

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001 September 29, 1995

APPLICANT: Westinghouse Electric Corporation

FACILITY: AP600

510050263 950929 DR ADUCK 05200003

PDR

SUMMARY OF MEETING ON THE ANALYSIS AND DESIGN OF THE WESTINGHOUSE SUBJECT: AP600 CONTAINMENT VESSEL

On August 30 and 31, 1995, representatives of the Nuclear Regulatory Commission (NRC) and Ames Laboratory, NRC consultant, met with representatives of the Westinghouse Electric Corporation (Westinghouse) and Chicago Bridge and Iron Company (CBI), Westinghouse consultant, to discuss the analysis and design of the Westinghouse AP600 containment vessel and review related draft safety evaluation report (DSER) open items (OI). The meeting was held at the CBI office in Plainsfield, Illinois. Attachment 1 is a list of attendees and Attachment 2 is the meeting agenda.

CBI presented the Westinghouse response to NRC concerns identified in several of the open items. Attachment 5 is the CBI discussion materials (overhead slides). CBI presented results from the Containment Vessel Design Report on the effects of large cenetrations on buckling. CBI made several copies of the Containment Vessel Design Procet (MV50 S3R 005), Revision 0 available for NRC review. Ames Laboratory sented confirmatory analysis results on contain-ment vessel buckling per mance. Attachment 6 is the Ames Laboratory presentation material. During the meeting, the results of the analysis were compared to CBI results and were found to be similar. Further, it was noted that differences in the results were, at least in part, due to differences in input parameters and models. Westinghouse and the NRC agreed to run the same input parameters on both organization's models and on one model by both organizations.

Containment vessel performance beyond design basis was also discussed. The NRC staff expressed concern over the Westinghouse use of the von Mises failure criteria combined with the median yield strength. NRC and Westinghouse agreed that a 10 percent increase on the median yield strength was acceptable. NRC cited the example of an actual test where failure occurred before von Mises failure criterion was reached. However, discussions will continue on the use of the von Mises criteria. Failure modes for the containment vessel top head were discussed. The NRC staff questioned that only one failure mode was addressed in the standard safety analysis report (SSAR). Westinghouse stated that other failure modes were analyzed but only discussed the dominant mode in the SSAR. Westinghouse agreed to expand the SSAR discussion to include the other failure modes.

Pertinent open items and new requests for additional information (RAIs) were reviewed. New Probabilistic Risk Assessment Chapter 42 RAIs were transmitted to Westinghouse in a letter dated August 4, 1995. A revision of these RAIs was faxed to Westinghouse on August 29, 1995, and later sent in an individual

NRC FILE CENTER COPY

DISTRIBUTION w/attachment: Docket File PUBLIC PDST R/F **RArchitzel** TKenyon WHuffman DJackson MFranovich DISTRIBUTION w/o attachment: WRussell/FMiraglia, 0-12 G18 AThadani, 0-12 G18 RZimmerman, 0-12 G18 DCrutchfield BGrimes TQuay TKenyon ACRS (11) EJordan, T-4 D18 JMoore, O-15 B18 WDean, EDO GBagchi, O-7 H15 TCheng, O-7 H15 SLee, O-7 H15

letter. A clarification to one RAI was faxed to Westinghouse on September 18, 1995. The revised RAIs and clarification are given as Attachment 3. Progress was made towards the resolution of the open items. The status of open items and new RAIs are given as Attachment 4.

As a result of the meeting, the items listed below were considered by the staff as major action items needed for issue resolution. Items 1 - 3 should be added to the open item tracking system database. Actions in items 4 - 7 are included in existing open items.

- Westinghouse will revise SSAR Section 3.8.2.4.1.1 to include the consideration of the vertical component of earthquake motions.
- Westinghouse should provide a similar table as SSAR Table 3.7.2-14 to describe the models and associated analysis methods that were used for analyzing each portion of containment vessel.
- Westinghouse will verify the adequacy of seismic input motions (horizontal and vertical) provided to NRC for confirmatory analyses.
- 4. Westinghouse will review NUREG/CR-4209 and references cited in DSER and respond to the staff later regarding the combined use of von Mises yield criterion and mean strength material for cylindrical portion.
- 5. The NRC staff will review N-284, Revision 1 and the SME confirmation of AP600 interpretation. This item involves the factor of safety for equipment hatches for deterministic ASME Service Level C criteria.
- 6. The NRC staff will review the test data used to generate lower bound curve in N-284, generate a 50 percent curve and compare with 150 percent critical pressure (P_{cr}). This item involves the use of the 150 percent P_{cr} derived from the lower bound curve in N-284 for equipment hatches.
- The staff proposed the revision on SSAR 3.8.2.4.2 such that the best estimate pressure calculations would move to Chapter 42 of the Probabilistic Risk Assessment Report (PRA).

Diane T. Jackson, Project Manager Standardization Project Directorate Division of Reactor Program Management Office of Nuclear Reactor Regulation

Docket No. 52-003

Attachments: As stated

DISTRIBUTION: See next page

cc w/attachments: See next page

DOCUMENT NA A: AUG30.ECG

To receive a copy of this document, indicate in the box: "C" = Copy without attachment/enclosure "E" = Copy with attachment/enclosure "N" = No copy

OFFICE	PM: PDST: DRPM	2,	N:ECGB N	SC:PDST:DRPM	
NAME	DJackson:sg	r	GBagchi Ler wer	RArchitzel	
DATE	0909/95 'C	50	09/ 1e/95 w	09/ /95	

Westinghouse Electric Corporation

cc: Mr. Nicholas J. Liparulo, Manager Nuclear Safety and Regulatory Analysis Nuclear and Advanced Technology Division Westinghouse Electric Corporation P.O. Box 355 Pittsburgh, PA 15230

> Mr. B. A. McIntyre Advanced Plant Safety & Licensing Westinghouse Electric Corporation Energy Systems Business Unit Box 355 Pittsburgh, PA 15230

Mr. John C. Butler Advanced Plant Safety & Licensing Westinghouse Electric Corporation Energy Systems Business Unit Box 355 Pittsburgh, PA 15230

Mr. M. D. Beaumont Nuclear and Advanced Technology Division Westinghouse Electric Corporation One Montrose Metro 11921 Rockville Pike Suite 350 Rockville, MD 20852

Mr. Sterling Franks U.S. Department of Energy NE-42 Washington, DC 20585

Mr. S. M. Modro EG&G Idaho Inc. Post Office Box 1625 Idaho Falls, ID 83415

Mr. Charles Thompson, Nuclear Engineer AP600 Certification U.S. Department of Energy NE-451 Washington, DC 20585

Ames Laboratory 390 Town Engineering Building Iowa State University Ames, Iowa 50011 Attn: Lowell Greimann Docket No. 52-003

Mr. Frank A. Ross U.S. Department of Energy, NE-42 Office of LWR Safety and Technology 19901 Germantown Road Germantown, MD 20874

Mr. Ronald Simard, Director Advanced Reactor Program Nuclear Energy Institute 1776 Eye Street, N.W. Suite 300 Washington, DC 20006-3706

STS, Inc. Ms. Lynn Connor Suite 610 3 Metro Center Bethesda, MD 20814

Mr. James E. Quinn, Projects Manager LMR and SBWR Programs GE Nuclear Energy 175 Curtner Avenue, M/C 165 San Jose, CA 95125

Mr. John E. Leatherman, Manager SBWR Design Certification GE Nuclear Energy, M/C 781 San Jose, CA 95125

Barton Z. Cowan, Esq. Eckert Seamans Cherin & Mellott 600 Grant Street 42nd Floor Pittsburgh, PA 15219

Mr. Ed Rodwell, Manager PWR Design Certification Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 94303

APCOD CONTAINMENT VESSEL AUGUST 30 AND 31, 1995 BETWEEN THE NRC AND WESTINGHOUSE MEETING PARTICIPANTS

NANE

AFFILIATION

GOUTAM BAGCHI THOMAS CHENG SEUNG LEE DIANE JACKSON FOUAD FANOUS LOWELL GREIMANN AYMANN KHDIL SHERIF SAFAR RICHARD ORR DON LINDGREN THOMAS AHL

RAJ DESHMUKH DONALD HORACEK DALE SWANSON (PART-TIME) CLARENCE MILLER (PART-TIME)

NRC/NRR/ECGB NRC/NRR/ECGB NRC/NRR/ECGB NRC/NRR/PDST AMES LABORATORY/NRC CONSULTANT AMES LABORATORY/NRC CONSULTANT AMES LABORATORY/NRC CONSULTANT AMES LABORATORY/NRC CONSULTANT WESTINGHOUSE WESTINGHOUSE CHICAGO BRIDGE AND IRON CO(CBI)/ WESTINGHOUSE CONSULTANT CBI/WESTINGHOUSE CONSULTANT CBI/WESTINGHOUSE CONSULTANT CBI/WESTINGHOUSE CONSULTANT CBI/WESTINGHOUSE CONSULTANT

MEETING AGENDA ANALYSIS AND DESIGN OF THE AP600 CONTAINMENT VESSEL AUGUST 30 AND 31, 1995 CBI OFFICES, PLAINFIELD, ILLINOIS

L	Introductory remarks		R. Orr / T. Cheng	9.00 am
2.	Design criteria for con	tainment vessel	R. Orr	9.15 am
	OI 3.8.2.2-1	ASME NE 1992		
	OI 3.8.2.3-1	Load combinations		
	OI 38.2.4-2	Dynamic analyses		
	0138244	Eccentric masses		
	01 38 2 4-6	Thermal loads due to passive	cooling	
	01 3 8 2 4-14	Buckling due to passive cool	ing thermal loads	
	OI 3.8.2.4-7	Wind and tornado loads		
3.	Containment vessel de	sign report	T.Ahl	10.00 am
	OI 3.8.2.4-5	Thermal stresses at base		
	OI 3.8.2.4-8	CBI computer codes		
	OI 3.8.2.4-12	Stress analyses		
	01 3.8.2.4-13	Vessel deflections		
	OI 3.8.2.4-16	Buckling analyses		
4.	Effect of large penetra	tions on buckling	D. Horacek	10.30 am
	OI 3.8.2.4 - 9,	10 and 14		
5.	NRC Confirmatory an	alyses	Ames Lab	11.00 am
6.	NRC Revie of AP60	0 Calculations	pm 8/30 and 8	3/31
7.	Containment Performa	nce beyond the design basis	R .Orr	8.00 am
			S. Lee	8/31
	OI 3.8.2.4 -19	Best estimate material proper	ties	
	OI 3.8.2.4 -25	Failure mechanism for top he	ead	
	OI 3.8.2.4 -26	Best estimate capacity for eq	uipment hatch	
	OI 3.8.2.4 -30	Service Level C capacity for	equipment hatch	
8.	Status of Open Items		R. Orr T. Cheng	10.00 am 8/31
	Meeting 3/28	/94 Open items 457-469		
	Meeting 7/5/	NRC letter 8/23/94		
	DSER Open I	tems within Design Basis (3.)	8.2.1-1 thru 3.8.2.4-16)	
	DSER Open I RAIs - PRA (tems beyond Design Basis (3. Chapter 42 - 8/4/95	8.2.1-17 thru 3.8.2.4-31)	
9.	Meeting summary			3.00 pm

Request for Additional Information For AP600 Containment Conditional Containment Failure Probability (CCFP) Calculations

- 1. In Chapter 42 of PRA SSAR, Rev. 4, the mean failure pressure is mentioned for each failure mode. As stated in DSER, the staff recommended the best for each failure mode. As stated in DSER, the staff recommended the best estimate pressure be median for containment CCFP calculation. (If lognormal distribution is used, the mean is median times $\exp(B^2/2)$ where lognormal distribution is used, the mean is median times $\exp(B^2/2)$ where B is logarithmic standard deviation.) For the failure pressure estimates, the staff is not in a position to accept the 32 percent increase mates, the staff is not in a mean yield strength of SA537 Class 2 using both von Mises criterion and mean yield strength of SA537 Class 2 material. See Open Items 3.8.2.4-19 and 19.2.6.2-3.
 - A comparison between experimental and theoretical yield stresses in Engineering Design, Faupel, J.H., pp. 249-258, John Wiley & Sons, 1964 shows that the von Mises yield criterion does not always give a 15 percent higher yield stress than that obtained from the maximum shear stress criterion,
 - The material test data uses only 122 specimen and they are neither exactly the same as the SA 537, Class 2 material nor as-built material,
 - In "Comparisons of Analytical and Experimental Results from Pressurization of a 1:8 - Scale Steel Containment Model," Clauss, D.B. and Horschell, D.S., Proceedings 8th Intl. Conf. on SMiRT, August 19 - 23, 1985, and NUREG/CR-4209, the measured yield pressure was reported 15 percent less than that predicted yield pressure (r = 84", t = 0.197", $\sigma_y = 57.1 \text{ ksi}, P = \sigma_y t/r = 134 \text{ psig}$ using MARC FEM code with large displacement, nonlinear material property obtained from standard uniaxial tensile tests (test coupons were machined from remnants and cutouts for the penetrations), and von Mises yield criterion due to (1) strain rate effects (5 percent reduction), (2) Bauschinger effect (5 to 10 percent reduction) referring to the phenomenon whereby the yield stress in tension or compression is reduced if the material has been previously yielded in the opposite sense (when the plates comprising the cylinder were rolled into the cylindrical shape, the internal surface underwent compressive yielding and internal pressurization results in tensile yielding in the cylinder), and (3) difficulties in applying uniaxial data to multiaxial strain states,
 - From an American Iron and Steel Institute (AISI) survey of test results for thousands of individual product samples, it has been found that strength levels vary as much as 20 percent from the certified material test reports (CMTR) test values. It has been the staff's material test reports (CMTR) test values. It has been the staff's position that minimum specified strength values (e.g., ASME Code minimum strength values) should be used as the basis for allowable minimum strength values) should be used as the basis for allowable Stolz, Subject: Review of Oyster Creek Drywell Containment Structural Integrity, dated June 14, 1990.

