL's Nuclear Safety Library and on the LWR safety systems survey performed at Oak Ridge.(3) The abbreviations for the General Electric systems data are given in Table 14 and the recommended groups are summarized in Tables 15 through 19.

4.1 Group i

Group #1 plants, with the exception of Nine Mile Point 1, are SEP plants.

Criteria:

- 1. None of these plants have jet pumps.
- 2. BWR types 1 and 2 comprise all the plants.
- All of the plants have isolation condensers rather than reactor core isolation cooling.
- 4. The feedwater coolant injection systems are not safety-related.
- All plants have a separate shutdown cooling system rather than shutdown cooling being shared with low pressure ECCS.

Conclusions

The Consumers Power Company PRA for Big Rock Point estimated a DHRSrelated core melt frequency which was well above Cave's suggested criterion. Although there are important differences in the reactor power level and containment, the similarities in the DHRS systems indicate that the other units will also have diffiulty meeting Cave's criterion. The Systematic Evaluation Program and the Precursor Program should provide additional information with regard to the capabilities and limitations of these units.

4.2 Group #2

Criteria:

- 1. All the plants are BWR Type 3.
- All of the plants have isolation condensers rather than reactor core isolation cooling.
- The plants have either a safety-related high pressure coolant injection or feedwater coolant injection system.
- 4. All of the plants have low pressure coolant injection systems.
- All of the plants have a separate shutdown cooling system rather than shutdown cooling being shared with low pressure ECCS.
- 6. All of the plants have reactor vessel head spray cooling.

Conclusions

The DHR systems of the General Electric Group #2 units are quite similar to the Group #1 systems except that their high pressure makeup (either FWCI or HPCI) is safety related. The Millstone IREP report (NUREG/CR-3085) also indicates that DHRS-related core melt sequences are well above Cave's suggested criterion. The Group #2 units are also part of the Systematic Evaluation Program which should provide additional insight to their capabilities and limitations.

4.3 Group #3

Criteria:

- 1. The plants are BWR Types 3 or 4.
- All of the plants have reactor core isolation cooling and high pressure coolant injection.
- All plants have a residual heat removal system which provides for low pressure coolant injection, shutdown cooling and suppression pool cooling.
- The steam condensing mode of RHR/RCIC is not a mode of operation at these plants.

Conclusions

The General Electric Group #3 plants are very close to the reference plant (Peach Bottom). Since the Peach Bottom PRA indicates that the plant meets the suggested DHRS-related core melt criterion, the other units should be capable of meeting the criteria as well. NUREG/CR-3226 would indicate that Quad-Cities may be vulnerable to blackouts with less than two diesels per unit. The Browns Ferry IREP report (NUREG/CR-2802) estimates that DHRS-related core melt frequency exceeds Cave's suggested criterion due principally to RHR vulnerability for long-term cooling, but no attempt was made to account for differences with the Reactor Safety Study.

4.4 Group #4

Criteria:

- 1. The plants are all BWR Type 4.
- All plants are similar to Group 3 with regard to decay heat removal systems, except the steam condensing node of RHR/RCIC is available.

Conclusions

The DHR Systems for General Electric Group #4 are similar to Group #3 except that an additional cooling mode (steam condensing) is available for the RHR system. By comparison to the Peach Bottom PRA, the Group #4 units should also be capable of meeting the suggested DHRS-related core melt criterion. The industry PRA for the reference plant (Limerick) also indicates that the DHRS-related core melt frequency will be lower than Cave's criterion.

4.5 Group #5

Criteria:

- 1. The plants are BWR Types 5 or 6.
- All plants are similar to Group 4 with regard to decay heat removal systems, except high pressure core spray (motor driven pumps) replaces the high pressure coolant injection (turbine driven pumps), and there is less redundancy in the reactor shutdown cooling mode of the RHR system.

Conclusion

General Electric Group #5 plants incorporate the latest changes the the DHR systems, replacing the HPCI with the HPCS having a dedicated diesel. NUREG/CR-3226 indicates that this gives substantial reduction in blackout related core melts. However, the RSSMAP report for the reference plant (Grand Gulf) indicates that the DHRS-related core melts would be slightly higher than the suggested criterion.

5. COMBUSTION ENGINEERING PLANT GROUPING

- 1. All currently operating Combustion Engineering PWRs were considered.
- San Onofre-2, which is expected to have an operating license by the end of 1982, was also considered.
- The total number of units considered was nine (9).
- 4. The following systems were considered: high pressure safety injection, CVCS charging (excluding boric acid tanks and pumps), low pressure safety injection, shutdown heat removal, auxiliary feedwater, component cooling, and essential service water.
- 5. The compilation of DHR systems information for the various Combustion Engineering plants is shown in Tables 20 and 21 and the recommended groupings are summarized in Tables 22 and 23. All information is based on the FSARs currently on file at BNL's Nuclear Safety Library and on the LWR Safety Systems Survey performed at Oak Ridge.(3)

5.1 Group #1

Criteria:

- All of the units have been characterized as having low to medium auxiliary feed reliability (NUREG-0635).
- 2. All of the units have manually initiated auxiliary feedwater systems.
- 3. None of the HPI pumps can lift the safety valves for feed and bleed cooling except Maine Yankee. However, all the plants in Group #1 have PORVs with sufficient capacity to depressurize and accomplish bleed and feed at about one percent decay heat levels.

Conclusions

The auxiliary feedwater systems for Combustion Engineering Group #1 has substantial variability in the number and type of pumps that are used, but they have been assessed (NUREG-0635) to have similar reliability. The other DHR systems are quite similar to those of the reference plant (Calvert Cliffs). Thus, Calvert Cliffs appears to be representative of the DHR System Performance for C-E Group #1. The Calvert Cliffs RSSMAP report indicates that the DHRS-related core melt frequency is an order of magnitude higher than the suggested criterion.

5.2 Group #2

Criteria:

- The units have been characterized as having medium auxiliary feed reliability (NUREG-0635), except San Onofre 2 which is assessed to have high reliability (NUREG/CR-2153).
- 2. The units have automatically initiated auxiliary feedwater systems.
- 3. The HPI pumps do not have the capability to lift the safety valves.
- Fort Calhoun and ANO-2 have PORVs with sufficient capacity to depressurize to accomplish bleed and feed decay heat removal.

Conclusions

Until a representative PRA becomes available for Combustion Engineering Group #2 plants, it will be difficult to make any conclusions with regard to the adequancy of their DHR systems.

6. BABCOCK & WILCOX PLANT GROUPING

- All currently operating B&W PWRs were considered (IMI-2 was not included). A total of eight (8) units were considered.
- The following systems were considered: high pressure safety injection (makeup and purification), low pressure safety injection, decay heat removal, emergency feedwater, component cooling systems, and service water systems.
- 3. The compilation of systems information for the various Babcock & Wilcox plants is shown in Table 24. All information is based on the FSARs currently on file at BNL's Nuclear Safety Library and on the LWR Safety Systems Survey performed at Oak Ridge. (3)

There appears to be no major differences in the B&W DHRS, and they have been assembled as one group. However, there are minor design differences that may be important for specific accident sequences. These design differences are highlighted in Table 25 and the grouping criteria are discussed below.

6.1 Group #1

- 1. All units have three nigh pressure safety injection pumps capable of lifting the power operated relief valves, at a flow sufficient for feed and bleed, except Davis Besse which is the only unit with separate makeup pumps capable of lifting the PORVs. However, the makeup pump flow rate at the PORV set point is insufficient to remove full decay heat. Each of the units has one PORV with sufficient capacity to depressurize, but even at 1600 psi Davis Besse would not be able to inject at sufficient flow rates to remove decay heat.
- All units have two low pressure safety injection pumps, except the Oconee units which have three each.
- All of the DHR systems have two coolers and utilize the low pressure safety injection pumps.
- 4. All of the emergency feedwater systems have one turbine driven pump and two half-sized or one full-sized motor driven pump, except Davis Besse which has two turbine auxiliary feed pumps.
- 5. All of the units have a once-through steam generator with sufficient inventory to prevent dryout for 25 to 30 seconds. However, for the once-through design the thermal center changes rapidly during dryout and only Davis Besse has sufficient elevation (in the "raised loop" design) to promote natural circulation for low steam generator levels. For the other units the emergency feedwater inlet is elevated to promote natural circulation.
- 6. All of the units have a small pressurizer (13% of the primary volume) which contributes to the frequency of overpressure transients which lift the relief valves. However, recent additions to the trip signals and relief setpoints may have eliminated this problem.

Conclusions

Although several Babcock & Wilcox plants (Crystal River, Oconee and Three Mile Island) have two motor-driven Emergency Feedwater Systems (EFS) pumps instead of one, the existing EFS reliability evaluation (BAW-1584) does not take credit for the additional pump. Thus, all of the Babcock & Wilcox plants are judged to have similar ESF reliability. With this qualification, the DHR systems for the Babcock & Wilcox plants are quite similar and they have been included as one group. The reference plant IREP report (NUREG/CR-2787) indicates that nearly all of the dominant core melt sequences involve DHR failures and the estimated frequency is above the DHR-related core melt criterion. This result is fairly consistent with the Oconee RSSMAP study, but the Crystal River IREP report indicates that core melt is much more likely for that plant.

7. NEW PLANTS

We have conducted a brief review of the nuclear plants presently undergoing an operating license review so that they may also be compared to any DHRS criteria that are developed. The review of new plants has been limited to the key DHRS characteristics outlined in Tables 1 and 2. On chis basis, most of these new units appear to fit into the grouping developed previously. Specifically:

- The new Westinghouse plants (Byron 1 and 2, Braidwood 1 and 2, Catawba 1 and 2, Seabrook 1 and 2, South Texas 1 and 2, Watts Bar 1 and 2, and Wolf Creek) are all current generation plants that are similar to the Westinghouse standard plant (SNUPPS) and appear to belong to Group W-2. There is some variation in the auxiliary feedwater systems in that three of the plants (Byron, Braidwood and Seabrook) have only one motor-driven pump and one turbine-driven pump per unit, but the reliability of all of the auxiliary feedwater systems will be assessed against the NRC's Standard Review Plan criterion. All of the units have feed and bleed capability at operating pressures using 2 charging pumps to remove 1% decay heat. They also have the capability to open PORVs to depressurize to the safety injection point if only one ECC train is available. The South Texas ECC system is somewhat different than the others in that it has 3 safety injection pumps instead of two and does not include the charging pumps in the ECC system. The South Texas units also have higher power levels than any of the other units in Group W-2 and appear to be a logical candidate for a detailed review of DHR systems.
- Three of the new General Electric plants (Hope Creek, Fermi 2, and Susquehanna 1 and 2) are BWR 4 Plants with the same key DHRS characteristics as those in Group GE-4 including the steam condensing mode of RHR heat removal. The other new General Electric plants (Clinton 1 and 2, River Bend 1 and 2, Washington 2 and Zimmer) are current generation plants with similar DHR systems to the GE-5 group including the AC powered HPCS system and the 3 loop LPCI system.
- Two of the three new Babcock and Wilcox plants (Bellefonte 1 and 2 and WPPS-1) have much larger power ratings than the operating B&W plants and appear to represent a new generation of plants not previously considered in the grouping scheme. However, based only on the key DHRS characteristics, all three plants (including Midland 1 and 2) fit readily into Group B&W-1. They all have 3 safety injection pumps any one of which is capable of lifting the PORVs at sufficient flow rates to remove 1% decay heat (i.e., feed and bleed). Also, they all have three auxiliary feedwater pumps per unit (Midland has committed to adding a second motor-driven pump). In this respect they will probably have better auxiliary feedwater reliability than the reference plant (ANO-1) which has only two auxiliary feedwater pumps.

All of the new Combustion Engineering plants (Palo Verde 1,2 and 3, St. Lucie 2, San Onofre 3 and Waterford) have similar DHR systems to Group C-E-2. All of the units have 1 turbine-driven and 2 motor-driven auxiliary feed pumps. None of the HPI pumps can lift the safety valves nor do any of the units have PORVs for depressurization to the injection point. Four of the units (St. Lucie 2 and Palo Verde 1, 2 and 3) have 2 high pressure injection pumps instead of 3. This reduction in HPI redundancy is consistent with the current generation System 80 design but only the Palo Verde units have the nigher power rating (3817 MW_t) specified for System 80 plants.

ACKNOWLEDGEMENTS

64

Special thanks are due to Mr. L. Cave of UCLA, Mr. A. Marchese of the NRC and Dr. R. A. Bari of BNL, who helped formulate the grouping concept. Thanks are also due to Drs. R. Youngblood and I. Papazoglou of BNL who contributed substantially to our understanding of auxiliary feedwater systems.

