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ABSTRACT

This document has heen designed for users of the computer program devel-
oped by the authors at Sandia National Laboratories for the generation of
either Latin hypercube or random multivariate samples. The Latin hypercube
technique employs a constrained sampling scheme, whereas random sampling
corresponds to a simple Monte Carlo technique. The generation of these
samples is based on information supplied to the program by the user describ-
ing the variables or parameters used as input to the computer model. The
actual sampled values are used to form vectors of variables commonly used as
input to computer models for purposes of sensitivity and uncertainty analysis
studies. The present program replaces the previous Latin hypercube sampling
program developed at Sandia National Laboratories (Iman, Davenport, and
Zeigler, 1980). The present version is written using FORTRAN 77 and greatly

extends the program while making the program portable and user friendly.
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1. INTRODUCTION TO LATIN HYPERCUBE SAMPLING

This report describes how to use the latest version of a computer program
for the generation of multivariate samples either completely at random or by
a constrained randomization termed Latin hypercube sampling (LHS) This
program has been developed by the authors at Sandia National Laborutories
and replaces the previous program described in Iman, Davenport, and Zeigler
(1980). Every attempt has been made tc make the present program portable and
user-friendly while at the same time expanding the capability of the program
to include additional sampling distributions. A complete listing of the
computer code is given on microfiche inside the back cover. The first section
of this report describes Latin hypercube sampling. The parameters needed by
the program are described in Section 2 and are followed in Section 3 by a
more detailed description of the various distributions built into the program.
A subroutine that allows the user to sample from distributions (including
empirical data) other than those built into the code is described in Section
4. Instructions for modifying the program are given in Section 5. The
report concludes with examples of program output in an appendix.

The situation addressed by the computer program is the following. There
is a variable of interest, Y, that is a function of other variables Xy, Xp,
«esy Xg. This function may be quite complicated, for example, a computer
model. A question to be investigated is: How does Y vary when the X's vary
according to some assumed joint probability distribution? Related questions
are: What is the expected value of Y? What is the 99th percentile of Y?
etc.

A conventional approach to these questions is Monte Carlo. By sampling
repeatedly from the assumed joint probability density function of the X's and
evaluating Y for each sample, the distribution of Y, its mean, percentiles,
etc., can be estimated. This is one option provided by the program for
generating the X's. The program output, say for n Monte Carlo repetitions,
is a set of k-dimensional vectors of input variables.

An alternative approach, which can yield more precise estimates, is to
use a constrained sampling scheme, One such scheme, developed by McKay,
Conover, and Beckman (1979), is Latin hypercube sampling (LHS). LHS selects
n different values from each of k variables Xy, ..., Xx in the following
manner. The range of each variable is divided into n nonoverlapping intervals
on the basis of equal probability. One value from each interval is selected
at random with respect to the probability density in the interval. The n
values thus obtained for X, are paired in a random manner (equally likely
combinations) with the n values of Xp. These n pairs are combined in a
random manner with the n values of X3 to form n triplets, and so un, until n
k-tuplets are formed. This is the Latin hypercube sample. It is convenient
to think of the LHS, or a random sample of size n, as forming an n x k
matrix of input where the ith row contains specific values of each of the k
input variables to be used on the ith run of the computer model.



The LHS technique has been applied to many different computer models
since 1975. The results of an application of LHS to a large computer model
can be found in Steck, Iman, and Dahlgren (1976). A more detailed description
of LHS with application to sensitivity analysis techniques can be found in
Iman, Helton, and Campbell (1981a, 1981b). A tutorial on LHS may be found in
Iman and Conover (1982b). A comparison of LHS with other techniques is given
in Iman and Helton (1983).

To help clarify how intervals are determined in the LHS, consider a simple
example where it is desired to generate a LHS of size n = 5 with two input
variables. Let us assume that the first random variable X; has a normal
distribution concentrated on the range from A to B. In th}s pro ram, the
following interpretations (not subject to change by the user without modifying
the code) are given to A and B for both the normal and lognormal distributions,
namely

P(Xy < A) = .001 and P(Xy > B) = .001 ,

where P(E) denotes the probability of event E. That is, A is defined as the
.001 quantile and B is defined as the .999 quantile of the distribution of
Xy. Thus, P(A < X; < B) = .998 , so both the normal and lognormal distribu-
t*ons are truncated slightly in the program. That is, the sampling procedure
excludes values outside the interval [A, B]. These definitions of A and B
imply that the mean of the normal distribution is given by u = (A + B)/2 and
since for a standardized normal variable Z,

P(Z < -3.09) = .001 ,

it follows that the standard deviation of the desired truncated normal distri-
bution is given (to a close approximation) by

o= (B - u)/3.09 = (B - A)/6.18 .

With the parameters u and o thus defined, the endpointis of the intervals are
easily determined. The intervals for n = 5 are illustrated in Figure 1 in
terms of both the density function and the more easily used cumulative 4is-
tribution function (cdf). If the distribution were not truncated, then the
intervals in Figure 1 would satisfy

P(A < X3 <C)=P(F < Xy <B) = .199
= P(C <X <D) =P(D <Xy <E) =PIE <X <F)=.2.



ccount for truncation requires iividing these probabilities by .998. Thus,
a1l practical purposes, the five intervals correspond to 20% probability.

Je shall assume in this example that the second random variable, X7, has a
iniform distribution on the interval from G to H. The corresponding intervals
used in the LHS for X, are given in Figure 2 in terms of hoth the density

function and the cdf.

The next step in obtaining the LHS is to pick specific values of Xy and
each of their five respective intervals. This selection should be done
in a random manner with respect to the density in each interval; that is, the
selection should reflect the height of the density across the interval. For
example, in the (A,C) interval for Xy, values close to C will have a higher
srobability of selection than will those values close to A. Next, the selected
values of 1; and X» are paired to form the required five input vectors. In the

riginal concept of LHS as outlined in McKay, Conover, and Beckman (1979),

Intervals Used with a LHS of S1ze n 5 in Terms
of the Density Function and Cumulative Distribution
Function for a Normal Random Variable
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Figure 2. Intervals Used with a LHS of Size n = 5 in Terms
of the Density Function and Cumulative Distribution
Function for a Uniform Random Variable

the pairin? was done by associating a random permutation of the first n
fntegers with each input variable. For purposes of {llustration, in the

resent example consider two random permutations of the integers
?l. 2, 3, 4, 5) as follows:
Permutation Set No. 1: (3,1, 5, 2, 4)
Permutation Set No. 2: (2, 4, 1, 3, 5)
By using the respective position within these permutation sets as interval

numbers for X; (Set 1) and Xp (Set 2), the following pairing of intervals
would be formed.

Interval No. Interval No.
Computer Run No. Used for X, Used for X,
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Thus, on computer run number 1 the input vector is formed by selecting the
specific value of Xy from interval number 3 (D to E) and pairing this value
with the specific value of X; selected from interval number 2 (I toJ), etc.
Once the specific values of each variable are obtained to form the five input
vectors, a two-dimensional representation of the LHS can be made such as

given in Figure 3.

Note in Figure 3 that all of the intervals for X; have been sampled, and
the same is true of X». In general, a set of n LHS points in k-dimensional
Euclidean space contains one point in each of the intervals for each of the k
variables,
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Figure 3. A Two-Oimensional Representation of One
Possible LHS of Size 5 Utflizing X and Xj



To illustrate how the specific values of a variable are obtained in a LHS,
consider the following example. Suppose it is desired to obtain a LHS of
size n =5 “-om a normal distribution on the range from 0.0 to 10.0, Recall
that these two limits are taken to represent the lower and upper .001 quan-
tiles, respectively. Therefore, the random variable has a mean of five and
a varifance of 2.618 as indicated in Figure 4. These points together with the
density characteristics of the normal distribution allow for the definition
of the equal probability interval endpoints. These endpoints are shown in
Figure 4 in terms of a density function. The next step is to randomly select
an observation within each of the intervals. This selection is not done uni-
formly within the intervals shown in Figure 4, but rather it is done relative
to the distribution being sampled (in this case, the normal distribution).
This means that the sampling is done uniforsmily on the vertical axis of the
cdf as shown in Figure 4,

Therefore, to get the specific values, n = 5 randomly selected uniform
(0, 1) numbers (Uy, m = 1, 2, 3, 4, 5) are obtained to serve as probability
levels. These probabilities are then scaled by

Pm*Um(.Z)*(M-U(.N m’l. 2. 3. 4.5

This ensures that exactly one probability. P, will fall within each of the
five intervals (0, .2}, (.2, .4), 6), (.6, .B) and (.8, 1). The values
P are used with the inverse normo\ d‘stribution function to produce the
specific values to be used in the LHS. Note that exactly one observation is
taken from each interval shown in Figure 4. The entire process 15 shown in
Table 1. Figure 4 makes it clear that when obtaining a LHS, it is easier to
work with the cdf for each variable, This is the approach used in the computer
program, rather than defining the endpoints of the intervals on the x-axis.

