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ABSTRACT

This document has been designed for users of the computer program devel-

oped by the authors at Sandia National Laboratories for the generation of

either Latin hypercube or random multivariate samples. The Latin hypercube

technique employs a constrained sampling scheme, whereas random sampling

corresponds to a simple lionte Carlo technique. The generation of these

samples is based on information supplied to the program by the user describ-

ing the variables or parameters used as input to the computer model. The

actual sampled values are used to form vectors of variables commonly used as

input to computer models for purposes of sensitivity and uncertainty analysis

studies. The present program replaces the previous Latin hypercube sampling

program developed at Sandia National Laboratories (Iman, Davenport, and

Zeigler,1980) . The present version is written using FORTRAN 77 and greatly

extends the program while making the program portable and user friendly.
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I

1. INTRODUCTION TO LATIN HYPERCUBE SAMPLING

This report describes how to use the latest version of a computer program
for the generation of multivariate samples either completely at random or by|

a constrained randomization termed Latin hypercube sampling (LHS). This
program has been developed by the authors at Sandia National Laborcortes
and replaces the previous program described in Inan, Davenport, and Zeigler
(1980). Every attempt has been made te make the present program portable and
user-friendly while at the same time expanding the capability of the program
to include additional sampling distributions. A complete listing of the
computer code is given on microfiche inside the back cover. The first section
of this report describes Latin hypercube sampling. The parameters needed by
the program are described in Section 2 and are followed in Section 3 by a
more detailed description of the various distributions built into the program.
A subroutine that allows the user to sample from distributions (including
empirical data) other than those built into the code is described in Section
4. Instructions for modifying the program are given in Section 5. The
report concludes with examples of program output in an appendix.

The situation addressed by the computer program is the following. There
is a variable of interest, Y, that is a function of other variables X , X .1 2
..., Xg. This function may be quite complicated, for example, a computer
model. A question to be investigated is: How does Y vary when the X's vary
according to some assumed joint probability distribution? Related questions

,

are: What is the expected value of Y? What is the 99th percentile of Y?
etc.

A conventional approach to these questions is Monte Carlo. By sampling
repeatedly froin the assumed joint probability density function of the X's and
evaluating Y for each sample, the distribution of Y, its mean, percentiles,
etc., can be estimated. This is one option provided by the program for
generating the X's. The program output, say for n Monte Carlo repetitions,
is a set of k-dimensional vectors of input variables.

An alternative approach, which can yield more precise estinates, is to
use a constrained sampling scheme. One such scheme, developed by McKay,
Conover, and Beckman (1979), is Latin hypercube sampling (LHS). LHS selects
n different values from each of k variables X , ..., Xk in the following1
manner. The range of each variable is divided into n nonoverlapping intervals
on the basis of equal probability. One value from each interval is selected
at random with respect to the probability density in the interval. The n
values thus obtained for'Xi are paired in a random manner (equally likely
combinations) with the n values of X . These n pairs are combined in a2
randon manner with the n values of X3 to form n triplets, and so on, until n
k-tuplets are formed. This is the Latin hypercube sample. It is convenient
to think of the LHS, or a random sample of size n, as forming an n x k
matrix of input where the ith row contains specific values of each of the k
input variables to be used lie the ig run of the computer model.

-1-
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The LHS technique has been applied to many different computer models
since 1975. The results of an application of LHS to a large computer model
can be found in Steck, Iman, and Dahlgren (1976). A more detailed description
of LHS with application to sensitivity analysis techniques can be found in
Iman, Helton, and Campbell (1981a,1981b) . A tutorial on LHS may be found in
Iman and Conover (1982b). A comparison of LHS with other techniques is given
in Iman and Helton (1983).

To help clarify how intervals are determined in the LHS, consider a simple
example where it is desired to generate a LHS of size n = 5 with two input
variables. Let us assume that the first random variable XL has a normal
distribution concentrated on the range from A to B. In this projram, the
following interpretations (not subject to change by the user without modifying
the code) are given to A and B for both the normal and lognormal distributions,
namely

P(X1 1 A) = .001 and P(Xi 2 B) = .001 ,

where P(E) denotes the probability of event E. That is, A is defined as the i

.001 quantile and B is defined as the .999 quantile of the distribution of
X. Thus, P(A < Xi < B) = .998 , so both the normal and lognormal distribu-i

tions are truncated slightly in the program. That is, the sampling procedure
excludes values outside the interval [A, B]. These definitions of A and B

.
imply that the mean of the normal distribution is given by u = ( A + B)/2 and

! since for a standardized normal variable Z,

P(Z 1 -3.09) = .001 ,

it follows that the standard deviation of the desired truncated normal distri-
bution is given (to a close approximation) by

;

i o = (B - u)/3.09 = (B - A)/6.18 .
i

With the parameters u and a thus defined, the endpoints of the intervals are
easily determined. The intervals for n = 5 are illustrated in Figure 1 in'

terms of both the density function and the more easily used cumulative dis-
tribution function (cdf). If the distribution were not truncated, then the
intervals in Figure 1 would satisfy

P(A I X1 < C) = P(F < Xi 1 B) = .199

s P(C 1 X1 < D) = P(0 < Xi < E) = P(E < X1 1 F) = .2 .

-2-
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To account for truncation requires dividing these probabilities by .998. Thus,

for all practical purposes, the five intervals correspond to 20% probability.

'de shall assume in this example that the second random variable, X , has a2

uniform distribution on the interval from G to H. The corresponding intervals
used in the LHS for X2 are given in Figure 2 in terms of both the density
function and the cdf.

The next step in obtaining the LHS is to pick specific values of Xi and
in each of their five respective intervals. This selection should be doneX 2in a random manner with respect to the density in each interval; that is, the

selection should reflect the height of the density across the interval. For
example, in the ( A,C) interval for X , values close to C will have a higher1

probability of selection than will those values close to A. Next, the selected
values of X1 and X2 are paired to form the required five input vectors. In the
original concept of LHS as outlined in McKay, Conover, and Beckman (1979),
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Figure 1. Intervals Used with a LHS of Size n = 5 in Terms
of the Density Function and Cumulative Distribution
Function for a Normal Random Variable
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the pairing was done by associating a random permutation of the first n
integers with each input variable. For purposes of illustration, in the
present example consider two random permutations of the integers
(1, 2, 3, 4, 5) as follows:

Permutation Set No. 1: (3,1, 5, 2, 4)

i Permutation Set No. 2: (2,4,1,3,5)

By using the respective position within these permutation sets as interval
numbers for Xi (Set 1) and X2 (Set 2), the following pairing of intervals
would be formed.

|
! Interval No. Interval No.

Computer Run No. Used for X1 Used for X2

| 1 3 2
2 1 4
3 5 1
4 2 3
5 4 5

-4-
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,

;

;

! Thus, on computer run number 1 the input vector is formed by selecting the
from interval number 3 (D to E) and pairing this valuespecific value of Xi

with the specific value of X2 selected from interval number 2 (I to J), etc.
Once the specific values of each variable are obtained to form the five input
vectors, a two-dimensional representation of the LHS can be made such as

|
given in Figure 3.

|

|
Note in Figure 3 that all of the intervals for Xi have been sampled, and

the same is true of X . In general, a set of n LHS points in k-dinensional
2.

Euclidean space contains one point in each of the intervals for each of the k'

variables.
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Figure 3. A Two-0imensional Representation of One
Possible LHS of Size 5 Utilizing Xi and X2
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To illustrate how the specific values of a variable are obtained in a LHS,
' consider the following example. Suppose it is desired to obtain a LHS of

size n = 5 Nom a normal distribution on the range from 0.0 to 10.0. Recall
that these two limits are taken to represent the lower and upper .001 quan-
tiles, respectively. Therefore, the random variable has a mean of five and
a variance of 2.618 as indicated in Figure 4. These points together with the
density characteristics of the normal distribution allow for the definition
of the equal probability interval endpoints. These endpoints are shown in
Figure 4 in terms of a density function. The next step is to randomly select
an observation within each of the intervals. This selection is not done uni-
formly within the intervals shown in Figure 4, but rather it is done relative
to the distribution being sampled (in this case, the normal distribution).
This means that the sampling is donc uniformly on the vertical axis of the
cdf as shown in Figure 4.