Carlos Carlos

REFERENCES

- A. R. Marchese, "Shutdown Decay Heat Removal Requirements," Task Action Plan A-45, Rev. 1, June 1982.
- L. Cave and W. E. Kastenberg, "A Quantitative Probabilistic Goal for Decay Heat Removal System Reliability," NUREG/CR-3778, SAND84-7126, to be published.
- F. A. Heddleson, "Summary of Light-Water-Reactor Safety Systems," NUREG/CR-2069, October 1981.
- A. M. Kolaczkowski and A. C. Payne, "Station Blackout Accident Analyses (Part of NRC Task Action Plan A-44)," NUREG/CR-3226, May 1983.

SUMMARY OF KEY DHRS GROUPING CHARACTERISTICS FOR BWRs

Group	Isolation Cooling	High Pressure Make-up	Low Pressure Make- LPCI	up Systems LPCS	RHR System
GE-1	Natural Circulation Isolation Condenser.	FWCI except Dresden has HPCI (none are safety). Big Rock Point has no high pressure makeup system. All require AC or steam power.	None	2 to 4 AC Power Redundant Loops.	Shutdown Cooling non-safety.
GE - 2	Natural Circulation Isolation Condenser.	HPCI except Millstone has FWCI (all are safety). All require AC or Steam Power.	4 AC Powered Pumps (33% each).	2 AC Powered Redundant Loops.	Shutdown Cooling Safety System.
GE-3	Turbine-Driven Pump (RCIC).	HPCI with Turbine Driven Pump	4 AC Powered Pumps (50% each). 2 Loops	2 AC Powered Redundant Loops.	4 AC Pumps. 2 Redundant Loops. No Steam Condensing Mode.
GE - 4	Turbine-Driven Pump (RCIC).	HPCI with Turbine Driven Pump	4 AC Powered Pumps (50% each). 2 Loops except Limerick which has 4 separate injection lines.	2 AC Powered Redundant Loops.	4 AC Pumps. 2 Redundant Loops. Steam Condensing Mode Available.
GE-5	Turbine-Driven Pump (RCIC).	HPCS with AC Pump	3 AC Powered Pumps (100% each). 3 Loops	1 AC Powered Loop.	3 AC Pumps. 3 Redundant Loops. Steam Condensing Mode Available.

24

SUMMARY OF KEY DHRS GROUPING CHARACTERISTICS FOR PWRs

Group	Aux. Feed Reliability(1)	Feed & Bleed(2) Capability(2)	Bleed & Feed (3) Capability	Number of High Head Injection Pumps	Number of Low Head Injection Pumps	RHR Independence	High Pressure Recirculation Requirements	Number of Steam Generators
W-1	High	Yes (2/3 HPSI Pumps)	Yes (1/3 HPSI Pumps)	3 Turkey Ft. has 2	2 Surry has 4	Dual Function LPSI (except Surry)	1/3 HPSI Pumps 1/2 LPSI Pumps	3
W-2	Moderate except Cook is high	Yes (2/2 Charging Pumps) except Indian Point	Yes (1/2 SI Pumps)	4 (Includes 2 Charging) except Indian Point has 3 Safety Injection Pumps	2 Indian Point has 4	Dual Function LPSI (except Indian Pt.)	1/2 Charging Pumps 1/2 LPSI Pumps	4
W-3	High except Prairie Is.	No	Yes (1/2 SI Pumps)	2 except Ginna and Robinso have 3	2 In	Dual Function LPSI	1/2 HPSI Pumps (assumes depres- surized) 1/2 LPSI	2 Robinson & Turkey Pt. have 3 each
W-4	Low	Yes (1/2 Charging Pumps) except Yankee Rowe	Yes	2 except Yankee Rowe has 3	2	Independent	Uaknown	4 San Onofre has 3
C-E-1	Low	No except Maine Yankee	Yes (1/3 SI Pumps)	3	2	Dual Function LPSI	1/3 SI Pumps	2 Maine Y.
L-E-2	Moderate San Onofre is High	NO	res except San Onofre	3	2	Dual Function	1/3 S1 Pumps	nas 3 2
83W-1	Moderate but on a different scale	Yes except Davis Besse	Yes except Davis Besse	3 Davis Besse has 4	2 Davis Besse has 3	Dual Function	1/3 S: Pumps 1/2 L ³ SI Pumps	2

- (1) Based on NUREG-0611, NUREG-0635, and BAW-1584 assessments.
- (2) Feed and bleed as used within this report means sufficient flow from the high pressure pumps at the PORV setpoint to remove 1% of full power.
- (3) Bleed and feed as used within this report means sufficient flow from the high pressure pumps to remove 1% of full power after depressurizing the primary system by opening the PORV's.

PRINCIPAL DECAY HEAT REMOVAL SYSTEMS CONSIDERED IN THE GROUPING STUDY

PWR Front Line Systems	
Auxiliary Feedwater System.	
High Pressure Injection System.	
Low Pressure Injection System.	
High Pressure Recirculation System.	
Low Pressure Recirculation System.	
Chemical and Volume Control System.	
Residual Heat Removal System.	
BWR Front Line Systems	
Isolation Condenser or Reactor Core Isolation Coolin	ıg.
High Pressure Core Spray, High Pressure Coolant Inje tion, Feedwater Coolant Injection.	ec -
Automatic Depressurization System.	
Low Pressure Coolant Injection.	

Low Pressure Core Spray.

Reactor Shutdown Cooling (Residual Heat Removal).

Steam Condensing Mode of RHR/RCIC.

Reactor Vessel Head Cooling.

Suppression Pool Cooling.

Support Systems Power Systems. Lubrication and Cooling. Control and Instrumentation. Coolant Supply Systems (Suction Sources).

WESTINGHOUSE DECAY HEAT REMOVAL SYSTEMS

NOTE: ALL DATA IS PER UNIT UNLESS OTHERWISE MOTED.

PLART	UNIT	TYPE	CORE -	HIGH	PRESSUR	E SAFETY	1	CVCS CHAR	DWID	1 3	PRESSURE	SAFETY	RESTINUAL HEAT	AUX	LIMY FEED	ATER	00	PORENT COOLT	86	1		ERVICE WATER	
		1	HO. OF	NO. C	TYPE	SUCTIO	NO. O	TYPE	SAFETY	NO. OF	TYPE	SOCTION	NO. OF TYPE SUCTION	NO. OF TYPE	31310	WALTTY STATE	17. 05	PINE	CAPACITY	10. 07	TYPE	CAPACITY	PRIMARY EST
T. SEOUSYAH REFERENCE 4 LOC	T & Z E PLART MPS	ICE COND,	HI	1	CENT	LPSIS	1	CENT. PO-VS	NO	1	CENT.	RCS. RNST. CONT. SUMP	DAUAL FUNCTION-LPST	Z NOT	N 445 EA SOL M 880	CH 2900 FT. 2/4 SGS 2600 FT.	S/3 BET. BOTH UNITS	CENT.	NOO 0000	R/BUTH UNITS 1 AUX.	VENT. CENT.	(EACH) 9000 CPM 180 FT. 12,600 GPM	SUCTION SOURCE SETSWIC T NECH. DRAFT AUX. CORA ING TOMERS
2. CALLAMAY (SNUPPS)	182	DRY	3425	2	CENT.	LPSIS	(NOT AS PI	CTNT. THE SAME I ER RESAR-J PO-VS	YES AS HIPST 1) MD	(AS PER	CENT. RESAR-3)	RCS, RWST, COWT, SUMP	OUAL FUNCTION-LPST (AS PER RESAR-3)	2 HOTO L STEA (AS	N 1200 PER SAMPPS	CH 1700 PST 3200 FT. PSAR)	4/2 (AS	HOR. CENT. PER SHUPPS P	100% EACH	AS PER	VERT. CENT.	155 FT. 1500 328 FT. 1005 EACH &	3/4 CELLS 9ED D SETSMIC T COOLING TOWERS 4 CELLS RETENTION POND
3. COMMANCHE PEAK	1 6 2	ORY	3425	1	CENT	AWST, LPSIS	2	CENT. PD-VS	NES	1	CENT.	RCS. RWST, CONT. SUMP	DUAL FUNCTION-LPST	2 MOTO	8 470 EAU 50% N 900	1107 P514	2/2	HOR. CENT.	14,700 GPH 226 FT. 100 1 EACH	1	VERT. CENT.	17,000 GPH 180 FT. 190 S EACH	SETSHIE I SAFE Shutdown (Afoundment
4. OCCOOK	182	TCE COMD.	1250	2	CENT.	NUST.	1	CENT.	VES	2	CENT.	RUST, CONT, SUMP	DUAL FUNCTION-LPST	I MOTO	450 900	SOE 2714 FT.	S PLAPS BET	. HOM. CENT.	9900 399	1	VERT. CENT.	10,000 GPH 145 FT.	SETSMIC T LAKE
S. DIABLO CANYON	142	TRY .	1130	1	CENT.	NWST, LPSIS	2	CENT. PO-VS	VES NO	1	CENT.	RCS. RWST. CONT. SUMP	DUAL FUNCTION-LPST	2 NOTO 1 STEAN PUNP	AND EAC M BOO PREFERRED FO	N 3300 FT.	3/2	HOM. CENT.	9200 GPH 145 FT,	1	VENT. CENT.	11,000 GPH 115 FT. 1005 EACH	SETSMIC I PACIFIC OCEAN INTAKE STRUCTURE
6. HADDAM NECK		788.4	1825	12			1				•			Z STEA	450 EA	H 1000 PSTA							
7. INDIAN POINT	2	DIRY	2758	3 1/3 RE	CENT.	RWST, LPSIS	3	P0-V5	NO	Z REC	CENT.	RECTRC. SUMP PUMPS	2 CENT. CONT. SUMP 2 MX INSIDE CONT. PUMPS ARE BACK-UP TO RECIRCULATION PUMPS	2 NOTO 1 ST*A	400 EAG 50% 800	N 1350 PSIG	3/2	HOM. CENT.	3600 GPM 220 FT.	6	CENT.	5000 GPH 220 FT.	SEISNIC I - HUDSON RIVER INTALE STRUCTURE
8. INDIAN POLINT	1	ORV	1025	3 1/3 RE	CENT.	LPSIS	1	PD-VS	но	REC	CENT.	RECIRC. SUMP PUMPS	2 CENT. RWST SUMP BACK-UP TO RECIRCULATION	2 9010	400 EA2 50%	H 1350 PSIG	3/2	HON. CENT.	3600 GPH 220 FT.	6	CENT.	5000 GPM 220 FT.	RIVER SEISHIC INTAKE
9. Megutar	182	TCE COMD.	7425	2	CENT.	RMST. LPSIS	2	CENT. PD-VS	YES NO	2	CENT.	RES. RMST, CONT. SUMP	DUAL FUNCTION-LPST	2 HOTO	450 EAC 50%	H 1872 PS16	4/2	CENT.	4300 CPH 130 FT.	2	HOR. CENT.	17,500 GPM 130 FT.	STANDEY SETSHIC T SWS POND
IO. SALEN	182	DRY	3338	2	CENT.	RWST, LPSIS	1	CENT. PD-VS	NO	1	CENT.	RCS. RWST. CONT. SUMP	DUAL FUNCTION-LPSI	2 NOTO	448 EAC 50% 800	N 1300 PSI 1550 PSI	3/2 NORMAL 1-2 1 POST LUCA 1	HOR, CENT.	4500 CPH 200 FT.	5 NORMAL	VERT. TURDINE 4/6 REQ'D	10,875 GPH 240 FT.	SETSHIC I INTAKE STRUCTURE

NOTE: PD-VS POSITIVE DISPLACEMENT - VARIABLE SPEED.

*Information not presently available. •• ••

- (1) In plants with 3 HPI pumps, delivery from one out of three is required for successful mitigation of small breaks but only two are powered by emergency buses and the third pump is generally offline.
- In plants with two safety grade charging pumps, the charging pumps perform the high pressure injection (2)0 40 .. function while the Safety Injection pumps have a shutoff head below operating pressures. Thus, there are four high head safety injection pumps and one of each type (2/4) is required by the FSAR to mitigate the full spectrum of small breaks.

10 4

TABLE 4 (CONT.)