The above illustration snows how one input variable having a normal dis-
tribution is sampled with LHS, This procedure is repeated for each input
variable, each time working with the corresponding cumulative distribution
function, [f a random sample 1s desired, then it is not necessary to divide
the vertical axis into n intervals of equal width., Rather, n random numbers
between O and | are obtained and each is mapped through the inverse distri-
ibution function to obtain the specific values. The final step in the sam-
pling process invalves pairing the selected values.
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Table 1. One Possible Selection of Values for a LHS of Size §
from a Normal Distribution on the Interval (0,10)

Scaled Corresponding Corresponding
Probabilities Standard Norma) N(5,2.618)
Interval  Uniform (0,1) With the Interval Value (z-score) Observation
Number Random No. Pm = Upl.2)+ From the Inverse Within the
m Up Tm-l)T.Z) Distribution Intervals
1 .12718 016 -2.144 1.529
2 .57689 322 -0.462 4.252
3 03652 505 0.013 5.021
4 29372 JI87 0.796 6.288
5 .39332 .924 1.433 7.319

It should be noted that even though two variables are sampled independently
and paired randomly, the sample correlation coefficient of the n pairs of
variables in either a random sample or a LHS will, in general, not equal zero,
just due to sampling fluctuations. In order to obtain a sample in which the
sample correlations more nearly match the assumed, or intended, correlations,
Iman and Conover (1982a) proposed a method for restricting the way in which
the variables are paired. The effect of this restriction on the statistical
propertics of the estimated distribution of Y, its mean and percentiles, is
not known but is felt to be small. The pairing of variables in the program
can be done either randomly or by the restriction procedure through use of
an input parameter, which is explained in the next section.

Additionally, the restricted pairing procedure of Iman and Conover can be
used to induce a user-specified correlation among selected input variables
through use of another input parameter explained in the next section. However,
it should be pointed out that such induced correlations are based on the non-
parametric technique known as rank correlation. Such a measure is used since
it remains meaningful in the presence of nonnormal distributions on the
fnput variables.

As a final note, if a correlation structure is not specified by the user,
then the program computes a measure for detecting large pafrwise correlations.
This measure is known as the variance i.uflation factor (VIF) and is defined
as the largest element on the diagonal of the inverse of the correlation
matrix. As the VIF gets larger than 1, there may be some undesirably large
?airwise correlations present. Marquardt and Snee (1975) deal with some very

arge VIFs (> 2 x 10°) and provide a very readable explanation on reasonable



sizes of VIFs. Marquardt (1970) indicates that there can be serious collin-
earity (i.e., large pairwise correlations present) for VIF > 10. Thus, there
is certainly no problem as long as the VIF is close to 1. The VIF appears as
part of the computer printout when the user requests the correlation matrix
to be printed, given that no correlation structure has been specified by

the user.

2. INPUT PARAMETERS

The LHS program requires certain parameters to be defined in order to
generate one or more Latin hypercube cor random samples. The program recognizes
17 keywords (no abbreviations allowed) which dictate the characteristics of
the generated sample(s) such as type of sample (LHS or random), sample size,
number of samples desired, correlation structure on input variables, and type
of distribution specified on each variable. Other keywords are used to
control the output from the printer. If the keyword requires accompanying
nunerical values, these values are input using list-directed read statements.
In all cases, the generated sample(s) are automatically written on an output
file in unformatted binary and it is up to the user to take the steps necessary
to save the file. (More information on this point is given in Section 5.)

The only restriction on the keywords is that there can be no leading blanks
and at Teast one biank must follow each keyword.

There are a number of internal checks built into the program to ensure
that the input parameters have been correctly specified. In the event an
improper specification is detected, an appropriate message is printed and
the execution of the program is terminated.

The role of each keyword will now be explained. For purposes of illus-
tration, Table 2 gives an example setup that uses 16 of the 17 keywords to
generate two random samples of size 20 each from nine input variables, some
of which are correlated with one another.
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Table 2

Parameter Setup for Generating
Two Random Samples of Size 20 Each.

TITLE - SETUP FOR GENERATION OF A RANDOM SAMPLE

RANDOM SAMPLE
NOBS 20
NREPS 2

RANDOM SEED - 898079140

NORMAL

12 56

LOGNORMAL

01 2.13

UNIFORM

1 3

LOGUNIFORM

6.0E7 8.1E10
UNIFORM*

3 5 6 9
LOGUNIFORM*

5 3 3 4 406
TRIANGULAR

10 15 30

BETA

10 45 .5 1.5
USER DISTRIBUTION

wNo-o e
5w N

CORRELATION MATRIX
3 1 2 .8
OUTPUT CORR HIST DATA

OPTIONAL FIELD FOR
OPTIONAL FIELD FOR
OPTIONAL FIELD FOR
OPTIONAL FIELD FOR
OPTIONAL FIELD FOR
1 2 3 &

OPTIONAL FIELD FOR
5000 5500

OPTIONAL FIELD FOR
OPTIONAL FIELD FOR

OPTIONAL FIELD FOR

1

5

.7

-10-

NAMING INPUT VARIABLE 1
NAMING INPUT VARIABLE 2
NAMING INPUT VARIABLE 3
NAMING INPUT VARIABLE 4
NAMING INPUT VARIABLE 5
NAMING INPUT VARIABLE 6
6000 6500 7000 7500
NAMING INPUT VARIABLE 7
NAMING INPUT VARIABLE 8

NAMING INPUT VARIABLE 9



TITLE

This keyword can be followed with alphanumeric data to heip describe the

application of the sample (see line | of Table 2). This information will
be printed as a one=line header on each page of the output. This keyword
is optional. If it is omitted, 2 bHlank header is gencrated at the top of
each page.

RANDOM SAMPLE

If this keyword is present, a random sample(s) is generated. If it is
omitted, a Latin hypercube sasple(s) is generated,

NOBS *** This keyword is required. ***

This keyword must be followed by a positive integer that specifies the
desired sample size. The maximum number of observations, currently 1,000,
is easily changed (see the discussion elsewhere in this report).

NREPS

This keyword can be used to generate multiple samples. It is optional,
but when it is present, it must be followed by a positive integer to
specify the desired number of samples (each of size NOBS). If it is
onitted, one sample i3 generated. [f NREPS i¢ followed by the positive
integer m, then m complete samples (each of size NOBS) will be written
back to back on the output file.

RANDOM SEED *** This keyword is required, ***

This keyword must be followed by an {nteger within the machine's range.
For exanplg, within plus or minus 231 = 1 on the VAX 11/780, ytehin pius
or minus 279 ~ 1 on the CDC 7600, and within plus or minus 263 _ | on the
CRAY 1. This number is used as a starting point for the random nunber
generator and is printed at the beginning of each sample. 1f NREPS
specifies a number greater than 1, the current value of the randon seed
is retrieved at the start of the generatior of each new sample. This new
value is printed at the beginning of the nes sample so that any one
desired sample can be regenerated by rerunning the pragram with the new
seed and with the NREPS parameter omitted (or having NREPS 1).

CORRELATION MATRIX

This keyword is used when it is uesired to induce a rank correlatio
structure among the input variables using the restricted pairing te haique
of Iman and Conover (1982a). It should be followed by one or mor» |ines
providing the desired rank correlaticas among those pairs of input vari-
ables having a rank correlation other than zero, The first value to e
supplied is the number of pairwise rank correlations, m, followed by «
ordered triples containing the rumhers of the variables being correl ited

-11-



along with the required rank correlation. Currently the number of pair-
wise rank correlations is limited to 50. See Section 5 for instructions
on how to adjust this value. For example, line 29 of Table ? first indi-
cates that three pairs of variables are to be correlated., The next infor-
mation indicates that variables | and 2 are to have a rank correlation
of .8, then variables ! and 5 are to have a rank correlation of .7, and
finally variables 2 and 5 are to have a rank correlation of .6. [f this
keyword is omitted, all pairwise correlations are assumed to be zero.
user should note that the restricted pairing technique of [man and
Conover requires n > k. That is, the technique can only be applied
directly if n > k; otherwise an error nessage is printed. For the example
in Table 2, n = 20 and k = 9. One possibility for working around this
restriction is to use the sarpling technique in a piecewise fashion on a
subset of the k variables where the number of variables used in each sub-
set is less than n, The resulting subsets are then pieced together to
form the n x k input matrix. Such a plecewise approach would 2nsure the
desired correlations among variables within subsets, but there could
exist undesired correlations hetween variables belonging to different
subsets. In a case such as this, as well as in general, the resulting
rank correlation matrix should be examnined very carefully to make sure it
satisfies the user's requirenents. Additionally, in the case that the
user does not specify a correlation matrix and does not have n > k, the
program will generate the desired sampling through simple random mixing
rather than restricted pairing., Since this approach brings up the possi-
bility of unwanted correlations, the resulting correlation matrix should
again be examined very carefully,

As a final note, 1f the input correlation structure is such that the rank
correlation matrix is not a positive definite matrix, an iterative scheme
(Iman and Davenport, 1982) built into the program will attempt to adjust
the fnput rank correlation matrix to make it positive definite. In this
case a message is printed out along with the adjusted matrix indicating
that an adjustment has been made and requesting the user to examine the
adjusted matrix to see if it still satisfies the correlation requirements,

RANDOM PATRING

Use of this keyword allows the sampled values to be paired randomly as
explained at the end of Section 1. [If this keyword does not appear, then
the restricted pafring technique of [man and Conover (1982a) is used sub-
Ject to the restrictions mentioned under the keyword CORRELATION MATRIX.
In the event the user mistakenly includes both the keywords RANDOM PAIRING
and CORRELATION MATRIX in the sawe run, the program will continue to exe-
cute; however, the former keyword is ignored with a message to that effect
printed after the correlatfon matrix,

outeuT

This keyword 1s followed by one or more of three additional keywords,
These additional keywords can appear in any order (separated by blanks).

«12=



Their purpose is to control the amount of printer output. These keywords
function as follows.

CORR - Both the raw and rank correlation matrices associated with
the actual sample generated are printed.

HIST - Histograms are generated for each variable in the sample based
on the actual values of each variable in the sample.