Attachment 3

- In Section 42.2, is lognormal distribution applicable for the 16-ft and 25-ft equipment hatches? Due to their convexity, these are under compression when subjected to containment internal pressure as mentioned, further justification is necessary for these equipment hatches.
- 3. In Section 42.3.1, Ref. 42-1 did not provide data showing that the actual yield strength of containment construction materials could be 12 to 22 percent higher than the specified minimum material strength. The range is 2.5 to 22 percent in Table 1. Also, there is no data for SA537, Class 2 material in Ref. 42-1.
- 4. In Section 42.4, provide uncertainties for geometric properties (as-built condition) and residual stress for buckling of knuckle area and equipment hatch covers. Imperfection for internal pressure is insensitive, however, for external pressure, it should be significant. (from N-284, however, for external pressure, it should be significant and plasticity capacity reduction factor is considered for imperfection and plasticity of nonlinear material properties.)
- 5. In Section 42.4.1, how is the COV of 0.1 derived from Ref. 42-1? The Table 4 of Ref. 42-1 shows only the thickness of 1-1/4" thickness (mean = 1.277", $\sigma = 0.012$ ", COV = 0.01) and it assumes normal distribution, not lognormal distribution. Also, this COV of 0.01 represents the uncertained for geometric properties, not modeling error, The Ref. 42-1 shows the for all practical purposes of modeling error which should include for all practical purposes of modeling error which should include indiguinal stringers, etc. as well as circumferential variations in longitudinal stringer sizes, amount of reinforcing steel, and thickness, ring and stringer sizes, amount of reinforcing steel, and thickness 3.8.2.4-21 and 19.2.6.3-1.
- 6. In Section 42.4.2, provide mean (median) failure pressures with modeling and material uncertainties for crown yield, knuckle area yield, and knuckle area buckling. Imperfection uncertainty is insignificant due to internal pressure buckling (See N-284).

How is 192 psig derived in knuckle area? Is it 146*1.15*1.15?

How is 144 psig derived for ellipsoidal head buckling failure mode in Table 42-1? It is not given in SSAR. Is it derived from $174 \times 138/166$?

For the ellipsoidal head, there are two possible failure modes, i.e., asymmetric buckling (P_{cr}) and plastic collapse (P_c) . Therefore, the plastic collapse pressure information should be considered in SSAR.

7. In Section 42.4.3, Westinghouse increases 50 percent critical pressure for the best estimate failure pressure based on N-284 curve which was derived from lower bound of tests. However, there was only one test performed for AP600 containment configuration ($M_i = 14.5$). Therefore, it is believed that 50 percent curve from tests might be appropriate use for AP600 containment. (N-284 does not provide 50 percent and upper bound curves.) Are test data in N-284 applicable to AP600? They seem to be stiffened spheres.

Also, in NUREG/CR-4209 and -4137, equipment hatch has critical pressure of 3,000 psig and the predicted response of the cover and tensioning ring was elastic up to 360 psig. In this case, only up to 12 percent of critical pressure is elastic. After that, equipment hatch cover will experience plastic deformation. Therefore, Westinghouse's claim that the failure pressure is 150 percent of critical pressure is questionable. See Open Items 3.8.2.4-26 and 19.2.6.3-6.

Equipments hatches are subjected to external pressure, not internal pressure.

- 8. In Section 42.5, provide the sample CCFP calculations for head at 100 psig. You have constructed the containment failure probability distribution for a particular failure mode by first developing the failure distribution assuming only random error and then developing another distribution assuming only subjective error. The staff believes this distribution and subjective errors ($B_c = B_{material} + B_{modelling}$) in the left tail region.
- In Section 42.6, what is the definition of mean internal pressure? Should it be median pressure? See Open Items 3.8.2.4-27 and 19.2.6.3-7.
- 10. In Table 42-1, does "Structural" under COV heading imply "Material"?
- In Table 42-2, 50 percent failure pressure for head seems to be around 156 psig. Where does this pressure come from?
- In Section 42.4, coefficient of variation, not coefficient of variance, should be used.
- In SSAR Subsection 3.8.2.4.2.5, EPAs to be used will be one of those tested by Sandia in NUREG/CR-5334:

D.G. O'Brien: 182.8°C (361°F) and 1,068.7 kPa (155 psia) for 10 days, Westinghouse: 204.4°C (400°F) and 517.1 kPa (75 psia) for 10 days, Conax: 371.1°C (700°F) and 930.8 kPa (135 psia) for 10 days

If Westinghouse EPAs will be used for AP600, they do not satisfy ASME Service Level C limits (90 psig at 400°F). Also, in fragility curve, the dominant failure mode is cylindrical shell with 138 psig at 400°F. Therefore, if they are used, they control the whole design both in deterministic and probabilistic. The fragility curve for EPAs should be provided.

- 14. In Section 42.4, if the bellow capacity is 90 psig at 400°F, what is probability of failure beyond this pressure? Westinghouse should provide the mean (or median) failure pressure, and uncertainties of geometric properties, modeling, and material for complete CCFP calculations.
- 15. In Section 3.8.2.4.2.2, the maximum deflection at crown is 15.9" at 174 psig and corresponding strain is 2.5 percent. Therefore, radius is 15.9/0.025 = 636". Where does this radius come from? The radius, R_s, is 1,347.5".

Open Item Status on Containment Vessel design of AP600 Standard Plant August 30 and 31, 1995

The status flag given is the NRC status for the open item. If two status flags are given, it is the Westinghouse status/NRC status, as agreed upon in the meeting.

- OI DSER
- No. OI No. Status and Action detail
- 461 3.8 Closed In Revision 3 of SSAR Section 3.8.2.1.1, Westinghouse increased the thickness of the containment vessel from 1.625 inches to 1.75 inches for providing margin in the event of corrosion in the embedment transition region. In addition, Westinghouse committed in SSAR Section 3.8.2.6 that the containment vessel is coated with an inorganic zinc coating, except for those portions (both outside and inside) fully embedded in concrete and the inside of the vessel below the operating floor and up to eight feet above the operating floor also has a phenolic top coat. This satisfies the staff's concern regarding possible corrosion of containment shell.
- 463 3.8 Action NRC Because the SRP did not provide guidelines for combining the SSE load with wind and tornado loads, the staff agreed to develop its position for the resolution of this issue.
- 466 3.8 Closed This issue is to be resolved as part of OI 3.8.2.3-1.
- 467 3.8 Closed This issue is resolved under OI 3.7.2.3-8.
- 677 3.8.2.2-1 Action Westinghouse Westinghouse agreed to provide written response to identify the differences between the 1992 edition of the ASME code and the 1989 edition of the ASME code, and submit an analysis of these differences for the staff review and acceptance.
- 678 3.8.2.3-1 Action Westinghouse Westinghouse should make decision how the SSAR is to be revised in combining the external pressure (3 psig) and the SSE loads.
- 680 3.8.2.4-2 Resolved Westinghouse demonstrated that the results based on the equivalent static analysis with the acceleration profile (plot of the maximum acceleration at each lumped mass location) as input are more conservation than

Attachment 4

those based on dynamic analysis. In addition, Westinghouse committed, in SSAR Section 3.8.2, Revision 3, that local analyses are performed for the responses of local masses using floor response spectra at appropriate elevation of the containment vessel as input motions. Also, the results obtained from the staff's independent analyses confirm that Westinghouse's demonstration is reasonable.

- 681 3.8.2.4-3 Action Westinghouse - Westinghouse agreed to expand SSAR Section 3.8.2.4.1.2 to include (1) detailed description of methods to be used for the dynamic analysis of local masses, (2) the approach for analyzing the buckling potential of the containment shell adjacent to local masses, and (3) methods for evaluating the compressive strength of the containment shell in the vicinity of local masses. This open item is resolved pending Westinghouse submittal.
- 682 3.8.2.4-4 Action NRC in determining the buckling potential of the containment shell in the region of large penetrations and polar crane support, NRC will compare shell stresses, including the consideration of eccentricities due to concentrated masses, calculated by Westinghouse with those obtained from the staff's confirmatory analyses.
- 683 3.8.2.4-5 Resolved The staff reviewed Westinghouse's calculation of the thermal stress analyses and buckling evaluation for the containment shell near the base, and found that the method used and results obtained are reasonable. This conclusion was confirmed by the comparison of results by Westinghouse with those from the staff's confirmatory analysis. Therefore, this open item is resolved.
- 684 3.8.2.4-6 Resolved The resolution of this open item is to be addressed in Section 6 of this SER and this issue is considered resolved.
- 685 3.8.2.4-7 Resolved The wind and tornado pressure loads for the design of containment vessel are defined in Revision 2 of SSAR Section 3.3.
- 686 3.8.2.4-8 Action Westinghouse/Action NRC The staff review of the validation package of CBI in-house computer code E0781B found that only simple problems were used to validate this computer program. The staff agreed to provide the containment shell model used for the independent confirmatory analysis to Westinghouse for validating this code.
- 687 3.8.2.4-9 Resolved This open item is considered resolved as a result of OI 3.8.2.4-3.
- 688 3.8.2.4-10 Resolved This open item is considered resolved as a result of OI 3.8.2.4-3.

- 690 3.8.2.4-12 Resolved The staff reviewed Westinghouse's containment vessel design report for all combined load conditions, and found that the results obtained met code requirements. This conclusion was also confirmed by the comparison of results by Westinghouse with those from the staff's con-firmatory analysis.
- 691 3.8.2.4-13 Resolved This open item is considered resolved as a result of OI 3.8.4.1-2.
- 692 3.8.2.4-14 Resolved This open item is considered resolved as a result of OI 3.8.2.4-3.
- 693 3.8.2.4-15 Resolved As discussed in the resolution status of OI 3.8.2.4-6, the verification of the containment temperature distribution during the passive cooling process will be addressed in Section 6 of the FSER. From the close comparison of results from its confirmatory analysis with those obtained from the thermal stress analysis performed by Westinghouse, the staff found that the boundary conditions defined by Westinghouse are reasonable.
- 694 3.8.2.4-16 Resolved From its review of the containment vessel design report and the comparison of results from the independent confirmatory analysis with those documented in the design report, the staff found that the containment vessel does possess enough margin to resist combined load conditions from buckling.
- 696 3.8.2.4-18 Resolved
- 697 3.8.2.4-19 Resolved/Resolved Subsumed by new RAJ #1 received in the meeting on 8/30-31/95 (DSER Chapter 19/ PRA Chapter 42).
- 698 3.8.2.4-20 NRR/SCSB will review the containment leakage of 0.12 percent at design basis conditions in PRA Chapter 42.
- 699 3.8.2.4-21 Closed/Resolved
- 700 3.8.2.4-22 Closed/Resolved PRA Chapter 42 was revised to adapt lognormal distribution for CCFP.
- 701 3.8.2.4-23 Resolved
- 702 3.8.2.4-24 Resolved Subsumed by new RAI #1 received in the meeting on August 30 and 31, 1995 (DSER Chapter 19/ PRA Chapter 42).
- 703 3.8.2.4-25 Resolved/Resolved Subsumed new by RAI #6 received in the meeting on August 30 and 31, 1995, (DSER Chapter 19/ PRA Chapter 42).

704 3.8.2.4-26	Action NRC - The staff will review the test data used to generate the lower bound curve in N-284, generate a 50 percent curve, and compare it with 150 percent P_{cr} (criteria pressure).
705 3.8.2.4-27	Closed/Resolved - PRA Chapter 42 was revised to describe the mathematical construction of the overall cumulative failure probability curve.
706 3.8.2.4-28	Resolved/Action Westinghouse - Westinghouse will clarify in SSAR/PRA to state that the failure mode of the contain- ment bellows is tied to the cylindrical portion failure mode.
708 3.8.2.4-30	The NRC staff will review N-284, Revision 1 and the ASME confirmation of AP600 interpretation.
709 3.8.2.4-29	Resolved - superseded by new RAI #13 received in the meeting on 8/30-31/95 (DSER Chapter 19/ PRA Chapter 42).
1888 3.8.2.4-1	Resolved/Action Westinghouse - Westinghouse will revise SSAR 3.8.6.1 to change "ultimate capacities" to "ultimate pressure capacities" to demonstrate ASME Level C and ultimate capacity.
1471 19.2.6.2-2	Resolved
1472 19.2.6.2-3	Resolved/Resolved - Subsumed by new RAI #1 received in the meeting on August 30 and 31, 1995 (DSER Chapter 19/ PRA Chapter 42).
1473 19.2.6.2-4	NRR/SCSB will review the containment leakage of 0.12 percent at design basis conditions in PRA Chapter 42.
1474 19.2.6.3-4	Closed/Resolved
1475 19.2.6.3-2	Closed/Resolved - PRA Chapter 42 was revised to adapt lognormal distribution for CCFP.
1476 19.2.6.3-3	Resolved
1477 19.2.6.3-4	Resolved - Subsumed by new RAI #1 received in the meeting on August 30 and 31, 1995, (DSER Chapter 19/ PRA Chap- ter 42).
1478 19.2.6.3-5	Resolved/Resolved - Subsumed new by RAI #6 received in the meeting on August 30 and 31, 1995, (DSER Chapter 19/ PRA Chapter 42).

- 1479 19.2.6.3-6 Action NRC The staff will review the test data used to generate the lower bound curve in N-284, generate a 50 percent curve, and compare it with 150 percent P_{cr} (criteria pressure).
- 1480 19.2.6.3-7 Closed/Resolved PRA Chapter 42 was revised to describe the mathematical construction of the overall cumulative failure probability curve.
- 1482 19.2.6.3-9 Resolved/Action Westinghouse Westinghouse will clarify in SSAR/PRA to state that the failure mode of the containment bellows is tied to the cylindrical portion failure mode.
- 1485 19.2.6.4-3 Action NRC The NRC staff will review N-284, Revision 1 and the ASME confirmation of AP600 interpretation.
- 1486 19.2.6.4-4 Resolved Subsumed by new RAI #13 received in the meeting on 8/30-31/95 (DSER Chapter 19/ PRA Chapter 42).
- 1975 19.2.6.4-1 Resolved/Action Westinghouse Westinghouse will revise SSAR 3.8.6.1 to change "ultimate capacities" to "ultimate pressure capacities" to demonstrate ASME Level C and ultimate capacity.
- RAI#1 Action Westinghouse Westinghouse will review NUREG/CR-4209 and referenced cited in DSER and respond to the NRC. Westinghouse shall justify additional yield using von Mises; Westinghouse can use 10 percent increase on median yield strength for best estimate failure pressure.
- RAI#2 Action Westinghouse Westinghouse will revise SSAR to clarify configuration due to internal pressure.
- RAI#3 Action Westinghouse Westinghouse will review Reference 42-1 and change the range of tested minimum material strength, accordingly.

RAI#4 Action Westinghouse - Westinghouse will revise SSAR to describe (1) the Coefficients of Variation (COVs) of material and modeling uncertainties are enough to drive containment fragility curve and (2) tainties are enough to properties uncertainties in buckling of equipment hatches.

- RAI#5 Action Westinghouse Westinghouse will review Reference 42-1 and change the range of tested minimum material strength, accordingly.
- RAI#6 Action Westinghouse Westinghouse will revise PRA Chapter 42.4.2 to clarify the pressures and will revise SSAR 3.8.2.4.2.2 to clarify the failure mode at the knuckle region is buckling rather than top yield or axisymmetric plastic collapse.