	ON SOUNCE	E STRUCTURE.	NUTE NUTE	E INTAKE E INTAKE BUCTURE		ISARE I LE INTAKE NUCTURE	THE T LART	CHARTE LAKE DATEMAN INTAKE TUCTURE	TARE CANAL
-	SUCTI	INTAND COOK D COOK D	Puese.			Sec. Sec.	SET N	AIC STR	E E
STSTEN	(EACH)	20,000 G	8	22,000 UP		134 PT.	SON ENCO	6800 CM	17,500 G
	Provession of the second	J NERT, CENT, /)-MORPHAL OF. /)-MOST LOCA	J VERT. CENT.	6 BET. CENT. BOTH UNITS 22 /UNIT-DRENG, SHUTDO 19 /UNIT-DRENG, SHUTDO		1/1 NUMBER OF.	e cent.	6 BET. CENT. BOTH UNITS 2/6 MORMAL OF PER	2 01134 2 011544
	(EACH)	140. FT.	NAD 0002	4600 CM		2980 GM	3650 GM	1020 LT.	1000 CMC
WATER SYSTEM	PS/HAS TYPE C	3/2 HOM. CENT. 1	2/2 C8-11.	J RET. NOB. CENT. The units /just PEB unit-MORMAL OF /just PEB unit-COCCOMM /just PEB unit-COCCOMM		2/2 408. CENT. 19/144 40844.00.	2/2 HOR. CENT. 19/1401 HORMAL OF.	Z/1 HOW, CENT. HMX SHARED NET, UNITS HMS INTERCONNECTED	Z/4 CENT. PLANES INTERCOMMECTED BET. UNITS
AUTILIANT FLEMMATEN	NO. OF TYPE CAPACITY WE PLANE THE PLANE	1 571341 9401 1004 1 016341 940 14001 FT.	1 STEAM 90 1200 FST 2 CHARGENS A SIS SECURITION 2 MOTOR 100%	2 NOTON 152 TACH 1009 FT. 101 1 STEAM 1000 1009 FT. 100 20	AS REFERENCE	2 MOTOR 200 EACH 1114 P516 1 STEAR 400 EACH 501 2 MOTOR 200 EACH 501 1 STEARDY MARKED 100000	2 NOTON 240 EACH 100% 1 STEAM 240	I WOTCH 200 505 1 STEAM 400 1192 PSIG 1 STEAM 400 1192 PSIG PU	1/14/11 40104 220 1005 516 1/14/11 51544 220 1200 7516 14/16106 444 34244117 FEEDS
NESTDUAL HEAT	NO. OF TYPE SUCTION	DUAL FUNCTION-LPST	19/198 ACE L.P. SURGE TANK	DUAL FUNCTION-LPSI	ANTS - USE 3-LOOP SUBBY PLAN	2 NK	DOM. FUNCTION-CPSI	BUAL FURCTION-LPST	DUAL FUNCTION-LPST
LOW PRESSURE SAFETY	0. G TYPE SUCTION	Z VERT. CENT. MCS. MST. CONT. SUME	MC 2002 E	2 CENT. NOTON NCS. NAST. CONT. SUMM 1 CENT. DIESEL-DATIVEN	2-1000 11	Z NOR. CENT. N.S. NAST. CONT. SUM	Z CENT, RCS, RAST, RAST,	Z CERT. CAST. ANST. ANST. ANST. ANST.	Z CENY, RCS, ANST, ANST, SUMM
CVCS CHARGING	D. OF THE SULTY	(1540-100112001 Vond)	2 PO NOT	E CENT. NES (Duck FUECTION-#511) 1 PD-YS NO		08 SA-64 E	3 148-142 140	0% SA-94 E	24 SA-54 E
ALLAYS JACSSING MOLH	MUL OF TYPE SACTION	Z CENT. NAST.	115 MID 002	2 CERT, 2/0 10		3 CENT. NAST.	2 CENT. MAST.	2 CENT. RAST.	2 CONT. MAST.
COME	POMER MAIT	Sales	3는	S.		ozst	Tess	RIST	1650
COMT.	HAL	ANG	100	-		AN	480	180	AND
LAIMO		-	-	111		-	F	2.8.1	1 . 2
PLUET	MAN	INCOM	NAN T	MO12		1981	LINDEL	NAN W	JIAIVIA

reation not presently available

TABLE 4 (CONT.)

	PRIMARY CSF	SUCTION SOURCE SETSATC T RTOPS INTACE STRUCTURE	MANUE I SINGLAS	SATISATE STRUCTURE SATISATE T ATVEN INTAKE STRUCTURE.	SETSATC T	THEORETOWE		SETSHIC T SEAMATER	INTAKE STRUCTURE SECOND SAS POND
SERVICE WATER	CURCTTY	15,000 CM	NAD 0006	HAT DOOM	1200 CM		•	16,000 CM	18,600 GPM 87 FT. 1005 6005
	NO. OF 1795	TRED TO THE TANK	J WHY. COM	T THE	1 CON.	2/4 - POST LOCA		1/2 RUM	1/3 POST LOCA 3 WOM. CENT
	CURCIN	1	1700 GPM	6700 GM	NS.			7100 CM	11.700 GM
COMPONENT COC THE	NO. OF PLAN	2/2 NORMAL OF. FER URL	3/3 HOM. CENT.	3/5 NOL. CENT.	1/2 INCOMPLET	1/1 POST LOCA		3/3 408. CENT.	3/2 MOR. CENT. 2 SPEED PUMPS
ANY FEEDLATER	CONCITY CONCITY	350 EACH 504	350 EACH 508 FT.	150 505 150 505 1268 PSIG 700	154 0001 009 154 0001 009	150 EACH 500 FT.	124 2921 1065 PST	100 1110 FSI	400 EACH 505 1211 P516
LUXON	HALL OF THE	2 MOTS	2 HOTOR	Z NOTOR	ACTON 2	2 NOTOR	1010	J STEAM J STEAM UNE FURD NURM	C MUTOR
RESIDENT NEXT	PLANPS SOURCES	Z CENT. ENTINE SYSTEM INSIDE CONT NOT ESFS	DEML FUNCTION-LPSI	ISAT NOLLOW A TRIO	DUAL FUNCTION-LPSI		842/42	DUAL FUNCTION-UPSI	ISAT-WOLLAWGA THEO
LOW PRESSURE SUPER	NUMPS TYPE SQUACES	Z VENT, CONT, ACS, AGA, MAT REMOVAL BY ALL MAT REMOVAL BY RECIRC, SMAY SUBSYSTEM	Z CENT. NCS.	Z CENT. CONT. SUM	Z CENT, RCS, AKST, AKST, CONT, SAME			Z WENT, CENT. RES. NUST, CONT. SUST	Z CIMT. RCS. RMST. COMT. SLAV
CYCS CHARGENE SYSTEM (2)	TUNE THE SAME	ISee	2 CENT. NES (DUAL FUNCTION-NESI) 1 PO NO	DUAL FUNCTION	ASSURE DUAL FUNCTION- ASSURE DUAL FUNCTION-	DUAL PUNCTION	2 2081. 165	2 00-12 00 00	DUK FUKTON
ECTION STSTEN(1)	SQUACES		CENT. NUST, UPSIS	CERT. MAST.	CENT. MAST.	CDM.		CENT. RAST. (CROSS- TIED)	CENT. MAST. USIIS.
R MUT IN	Same Sa	il.	5		8	-	7	r.	
1004 34	LOO LOO	ar E	ar a	er	er	ar 	Et .	Rr .	£r
		and in the	-	2.	~	1 2 Sue-	-		-
N.	AND	NETERENCE PL	VALLEY .	L LINKA	RUB INSON	1 NINT	34.0540	POINT 7	VIBGIL C.
PRELIMINARY DHRS GROUPING WESTINGHOUSE GROUP #1 SIMILAR TO SURRY (RSS)

PLANT	POWER (MW)	LOOPS	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
SURRY 1,2	2441	3	DRY, SUB ATOMS.	REFERENCE PLANT	PRA (WASH-1400)
BEAVER VALLEY	2652	3	DRY	2 HPI PUMPS AUX FEED FROM RWST, FPS, RIVER NO AUX FEED FROM SISTER PLANT	
FARLEY, 1,2	2660	3	DRY	3 AUX FEED TRAINS AUX FEED FROM CST AND SERV. WATER NO AUX FEED FROM SISTER PLANT SAFETY GRADE RHR	
NORTH ANNA 1,2	2775	3	DRY, SUB ATMOS.	AUX FEED FROM CST, SERV. WATEP AND FPS	
V.C. SUMMER	2785	3	DR Y	NO AUX FEED FROM SISTER PLANT	

PRELIMINARY DHRS GROUPING WESTINGHOUSE GROUP #2 SIMILAR TO SEQUOYAH (RSSMAP)

PLANT	POWER (MW)	LOOPS	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
SEQUOYAH 1,2	3411	4	ICE CONDENSER	REFERENCE PLANT	PRA (RSSMAP; INDUSTRY)
DIABLO CANYON 1,2	3338	4	DRY	3 HPI PUMPS	EARTHQUAKE
INDIAN POINT-2	2758	4	DR Y	NON SAFETY RHR AUX FEED FROM CST, CITY 3 HPI PUMPS	PRA (INDUSTRY)
INDIAN POINT-3	3025	4	DRY	NON SAFETY RHR AUX FEED FROM CST, CITY 3 HPI PUMPS	PRA (INDUSTRY)
ZION 1,2	3250	4	DRY	AUX FEED FROM CST, SERV. WATER	PRA (INDUSTRY)
DC COOK 1,2	3250	4	ICE CONDENSER	AUX FEED FROM CST, SERV. WATER AUX FEED FROM SISTER PLANT 1 MOTOR-DRIVEN AUX FFED PUMP PER UNIT	2 DIESELS PER UNIT

TABLE 6 (CONT.)

PLANT	POWER (MW)	LOOPS	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
SALEM 1,2	3338	4	DRY	3 AUX FEED TRAINS AUX FEED FROM RWST, SERV. WATER FIRE PROT. AND AUX FEED STORAGE	
TROJAN	3411	4	DRY	1 DIESEL DRIVEN AUX FEED PUMP	THIRD AUX FEED TRAIN BEING ADDED
CALLAWAY 1,2	34 25	4	DRY		
COMMANCHE PEAK 1,2	34 25	4	DRY		
MCGUIRE 1.2	34.25	4	ICE CONDENSER		

PRELIMINARY DHRS GROUPING WESTINGHOUSE GROUP #3

PLANT	POWER (MW)	LOOPS	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
SURRY (REPEATED)	2441	3	DRY SUB ATMOS	REFERENCE PLANT	RSS PLANT
PRAIRIE I. 1,2	1650	2	DRY	1 AUX FEED MOTOR AUX FEED FROM CST AND SERV. WATER	2 DIESELS PER UNIT
KEWAUNEE	1650	2	DRY	AUX FEED FROM CST AND SERV. WATER	2 DIESELS PER UNIT
POINT BEACH 1,2	1518	2	DRY	1 AUX FEED MOTOR AUX FEED TRAINS HAVE COMMON PIPING AUX FEED FROM CST AND SERV. WATER	1 DIESEL PER UNIT
GINNA	1520	2	DRY	3 AUX FEED TRAINS MANUAL ACTUATION OF STANDBY AUX FEED MOTOR AUX FEED FROM CST, SERV. WATER AND CON- DENSER HOTWELL	2 DIESELS PER UNIT SEP PLANT
TURKEY POINT 3,4	2200	3	DRY	2 HPI PUMPS PER PLANT 3 AUX FEED TRAINS 3 AUX FEED TURBINE PUMPS AUX FEED FROM CST ONLY	1 DIESEL PER UNIT
ROBINSON	2200	3	DRY	AUX FEED FROM CST, SERV. WATER AND DEEP WELL NO AUX FEED FROM SISTER PLANT	2 DIESELS PER UNIT

PLANT	POWER (MW)	LOOPS	CGNTAINMENT	DHRS DIFFERENCES	COMMENTS
HADDAM NECK	1825	4	DRY	2 AUX FEED TURBINES NO AUX FEED MOTORS MANUAL AUX FEED ACTUATION AUX FEED FROM RWST ONLY	2 DIESELS PER UNIT SEP PLANT
AN ONOFRE 1	1347	3	DRY	1 AUX FEED MUTUR (MANUAL) 1 AUX FEED TRAIN AUX FEED FROM CST, SERV. WATER, FIRE PROT.	2 DIESELS PER UNIT SEP PLANT
VANKEE DONE	600	4	DRY	2 AUX FEED MOTORS	SEP PLAN