Therefore, to get the specific values, n = 5 randonly selected uniform
(0, 1) numbers (Um, m = 1, 2, 3, 4, 5) are obtained to serve as probability
levels. These probabilities are then scaled by

Pn = Um(.2) + (m - 1)(.2) m = 1, 2, 3, 4, 5

This ensures that exactly one probability, Pm, will fall within each of the4

five intervals (0, .2), ( .2, .4), ( .4 .6), (.6, .8) and (.8, 1). The values
P are used with the inverse normal distribution function to produce the

,

m
specific values to be used in the LHS. Note that exactly one observation is
taken from each interval shown in Figure 4. The entire process is shown in
Table 1. Figure 4 makes it clear that when obtaining a LHS, it is easier to
work with the cdf for each variable. This is the approach used in the computer
program, rather than defining the endpoints of the intervals on the x-axis,

,

t
'

The above illustration snows how one input variable having a normal dis-
tribution is sampled with LilS. This procedure is repeated for each input
variable, each time working with the corresponding cumulative distribution
function. If a random sample is desired, then it is not necessary to divide
the vertical axis into n intervals of equal width. Rather, n random numbers
between 0 and 1 are obtained and each is mapped through the inverse distri-
ibution function to obtain the specific values. The final step in the san-

| pling process involves pairing the selected values.

|

|

-6-
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Table 1. One Possible Selection of Values for a LHS of Size 5
fron a Normal Distribution on the Interval (0,10)

!

l

Scaled Corresponding Corresponding
Probabilities Standard Normal N(5,2.618)

Interval Uniform (0,1) With the Interval value (z-score) Observation

fm1)f(.2)
U .2)+ From the Inverse Within theNumber Random No. P

Distribution Intervalsm Um -

1 .12718 .016 -2.144 1.529

2 .57689 .322 -0.462 4.252

3 .03652 .505 0.013 5.021

4 .29372 .787 0.796 6.288

5 .39332 .924 1.433 7.319

It should be noted that even though two variables are sampled independently
and paired randomly, the sample correlation coefficient of the n pairs of
variables in either a random sample or a LHS will, in general, not equal zero,
just due to sampling fluctuations. In order to obtain a sanple in which the
sample correlations more nearly match the assumed, or intended, correlations,
Iman and Conover (1982a) proposed a method for restricting the way in which
the variables are paired. The effect of this restriction on the statistical
properties of the estimated distribution of Y, its mean and percentiles, is
not known but is felt to be small. The pairing of variables in the program
can be done either randonly or by the restriction procedure through use of
an input parameter, which is explained in the next section.

Additionally, the restricted pairing procedure of Iman and Conover can be
used to induce a user-specified correlation among selected input variables
through use of another input parameter explained in the next section. However,
it should be pointed out that such induced correlations are based on the non-
parametric technique known as rank correlation. Such a measure is used since
it remains meaningful in the presence of nonnormal distributions on the
input variables.

As a final note, if a correlation structure is not specified by the user,
then the program computes a measure for detecting large pairwise correlations.
This measure is known as the variance inflation factor (VIF) and is defined
as the largest element on the diagonal of the inverse of the correlation
matrix. As the VIF gets larger than 1, there may be some undesirably large

pairwise correlationg)present. Marquardt and Snee (1975) deal with some very:
large VIFs (> 2 x 10 and provide a very readable explanation on reasonablej

-8-
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sizes of VIFs. Marquardt (1970) indicates that there can be serious collin-
earity (i.e., large pairwise correlations present) for VIF > 10. Thus, there
is certainly no problem as long as the VIF is close to 1. The VIF appears as
part of the computer printout when the user requests the correlation matrix
to be printed, given that no correlation structure has been specified by
the user.

2. INPUT PARAMETERS

The LHS program requires certain parameters to be defined in order to
generate one or more Latin hypercube or random samples. The program recognizes
17 keywords (no abbreviations allowed) which dictate the characteristics of
the generated sample (s) such as type of sample (LHS or random), sample size,
number of samples desired, correlation structure on input variables, and type
of distribution specified on each variable. Other keywords are used to
control the output from the printer. If the keyword requires accompanying
numerical values, these values are input using list-directed read statements.
In all cases, the generated sample (s) are automatically written on an output
file in unformatted binary and it is up to the user to take the steps necessary
to save the file. (More information on this point is given in Section 5.)
The only restriction on the keywords is that there can be no leading blanks
and at least one blank must follow each keyword.

There are a number of internal checks built into the program to ensure
that the input parameters have been correctly specified. In the event an
improper specification is detected, an appropriate message is printed and
the execution of the program is terminated.

The role of each keyword will now be explained. For purposes of illus-
tration, Table 2 gives an example setup that uses 16 of the 17 keywords to
generate two random samples of size 20 each from nine input variables, some
of which are correlated with one another.

i
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Table 2. Parameter Setup for Generating
Two Random Samples of Size 20 Each,

i

1. TITLE - SETUP FOR GENERATION OF A RAND 0M SAMPLE
2. RAND 0M SAMPLE

3. N0BS 20
4. NREPS 2
5. RAND 0M SEED - 898079140
6. NORMAL OPTIONAL FIELD FOR NAMING INPUT VARIABLE 1
7. 12 56
8. LOGNORMAL OPTIONAL FIELD FOR NAMING INPUT VARIABLE 2
9. .01 2.134

10. UNIFORM OPTIONAL FIELO FOR NAMING INPUT VARIABLE 3
11. 1 3
12. LOGUNIFORM OPTIONAL FIELD FOR NAMING INPUT VARIABLE 4
13. 6.0E7 8.1E10
14. UNIFORM * OPTIONAL FIELO FOR NAMING INPUT VARIABLE 5
15. 3 5 6 9 1 2 3 4'

16. LOGUNIFORM* OPTIONAL FIELO FOR NAMING INPUT VARIABLE 6
17. 5 3 3 4 4 6 5000 5500 6000 6500 7000 7500
18. TRIANGULAR OPTIONAL FIELD FOR NAMING INPUT VARIABLE 7
19. 10 15 30
20. BETA OPTIONAL FIELD FOR NAMING INPUT VARIABLE 8
21. 10 45 .5 1.5
22. USER DISTRIBUTION OPTIONAL FIELD FOR NAMING INPUT VARIABLE 9
23. 4
24. 0 .2
25. 1 .3
26. 2 .4
27. 3 .1
28. CORRELATION MATRIX

: 29. 3 1 2 .8 1 5 .7 2 5 .6
30. OUTPUT CORR HIST DATA

1

I

" -10-
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TITLE

This keyword can be followed with alphanumeric data to help describe the
application of the sample (see line 1 of T.tble 2). This infornation will
be printed as a one-line header on each page of the output. This keyword
is optional. If it is omitted,- a blank header is generated at the top of
each page.

RAND 0M sat 1PLE

If this keyword is present, a randon sample (s) 'is generated. If it is

omitted, a Latin hypercube saaple(s) is gcnerated.

NOBS *** This keyword is required. **'

This keyword must be followed by a positive integer that specifies the
desired sample size. The naximum number of observations, currently 1,000,
is easily changed (see the discussion elsewhere in this report).

NREPS

This keyword can be used to generate multiple samples. It is optional,

but when it is present, it must be followed by a positive integer to
specify the desired number of samples (each of size NORS). If it is

omitted, one sample is generated. If HREPS is followed by the positive
integer m, then m complete samples (each of size NOBS) will be written

,

back to back on the output file.'

RAN00f1 SEED *** This keyword is required. ***

For exampig within plus or minus 2 {nteger within the machine's range.
This keyword nust be followed by an

3 - 1 on the VAX 11/780, within plus
or minus 2 - 1 on the CDC 7600, and within plus or minus 2 3-t on the
CRAY 1. This number is used as a starting point for the random number
generator and is printed at the beginning of each sample. If NREPS
specifies a number greater than 1, the current value of the randon seed
is retrieved at the start of the generatior of each new sample. This new'

,

value is printed at the beginning of the ned sample so that any one '

desired sample can be regenerated by rcrunning the program with the new
seed and with the NREPS parameter omitted (or having NREPS 1).

'

CORRELATION MATRIX 1,.

I i ,

| This keyword is used when it is' desired to induce a rank correlatior
j structure among the input verf ables using the restricted pairing technique

l
I of Iman and Conover (1982a). It should be followed by one or mori lines
! providing the desired rank correlatfcas among those pairs of input vari-

ables having a rank correlation other than zero. The first value to oe.
I supplied is the number of pairwise rank correlations, m, followed by a.

ordered triples containing the numbers of the variables being correl sted
,

-11- 1 ,
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along with the required rank correlation. Currently the number of pair-
wise rank correlations is limited to 50. See Section 5 for instructions
on how to adjust this value. For exampic, line 29 of Table 2 first indi-
cates that three pairs of variables are to be correlated. The next infor-
mation indicates that variables 1 and 2 are to have a rank correlation
of .8, then variables 1 and 5 are to have a rank correlation of .7, and;

~ finally variables 2 and 5 are to have a rank correlation of .6. If this
keyword is onitted, all pairwise correlations are assumed to be zero.
The user should note that the restricted pairing technique of Iman and
Conover requires n > k. That is, the technique can only be applied
directly if n > k; otherwise an error message is printed. For the example
in Table 2, n = 20 and k = 9. One possibility for working around this
restriction is to use the sarpling technique in a piecewise fashion on a
subset of the k variables where the number of variables used in each sub-
set is less than n. The resulting subsets are then pieced together to
form the n x k input matrix. Such a piecewise apprnach would ensure the
desired correlations among variables within subsets, but there could
exist undesired correlations between variables belonging to different4

subsets. In a case such as this, as well as in general, the resulting
rank correlation matrix should be exainined very carefully to make sure it

,

satisfies the user's requirenents. Additionally, in the case that the1

user does not specify a correlation matrix and does not have n > k, the
progran will generate the desired sampling through sia.ple random mixing
rather than restricted pairing. Since this approach brings up the possi-
bility of unwanted correlations, the resulting correlation natrix should
again be examined very carefully.