- RAI#7 Action NRC The NRC staff will review the test data used to generate the lower bound curve in N-284, generate a 50 percent curve, and compare it with the critical pressure, P_{cr} . The staff reviewed CBI calculation (MV50, S3R002, Rev. V) to confirm the elastic range of equipment hatches.
- RAI#8 Action Westinghouse Westinghouse will respond later.
- RAI#9 Action Westinghouse Westinghouse will respond later.
- RAI#10 Action Westinghouse Westinghouse will revise the COV heading in Table 42-1.
- RAI#11 Action Westinghouse Westinghouse will check 50 percent pressure for the head portion.
- RAI#12 Action Westinghouse Westinghouse will use the term "coefficient of variation."
- RAI#13 Action Westinghouse Westinghouse will revise SSAR 3.8.6.1 to change "ultimate capacities" to "ultimate pressure capacities" to demonstrate ASME Level C and ultimate capacity.
- RAI#14 Action Westinghouse Westinghouse will clarify in SSAR/PRA to state that the failure mode of the containment bellows is tied to the cylindrical portion failure mode.
- RAI#15 Resolved Westinghouse revised the radius, R_s is derived from the deformed shape.

WESTINGHOUSE AND CHICAGO BRIDGE AND IRON COMPANY PRESENTATION MATERIAL FOR THE MEETING ON THE AP600 CONTAINMENT VESSEL DESIGN

AUGUST 30 AND 31, 1995

1992 ASME SECTION III, SUBSECTION NE CODE CHANGES RELATIVE

TO 1989 CODE

LOCATION	ADDENDUM	BRIEF DESCRIPTION OF CHANGE		
Fig. NE-1132.2-1	A90	Applies to Jurisdictional Boundary".		
through -3				
NE-2121	A90 and A91	Permitted Material Specifications Tables NE-2121(a)-1 and -2 are new ^a .		
NE-2190	A90	Nonpressure-Retaining Material ^a .		
NE-2420(2)(f)	A91	Required tests ^a .		
NE-2510	A90	Pressure Retaining Material - Examined and Repaired ^a .		
NE-3112.4	A91	Allowable Stress Intensity and Stress		
		Values - Reference to Table I-10.0		
		changed to Table I-7.0 ^a .		
NE-3122	A91	Cladding ^a .		
NE-3122.4(a), (b)	A91	Integrally Clad Plate ^a .		
Table NE-3132-1	A89 and A90	Dimensional Standards ^a .		
NE-3133.2	A91	Nomenclature, S - Reference to Table I- 10 changed to Table I-7 ^a .		
NE-3133.6(a)	A91	Reference to Table I-10.0 changed to Table I-7.0 ^a .		
NE-3134.6	A91	Reference to Table I-10.0 changed to Table I-7.0 ^a .		
NE-3227.1(1)	A91	Reference to Table I-10.2 changed to Table I-7.2 ^a .		
NE-3231	A91	Reference to Table I-10.3 changed to Table I-7.3 ^a .		
NE-3232	A91	Reference to Table I-10.3 changed to NE- $3231(a)^{a}$.		
NE-3232.1 and .2	A91	Reference Table I-10.3 changed to I-7.3 ^a .		
NE-3324.8(c)	A91	Reference Table I-10.0 changed to I-7.0 ^a .		
NE-3325.1	A91	Reference Table I-10.0 changed to I-7.0 ^a .		
NE-3338.1	A90	Pressure Stresses in Openings for Fatigue		
NE-3366.2	A91	Design Requirements - Reference Table I-10.0 changed to I-7.0 ^a .		
NE-4335.1(c)	A89	Impact Tests of Weld Material ^a .		
Table NE-	A90	Footnotes ^a .		
4622.7(b)-1				
NE-7xxx	A91	Minor Changes that do not affect the design of the Containment Vessel.		

'This does not affect the Containment Vessel design.

Table 3.8.2-1

LOAD COMBINATIONS AND SERVICE LIMITS FOR CONTAINMENT VESSEL

Load Description	Load Combination and Service Limit											
		Test	Des.	Des.	А	A	А	С	С	С	С	D
Dead	D	x	x	x	x	х	х	x	x	x	x	x
Live	L	x	x	x	x	x	x	x	x	x	x	x
Wind	W				x							
SSE	Es							x	x			х
Tornado	Wt									x		
Test pressure	Pt	x										
Test temperature	Τt	x										
Operating pressure	Po				x				x	X		
Design pressure	Pd		x			x		x				x
External pressure (2.5 psid)	Pe			x			x					
External pressure (3.0 psid)	Pe										x	
Normal reaction	Ro			x	x		x		X	x	X	
Normal thermal	To			x	x		x		x	x	X	
Accident thermal reactions	Ra		X			x		x				X
Accident thermal	$T_{\rm a}$		x			x		X				X
Accident pipe reactions	Yr											X
Jet impingement	Yj											X
Pipe impact	Ym											X
Notes:												

1. Service limit levels are per ASME-NE.

2. Where any load reduces the effects of other loads, that load shall be taken as zero, unless it can be demonstrated that the load is always present or occurs simultaneously with the other loads.

Revision: 3 May 31, 1995

Figure 3.7.2-5 Steel Containment Vessel Lumped Mass Stick Model

Revision: 3 May 31, 1995

3. Design of Structures, Components, Equipment, and Systems

Table 3.7.2-6 (Sheet 1 of 3)

MAXIMUM ABSOLUTE NODAL ACCELERATION (ZPA) STEEL CONTAINMENT VESSEL

HARD ROCK SITE CONDITION

Elevation	Maximum Absolute Nodal Acceleration, ZPA (g.)							
(ft)	N-S	Direction	E-W	Direction	Vertic	al Direction		
256.33	0.87		1.15		1.30			
248.33	0.85		1.11		1.04			
240.33	0.82	(0.85)	1.07	(1.07)	0.92	(0.93)		
229.52	0.7%		1.02		0.81			
218.71	0.73		0.96		0.77			
205.33	0.69	(0.71)	0.89	(0.89)	0.75	(0.78)		
205.33 (Polar Crane)	1.82		1.09		1.17			
190.00	0.64		0.80		0.71			
170.00	0.55		0.66		0.65			
162.00	0.51	(0.51)	0.60	(0.60)	0.62	(0.65)		
144.50	0.41		0.48		0.55			
132.25	0.36		0.39		0.50			
116.86	0.33	(0.33)	0.34	(0.34)	0.43	(0.44)		
112.50	0.32		0.33		0.41			
104.13	0.31		0.31		0.37			
100.00	0.30		0.30		0.32			

Note:

1. Enveloped response results at the north and west edge nodes of the structure are shown in parentheses. This is the maximum value of the response at any of these edge nodes.

3. Design of Structures, Components, Equipment, and Systems

Table 3.7.2-6 (Sheet 2 of 3)

MAXIMUM ABSOLUTE NODAL ACCELERATION (ZPA) STEEL CONTAINMENT VESSEL

SOFT ROCK SITE CONDITION

Elevation	Maximum Absolute Nodal Acceleration, ZPA (g.)							
(ft)	N-S	Direction	E-W	Direction	Vertica	al Direction		
256.33	0.66		0.90		0.78			
248.33	0.64		0.86		0.63			
240.33	0.63	(0.63)	0.83	(0.83)	0.57	(0.57)		
229.52	0.61		0.78		0.49			
218.71	0.59		0.74		0.46			
205.33	0.56	(0.57)	0.67	(0.67)	0.45	(0.47)		
205.33 (Polar Crane)	1.31		1.15		1.10			
190.00	0.54		0.59		0.44			
170.00	0.47		0.49		0.39			
162.00	0.45	(0.45)	0.45	(0.45)	0.41	(0.44)		
144.50	0.40		0.38		0.37			
132.25	0.37		0.34		0.37			
116.86	0.35	(0.35)	0.33	(0.33)	0.36	(0.41)		
112.50	0.34		0.31		0.36			
104.13	0.32		0.31		0.35			
100.00	0.31		0.31		0.34			

Note:

1. Enveloped response results at the north and west edge nodes of the structure are shown in parentheses. This is the maximum value of the response at any of these edge nodes.

3. Design of Structures, Components, Equipment, and Systems

Table 3.7.2-6 (Sheet 3 of 3)

MAXIMUM ABSOLUTE NODAL ACCELERATION (ZPA) STEEL CONTAINMENT VESSEL

SOFT-TO-MEDIUM STIFF SOIL CONDITION

Elevation	Maximum Absolute Nodal Acceleration, ZPA (g.)							
(ft)	N-S	Direction	E-W	Direction	Vertica	al Direction		
256.33	0.47		0.63		0.69			
248.33	0.45		0.61		0.57			
240.33	0.43	(0.44)	0.59	(0.59)	0.51	(0.53)		
229.52	0.41		0.56		0.45			
218.71	0.38		0.53		0.42			
205.33	0.35	(0.37)	0.49	(0.49)	0.42	(0.50)		
205.33 (Polar Crane)	0.69		1.12		1.35			
190.00	0.34		0.44		0.41			
170.00	0.31		0.38		0.41			
162.00	0.30	(0.30)	0.36	(0.36)	0.40	(0.48)		
144.50	0.29		0.31		0.40			
132.25	0.28		0.32		0.39			
116.86	0.27	(0.28)	0.30	(0,30)	0.38	(0.44)		
112.50	0.27		0.30		0.38			
104.13	0.26		0.29		0.38			
100.00	0.26		0.29		0.37			

Note:

1. Enveloped response results at the north and west edge nodes of the structure are shown in parentheses. This is the maximum value of the response at any of these edge nodes.

SSAR 3.3

The development of loads on the air baffle due to the design wind and tornado (W_w) are described in the test reports (References 3, 4, and 5). Models of the AP600 were tested in a wind tunnel and subjected to representative wind profiles. Pressures were measured on each side of the baffle, and the differential pressures were normalized to the input wind velocity. The pressure coefficients are applied to the effective dynamic pressure for the design wind and the tornado to obtain the wind loads across the baffle.

- Wind conditions result in a pressure reduction in the annulus between the shield building and the containment vessel as well as above the containment dome. This reduced pressure is equivalent to an increase in containment internal pressure and is within the normal operating range for containment pressure (-0.2 to 1.0 psig).
- Wind conditions result in a small wind load across the containment vessel. This is maximum opposite the air intakes where positive pressures occur on the windward side and negative pressures occur on the leeward side. Lateral loads on the containment vessel are developed in Reference 5.

Design Specification

1

4.

Design wind (to be used in the Service Level A load combination)

Reduction in external pressure = 0.9 psi. Pressure amplitude on cylindrical portion (n = 1 harmonic) = 8.1 pounds per square foot. Pressure amplitude on top head below elevation 236' (n = 1 harmonic) = 14.8 pounds per square foot.

Tornado (to be used in the Service Level C load combination)

Reduction in external pressure = 3.0 psi. Pressure amplitude on cylindrical portion (n = 1 harmonic) = 17.3 pounds per square foot. Pressure amplitude on top head below elevation 236' (n = 1 harmonic) = 31.7 pounds per square foot.

WCAP-13323-P and WCAP-13324-NP, "Phase II Wind Tunnel Testing for the Westinghouse AP600 Reactor," June 1992.

WCAP-14068-P. Phase IVA Wind Tunnel Testing for the Westinghouse AP600 Reactor, May, 1994

^{5.} WCAP-14169-P, Phase IVA Wind Tunnel Testing for the Westinghouse AP600 Reactor, Supplement I Report, September, 1994

SA537 CL 2 ACTUAL YIELD STRESS HISTOGRAM

2-11

RSQ DA 11/15/91 11/19/91

Printed In USA

GO 644 AUG 8'

NRC REQUEST FOR ADDITIONAL INFORMATION

Westinghouse

220.8(R1)-3

COMPARISON OF CAPACITY REDUCTION FACTORS FOR THE 'KIERNAN AND NISHIDA' AND 'ARNE' TESTS WITH N-284

03/14/1994

CONTAINMENT VESSEL DESIGN REPORT

AP600 DOCUMENT NO. MV50 S3R 005, REV. 0

SECTION S

Linear Bifurcation Buckling Effects of Large ASME Reinforced Openings

PRELIMINARY

See next page, "Document Control Log Sheet" and the Index for the contents and the revision status of this Section. of 1 to 10. Classical buckling solutions from "Theory of Elastic Stability, " by Timoshenko and Gere for similar, but simpler, geometry were used as a guide. The critical load levels are the product of the unit load values and the calculated eigenvalues.

The base of the model is fully restrained to represent the embedment condition. (Concrete on inside from EI. 100'-0 to El. 107'-2 is ignored in the analysis.) The vertical edges of the model are restrained using symmetry conditions. The top edge of the model, above the stiffener at El. 131'-9, is restrained radially using a uniform radial displacement (specified below) and all rotations are fixed to preclude buckling at the top of the model.

The radial restraint was set to match the uniform radial growth of the 1.625* thick shell due to each loading. The value used with the external pressure loading is $\Delta r = -0.159$ * and the value used with the axial loading is $\Delta r = 0.079$ *.

RESULTS

The calculated theoretical critical linear bifurcation buckling loads are summarized in Table 2. Results are presented for six cases; two for the external pressure loading and four for the axial compression loading. The reason for presenting the additional axial pressure cases is to demonstrate the level of sensitivity this case had relative to the amount of shell included in the analysis.

TABLE 2: CALCULATED THEORETICAL CRITICAL LINEAR BIFURCATION BUCKLING LOAD

Model	External Pressure [on a Closed Vessel] (psi)	Axial Compression (ksi)
Unpenetrated Shell	15.38	37.64
Penetrated Shell	16.05	35.80
Unpenetrated Shell*	N/A	38.24
Penetrated Shell*	N/A	36.16

* Prior to extending model in circumferential and vertical directions.

SUBJECT	PVE-B REVISION			REFERENCE NO. 902657		
EFFECTS OF LARGE ASME REINFORCED	MADE BY	VERIFIED BY	MADE BY	VERIFIED BY	SHT 5-3 OF	
AP600, WESTINGHOUSE	DATE 8/29/95	DATE	DATE	DATE	an a	

ANSYS 5.1 AUG 24 1995 13:13:13 PLOT NO. 1 ELEMENTS REAL NUM XV =.5 YV =.866025 ZV =-.530E-16 DIST=815.685 XF =206.094 YF =412.17 ZF =178.313 A-ZS=-90 CENTROID HIDDEN

Unpenetrated Shell Model

ANSYS 5.1 AUG 24 1995 12:18:39 PLOT NO. 1 ELEMENTS REAL NUM XV =.458656 YV =.888645 ZV =.605E-15 DIST=811.085 XF =206.094 YF =412.17 ZF =178.313 A-ZS=-90 CENTROID HIDDEN

Penetrated Shell Model

경험 집에서는 것이 같은 것이 같은 것이 많이 많이 많이 했다.