PRELIMINARY DHRS GROUPING WESTINGHOUSE GROUP #4 MISCELLANEOUS PLANTS

T1	۱D			0
1.4	٩D			4
		-	-	- C

DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #1

	DRESDEN 1	BIG ROCK POINT	NINE MILE POINT 1	OYSTER CREEK
CORE MWT	700	240	1850	1930
BWR TYPE	1	1	2	2
JET PUMPS	NO	NO	NO	NO
CONTAINMENT TYPE	DRY	DRY	MK-1	MK-1
# RELIEF VALVES	10	8	6	5
# SAFETY VALVES	2	6	15	16
ISOLATION COND.				
<pre># Installed Capacity Makeup Water Power</pre>	1 100% Demin Water DC	1 100% Fire or Demin Water DC	2 100% Each Gravity Feed Tanks or CST DC, NOTE: Makeup re- quires AC (D.G.) for cond. trans. pump or a diesel driven fire Pump.	2 100% Each Storage tank or pond DC, NOTE: Makeup re- quires AC (D.G.) for cond. trans. pump or one of two diesel driven fire pumps.
HPCI				
# Pumps Suction Power	2 HPCI Storage Tank DC. AC (DG)	Not Installed	Not Installed	Not Installed

TARLE	0	(CONT	1
INDLL.	2	10011.	1

	DRESDEN 1	BIG ROCK POINT	NINE MILE POINT 1	OYSTER CREEK
FWCI				
# Pumps	*	Not	2	2
Capacity	*	Installed	Elec. pump-25,000GPM 700psig Turb. pump-11,000GPM @ 700psig	7000GPM @ 700psig
Power	* <u>NOTE</u> : FWCI is not a safety system		AC or Steam NOTE: FWCI is not a safety system.	AC NOTE: FWCI is not a safety system.
LOW PRESS CORE				
# Pumps	3	2	8 (4 sets of main/ topping pumps)	8 (4 sets of main/ booster pumps)
Capacity	*	*	4-100% trains, 3400 GPM @ 113psid	4-100% trains, 3400 GPM @ 285psid
Suction Power	Lake or river AC (D.G.)	Lake or river AC (D.G.)	Supp. pool AC (D.G.)	Supp. pool AC (D.G.)
Support		*	*	RBCLCW-room coolers NOTE: two 2000GPM fire pumps provide a backup to core spray.
ADS # Valves	*	8 reliefs used	6 reliefs used	5 reliefs used
Power	DC	DC	DC	DC

TABI	E	9	(CON	Τ.]	1
	-				-

	DRESDEN 1	BIG ROCK POINT	NINE MILE POINT 1	OYSTER CREEK
SHUTDOWN COOLING				
# Pumps	*	2	3	3
# Heat Exchangers	*	2	3	3
Capacity	*	*	*	*
Power Support	Offsite AC CCW, Plant Air	AC (DG) RCWS	AC (DG) RBCCWS-Pump coolers and heat exchangers	AC RBCLCW-Pump coolers and heat exchangers
		NOTE: Shutdown cooling is not a safety system		
REACTOR VESSEL HEAD SPRAY COOLING	Not Installed	Not Installed	Not Installed	YES
# Pumps	Has Dry Containment	Has Dry Containment	4	4
# Heat Exchangers	ooneurnmenro		4	*
Capacity Power			Two 100% Loops AC (DG)	Two 100% Loops AC
Support			RW-Cools heat exchangers	*
DIESEL GENERATORS	YES	1 (plus 1 portable)	2 (Need 1)	3

TABLE 9 (CONT.)

	DRESDEN 1	BIG ROCK POINT	NINE MILE POINT 1	OYSTER CREEK
SUPPORT SYSTEMS *	*	 SW-2 Pumps. Re- quires offsite AC power. Cools RCWS. 	1) SW-2 100% Pumps, 20,000 GPM each. Cools RBCCWS.	1) 2 Pumps. Cools RBCLCW.
		 RCWS-Cools the Reactor Shutdown Cooling heat exchangers. 	2) ESW-2 100% Pumps, 3600 GPM each. Cools RBCCWS on loss of offsite AC.	 2) RBCLCW-1 main and booster pump. 3400 GPM. Cools Core Spray pump room, Reactor Shutdown Cooling pumps and heat exchangers.
			3) kBCCWS-3 Pumps and 3 exchangers each 50% capacity, 4500GPM per pump. Cools Reactor Shutdown Cooling pumps and heat exchangers	 Fire Water System- This is a backup supply for makeup water to the iso. cond.
			4) Containment Spray Heat Exchangers Raw Water Pumps-AC (D.G.). Cools supp. pool cooling heat exchangers.	
			 Fire Water System - This is a backup supply for makeup water to the iso. cond. diesel driven pump rated at 2500GPM, 125psig 	

DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #2

	MILLSTONE 1	DRESDEN 2&3
CORE MWT	2011	2527
BWR TYPE	3	3
JET PUMPS	YES	YES
CONTAINMENT TYPE	MK-1	MK-I
# RELIEF VALVES	3	5
# SAFETY VALVES	16	20
ISOLATION COND. # Installed Capacity Makeup Water Power	* * CST, Fire water storage tanks. DC. <u>NOTE</u> : Makeup requires AC for cond. tran. pumps or a diesel driven fire pump.	1 100% CST, Fire Protection Storage Tanks DC. <u>NOTE</u> : Makeup requires AC (D.G.) for cond. trans. pumps or a diesel driven fire pump.
HPCI # Pumps Capacity Suction Power	Not Installed	2 (One main, one booster). 5600GPM 0 165 to 1135psid. CST, supp. pool. DC, Steam.

TABLE 10 (CONT.)

	MILLSTONE 1	DRESDEN 2&3
FWCI		
# Pumps	3 Sets of cond., cond. booster, and FW Pumps	
Capacity	Each set 100%, 8000GPM @ 100 to 1125psid.	Not
Power	AC (Gas T.G.)	Installed
Support	TBSCWS - Cools pumps	
	NOTE: This is a safety system	
LPCI		
# Pumps	4 (33% each)	4 (33% each)
# Heat Exchangers	2	2
Capacity	7500GPM @ 165psid, 15000GPM @	8000GPM @ 200psid for 3 out of
	Opsid for 3 out of 4 pumps.	4 pumps.
Suction	Supp. pool	Supp. Pool
Power	AC (D.G. or gas T.G.)	AC (D.G.)
Support	ESW-Cools heat exchangers.	ESW-Cools heat exchangers.
LOW PRESS. CORE SPRA	Y	- (
# Pumps	2 100% Loops	2 (100% each)
Capacity	3600GPM @ 90psid	4500GPM @ 90ps1d
Suction	Supp. pool	Supp. Pool
Power	AC (D.G. or gas T.G.)	AC (0.6.)
Support	*	

TABLE 10 (CONT.)

	MILLSTONE 1	DRESDEN 2&3
ADS		
# Valves	• • • • • • • • • • • • • • • • • • •	5 Reliefs used
Power	DC	DC
SUPP. POOL COOLING		
Description	Uses LPCI pumps and heat exchangers with only one pump and heat exchanger required.	Uses LPCI pumps and heat exchangers.
Support	ESW-Cools heat exchangers.	ESW-Cools heat exchangers.
SHUTDOWN COOLING		
# Pumps	2	3
# Heat Exchangers	2	3
Capacity	2900GPM per pump	6750CPM per pump
Power	AC	
Support	RBCLCW-Cools heat exchangers.	RBCLCW-Cools pumps and heat exchangers.
REACTOR VESSEL HEAD COOLING		
# Pumps	2	2 (100% each)
Capacity	• • • • • • • • • • • • • • • • • • •	170GPM per num
Suction	CST	ret
Power	AC	AC
DIESEL GENERATORS	1 D.G. and 1 air cooled gas T.G.	3 (1 DED per unit, 1 shared) only need 1 per unit.

TABLE 10 (CONT.)

	MILLSTONE 1	DRESDEN 2&3
SUPPORT SYSTEMS	 Station SW-4 pumps, 10,000GPM. AC (D.G.). Cools D.G., RBCLCW, and TBSCWS heat exchangers. 	 SW-3 pumps, 15,000GPM each. AC (D.G.). Cools RBCLCW.
	 ESW-4 50% pumps, 2500GPM @ 425 ft. TDH each. AC (D.G. or gas T.G.). Cools LPCI heat exchangers. 	 ESW-4 50% pumps, 3500GPM @ 435 ft. TDH each. AC (D.G.). Cools LPCI Heat exchangers.
	 RBCLCW-2 pumps, 3 heat exchangers. 4200GPM per pump. Cools shutdown cooling pumps and heat exchangers. 	 RBCLCW-3 pumps. 8800GPM per pump. Cools shutdown cooling pumps and heat exchangers.
	 TBSCWS-2 pumps, 100% each and 2 heat exchangers, 50% each. 1800GPM per pump. Cools FWCI pumps. 	 Fire Protection System-This is a backup supply for makeup water to the iso. cond. Uses a diesel drive pump.
	 Fire Protection System-This is a backup supply for makeup water to the iso. cond. Uses a diesel driven pump. 	
	* INFORMATION NOT CURRENTLY AVAILABLE.	

DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #3

	PEACH BOTTOM 2&3	PILGRIM	MONTICELLO	QUAD CITIES 1&2	VERMONT YANKEE	BROWNS FERRY 1,2&3
CORE MWT	3293	1998	1670	2511	1593	3293
BWR TYPE	4	3	3	3	4	4
JET PUMPS	YES	YES	YES	YES	YES	YES
CONTAINMENT TYPE	MK-I	MK-I	MK-I	MK-I	MK-I	MK-I
RELIEF	11	3	4 (SRV's)	5	4	11 (SRV's)
SAFETY	2	2	4	8	2	2
CIC Pumps Capacity Suction Power Support	1 600GPM from 525 to 2800 ft TDH CST, Supp. Pool DC *	1 400GPM from 525 to 2800 ft TDH CST, Supp. Pool DC RBCLCW-area cooler	1 400GPM from 525 to 2800 ft TDH CST, Supp. Pool DC ESW-area cooler	1 525GPM from 525 to 2800 ft TDH CST, Supp. Pool DC *	1 400GPM from 525 to 2800 ft TDH CST, Supp. Pool DC *	1 616GPM @ 1120 psid CST, Supp. Pool DC *
PCI # Pumps Capacity	one main, one booster 5000GPM 0 1120psid	one main, one booster 4250GPM from 135 to 1135psid	one main, one booster 3000GPM from 135 to 1135psid	one main, one booster 5600GPM from 150 to 1125psid	one main, one booster 4250GPM @ 1120psid	one main, one booster 5000GPM @ 1120psid
Suction Power Support	CST with auto- transfer to supp. pool DC *	CST with auto- transfer to supp. pool DC RBCICW-area cooler	CST with auto- transfer to supp. pool DC ESW-area cooler	CST with auto- transfer to supp. pool DC *	CST with auto- transfer to supp. pool DC	CST with auto- transfer to supp. pool DC

TABLE 11 (CONT.)

	PEACH BOTTOM 2&3	PILGRIM	MONTICELLO	QUAD CITIES 1&2	VERMC'T YANKEE	BROWNS FERRY 1,283
LPCI # Pumps Capacity Suction Power Support	4 (part of RHR) 10,000GPM @ 20 psid each Supp. pool AC (D.G.)	4 (part of RHR) 4800GPM @ 20 psid each Supp. pool AC (D.G.) RHRSW cools heat exchanger; RBCLCW cools pumps and area coolers	4 (part of RHR) 4000GPM @ 20 psid each Supp. pool AC (D.G.) RHRSW cools heat exchanger; RBCLCW cools pump seals; ESW cools pump motors	4 (part of RHR) 4830GPM 0 20 psid each Supp. pool AC (D.G.) RHRSW cools heat exchanger	4 (part of RHR) 7200GPM @ 20 psid each Supp. pool AC (D.G.) RHRSW cools heat exchanger; RBCLCW cools pump cooler	4 (part of RHR) 10,000GPM @ 20 psid each Supp. pool AC (D.G.) RHRSW cools pump room coolers and heat exchangers
LOW PRESS. CORE SPRAY # Pumps Capacity Suction Power Support	4 3125GPM @ 122 psid each Supp. pool AC (D.G.) *	2 (100% each) 3600GPM 0 104 psid each Supp. pool AC (D.G.) RBCLCW-cools pump bearings	2 (100% each) 3020GPM @ 307 psid each Supp. pool AC (D.G.) ESW-cools pump motor	2 (100% each) 4500GPM @ 90 psid each Supp. pool AC (D.G.) *	2 (100% each) 3000GPM @ 120 psid each Supp. pool AC (D.G.) RBCLCW-cools pump coolers	2 (100% each) 3125GPM @ 122 psid each Supp. pocl AC (D.G.) RHRSW-cools pump coolers
ADS # Valves Power	5 reliefs used DC	3 reliefs used DC	3 SRV's (need 2) DC	* 00	4 reliefs used DC	* DC
SUPP. POOL COOLING Description Support	Uses RHR pumps and heat exchangers High press. SW cools heat ex- changers	Uses RHR pumps and heat exchangers RHRSW cools heat exchangers; RBCLCW cools pumps and area coolers	Uses RHR pumps and heat exchangers RHRSW cools heat exchangers; RBCLCW cools pump seals; ESW cools pump motors	Uses RHR pumps and heat exchangers RHRSW cools heat exchangers	Uses RHR pumps and heat exchangers RHRSW cools heat exchangers; RBCLCW cools pump coolers	Uses RHR pumps and heat exchangers RHRSW cools pump room coolers and heat exchangers

TABLE 11 (CONT.)