As a final note, if the input correlation structure is such that the rank
correlation natrix is not a positive definite matrix, an iterative scheme
(Iman and Davenport,1982) built into the progran will attempt to adjust
the input rank correlation natrix to make it positive definite. In this
case a message is printed out along with the adjusted natrix indicating
that an adjustnent has been nade and requesting the user to examine the
adjusted matrix to 500 if it still satisfies the correlation requirements.

,

RANDOM PAIRING

Use of this keyword allows the sampled values to be paired randomly as
explained at the end of Section 1. If this keyword does not appear, then
the restricted pairing technique of Iman and Conover (1982a) is used sub-
ject to the restrictions nentioned under the keyword CORRELATION tlATRIX.
In the event the user mistakenly includes both the keywords RAND 0t1 PAIRING,

and CORRELATION MATRIX in the same run, the program will continue to exe-
cute; however, the former keyword is ignored with a message to that effect'

printed af ter the correlation mtrix.

OUTPUT

This keyword is followed by one or nore of three addltional keywords.
These additional keywcrds can appear in any order (separated by blanks).

.
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Their purpose is to control the amount of printer output. These keywords
function as follows.,

CORR - Both the raw and rank correlation matrices associated with
the actual sample generated are printed.

HIST - Histograms are generated for each variable in the sample based
on the actual values of each variable in the sample.

DATA - If this option is specified, each complete sample (n observa-
tions on k variables) will be listed, followed by a complete
listing of the ranks of each variable. Use of this option
makes the individual sample input vectors available to the
user.

The remaining keywords (at least one of which is required) allow the user
to specify the distribution and corresponding parameters for each of the vari-
ables in the sample. Eight distributions providing a great deal of flexibility
are supplied by the computer program. However, use of a ninth keyword allows
for a user-supplied subroutine to be called in order to generate other types
of distributions. This subroutine can also be used to obtain samples from
empirical data by using the corresponding empirical distribution function.
Such a user-supplied subroutine can easily be coded so that it can be called
more than once in order to generate different distributions for different
variables. Examples of the use of such a subroutine appear in Section 4.
For each of the keywords given below additional infonnation describing the
variable can be placed as a comment immediately af ter the trailing blank at
the end of the keyword (see the examples on lines 6, 8, 10, 12, 14, 16, 18,
20, and 22 of Table 2). Such information becomes part of the computer printout
and is useful for reference. Each keyword must be followed by at least one
ad"tional line of information specifying the Jarameters of the distribution.
tee only possible exception is the keyword USE1 DISTRIBUTION where additional
information is user-dependent. The number of times these keywords can be
repeated is limited only by the dimensions in the program. The program is
currently dimensioned to allow for 50 variables.but is easily modified as
indicated in Section 5. ,

_
_

NORMAL
-

,

f s ,1%

The second line of information associated with thisT eyword supplies, ink
order, the .001 quantile and .999 quantile of the" desired normal .distribu-
tion. See line 7 of Table 2 where these quantilesCare respectively speci-
fied as 12 and 56. _

.

-LOGNORMAL

The two parameters specified on' theJsecond line-have<th'e restriction that
both must be positive. Again,'these~two parameters are def,ined.as the .001
quantile and the .999 quantile, s See ,line 9 :of;. Table >2 $here -these quantiles
are specified as .01 and 2.13 respectively.,[[/, ' -

, s,

*
-

,

- - .i y . ,
~&AY ;)

'
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f

UNIFORM )

The second line of information provides, in order, the lower and upper
endpcints of the interval that is to be sampled uniformly. See line 11
of Table 2 where a uniform distribution is defined on the interval from
1 to 3.

LOGUNIFORM

This distribution allows the variable to be sampled uniformly on the
3 logarithms base 10 of the two positive parameters supplied on the second

line of information. For example, on line 13 of Table 2, the values
6.0E7 and 8.1E10 are specified. The first step in the program is to find
the base 10 logarithms of each of these values. These values are respec-
tively 7.78 and 10.91. Next, a uniform distribution is generated on the
interval 7.78 to 10.91. The last step is to find the antilogarithms of
each of the latter values, i.e.,10X. This scheme allows " uniform"
sampling of variables on a logarithmic scale.

UNIFORM *

Use of this keyword allows for the samples from uniform distributions
to be modified by changing the frequency with which uniform sampling is
done within subintervals of the range of the variable. Thus, at least one
additional line of information is required to allow different subintervals
of a given interval to be sampled with frequencies other than what a

'
strictly uniform distribution would provide. The first bit of information
indicates the number of subintervals m, followed by m values indicating
the frequency of sampling within each subinterval. Currently the maximum

! number of subintervals permitted is 50. See Section 5 for instructions
of how to adjust this value. The sum of these frequencies must be equal
to N0BS and each frequency must be greater than or equal to zero. The
last information provides the endpoints of the subintervals in increasing
order. For example, on line 15 of Table 2 rather than having 20 observa
tions obtained uniformly on the interval from 1 to 4, the first number
indicates that three subintervals are to be used. Next, the frequencies
of sampling for these intervals are to be 5, 6, and 9. (Note that in
general the sum of these frequencies is NOBS.) Finally, the endpoints of
the subintervals are 1 and 2, 2 and 3, and 3 and 4. Thus, five observa-
tions are sampled according to a uniform distribution on the interval,

from 1 to 2,-six observations are sampled according to a uniform distri-
bution on the interval from 2 to 3, and finally, nine observations are
sampled according to a uniform distribution on the interval from 3 to 4.

LOGUNIFORM*

| This keyword applies to the loguniform distribution in exactly the same
way as UNIFORM * does to the uniform distribution.

.

-14-
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TRIANGULAR,

'

This keyword requires an additional line of information containing three
;

values, a, b, and c. The value b is the x-coordinate of the apex of the

triangular distribution while a and c are the endpoints of the range.
The program allows for a < b < c or a = b < c or a < b = c. In the
case of a = b, the triangular distribution could be generated with the
BETA keyword and p = 1 and q = 2. Also, for b = c, the triangular distri-
bution can be generated with p = 2 and q = 1 from the beta distribution.
Properties of the triangular distribution are given in the next section.

BETA

The second line of information accompanying this keyword contains two
values A and B specifying the endpoints of the distribution followed by
two shape parameters p and q. The shape parameters are described in detail
in the next section along with figures illustrating the effect of different
choices of p and q.

USER DISTRIBUTION

This keyword allows the user to modify a subroutine provided later in
this report one or nore times in order to generate samples from distribu-
tions other than those supplied by the program. Three examples are given

; in Section 4 to illustrate multiple uses of this option.

3. ADDITIONAL INFORMATION ON DISTRIBUTIONS SUPPLIED BY THE COMPUTER PROGRAM

In this section, a more detailed discussion is provided on each of the
distributions that are built into the computer program. The next section-
provides additional information on the use of user-supplied distributions.

|

i

|

,
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Normal Distribution

f(x) .

.

.

.

.

.

.

.

'

A= - 3.09a # B = # + 3.09a

Density function: f(x) = 1/(o/Zi) exp{-(x - u)2/2o} -=<x<=2

x

Distribution function: F(x) = f f(t)dt -=<x<=

Expected value and variance: E(X) = u and V(X) = o2

The user must specify A and B such that the following statements are satisfied:

I

'

P(X < A) = .001 and P(X > B) = .001

Thus, the normal distribution is truncated such that it is concentrated between
A and 6. The parameters of the trunct ".ed distribution can be expressed in terms
of A and B as follows:

E(X) = p = (A + B)/2 V(X) = o2 = [(B - A)/6.18]2

A truncated distribution is used since almost all applications-of the program
have historically involved a range from A to B. If the user has an application
where truncation is not desired, then the normal distribution should be generated
under the guise of subroutine USRDST which is explained in Section 4.

-16-
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Lognormal Distribution

f(y) {

I .

'

r
i

i

( , , ,

BA
VALUE OF Y

2 XIf X ~ N(u, a ) and Y = e , then Y has a lognormal distribution,

2f(y) = 1/(yo/27) exp{-(in y - u)2/2o} y>0

F(y) = f f(t)dt y>0
0

2 2 2E(Y) = exp(p + a /2) and V(Y) = exp(2u + o }[exp(o } .1]

Median = eu

As with the normal distribution n, the user must specify A > 0 and B > 0 such
that the following statements are satisfied:

P(Y < A) = .001 and P(Y > B) = .001.

The program operates by first finding A* = In A and B* = In B and then
generating a normal distribution with A* and B* playing the same roles as
A and B with the normal distribution. Once samples from the normal distribu-

~

tion have been generated, ea value of X is converted to a lognormal distri-
| bution sample value by Y.= e

i

|
|
!

!
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Unifonn Distribution

f(x)

1

A B

f(x) = 1/(B - A) A<x<B>

F(x) = (x - A)/(B - A) A<x<B

V(X) = (B - A)2/12E(X) = (A + B)/2 ano

The user must specify the endpoints A and B.

If UNIFORM * is specified, then a uniform distribution is sampled within
each user-specified subinterval according to the user-specified frequency for
each subinterval. Note that the subintervals do not have to be of equal
width. This option is useful for generating a sample from a histogram. For
example, the user could specify the interval endpoints as A < C < D < B with
frequencies corresponding to the following histogram.