Figure 3

Z

Y

Unpenetrated Shell w/ 14.7 psi External Pressure

ANSYS 5.1 AUG 24 1995 13:22:56 PLOT NO. 3 DISPLACEMENT STEP=1 SUB =1FACT=1.046 RSYS=1 DMX = 1*DSCA=6'J XV =.836E-16 YV =.836E-16 ZV =1 *DIST=834.518 *XF =272.144 *YF =556.738 *ZF =178.313 A-ZS=-150 CENTROID HIDDEN

Section A-A

Figure 4 Y

Unpenetrated Shell w/ 14.7 psi External Pressure

ANSYS 5.1 AUG 24 1995 12:26:18 PLOT NO. 2 DISPLACEMENT STEP=1 SUB =1 FACT=1.092 RSYS=1 DMX =1

*DSCA=60 XV =.458656 YV =.888645 ZV =.605E-15 DIST=810.959 XF =206.194 YF =412.19 ZF =178.315 A-ZS=-90 CENTROID HIDDEN

Penetrated Shell w/ 14.7 psi External Pressure

ANSYS 5.1 AUG 24 1995 12:31:53 PLOT NO. 3 DISPLACEMENT STEP=1 SUB =1 FACT=1.092 RSYS=1 DMX =1 *DSCA=60

*DSCA=60 XV =.430E-15 YV =-.834E-15 ZV =1 *DIST=811.085 *XF =280.494 *YF =556.319 *ZF =178.313 A-ZS=-152.7 CENTROID HIDDEN

Section B-B

Figure 6

Penetrated Shell w/ 14.7 psi External Pressure

x Y Figure 7

ANSYS 5.1 AUG 28 1995 12:16:50 PLOT NO. 2 DISPLACEMENT STEP=1 SUB =1 FACT=3.764 RSYS=1 DMX = 1*DSCA=60 XV =-.307E-15 YV =-.805E-15 ZV =1 *DIST=1015 *XF =204.502 *YF =458.692 *ZF =203.122 A-ZS=-150 CENTROID HIDDEN

Section C-C

Figure 8

Unpenetrated Shell w/ 10 ksi Axial Load

Figure 9

Penetrated Shell w/ 10 ksi Axial Load

ANSYS 5.1 AUG 24 1995 09:32:37 PLOT NO. 2 DISPLACEMENT STEP=1 SUB =1 FACT=3.58 RSYS=1 DMX = 1*DSCA=60 XV =-.688E-16 YV =-.274E-16 ZV =1 *DIST=856.516 *XF =231.199 *YF =401.258 *ZF =217.391 A-ZS=-150 CENTROID HIDDEN

Section D-D

Figure 10 V

Penetrated Shell w/ 10 ksi Axial Load

ANS15 5.1 AUG 23 1995 10:56:25 PLOT NO. 1 DISPLACEMENT STEP=1 SUB =1 FACT=3.824 RSYS=0 DMX = 1*DSCA=60 XV =.5 YV =.866025 ZV =-.232E-15 *DIST=771.778 *XF =195 *YF =389.983 *ZF =165.563 A-ZS=-90 CENTROID HIDDEN E E

___Y Figure 11

Unpenetrated Shell w/ 10 ksi Axial Load

ANSYS 5.1 AUG 23 1995 11:00:37 PLOT NO. 2 DISPLACEMENT STEP=1 SUB =1FACT=3.824 RSYS=0 DMX = 1*DSCA=60 XV =.441E-15 YV =.836E-16 ZV =1 *DIST=771.778 *XF =272.178 *YF =523.659 *ZF =165.562 A-ZS=-150 CENTROID HIDDEN

Section E-E

Figure 12 Unpenetrated Shell w/ 10 ksi Axial Load

	1
Ŧ	YH
an -	
API	500

CONTAINMENT VESSEL DESIGN REPORT

AP600 DOCUMENT NO .: MV50 S3R 005, REV. 0, AUGUST 30, 1995

TABLE OF CONTENTS

SECTIO SECTIO	NS 'A' THROUGH 'G': NS 'H' THROUGH 'V' AND APPENDICES 1 AND 2:	VOLUME VOLUME	1 2
SECTION	DESCRIPTION	PAGES	REV.
A	INTRODUCTION	A-0	0
В	DESIGN INPUTS, MATERIAL PROPERTIES, METHODOLOGY, AND ASSUMPTIONS	B-0	0
С	CONTAINMENT VESSEL DESIGN BY FORMULA PER ASME III NE-3320	C-0	0
D	DESIGN OF CONTAINMENT VESSEL AND STIFFENERS FOR EXTERNAL PRESSURE PER ASME III NE-3133	D-0	0
E	DESIGN OF MAJOR PENETRATIONS PER ASME III NE- 3330	E-0	0
F	DESCRIPTION OF LOAD COMBINATIONS	F-0	0
G	CALCULATIONS PER ASMEIII NE-3200 (DESIGN BY ANALYSIS) FOR THE CONTAINMENT VESSEL RESPONSE TO VARIOUS LOADS	G-0	0
	CALCULATIONS IN SUBSECTIONS OF SECTION G A title-sheet and an index are furnished in Individual Calc.		
G.1	Shell of Revolution Analysis for Containment Vessel Dead Load, without the Polar Crane System Dead Load	G.1-0	0
G.2A	Shell of Revolution Analysis for Local Stiffness of the Shell / Crane Girder System at the Interface with the Polar Crane	G.2A-0	0
G.2B	Shell of Revolution Analysis for Stresses due to Polar Crane Dead, Lift, and Seismic Loads during Operating and Shut Down Conditions	G.2B-0	0
G.3	Internal Design Pressure Analysis of Stiffened Containment Vessel Configuration	G.3-0	0
G.4	Thermal Stress Analysis due to Axisymmetric Temperatures	G.4-0	0

SUBJECT TABLE OF CONTENTS	CB) F	VE-A	REVISION		REFERENCE NO. 933014		
CONTAINMENT VESSEL DESIGN REPORT	MADE BY	VERIFIED BY	MADE BY	VERIFIED BY	SHT OF		
AP600, WESTINGHOUSE	DATE	DATE	DATE	DATE			

GO6482 DOC[A025]

AP600 DOCUMENT NO.: MV50 S3R 005, REV. 0, AUGUST 30, 1995 TABLE OF CONTENTS (Continued)

 TABLE OF CONTENTS (Continued)

 Sections 'A' through 'G':
 Volume 1;
 Sections 'H' through 'V' and Appendices 1 and 2:
 Volume 2.

SECTION	DESCRIPTION	PAGES	REV.	
C.5A	Saismic Model of the Containment Vessel	G 5A-0	0	
G.5B	Shell of Revolution Analysis using Equivalent Static Seismic	G 58-0	0	
G.5C	Eccentricity of the Equipment Hatches and Personnel Airlocks	G.5C-0	0	
G.6	Shell of Revolution Analysis for Design Wind and Tornado Loads	G.6-0	0	
G.7A	Stresses due to Combined Containment Vessel Dead Load and the Polar Crane Non-seismic Loads (Uses the results of Subsections G.1 and G.2B)	G.7A-0	0	
G.7B	Stresses due to Combined Containment Vessel and the Parked Polar Crane SSE Seismic Loads(Uses the results of Subsections G.5B and G.2B)	G.7B-0	0	
G.7C	SSE Seismic Stresses due to Eccentricity of Masses	(LATER)		
н	BUCKLING ANALYSIS DUE TO AXISYMMETRIC AXIAL THERMAL GRADIENT NEAR THE CONCRETE EMBEDMENT	н-0	0	
1	CONTAINMENT VESSEL DISPLACEMENTS DUE TO INTERNAL PRESSURE AND AXISYMMETRIC TEMPERATURES	1-0	0	
J	NOT USED	J-0	0	
к	DESCRIPTION OF ACCEPTANCE CRITERIA FOR PERMISSIBLE STRESSES	K-0	0	
L	STRESS EVALUATION FOR LOAD COMBINATIONS	L-0	0	
M	DESIGN OF PERSONNEL AIRLOCKS	(LATER)		
N	DESIGN OF EQUIPMENT HATCHES	(LATER)		
0	DESIGN OF EQUIPMENT HATCH LIFTING/STORAGE DEVICES	(LATER)		
Р	DESIGN OF STIFFENERS AND POLAR CRANE GIRDER	(LATER)		
Q	DESIGN OF ATTACHMENTS	(LATER)		
R	FATIGUE ASSESSMENT	(LATER)		
S	LINEAR BIFURCATION BUCKLING EFFECTS OF LARGE ASME REINFORCED OPENINGS	S-0	0	

SUBJECT TABLE OF CONTENTS	CB F	VE-A	REVISION		REFERENCE NO. 933014			
CONTAINMENT VESSEL DESIGN REPORT	MADE BY	VERIFIED BY	MADE BY	VERIFIED BY	SHT_	ii	OF_	
AP600, WESTINGHOUSE	DATE	DATE	DATE	DATE				

GO6482 DOC[A025]

AP600 DOCUMENT NO.: MV50 S3R 005, REV. 0, AUGUST 30, 1995 TABLE OF CONTENTS (Continued)

Sections 'A' through 'G': Volume 1; Sections 'H' through 'V' and Appendices 1 and 2: Volume 2.

SECTION	DESCRIPTION	PAGES	REV.
т	RESULTS AND CONCLUSIONS	(LATER)	
U	REFERENCES	U-0	0
V	DESIGN SKETCHES	(LATER)	
APPENDIX 1	COMPUTER PROGRAM DESCRIPTIONS	(LATER)	
APPENDIX 2	COMPUTER PROGRAM DOCUMENTATION	(LATER)	

SUBJECT TABLE OF CONTENTS	CBI F	VE-A	REVISION		REFERENCE NO. 933014		
CONTAINMENT VESSEL DESIGN REPORT	MADE BY	VERIFIED BY	MADE BY	VERIFIED BY	SHT OF		
AP600, WESTINGHOUSE	DATE	DATE	DATE	DATE			

GO6482 DOC[A025]

TABLE 6A: SUMMARY OF MEMBRANE STRESSES AT EL. 144'-6

on, on, ton: Meridional, circumferential, tangential shear stress, respectively. Stresses are in ksi.

Load De	escription	10	σφ	Gθ	τφθ	Stress Type	Ref. Calc
DL 'CV	+ Polar Crane Parked' (at $\theta_L = 0^\circ)^a$	DP	-0.81	0.00	0.00	PM	G.7A
Design i	internal pressure (45 psig)	Pi	10.80	21.60	0.00	PM	G.3
Design	external pressure (3 psig, scaled from Pi)	Pe	-0.72	-1.44	0.00	PM	x Pi
'+' Oper	ating pressure (1 psig, scaled from Pi)	P+0	0.24	0.48	0.00	PM	∝ Pi
'-' Oper.	pressure (-0.2 psig, scaled from Pi)	P.o	-0.05	-0.10	0.00	PM	x Pi
Axisymr	netric operating thermal load (at $\theta = 180^\circ$)	To	0.00	0.00	0.00	PM+Q	G.4
Axisymr	netric design thermal load (at $\theta = 180^{\circ}$)	Ta	0.00	0.00	0.00	PM +Q	G.4
Wind loa	ad	W	0.19	0.46	'0.00	PM	G.6
Tornado	differential pressure load	W _t	0.66	1.51	0.00	PM	G.6
SSE 'CV	/ + Polar Crane Parked' Combinationsa:	1					
W4	R3 in Table 5B of G.7B	±EsP1	-1.53	0.29	0.45	PM	G.78
W5	R6 in Table 5B of G.7B	±EsP2	1.53	-0.29	-0.45	PM	G.78
W3	T3 in Table 5A of G.7B	±E _s P3	-0.73	0.1	1.33	Рм	G.78
LC No. Load Combination (LC)				σθ	τ _{φθ}	Stress Type	Condition
D1.1	DP + Pi + Ta		9.99	21.60	0.00	PM+Q	Design
D1.2	DP + Pi		9.99	21.60	0.00	PM	Design
D1.3	DP + Ta		-0.81	0.00	0.00	PM +Q	Design
D2.0	$DP + P_e + T_o$		-1.53	-1.44	0.00	PM	Design
LA1.1	DP + Pi + Ta (Same as D1.1)		9.99	21.60	0.00	PM + Q	Level A
LA1.2	DP + Pi (Same as D1.2)		9.99	21.60	0.00	PM	Level A
LA1.3	DP + Ta (Same as D1.3)		-0.81	0.00	0.00	PM +Q	Level A
LA2.0	$DP + P_e + T_o$ (Same as D2.0)		-1.53	-1.44	0.00	PM	Level A
LA3.1	$DP + W + P_{+o} + T_o$		-0.38	0.94	0.00	PM	Level A
LA3.2	$DP - W + P_{-o} + T_{o}$		-1.05	-0.56	0.00	PM	Level A
LC1.1.1	$DP + P_i + T_a + E_sP1 (= LA1.1 + E_sP1)$		8.46	21.89	0.45	P _M + Q	Level C
LC1.2.1	DP + Pi - EsP1 (=LA1.2 - EsP1)		8.46	21.89	0.45	PM	Level C
LC1.31	$DP + T_a + E_sP1 (= LA1.3 + E_sP1)$		-2.34	0.29	0.45	PM + Q	Level C
LC2.0.1	$DP + P_e + T_o + E_sP1 (= LA2.0 + E_sP1)$		-3.06	-1.15	0.45	PM	Level C
LC3.1	$DP + W_t + P_{+o} + T_o$		0.09	1.99	0.00	PM	Level C
LC32	$DP - W_t + P_{\infty} + T_o$		-1.52	-1.61	0.00	PM	Level C
LC2.0.2	DP + Pe + To + EsP2 (=LA2.0 + EsP2)		0.00	-1.73	-0.45	PM	Level C
LC2.0.3	$DP + P_e + T_o + E_sP3 (= LA2.0 + E_sP3)$		-2.26	-1.34	1.33	PM	Level C

^aStresses due to eccentricity of masses are not included.

TABLE 6B: MEMBRANE STRESS INTENSITY EVALUATION AT EL. 144'-6

Allowable Stresses, GA:

Design and Level A Service Stress Intensity Limit for Local membrane, $P_M = 1.0S_{mc} = 22.00$ ksiLevel C Service Stress Intensity Limit for Local membrane, $P_M = 1.0S_y = 52.76$ ksi

 $\sigma_{\phi}, \sigma_{\theta}, \tau_{\phi\theta}$: Meridional, circumferential, tangential shear stress, respectively.

 $P_M + Q = Not Applicable (NA).$ (Evaluation required only for $P_L + P_b + Q$.)