	PEACH BOTTOM 2&3	PILGRIM	MONTICELLO	QUAD CITIES 182	VERMONT YANKEE	BROWNS FERRY 1,2&3
RHR				4	4	4
# Pumps	*	•	•			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
changers	4	2	2	2	2	4
Capacity	10,000GPM 0 20 psid each	4800GPM @ 20 psid each	4000GPM @ 20 psid each	4830GPM @ 20 psid each	7200GPM @ 20 psic each	10,000GPM @ 20 psid each
Power Support	AC (D.G.) High press. SW cools heat ex- changers	AC (D.G.) RBCLCW cools heat exchangers, pump cooler, area cooler	AC (D.G.) RHRSW cools heat exchangers; RBCLCW cools pump seals; ESW cools pump motors	AC (D.G.) RHRSW cools heat exchangers	AC (D.G.) RHRSW cools heat exchangers; RBCLCW cools pump coolers	AC (D.G.) RHRSW cools heat exchangers
DIESEL GENERATORS	4 (2 per unit)	2	2	3 (1 DED per unit, one shared)	2	Units 1 & 2 share 4 D.G.(2 per unit) Unit 3 - 4 D.G.
SUPPORT	1) High Press. SW cools RHR heat ex- changers	 RHRSW cools RHR heat exchanger. AC (D.G.) Salt SW-5 pumps rated at 2700GPM, 55 ft. TDH each. Cools RBCLCW heat exchangers. RBCLCW-Two 100% loops with 3 pumps per loop. 1700GPM @ 100 ft. TDH each pump. Each loop has l heat exchanger. AC (D.G.) Cools RHR heat exchangers, 	 RHRSW-4 pumps in two trains of 2 pumps. 50% capac- ity per pump. Sup- plies PHR heat ex- changers. Plant SW - This is not a safety system. Three 50% capacity pumps. Cools RBCLCW heat exchangers. ESW-Cools D.G.'s and RHR pump motor. RBCLCW-Two 100% pumps with three 50% 	1) RHRSW-4 pumps 7000GPM @ 750 ft TDH TDH each. AC (D.G.) cools RHR heat ex- changer.	 RHRSW-2 main and 2 booster pumps, 2700GPM per pump. one main and one booster are 100% capacity. AC (D.G.) Supplies RHR heat exchangers. SW-4 pumps, 3350 GPM @ 250 ft TDH each. AC(D.G.) Cools RBCLCW heat exchangers and die- sel generator. RBCLCW-Two 100% pumps and heat ex- 	1) RHRSW-8 pumps shared between the 3 plants. 4500GPM per pump.

TABLE 11 (CONT.)

	PEACH BOTTOM 2&3	PILGRIM	MONTICELLO	QUAD CITIES 182	VERMONT YANKEE	BROWNS FERRY 1,2&3
SUPPORT SYSTEMS (Cont'd)		RCIC area coolers, and core spray pump bearings.			TDH. AC (D.G.) Cools RHR and core spray pump coolers.	
					Note: RHRSW pump suction from the SW system or Alter- nate Cooling Water System. This alter- nate supply is used if Vernon Dam fails. It supplies the RHR pumps from cooling towers for up to one week.	

*Information not currently available.

DHR SYSTEMS DATA FOR GENERAL ELECTRIC PLANTS IN GROUP #4

	LIMERICK 1	HATCH 182	COOPER	DUANE ARNOLD	FITZPATRICK	BRUNSWICK 182	SHOREHAM
CORE MWT	3293	2436	2381	1658	2436	2436	2436
BWR TYPE	4	4	4	4	4	4	4
JET PUMPS	YES	YES	YES	YES	YES	YES	YES
CONTAINMENT TYPE	MK-II	MK-I	MK-I	МК-1	MK-I	MK-1	MK-II
# RELIEF VALVES	14(SRV'S)	Unit 1-11(SRV'5) Unit 2-9	8	6	9(SRV'S)	Unit 1-9(SRV'S) Unit 2-10(SRV'S)	11(SRV'S)
# SAFETY VALVES	NONE	Unit 1 - None Unit 2 - 2	3	2	2	2	NONE
RCIC # Pumps Capacity Suction Power Support	1 625GPM from 585 to 2800 ft TDH CST, Supp. Pool or RHR heat ex- changer for steam condens- ing Mode. DC ESW-Area Coolers	I 400GPM @ 1140 psid CST, Supp. Pool or RHR heat ex- changer for steam condens- ing Mode. DC Plant SW-Area Cooler	1 400GPM from 525 to 2800 ft TDH CST, Supp. Pool or RHR heat ex- changer for steam condens- ing Mode. DC RBCLCW-Area Cooler	1 400GPM from 525 to 2800 ft TDH CST, Supp Pool or RHR heat ex- changer for steam condens- ing Mode- DC ESW-Area Coolers	1 400GPM CST, Supp Pool or RHR heat ex- changer for steam condens- ing Mode. DC *	1 400GPM from 525 to 2800 ft TDH CST, Supp Pool or RHR heat ex- changer for steam condens- ing Mode. DC *	1 425GPM @ 1135psid CST, Supp Pool or or RHR heat ex- changer for steam condensing Mode DC *
HPCI # Pumps Capacity Suction	one main, one booster 5600GPM CST with auto-	one main, one booster 4250GPM from 150 to 1140psid CST with auto-	one main, one booster 4250GPM from 150 to 1140psid CST with auto-	one main, one booster 3000GPM from 150 to 1120psid CST with auto-	one main, one booster 4250GPM from 150 to 1120psid CST with auto-	one main, one booster 4250GPM from 150 to 1120psid CST with auto-	one main, one booster 4250GPM from 150 to 1105psid CST with auto-
Power Support	transfer to supp. pool DC ESW - area coolers	transfer to supp. pool DC Plant SW - area coolers	transfer to supp. pool DC RBCLCW - area coolers	transfer to supp. pool DC ESW - area coolers	transfer to supp. pool DC *	transfer to supp. pool DC *	transfer to supp. supp. pool DC *

47

TABLE 12 (CONT.)

. .

	LIMERICK 1	HATCH 182	COOPER	DUANE ARNOLD	FITZPATRICK	BRUNSWICK 182	SHOREHAM
LPCI							
<pre>Pumps Capacity Suction Power Support</pre>	4 10,000GPM @ 20 psid each Supp. Pool AC (D.G.) EWS-cools pump seals, pump cooler & area coolers	4 7700GPM 0 395 ft TDH each Supp. Pool AC (D.G.) Plant SW - pump seal & area coolers	4 7700GPM @ 20 psid each Supp. Pool AC (D.G.) RBCLCW - area & pump lube oil coolers	4 4800GPM 0 20 psid each Supp Pool AC (D.G.) ESW - cools area and pump motor coolers	4 7710GPM @ 20 psid each Supp Pool AC (D.G.) ESW - Pump area & pump coolers	4 7700GPM @ 20 psid each Supp Pool AC (D.G.) Nuclear SW - room coolers	4 7700GPM @ 20psid each Supp Pool AC (D.G.) RBCLCW - pump seal coolers CRAC/RBSVS - area coolers
LOW PRESS. CORE SPRAY							
# Pumps Capacity Suction Power Support	4 (50% each) 6350GPM 0 105 psid Supp. Pool AC (D.G.) ESW - area coolers	2 (100% each) 4275GPM Supp. Pool AC (D.G.) Plant SW - area coolers	2 (100% each) 4500GPM 0 113 psid Supp. Pool AC (D.G.) RBCLCW - area coolers	2 (100% each) 3020GPM 0 113 psid Supp. Pool 4C (D.G.) ESW - pump bear- ing & room coolers	2 (100% each) 4625GPM @ 113 psid Supp. Poo? AC (D.G.)	2 (100% each) 4700GPM @ 113 psid Supp. Pool AC (D.G.) Nuclear SW - room coolers	2 (100% each) 4725GPM @ 113psid Supp. Pool AC (D.G.) CRAC/2BSVS - area coolers
ADS							
# Valves Power	5 (SRV's) DC	7 (20% each) DC	6 (20% each) DC	4 (33 1/3% each) DC	6 (20% each) DC	7 (16.7% each) DC	7 (SRV's) DC
SUP. POOL							
Description Support	Uses RHR pumps & heat ex- changers RHRSW - Cools heat exchangers ESW - Cools pump seal, pump cooler & area coolers	Uses RHR pumps & heat exchangers RHRSW - Cools heat exchangers Plant SW - Cools pumps & pump area coolers	Uses RHR pumps & heat ex- changers RHRSW - Cools heat exchangers RBCLCW - Cools areas & pump lube oil coolers	Uses RHR pumps & heat ex- changers RHRSW - Cools heat exchangers ESW - Cools area & pump motor coolers	Uses RHR pumps & heat ex- changers RHRSW - Cools heat exchangers ESW Cools pump & pump area coolers	Uses RHR pumps & heat ex- changers RHRSW - Cools heat exchangers Nuclear SW - room coolers	Uses RHR pumps & heat exchangers changers SW - Tools heat exchangers CRAC/RBSVS - area coolers

.

TABLE 12 (CONT.)

1.¹⁰ 1.100

.....

.

1

.

.

	LIMERICK 1	HATCH 182	COOPER	DUANE ARNOLD	FITZPATRICK	BRUNSWICK 1&2	SHOREHAM
RHR # Pumps	4	4	4	4	4	4	4
Power Support	2 10,000GPM 0 20 psid each AC (D.G.) RHRSW - Cools heat exchangers ESW - Cools pump seals, pump coolers & area coolers	2 7700GPM 0 20 psid each AC (D.G.) RHRSW - Cools heat exchangers Plant SW - Cools pump seal & area coolers	2 7700GPM @ 20 psid each AC (D.G.) RHRSW - Cocls heat exchangers RBCLCW - Cools area & pump lube oil coolers	2 4800GPM @ 20psid each AC (D.G.) RHRSW - Cools heat exchangers ESW - Cools pump seals, motor and room coolers	2 7710GPM 0 20 psid each AC (D.G.) RHRSW - Cools heat exchangers ESW - Cools pump & area coolers	2 7700GPM @ 20psid each AC (D.G.) RHRSW - Cools heat exchangers Nuclear SW - room coolers	2 7700GPM @ 20psid AC (D.G.) SW - Cools heat exchangers RBCLCW - Cools pump seals CRAC/RBSVS - cools room coolers
DIESEL GENERATORS	8 (4 each for Units 1 & 2)	5 (2 DED per plant, one shared)	2	2	4	4	3
SUPPORT SYSTEMS	1) RHRSW - 2 loops. Each loop serves 1 RHR heat exchanger. This system is shared between Units 1 and 2.	1) RHRSW - 4 50% capacity pumps rated 4000GPM 0 955 ft TDH each. AC (D.G.). Cools RHR heat ex- changers.	1) SW - 4 pumps. 8000GPM 0 125 ft TDH each. Cools RBCLCW & D.G. heat exchangers.	1) RHRSW - 4 50% pumps rated 2400 GPM 0 674 ft TDH Cools RHR heat exchangers.	1) RHRSW - 4 50% pumps rated 4000 GPM 0 267 ft TDH Cools RHR heat exchangers.	1) RHRSW - 4 50% pumps rated 4000 GPM @ 570 ft TDH each. Cools RHR heat exchangers.	1) SW - 4 33% pumps rated 8600 GPM @ 64psig. Cocls RHR, RBCLCW, RBSVS/CRAC heat exchangers and D.G.'s.
	2) SW - 3 pumps rated 12000 GPM each. Not safety related. ESW supplies safety loads on loss of AC. Can cross connect between plants	2) Plant SW - 4 33 1/3% capacity pumps rated 8500 GPM @ 275 ft TDH each. Cools ECCS pumps, ECCS pump areas & 4 of the 5 D.G.'s.	2) RHRSW Booster Pumps - 4 pumps rated 4000GPM 0 800 ft TDH. 2 loops with 2 pumps per loop. Each loop has 100% capacity. Cools RHR heat exchangers.	2) ESW - 2 100% pumps rated 1200 GPM @ 170 ft TDH. Cools ECCS pumps and area coolers and D.G.'s.	2) ESW - 2 100% pumps rated 3700 GPM @ 168 ft TDH Cools ECCS pumps and area coolers and D.G.'s	2) Nuclear SW - 2 100% pumps rated 8000GPM @ 115 ft TDH. Cools ECCS pumps and area coolers and D.G.'s.	2) RBCLCW - 3 50% pumps & 2 100% heat exchangers. 1600GPM per pump. Cools ECCS pump seals.