I

A C D 8

.

-18-
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| Loguniform Distribution

|
f(x) .

.

.

.

.

-

.

I t i f f 1 I I ' I I f '

BA
VALUE OF X

If X has a loguniform distribution on the interval from A to B where A > 0,
then Y = 10910 X has a uniform distribution on the interval from logio A to
10g10 B. Although the code uses base 10 logarithms, the following properties
are stated in terms of natural logarithms in order to simplify the presentation,

f(x) = 1/x (in B - In A) A<x<B

F(x) = (in x - In A)/(in B - in A) A<x<B

E(X) = (B - A)/(In B - in A)

| V(X) = (B - A)[(in B - In A)(B + A) - 2(B - A)]/[2(in B - in A)2]

| Median = exp[(in B + in A)/2] = /KE

The user must specify A > 0 and B > 0. If it is desired to have A close to
zero, then the user should be aware of how specific choices affect the samp1}ng.
For example, with A = 10-3

,

and B = 10,1/4 of the gample will be between 10-|

and 10-2, apother if4 will be between 10-2 and 10 d another 1/4 will be

A is selectgd to be 10 jth the final 1/4 between 101 with only 1/8 between 10gween 10 pd 10.and10-{,and1/2
and 10 , w a I however,| between 10-1

then 1/2 will be be,

between 10- and 10 and 10. This distribution
allows uniform sampling of variables on a logarithmic scale as each decade is
sampled with the same frequency. The frequency of interval sampling is easily

| changed by using LOGUNIFORM* in the same manner as described with the uniform
,

! distribution.

-19-
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Triangular Distribution

Case 1. a<b<c

a b c

2(x - a)
f(x) = a<x<b

(c - a)(b - a) - -

2(c - x)
b<x<c=

(c - a)(c - b)
- -

(x - a)2
F(x) = a<x<b

(c - a)(b - a) - -

b-a (x + b - 2c)(x - b)
b<x<c=- -

c-a (c - a)(c - b) - -

a+b+c a(a - b) + b(b - c) + c(c - a)
E(X) = V(X) =

3 18
;

a+C
Median: X.5 = a + / (c - a)(b - a)/2 if b >

_

a+c
= c - / (c - b)(c - a)/2 ffb<-

Note with a < b < c, the u:'.er may want to consider using a beta distribution
with a choice of p = 2, q 3 or p = 3, q = 2 for example. See the figures
provided in this section under the beta distribution.

-20-
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case 2. a=b<c

(a, 2/(c-a))

a c

2(e - x) (x - a)(2c - x - a)
f(x) = F(x) = a1xic

2a + c (c - a)2
Median: X.5 = c - #j'E(X) = "

3 18

Note that this distribution can also be generated using the beta distribution
on the interval from a to c with p = 1 and q = 2.

|
|

-21-
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Case 3. a<b=c

(c, 2/(c-a))

,

a c I

2(x - a)' (x - a)2 !
f(x) = F(x) = a<x<c

2_

a+2c (c - a)2
E(X) = V(X) = Median: X 5=a-

c-a
3 18 4

Note that this distribution can also be generated using the Beta distribution
on the interval from a to c with p = 2 and q =-1.

1
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Beta Distribution

Let Y be a random variable having a beta distribution on the interval
(a,b) with parameters p and q. Further, let X = (Y - a)/(b - a) so that

. 0 1 X 1 1. Then X has a standard beta distribution with:

p

E(X) = '(1)
p+q

pq
V(X) = (2).

(p + q)2(p + q + ;)

Therefore,

E(Y) = (b - a)E(X) + a (3a)

ag + bp
(3b)=

p+q

4

and
:

V(Y) = (b - a)2 V(X) (4a)

(b - a)2pq
'

(p + q)2(p + q + 1)
-

.

Equations (3b) and (4b) provide the user with the mean and variance of the
random variable Y on a given interval from a to b for specific choices of p
and q which act jointly to determine the shape of the underlying distribution.

| Figure 5 has been provided to help the user see the effect of various choices
, -

of q and p. As an example, this figure can be used to see the influence of!

changing p with q fixed at different values, or changing q with p fixed at
different values, or letting p = q as both increase. In addition, equations (1)
and (2) have been evaluated in Table 3 for the 16 choices of p and q in Figure 5.
These values can easily be substituted into (3a) and (4a) to determine the

j mean and variance of Y for a given interval (a, b).

'
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Figure 5. Reta Densities for Various Choices of the Parameters p and q.
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Table 3. The Mean a'nd Variance of a Standard Beta Distribution
Corresponding to Choices of p and q Used in Figure 5

p q E(X) V(X) p q E(X) V(X)

)
.5 .5 .500 .125 2 .5 .800 .046

.5 1 .333 .089 2 1 .667 .056
,

.5 2 .200 .046 2 2 .500 .050

.5 3 .143 .027 2 3 .400 .040

1 .5 .667 .089 3 .5 .857 .027

1 1 .500 .083 3 1 .750 .038

1 2 .333 .056 3 2 .600 .040

1 3 .250 .038 3 3 .500 .036

The final method used to illustrate the influence of p and q on the mean
and variance is shown graphically in Figures 6 through 8. Figure 6 shows that
the mean will increase as p increases for a fixed value of q. Figure 7 shows
the mean will decrease as q increases for a fixed value of p. Figure 8 shows
how p and q jointly influence the variance. It should be noted that the roles
of p and q are interchangeable in Figure 8.

4

|
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Figure 6. The Influence of Different Choices of P on the Expected Value of X
for Various Choices of Q When X has a Standard Beta Distribution
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Figure 7. The Influence of Different Choices of Q on ihe Expected Value of X
of X for Various Cnoices of P When X has a Standard Beta Distribution

+
<

-27-
=,

e .__._.____._m.__._
-

-



. .-. - . _ . - .

f

I 3 I I i i g y

.20 - . + Q = .1 _

f
.

.18 M Q = .36 ,

'

M ',

m, .13 |
O

'- ~

+g,,,
w
o -

! .08g g.; ,'

- ! Q=2
, _

.04

0=3

0 ' > - , ,

1 2 3
f
1 VALUE OF P

:

Figure 8. The Role of P and Q on Influencing the Varit. ice of X Where X has a
Standard Beta Distribution. The Roles of P and Q are' Interchangeable
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4. EXAMPLES OF THE USE OF SUBROUTINE USRDST TO GENERATE SAMPLES FROM A
USER-SUPPLIED DISTRIBUTION

.

As mentioned in the previous section, the user may specify the keyword
USER DISTRIBUTION whenever it is desired to obtain a sample from a random
variable whose distribution is not built into the program. This is done
through use of a user-supplied subroutine called USRDST which is given in
Table 4. This subroutine is called each time the keyword USER DISTRIBUTION

4

appears. Thus, if the user desires to supply distributions for more than one
variable, then the keyword USER DISTRIBUTION must appear once for each such

! variable. In such a case the user must code subroutine USRDST to function in
accordance with the number of the variables being processed. This communica-

,

| tion link is established by the argument "J" in the calling list of the
subroutine which contains the number of the current . variable being sampled.
Thus, if a user .had 10 input variables and desired to invoke a user-supplied -

distribution on the 3rd and 7th variables, then the subroutine USRDST is
automatically called twice from the main program. On the first call to the4

,

subroutine the value J = 3 is supplied by the main program, while on the second
call J = 7. A FORTRAN "IF" statement within USRDST could be used to direct
one action for the case with J = 3 and a different action for J = 7. Of
course, this logic easily extends to more than two variables..

Three examples will now be given to show the use of the subroutine USRDST..

The 'first example provides the setup for sampling from the following discrete - '

probability distribution.

.
f(x) = .2 , x = 0

= .3 , x = 1,

= .4 , x = 2

|- = .1 , x = 3

!

1

0

i

i

.

!'
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F(m)

1 -

.a - - - - - - - - - - - - - - - -

.s - - - - - - - - - - - - - - - - -

' .4 -----------

.2 - - - - - - -

0 ' ' '

o 1 2 3 x

Figure 9. Distribution Function for a User-Supplied '

Discrete Probability Distribution

The corresponding distribution function appears in Figure 9. For this
discrete variable to be sampled, it is necessary to input the probability
distribution in the parameter list such as appeared in lines 22 to 27 of
Table 2. Subroutine USRDST must be modified by the user to first read in this
information so it can be used to construct the distribution function given in
Figure 9. Next, the suoroutine must use a "D0" loop to move up the vertical
axis of the distribution function starting at zero and using n steps each of
length PROBINC = 1/n. These intervals will be (0,1/n), (1/n, 2/n), (2n,
3/n), ..., (n - 1/n, 1). A point R is selected at random in each of these
intervals and mapped through the inverse of the distribution function to

; select the particular value of X. Thus, for a LHS with n = 5 (note the
horizontal dashed lines added to Figure 9), the value x = 0 is selected once
from the interval (0, .2); x = 1 is selected once from the interval (.2, .4);
either x = 1 or x = 2 is selected from the interval (.4, .6) depending on the
value that R takes on; the value x = 2 is selected from the interval (.6, .8);
and finally either x = 2 or x = 3 is selected from the interval (.8,1). If
a random sanple is desired, then each selection of X is made on the interval
(0,1). Once each value is selected, it is stored in the vector X using the
LOC function that is defined in the subroutine for the ith observation on the
[th variable. The FORTRAN setup for this example appears in Table 4.