DATA - If this option is specified, each complete sample (n observa-
tions on k variables) will be listed, followed by a complete
listing of the ranks of each variable. Use of this option
makes the individual sample input vectors available to the

user.

The remaining keywords (at least one of which is required) allow the user
to specify the distribution and corresponding parameters for each of the vari-
ables in the sample. Eight distributions providing a great deal of flexibility
are supplied by the computer program. However, use of a ninth keyword allows
for a user-supplied subroutine to be called in order to generate other types
of distributions. This subroutine can also be used to obtain samples from
empirical data by using the corresponding empirical distribution function.
Such a user-supplied subroutine can easily be coded so that it can be called
more than once in order to generate different distributions for different
varia~les. Examples of the use of such a subroutine appear in Section 4.

For each of the keywords given below additional information describing the
variable can be placed as a comment immediately after the trailing blank at
the end of the keyword (see the examples on lines 6, 8, 10, 12, i4, 16, 18,
20, and 22 of Table 2). Such information bhecomes part of the computer printout
and is useful for reference. Each keyword must be followed bE at least one
ad.'"tional line of information spec ng *the parameters o e distribution.
The only possible exception 1S EEe Eeywora'ﬂstg DISTRIBUTION where additional
information is user-dependent. The number of times these keywords can be
repeated is limited only by the dimensions in the program. The program is
currently dimensioned to allow for 50 variables but is easily modified as
indicated in Section 5.

NORMAL

The second 1ine of information associated with this keyword supplies, in
order, the .001 quantile and .999 quantile of the desired normal distribu-
tion. See line 7 of Table 2 where these quantiles are respectively speci-
fied as 12 and 56.

LOGNORMAL
The two parameters specified on the second line have the restriction that
both must be positive. Again, these two parameters are defined as the .001

quantile and the .999 quantile. See line 9 of Table 2 where these quantiles
are specified as .01 and 2.13 respectively.

«13-



UNIFORM

The second line of information provides, in order, the lower and upper

endpcints of the interval that is to be sampled uniformly. See line 11l
of Table 2 where a uniform distribution is defined on the interval from
1 to 3.

LOGUNIFORM

This distribution allows the variable to be sampled uniformly on the
logarithms base 10 of the two positive parameters supplied on the second
line of information. For example, on line 13 of Table 2, the values
6.0E7 and 8.1E10 are specified. The first step in the program is to find
the base 10 logarithms of each of these values. These values are respec-
tively 7.78 and 10.91. Next, a uniform distribution is generated on the
interval 7.78 to 10.91. The last step is to find the antilogarithms of
each of the latter values, i.e., 10%. This scheme allows "uniform"
sampling of variables on a logarithmic scale.

UNIFORM*

Use of this keyword allows for the samples from uniform distributions

to be modified by changing the fraquency with which uniform sampling is
done within subintervals of the range of the variable. Thus, at least one
additional line of information is required to allow different subintervals
of a given interval to be sampled with frequencies other than what a
strictly uniform distributicn would provide. The first bit of information
indicates the number of subintervals m, followed by m values indicating
the frequency of sampling within each subinterval. Currentiy the maximum
number of subintervals permitted is 50. See Section 5 for instructions

of how to adjust this value. The sum of these frequencies must be equal
to NOBS and each frequency must be greater than or equal to zero. The
Tast information provides the endpoints of the subintervals in increasing
order. For example, on line 15 of Table 2 rather than having 20 observa
tions obtained uniformly on the interval from 1 to 4, the first number
indicates that three subintervals are to be used. Next, the frequencies
of sampling for these intervals are to be 5, 6, and 9. (Note that in
general the sum of these frequencies is NOBS.) Finally, the endpoints of
the subintervals are 1 and 2, 2 and 3, and 3 and 4. Thus, five observa-
tions are sampled according to a uniform distribution on the interval

from 1 to 2, six observations are sampled according to a uniform distri-
bution on the interval from 2 to 3, and finally, nine observations are
sampled according to a uniform distribution on the interval from 3 to 4.

LOGUNIFORM*

This keyword applies to the loguniform distribution in exactly the same
way as UNIFORM* does to the uniform distribution.

-14-




TRIANGULAR

This keyword requires an additional line of informatiorn containing three
values, a, b, and ¢, The value b is the x-coordinate of the apex of the
triangular distribution while a and ¢ are the endpoints of the range.

The program allows for a ¢ b <cora=Db<cora<b=c. In the

case of a = b, the triangular distribution could be generated with the
BETA keyword and p = 1 and q = 2. Also, for b = ¢, the triangular distri-
bution can be generated with p = 2 and q = 1 from the beta distribution.
Properties of the triangular distribution are given in the next section.

BETA

The second line of information accompanying this keyword contains two
values A and B specifying the endpoints of the distribution followed by

two shape parameters p and q. The shape parameters are described in detail
in the next section along with figures illustrating the effect of different
choices of p and q.

USER DISTRIBUTION

This keyword allows the user to modify a subroutine provided later in
this report one or more times in order to generate samples from distribu-
tions other than those suoplied by the program. Three examples are given
in Section 4 to illustrate multiple uses of this option.

3. ADDITIONAL INFORMATION ON DISTRIBUTIONS SUPPLIED BY THE COMPUTER PROGRAM
In this section, a more detailed discussion is provided on each of the

distributions that are built into the computer program. The next section
provides additional information on the use of user-supplied distributions.

»15s




Normal Distribution

fix)
A=, - 3000 # B =y + 3000
Density function: f(x) = 1/(ovZ%) expl-(x - u)2/242) o X< w
X
Distribution function: F(x) = [ f(t)dt EE R
Expected value and variance: E(X) = y and V(X) = o2

The user must specify A and B such that the following statements are satisfied:
P(X < A) = .001 and P(X > B) = ,001

Thus, the normal distribution is truncated such that it is concentrated between
A and 6. The parameters of the trunc: ed distribution can be expressed in terms
of A and B as follows:

E(X) = u = (A +B)/2 VIX) = o = [(8 - A)/6.18)2

A truncated distribution is used since almost all applications of the program
have historically involved a range from A to B. If the user has an application
where truncation is not desired, then the normal distribution should be generated
under the guise of subroutine USRDST which is explained in Section 4.
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Lognormal Distribution

fy) N
|

-

'

1
- ’/

e e e .

>

VALUE OF Y

If X ~ Nlu, 02) and Y = ex, then Y has a lognormal distribution.
fly) = 1/(yo/Zn) expl-{Iny - u)2/202} y>0
y
Fly) = [ f(t)dt y>0
0

E(Y) = exply + 02/2) and V(Y) = exp(2y + o2)[explo?) - 1]

Median = eV

As with the normal distribution n, the user must specify A > 0 and B > 0 such
that the following statements are satisfied:

P(Y < A) = .001 and P(Y > 8) = .001.

The pro?ram operates by first finding A* = 1n A and B* = In B and then
generating a normal distribution with A* and B* playing the same roles as

A and B with the normal distribution. Once samples from the normal distribu-
tion have been generated, eaﬁh value of X is converted to a lognormal distri-
bution sample value by Y = e”.
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Iniform Distribution

ina
The user must specify the endpoints A and

Lf UNIFORM* is specified, then a uniform distribution is sampled within
each user-specified subinterval according to the user-specified frequency for

each subinterval. MNote that the subintervals do not have to be of equal

width, This option is useful for generating a sample from a nistogram. For
‘L)"\[\'-n' the uyser ould r-),‘”)(‘lf), the interval endpoints as A < C <D < B with
"'.”‘l“‘)m 1es corresponding to the following histoaram.




Loguniform Distribution

f(x) -\
3 \\

\
- N\
\\
x
N,

-

-

VALUE OF X

1f X has a loguniform distribution on the interval from A to B where A > 0,

then Y = 10gjg X has a uniform distribution on the interval from logig A to
1o91g B. Although the code uses base 10 logarithms, the following properties
are stated in terms of natural logarithms in order to simplify the presentation.

f(x) = 1/x (In B - 1n A) A<x<8B

F{x) = (Inx - 1In A)/(InB - 1In A) A<x<B

E(X) = (B - A)/(1n B - 1n A)

V(X) = (B - A)[(In B - 1n A)(B + A) - 2(B - A)1/[2(1n B - 1n A)?]

Median = exp[(1n B + 1n A)/2] = /AB

The user must specify A > 0 and B > 0. If it is desired to have A close to
zero, then the user shoulg be aware of how specific choices affect the sanp\;ng.
For example, with A = 107 and B = 10, 1/3 of the sample will be between 10~
and 10‘2, another 1/4 will be between 10°% and 10~!, another 1/4 will be
between 10°1 and 10Y, wjth the final 1/4 between 10 a9d 10. If, however,

A is selected to be 10°/, then 1/2 will be between 10~/ and 107~ and 1/2
between 10~3 and 10! with only 1/8 between 10U and 10. This distribution
allows uniform sampling of variables on a logarithmic scale as each decade is
sampled with the same frequency. The frequency of interval sampling is easily
changed by using LOGUNIFORM* in the same manner as described with the uniform
distribution.
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Triangular Distribution

Case 1. a<b«<c

a b <
2(x - a)
f(x) = a<x<h
(c - a)(b - a)
2(c - x)
= b<x<c
(c - a)(c = b) ~ i
(x - a)2
F(x) = a<x<hb
(c - a)(b - a) =
b - a (x + b~ 2c)(x - b)

S s - DE<x<c
c-a (c - a)lc - b) S
a+b+c ala - b) + b(b -c¢) + clc - a)

E(X) = —— V(X) =
3 18
a+c

Median: X g5 =a+/ (c - a)(b - a)/2 if b 3 "

=c-/(c-b)c- a2 if bli-g-é-s-

Note with a < b < ¢, the u er may want to consider using a beta distribution
with a choice of p =2, q+ Zorp=3, q=2 for example. See the figures
provided in this section under the beta distribution.
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Case 2. a=b<c

(a, 2/(c-a))

a c
2(c - x) (x - a)(2¢c - x - a)
FX) = e Flx) = as<xcc
(¢ - a) (¢ - a)?
2a + ¢ (c - a)? ¢ - 3
E(X) = V(X) = e g Median: X g = C - a

Note that this distribution can also be generated using the beta distribution
on the interval from a to ¢ with p =1 and q = 2.
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Case 3. a<b=c¢c

(c, 2/(c-a))

a c
2(x - a) (x - a)2
FX) = m— Flx) = =—— a<x<c
(c - a)? (c - a)2 -
a+ 2 (c - a)? . ek
E(X) = ViX) = ‘T— Median: x_5 = a3 - '—',2,—

Note that this distribution can also be generated using the Beta distribution
on the interval from a to ¢ with p = 2 and q = 1.