49

14

0

. .

TABLE 12 (CONT.)

-

1	LIMERICK 1	HATCH 1&2	COOPER	DUANE ARNOLD	FITZPATRICK	BRUNSWICK 1&2	SHOREHAM
SUPPORT SYSTEMS (Cont'd)	3) ESW - 2 100% loops with 2 50% capacity pumps per loop. Cools ECCS pumps, pump areas and the diasel generators. This system is shared between Units 1 and 2.	3) Standby Diesel SN pump - 1 pump rated 700GPM @ 230 ft TDH. Cools the shared D.G.	3) RBCLCW - 2 pumps & 2 heat exchangers each rated at 100% capacity. 1350 GPM @ 150 ft TDH. Cools ECCS area and pump coolers.				3) RBSVS/CRAC - 2 100% systems. Cools ECCS pumps and area coolers.

-

*Information not currently available.

1. 194

DHR SYSTEMS PATA FOR GENERAL ELECTRIC PLANTS IN GROUP #5

	GRAND GULF 1	ZIMMER	LASALLE 1 & 2
CORE MWT	3833	2436	3293
BWR TYPE	6	5	5
JET PUMPS	YES	YES	YES
CONTAINMENT TYPE	MK-III	MK-II	MK-II
# RELIEF VALVES	22(SRV's)	13(SRV's)	11(SRV's)
# SAFETY VALVES	NONE	NONE	6
RCIC			
<pre># Pumps Capacity Suction Power Support</pre>	1 800GPM @ 1120psid CST, Supp. Pool or RHR heat exch. in steam Con- densing Mode. DC Standby SW-Cools pump room	1 400GPM @ 1120psid CST, Supp. Pool or RHR heat exch. in steam Con- densing Mode. DC RBCLCW - area cooler	1 625GPM @ 1120 psid CST, Supp. Pool or RHR heat exch. in steam Con- densing Mode DC *
HIGH PRESSURE CORE SPRAY			
<pre># Pumps Capacity Suction</pre>	1 1500GPM @ 1130psid, 7000GPM @ 200psid CST with auto transfer to	1 1330GPM @ 1110psid, 4725GPM @ 200psid CST with auto transfer to	1 1650GPM @ 1130psid 6250GPM @ 200psid CST with auto transfer to
Power Support	AC (D.G.) HPCS SW - Cools pump room, pump cooler, and HPCS D.G.	AC (D.G.) RBCLCW - area cooler	AC (D.G.)

TABLE 13 (CONT.)

	GRAND GULF 1	ZIMMER	LASALLE 1 & 2
RHR			
<pre># Pumps # Heat Exchangers</pre>	3 2 (only 2 pumps can pass water through heat exchangers)	3 2 (only 2 pumps can pass water through heat exchangers)	3 2 (only 2 pumps can pass water through heat exchangers)
Capacity Power Support	7450GPM @ 20psid each AC (D.G.) Standby SW-Cools heat exchanger and pump coolers	5050GPM @ 20psid each AC (D.G.) RBCLCW - Cools pumps and room coolers, SW-Cools heat exchangers	7450GPM @ 20psid each AC (.D.G.) RHRSW - Cools heat ex- changers
DIESEL GENERATORS	3 (plus a HPCS Pump D.G.)	3	5 (2 DED per plant, 1 shared)
SUPPORT SYSTEMS	1) Standby SW - Two 100% pumps rated 11000GPM @ 150 ft. TDH each. Cools ECCS pump and area coolers, RHR heat exchangers and diesel generators.	1) SW - Four pumps rated 12,500GPM @ 295 ft TDH each. Cools RHR and RBCLCW heat exchangers and D.G.'s.	1) RHR SW - 4 pumps rated 7400GPM each. Cools RHR heat exchangers.
	2) HPCS SW - One pump rated 1000GPM @ 150 ft TDH. Cools HPCS D.G.	2) RBCLCW - Four pumps and three heat exchangers in a 2 loop configuration. Each loop has 2 pumps and 1 heat exchanger with one shared heat exchanger. 2640GPM @ 96 ft. TDH each pump. Cools ECCS pumps and area coolers	

*Information not currently available

52

TABLE 13 (CONT.)

	GRAND GULF 1	ZIMMER	LASALLE 1 & 2
LPCI			
<pre># Pumps Capacity Suction Power Support</pre>	3 7450GPM 0 20psid each SUPP. POOL AC (D.G.) Standby SW-Cools pump coolers and heat exchanger.	3 5050GPM @ 20psid each SUPP. POOL AC (D.G.) RBCLCW - Cools pumps and room coolers, SW - cools heat exchanger	3 7450GPM @ 20psid each SUPP. POOL AC (.D.G.) RHRSW - Cools Heat Ex- exchangers
LOW PRESSURE CORE SPRAY			
<pre># Pumps Capacity Suction Power Support</pre>	1 7000GPM @ 122psid Supp. Pool AC (D.G.) Standby SW - Cools pump and room coolers	1 4625GPM @ 119psid, Supp. Pool AC (D.G.) RBCLCW - cools room cooler	1 6250GPM @ 125psid Supp. Pool AC (D.G.) *
ADS			
Valves Power	8(SRV's) DC	6(SRV's) DC	7(SRV's) DC
Supp. Pool Cooling			
Description Support	Uses RHR pumps and heat exchangers. Standby SW - Cools pumps and heat exchangers	Uses RHR pumps and heat exchangers. SW - Cools heat exchangers RBCLCW - Cools pumps and room coolers.	Uses RHR pumps and heat exchangers. RHRSW - Cools heat exchangers

ABBREVIATIONS FOR GE GROUPINGS

AC (D.G.)	AC power offsite, or diesel generator
ADS	Automatic Depressurization System
CCW	Component Cooling Water
CRAC/RBSVS	Control Room Air Conditioning/Reactor Building Standby Ventillation System
DG	Diesel Generator
ECCS	Emergency Core Cooling System
ESW	Emergency Service Water
FW	Feedwater
FWCI	Feedwater Coolant Injection
HPCI	High Pressure Coolant Injection
HPCS	High Pressure Core Spray
LPCI	Low Pressure Coolant Injection
RBCCWS	Reactor Building Cooling Water System
RBCLCW	Reactor Building Closed Loop Cooling Water
RCIC	Reactor Core Isolation Cooling
RCWS	Reactor Cooling Water System
RHR	Residual Heat Removal
RW	Raw Water
SW	Service Water
TBSCWS	Turbine Building Secondary Cooling Water System
TG	Turbine Generator

PRELIMINARY DHRS GROUPING GENERAL ELECTRIC GROUP #1

PLANT	POWER (MWT)	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
BIG ROCK POINT	240	DRY	REFERENCE PLANT	INDUSTRY PRA SEP PLANT
DRESDEN 1	700	DRY	HAS 2 HPCI PUMPS HAS 3 CORE SPRAY PUMPS	SHUTDOWN COOLING REQUIRES OFFSITE AC.
NINE MILE POINT 1	1850	MK-1	HAS 2 INSTEAD OF 1 ISO. COND. HAS 4 TRAINS OF CORE SPRAY INSTEAD OF 2 CORE SPRAY PUMPS. HAS 2 FWCI PUMPS.	
OYSTER CREEK	1930	MK-1	HAS 2 INSTEAD OF 1 ISO. COND. HAS REAC. VESSEL HEAD SPRAY COOL- ING. HAS 4 TRAINS OF CORE SPRAY INSTEAD OF 2 CORE SPRAY PUMPS. HAS 2 FWCI PUMPS.	SEP PLANT

NOTE: THESE PLANTS DO NOT HAVE JET PUMPS INSTALLED. FWCI SYSTEMS ARE NOT SAFETY RELATED.

PRELIMINARY DHRS GROUPING GENERAL ELECTRIC GROUP #2 SIMILAR TO MILLSTONE (IREP)

PLANT	POWER (MWT)	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
MILLSTONE 1	2011	MK-I	REFERENCE PLANT	SEP PLANT
DRESDEN 2&3	2527	MK-I	HAS A HPCI SYSTEM INSTEAD OF FWCI. HAS 3 REACTOR SHUTDOWN COOLING SYSTEM PUMPS AND HEAT EXCHANGERS INSTEAD OF 2.	SEP PLANT

56

PRELIMINARY DHRS GROUPING GENERAL ELECTRIC GROUP #3 SIMILAR TO PEACH BOTTOM (RSS)

-		and the second se			
	PLANT	POWER (MWT)	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
	PEACH BOTTOM 2&3	3293	MK-I	REFERENCE PLANT	
	MONTICELLO	1670	MK-I		
	QUAD CITIES 1&2	2511	MK-I	THESE PLANTS HAVE 2 CORE SPRAY PUMPS INSTEAD OF 4	
	PILGRIM	1998	MK-I	AND 2 RHR HEAT EXCHANGERS INSTEAD OF 4.	
	VERMONT YANKEE	1593	MK-I		
	BROWNS FERRY 1,2&3	3293	MK-I	HAS 2 CORE SPRAY PUMPS.	PRA (IREP, INDUSTRY)

GENERAL ELECTRIC GROUP #4 SIMILAR TO LIMERICK (INDUSTRY PRA)

PLANT	POWER (MWT)	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
LIMERICK 1	3293	MK-II	REFERENCE PLANT	TO BE LICENSED IN 1985
HATCH 1 & 2	2436	MK-I		
COOPER	2381	MK – I		
DUANE ARNOLD	1658	MK-I		
FITZPATRICK	2436	MK-I		
BRUNSWICK 1 & 2	2436	MK-I		
SHOREHAM	2436	MK-II		TO BE LICENSED IN 1983

PRELIMINARY DHRS GROUPING GENERAL ELECTRIC GROUP #5 SIMILAR TO GRAND GULF (RSSMAP)

		and the second secon		
PLANT	POWER (MWT)	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
GRAND GULF 1	3833	MK-III	REFERENCE PLANT	HIGH PRESS. CORE SPRAY PUMP HAS ITS OWN DIESEL GENERATOR. TO BE LICENSED IN 1982.
ZIMMER	2436	MK-II		TO BE LICENSED IN 1982.
LASALLE 1 & 2	3293	MK-II		BOTH PLANTS TO BE LICENSED IN 1982.

DHR SYSTEMS DATA FOR COMBUSTION ENGINEERING PLANTS IN GROUP #1

	CALVERT CLIFFS 1 & 2	PALISADES	MAINE YANKEE	MILLSTONE #2	ST. LUCIE #1
CORE MWT	2700	2530	2630	2560	2560
NO. LOOPS	2	2	3	2	2
CONTAINMENT TYPE	DRY	DRY	DRY	DRY	DRY
# SAFETY VALVES	2	3	3	2	3
# PORV'S HIGH PRESS.	2	2	2	2	2
Pumps Capacity Suction	3 (1/3 REQ'D) 345GPM @ 2500 ft each RWST with auto-transfer to containment sump.	3 (1/3 REQ'D) 300GPM @ 2500 ft each SIRW Tank with auto- transfer to contain- ment sump.	3 150GPM @ 2850psig each RWST with auto-trans- fer to containment sumo-	3 (1/3 REQ'D) 315GPM 0 2500 ft each RWST with auto-trans- fer to containment sump.	3 (1/3 REQ'D) 345GPM 0 2500 ft each RWT with auto-transfer to containment sump.
Power Support	DG. Salt Service Water - Area cooler; CCW - pumps seals.	DG. Service Water - Room cooler; CCW - pump seals (can also be supplied directly from Service Water).	DG. Primary and Second- ary CCW - Cools pump motors & oil cooler.	DG. RBCCW - Cools nump seals and area cooler.	DG. CCW - Cools pump seals.
CHARGING SYSTEM			10 cr 10 cr 0		
# Pumps	3	able capacity)	uses Hrsi rumps	3	3
Capacity	44GPM @ 2310psig each	Fixed - 40GPM @ 6375 ft. each. Variable - 40GPM @ 230 ft.	150GPM @ 2850psig each	44GPM @ 2310psig each	44GPM @ 2300psig each
Suction	VCT, RWST	VCT	VCT, RWST, Boric Acid	VCT, RWST, Boric Acid	VCT, RWT, Boric Acid
Pawer	DG.	DG.	DG.	DG.	DG.
			Note: There is also 1 variable capacity aux- iliary charging pump (positive displacement) rated at 10 to 30 GPM @ 2300psig. This is for shutdown of an isolated primary loop.		

