\qquad OF

REACTOR PRESSURE VESSEL

PRESERVICE INSPECTION PROGRAM PLAN

FOR

SEABROOK NUCLEAR POWER STATION

UNIT \# 1

PREPARED FOR

PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE

REV. NO.	DATE	\| PAGE NO (DESCRIPTION	APPROVAL
1	2/20/04		CRA. No. 4023 Customer Comments	Mile Kosur
			and Inhouse Changes	
2	3/2/84	10-12	CRA No. 4078, Included implementation	Horasi Hamei
3	3/15/84	25-26	Tr reflect NES inhouse comments	serd firmes
			See CRA number 4103	
	(
\square				

\qquad
\qquad OF \qquad

TABLE OF CONTENTS

PAGE

1. INTRODUCTION 4
2. BASES FOR PRESERVICE INSPECTION PROGRAM 4
3. PRESERVICE INSPECTION PROGRAM PLAN DESCRIPTION 5
3.1 Classification 5
3.2 Exemptions 5
3.3 Exceptions 5
3.4 Ultrasonic Testing Calibration Standards 5
3.5 Examination Procedures 6
3.6 Figures and Sketches 8
3.7 Quality Assurance 8
3.8 Evaluation Criteria 9
3.9 Records and Reports 9
3.10 Personnel Qualifications Requirements 9
3.11 Pre Examination Requirements 9
4. IMPLEMENTATION OF REG, GUIDE 1.150 10
4.1 Inroduction 10
4.2 General Condition 10
4.3 Implementing Procedures Summary 11
5. PROGRAM PLAN AND SCHEDULE 12
WELD MAP FIGURES 13
SCHEDULE SHEETS 23

TABLES

3.4 Reference Calibration Standards 6
3.5 Reference NDE Procedures 7
3.6 Reactor Pressure Vessel Sketches 8
\qquad OF \qquad C. NUCLEAR ENERGY SERVICES, INC \qquad -

1. INTRODUCTION

This Program Plan has been prepared to fulfill the Preservice Inspection (PSI) requirements for the Reactor Pressure Vessel (RPV) of the Seabrook Nuclear Power Station (NPS) Unit \#1, owned by Publec Service Company of New Hampshire, NH.

The scope of these examinations, procedures, and acceptance criteria meet the requirements outlined in Section XI of the American Society of Mechanical Engineers (ASME) Boiter and Pressure Vessel (BPV) Code, "Rules for Inservice Inspection of Nuclear Power Plant Components", 1977 Edition with Addenda up to and including the Summer 1978 Addenda.

2. BASES FOR PRESERVICE INSPECTION PROGRAM

Title 10 of the Code of Federal Regulations, Part 50, Subsection 10CFR 50.55(a) establishes the edition of Section XI of the 'ASME' BPV Code applicable to Preservice Inspection of the Reactor Pressure Vessel based upon the construction permit, which was issued on September 7, 1976. This unit is required to comply with requirements set forth in ASME Code no earlier than Summer 1972 Addenda of 1971 edition. However, the examinations requirements of the program plan, in accordance with Public Servici Company of New Hampshire specification NO. SBISI-1 REV 2 "Preservice/Inservice Inspection Services for Seabrook Nuclear Power Station" comply with ASME 1977 Edition with Addenda through Summer 1978. ASME Section XI Code Cases in accordance with Reg. Guide 1.147 will be used where applicable.

Consideration will te given to the provisions of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.150, "Ultrasonic Testing of Reactor Vessel welds during Preservice and Inservice Examinations", Regulatory Guide 1.65, "Inspection of Reactor Vessel Studs" and Regulatory Guide 1.58, "Qualification of Inspection Personnel".

3. PRESERVICE INSPECTION PROGRAM PLAN DESCRIPTION

3.1 CLASSIFICATION

All the components covered in this program plan are part of the reactor coolant pressure boundary as defined in 10CFR 50 subsection $50.2(\mathrm{v})$ and therefore this classification complies with requirements for Class I components set forth in Section III of ASME BPV Code.

3.2 EXEMPTIONS

None of the welds or components of the RPV are exempted from examination by subparagraph IWB-1220 of Section Xi.

3.3 EXCEPTIONS

Exceptions to Code required examinations may be authorized by the regulatory authority, as allowed by 10CFR $50.55 \mathrm{a}(\mathrm{a})(2)$, provided that design fabrication, installation, testing and inspection performed in compliance with Codes and Section XI requirements would result in hardship without a compensating increase in the level of quality and safety, or provided that the proposed alternative examination will provide an acceptable level of quality and safety. Detailed descriptions and justifications for exceptions taken are itemized in Table 3.3 (Provided Later).