-30-
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! Table 4. Subroutine USRDST For Sampling From a User-
Supplied Discrete Probability Distribution
(Continued on next page)

1 SUBROUTINE USRDST (J)
.

2 C
1 3 C THE FOLLOWING SIX LINES OF CODE ARE REQUIRED BY USRDST

4 C;

5 PARAMETER (NMAX=1000)
! 6 PARAMETER (NVAR=50) 1

7 PARAMETER (LENT =125)
'

8 COMMON /PARAM/ TITLE (LENT),ISEED,N,NV, IRS.ICM,NREP,IDATA,IHIST,
2 9 1 ICORR,IDIST(NVAR)
j 10 COMMON /SAMP/X(NMAX*NVAR)

11 C,

12 C THE FOLLOWING LINE OF CODE IS SUPPLIED BY THE USER.
13 C XVAL AND FREQ MUST BE DIMENSIONED TO THE NUMBER OF UNIQUE VALUES ;

.

14 C THAT THE DISCRETE RAND 0M VARIABLE TAKES ON AND CDF MUST BE
-

15 C DIMENSIONED TO THE NUMBER OF UNIQUE VALUES PLUS 12

16 C
I 11 DIMENSION XVAL(4),FREQ(4),CDF(5)

i 18 C
19 C THE FOLLOWING FUNCTION DEFINITION IS REQUIRED BY USRDST

1 20 C
| 21 LOC (I,J)=(J-1)*N+I
^

22 C
| 23 C READ IN THE VALUES FOR THE DISCRETE PROBABILITY. FUNCTION.

24 C NP IS THE NUMBER OF UNIQUE VALUES OF THE RAND 0M VARIABLE.
'

25 C XVAl (K) IS THE KTH UNIQUE VALUE OF. THE. RANDOM VARIABLE.
! 26 C FREQ(K) IS THE PROBABILITY ASSOCIATED WITH THE KTH UNIQUE VALUE..

27 C NOTE THAT THE READ STATEMENT MUST BE OF THE FORM READ (7,*)....
28 C.

29 READ (7,*)NP'

30 00 1 K=1,NP
31 1 READ (7,*)XVAL(K),FREQ(K)

: 32 C
'

. 33 C CONSTRUCT THE CUMULATIVE DISTRIBUTION FUNCTION
34 C,

| - 35 CDF(1)=0.0
36 D0 2 K=1,NP4

37 2-CDF(K+1)=CDF(K)+FREQ(K)
38 C
39 -C SET THE STARTING POINT (STRTPT) EQUAL TO ZER0 AND THE PROBABILITY:j

'; 40 C INCREMENT (PROBINC) EQUAL TO 1/N FOR A LHS WHERE N IS THE SAMPLE SIZE
41 C ,'

! 42 STRTPT=0.0
43 PROBINC=1.0

'

44 C
,

:

-31-
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Table 4. Subroutine USRDST For Sanpling From a User-
Supplied Discrete Probability Distribution
(Continued from preceding page)

45 C IF A RAND 0M SAMPLE HAS BEEN SPECIFIED IN THE PARAMETER LIST THEN THE
46 C ARGUMENT IRS HAS BEEN SET EQUAL TO 1 IN THE MAIN PROGRAM, HENCE THE2

47 C PROBABILITY INCREMENT IS SET EQUAL TO 1 S0 THAT ALL OBSERVATIONS ARE
48 C SELECTED BY USING THE INTERVAL (0,1)
49 C
50 IF( IRS.EQ.1)PROBINC=1.0
51 C
52 C THIS LOOF WILL OBTAIN THE N SAMPLE VALUES
53 C
54 DO 4 I=1,N
55 C
56 C R IS A RAND 0MLY SELECTED POINT IN THE CURRENT SUBINTERVAL OBTAINED
57 C BY USING THE RAND 0M NUMBER GENERATOR RAN
58 C
59 R=STRTPT+PROBINC*RAN(ISEED)
60 C
61 C THIS LOOP WILL SELECT THE SPECIFIC VALUE OF THE RAND 0M VARIABLE
62 C CORRESPONDING TO R THROUGH THE INVERSE CUMULATIVE DISTRIBUTION
63 C FUNCTION.THESE VALUES ARE STORED IN THE VECTOR X THROUGH THE
64 C USE OF THE LOC FUNCTION
65 C
66 00 3 K=1,NP
67 IF( R.GE .CDF( K ) . AND . R .LT .C0F( K+1 ) )X( LOC ( I ,J ) ) =XVAL( K )
68 3 CONTINUE
69 C
70 C RESET THE STARTING POINT TO THE BEGINNING 0F THE NEXT SUBINTERVAL
71 C UNLESS A RAND 0M SAMPLE HAS BEEN SPECIFIED
72 C
73 IF(IRS.NE.1)STRTPT=STRTPT+PROBINC
74 4 CONTINUE
75 RETURN
76 END

-32-
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The second example illustrates how to use subroutine USRDST to obtain a
sample from an empirical distribution function (i.e., one generated from sample
data). Suppose the information available on one of the input variables takes
the form of sample data, i.e., the analyst wants to use the sample data with
the computer model and not risk introducing additional uncertainty by replacing
the sample data with an estimated distribution function. This is easily
accomplished by sampling directly from the empirical distribution function
formed by the sample data. As an example, suppose there are eight sample
data points available as follows: 0.4, 0.9, 1.1, 1.4, 1.9, 2.2, 2.4, 2.7.
To provide this information to the program, the following set up could be used.

USER DISTRIBUTION

8 .4 .9 1.1 1.4 1.9 2.2 2.4 2.7

The first piece of information after the keyword is the sample size. Once
the data points are read in, the subroutine USRDST will construct an empirical
distribution function (edf) much as was done in Figure 9, only the stepheights
will all be equal (in this case, the stepheight = 1/8). The graph of the edf
appears in Figure 10. Thus, for a LHS of size 5 (note the horizontal dashed
lines in Figure 6), either the value x = .4 or x = .9 is selected from the
interval (0, .2); either x = .9, x = 1.1, or x = ! .4 is selected from the
interval (.2, .4); either x = 1.4 or x = 1.9 is selected from the interval
(.4, .6); either x = 1.9, x = 2.2, or x = 2.4 is selected from the interval
(.6, .8); and finally either x = 2.4 or x = 2.7 is selected from the interval
(.8,1). Of course, a random sample would select each value from the interval
(0,1). The FORTRAN setup for this example appears in Table 5.

8(x)
1

-

,g . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

>

.8 - - - - - - - - - - - - - - - - - - - - -

.4 - - - - - - - - - - - - - - - -

.2 - - - - - - - - - - - -

' ' ' ' ' ' '

0
.4 .9 1.1 1.4 1.9 2.2 2.4 2.7 *

Figure 10. Empirical Distribution Function for User-Supplied Data

'
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Table 5. Setup for Subroutine USRDST to Generate a Sample
From An Empirical Distribution Function

(Continued on next page)
.

1 SUBROUTINE USRDST (J)
; 2 C
| 3 C THE FOLLOWING SIX LINES OF CODE ARE REQUIRED BY USRDST

.4 C4

5 PARAMETER (NMAX=1000)
6 PARAMETER (NVAR=50),

' - 7 PARAMETER (LENT =125)
8 COMMON /PARAM/ TITLE (LENT),ISEED,N,NV, IRS,ICM,NREP,IDATA,IHIST,
9 1 ICORR,IDIST(NVAR)

10 COMMON /SAMP/X(NMAX*NVAR)
11 C
12 C THE FOLLOWING LINE OF CODE IS SUPPLIED BY THE USER.
13 C SVAL MUST BE DIMENSIONED TO THE NUMBER OF SAMPLE VALUES AND

f 14 C EDF MUST BE DIMENSIONED TO THE NUMBER OF SAMPLE VALUES PLUS 1
15 C

j 16 DIMENSION SVAL(8),EDF(9)
17 C,

18 C THE FOLLOWING FUNCTION DEFINITION IS REQUIRED BY USRDST
19 C'

j 20 LOC (1,J)=(J-1)*N+1
2 21 C
| 22 C READ IN THE SAMPLE SIZE NP AND THE SAMPLE VALUES.
{ 23 C NOTE THAT THE READ STATEMENT MUST BE OF THE FORM READ (7,*)....