Beta Distribution

Let Y be a random variable having a beta distribution on the interval
(a,b) with parameters p and q. Further, let X = (Y - a)/(b - a) so that
0 <X < 1. Then X has a standard beta distribution with

P
E(X) = e (1)
pP*+q
Pq
V(X) = . (2)

(p+ q)l(p+qg+i)

Therefore,
E(Y) = (b - a)E(X) + a (3a)
aq + bp
. ot (3b)
ptq
and
v(Y) = (b - a)2 v(x) (4a)
(b - a)2pq
& (4b)

(p + q)2(p + q+ 1)

Equations (3b) and (4b) provide the user with the mean and variance of the
random variable Y on a given interval from a to b for specific choices of p

and q which act jointly to determine the shape of the underlying distribution.
Figure 5 has been provided to help the user see the effect of various choices

of q and p. As an example, this figure can be used to see the influence of
changing p with q fixed at different values, or changing q with p fixed at
different values, or letting p = q as both increase. In addition, equations (1)
and (2) have been evaluated in Table 3 for the 16 choices of p and q in Figure 5.
These values can easily be substituted into (3a) and (4a) to determine the

mean and variance of Y for a given interval (a, b).
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Figure 5. BReta Densities for Various Choices of the Parameters p and q.
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Table 3. The Mean and Variance of a Standard Beta Distribution
Correspending to Choices of p and q Used in Figure 5

p q  EX)  ¥(X) » 49 EX VX
X7 ol 500 .125 2 .5 800 .046
5 1 333 .089 gy 667 056
5 2 200 .046 $. 2 500  .050
5 3 143 027 N 400 .040
QR 667 089 35 857  .027
1 1 500  .083 5.3 750 .038
1 2 333 .056 "RSES | 600  .040
1 3 250  .038 33 500 .036

The final method used to illustrate the influence of p and q on the mean
and variance is shown graphically in Figures 6 through 8. Figure 6 shows that
the mean will increase as p increases for a fixed value of q. Figure 7 shows
the mean will decrease as q increases for a fixed value of p. Figure 8 shows
how p and q jointly influence the variance. It should be noted that the roles
of p and q are interchangeable in Figure 8.
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Figure 6. The Influence of Different Choices of P on the Expected Value of X
for Various Choices of Q When X has a Standard Beta Distribution
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4. EXAMPLES OF THE USE OF SUBROUTINE USRDST TO GENERATE SAMPLES FROM A
USER-SUPPLIED DISTRIBUTION

As mentioned in the previous section, the user may specify the keyword
USER DISTRIBUTION whenever it is desired to obtain a sample from a random
variable whose distribution is not built into the program. This is done
through use of a user-supplied subroutine called USRDST which is given in
Table 4. This subroutine is called each time the keyword USER DISTRIBUTION
appears. Thus, if the user desires to supply distributions for more than one
variable, then the keyword USER DISTRIBUTION must appear once for each such
variable. In such a case the user must code subroutine USRDST to function in
accordance with the number of the variables being processed. This communica-
tion link is established by the argument “J" in the calling 1ist of the
subroutine which contains the number of the current variable being sampled.
Thus, if a user had 10 input variables and desired to invoke a user-supplied
distribution on the 3rd and 7th variables, then the subroutine USRDST is
automatically called twice from the main program. On the first call to the
subroutine the value J = 3 is supplied by the main program, while on the second
call J = 7. A FORTRAN "IF" statement within USRDST could be used to direct
one action for the case with J = 3 and a different action for J = 7. Of
course, this logic easily extends to more than two variables.

Three examples will now be given to show the use of the subroutine USRDST.
The first example provides the setup for sampling from the following discret:
probability distribution.

f(x) = .2 ,x=0
= .3 ,x=1
= 4 ,x=2
= 1 ,x=3
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F(x)
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0 1 2 3 x

Figure 9. Distribution Function for a User-Supplied
Discrete Probability Distribution

The corresponding distribution function appears in Fiqure 9. For this
discrete variable to be sampled, it is necessary to input the probability
distribution in the parameter list such as appeared in lines 22 to 27 of

Table 2. Subroutine USRDST must be modified by the user to first read in this
information so it can be used to construct the distribution function given in
Figure 9. Next, the subroutine must use a “D0" loop to move up the vertical
axis of the distribution function starting at zero and using n steps each of
length PROBINC = 1/n. These intervals will be (0, 1/n), (1/n, 2/n), (2n,
3/n), «.., (n = 1/n, 1). A point R is selected at random in each of these
intervals and mapped through the inverse of the distribution function to
select the particular value of X. Thus, for a LHS with r = 5 (note the
horizontal dashed lines added to Figure 9), the value x = 0 is selected once
from the interval (0, .2); x = 1 is selected once from the interval (.2, .4);
either x = 1 or x = 2 is selected from the interval (.4, .6) depending on the
value that R takes on; the value x = 2 is selocted from the interval (.6, .8);
and finally either x = 2 or x = 3 is selected from the interval (.8, 1). If
a random sample is desired, then each selection of X is made on the interval
(0, 1). Once each value is selected, it is stored in the vector X using the
LOC function that is defined in the subroutine for the ith observation on the
jth variable. The FORTRAN setup for this example appears in Table 4.
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Table 4. Subroutine USRDST For Sampling From a User-
Supplied Discrete Probability Distribution

(Continued on next page)

SUBROUTINE USRDST (J)

C
C
C

OO0 OO0

oOO0 OOOOOOOOaO aoOOoOO

OO0

THE FOLLOWING SIX LINES OF CODE ARE REQUIRED BY USRDST

PARAMETER (NMAX=1000)

PARAMETER (NVAR=50)

PARAMETER (LENT=125)
COMMON/PARAM/TITLE(LENT) ,ISEED ,N,NV,IRS,ICM NREP ,IDATA,IHIST,
1 ICORR, IDIST(NVAR)

COMMON/ SAMP /X ( NMAX*NVAR)

THE FOLLOWING LINE OF CODE IS SUPPLIED BY THE USER.
XVAL AND FREQ MUST BE DIMENSIONED TO THE NUMBER OF UNIQUE VALUES

THAT THE DISCRETE RANDOM VARIABLE TAKES ON AND CDF MUST BE
DIMENSIONED TO THE NUMBER OF UNIQUE VALUES PLUS 1

DIMENSION XVAL(4),FREQ(4),CDF(5)
THE FOLLOWING FUNCTION DEFINITION IS REQUIRED BY USRDST
LOC(T,J)=(J=1)*N+I
READ IN THE VALUES FOR THE DISCRETE PROBABILITY FUNCTION.
NP IS THE NUMBER OF UNIQUE VALUES OF THE RANDOM VARIABLE.
XVAI (K) IS THE KTH UNIQUE VALUE OF THE RANDOM VARIABLE.

FREQ(K) IS THE PROBABILITY ASSOCIATED WITH THE KTH UNIQUE VALUE.
NOTE THAT THE READ STATEMENT MUST BE OF THE FORM READ(7,*)....