TABLE 20 (CONT.)

	CALVERT CLIFFS 1 & 2	PALISADES	MAINE YANKEE	MILLSTONE #2	ST. LUCIE #1
LON PRESS SAFETY					
# Pumps	2	2	2	2	2
Capacity Suction	3000GPM 0 350 ft each RWST or Containment sump (LPSI pumps auto- stop on transfe: from RWST to sump).	3000GPM Ø 350 ft each SIRW Tank or Contain- ment Sump (LPSI pumps auto-stop on transfer from SIRW tank to sumo	3000GPM 0 350 ft each RWST or Containment sump (LPSI pumps auto- stop on transfer from RWST to sump).	3000GPM @ 350 ft each RWST or Containment sump (LPSI pumps auto- stop on transfer from RWST to sump).	3000GPM @ 350 ft each RWST or Containment sump (LPSI pumps auto- stop on transfer from RWST to sump).
Power Support	DG. Salt Service Water - Area cooler; CCW - pump seals.	DG. Service Water - Room cooler; CCW - pump seals	DG. CCW – Cools pumps	DG. RBCCW - Cools area coolers & pump seals.	DG. CCW - Cools pump seals.
SHUTDOWN COOLING					
# Pumps # Heat	Uses LPS1 Pumps	Uses LPSI Pumps	Uses LPSI Pumps	Uses LPSI Pumps	Uses LPSI Pumps
Exchangers	2	2	2	2	2
Support	Salt Service Water - area cooler; CCW - pump seals & heat exchangers	Service Water - Room cooler; CCW - pump seals and heat ex- changers.	CCW - Primary CCW & Secondary CCW cools 1 heat exchanger each. Also cools pumps.	RBCCW - Cools heat ex- changers, area coolers, and pump seals.	CCW - Cools pump seals and heat exchangers
AUX. FEEDWATER					
# Pumps	2 Turbine	1 Turbine*/1 Motor	1 Turbine (100%)/ 2 Motor (100% each)	1 Turbine (100%)/ 2 Motor (50% each)	1 Turbine (100%)/ 2 Motor (50% each)
Capacity	700GPM @ 2490 ft each	415GPM @ 2730 ft each	500GPM @ 1100psig	Turbine 600GPM @ 2437 ft	Turbine 500GPM @
				Motor 30GGPM @ 2437 each	Motor 250GPM 0 1200
Suction	CST'S (seismic), Demin Water Tanks, Pretreated Water Storage Tanks, Well Water System.	CST (seismic), Make- up Storage Tank, Make-up Demineralizer, Lake Michigan, Fire Protection System.	Demin. Water Storage Tank (seismic), Pri- mary water storage tank.	CST, PWST, Fire Water Storage Tanks, City Water.	CST (Seismic)
Power	DG. for AC Valves	DG.	DG.	DG.	DG.
Initiation	Manua 1	Manual	Manual	Manual	Manual

*Turbine driven pump is not safety related. TABLE 20 (Cont.)

	CALVERT CLIFFS 1 & 2	PALISADES	MAINE YANKEE	MILLSTONE #2	ST. LUCIE #1
SUPPORT SYSTEM	 Salt Water System - Three pumps, 15,500PM Ø 82 ft each. Cools ser- vice water & CCW heat exchangers & ECCS pump room coolers. DG. Service Water - Three pumps and two heat ex- changers. 7050GPM Ø 180 ft each. This is a demineralized water sys- tem which cools the diesel generators. DG. CCW - Cools ECCS pump seals & coolers & the shutdown heat exchangers. Three pumps & two heat exchangers. DG. 	 Service Water - Three 50% pumps, 8000 GPM @ 140 ft each. Cools the diesel gen- erator & CCW heat ex- changers. OG. This system's supply headers can be backed up by the plant fire water supply (2 diesel & 1 electrical pumps). CCW - Three 50% ca- pacity pumps rated 6000GPM @ 164 ft each. Two 50% heat exchangers. Cools shutdown heat ex- changers, ECCS pumps & glands. 	 Service Water - Four 100% pumps rated 10,000 GPM 0 66 ft each. Cools CCW heat exchangers. (DG). CCW - This system is split into two completely separate sub-systems. Primary & Secondary CCW. Each system has two 100% pumps & two 100% heat ex- changers (D.G.). Pumps are rated 6000GPM 0 190 ft each. Cools shutdown heat exchangers, ECCS pumps & diesel generators 	 Service Water - Three 50% pumps rated 12000GPM 0 100 ft each. Cools RBCCW heat ex- changers & diesel gen- erators. (DG). RBCCW - Three pumps rated 7000GPM 0 150 ft each & three heat ex- changers. (DG). Cools ECCS pump seals & area coolers & shutdown heat exchangers. 	 Intake Cooling Water- Three pumps rated 14,500 GPM Ø 130 ft each. (DG). Cools CCW heat exchangers CCW - Two 100% systems Three pumps rated 8500GPM Ø 180 ft each. Two heat exchangers. Cools shut- down heat exchangers & ECCS pumps.
DIESEL GENERATORS	2 per unit with an additional DG shared between units 1 & 2.	2 (100% each)	2	2	2 (Note: No external cooling water required)

DHR SYSTEMS DATA FOR COMBUSTION ENGINEERING PLANTS IN GROUP #2

	ARK. NUCLEAR ONE #2	FORT CALHOUN 1	SAN ONOFRE 2
CORE MWT	2815	1420	3390
NO. LOOPS	2	2	2
CONTAINMENT TYPE	DRY	DRY	DRY
# SAFETY VALVES	2	2	2
# PORV'S	1 (Vent Valve)	2	NONE
HIGH PRESS. SAFETY INJ.			
<pre># Pumps Capacity Suction Power Support</pre>	3 (1/3 REQ'D) 300GPM 0 2800 ft each RWST with auto-transfer to Containment Sump DG Service Water - area and pump coolers	3 (1/3 REQ'D) 150GPM 0 2800 ft each RWST with auto-transfer to Containment Sump DG CCW - cools pump seals	3 (1/3 REQ'D) 415GPM @ 2830 ft each RWT with auto-transfer to Containment Sump DG CCW - cools motor and seals
CHARGING SYSTEM			
<pre># Pumps Capacity Suction</pre>	3 44GPM @ 2300psig each VCT, Primary Makeup Tank, Boric Acid Pumps	3 40GPM @ 2200psig each VCT, Boric Acid Pumps	3 44GPM @ 2300psig each VCT
Power	DG	DG	DG

TABLE 21 (CONT.)

	ARK. NUCLEAR ONE #2	FORT CALHOUN 1	SAN ONOFRE 2
LOW PRESS SAFETY INJ.			
<pre># Pumps Capacity Suction Power Support</pre>	2 3250GPM @ 350 ft. each RWST or Containment Sump (LPSI Pumps auto-stop on transfer from RWST to sump) DG Service Water - Cools area and pump seal coolers.	2 1500GPM @ 400 ft each RWST or Containment Sump (LPSI pumps auto-trip on transfer from RWST to sump) DG CCW - Cools pump seals	2 4150GPM @ 342 ft each RWT or Containment Sump (LPSI pumps auto-trip on transfer from RWT to sump) DG CCW - Cools pump seals and motor.
SHUTDOWN COOLING			
# Pumps # Heat	Uses LPSI pumps	Uses LPSI pumps	Uses LPSI pumps
Exchanyers Support	2 Service Water - Cools heat exchangers, pump cooler and area cooler	2 CCW - Cools pump seals and heat exchangers	2 CCW - Cools pump seals and motor and heat exclangers
AUX. FEEDWATER			
<pre># Pumps Capacity Suction</pre>	1 Turbine/1 motor (100% each) 575GPM @ 2800 ft each Primary Condensate Tank, Swing Condensate Tank, Service Water (Seismic)	1 Turbine/1 motor* (100% each) 260GPM @ 2400 ft each Elergency FW Storage Tank (Seismic)	1 Turbine/2 motor (100% each) 860GPM @ 2842 ft each CST (Seismic), condemsate demineralizers, fire pro- tection system, or Unit #3
Power Initiation	DG Automatic	DG Automatic	Condensate System DG Automatic

*Motor driven pump breaker must be manually closed to place it on the Class IE bus.

TABLE 21 (CONT.)

	ARK. NUCLEAR ONE #2	FORT CALHOUN 1	SAN ONOFRE 2
SUPPORT SYSTEM	 Service Water - Three 100% pumps rated 12000GPM 205 ft each (DG). Cools ECCS pumps and area coolers; shutdown heat exchangers and diesel generators. 	 Raw Water - Four pumps rated 5415GPM 0 118 ft each (DG). Cools CCW heat ex- changers. CCW - Three pumps rated at 3750 to 5400GPM 0 200 to 150 ft head each (D.G.). Has 4 heat exchangers. Cools shutdown heat ex- changers, and ECCS pumps. 	 Salt Water Cooling - Has two 100% trains with 2 pumps per train. Each pump has 100% capacity and is rated 17,000GPM 0 80 ft. (DG). Cools CCW heat exchangers. CCW - Two 100% loops. Each loop has 1 pump/1 heat exchanger with 3 pumps total. Rated 14,000GPM 0 140 ft each. Cools ECCS motors and shutdown heat exchangers.
DIESEL GENERATORS	2	<pre>2 (Note: No external cool- ing water required.)</pre>	<pre>2 (Note: No external cooling water required.)</pre>
PRELIMINARY DHRS GROUPING COMBUSTION ENGINEERING GROUP #1 SIMILAR TO CALVERT CLIFFS 1 & 2 (RSSMAP/IREP)

PLANT	POWER (MW)	LOOPS	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
CALVERT CLIFFS 1&2	2700	2	DRY	REFERENCE PLANT	
PALISADES	2530	2	DRY	HAS 1 MOTOR/1 TURBINE DRIVEN AFW PUMPS INSTEAD OF 2 TURBINE DRIVEN PUMPS. THE TURBINE DRIVEN PUMP IS NOT SAFETY GRADE.	SEP PLANT
MAINE YANKEE	2630	3	DRY	HIGH PRESSURE SAFETY INJECTION (HPSI) AND CHARGING PUMPS ARE THE SAME PUMPS. HPSI PUMPS ARE CAPABLE OF DELIVERING FLOW AT PRESSURIZER PORV OR SAFETY VALVE SET POINTS. HAS 1 TURBINE/ 2 MOTOR DRIVEN AFW PUMPS INSTEAD OF 2 TURBINE DRIVEN PUMPS.	
MILLSTONE 2	2560	2	DRY	HAS 1 TURBINE/2 MOTOR DRIVEN AFW PUMPS INSTEAD OF 2 TURBINE DRIVEN PUMPS	
ST. LUCIE 1	2560	2	DRY	SAME AS ABOVE	DG'S DO NOT RE- QUIRE EXTERNAL COOLING WATER.

PRELIMINARY DHRS GROUPING COMBUSTION ENGINEERING GROUP #2 SIMILAR TO ARKANSAS NUCLEAR ONE - #2

PLANT	POWER (MW)	LOOPS	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
ARKANSAS NUCLEAR ONE - #2	2815	2	DR Y	REFERENCE PLANT	
FORT CALHOUN 1	1420	2	DRY	THE MOTOR DRIVEN AFW PUMP BREAKER MUST BE MANUALLY CLOSED TO PLACE MOTOR ON CLASS IE BUS.	DG'S DO NOT REQUIRE EXTERNAL COOLING.
SAN ONOFRE 2	3390	2	DR Y	HAS 1 TURBINE/2 MOTOR DRIVEN AFW PUMPS INSTEAD OF 1 TUR- BINE AND 1 MOTOR DRIVEN PUMP. HAS NO PORV'S.	TO BE LICENSED IN 1982. DG'S DO NOT REQUIRE EXTERNAL COOLING.