3.4 ULTRASONIC TESTING CALIBRATION STANDARDS

The UT Examination Calibration Standard design and material selection is in accordance with subarticle T-540 of Article 4 of 'ASME' Section V, 1977 Edition, through Summer 1978 Addenda.

Table 3.4 lists all the UT Calibration Standards required to perform the Ultrasonic Examinations for the RPV at Seabrook Nuclear Power Station.

TABLE 3.4
Reference Calibration Standards

Title

196-102
196-103
196-104
196-201
196-202

SB-RV V-Stud

Block Wall Thickness Material 7"
$9 "$
11 "
Later
Later
$57.6^{\prime \prime} \times 7^{\prime \prime \prime}$

SA 533 GRB, CLI
SA 533 GRB, CLI
SA 533 GRB, CLI
SA 508 CLASS II
SA 182 TYPE F-316
\& SA 508 CLASS II
SA 540 GR. B. 24

3.5 EXAMINATION PROCEDURES

Subarticle IWA-1400 of Section XI requires the development and preparation of written examination procedures necessary for the conduct of the nondestructive examinations associated with PSI operations. The writien procedures for the performance of visual, surface, and volumentric examinations are referenced in Table 3.5.

Visual Testing (VT) examination is employed to provide a report of the general condition of the part, component or surface to be examined; including such conditions as scratches, wear, cracks, corrosion or erosion on the surfaces; misalignment or movement of the part or component; or any evidence of leaking. The NES VT examination procedures are based on the requirements of Paragraph IWA-2210 of ASME SEction XI.

Liquid Penetrant Testing (PT) examination is specified as the surface examination method to delineate or verify the presence of cracks or discontinuities open to the examinaiton surface. The NES PT Examination Procedure is based on the requirements of Paragraph IWA-2222 of Section XI.
\qquad

The Ultrasonic (pulse echo) Testing (UT) examination is selected as the volumetric examination method to indicate the presence of subsurface discontinuities by examining the required volume of metal contained beneath the surface to be examined. The NES UT examination procedures are based on Appendix III of Section XI and Article 4 of ASME Section V. Automated volumetric examination procedures have been written in compliance with Reg. Guide 1.150.

TABEL 3.5

REFERENCE NDE PROCEDURES

30 A6468 - Uitrasonic Examination Procedure for Studs and Bolts
80 A6471 - Ultrasonic Examination Procedure for Reactor Pressure Vessel Closure Head Welds
80 A6472 - Procedure for Liquid Penetrant Examinations
80 A6473 - Procedure for Magnetic Particle Examinations
80 A6474 - Procedure for Visual Examinations
80 A6476 - Automated Reactor Vessel Preservice Examination Scan Plan
80 A6477 - Automated Ultrasonic Examination Procedure for Reactor Vessel Shell Welds
80 A6478 - Automated Ultrasonic Examination Procedure for Reactor Vessel Upper Shell to Flange Weld from the Flange Mating Surface
80 A6479 - Automated Ultrasonic Examination Procedure for Reactor
80 A 6480 -
Vessel Nozzle to Sheil Welds from the Nozzle Bore

3.6 FIGURES AND SKETCHES

The figures listed in Table 3.6 delineates the identification and location of areas of the Reactor Pressure Vessel requiring examinations.

TABLE 36
PEACTOR PRESCURE VESSEL SKETCHES

A-0i - REV 0	General Arrangement	
A-02 -	REV 0	Circumferential Weld Map Reactor Vessel Assembly
A-03 -	REV 0	Longitudinal Weld Map Reactor Vessel Assembly
A-04 -	REV 0	Closure Head Weld Map
A-05 -	REV 0	Bottom Head Weld Map
A-06 -	REV 0	Nozzle Weld Map
A-07 -	REV 0	Top Head Partial Penetration Weld Map
A-08 -	REV 0	Bottom Head Partial Penetration Weld Maps
A-09 -	REV 0	Closure Head Bolting Reference
A-10 -	REV 0	Bolting Details

3.7 QUALITY ASSURANCE

The NES Quality Assurance Program Plan (QAPP), Document No. 80A5034, governs the design review and implementation of the Seabrook Nuclear Power Station Preservice/Inservice Inspection Program Plan. This document is in accordance with NES ISI Quality Assurance Manual, Document No. 80A9021, which is in compliance with Appendix B of 10CFR50. The CAPP includes the detailed quality assurance requirements that are common ω all activities of the program including organization, management, liaison, examination implementations, control of inspection records, qualifications of personnel, materials and procedures, etc. The QAPP is presented as part of the DSI Program Plan.