READ(7,* INP
DO 1 K=1,NP
1 READ(7,*)XVAL(K) ,FREQ(K)
CONSTRUCT THE CUMULATIVE DISTRIBUTION FUNCTION
COF(1)=0.0
DO 2 K=1,NP
2 CDF(X+1)=CDF(K)+FREQ(K)

SET THE STARTING POINT (STRTPT) EQUAL TO ZERO AND THE PROBABILITY

INCREMENT (PROBINC) EQUAL TO 1/N FOR A LHS WHERE N IS THE SAMPLE SIZE

STRTPT=0.0
PROBINC=1.0
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a5
46
a7
43
49

51
52
53
54
55
56
57
58
59
60

62
63
64
65
66
67
68
69
70

72
/3
74
75
76

OO0 OO0 eleleNelel

OO0

OO0

Table 4. Subroutine USRDST For Sampling From a User-
Supplied Discrete Probability Distribution
(Continued from preceding page)

IF A RANDOM SAMPLE HAS BEEN SPECIFIED IN THE PARAMETER LIST THEN THE
ARGUMENT IRS HAS BEEN SET EQUAL TO 1 IN THE MAIN PROGRAM, HENCE THE
PROBABILITY INCREMENT IS SET EQUAL TO 1 SO THAT ALL OBSERVATIONS ARE
SELECTED BY USING THE INTERVAL (0,1)

IF(IRS.EQ.1)PROBINC=1.0
THIS LOOF WILL OBTAIN THE N SAMPLE VALUES
DO 4 I=1,N

R IS A RANDOMLY SELECTED POINT IN THE CURRENT SUBINTERVAL OBTAINED
BY USING THE RANDOM NUMBER GENERATOR RAN

R=STRTPT+PROBINC*RAN( ISEED)

THIS LOOP WILL SELECT THE SPECIFIC VALUE OF THE RANDOM VARIABLE
CORRESPONDING TO R THROUGH THE INVERSE CUMULATIVE DISTRIBUTION
FUNCTION.THESE VALUES ARE STORED IN THE VECTOR X THROUGH THE
USE OF THE LOC FUNCTION

DO 3 K=1,NP
IF(R.GE.COF(K) .AND.R.LT.COF(K+1))X(LOC(I,J))=XVAL(K)
3 CONTINUE

RESET THE STARTING POINT TO THE BEGINNING OF THE NEXT SUBINTERVAL
UNLESS A RANDOM SAMPLE HAS BEEN SPECIFIED

IF(IRS.NE.1)STRTPT=STRTPT+PROBINC
4 CONTINUE

RETURN

END
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The second example illustrates how to use subroutine USRDST to obtain a
sample from an empirical distribution function (i.e., one generated from sample
data). Suppose the information available on one of the input variables takes
the form of sample data, i.e., the analyst wants to use the sample data with
the computer model and not risk introducing additional uncertainty by replacing
the sample data with an estimated distribution function. This is easily
accomplished by sampling directly from the empirical distribution function
formed by the sample data. As an example, suppose there are eight sample
data points available as follows: 0.4, 0.9, 1.1, 1.4, 1.9, 2.2, 2.4, 2.7.

To provide this information to the program, the following set up could be used.

USER DISTRIBUTION
8 A .9 1.1 1.4 1.9 2.2 2.4 e.7

The first piece of information after the keyword is the sample size. Once
the data points are read in, the subroutine USRDST will construct an empirical
distribution function (edf) much as was done in Figure 9, only the stepheights
will all be equal (in this case, the stepheight = 1/8). The graph of the edf
appears in Figure 10. Thus, for a LHS of size 5 (note the horizontal dashed
lines in Figure 6), either the value x = .4 or x = .9 is selected from the
interval (0, .2); either x = .9, x = 1.1, or x = 1.4 is selected from the
interval (.2, .4); either x = 1.4 or x = 1.9 is selected from the interval
(.4, .6); either x = 1,9, x = 2.2, or x = 2.4 is selected from the interval
(.6, .8); and finally either x = 2.4 or x = 2.7 is selected from tne interval
(.8, 1). Of course, a random sample would select each value from the interval
(0, 1). The FORTRAN setup for this example appears in Table 5.

8(x)

dfoecccccnccccanad

. V. A V. A A A

A 0 11 14 1.9 2.2 2.4 2.7 x

Figure 10. Empirical Distribution Function for User-Supplied Data
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Table 5. Setup for Subroutine USRDST to Generate a Sample
From An Empirical Distribution Function
(Continued on next page)
SUBROUTINE USRDST (J)
THE FOLLOWING SIX LINES OF CODE ARE REQUIRED BY USRDST
PARAMETER (NMAX=1000)
PARAMETER (NVAR=50)

PARAMETER (LENT=125)
COMMON/PARAM/TITLE(LENT) ,1SEED N, NV, IRS,ICM,NREP ,IDATA, IHIST,

1 ICORR, IDIST(NVAR)
COMMON/ SAMP /X ( NMAX*NVAR)
THE FOLLOWING LINE OF CODE IS SUPPLIED BY THE USER.
SYAL MUST BE DIMENSIONED TO THE NUMBER OF SAMPLE VALUES AND
EDF MUST BF DIMENSIONED TO THE NUMBER OF SAMPLE VALUES PLUS 1
DIMENSION SVAL(8),EDF(9)
THE FOLLOWING FUNCTION DEFINITION IS REQUIRED BY USRDST
LOC(T,J)=(J-1)*N+]

READ IN THE SAMPLE SIZE NP AND THE SAMPLE VALUES.
NOTE THAT THE READ STATEMENT MUST BE OF THE FORM READ(7,*)....

READ(7,*)INP,(SVAL(K) ,K=1,NP)
CONSTRUCT THE EMPIRICAL DISTRIBUTION FUNCTION
STEP=1.0/FLOAT(NP)
EDF(1)=0.0
DO 6 K=1,NP
6 EDF(K+1)=STEP*FLOAT(K)

SET THE STARTING POINT (STRTPT) EQUAL TO ZERO AND THE PROBABILITY
INCREMENT (PROBINC) EQUAL TO 1/N FOR A LHS WHERE N IS THE SAMPLE SIZE

STRTPT=0.0
PROBINC=1.0/FLOAT(N)

IF A RANDOM SAMPLE HAS BZEN SPECIFIED IN THE PARAMETER LIST THEN THE
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Table 5. Setup for Subroutine USRDST to Generate a Sample
From An Empirical Distribution Function
(Continued from preceding page)

ARGUMENT IRS HAS BEEN SET EQUAL TO 1 IN THE MAIN PROGRAM, HENCE THE
PROBABILITY INCREMENT IS SET EQUAL TO 1 SO THAT ALL OBSERVATIONS ARE
SELECTED BY USING THE INTERVAL (0,1)

IF(IRS.EQ.1)PROBINC=1.0
THIS LOOP WILL OBTAIN THE N SAMPLE VALUES
DO 8 I=1,N

R IS A RANDOMLY SELECTED POINT IN THE CURRENT SUBINTERVAL OBTAINED
BY USING THE RANDOM NUMBER GENERATOR RAN

R=STRTPT+PROBINC*RAN( ISEED)

THIS LOOP WILL SELECY THE SPECIFIC SAMPLE VALUE CORRESPONDING
TO R THROUGH THE INVERSE EMPIRICAL NISTRIBUTION FUNCTION.
THESE VALUES ARE STORED IN THE VECTOR X THROUGH THE USE OF THE
LOC FUNCTION

DO 7 K=1,NP
IF(R.GE.EDF(K) .AND.R.LT.EDF(K+1))X(LOC(I,J))=SVAL(K)
7 CONTINUE

RESET THE STARTING POINT TO THE BEGINNING OF THE NEXT SUBINTERVAL
UNLESS A RANDOM SAMPLE HAS BEEN SPECIFIED

[F(IRS.NE.1)STRTPT=STRTPT+PROBINC
8 CONTINUE

RETURN

END
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5. MODIFYING THE COMPUTER PROGRAM

The computer program has been written using the FORTRAN-77 language with
the attempt to make the code as machine-indeperdent (i.e., portable) as
possible. This has been done by using the generic name for intrinsic functions
whenever possible and also by avoiding the use of nonstandard syntax. However,
certain items in the code are by their nature machine-dependent and must be
adjusted before the code will run,

Machine Constants

The first items to be adjusted are the machine-dependent constants. These
constants are set in functions I1MACH (integer machine constants) and RIMACH
(floating-point machine constants). To alter these functions for a particular
machine or environment, the desired set of constants should be activated by
removing the “C" from column 1 in the program. (For a more detailed discussion,
see the comments at the beginning of the functions IIMACH and RIMACH.)

Random Number Generator

In Section 2 of this report, the discussion of the keyword RANDOM SEED
indicated that the possible range of values for this parameter was machine-
dependent. In order to take advantage of the full machine range, the length
(i.e., number of digits) allotted for the random seed must be adjusted. This
length should be set to the number of digits in the largest integer represent-
able by the machine plus one extra place to allow for the use of a sigf. The
current value for this length is based upon the VAX 11/780 which is 2°! - 1 or
2147483653, By allowing an extra place for the sign (which is necessary since
the VAX 11/780 permits the use of negative intagers for a random seed), the
length required is 11. This is the length used in the code. However, as an
exemple, suppose the code was to run on g CDC 7600 machine.  There the largest
integer represented by the machine is 2% _ 1 or 2.815 x 1014, Including an
extra place for the sign results in a length of 16. This new length must be
incerted into the code in the following places:

1. SUBROUTINE BANNER -- in the FORMAT statement labeled 3001 the I11
should be changed to 116.

2. SUBROUTINE DATSQZ --in the PARAMETER statement, LENT = 11 should be
changed to LENT = 16.

(v
-

SUBROUTINE RDPAR -~ in the PARAMETER statement, LENTC = 11 should be
changed to LENTC = 16.

4. SUBROUTINE RDPAR -- in the FORMAT statement labeled 9003, the 111
should be changed to 116.

Different machines will alsoc vary in the way the random number generator
is accessed. The cuirent version of the code uses the VAX 11/780 function RAN
to obtain a pseud.-random number from the range (0, 1). The random seed is

"




placed in the variable ISEED and this variable is constantly being updated
s0 that it contains the most recent value of the random seed. If the random
number generator being used operates differently from this, the following
adjustments will have to be made to the code:

1. If the random number generator needs to be preset, this should be done
in subroutine RDPAR.

2. If the random number generator is called differently, these changes
should be made in subroutines BETA, MIX, NORMAL, TRIANG, and UNIFRM.

3. If a separate call to the random number generator is required to
retrieve the current value of the random seed, this should be done
in subroutine BANNER and only after the first repetition.