Principal Stresses

 $\sigma_1 = 0.5 \times (\sigma_{\varphi} + \sigma_{\theta}) + 0.5 \times \text{sqrt}[(\sigma_{\varphi} - \sigma_{\theta})^2 + 4 \times (\tau_{\varphi \varphi})^2],$

 $\sigma_2 = 0.5 \times (\sigma_{\varphi} + \sigma_{\theta}) - 0.5 \times \text{sqrl}[(\sigma_{\varphi} - \sigma_{\theta})^2 + 4 \times (\tau_{\varphi\theta})^2],$

o3 = 0.

Stress intensity, $\sigma_{INT} = Maximum of absolute of: (\sigma_1 - \sigma_2), (\sigma_2 - \sigma_3), and (\sigma_3 - \sigma_1)$ Stresses are in ksi.

LC No.	Condition	Stress Type	σφ	σθ	τφθ	01	02	GINT	GA	Status
D1.1	Design	PM +Q	9.99	21.60	0.00	21.60	9.99	21.60	NA	NA
D1.2	Design	PM	9.99	21.60	0.00	21.60	9.99	21.60	22.00	OK
D1.3	Design	PM +Q	-0.81	0.00	0.00	0.00	-0.81	0.81	NA	NA
D2.0	Design	PM	-1.53	-1.44	0.00	-1.44	-1.53	1.53	22.00	OK
LA1.1	Level A	PM+Q	9.99	21.60	0.00	21.60	9.99	21.60	NA	NA
LA1.2	LevelA	PM	9.99	21.60	0.00	21.60	9.99	21.60	22.00	OK
LA1.3	Level A	PM+Q	-0.81	0.00	0.00	0.00	-0.81	0.81	NA	NA
LA2.0	LevelA	PM	-1.53	-1.44	0.00	-1.44	-1.53	1.53	22.00	OK
LA3.1	Level A	PM	-0.38	0.94	0.00	0.94	-0.38	1.32	22.00	OK
LC1.1.1	Level C	PM +Q	8.46	21.89	0.45	21.91	8.44	21.91	NA	NA
LC1.2.1	LevelC	PM	8.46	21.89	0.45	21.91	8.44	21.91	52.76	OK
LC1.3.1	LevelC	PM +Q	-2.34	0.29	0.45	0.36	-2.41	2.78	NA	NA
LC2.0.1	LevelC	PM	-3.06	-1.15	0.45	-1.05	-3.16	3.16	52.76	OK
LC3.1	LevelC	PM	0.09	1.99	0.00	1.99	0.09	1.99	52.76	OK
LC2.0.2	Level C	PM	0.00	-1.73	-0.45	0.11	-1.84	1.95	52.76	OK
LC2.0.3	LevelC	PM	-2.26	-1.34	1.33	-0.39	-3.21	3.21	52.76	OK

TABLE 6C: MEMBRANE STRESS BUCKLING EVALUATION AT EL. 144'-6

 $\sigma_{\phi}, \sigma_{\theta}, \tau_{\phi\theta}$: Meridional, circumferential, tangential shear stress, respectively. Design and Level A Service Allowable Compressive Stresses based on N-284: (in ksi)

 $\sigma_{xA} = 4.51$, $\sigma_{rA} = 1.86$ $\sigma_{hA} = 1.78$ $\sigma_{tA} = 4.59$ Level C Service Allowable Compressive Stresses based on N-284 (1.2 times the above): (in ksi)

 $\sigma_{xA} = 5.41$ $\sigma_{rA} = 2.23$ $\sigma_{hA} = 2.14$ $\sigma_{\tau A} = 5.51$ Factors defined in N-284 as: $K = \sigma_{\phi} / \sigma_{\theta}$ and $K_s = 1 - (\tau_{\phi\theta} / \sigma_{\tau A})^2$ Interaction Equations:

Axial Compression Plus Hoop Compression

If K < 0.5.	IEV =	$\sigma_{\theta} / [\sigma_{ra} - 2^* \sigma_x^* (\sigma_{rA} / \sigma_{hA} - 1)] \le IEVA = 1.0$	(a)
IFK>05	IEV =	$[\sigma_{1} - 0.5^{\circ}\sigma_{1} - 1/1\sigma_{1} - 0.5^{\circ}\sigma_{1} + (\sigma_{1}/\sigma_{1})^{2} \le IEVA = 1.0$	(b)

Axial Compression Plus Shear

$$|EV = \sigma_{in} / \sigma_{xA} + (\tau_{inA} / \sigma_{iA})^2 \le |EVA = 1.0$$
 (C)

Hoop Compression Plus Shear

 $IEV = \sigma_{\theta} / \sigma_{rA} + (\tau_{\varphi\theta} / \sigma_{tA})^2 \le IEVA = 1.0$

(d)

Axial Compression Plus Hoop Compression Plus Shear

Substitute K_s σ_{xA} , K_s σ_{rA} , and K_s σ_{hA} for σ_{xA} , σ_{rA} , and σ_{hA} , respectively, in the first two equations above.

Stresses are in ksi.

LC No.	Condition	σφ	σθ	τφθ	к	Ks	IEV	IEVA	Status	Equation
D1.1	Design	9.99	21.60	0.00	NA	1.00	0.00	1.00	OK	σ's in tension
D1.2	Design	9.99	21.60	0.00	NA	1.00	0.00	1.00	OK	σ's in tension
D1.3	Design	-0.81	0.00	0.00	NA	1.00	0.18	1.00	OK	(c)
D2.0	Design	-1.53	-1.44	0.00	1.06	1.00	0.83	1.00	OK	(b)
LA1.1	Level A	9,99	21.60	0.00	NA	1.00	0.00	1.00	OK	σ 's in tension
LA1.2	Level A	9.99	21.60	0.00	NA	1.00	0.00	1.00	OK	Is in tension
LA1.3	LevelA	-0.81	0.00	0.00	NA	1.00	0.18	1.00	OK	11.
LA2.0	Level A	-1.53	-1.44	0.00	1.06	1.00	0.83	1.00	OK	(b)
LA3.1	Level A	-0.38	0.94	0.00	NA	1.00	0.08	1.00	OK	(C)
LC1.1.1	Level C	8.46	21.89	0.45	NA	0.99	0.08	1.00	OK	TUPO < OTA
LC1.2.1	Level C	8.46	21.89	0.45	NA	0.99	0.08	1.00	OK	TOO STA
LC1.3.1	Level C	-2.34	0.29	0.45	NA	0.99	0.44	1.00	OK	(C)
LC2.0.1	Level C	-3.06	-1.15	0.45	2.66	0.99	0.76	1.00	OK	(C)
LC3.1	Level C	0.09	1.99	0.00	NA	1.00	0.00	1.00	ОК	σ's in tension
LC2.0.2	Level C	0.00	-1.73	-0.45	0.00	0.99	0.78	1.00	OK	(d)
LC2.0.3	Level C	-2.26	-1.34	1.33	1.69	0.94	0.75	1.00	OK	(b)

TABLE 3A:	SUMMARY	OF	MEMBRANE S	TRESSES	AT	EL.	100'-0 (BASE)	
-----------	---------	----	------------	---------	----	-----	----------	-------	--

 $\sigma_{\phi}, \sigma_{\theta}, \tau_{\phi 0}$: Meridional, circumferential, tangential shear stress, respectively. Stresses are in ksi.

	The second		And the local division of the local division		appinent of the local		
Load De	escription	10	σφ	σθ	f _{o0} 1	Stress Type	Ref. Calc
DL 'CV	+ Polar Crane Parked' (at $\theta_L = 0^{\circ})^a$	DP	-0.91	-0.27	0.00	PL	G.7A
Design	internal pressure (45 psig)	P;	10.83	3.25	0.00	PL	G.3
Design	external pressure (3 psig, scaled from P,)	Pe	-0.72	-0.22	0.00	PL	or Pi
'+' Oper	ating pressure (1 psig, scaled from P)	P+0	0.24	0.07	0.00	PL	× P,
'-' Oper.	pressure (-0.2 psig, scaled from Pi)	P.o	-0.05	-0.01	0.00	PL	x Pi
Axisymr	netric operating thermal load (at 0 = 180°)	To	0.00	0.00	0.00	PL + Q	G.4
Axisymr	netric design thermal load (at $\theta = 180^\circ$)	Ta	0.30	-36.90	0.00	°L + Q	G.4
Wind los	ad	W	0.31	0.09	0.00	PL	G.6
Tornado	differential pressure load	Wt	0.94	0.28	0.00	PL	G.6
SSE 'CV	+ Polar Crane Parked' Combinations ^a :			1			
W3	R4 in Table 3C of G.7B	±E _s P1	-2.99	-0.90	-0.57	PL	G.78
N3F	R3 in Table 3A of G.7B	±EsP2	-2.65	-0.8	0.66	PL	G.78
W3	T3 in Table 3A of G.7B	±EsP3	-1.24	-0.37	1.65	PL	G.78
LC No.	Load Combination (LC)		σφ	σe	τ _{æð}	Stress Type	Condition
01.1	DP + P. + T.		10.22	-33.92	0.00	PL+Q	Design
D1.2	DP + P		9.92	2.98	0.00	PL	Design
D1.3	DP + Ta		-0.61	-37.17	0.00	PL+Q	Design
D2.0	DP + P. + T.		-1.63	-0.49	0.00	Ρι	Design
LA1.1	DP + Pi + Ta (Same as D1.1)		10.22	-33.92	0.00	PL+Q	Level A
A1.2	DP + P, (Same as D1.2)		9.92	2.98	0.00	PL	Level A
_A1.3	DP + Ta (Same as D1.3)		-0.61	-37.17	0.00	PL+Q	Level A
A2.0	DP + Pe + To (Same as D2.0)		-1.63	-0.49	0.00	PL	Level A
_A3.1	DP + W + P+0 + T0		-0.36	-0,11	0.00	PL	Level A
C1.1.1	$DP + P_i + T_a + E_sP1 (= LA1.1 + E_sP1)$		7.23	-34.82	-0.57	PL + Q	Level C
C1.2.1	DP + Pi - EsP1 (=LA1.2 - EsP1)		12.91	3.88	0.57	PL	Level C
C1.3.1	DP + Ta + EsP1 (=LA1.3 + EsP1)		-3.60	-38.07	-0.57	PL+Q	Level C
C2.0.1	$DP + P_e + T_o + E_sP1 (= LA2.0 + E_sP1)$		-4.62	-1.39	-0.57	PL	Level C
.C3.1	$DP + W_t + P_{+o} + T_o$		0.27	0.08	0.00	PL	Level C
C2.0.2	$DP + P_e + T_o + E_s P2 (= LA2.0 + E_s P2)$		-4.29	-1.29	0.66	PL	Level C
0203	$DP + P_{a} + T_{a} + E_{e}P3 (= LA2.0 + E_{e}P3)$		-2.87	-0.86	1.65	PL	Level C

*Stresses due to eccentricity of masses are not included.

TABLE 3E: INSIDE SURFACE STRESS INTENSITY EVALUATION AT EL. 100'-0 (BASE)

Allowable Stresses, GA:

Design and Level A Service Stress Intensity Limit for Local membrane, PL= 1.5Smc = 33.00 ksiLevel C Service Stress Intensity Limit for Local membrane, PL= 1.5Smc = 79.14 ksi

 $P_{L} + Q = Not Applicable (NA). (Evaluation required only for <math>P_{L} + P_{b} + Q.)$

 $\sigma_{\phi}, \sigma_{\theta}, \tau_{\phi\theta}$: Meridional, circumferential, tangential shear stress, respectively.

Principal Stresses

 $\sigma_1 = 0.5 \times (\sigma_{\varphi} + \sigma_{\theta}) + 0.5 \times \text{sqrt}[(\sigma_{\varphi} - \sigma_{\theta})^2 + 4 \times (\tau_{\varphi\theta})^2],$

- $\sigma_2 = 0.5 \times (\sigma_{\varphi} + \sigma_{\theta}) \cdot 0.5 \times \text{sqrt}[(\sigma_{\varphi} \sigma_{\theta})^2 + 4 \times (\tau_{\varphi\theta})^2],$
- o3 = 0.

Stress intensity, σ_{INT} = Maximum of absolute of: $(\sigma_1 - \sigma_2)$, $(\sigma_2 - \sigma_3)$, and $(\sigma_3 - \sigma_1)$ Stresses are in ksi.

LC NO.	Condition	Stress Type	σφ	σθ	τφθ	01	σ2	GINT	σA	Status
D1.1	Design	PL + Pb + Q	64.81	-17.51	0.00	64.81	-17.51	82.32	NR	1
D1.2	Design	PL + Pb	-2.39	-0.71	0.00	-0.71	-2.39	2.39	33.00	OK
D1.3	Design	PL + Pb + Q	71.02	-15.65	0.00	71.02	-15.65	86.67	NR	
D2.0	Design	PL + Po	4.23	1.27	0.00	4.23	1.27	4.23	33.00	OK
LA1.1	Level A	P1 + P5 + Q	64.81	-17.51	0.00	64.81	-17.51	82.32	80.00	Not OK
LA1.2	Level A	PL + Po	-2.39	-0.71	0.00	-0.71	-2.39	2.39	33.00	OK
LA1.3	LevelA	PL + P5 + Q	71.02	-15.65	0.00	71.02	-15.65	86.67	80.00	Not OK
LA2.0	LevelA	PL + Pb	4.23	1.27	0.00	4.23	1.27	4.23	33.00	OK
LA3.1	LevelA	PL + Pb	4.97	1.50	0.05	4.97	1.50	4.97	33 00	OK
LC1.1.1	Level C	PL + Pb + Q	77.57	-13.68	-0.57	77.57	-13.68	91.26	NR	
LC1.2.1	Level C	PL + Pb	-15.15	-4.54	0.57	-4.51	-15.18	15.18	79.14	OK
LC1.3.1	Level C	PL + Pb + Q	83.78	-11.82	-0.57	83.78	-11.82	95.61	NR	
LC2.0.1	LevelC	PL + Pb	16.99	5.10	-0.57	17.02	5.08	17.02	79.14	OK
LC3.1	LevelC	PL + Pb	7.65	2.30	0.11	7.65	2.30	7.65	79.14	OK
_C2.0.2	LevelC	PL + Pb	15.57	4.67	0.66	15.61	4.63	15.61	79.14	OK
_C2.0.3	LevelC	PL + Pb	9.52	2.86	1.65	9.91	2.48	9.91	79.14	OK

TABLE 3C: MEMBRANE STRESS BUCKLING EVALUATION AT EL. 100'-0 (BASE)

 $\sigma_\phi, \sigma_\theta, \tau_{\phi\theta}$: Meridional, circumferential, tangential shear stress, respectively. Principal Stresses

 $\sigma_1 = 0.5 \times (\sigma_0 + \sigma_0) + 0.5 \times \text{sqrt}[(\sigma_0 - \sigma_0)^2 + 4 \times (\tau_{col})^2],$ $\sigma_2 = 0.5 \times (\sigma_{\varphi} + \sigma_{\theta}) + 0.5 \times \text{sqrt}[(\sigma_{\varphi} - \sigma_{\theta})^2 + 4 \times (\tau_{\varphi\theta})^2],$ $\sigma_3 = 0.$ OL = Larger compression of σ_1 and σ_2 σ_{S} = Smaller Compression of σ_{1} and σ_{2} (if tension use zero value) Design and Level A Service Allowable Compressive Stresses based on N-284, FS = 2: When $\sigma_{e} > \sigma_{\theta}$: σ1A = 3.66 ksi, σ2A = 6.39 ksi. When do < do : σ1A = 10.67 ksi, σ2A = 2.19 ksi. Level C Service Allowable Compressive Stresses based, FS = 1.67 (1.2 times the above values): When a, > a: σ1A = 4.39 ksi, σ2A = 7.67 ksi. When $\sigma_e < \sigma_e$: σ:A = 12.80 ksi, σ2A = 2.63 ksi.