24 C;

J 25 READ (7,*)NP ,( SVAL( K) ,K=1,NP)
i 26 C
i 27 C CONSTRUCT THE EMPIRICAL DISTRIBUTION FUNCTION

28 C
29 STEP =1.0/ FLOAT (NP)<

30 EDF(1)=0.0
1 31 00 6 K=1,NP

32 6 EDF(K+1)= STEP * FLOAT (K)
'

; 33 C -

| 34 C SET THE STARTING POINT (STRTPT) EQUAL TO ZERO AND THE PROBABILITY
35 C INCREMENT (PROBINC) EQUAL TO 1/N FOR A LHS WHERE N IS THE SAMPLE SIZE-'

36 C;-

; 37 STRTPT=0.0
38 PROBINC=1.0/ FLOAT (N)
39 C:

40- C IF A RAND 0M SAMPLE HAS BEEN SPECIFIED IN THE PARAMETER LIST THEN THE*

"

i

!
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Table 5. Setup for Subroutine USRDST to Generate a Sample
From An Empirical Distribution Function

(Continued from preceding page)

41 C ARGUMENT IRS HAS BEEN SET EQUAL TO 1 IN THE MAIN PROGRAM, HENCE THE
42 C PROBABILITY INCREMENT IS SET EQUAL TO 1 S0 THAT ALL OBSERVATIONS ARE
43 C SELECTED BY USING THE INTERVAL (0,1)
44 C
45 IF(IRS.EQ.1)PROBINC=1.0
46 C
47 C THIS LOOP WILL OBTAIN THE N SAMPLE VALUES
48 C
49 DO 8 I=1,N
50 C
51 C R IS A RAND 0MLY SELECTED POINT IN THE CURRENT SUBINTERVAL OBTAINED
52 C BY USING THE RAND 0M NUMBER GENERATOR RAN
53 C
54 R=STRTPT+PROBINC*RAN(ISEED)
55 C
56 C THIS LOOP WILL SELECT THE SPECIFIC SAMPLE VALUE CORRESPONDING
57 C TO R THROUGH THE INVERSE EMPIRICAL DISTRIBUTION FUNCTION.
58 C THESE VALUES ARE STORED IN THE VECTOR X THROUGH THE USE OF THE
59 C LOC FUNCTION
60 C
61 00 7 K=1,NP
62 IF( R .GE .EDF( K ) . AND . R .LT.EDF (K+1) )X( LOC ( I ,J ) ) =SVAL(K )
63 7 CONTINUE
64 C
65 C RESET THE STARTING POINT TO THE BEGINNING OF THE NEXT SUBINTERVAL
66 C UNLESS A RANDOM SAMPLE HAS BEEN SPECIFIED
67 C
68 IF(IRS.NE.1)STRTPT=STRTPT+PROBINC
69 8 CONTINUE
70 RETURN

71 END

.
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The last example shows how to modify subroutine USRDST to generate samples
from more than one user-supplied distribution. For this example, the user-
supplied distributions in the two previous examples will both be generated in
the same subroutine. It will be assumed that the discrete probability distri-
bution is the third variable (J = 3) specified in the parameter list and that
the empirical data correspond to the seventh (J = 7) variable in the parameter
list. All that is needed is to pool the FORTRAN statements in Tables 4 and
5, along with the appropriate branching statements. The completed subroutine
appears in Table 6.

Table S. Subroutine USRDST for Sampling from Two
Different User-Supplied Distributions

SUBROUTINE USRDST(J)
C

C THE FOLLOWING SIX LINES OF CODE ARE REQUIRED BY USRDST
C

PARAMETER (NMAX=1000)
PARAMETER (NVAR=50)
PARAMETER (LENT =125)
COMMON /PARAM/ TITLE (LENT),ISEED,N,NV, IRS,ICH,NREP,IDATA,IHIST,

1 ICORR,IDIST(NVAR)
COMMON /SAMP/X(NMAX*NVAR)

C

C *****PUT LINES 11 to 17 FROM TABLE 4 HERE
C

C *****PUT LINES 11 to 16 FROM TABLE 5 HERE
C

C THE FOLLOWING FUNCTION DEFINITION IS REQUIRED BY USRDST
C

LOC (1,J)=(J-1)*N+1
C

C BRANCH TO STATEMENT 5 IF THE EMPIRICAL DISTRIBUTION IS REQUESTED
C

IF(J.EQ.7)G0 TO 5
C

C *****PUT LINES 22. to 74 FROM TABLE 4 HERE (CDF CASE)
C

RETURN ,

S CONTINUE.
C

C *****PUT LINES 21 to 69 FROM TABLE 5 HERE (EDF CASE)
C

RETURN

END

-36-
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5. MODIFYING THE COMPUTER PROGRAM

The computer program has been written using the FORTRAN-77 language with I

the attempt to make the code as machine-indeper. dent (i.e., portable) as |

possible. This has been done by using the generic name for intrinsic functions
whenever possible and also by avoiding the use of nonstandard syntax. However,
certain items in the code are by their nature machine-dependent and must be
adjusted before the code will run.

Machine Constants

The first items to be adjusted are the machine-dependent constants. These
constants are set in functions 11 MACH (integer machine constants) and R1 MACH

a

(floating-point machine constants). To alter these functions for a particular
machine or environment, the desired set of constants should be activated by
removing the "C" from column 1 in the program. (For a more detailed discussion,
see the comments at the beginning of the functions I1 MACH and R1 MACH.)

'
Random Number Generator

In Section 2 of this report, the discussion of the keyword RAND 0M SEED
indicated that the possible range of values for this parameter was machine-
dependent. In order to take advantage of the full machine range, the length
(i.e., number of digits) allotted for the random seed must be adjusted. This
length should be set to the number of digits in the largest integer represent-
able by the machine plus one extra place to allow for the use.of a sign. The
current value for this length is based upon the VAX 11/780 which is 231 - 1 or
2147483653. By allowing an extra place for the sign (which is necessary since
the VAX 11/780 permits the use of negative integers for a random seed), the
length required is 11. This is the length used in the code. However, as an
exemple,supposethecodewastorunongCDC7600 machine. There the largestinteger represented by the machine is 2 - 1 or 2.815 - x 10 Including an.

extra place for the sign results in a length of 16. This new length must be
inserted into the code in the following places:

1. SUBROUTINE BANNER -- in the FORMAT statement labeled 9001 the Ill
should be changed to I16.

2. SUBROUTINE DATSQZ --in the PARAMETER statement, LENT = 11 should be
changed to LENT = 16.

3. SUBROUTINE RDPAR -- in the PARAMETER statement, LENTC = 11 should be
! ,

! changed to LENTC = 16.

4. SUBROUTINE RDPAR -- in the FORMAT statement labeled 9003, the Ill
should be changed to 116.

Different machines will also vary in the way the random number generator
is accessed. The current version of the code uses the VAX 11/780 function RAN
to obtain a pseudo-random number from the range (0,1). The randem seed is
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placed in the variable ISEED and this variable is constantly being updated
so that it contains the most recent value of the random seed. If the random
number generator being used operates differently from this, the following
adjustments will have to be made to the code:

1. If the random number generator needs to be preset, this should be done
in subroutine RDPAR.

2. If the random number generator is called differently, these changes
should be made in subroutines BETA, MIX, NORMAL, TRIANG, and UNIFRM.

3. If a separate call to the random number generator is required to
retrieve the current value of the random seed, this should be done
in subroutine BANNER and only after the first repetition.

Redimensioning

Section 2 indicated upper limits on the values of certain parameters.
These were:

1. the number of observations, NMAX=1000

2. the number of variables, NVAR=50

3. the number of pairs of correlated variables, NCVAR=50

4. the number of subintervals in the UNIFORM * and LOGUNIFORM* distri-
bution, NINTMX=50

These upper limits should be satisfactory for most situations. However, if
any or all of these upper limits need to be adjusted, the new value must be
replaced in every occurrence of the parameter. Table 7 shows every subroutine
in which each of the above four parameters occurs. The PARAMETER statements-
are found at the beginning of each subroutine.

-38-
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Table 7. List of Subroutines bhich Sp,tain Warameters that'
~

s

may be Adjusted f,or Pvposes' of Redimension7ng. ,
I e., ,

,

\ ./, ',.

PARAMETER StBROUTIES ' j
,,

6'
;

, ,

NMAX LHS (main p iran), BETA,CbkAL,COROUT, I

DATOUT, FINDIT, HIST 0', HPSRT, HST0VT, MIX,
NORMAL , OUTLAT,' RANKER, RDPAR, TRI ANG,
UNIFRM, U$kDST

,x, i g, ; y ,

NVAR LilS (mai'i prograi RANNER,5 FETA, CHK0f M,
CHKETR. CHLSK7, CMCRD, CORCAL, COROUT,

,0AT0VT,~~- DMFSD, DilNV, T5NDIT,' HIST 0, 'riPSRT, .

-

; HC4UT, MAT 13V, MIX, NORMAL), 00TCRD, OUTDAT, '
'"PMTRX, POSDEF, ' RANKER, RSPAR. SETDEF, TRI ANG,4

UNIFRM, UFRDST, VIF, WRTCRD! WRTPAR 1'

% , ,

NCVAR CMCRnq pPAR ;,

,

NINTMX
^

f,,fM.5Tk IyAg @,
, ,
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J ',''i t4

t* \ ;,

1
-
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'b' 'I ,, g'The Output File a
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The last item to be considered'is~ the ohtput file. The sample gerierated

, , ,

by the code is written to unit 1 in unformatted binary. Each record 94 thei.
output file represents one input vector o'f vtriables and is of t'tesMrm I,QsK, (X(J),J=1,K) where I is the number of the vector being written; X 'is the ' .

number of variables in the vector and X is the vector of values. There.itreI
n of these vectors written to unit I where n is! the number of observationh' '
specified by the user through the use of the keywo'rd NOBS. If more than ne,
repetition has been specified (NREPS>1)', then each' comple' c sample' Gill b@e'

t

written on unit 1 with no separators between repetitions.( The (ieifnition of
unit 1 for mass storage is the responsibility of tte udir'as is ,the procedure '

,

l dfor actually saving the output file. 6'/' gi 5
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This appendix presents sample output from two runs of the computer program.
The first conputer run is based on the list of parameters given below. This
. setup calls for the generation of one Latin hypercube sample consisting of 29C

observations on 7 input variables. Two of these variables have user supplied
distributions corresponding to the setup for subroutine USRDST in Table 6 of
Section 4. Two of the remaining five variables use a normal distribution
while the beta, lognormal, and loguniform distributions are each-used once..