DHR SYSTEMS DATA FOR BABCOCK AND WILCOX PLANTS

	ARKANSAS NUCLEAR 1	DAVIS BESSE 1	OCONEE 1,2 & 3	CRYSTAL RIVER 3
CORE . MWT	2568	2772	2568	2452
NO. OF LOOPS	2	2 (raised loop design)	2	2
CONTAINMENT	Dry	Dry	Dry	Dry
# SAFETY VALVES	2	2	2	2
# RELIEF VALVES	1	1	1	1
HPSI No. of Pumps Capacity	3 (1/3 REQ*D) 400 GPM @ 1600 psig each	2 (1/2 REQ'D) 200 GPM @ 1600 psig each (Note: Shutoff head of these pumps cannot lift	3 (1/3 REQ'D) 450 GPM 0 1700 psig each	3 (1/3 REQ'D) 400 GPM @ 1600 psig each
Suction Power Support	BWST or discharge of LPSI pumps DG Service Water - Lube oil and roum coolers	the PORV's) BWST or discharge of LPSI pumps DG Service Water - Room cooler CCW - Cools pump seals	BWST or discharge of LPSI pumps DG Low Pressure Service Water - Pump bearing and seal coolers	BWST or discharge of LPSI pumps DG NSCCCW - 3/3 pump and motor coolers DHCCCW - 2/3 pump and motor coolers
MAKEUP/FURIF.	Uses HPSI pumps	Separate makeup pumps which can lift the PORV's	Uses HPS1 pumps	Uses HPSI pumps
LPS1 No. of Punps Capacity Suction Power Support	2 3000 GPM 0 100 psig each BWST or reactor sump with manual switchover from in- jection to recirculation DG Service Water - cools pump bearings	2 3000 GPM @ 350 ft. each BWST or reactor sump with manual switchover from in- jection to recirculation DG Service Water-room cooler CCW-cools pump seals	3 3000 GPM 0 100 psig each BWST or reactor sump with manual switchover from in- jection to recirculation DG *	2 3000 GPM 0 350 ft. each BWST or reactor sump with manual switchover from in- jection to recirculation DG DHCCCW - Pumps and motor coolers

TABLE 24 (CONT.)

	ARKANSAS NUCLEAR 1	DAVIS BESSE 1	OCONEE 1,2 & 3	CRYSTAL RIVER 3
DHR SYSTEM				
# of Coolers	2	2	2	2
Support	Service Water - Cools the coolers	CCW - Cools the coolers	Low Pressure Service Water - Cools the coolers	DHCCCW - Cools heat exchangers
	Note: DHR uses LPSI pumps	Note: DHR uses LPSI pumps	Note: DHR uses LPSI pumps	Note: DHR uses LPSI pumps
EMERGENCY FEEDWATER				
No. of Pumps	l turbine/l motor	2 turbine (200% each)	1 turbine/2 motor**	1 turbine/2 motor
Capacity	780 GPM @ 2600 ft. each	1050 GPM @ 1050 psig	turbine-1080GPM @ 1050 psig motor - 500 GPM each	740 GPM each
Suction	CST, Service Water	CST, DA Storage Tanks,	Hotwell, upper surge tank	CST, hotwell, deminer-
	(Selsmic)	(Seismic)		alized water from other
Power	DG-motor pump; DC-turbine	Steam	DG-motor pump, turbine pump	DG
	valves		lube oil cooling. DC-lube	
Initiation	Automatic for turbine	Automatic	oil pump Automatic	Turbine - Automatic
	driven pump			Motor - Manual
SUPPORT SYSTEM	1) Service Water-Three 100%	1) Service Water-Three 100%	1) Low Pressure Service	1) Nuclear Service Cooling
	pumps rated 6500 GPM @ 167	pumps rated 10,250 GPM 0	Water - Two pumps rated	Water - 2 emergency pumps
	ft. each (D.G.) Cools D.G.,	160 ft. each (D.G.) Cools	15,000 GPM each. Cools the	rated 14,100 GPM @ 144 ft.
	DHR coolers, HPSI and LPSI	CCW heat exchangers, ECCS	decay heat coolers.	each & one normal pump rate
	pumps and room coolers.	rooms. This is also an		10,800 GPM 0 98 ft. Cools
		alternate source of water		NSCCCW heat exchangers.
		to Erw pumps.		2) Nuclear Service Closed
		c) LCM - 3 pumps and 3 heat		(NSCCCU) 2 macconcu punto
		@ 150 ft. each. Cools DHR		rated 11 000CPM @ 100 ft
		coolers and D.G.'s.		each and 1 normal pump rate
				6900GPM @ 110 ft. 4 heat
				exchangers. 2 booster pump
				rated 200GPM @ 215 ft. each
				Cools HPSI pumps and motors

69

TABLE 24 (CONT.)

	ARKANSAS NUCLEAR 1	DAVIS BESSE 1	OCONEE 1,2 & 3	CRYSTAL RIVER 3
SUPPORT SYSTEM (Cont'd)				 3) Decay Heat Service Water - 2 pumps rated 9700 GPM 0 75 ft. each. Cools DHCCCW heat exchangers. 4) Decay Heat Closed Cycle Cooling Water (DHCCCW) - 2 pumps and 2 heat ex- changers. Rated 3200 GPM 0 80 ft. each. Cools DHC coolers, LPSI and HPSI pumps and motors.
DIESEL GENERATORS	2	2	Has no D.G.'s but 2 hydro- generators. One hydro- generator is good for all 3 units simultaneously.	2

*Information not currently available.

**The High Head Auxiliary Service Water, a safe shutdown system, is an alternate means of supplying water to the steam generators on loss of EFW. One pump (2250 GPM) with manual initiation, sufficient for all 3 units.

TABLE 24 (CONT.)

	TMI-1	RANCHO SECO
CORE MWT	2535	2772
NO. OF LOOPS	2	2
CONTAINMENT	Dry	Dry
# SAFETY VALVES	2	2
# RELIEF VALVES	1	1
HPSI No. of Pumps Capacity Suction Power Support	3 (1/3 REQ'D) 400 GPM @ 1600psig each BWST or dis- charge of LPSI pumps DG DHCCSW - 2/3 pump motors and bearings NSCCCW - 3/3 pump motors and bearings	3 (1/3 REQ'D) 400 GPM @ 1600psig each BWST or dis- charge of LPSI pumps DG *
MAKEUP/PURIF SYSTEM	Uses HPSI pumps	Uses HPSI pumps
LPSI No. of Pumps Capacity Suction Power Support	2 3000 GPM @ 100psig each BWST or reactor sump with manual switchover from injection to re- circulation DG NSCCCW = room cooler	2 * BWST or reactor sump with manual switchover from injection to re- circulation DG *
DHR SYSTEM # of Coolers Support	2 DHCCSW-cools the coolers	2 *
	Note: DHR uses LPSI pumps	Note: DHR uses LPSI pumps

TABLE 24 (CONT.)

	TMI-1	RANCHO SECO
EMERGENCY		
No. of Pumps Capacity	1 turbine/2 motor Turbine - 920 GPM Motor - 460 GPM	1 tandem/1 motor 840 GPM each
Suction Power Initiation	CST, Reactor Building Service Water DG *	CST (seismic), canal, reservoi DG Automatic
SUPPORT SYSTEMS	 Decay Heat River Water - Two 100% pumps and heat exchangers rated 7900 GPM @ 68 ft. each. This cools the Decay Heat Closed Cycle Service Water System. 	•
	 Decay Heat Closed Cycle Service Water - Two 100% pumps and heat exchangers rated 3900GPM @ 75 ft. each. Cools ECCS pumps and motors and decay heat coolers. 	
	3) Nuclear Service River Water - Three 50% pumps and four 33-1/3% heat exchangers. Cools Nuclear Service Closed Cycle Cooling Water.	
	4) Nuclear Service Closed Cycle Cooling Water - Three 50% pumps and four heat ex- changers. Cools ECCS pumps and motors and EFW pump rooms.	
DIESEL GENERATORS	2	2

*Information not currently available.

72

PRELIMINARY DHRS GROUPING BABCOCK AND WILCOX PLANTS SIMILAR TO ARKANSAS NUCLEAR ONE-1

PLANT	POWER	LOOPS	CONTAINMENT	DHRS DIFFERENCES	COMMENTS
ARKANSAS NUCLEAR ONE-1	2568	2	DRY	REFERENCE PLANT	(IREP)
DAVIS BESSE	2772	2	DRY	HAS SEPARATE MAKEUP PUMPS. HAS 2 TURBINE DRIVEN INSTEAD OF 1 MOTOR AND 1 TURBINE DRIVEN EFW PUMP	RAISED LOOP. HPSI PUMPS CANNOT LIFT PORV'S
OCONEE 1,2&3	2568	2	DRY	HAS 3 LPSI PUMPS INSTEAD OF 2. HAS 1 TURBINE/2 MOTOR INSTEAD OF 1 MOTOR AND 1 TURBINE DRIVEN EFW PUMPS. HAS A HIGH HEAD AUXILIARY SERVICE WATER SYSTEM AS A BACKUP TO THE EFW SYSTEM BUT NO SAFETY GRADE SOURCE FOR EFW	HAS 2 HYDRO GEN- ERATORS INSTEAD OF DIESEL GENER- ATOR (RSSMAP)
CRYSTAL RIVER 3	2452	2	DRY	HAS NO SAFETY GRADE SOURCE FOR EFW.	(IREP)
THREE MILE ISLAND 1	2535	2	DRY	HAS 2 HALF SIZED MOTOR DRIVEN EFW PUMPS. HAS NO SAFETY GRADE SOURCE FOR EFW.	
RANCHO SECO	2772	2	DRY	HAS 1 TURBINE-MOTOR TANDEM DESIGNED EFW PUMP INSTEAD OF A DIRECT DRIVE TURBINE PUMP	

NRC FORM 335 1. REPORT NUMBER (Assigned by DOC) U.S. NUCLEAR REGULATORY COMMISSION 13 811 NUREG/CR-3713 BIBLIOGRAPHIC DATA SHEET BNL-NUREG 51752 4 TITLE AND SUBTITLE (Add Volume No. if appropriate) 2. (Leave blank) Grouping of Light Water Reactors for Evaluation of Decay Heat Removal Capability 3. RECIPIENT'S ACCESSION NO. / AUTHORISI MATE REPORT COMPLETED R. Karol A. Fresco, and K. R. Perkins MONTH YEAR November 1982 9. PERFORMING OROGNIZATION NAME AND MAILING ADDRESS (Include Zip Code) DATE REPORT ISSUED Department of Nuclear Energy MONTH YEAH Brookhaven National Laboratory June 1984 Upton, Long Island, New York 11973 6 (Leave blank) 8. (Leave blank) 12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zie Code) Division of Safety Technology Office of Nuclear Reactor Regulation 10. PHOJECT/TASK/WOHK UNIT NO 11 FIN NO. U.S. Nuclear Regulatory Commission Washington, D. C. 20965 A-3381 1. LYPE OF REPURT PERIOD COVERED (Inclusive dates) Technical Report PS. SUPPLEMENTARY NOTES 14 (Leave Diank) 16 ABSTRACT (200 words or less) This grouping report provides a compilation of decay heat removal systems (DHRS) data for operating commercial light water reactors. The reactors have been divided into 12 groups based on similarity of the DHRS and related systems as part of the NRC Task Action Plan on Shutdown Decay Heat Removal Requirements. 17 KEY WORDS AND DOCUMENT ANALYSIS 17# DESCHIPTOHS Grouping of PWRs and BWRs; Shutdown decay 1. Decay heat removal systems heat removal; Systems data; Risk Assessment 2. Shutdown decay heat removal 3. PWR date 4. BWR data 175 IDENTIFIERS OPEN ENDED TERMS 18 AVAILABILITY STATEMENT 19 SECURITY CLASS IT his report 21 NO OF PAGES Unclassified Unlimited 20 SECURITY CLASS (TAS DOW) Unclassified 22 PRICE NAC FORM 335 ITTEN

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D C. 20555

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

FOURTH CLASS MAIL POSTAUE & FEES PAID USNRC WASH D C PERMITNO <u>G 67</u>

120555078877 1 1ANIR1 US NRC ADM-DIV OF TIDC POLICY & PUB MGI BR-PDR NUREG W-501 WASHINGTON DC 20555

.