Interaction Equation: $IEV = [(\sigma_L - \sigma_S)/\sigma_{1A}] + [\sigma_S/\sigma_{2A}] \le IEVA = 1.0$

Stresses are in ksi.

LC No.	Condition	C1	02	σL	σs	IEV	IEVA	Status	Remarks
D1.1	Design	10.22	-33.92	-33.92	0.00	BSR5	NA	OK	See Sec. H
D1.2	Design	9.92	2.98	0.00	0.00	0.00	1.00	OK	d's in tension
D1.3	Design	-0.61	-37.17	-37.17	-0.61	BSR5	NA	OK	See Sec. H
D2.0	Design	-0.49	-1.63	-1.63	-0.49	0.39	1.00	OK	
LA1.1	Level A	10.22	-33.92	-33.92	0.00	BSR5	NA	OK	See Sec. H
LA1.2	Level A	9.92	2.98	0.00	0.00	0.00	1.00	OK	d's in tension
LA1.3	LevelA	-0.61	-37.17	-37.17	-0.61	BSR5	NA	OK	See Sec. H
LA2.0	LevelA	-0.49	-1.63	-1.63	-0.49	0.39	1.00	OK	1
LA3.1	LevelA	-0.11	-0.36	-0.36	-0.11	0.09	1.00	OK	
LC1.1.1	LevelC	7.24	-34.83	-34.83	0.00	BSR5	NA	OK	See Sec. H
LC1.2.1	Level C	12.95	3.84	0.00	0.00	0.00	1.00	OK	σ's in tension
LC1.3.1	LevelC	-3.59	-38.08	-38.08	-3.59	BSR5	NA	OK	See Sec. H
_C2.0.1	LevelC	-1.29	-4.72	-4.72	-1.29	0.95	1.00	OK	
_C3.1	LevelC	0.27	0.08	0.00	0.00	0.00	1.00	OK	o's in tension
C2.0.2	LevelC	-1.15	-4.43	-4.43	-1.15	0.90	1.00	OK	1
.C2.0.3	LevelC	0.07	-3.80	-3.80	0.00	0.86	1.00	OK	

NRC AND AMES LABORATORY PRESENTATION MATERIAL FOR THE MEETING ON THE AP600 CONTAINMENT VESSEL DESIGN

AUGUST 30 AND 31, 1995

STRESS AND BUCKLING ANALYSIS OF AP600 STEEL CONTAINMENT VESSEL

Work performed by Ames Laboratory, ISU Ames, IA

Presented to: NRC Westinghouse Chicago Bridge & Iron

August 30-31, 1995

AXISYMMETRIC ANALYSIS

a. BOSOR MODEL

- b. LOAD COMBINATIONS AS PER S.R.P. 3.8.2
- c. LOADS and STRESS ANALYSIS
 - 1. Dead Load
 - 2. External and Internal Pressure
 - 3. Crane Loads
 - 4. Wind and Tornado Loads
 - 5. Temperature
 - 6. Seismic Loads
 - 7. ASME Code Checks

d. BUCKLING ANALYSIS

- 1. Load Cases as per S.R.P. 3.8.2
- 2. Seismic Limit Analysis

BOSOR MODEL

- STRESS ANALYSIS
 - PERFECT SHELL
 - 25 SHELL SEGMENTS
 - FIXED BASE
- MODAL ANALYSIS
 - PERFECT SHELL
 - MASS OF THE ATTACHMENTS
 - a. Air Baffle
 - b. Walkways
 - c. Cable Trays
 - d. Equipment Hatches
 - e. Personnel Airlocks
 - f. HVAC Ducts
 - g. Containment Recirculation Unit
 - h. Crane D.L.

Plan View Of The Containment with Trolley Parked For Plant Operating Condition.

Comparison Of The Prescribed Crane Loading and Fourier Series (F.S.) Expansion.

5

Comparison Of Meridional (N₁) Stress Resultants Due To Crane Dead Load.

Comparison Of Circumferential (N₂) Stress Resultants Due To Crane Dead Load.

Extreme Fiber Meridional (Sigma₁) Stresses Due To Crane Dead Load.

8

Extreme Fiber Circumferentia¹ (Sigma₂) Stresses Due To Crane Dead Load.

Meridional (Sigma₁) and Circumferential (Sigma₂) Stresses Internal Pressure = 45 psig

Extreme Fiber Meridional (Sigma₁) Stresses Internal Pressure of 45 psig

Extreme Fiber Circumferential (Sigma₂) Stresses Internal Pressure of 45 psig

12

TEMPERATURE LOADS ON THE CONTAINMENT

Shell Temperature

- Case 1: Uniform Temperature 280°F
- Case 2: Striping Case (a)
- Case 3: Striping Case (b)

*References:

Gilmore, J. E., "AP600 Passive Containment Cooling System -- Phase II -- Test Data Report," WCAP-12396, March 1992.

McDermott, D., "Passive Containment Cooling System," Presented to NRC and Ames Laboratory Personnel, March 28, 1994.

Extreme Fiber Meridional (Sigma₁) Stresses due to Case 1 Temperature Loading

Extreme Fiber Circumferential (Sigma₂) Stresses due to Case 1 Temperature Loading

Case 2 Temperature Loading Above Elevation 132'3"

Circumferential Arc Length

Meridional (N₁) and Circumferential (N₂) Stress Resultants due to Case 2 Temperature Loading (Dry Zone)

Meridional (N₁) and Circumferential (N₂) Stress Resultants due to Case 2 Temperature Loading (Wet Zone)

Extreme Fiber Meridional (Sigma₁) Stresses due to Case 2 Temperature Loading (Dry Zone)

Extreme Fiber Circumferential (Sigma₂) Stresses due to Case 2 Temperature Loading (Dry Zone)

Extreme Fiber Meridional (Sigma₁) Stresses due to Case 2 Temperature Loading (Wet Zone)

Extreme Fiber Circumferential (Sigma₂) Stresses due to Case 2 Temperature Loading (Wet Zone)

Case 3 Temperature Loading Above Elevation 132' 3"

Meridional (N₁) and Circumferential (N₂) Stress Resultants due to Case 3 Temperature Loading (Dry Zone)

Meridional (N₁) and Circumferential (N₂) Stress Resultants due to Case 2 Temperature Loading (Wet Zone)

Extreme Fiber Meridional (sigma₁) Stresses due to Case 3 Temperature Loading (Dry Zone)

Extreme Fiber Circumferential (Sigma₂) Stresses due to Case 3 Temperature Loading (Dry Zone)

Extreme Fiber Meridional (Sigma₁) Stresses due to Case 3 Temperature Loading (Wet Zone)

2.8

Extreme Fiber Circumferential (Sigma₂) Stresses due to Case 3 Temperature Loading (Wet Zone)

Mode	Frequency (Hz)	Generalized Mass (GM)	Participation Factor, Г	Effec. Mass (GM * Γ ^α)	% of Total Mass
1	13.61	9597.0	0.0	0.0	0.0
2	16.16	3314.0	1.956	12679.20	71.63
3	21.82	479.2	0.651	203.20	1.15
4	23.04	254.0	0.819	170.30	0.96
5	23.64	1251.0	0.032	1.30	0.01
6	23.66	46.2	0.541	13.53	0.08
7	24.44	112.6	1.084	132.31	0.75
8	24.72	244.8	0.496	60.22	0.34
9	25.53	89.6	0.834	62.30	0.35
10	26.52	113.7	1.282	186.90	1.06

Effective Modal Mass Computation - Perfect Shell (Vertical Modes)

• Total mass = $17720 \text{ lb.sec}^2/\text{in}$.

VERTICAL MODES (N=0)

Mode	Frequency (Hz)	Generalized Mass (GM)	Participation Factor, P	Effec Mass (GM * I ^{e)})	% of Total Mass
1	6.77	7411.0	1.356	13626.90	76.98
2	19.31	3420.0	0.702	1686.80	9.53
3	23.13	140.7	0.880	108.88	0.62
4	23.62	971.5	0.563	307.72	1 74
5	23.97	67.3	0.019	0.02	0.00
6	24 47	204.2	1.085	240 39	1.36
7	24.76	139.0	0 168	3.90	0 02
8	25.00	150.6	1.046	164 80	0.93
9	25.68	143.2	0.400	22 90	0.13
10	26.72	149.4	0 322	15.50	0.09

Effective Modal Mass Computation - Perfect Shell (Horizontal Modes)

VIBRATION MODES (N=1 or N=-1)

S.R.S.S. Circumferential (N2) Stress Resultants

Extreme Fiber SRSS Meridional (Sigma₁) Stresses

Extreme Fiber SRSS Circumferential (Sigma₂) Stresses

WIND LOADS ON THE CONTAINMENT

- Loads to be considered above Elevation 142 ft.
- Wind Pressure Computed Using Measured Pressure Coefficients.

$$\mathbf{p}_{\mathbf{r}} = \mathbf{C}_{\mathbf{p}} \mathbf{p}_{\mathrm{roof}}$$

$$p_{roof} = 0.5 \rho v^2$$

Where $p_r = Computed$ Wind Pressure

p_{roof} = Dynamic Wind Pressure at Roof Height

 $\rho = Air density$

- v = Mean hourly wind speed equivalent to design wind velocity
- Case 1: Design Wind @ 110 mph

$$p_{roof} = 38.2 \text{ psf}^{(1)}$$

Case 2: Tornado Wind @ 300 mph

 $p_{roof} = 116.0 \text{ psf}^{(1)}$

Idealized Suction and Lateral Load Cases from C_p measured per ⁽²⁾

*References:

- (1) Lyth, G. R. and Surry, D., "Phase II Wind Tunnel Testing for the Westinghouse AP600 Reactor," Report No. WCAP-13323, May 1992.
- (2) Lyth, G. R., Surry, D., "Phase IVa Wind Tunnel Testing for the Westinghouse AP600 Reactor," Report No. 14068, 1994.

Cross Sectional Elevation of AP600 Containment Indicating Location of Instrumentation for Wind Pressure Coefficient Measurement

C.L.

Pressure Distribution Corresponding to Measured Minimum Pressure Coefficients

Enveloped Pressure Distribution (Uniform Suction)

Enveloped Pressure Distribution (Lateral Load)

Meridional (N₁) and Circumferential (N₂) Stress Resultants due to Uniform Wind Suction of 1.0 psi

Extreme Fiber Meridional (Sigma₁) Stresses due to Uniform Wind Suction of 1.0 psi

Extreme Fiber Circumferential (Sigma₂) Stresses due to Uniform Wind Suction of 1.0 psi

Meridional (N₁) and Circumferential (N₂) Stress Resultants due to Enveloped Lateral Load (1.0 psi) on the 235° Azimuth

Extreme Fiber Meridional (Sigma₁) Stresses due to Enveloped Wind Lateral Load (1.0 psi) on the 235° Azimuth

Extreme Fiber Circumferential (Sigma₂) Stresses due to Enveloped Wind Lateral Load (1.0 psi) on the 235° Azimuth

Meridional (N_1) and Circumferential (N_2) Stress Resultants due to Enveloped Lateral Load (1.0 psi) on the 55° Azimuth

Extreme Fiber Meridional (Sigma₁) Stresses due to Enveloped Wind Lateral Load (1.0 psi) on the 55° Azimuth

Extreme Fiber Circumferential (Sigma₂) Stresses due to Enveloped Wind Lateral Load (1.0 psi) on the 55° Azimuth

	Meridional Stresses				Circumferential Stresses			
Load Case	Outer Fiber (psi)	El. (ft.)	Inner Fiber (psi)	El. (ft.)	Outer Fiber (psi)	El. (ft.)	Inner Fiber (psi)	El. (ft.)
Dead Load (D)	-4,950	100	3,330	100	-1,490	100	1,000	100
Crane Load (L)	-2,300	208.4	2,410	208.4	-1,720	208.4	-719	208.4
$P_o = 45.0 \text{ psig}$	28,200	100	28,300	208.4	24,300	214.3	22,100	111.6
Wind @ 110 mph- Suction	1,480	100	-999	100	539	214.3	491	150.5
Wind @ 110 mph- Lateral Load Azimuth 235°	-2,380	100	1,600	100	-713	100	603	256
Wind @ 110 mph- Lateral Load Azimuth 55°	3,860	100	-2,600	100	1,160	100	-781	100
T, = 280°F	-62,100	100	62,600	100	-54,300	100	-24,300	100.8
SSE*	15,023	100	10,202	100	4,507	100	3,060	100

Maximum Stresses in the Containment

*Max. Shear: 1,573 psi (outer fiber elev. 100.8 ft.) And 1,571 psi (inner fiber, elev. 100 ft.)

53

STRESS COMBINATION

ASME Limits	Design Conditions			Level A			Level C and Level D			
Load Combinations as per S.R.P.3.8.2*	DG1	DG2	OC1	DBAI	DBA2	OC2	OC3	DBA3	DBA4	
Dead Load (D)	x	х	x	x	x	x	x	x	x	
Live Load (L)	х	x	x	x	x	х	x	x	x	
Operating conditions										
$P_o = 1.0 \text{ psig}$ $T_o = 120^{\circ}\text{F}$			x			х	x			
Wind @ 110 mph			X						1.	
Accident Conditions									L	
P = 45 psig T = 280°F*	х			х				x		
P. = -2.5 psid T. = 120°F		х			х					
P _a = -3.0 psid T _a = 120°F									x	
S.S.E						x		x	x	
W ₇ @ 300 mph							x			

Load Combinations as per S.R.P 3.8.2

• DG1= Design Conditon 1; DG2 = Design Condition 2; OC1 = Operating Condition 1; OC2 = Operating Condition 2; OC3 = Operating Condition 3; DBA1= Design Basis Accident 1; DBA2 = Design Basis Accident 2; DBA3 = Design Basis Accident 3; DBA4 = Design Basis Accident 4.