3.8 EVALUATION CRITERIA

Evaluation of any indications detected during PSI shall be made in accordance with IWA-3000 of Section XI. Indications detected may be evaluated by other nondestructive methods, where practical, to assist in the determination (size, shape, location, orientation) of the type of indication and acceptability before final disposition is made.

3.9 RECORDS AND REPORTS

A system of records of the Preservice Inspection, plans, schedules and calibration standards; the examination resuits and reports, the corrective action required and taken, will be developed and maintained at the site in accordance with Article IWA-6000 of Section XI.

3.10 PERSONNEL QUALIFICATION REQUIREMENTS

Personnel performing nondestructive examination operations shall be qualified with procedures prepared in accordance with SNT-TC-1A, 1975 Edition, for the applicable examiantion technique and methods as required by Article IWA-2300 of Section XI. All examinations shall be performed and the results evaluated by qualified nondestructive examination personnel.

For those nondestructive examinaiton methods not covered by SNT-TC-1A documents, NES shail qualify personnei on the particular method involved. The NES procedures for such qualification provide uniform programs of training, evaluation, and certification of personnel.

3.11 PRE-EXAMINATION REQUIREMENTS

General provisions for accessibility have been defined by Article IWA-1500 of Section XI of the ASME Code.
\qquad

1. All portions of 'RPV' that require inspection in accordance with the requirements of ASME Section XI are designed with adequate physical access to allow the required inspection.

4. IMPLEMENTATION OF REGULATORY GUIDE 1.150
"Ultrasonic Testing of Reactor Vessel Welds
During Preservice and Inservice Examinations"

4.1 INTRODUCTION

Nuclear Energy Services has estabiished methods and techniques which are in full compliance with the provisions of Revision 1 to Regulatory Guide 1.150 (as recommended by the AdHoc Committee of the Electric Utility Industry). The specific methods and processes developed and followed by NES are detailed in a number of Reg. Guide specific implementing procedures as well as in the ultrasonic examination procedures themseives. It is the intent of this document to provide a synopsis of NES' approach to compliance.

4.2 GENERAL CONSIDERATIONS

The general approach taken is to use a layered examination. Specifically, the inner $1 / 4$ to $1 / 3$ of the volume is examined utilizing much more sensitive techniques than is the outer $3 / 4(2 / 3)$. The layered examination is accomplished utilizing different transducer configurations rather than electronic gating or gain differential utilizing the same transducer. NES has developed and qualified inner near surface techniques utilizing dual 60° search units. These near surface techniques are utilized at all RPV examination areas except some lower head areas where a " $.11 l$ vee" 45° shear near surface technique is used. This approach, although more conservative than some other implementation schemes, assures that the amount of unexamined volume is negligible throughout the reactor vessel.

Qualification of the ID near surface techniques utilized for detection of cracking at/or near the clad to base metal interface was performed on test blocks belonging to the EPRI NDE Center at Charlotte, North Carolina. The methods utilized were demonstrated to be fully capable of detecting the maximum allowable flaw sizes in this most critical region of the examination volume.

Correction factors for static calibration versus dynamic scanning and clad direction versus scan direction are developed utilizing a section of clad vessel plate which is representative of clad and clad base metal interface conditions.

4.3 IMPLEMENTING PROCEDURE SUMMARY

1. NES Procedure 80A5532, "Automated Ultrasonic Examinations Systems Performance Procedure".

Defines requirements for photos of RF waveforms from search unit/exam system setup before deployment, on site before exam, and after exam information for comparison.
II. NES Procedure 80A5533, "Automated Ultrasonic Examination Technique Qualification for RG 1.150 Compliance".

Documents the success of an ultrasonic technique in locating specific reflectors.
III. NES Procedure 80A5534, "Automated Ultrasonic Examinations Head Qualifications Procedure".

Certifies exam heads to be operational. Results in documentation of empirical determination of beam angle, exit point, and beam spread.
IV. NES Procedure 80A5535, "Automated Ultrasonic Examination Procedure .or Flaw Evaluation".