Redimensioning

Section 2 indicated upper limits on the values of certain parameters.
These were:

1. the number of observations, NMAX=1000
2. the number of variables, NVAR=50
3. the number of pairs of correlated variables, NCVAR=50

4. the number of subintervals in the UNIFORM* and LOGUNIFORM* distri-
bution, NINTMX=50

These upper limits should be satisfactory for most situations. However, if
any or all of these upper limits need to be adjusted, the new value must be
replaced in every occurrence of the parameter. Table 7 shows every subroutine
in which each of the above four parameters occurs. The PARAMETER statements
are found at the beginning of each subroutine.
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Table 7. List of Subroutines which Centain burameters that
may be Adjusted faor Purposes of Redimensioning.

PARAME TER SUBROUTINES

NMAX LHS (main program), BETA, CORCAL, COROUT,
DATOUT, FINGIT, HISTO, HPSRT, HSTOUT, MIX,
NORMAL, OUTLAT, RANKER, RDPAR, TRIANG,
UNIFRM, USKDST

NVAR LIS (main proaram), RANNER, «°TA, CHKD'IM,
CHKSTR, CHLSK/, CMCRD, COKCAL, COROUT,
NATOUT, DMFSD, DOTNV, FIND.T, HISTO, #PSRT,
HSTCUT, MATIMY  MIX, NORMAL, OUTCRD, OUTDAT,
PMTRX, POSDEF, RANKER, RLPAK, SETDEF, TRIANG,
UNIFRM, USADST, VIF, WRTCRD, WRTPAR

NCVAR CMCRN , PLPAR
NINTMX L STR, +wDPAR

The Output File

The last item to be considered is the output file. The sample generated
by the code is written to unit 1 in unfoimatted binar:y. Zach record da the
output file represents one input vector ov viriables and 7s of tee tarm I,
K, (X{J),J=1,K) where I 1s the number of the ve:tor being written; X is the
number of variables in the vector and X is the vector of valyes. There are
n of these vectors written to unit 1 where n is the number of observationt
specified by the user through the use of the keyword NOBS. [f more than tne
repetition has been specified (NREPS>1}, then each complete sample will be
written on unit 1 with no separators beiween ropetitions. The Aerinition of
unit 1 for mass storage is the responsibility of t'e user as is the procedure
for actually saving the output file.
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This appendix presents sample output from two runs of the computer program.
The first computer run is based on the 1ist of parameters ?1ven below. This
setup calls for the generation of one Latin hypercube sample consisting of 29
observatione on 7 input variables. Two of these variables have user supplied
distributions corresponding to the setup for subroutine USRDST in Table 6 of
Section 4. Two of the remaining five variables use a normal distribution
while the beta, lognormal, and loguniform distributions are each used once.
The first two pages of output echo back the parameter setup. The DATA
option with the CUTPUT parameter produces pages 3 and 4 of the output which
contain the actual sample generated and the corresponding ranks. The raw
and rank correlation matrices appear on pages 5 and 6 of the output. These
matrices were requested through use of the CORR option with the OUTPUT para-
meter. The output option HIST is not exercised in this example.

TITLE - SETUP FOR LHS OUTPUT EXAMPLE 1
RANDOM SEED -1692990931

NOBS 29
BETA BETA DISTRIBUTION ON (10, 100)
10 100 S5 o
NORMAL THIS WILL BE THE SECOND VARIABLE
12 56
USER DISTRIBUTION DISCRETE PROBABILITY DISTRIBUTION
4
0 2
1 vd
2 4
3 " |
LOGNORMAL EXAMPLE OF LOGNORMAL DISTRIBUTION
01 2.13
NORMAL DISTRIBUTIONS MAY BE USED MORE THAN ONCE
0 10
LOGUNIFORM
6.E7 §.1E.0
USCR DISTRIBUTION EMPIRICAL DATA

8 4 9 1.1 1.4 19 2.2 2.4 2.7
OuTPUT DATA CORR
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FOR EXAMPLE 1 - ECHO OF INPUT DISTRIBUTIONS

PARAME TERS P e "
X L ¥ ARAMITER
W ONF AN ¥ 8
N VAR AN S

A 1 THIS WILL BF THF SECOND VAR ABLE

DISCRETE PROBABILITY DISTRIBUTION

do0f 02 7 EXAMPLE OF LOCNORMAL DISTRIBUT ION

0 00000 7 \ JISTRIBUTIONS MAY BE USED MORE THAN ONCE

& M0OF+07 TO

BUTION




PAGE 3 OF COMPUTER OUTPUT FOR EXAMPLE 1 - ACTUAL LHS SAMPLE GENERATED

TITLE - SETUP FOR (NS OUTPUT ExAMPLE 1
LATIN HYPERCUBE SAMPLE [WPUT VECTORS

N N0 X(Y) x(2) x(3) 1(s) x($) «(8) ()
f 1) b Q. 1. 8178 s . 1 AS4E+10 & 400
2 2 “w>s 100 7 89%-92 s N | S53E«09 ' 19
3 M) 33 1 e 9 194 5 49 7 S05E+10 ") 1@
4 B0 “ 4 10 LIET A $ 13 ' Se6E+08 ' 90
S W 8.3 1. 8 22 I i 835E+18 @ 00
e 129 %2 @ 009E08 0 '8! emn 3. 5330410 220
7 e 33 0 7 82)-92 8 4 2 400cr08 ) o
s N3 AL i0 L L 44 S 588E+10 2 @
883 7.3 j e e 1S 4 84 2.973E+'8 1 90
e me 108 4 2C76-92 5 %8 3. 959€E+10 2 0
LAN L 2. 100 ? 148 LR J 4 1086408 '
12 197 238 1.6 3 918E-02 3 1) B 00307 2 70
13 177 Ms ? 00000 0 108 i »n 6 B47E+08 0 0
4 189 9 4 1 0 e « 9 1 ATIEE9 2 70
15 %2 Jo s 1 00 1 49%E-02 s 0 3 00E«08 2 20
18 438 32 4 2 Q00E+00 8 102 413 1 468609 2

17 12 s J o0 e ls8 718 JAME«S 2 W
18 6.5 290 @ 000E+09 & 129 7.5 S 730€+09 1 10
19 103 “a 1. @ o2 “n 3 803€E«e9 ' 90
% 139 n2s 10 o184 37 7. 190€+09 2 20
27 204 20 1 e e 57 1 09RE«9 ' &
22 133 3 9 000E+%0 3 923E-02 4+ 9) 9 2040409 0 900
3 4“4 1. o0 e 258 6 9 2 073E+28 0 420
4 11 8 509 1 0 e\ 8 14 1 1396+08 2. 70
25 1008 3 10 9 24002 873 4 2276469 2 300
8 Ja 200 L P L 288 6 A7SE+07 0 400
7 Mo LT 3 o S 168E-02 4 )5 1 1S5E«10 2 20
8 148 239 10 e 28¢ 189 8 762€«08 1 40
9 278 AL ] 20 8 675€-02 3 24 4 8706408 1 10
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PAGE 4 OF COMPUTER QUTPUT FOR EXAMPLE 1 - RANKS OF SAMPLE VALUES BY VARIABLE

TITLE - SETUP FOR inS QUTPUT EXAMPLE |
RANKS OF LATIN HYPERCUBE SAMPLE wPUT VECTORS

N N x() x(2) 3 e s x(8) x(7)
' 23 L] " " Fi) 3 3
2 L 23 Fi s 17 14 9
3 n L) " 19 8 2% L
. 29 24 2 Fa 18 . V7
3 1 S n. » L] 24 3
6 LB 17. 3. 8. 13. 28 Fl
7 1 4. F1] ? 24 ) .
L] 20 2 2 28 ", 28 2%
] 28 .. 28. 12 2. 3. 17,

19 18, ? 1" 3 19 27 28
1" ¥, 2. b1 19 29 L] 14
12 . . F3) 2 ‘. 2 rL
13 13 8 3 . 2 10 8
" 12 ] " 29 14 '3 <8
'8 28 i) " ' 22 ? 2
18 24 2 3 L 9 5 23
17 S " 3 8. 27 '8 25
L] 7 L] 3 13 28 9 AL
A 3 ka4 " 24 L] 17 17
20 " 13 n " ? 20 P4
0 13 1 1" 8 29 172 4
22 L 3 & L] L] FAl L]
) 9 28 A 2 . ] 3
24 ? 29 " 18. 2 3 28
3 ‘. Fil n 9 23 18 L]
28 25 19, Ea) Fl 3 ' 3
27 2 28 28 4 " 2 H3)
28 L 3 ", 23 1 " 14
29 8 19 . 8 S 9 e
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PAGE 5 OF COMPUTER OUTPUT FOR EXAMPLE 1 - RAW DATA CORRELA

T™ME LATIN MYPERCUBE SAWPLE

case
AT 2a0e

1803-0 2224 ' 0000
2271-0 0203 8 0737 | 000

4 S [ ’

ATION FACTOR FOR TMIS MATRIX IS 1 @7

PAGE 6 OF COMPUTER OUTPUT FOR EXAMPLE 1 - RANK CORRELATION MATRIX

ExawPLE Y

ABLES CREATED BY THE LATIN HYPERCUBE SAMPLE FOR RANK DATA

2oee
0301 1 2000
23060 29089 ' 000
9675-9 0187-0 2084 ' POOO
0902-9 02269 0223 @ 9030 ' 000
S 4 b L} 7
VAR ABLES

THE VARIANCE INFLATION FACTOR FOR THIS MATRIX IS 1 92




The second computer run is based on the list of parameters given below. This
setup differs from the first example in two respects. First, a rank correla-
tion is specified involving variables X;, Xp, and X5. However, the specified
rank correlations do not form a positive definite matrix. Hence, as explained
in Section 2 under the keyword CORRELATION MATRIX, an iterative scheme (Iman
and Davenport, 1982) built into the program adjusts the correlation matrix to
make it positive definite. The output shows that the user specified correla-
tions of .8, .7, and -.6 have been adjusted respectively to .5872, .4990, and
-.4078 with the corresponding sample rank correlations being .5926, .5821,
and -.3419. The second difference in this example is that the DATA option
has been omitted from the OUTPUT list as the sample values are the same as
before only paired differently to reflect the new correlation structure.