The first two pages of output echo back the parameter setup.; The DATA
option with the OUTPUT parameter produces _pages 3 and 4 of the output which
contain the actual sample generated and the corresponding ranks. The raw
and rank correlation matrices appear on pages 5 and 6 of the output. These

j. matrices were requested through use of the CORR option with the OUTPUT para-
me te r. The output option HIST is not exercised in this' example.

,

TITLE - SETUP FOR LHS OUTPUT EXAMPLE 1
RAND 0M SEED -1692990931
N0BS 29
BETA BETA DISTRIBUTION ON (10, 100).

10 100 .5 .2
NORMAL THIS WILL BE THE SECOND VARIABLE

12 56;
~

USER DISTRIBUTION DISCRETE PROBABILITY DISTRIBUTION
4
0 .2
1 .3

,
+ 2 .4

3 .1
j' LOGNORMAL EXAMPLE OF LOGNORMAL DISTRIBUTION

.01 2.13
I NORMAL DISTRIBUTIONS MAY BE USED MORE THAN ONCE

-0 10
LOGUNIFORM

"
6.E7 .8.lE10

USER DISTRIBUTION EMPIRICAL. DATA
8 .4 .9 1.1 1.4 1.9 ! .2.2 2.4 _2.7>

OUTPUT DATA CORR

i

r' 3

|

f-

. , .

.

p
|

,
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PAGE 1 0F' COMPUTER OUTPUT FOR EXAMPLE 1 - ECHO 0F INPUT PARAMETERS

fifLt - StfuP FOR LMS OUTPUT tvAacLt i

PAN 00W S(to e 1602990039

NLMttR OF WARIA8LES = 7

NLA4(4 0F OSSERVATIONS e 29

THE SA6FLE INPUT VECTORS w!LL BC PetNf t0 ALONC WlfM THEIR C@R(SPONDINO RANKS

THE CORRELAfl0N MATRICES (RAW CATA AND RANet Cop 4ELAfl0NS) WILL DE P#1NTt0

PAGE 2 0F COMPUTER OUTPUT FOR EXAMPLE 1 - ECHO 0F INPUT DISTRIBUTIONS

fifLE - StfuP FOR LMS OUTPUT EXAacLE t

VARIASLE DIStatsutt0N RANCE LASEL

1 OtfA 10.5 70 100. OtfA DISTRIBUf!ON ON (10,100)
wifH PARAMEftRS Pe S.Se Q = 2.00
THIS CHOICE Or PARautitR$ civts A
POPULATION WEAN OF 28.e AND A
POPULAfl0N VARIANCE OF 370.

2 D&uAL 12.s 70 50.0 fMIS WILL SE THE SECODO VARIABLE

3 U$tR SUPPLitD DISTRIBUf!ON OBSCREft PROSA81LITY DISTRIBUf!ON

4 LOGN0aWAL t.seet-02 70 2,13 EXAarLE OF LOGNORMAL DISTRl8Utt0N

$ NORual s.eest+0e 70 10,0 OISTRIBUf!ONS MAY BE USED MORE THAN ONCE

e LOGUNIF0pu 0.000(+47 70 R.100t+te

7 UstR SUPPLICO DISTRIBUTION 081RICAL DATA

-43-.
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PAGE 3 0F COMPUTER OUTPUT FOR EXAMPLE 1 - ACTUAL LHS SAMPLE GENERATED

IlfLC - SETUP FOft DrS OufPUT CMAWLC I

LAflM HYP[9CueC SAW LC INPUI VCC70RS

IPJt NO. *(t ) E(2) X(3) N(4) X(S) X(6) X(?)

1 49.3 2e e i se e.tys S.et 3.494t+te e ese

2 11.2 48.9 2.00 7 995E-e2 S.39 f.SSSE+4e 1.to

3 34.3 3.. $ t.00 e.194 S.49 7.SeSt+10 't.te

4 e4.0 4e.4 2.00 0.443 S.t3 1.604t+4e 1.90

S 10.1 28.S 2.00 e.242 3.51 t. ESSE +1e e.400

e 12.9 35.2 e.eest ee e.tel 4.7s 3.333t+1e 2.2e

7 10.0 33.3 2.00 7. 023(-e2 4.40 2.4ee(+4e 1.4e

e 38.5 34 e 2.00 e.695 4.4e S.544t+10 2.44

e 60.3 37.3 3.00 e.ttS 4,84 2.973C+te 1.98
,

to 21.9 20.0 1.00 4. 2C7E42 S Se 3.930C+1e 2.40

11 24.0 22.0 2.00 e.tes te e 4.te4E+4e 1.44

12 19.7 23.4 2.00 3 91et-02 3.13 e.043t+47 2.7e

13 17.7 33.4 e.eest+4e e.838 2.31 0.847t+ee 0.988

to 14.9 29.4 1.00 e.93e 4 99 1.47jt+ee 2.74

IS $4.2 34.4 1.e0 1.495E-42 0.e1 3.eeeC*ee 2.20

is 43.0 32.4 e.eest+ee e.te2 4.13 2.46eE+49 2.40

17 81.2 31.0 3.0e e.J68 7.18 3.93tt+et 2.44

to 4t.S 29.0 e,eeet+ee 4.129 7.51 S.730(+49 f.te

19 10.3 44.1 1.00 0.342 4.08 3.eeSE+49 f.90',
to 15.s 32.5 2.00 0.144 3.7e 7.194t+0e 2.2e

21 2e.4 20.1 1.e4 e.379 5.75 0.090E+ee 1.43

22 13.3 39.4 0.000t+0e S.923t-e2 4,93 9.204t+49 8.900

23 29,9 44.4 1.00 0.254 6.98 2.073E+4e e.440
f

24 11.0 Se.e t.00 e.tF7 4.94 9.1390+ee 2.70

2$ 10.0 37.7 2.0e 9.44et-42 4.73 4.227t+0e e.9ee

20 44.1 34.1 2.00 e.241 2.e5 6.475E+47 e.400

27 30.0 42.1 3.60 S.96et-42 4.35 1.tSSE+1e 2.2e

24 14.4 23.9 1.00 9.204 1.8e e.762C+ee 1.44
(
' 29 27.S 36.S 2.0c e.67$C42 3.24 4.678t+4e 1.te

l

,

t
|

|
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PAGE 4 0F COMPUTER OUTPUT FOR EXAMPLE 1 - RANKS OF SAMPLE VALUES BY VARIABLE

fifLE - SCTUP F0ft LMS OUTPuf trAndPLE I

RA8885 OF LAflu MVPElICUSC SAaFLE IWT VECTORS

mVM NO. x(t) x(2) u(3) x(s) a(S) X(8) M(7)

1 23. 8. 11. 17. 21. 23. 3-

2 8. 23. 21. 8. 17. 14. 18-

3 21. te. 11. 19. te. 29. 18-

4 29. 24, 21. 27. 18, 4. 17.

3 2. S. 21, 28. 4. 24. 3.t

!

8 8. 17. 3. IG. 13. 28. 21.

7 t. 14. 21, 7, 24. 8. 14.

8 28. 22. 21. 28, 11. 28. 25.

9 28. 28, 28. 12. 12. 25. 17.
?

18 te. 7. 11. 3. 19. 27. - 2S .

It 17. 2. 28. 15. 29. 8. 14.

12 14, 4. 21. 2. 4. 2. 28.

13 13. 18. 3. 14. 2. 18. 8.

14 12. 8. 19. 29. 14. 13. d8.

IS 28. 18. 11. f. 22. 7. 21.

18 24 12. 3. 18. 9. 15. 25.

17 5. 11. 24. 2S. 27. 18. 25.
,

18 27. 9. 3. 13. 28. 19. 18.

19 3. 27. ft. 24. 8, - 17. 17.
,

28 11. 13. 21. II, 7. 28. 21,

21 IS. 1. ft. 28. 28. 12. 14.

22 9, 23. 3. S. 15.- 21. 8.

23 19. 28. ft. 22. 28. S. 3.

24 7. 29. ft. 18. 23. 3. 28.

2S 4 21. 21. 9. 25. 18. 8.

28 2S. 15. 21. 29. J. l. 3.

i 27 22, 28. 28. 4. 18. 22. 21. .

28 18. 3. ft. 23. 1. 11. 14
!