Defines "recordable" and "reportable" indications. Ensures proper disposition and documentation of flaws in each of these categories.
V. NES Procedure 80A5536, "Procedure for Evaluation and Certification of Ultrasonic Search Units".

Provides a uniform means of measurement and evaluation of search unit performance. Results in a documentation of frequency spectrum, waveform, and characteristics.

5. PROGRAM PLAN AND SCHEDULE

The specific PSI examination requirements are defined in the PSI Program Plan and its schedule tabies. Each weid or other examination area is designared by a unique identification number, and then described. Also identified are applicable examination category, method, procedure number, and any calibration standard, number referenced for ultrasonic examination.

Examination items are first divided according to the figure that they appear on. Multiple examination requirements of the same component are listed togecher in the schedule tables.
\qquad
NUCLEAR ENERGY SERVICES. INC.
PAGE \qquad 13 OF \qquad

\qquad OF. \qquad

\qquad
\qquad OF \qquad
NUCLEAR ENERGY SERVICES, INC.

$104-142-0^{\circ}$

NOTE:
WELD IDENTIFICATION NOS.
HAVE THE PREFIX I-SB-RV-.

172 mexas umer ummar	
${ }^{\text {sysinem }}$	"He LONGITUDINAL WELD MAP REACT VESSEL ASS'BLY
nev 0 no no $\mathrm{A}-03$	
$\begin{aligned} & \text { or TEW } \\ & \text { imA } \end{aligned}$	
${ }^{\text {Pmozet }}$ SEABROOK N.P. S.	
not roscue	

\qquad

PAGE \qquad OF \qquad 67

meesas ummer stmecte	
$\underset{\substack{\text { srsyem } \\ \text { nom }}}{ }$	"ILE CLOSURE HEAD WELD MAP
nev: 0 no no $\mathrm{A}-\mathrm{O} 4$	
$\begin{array}{ll} \text { an TE } \\ \text { An in } \end{array}$	are $8 / 4 / 82$ oare $8 / 23 / 82$ CLASS I
movect SEABROOK N.P.S.	
ner roscue	

\qquad
\qquad OF \qquad

SECTIONAL

TORUS ASSEMBLY MERIDIONAL WELD

NOTE:
WELD IDENTIFICATION NOS.
HAVE THE PREFIX I-SB-RV-.

1720	
${ }^{\text {sysinem }}$	BOTTOM HEAD WELD MAP REACT. VESSEL ASS'BLY
nev 0	No wo A-05
${ }^{\text {monel }}$ SEABROOK N.P.S.	
not roscus	

\qquad

NUCLEAR ENERGY SERVICES. INC.

\qquad OF \qquad

NOTE:

${ }^{\text {spsins }}$	NOE NOZZLE WELD MAP REACT: VESSEL ASSBBLY
nev. 0 no mo A-06	
$\begin{aligned} & \text { " हN } \\ & =A A \end{aligned}$	Ont 8/g/e CLASS I
monct SEABROOK N.P.S.	
50\% 10 scme	

ALL IDENTIFICATION NOS. HAVE
THE PREFIX I-SB-RV- FOR COMPLETE IDENTIFICATION.
\qquad
\qquad OF \qquad

\qquad
\qquad

NOTE: ALL BOTTOM HEAD PARTIAL PENETRATION WELD NOS. ARE PRECEE:DED BY I-SB-RV-2OI-151- FOR COMPLETE IDENTIFICATION.

1215 -mens comev uemes	
"\%at	"HzGOTTOM HEAD PARTIAL PENETRATION REACT. VESSEL ASSBLY
nev O no no $\mathrm{A}-08$	
${ }^{\text {monet SEABROOK N.P.S. }}$	
not rosenes.	

not to sciae
\qquad
\qquad OF \qquad

\qquad
\qquad 22 OF \qquad 67

Systeme: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

PROGRAM PLAN AND SCHEDULE
5562-SEABROOK

By:
App: Rev:
 Date: $3 / 54$ Date: $\frac{3 / 54}{23}$ Page: 23 of 67

COMPONENT IDENIIFICATION	COMPONENT DESCRIPTION	PROCEDURE NUMBEA	CALIBRATION BLOCK (If applicabiel	CODE CATEGOPY	$\begin{aligned} & \text { CODE } \\ & \text { EXAM } \\ & \text { METHOD } \end{aligned}$	zONE NO.	REMAFKS