TITLE - SETUP FOR LHS OUTPUT EXAMPLE 2

RANDOM SEED -1692990931
NOBS 29
BETA BETA DISTRIBUTION ON (10, 100)
10 100 5 .2
NORMAL THIS WILL BE THE SECOND VARIABLE
12 56
USER DISTRIBUTION DISCRETE PROBABILITY DISTRIBUTION
4
0 .2
1 3
2 .4
3 .l
LOGNORMAL EXAMPLE OF LOGNORMAL DISTRIBUTION
.01 2.13
NORMAL DISTRIBUTIONS MAY BE USED MORE THAN ONCE
0 10
LOGUNIFORM

6.E7 8.1€10
USER DISTRIBUTION EMPIRICAL DATA
8 R .9 1.1 1.4 1.9 2.2 2.4 2.7

CORRELATION MATRIX
R S R RS TR T R R

OUTPUT CORR
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PAGE 1 OF COMPUTER OUTPUT FOR EXAMPLE 2 - ECHO OF INPUT PARAMETERS

TITLE ~ SETUP FOR (NS OUTPUT EXAMPLE 2

RANDOM SEED « - 18929908931

MAMBER OF JARIABLES « 7

MABER OF OBSERVATIONS « 29

AN INPUT CORSELATION MATRIX MAS BEEN SPECIFIED

THE CORRELAT ION MATRICES (RAW DATA AND RANK CORRELATIONS) WiiL BE PRINTED

PAGE 2 OF COMPUTER OUTPUT FOR EXAMPLE 2 - ECHO OF INPUT DISTRIBUTIONS

TITLE - SETUP FOR LWS OUTPUT EXAMPLE 2
VARIABLE DISTRIBUTION RANGE LABEL
1 BETA we 0 100 BETA DISTRIBUTION ON (10, 100)

WiTH PARAMETERS P w 0 % Q« 2. 00
THIS CHOICE OF PARAMETERS GIVES A

POPULATION MEAN OF 28 @ AND A
POPULATION VARIANCE OF 378
2 NORMA L 12.0 0 S6oe THIS WILL BE THE SECOND VARIABLE
) USER SUPPLIED DISTRIBUTION DISCRET™ PROBABILITY DISTRIBUTION
. LOGNORMA L ' 000E-02 TO 213 EXAMPLE OF LOGNORMAL DISTRIBUTION
5 NORMA L ® 000E«00 TO 10 0 DISTRIBUTIONS MAY F USED MORE THAN ONCE
L] LOGUN | FORM 6 000E+27 TO B 100E410
4 USER SUPPLIED D!STRIBUTION EMPIRICAL DATA



)F COMPUTER OQUTPUT FOR EXAMPLE

TLE SETUP FOR |LMS OUTPUT EXAPLE 2
MPUT RANM CORRELATION MATR x

Acee

tae A .. SER PLEASE NOTE sesnnnnnn AUTION USER PLEASE NMOTE esssrnnnns AUT SER PLEASE NOTE sssnsnnnns

IHE INPUT RANK CORRELATION MATRIY 1S NOT POSITIVE DEFINITE

AN ERATIVE PROCEDURE HAS BEEN USED T0O PRODUCE A SUBSTITUTE RANK CORRELATION MATRI X
ADJUSTED RANK CORRELATION MATRIX APPEARS ON THME NEXT PAGE

T™E SER SHMOULD EXAMINE THIS MATRI X TO MAKE SURE TMAT THE CORRELATION REQU ! REMENTS ARE ST SATISFIED

PP Tt L L L L L L AL LA L Al R A Ll

PAGE 4 OF COMPUTER OUTPUT FOR EXAMPLE 2 - ADJUSTED RANK CORRELATION MATRIX

LE SETUP FOR LMS OUTPUT EXAMPLE 2
DJUSTED RANK CORRELATION MATRI X
1 8000
20572 1 pe0e
50 49900 4078 ' p00e

2 s




PAGE 5 OF COMPUTER OUTPUT FOR EXAMPLE 2 - RAW DATA CORRELATION MATRIX

TITLE « SETUP FOR LNS OUTPUT EXAMPLE 2
CORRELAT IONS AMONG INPUT VARIABLES CREATED BY T™E LATIN HYPERCUBE SAMPLE FOR RAW DATA
11 seee
20 8441 1 D0
30 2791 @ 9648 ' B000
40 000 0 0189 0 0323 ) s0ee
S0 L 118 37780 €729 0 0828 ' 000
50 8798 @ 1140-0 0230 @ 10030 000 | 2000
T8 0138 0 0205 0 1114 0 22770 0319 0 9737 1 000
' 2 3 . S L] 7
VARIABLES

PAGE 6 OF COMPUTER OUTPUT FOR EXAMPLE 2 - RAMK CORRELATION MATRIX

TITLE -~ SETUP FOR LMS OUTPUT EXAMPLE 2
CORRELATIONS AMONG INPUT VARIABLES CREATED BY THE LATIN MYPERCUBE SAMPLE FOR RANK DATA
11 eeee
20 5928 ' o000
3-8 0308 @ 2249 ' 0000
40 0232-0 00R9-0 0201 1 2000
S0 5281-0 3419-0 2925 0 03355 ' s
6-@ 0192-0 2236-0 06780 0187-0 0202 ' 0000
70 0109-0 0459 0 2902-6 02268 0 0511 ¢ 2030 | 009
' 2 3 . s L]
VAR ABLES

-50-



DISTRIBUTION: SANDB3-2365, NUREG/CR-3624

US NRC Distribution Contractor (CDSI)
7300 Pearl Street
Bethesda, M0 20014

250 copies for RG

US NRC
Division of Risk Analysis
Washington, DC 20555
M. Cunningham (100)
J. Johnson (5)
L. Lancaster (5)
T. Margulies (5)
D. Rasmuson (5)

Los Alamos Scientific Laboratories (5)
Group S1, MS 606
Los Alamos, NM 87545
Attn: M, Bryson
R. J. Beckman
M. E. Johnson
M. D. McKay
R. A. Waller

loannis G. Bartzis

Greek Atomic Energy Commission
Nuclear Research Center Demokritos
Aghia Paraskevi

Attikis

GREECE

Paul Baybutt

Battelle Laboratories
505 King Avenue
Columbus, OH 43201

A. Bayer

INR-Kernforschungszentrum Karlsruhe
D-7500 Karlsruhe 1

Postfach 3640

WEST GERMANY

Carl A. Bennett

Human Affairs Research Center, Battelle
Po Oo 80! C'5395

Seattle, WA 98105

DIST-1



Iversity

treet

ntario BN 375

> L

per 1'Energia Nucleare
argnerita, 125

)

'uh]
for Energy Corp.

wn Road
IN 37922

jrkart
1stitut fur Neutronenphysik and
Reaktortechnik (INR)
ernforschungszentrum Karlsruhe G.m.p.H.
istfach 364l
500 Karlsruhe 1

{ A
it “Ma(\cv

1etre aagnetti

A
n

mitato Nazionale per 1'Energia Nucleare
entro di Studi Nucleari della Casaccia
ia Anauillarese km 14300

A ~“?ﬂ:,1

ampbell (2)
Intera Environmental Consultants
11999 K aty Freeway
Houston, TX 17079




S. Chakraborty

Abtielung fur die Sicherheit der Kernanlagen
Eidgenossisches Amt fur Energiewirtschaft
Wurenlingen

SWITZERLAND

Alistair D. Christie

Deputy Director, Afr Quality and
Inter-Environmental Research Branch

Environment Canada

Atmospheric Environment Service

4905 Dufferin Street

City of North York, Downsview

Ontario, M3H 574

CANAOA

W. J. Conover

College of Business Administration
Texas Tech University

Lubbock, TX 79409

J. M. Davenport
Department of Mathematics
Texas Tech University
Lubbock, TX 79409

Pamela Doctor (2)
Battelle Northwest
P. 0. Bex 999
Richland, WA 99352

Darryl Downing

Cumputer Sciences
Building 2029, P. 0. Box X
ORNL

ODak Ridge, TN 37830

Ove Edlund

Studsvik Energiteknik AB
Studsvik

Fack

S-611 82 Nykoping 1
SWEDEN

Bert Th. Eendebak
KEMA Laboratories
Utrechtseweg, 310
Postbus 9035
NL-6800 ET Arnhem
NETHERLANDS

DIST-3



anfel Egan (2)

ffice of Radiation Programs (ANR-460)
. Environmental Protection Agency
Wwashington, D 20460

renda Ganheart

Minerals Management Service
P. lox 7944
Metairie, LA 70010-7944

M. ar iner
Environmental Sciences Division
RNI
ak Ridge, TN 3/830

sa
AVE : 0sslee
1ox Y nl

’

RN
ak Ridge,

Richard Gunst (5)
epartment of Statistics
outhern Methodist University
)allas, T™X 75275
Allan Gutiahr
Department of Mathematics
.‘u‘.u‘

corro, NM 8/801
William v.‘MVWu"’(f)
Performance 'A"W“] ysis )(J[)drtmpnt
Battelle