29 18. 19. 28, 8. S. 9. 18.
>

I
I

I
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PAGE 5 0F COMPUTER OUTPUT FOR EXAMPLE 1 - RAW DATA CORRELATION MATRIX

fifLC - setup FOR LHS OUTPUT (TWLE I

CometLAfl0NS AMON0 IWT VARI A8(ES CREATED BY TMC LAfl4 WYPENCUSE SAMPLC FOR mas DATA

I 1. sees

2 9.8343 1.0000

3 0.0791 0.9500 1.0000

4 e.0410 4 4389 9.43231.9000

S 9.0737-8.0264 e.eS44-e.e343 1.0000

6 0.e796 0.0222-4.9230 9.1003-4.9224 1.0000

7-4.e138 9.9483 0.1114 9.2271-4.0293 9.9737 1.0888

1 2 3 4 5 6 7

VaalA8LES

THE VARI ANCE INFLAfl0N FACTOR FOR THl$ MATRIX IS t.97

PAGE 6 0F COMPUTER OUTPUT FOR EXAMPLE 1 - RANK CORRELATION MATRIX

fifLE - Stfup FOR LHS OUTPUT tr w LE t

CORRELAfl0NS AMONG INPUT VARIA8LES CREAfCD BY THE LAf!N NYPERCUBC SMLC FOR RANK OATA

1 1.0000

2-4.0409 1.0000

3-4.0346 e.9681 1.0000

4-4.0232-4.0153-9.0301 1.0000

S 0.0049-4.0034-4.0306-4.0009 1.0000

6-0.0192-4.0954-4.0678-9.0187-0.0004 1.0000

7-4.0199-0.9549 0.9942-0.0226-4.0223 0.0030 t .0000

1 2 3 4 S e 7

VARIA0LES

THC VARI ANCC |NFLAfl0N FACf0R FOR THl3 MAfRIX l$ t.02
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The second computer run is based on the list of parameters given below. This
setup differs from the first example in two respects. First, a rank correla-
tion is specified involving variables X , X , and X . However, the specified1 2 5
rank correlations do not form a positiva definite matrix. Hence, as explained
in Section 2 under the keyword CORRELATION MATRIX, an iterative scheme (Iman
and Davenport,1982) built into the program adjusts the correlation matrix to
make it positive definite. The output shows that the user specified correla-
tions of .8, .7, and .6 have been adjusted respectively to .5872, .4990, and
.4078 with the corresponding sample rank correlations being .5926, .5821,

and .3419. The second difference in this example is that the DATA option
has been omitted from the OUTPUT list as the sample values are the same as
before only paired differently to reflect the new correlation structure.

TITLE - SETUP FOR LHS OUTPUT EXAMPLE 2
RANDOM SEED -1692990931
N0BS 29
BETA BETA DISTRIBUTION ON (10, 100)

10 100 .5 .2
NORMAL THIS WILL BE THE SECOND VARIABLE

12 56
USER DISTRIBUTION DISCRETE PROBABILITY DISTRIBUTION

4
0 .2
1 .3
2 .4
3 .1

LOGNORMAL EXAMPLE OF LOGNORMAL DISTRIBUTION
.01 2.13

NORMAL DISTRIBUTIONS MAY BE USED MORE THAN ONCE
0 10

LOGUNIFORM
6.E7 8.1E10

USER DISTRIBUTION EMPIRICAL DATA
8 .4 .9 1.1 1.4 1.9 2.2 2.4 2.7

CORRELATION MATRIX
3 1 2 .8 1 5 .7 2 5 .6

0UTPUT CORR
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PAGE 10F COMPUTER OUTPUT FOR EXAMPLE 2 - ECHO OF INPUT PARAMETERS
i
i

f

fifLE - Sttup FOR LHS OUTPUT DAbPLC 2

RAN0cu Sit 0 = -1892999931

NIAetR OF WARI Aett$ = 7

8AAe(R OF 09$ERVAfl0NS = 29

AN INPUT COR9ELAf f 0N MATRIX MAS 8(EN SPECirito

THE CORRglAfl0N WATRICt3 (RAW DATA A86 RANK CORRfLAf f 0NS) Will SE PRINTfD

PAGE 2 0F COMPUTER OUTPUT FOR EXAMPLE 2 - ECHO 0F INPUT DISTRIBUTIONS

fifLE - SETUP FOR LHS OUTPUT DAhPLC 2

VARIABLE Di$fRIBUTION RANGE, LA8(L
1 SETA 10.0 70 fee. 9tfA DISTRIOUTION ON (10,100)

WITH PARAuti[R$ P= 0.50 0= 2.00
THIS CH0lCE OF PARAMETERS Civt3 A
POPULAfION WEAN OF 28.9 AND A
POPULATION VARfANCE OF J70.

2 NORWAL 82.0 70 54.0 THIS WILL SC THE SECOBO VARIASLE
3 USER SUPPLit0 DISTRIOUT10N DISCRkff PROSASILifY Of STRitUfl0N
4 LW,N0pual 1.000C42 TO 2.13 DAhPLE OF LOGNORMAL DISTRIOUfl0N
5 NORuAL e.000t+0e TO 10.0 OISTRIOUTIONS MAY SE U5ED WORC THAN ONCE
6 LOGUNIFORN 6.000(+47 70 8.100(+t9
7 USER SUPPLIED OISTRIBUTION DPIRICAL DATA

-48--
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PAGE 3 0F COMPUTER OUTPUT FOR EXAMPLE 2 - ECHO 0F USER INPUT RANK CORRELATION
MATRIX WITH WARNING MESSAGE

fifLE - SEfuP FOR LMS OUTPUT EXAndPLE 2

feeUT RAset CORRELAfl0N M TRf2

1 1.0000

2 0.0000 1.0000

S 8.7000-4.6000 1.0000

8 2 5

VARIA0LES

.. u ..u . CAUTION USER eLEASE NOTE ......... CAufl0N USER PLEASE NOTE m . m . CAufl0N USER PLEA $C NOTE m u n u

THE INPUT RANK CORRELAfl0N teATRif l$ NOT POSIfivE DEFINiit
AN ITERAfivE PROCECURE HAS DEEN USED TO PRODUCE A SUSSilfUTC RAfe( CORRELAfl0N taATRIX
THIS ADJUSTED RAset CORRELAff0N tAATRit APPEARS ON THE NEXT PACE
THE USER $NOULD EXAnflNE THl$ W TRIE TO WKE SURC THAT THE CORRELAfl0N REQUIROfENf3 ARE SffLL SAfl$ fled

...................................................................................................................

PAGE 4 0F COMPUTER OUTPUT FOR EXAMPLE 2 - ADJUSTED RANK CORRELATION MATRIX

fiftC - sEfue r0R LNs outrVT ExAnett 2

A0JV5 FED RANK CORRELAfl0N MATRIX

1 I.0000

2 0.5072 1.0000

$ 0.4996-0.4078 1,0000

1 2 S

VARIABLES
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PAGE 5 0F COMPUTER OUTPUT FOR EXAMPLE 2 - RAW DATA CORRELATION MATRIX

fiftt Stite FOR LHS OUTPUT CIAerLE 2

CometLAt:0NS AssoNG iMNT vanl Aett$ CREATED ey fut LAflN HYPERCUet SAaFLt FOR RAW DATA

i 1.0000

2 e e441 f.etoe

3 0.0791 e.eese 1.0000

4 e.sete 4.etet 0.93231.0000

S e.s.lt-0.3778-e 0129 9 ee29 9.0000

e e.079e G. It40-0.e23e e. teem.Se+9 f.eece

7-e.013e 0.02e5 0.1914 e.2271-e.0319 e.e737 1.0000

1 2 3 4 S e 7

VARIA8Lts

PAGE 6 0F COMPUTER OUTPUT FOR EXAMPLE 2 - RANK CORRELATION MATRIX
i
|

f tTLE - SETUP FOR LHS OUTPUT tsaartt 2

CometLAfl0NS AMONG INPUT VARIAelts CACAft0 eY THE LAflN HYPERCutt SAAFLt FOR RANK OATA

1 1.este

2 e.S92e t.0000

3-e.930s 0.024e t.eest

4-e.0232-0. sept-4.03ei 1.9000

S e.S2et-0.3419-e.e92S e.03SS 1. sees

w .ets:-e.e23e-e.eer w .ete7-e.e2e2 1. wee

7-e.etee-9.e459 0.tet2-4.e22e 0.051I 9.e030 f.ee9e

1 2 3 4 S e 7

VARIA9LES

l

i
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This document has been designed for dser.of the computer program develop-
cd by the authors at Sandia Nationa 'Labo tories for the generation of
either Latin hypercube or random mu ivari to samples. The Latin hyper-
cube technique employs a constraine sampli g scheme, whereas random samplir.g
corresponds to a simple Monte Carl techniq The generaion of these.

samples is based on information su lied to e program by the user
dsscribing the variables or parame era used a input to the computer model.
The actual sampled values are use to form ve ors of variables commonly
u:ed as input to computer models or purposes sensitivity and uncer-
tainty analysis studies. The pre ont program r laces the previous Latin
hypercube sampling program developed at Sandia N ional Laboratories
(Iman, Davenport, and Zeigler, 1$80). The presen version is written
using FORTRAN .77 and greatly extends the program ile making the program
portable and user friendly.
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