* Includes temperature profiles Case 1, Case 2 and Case 3.

5

ASME Limits	Design Conditions			Level A			Level C and Level D			
Load Combinations as per S R P 3 8 2*	DG1	DG2	OC1	DBA1	DBA2	OC2	OC3	DBA3	DBA4	
Dead Load (D)	X	Х	х	X	x	x	x	x	x	
Live Load (L)	х	Х	х	X	х	х	x	x	x	
Operating conditions										
P _o = 1.0 psig T _o = 120°F			x			х	x			
Wind @ 110 mph			X			E 233				
Accident Conditions					1 i 2					
P. = 45 psig T. = 280°F*	х			x				x		
P = -2.5 psid T = 120°F		х			x					
P = -3.0 psid T = 120°F									x	
SSE						х		x	X	
W ₁ @ 300 mph							x			

Load Combinations as per S.R.P 3.8.2

* DG1= Design Condition 1, DG2 = Design Condition 2; OC1 = Operating Condition 1; OC2 = Operating Condition 2; OC3 = Operating Condition 3; DBA1= Design Basis Accident 1; DBA2 = Design Basis Accident 2; DBA3 = Design Basis Accident 3; DBA4 = Design Basis Accident 4.

* Includes temperature profiles Case 1, Case 2 and Case 3.

56

SRP Reference Number	Load	Desig	gn Allowabl Intensity Lin	Maximum Calculated Stress		
	Combination	Туре	Limit	Value (psi)	Value (psi)	Elev. (ft)
(ii)	DG1	P _m	1.0 S _{mc}	22,000	22,596*	+214
(ii)	DG2	Pm	1.0 S _{mc}	22,000	2,457	+103

Design Conditions

*Can be classified as P_L

SRF Reference Number	Load Combination	Design It	n Allowable S ntensity Limit	Maximum Value as per Stress Analysis		
		Туре	Limit	Value	Value (psi)	Elev. (ft)
(iii)(a)(1)	OC1	P _m	1.0 S _{mc}	22,000	2,683	+104
(iii)(a)(1)	OC1	$P_L + P_b + Q$	3.0 S _{m1}	80,100	21,894	+100
(iii)(a)(2)		Not applicable				
(iii)(a)(3) (iii)(a)(3)	DBA1	Pm	1.0 S _{mc}	22,000	22,596*	+214
(iii)(a)(3)	DBA1	$P_L + P_b + Q$	3.0 S _{m1}	80,100	77,517	+100
DI	DBA2	P _m	1.0 S _{mc}	22,000	2,457	+103
	DBA2	P _L +P _b +Q	3 0 S _{m1}	80,100	21,405	+100

Level A Service Limits

*Can be classified as P_L

Level	C	Service	Limits
-------	---	---------	--------

SRP Ref.	Load	Desig Inte	n Allowab ensity Limi	Maximum Value as per Stress Analysis		
Number	Combination	Туре	Type Limit Value (psi)	Value (psi)	Elev (ft)	
(iii)(c)(2)	OC2	P _m	1.0 S _y	59,000	12,799	100
(iii)(c)(2)	OC3	P _m	1.0 S _y	59,000	4,433	103
(iii)(c)(1)	DBA3	P _m	1.0S _y	52,760	22,878	214
(iii)(c)(1)	DBA4	Pm	1.0S,	59,000	13,454	100

Level D Service Limits

SRP Ref	Load Combination	Desig Inte	n Allowat ensity Lim	Maximum Value as per Stress Analysis		
Number		Туре	Limit	Value (psi)	Value (psi)	Elev (ft)
(iii)(d)(1)	DBA3	P _m	Sr	47,600	22,878	214
(iii)(d)(1)	DBA4	P _m	Sr	47,600	13,454	100

BUCKLING ANALYSIS

Stress Strain Curve for Temperature of 120°F (Curve A)

Stress Strain Curve for Temperature of 280°F (Curve B)

- · Load Combination: Design Condition 1 or Design Basis Accident 1
- <u>Loading</u>: Dead Load and Crane Load Internal Pressure of 45 psi Uniform Temperature of 280°F
- Material: Stress Strain Curve B
- · Geometry: Perfect

 Factor of Safety, λ: 3.10 and was associated with gross tensile yield in the cylinder

Axisymmetric Model of the Top Ellipsoidal Head

Pressure Only (Elastic-Plastic, Perfect) Ames Lab 171 psig CB&I 174 psig

BUCKLED SHAPE OF THE TOP ELLIPSOIDAL HEAD

- · Load Combination: Design Condition 1 or Design Basis Accident 1
- · Loading: Dead Load

Internal Pressure of 45 psi

Uniform Temperature of 280°F

- Material: Stress Strain Curve Curve B
- Geometry: Imperfect, K = 13.5, n = 35

- Factor of Safety, λ: 3.52
- · Failure Mode: Buckle formation in the Compressive Zone

Axisymmetric Model of the Bottom Ellipsoidal Head (Note: Radial Dimension is Distorted)

P = 17,600 lb/in.

- Load Combination: Design Condition 1 or Design Basis Accident 1
- Objective: Assess Performance of Bottom Ellipsoidal Head
- · Loading: Dead

Internal Pressure of 45 psi

Uniform Temperature of 280°F

- Material: Stress Strain Curve B
- Geometry: Imperfect, K = 4.5

· Failure Mode: Gross Tensile Yield at Base

SUMMARY - DESIGN CONDITION 1 or DBA 1

• LOADS

DEAD LOAD LIVE LOAD INTERNAL PRESSURE 45 psi TEMPERATURE 280°F

• FACTORS OF SAFETY

- 1. Overall Failure of the Containment = 3.10
- 2. Failure of the Upper Ellipsoidal Head = 3.52
- 3. Failure of the Lower Ellipsoidal Head = 4.90

- Load Combination: Design Condition 2 or Design Basis Accident 2
- Loading: Dead Load and Crane Load, External Pressure of 2.5 psi and Uniform Temperature of 120°F
- Material: Stress Strain Curve A
- Geometry: Imperfect, K = 4

- · Failure Mode: Buckling Between Upper and Lower Heads
- No. of Circumferential Waves: 14
- Factor of Safety, λ: 3.03

- Load Combination: Operating Condition 1
- Loading: Dead Load and Crane Load, Internal Pressure of 1.0 psi, and Uniform Temperature of 120°F Lateral Load due to Operating Wind @ 110 mph
- Material: Stress Strain Curve Curve A
- Geometry: Imperfect, K = 3.0

Failure Mode: Gross Yield at Base, Factor of Safety, λ: 7.10

- · Load Combination: Operating Condition 2
- Loading: Dead Load and Crane Load, Internal Pressure of 1.0 psi, Uniform Temperature of 120°F and SSE
- Material: Stress Strain Curve Curve A
- Geometry: Imperfect, K = 3.5

- · Failure Mode: Gross Yield at Base
- Factor of Safety, λ: 3.80

- Load Combination: Operating Condition 3
- Loading: Dead Load and Crane Load, Internal Pressure of 1.0 psi, Uniform Temperature of 120°F, and Lateral Load Due to Tornado @ 300 mph
- Material: Stress Strain Curve Curve A
- Geometry: Imperfect, K = 3.5

• Failure Mode: Gross Yield at Base, Factor of Safety, λ : 5.20

BUCKLED SHAPE OF THE CONTAINMENT

- Load Combination: Design Basis Accident 4
- Loading: Dead Load and Crane Load, External Pressure of 3.0 psi, Uniform Temperature of 120°F and SSE
- Material: Stress Strain Curve Curve A

• Failure Mode: Between Stiffeners

No. of Circumferential Waves: 13

• Factor of Safety, λ: 2.02

- Load Combination: Design Basis Accident 3
- Loading: Dead Load and Crane Load, Internal Pressure of 45 psi, Uniform Temperature of 280°F, and SSE
- Material: Stress Strain Curve Curve B
- Geometry: Imperfect, K = 3.5

- · Failure Mode: Gross Yield at Base
- Factor of Safety, λ: 3.20

BUCKLING FACTORS OF SAFETY

S.R.P. Reference Number	Load Combination	Factor of Safety	Buckling Location
DESIGN CON	DITIONS		
(ii) (ii)	DG1 DG2	3.10 3.03	General tenile yield in the Cylinder Buckling between upper and lower stiffeners
LEVEL A SEP	VICE LIMITS		
(iii)(a)(1) (iii)(a)(2) (iii)(a)(3) (iii)(a)(3)	OC1 Not applicable DBA1 DBA2	7.10 3.10 3.03	Gross Yield near the base General tensile yield in the Cylinder Buckling between upper and lower stiffeners
LEVEL C SEF	VICE LIMITS		
(iii)(c)(1) (iii)(c)(1) (iii)(c)(2) (iii)(c)(2)	DBA3 DBA4 OC2 OC3	3.20 2.02 3.80 5.20	Gross yield at base Between base and lower stiffener Gross yield near the base Gross yield near the base
LEVEL D SEF	RVICE LIMITS		
(iii)(d)(1) (iii)(d)(1)	DBA3 DBA4	3.20 2.02	Gross yield at base Between base and lower ring

SEISMIC LIMIT ANALYSIS

- LOADING AND SOLUTION PROCEDURE Buckling Load = $D + \alpha E$ Where:
 - α = Buckling Load Multiplier
 - D = Dead Load
 - E = Seismic Loads

BUCKLED SHAPE OF THE CONTAINMENT

- · Load Combination: Seismic Limit Analysis
- Loading: Dead Load and Crane Load and SSE
- Material: Effective Stress Strain Curve
- Geometry: Imperfect, K = 4.0

• Seismic Load Factor, α: 4.67

• Failure Mode: Local, Between Lower Stiffener and Base, n=13

Variation of Effective Uniaxial Strain With Load Multiplier (Seismic Limit Loading)

SUMMARY OF BUCKLING ANALYSIS

• Design Conditions and Level A Service Limits:

Controlling Load Case: Design Basis Accident 2

Loading: Dead Load and Crane Load External Pressure of 2.5 psi Uniform Temperature of 120°F

Factor of Safety, λ : <u>3.03</u>

Satisfies ASME Section NE 3222.2 and ASME Code Case N-284

• Level C Service Limits:

Controlling Load Case: Design Basis Accident 4

Loading: Dead Load and Crane Load External Pressure of 3.0 psi Uniform Temperature of 120°F Safe Shutdown Earthquake

Factor of Safety, λ : 2.02

Satisfies Reg. Guide 1.57 (F.S. = 2) and ASME Code Case N-284 (F.S. = 1.67)

Does not Satisfy ASME Section NE 3222.2 (F.S. = 2.5)

• Level D Service Limits:

Controlling Load Case: Design Basis Accident 4

Satisfies ASME Section NE 3222.2, Reg. Guide 1.57 and ASME Code Case N-284

• <u>Seismic Limit Analysis:</u> Loading: Dead Load and Crane Load Safe Shutdown Earthquake

Seismic Load Factor, $\alpha = 4.67$

3D ANALYSIS OF AP600

PART I: MESH PARAMETERSPART II: MODE FREQUENCY ANALYSISPART III: RESPONSE SPECTRUM ANALYSISPART IV: BUCKLING ANALYSISPART V: ASYMMETRIC TEMPERATURE ANALYSIS

PART I: MESH PARAMETERS

A. Mesh Guidelines:

-

Elevation View of AP600 Steel Containment

2

B. Cylindrical Containment:

Elements Size:

Part A1: $0.375\sqrt{rt} \ge 0.75\sqrt{rt}$ Part A2: $0.75\sqrt{rt} \ge 1.50\sqrt{rt}$

Transition Zene:

S8R5 (Quadrilateral Elements) STRI65 (Triangular Elements)

C. Ellipsoidal Head:

Elements Size: $2.10\sqrt{rt} \times 1.50\sqrt{rt}$

m		-	-		-	-
11	1	1	1		1	1
11	1	1	1	1		1
1	T	1	1	T	1	1
11	1		1	1	1	1
	*					
X L	A		1	1.11	1	1
L	4	-	-	-	1	1
111	11	1	1	1		1
ITT	TH	1		1.1	1	A COLOR
H	-+++-	1			+	
111	-141				1	
44	11					1 million
111	14				1	
111	TH		1			
ITT	111	1		1	1	
111	+1		1.000		1	
144	++-				1	
44	14	1.1	E	10.00	1	1
111	111	1		C. Carl		1
ITT	111				1	
111	ŤV	-		1.11	1	1.000
+++	+ -					
44	10			1.1.1.1		
44	111		A second			
111	111	1.1.1.1				
ITT	TV		1.1153	1000		1
11+	++					
+++	+1			1.000		()
##	+++-+			minunia		
44	111					
44	IN I					
11L	IN I					
ITT						
ITT	111			Company of the second second		
ttt	t 1 1			1.0.0		1
Ht						
H+	H	1.1				
H+	+++-+					
+++	+11					
44	1X	-				-
11	1/ 1	1.0		1		
III				Section 1	1.1.1.1.1	1
HH.	HU 1					
111	17 1					
had a feature		and the second	and the second second	And Company of the local	and the second s	

Cylinderical Portion

D. Crane Girder and Bridge:

4

E. Stiffeners:

1. Upper Stiffener (Elevation 170'-0")

2. Lower Stiffener (Elevation 132'-3")

F. Solid Modeling of Penetration Areas:

Division of the Model to Different areas for Meshing

Automatic Meshing of Penetration Areas (Using Rectangular and Triangular Elements)

Three Dimensional Finite Element Model of AP600

Classification According to Thickness

• Number of Nodes = 12063

- Number of Elements = 4282
- Wave Front = 1431
G. Check Runs: Static Analysis with Internal Pressure

Geometric Configuration:

Perfect containment

Material Properties:

 $E = 29 \times 10^6$ psi, v = 0.3

Loading:

Internal pressure, P = 1 psig

Deformed Shape

Comparison of Stress Resultants with Theory

Stress Resultants	Theory	F.E. Results	%Error
In Hoop Direction (lb/in)	780	793	2.0
In Axial Direction (lb/in)	390	404	3.0

G. Check Runs: Inelastic Buckling of AP600 Sector Around Penetrations

Purpose:

- 1. Investigate buckling behavior of penetrations area
- 2. Verify the adequacy of the model in penetrations area

Finite Element Results

PART II: MODE FREQUENCY ANALYSIS

Problem Configuration:

Elastic Material

Axisymmetric imperfection

Mass of attachments smeared around circumference

Methodology:

Subspace iteration to extract the first 273 modes

Classification According to Density

Imperfection Along a Meridian

NATURAL FREQUENCIES OF AP600

Mode	Freq (Hz)	Mode	Freq (Hz)	Mode	Freq (Hz)
1	3.6859	33	8.6322	65	9.7921
2	5.9103	34	8.7485	66	9.8587
3	6.0739	35	8.8262	67	9.8829
4	6.3589	36	8.8694	68	9.9542
5	6.6476	37	8.9837	69	10.001
6	6.8504	38	8.9872	70	10.086
7	6.9049	39	9.0408	71	10.125
8	6.9649	40	9.0673	72	10.212
9	7.0101	41	9.0962	73	10.253
10	7.0573	42	9.1759	74	10.3
11	7.168	43	9.2241	75	10.346
12	7.1819	44	9.2695	76	10.358
13	7.2806	45	9.3155	77	10.411
14	7.3356	46	9.3866	78	10.506
15	7.3482	47	9.4372	79	10.593
16	7.4406	48	9.4459	80	10.624
17	7.6303	49	9.4581	81	10.625
18	7.7072	50	9.5169	82	10.649
19	7.7664	51	9.535	83	10.657
20	7.8433	52	9.5458	84	10.668
21	7.9636	53	9.5585	85	10.744
22	8.117	54	9.5707	86	10.772
23	8.1963	55	9.5781	87	10.833
24	8.2489	56	9.6158	88	10.936
25	8.2741	57	9.6474	89	10.945
26	8.3297	58	9.7083	90	10.981
27	8.3395	59	9.7322	91	11.049
28	8.3866	60	9.7408	92	11.07
29	8.4196	61	9.7544	93	11.114
30	8.4937	62	9.7585	94	11.197
31	8.5722	63	9.7687	95	11.3
32	8.5735	64	9.7822	96	11.33
the state of the s	the second	the state of the s	and the second se	Contractory Constraint and an Andrews	and the second second second second second second

NATURAL FREQUENCIES OF AP600

Mode	Freq (Hz)	Mode	Freq (Hz)	Mode	Freq (Hz)
97	11.544	129	13.503	161	14.594
98	11.597	130	13.531	162	14.623
99	11.613	131	13.536	163	14.674
100	11.643	132	13.544	164	14.678
101	11.659	133	13.589	165	14.709
102	11.674	134	13.634	166	14.727
103	11.758	135	13.688	167	14.83
104	12.099	136	13.707	168	14.833
105	12.165	137	13.714	169	14.849
106	12.24	138	13.809	170	14.892
107	12.254	139	13.84	171	15.019
108	12.344	140	13.883	172	15.072
109	12.398	141	13.94	173	15.127
110	12.541	142	13.955	174	15.178
111	12.574	143	13.975	175	15.201
112	12.583	144	13.993	176	15.229
113	12.586	145	14.021	177	15.309
114	12.893	146	14.096	178	15.377
115	12.922	147	14.102	179	15.384
116	12.95	148	14.152	180	15.396
117	13.059	149	14.169	181	15.554
118	13.065	150	14.234	182	15.574
119	13.151	151	14.242	183	15.596
120	13.166	152	14.262	184	15.611
121	13.198	153	14.288	185	15.65
122	13.225	154	14.307	186	15.727
123	13.247	155	14.329	187	15.739
124	13.281	156	14.335	188	15.787
125	13.31	157	14.38	189	15.921
126	13.365	158	14.403	190	15.998
127	13.412	159	14.552	191	16.04
128	13.439	160	14.585	192	16.137

NATURAL FREQUENCIES OF AP600

Mode	Freq (Hz)	Mode	Freq (Hz)	Mode	Freq (Hz)
193	16.165	220	17.234	247	18.685
194	16.22	221	17.266	248	18.773
195	16.271	222	17.305	249	18.816
196	16.357	223	17.36	250	18.95
197	16.376	224	17.454	251	19.005
198	16.396	225	17.462	252	19.025
199	16.415	226	17.517	253	19.099
200	16.457	227	17.565	254	19.141
201	16.489	228	17.603	255	19.147
202	16.517	229	17.615	256	19.159
203	16.547	230	17.649	257	19.297
204	16.586	231	17.649	258	19.345
205	16.612	232	17.665	259	19.362
206	16.686	233	17.721	260	19.482
207	16.732	234	17.776	261	19.491
208	16.759	235	17.908	262	19.513
209	16.789	236	17.971	263	19.526
210	16.834	237	18.027	264	19.555
211	16.872	238	18.127	265	19.682
212	16.913	239	18.138	266	19.849
213	16.925	240	18.163	267	19.919
214	16.963	241	18.192	268	19.974
215	17.01	242	18.388	269	20.066
216	17.08	243	18.42	270	20149
217	17.082	244	18.508	271	20.183
218	17.181	245	18.547	272	20.217
219	17.2	246	18.653	273	20,268

MODE SHAPES

MODE SHAPES

TOTAL EFFECTIVE MASS

10

Total effective mass in X direction = 86.74 %Total effective mass in Y direction = 88.91 %Total effective mass in Z direction = 73.77 %

Comparison of ABAQUS and BOSOR:

• Effective Mass:

Modes	BOSOR	ABAQUS	Difference
Horizontal X	91.12 %	86.74 %	4.38 %
Horizontal Y	91.12 %	88.91 %	2.21 %
Vertical Z	83.58 %	73.77 %	9.81 %

Percentage of Effective Mass from Total Mass

• Natural Frequencies:

	ABAQUS	BOSOR
1 st Cantilever Mode	5.90	6.14
1 st Vertical Mode	12.40	13.70
2 ^{ed} Vertical Mode	15.40	17.40

PART III: RESPONSE SPECTRUM ANALYSIS

• High Frequency Modes: (Appendix A of SRP Sec. 3.7.2)

- 1. Remaining Effective Mass per D.O.F.
- 2. Zero Period Accelerations in X, Y and Z directions
- 3. Interia forces as static loads

Response Spectra

· Peak Response:

- 1. Combination of modal responses in X, Y and Z direction by the 10% rule.
- 2. Directional combination of responses by the SRSS method.

Top View

Contour Lines of N_{1max} Stress Resultants

Contour Lines of N2max Stress Resultants

Comparison of N_{1max} Stress Resultants along two Meridians

Comparison of N_{1max} Stress Resultants along two Meridians

PART IV: BUCKLING ANALYSIS

• Equivalent Static Loads:

Purpose: Regenerate N1max Stress Resultants at Critical Regions

Critical Regions due to Seismic Loads

• Load Case I: (Region A)

Modal Decomposition:

$$\begin{cases} N_{1max} \\ F_i^{\phi} \\$$

Contour Lines of N_{1max} Stress Resultants

Contour Lines of N1 due Equivalent Static Loads

1.5000

Inelastic Buckling Analysis:

• Material Properties:

 $E = 29 \times 10^6 \text{ psi}$

v = 0.3

- Loading Configuration:
 - a. Dead Load
 - b. $\Delta T = 50^{\circ} F$
 - c. External pressure, P = 3.0 psid
 - d. Equivalent Static Loads

Buckling Load Factor, $\lambda = 2.54$

Buckling Load Factor, $\lambda = 2.54$

Von Mises Stresses at Points A & B

Buckling Load Factor, $\lambda = 2.54$

Contour Lines of Von Mises Stresses at $\lambda = 2.54$

• Load Case II: (Region B)

Equivalent Static Loads

Contour Lines of N_{1max} Stress Resultants

Contour Lines of N1 due Equivalent Static Loads

Comparison of N₁ Stress Resultants at Upper Equipment Hatch Reinforcing Collar

Buckling Factor of Safety, $\lambda = 2.62$

Load Deflection Curves at Points C & D

Buckling Factor of Safety, $\lambda = 2.62$

Contour Lines of Von Mises Stresses at $\lambda = 2.62$

SUMMARY OF BUCKLING ANALYSIS

Loading Configuration: (Level C Service Limit - DBA4)

- a. Dead and Crane Loads
- b. External Pressure, P = 3.0 psig
- c. Uniform Temperature, $T = 120^{\circ}F$
- d. Safe Shutdown Earthquake

Results:

Load Case	Location of Buckling	Factor of Safety
I	Near the base below the upper equipment hatch	2.54
Π	Below the upper equipment hatch reinforcing collar	2.62

Conclusions:

- The containment design satisfies Reg. Guide 1.57 (F.S.=2.0), ASME Code Case N-284 (F.S.=1.67) and ASME Section NE 3222.2 (F.S.=2.5).
- The area of penetrations are adequately reinforced.

PART V: BUCKLING OF AP600 DUE TO ASYMMETRIC TEMPERATURE

A. Mesh Parameters

B. Thermal Stress Analysis

C. Thermal Buckling Analysis

D. Buckling Analysis of AP600 at DBA1 (Case 1)

E. Buckling Analysis of AP600 at DBA1 (Case 2)

A. MESH PARAMETERS:

Discritization of the Wedge Model Finite Element Mesh

Model Preprocessor Parameters:

- 1. Size of elements
- 2. Imperfection shape and amplitude
- 3. Number of dry strips, n
- 4. Ratio of dry strip width per strip

B. THERMAL STRESS ANALYSIS

Geometric Configuration:

- 1. No geometric imperfections
- 2. Number of dry strips, n = 50

$$\therefore \theta = \frac{360}{2n}$$

Temperature Loading:

and Elev. 132'-3"

N1 and N2 at the Middle of the Dry Strip

c. Stress Resultants:

N1 and N2 at the Middle of the Wet Strip

d. Comparison with CB&I Results:

Meridional stress Resultants, (kips/in)	CB&I (4/2/93 Letter)	Ames Lab
Middle of dry strip	-17.55	-15.48
Middle of wet strip	9.75	8.93
Comparison with an Approximate Strength of Material Model:

· Solving for F and simplifying

$$F = \frac{(T_1 \alpha_1 - T_2 \alpha_2) k_1 k_2}{(k_1 + k_2)}$$

· Stress Resultants in the dry and wet strips

$$N_i = \frac{F}{b_i}$$

Verification of F.E. Results

Meridional Stress resultants (Ib/in)	F.E. Solution	Theoretical Solution
Middle of Dry Strip	- 15,480	- 17,170
Middle of Wet Strip	+ 8,930	+ 7,575

C. THERMAL BUCKLING ANALYSIS:

Elastic Buckling Analysis:

Configurations:

- 1. No Geometric Imperfections
- 2. Boundary Conditions
- 3. Temperature Loading

Number of dry strips, n = 50 Width of dry strip = 30"

Width of wet strip = 68"

Finite Element Results:

a. Prebuckling Meridional Stresses:

Mode (1) $\lambda = 11.213$

Mode (2) $\lambda = 14.235$

Assessment of the Worst Meridian Approach:

Loading:

Axial stress, $\sigma = 9.53$ ksi

Finite Element Results:

Mode (2) $\lambda = 6.832$

Mode (1) $\lambda = 6.790$

Inelastic Buckling Analysis:

Configurations:

 $E = 27.4 \times 10^6$ psi v = 0.3Stress-Strain Curve at $T = 280^{\circ}F$

Stress-Strain Curve at T = 280°F

Sensitivity Study:

- a. Geometric Imperfections
- b. Number of Dry Strips, n
- c. Percentage of the Dry Strip Width, d

A. Geometric Imperfections:

• Axisymmetric Imperfections:

Theoretical Background:

From compatability

2

$$T_1 \alpha_1 L - \frac{F}{\Delta_1 K_1} = T_2 \alpha_2 L + \frac{F}{\Delta_2 K_2}$$

where $A_{1} = 1 \frac{F}{F}$

$$\Delta_1 = 1 + \frac{F_{E1}}{F_{E2}}$$
$$\Delta_2 = 1 + \frac{F}{F_{E2}}$$

$$\therefore F = \frac{\Delta_1 \Delta_2 K_1 K_2 (T_1 \alpha_1 - T_2 \alpha_2) L}{(\Delta_1 K_1 + \Delta_2 K_2)}$$

50

Results:

a. Theoretical Solution:

b. Finite Element Solution:

Hoop Imperfections:

B. Number of Dry Strips, n:

C. Percentage of Dry Strip Width, d:

Temperature Distribution:

Conclusions:

- 1. Worst Configurations: Perfect shell n = 25
 - d = 30%
- 2. Minimum Buckling Factor of Safety, $\lambda = 7.16$

CB&I (4/2/93 Letter):

• The applied maximum meridional stress is about half of the allowable meridional stress.

D. BUCKLING ANALYSIS OF AP600 AT DBA1, CASE(1):

Geometric Configuration:

Sinusoidal Imperfection $L_w = 4.0\sqrt{rt}, \quad a = \frac{t}{2}$

Loading Configuration:

1. Own Weight

2. Crane Load

3. Internal pressure, p = 45 psi

4. Uniform temperature, $T = 280^{\circ}F$

Finite Element Results:

a. Deformed Shape:

b. Failure Mode

Tensile yield of the cylindrical portion at Load Proportionality Factor, $\lambda = 3.02$

c. Stress Resultants:

58

E. BUCKLING ANALYSIS OF AP600 AT DBA1, CASE 2:

Geometric Configuration:

No geometric imperfections

Loading:

Number of dry strips, n = 25 Percentage of dry strip width, d = 30 % Width of dry strip = 58.8" Width of wet strip = 137.2"

Finite Element Results:

a. Deformed Shape:

b. Failure Mode:

Tensile yield of the cylindrical portion at Load Proportionality Factor, $\lambda = 3.03$

E. BUCKLING ANALYSIS OF AP600 AT DBA1, CASE 2:

Geometric Configuration:

Sinusoidal Imperfection $L_w = \sqrt{rt}, \quad a = \frac{t}{2}$

Finite Element Results:

b. Failure Mode:

Tensile yield of the cylindrical portion at Load Proportionality Factor, $\lambda = 3.05$

SUMMARY OF ASYMMETRIC TEMPERATURE ANALYSIS

Loading Configuration: (Level A Service Limit-DBA1)

a. Dead and Crane Loads

b. Internal pressure, P = 45 psi

c. Uniform temperature, $T = 280^{\circ}F$ (Case 1)

Failure Mode: Tensile yielding of the cylindrical portion at Load factor, $\lambda = 3.02$

Conclusion: Satisfies ASME Code Case N-284 (F.S.=2.0) and ASME Section NE 3222.2 (F.S.=3.0)

Loading Configuration: (Level A Service Limit-DBA1)

a. Dead and Crane Loads

b. Internal pressure, P = 45 psi

c. Asymmetric temperature (Case 2)

Failure Mode: Tensile yielding of the cylindrical portion at Load factor, $\lambda = 3.03$ before asymmetric buckling due to striping ($\lambda = 7.16$)

Conclusion: Satisfies ASME Code 'Case N-284 (F.S.=2.0) and ASME Section NE 32'22.2 (F.S.=3.0)