King Avenue

lumbus, CH 43201

Michael Haynes
Inited Kingdom Atomic Eneray Authority
afety & Reliability Directorate
wigshaw ane
lﬂ heth
Warrington WA3 4NE
NITED KINGDOM
F. 0. Hoffman
fealth and Safety Research Division
RN
Jak Ridge, TN

DIST-4




S5tenhen . HOra
')."J" yf Business A iministration
Texas Tech University

TXY '9409

Horsch
chungszentrum K arlsruhe
1640
Karlsruhe
£ RMANY

1a
of Reactor Safety Evaluation
afety Research Center
mic Energy Research Institute
Research Establishment
nura
jun

1

sk i-ken 319411

yneen Judah

epartment of Petroleum Engineering
exas ASM University

l1lege Station, TX /7843

weoffrey D. Kaiser
nsulting Division
rporation
ypper Road
1thersb irq, MD

nuel C. Kao (2)
lied Mathematics, 515

ookhaven National Laboratory
ton, NY 1197

an C. Kaul

1ence »\(:j:‘l‘ ations, Inc.
Suite 119
1701 East Woodfield Road

haumburg, IL 60195
. Neale Kelly

National Radiological Protection Board
Chilton

DIST=-5




K. E. Kemp

Department of Statistics
kKansas State University
Manhattan, kS 66502

Jan G. Kreizschmar

Studiecentrun voor Kernenergie (SCK
Boeretana, 200

B-2400 Mof

BELGIUM

Daniel Manesse

Institut de Protection et de
Surete Nucleaire (IPSN)

Commissariat a 1'Energie Atomique

Centre d'Etudes Nucleaires de
Fentenay-aux-Roses

Boite Postale 6

F-92260 Fontenay-aux-Roses

FRANCE

David 5. Margoles (2)

Mathematics and Statistics Division
Lawrence Livermore | aboratory

P. 0. Box 808 (L-316)

Livermore, CA 94550

Scott Mathews

EGAG ldaho

M.S. TSB

P. 0. Box 1625

Idaho Falls, ID 83415

Marise Mikulis

Arthur D. Little, Inc.
Alcorn Park

Cambridge, MA 02140

Shan Nair
Research Division

/CEN)

Central Electricity Generating Board

Berkeley Nuclear Laboratories
Berkeley

Gloucestershire GL13 9PB
UNITED KINGDOM

LIST-6



William Nixon
iinited Kingdom Atomic Energy Authority
Safety & Reliability Directorate
Wigshaw Lane

Culcheth

Warrington WA3 4NE

UNITED KINGDOM

Don Paddleford
Westinghouse

P. 0. Box 355
Pittsburgh, PA 15230

Norman C. Rasmussen

Department of Nuclear Engineering
Massachusetts Institute of Technology
77 Mass Avenue

Cambridge, MA 02139

Mark Reeves (3)

Intera Environmental Consultants
11511 Katy Freeway

Suite 630

Houston, TX 77079

I1kka Savolainen

Technical Research Centre of Finland
Nuclear Engineering Laboratory

P. 0. Box 169

SF-00181 Helsinki 18

FINLAND

Sebastiano Serra

ENEL-DCO

Ente Nazionale per 1'Energia Elettrica
Via G.B. Martini, 3

Casella Postale N. 386

[-00186 Roma

ITALY

Juan Bagues Somonte
Junta de Energia Nuclear
Ciudad Urniversitaria
Avenida Complutense, 22
badrid-3

SPAIN



David A. Stanners

Commission on European Communities
Joint Research Center

Ispra Establishment

21020 Ispra (Varese)

ITALY

John R. D. Stoute

Health Physics Division
Energieonderzoek Centrum Nederland (ECN)
Westerduinweq, 3

Postbus 1

NL-1755 Petten G

NETHERLANDS

Marian Stubna

Nuclear Power Plants
Research Institute

VUJE

919 31 Jaslovske Bohunice
orkes Trnava
CZECHOSLOVAKIA

Séren Thykier-Nielsen
Health Physics Department
Risg nailional Laboratory
Postbox 49

DK-4000 Roskilde

DENMARK

UIf Tveten

Institute for Energy Technology
Postboks 40

N-2007 Kjeller

NORWAY

1. B. Wall

Electric Power Research Institute
3412 Hillview Avenue

P. 0. Box 10412

Palo Alto, CA 94303

Keith Woodard

Pickard, Lowe & Garrick, Inc.
1200 18th Street, NW

Suite 612

Washington, DC 20036

DIST-8




Jon Young

Energy Incorporated
515 West Harrison
Suite 220

Kent, WA 98031

Eric R. Zie?cl

Standard 011 Company (Indiana)
Amoco Research Center

P. 0. Box 400

Naperville, IL 60566

Auguste Zurkinden

Abteilung fur die Sicherheit
der Kernanlagen

Bundesamt fur Energiewirtschaft

CH-5303 Wurenlingen

SWITZERLAND

Lat K. Chan

Department of Statistics
The University of Manitoba
Winnipeg, Manitoba

CANADA R3T 2N2

Hue McCoy

TRASANA

White Sands Missile Range
White Sands, NM 880C2

Lissa Galbraith

Department of Industrial Engineering

and Operations Research
Virginia Polytechnic Institute

Blacksburg, VA 24061

DIST-9




Sandia National Laboratories Distribution

1642
2564
3141
3151
6246
6312
6400
6410
6411
6412
6414
6414
6415
6415
6415
6415
6415
6415
6415
6415
6415
6415
6415
6415
6415
6415
6415
6430
6431
6431
6432
7200
7220
7223
7223
7223
7223
7223
1223
7223
7223
7223
7223
7223
8214

o.

c.

H.
".

o]

A.

E.

=

EEXxD 9O9r X
-

IT-HZEOOMrOZOTTMLOTODOWM
-

Amos

. Smith

Ostrander (5)

Garner
Stephens

Peters

. Snyder

. Hickman
. Benjamin
. Bohn

. Cramond

Erickson

. Aldrich
. Alpert
. Bennett

Burke

hanin
. Griesmeyer
. Helton

Iman (2)

. Johnson

Leigh

. Ostmeyer
. Ritchie
. Sprung

Strip
Taig
Ortiz
Chu
Cranwell
Chapman

. Wiesen

Prairie

. Anderson
. Clark

Diegert
Easterling

. Frost
. Hall

Roudabush
Sheldon
Shortencarier
Spencer
Vopicka
Pound

DIST-10




Fm‘ U NUCLEAR RES, ATORY couwu%f BEFPORT NUMBER Augeo by TIDC s00 Vo No 'u.:m
e

NUREG/CR-3624

BIBLIOGRAPHIC DATA SHEET SAND83~-2365
) TITLE AND SUBTT # 4 RECOENT § ACTESS/ON NUMBER
A FORTRAN 77 PROG AND USER'S GUIDE FOR THE ¥
£ REPORT COMPLETED

YPERCUBE AND RANDOM SAMPLES |[°
MODELS

GENERATION OF LATI
FOR USE WITH COMPUT

T T e YEAR
March 1984
DATE REPORT (S5LED

MOAT - Tvui

6 ALTOR S

Ronald L. Iman and Micha J. Shortencarier

S PROIECT TASE WORE UNIT RUWEER

B PERFORMING ORGANIZATION NAME AN MAILING ADORESS 1 o Cosel

Sandia National Laboratories
Albuquerque, NM 87185

10 FiN NUMBER

Al339

T OSPONSON NG ORGANZATION NAME AND Ma L ING ADDRESS i(incivae 2@ Ci
Division of Risk Analysis
Office of Nuclear Regulatory Resea
U.S. Nuclear Regulatory Commission
Washington, DC 20555

78 TYPE OF REPORT

T PERIOD COVERED /inciusve detes)

PEOSUPPLEMENTARY NOTES

14 ABSTRACT (00 wores o1 e/

This document has been designed for
ed by the authors at Sandia Nationalf LaboRatories for the generation of
either Latin hypercube or random multivariyte samples. The Latin hyper-
cube technique employs a constraine g scheme, whereas random sampling
corresponds to a simple Monte Carl The generaion of these
samples is based on information su e program by the user
describing the variables or paramefers used ay input to the computer mcdel.

sensitivity and uncer-
laces the previous Latin
ional Laboratories
version is written

ile making the program

tainty analysis studies. The pregent program r
hypercube sampling program developed at Sandia
(Iman, Davenport, and Zeigler, 1980). The prese
using FORTRAN 77 and greatly exténds the program
portable and user friendly. }

15 KEY WORDS AND DOCUMENT ANALYSIS T8 OESCRIPTORS
i AVAILARIL TY STATEMENT ’ V7 SECURITY CLASSIICATION 178 NUMBER OF Pagis 1
GPO Sales and NTIS Uncla ssified 67
[/ SecumiTy CLassIFICATION 70 PRICE
(Thi
Lr‘* assified s
Qﬂgi— siile -

WU S GOVEANMENT PRINTING OFFICE 1984 - 778:007 © 4301



1205550178877 1 1ANIRG |
US NRC ;
ADM=DIV OF TI1DC |
SO%SCV £ PUB MGT BR=-PDR NUREG 4 T
- v
uASH}NGItN pDC 20555 : l
! J
| | | | L
| } ! !
| e
| |
| '
| B
i |
v JL l
| f i
| l 5
] ﬂ”‘*"“"‘L e e L=
l ‘ s
! |
L. i i 1 |
- | { ~ [_ J