CIRCUMFERENTIAL WELDS

REF. DWG. NO. A-02

1-SB-RV-103
-101

1-SB-RV-101
-101

1-SB-RV-101
-121

1-SB-RV-103
-121

1-SB-RV-101
-171

1-SB-RV-104
-141

1-SB-RV-102
-151

Closure Head Dome
Section to Torus Assy
Circumferential Weld
Torus Assembly to
Closure Head Flange
Circumferential Weid
Vessel Flange Assy
to Upper Shell Assy
Circumferential Weld
Upper Shell Assy
to Intermediate Shell
Assy Circumferential Weld
Inter. Shell Assy
to Lower Shell Assy
Circumferential Weld
Lower Shell Assy
to Bottom Torus Assy
Circumferential Weld
Bottom Torus Assy to Bottom Dorne Section Circumferential Weld

80A6471

20A6471

80 A6477
80A6480
80A6478
80 A6477
80 A6480

80 A6477
80 A6480

80 A6477
80A6480

80 A6477

196-102

196-102

196-104
196-201
196-104
196-103
196-103

$196-103$	B-A	UT
	B1.11	
$196-102$		
$196-102$	B-A	UT
	B1.11	

B-A UT
B1. 21

B-A
UT
B1. 40

B-A
UT
B1. 30

B-A UT
B1.11

B-A UT
B1.11

B1.11

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		5562-SEABROOK			By: App: Rev:	$\begin{array}{r} \frac{m K}{A A} \\ \frac{2}{2} \\ \hline \end{array}$	Date: \qquad $3 / 84$ Date: \qquad Page: 24 of 67
COMPONENT	COMPONENT	PROCESURE NUMBER	cal bration block (if applicable)	CATEGORY	CODE	2ONE	нemipiss
	VESSEL LONGITUDINAL REF, DWG. NO: A-03						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-122-2820 \end{aligned}$	Upper Shell Longitudinal Weld At 282 Degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-104	$\begin{aligned} & \text { B-A } \\ & \text { B1.12 } \end{aligned}$	UT		
$\begin{aligned} & \text { I-SB-RV- } \\ & 101-122-1620 \end{aligned}$	Upner Shell Longitudinal Weld at 162 degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-104	$\begin{aligned} & \text { B-A } \\ & \text { B1.12 } \end{aligned}$	'T		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-122-420 \end{aligned}$	Upper Shell Longitudinal Weld at 42 degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-104	$\begin{aligned} & \text { B-A } \\ & \text { B1.12 } \end{aligned}$	UT		
$\begin{aligned} & \text { I-SB-RV- } \\ & 101-124-2400 \end{aligned}$	Intermediate Shell Longitudinal Weld at 240 degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-103	$\begin{aligned} & \text { B-A } \\ & \text { B1.12 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-124-120^{\circ} \end{aligned}$	Intermediate Shell Longitudina! Weld at 120 degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-103	$\begin{aligned} & \text { B-A } \\ & \text { B1.12 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-124-00 \end{aligned}$	Intermediate Shell Longitudinal Weid at 0 degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-103	$\begin{aligned} & \text { B-A } \\ & \text { B1. } 12 \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-142-3300 \end{aligned}$	Lower Shell Longitudinal Weld at 330 degrees	$\begin{aligned} & 80 A 647 ? \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-103	$\begin{aligned} & \mathrm{B}-\mathrm{A} \\ & \mathrm{~B} 1.12 \end{aligned}$	UT		

System: Reactor Pressure Vessei Document No. 80A6401 Preservice Inspection

COMPONENT
IDEITIFICATION

By:
5562-SEABROOK

App:
Rev:

Date: $3 / 94$ Date: अ/e4 P=ge: 25 of 67

VESSEL LONGITUDINAL WELDS

REF. DWG. NO: A-03

1-SB-RV-
1-101-142-210

1-SB-RV-
101-142-900

Lower Shell
Longitudinal Weld
at 210 degrees

Lower Shell
 Longitudinal Weld
 at 90 degrees

80 A6477	$196-103$	B-A B1.12	UT
80 A6480			
80 A6477	$196-103$	B-A	UT
80 A6480		B1.12	

System: Reactor Pressure Vessel
Document No. 80A6401
Preservice Inspection

PROGRAM PLAN AND SCHEDULE
5562-SEABROOK

COMPONENT DESCRIPTION

App:
Rev:

Date: $3 / 94$ Date: $\frac{3154}{265}$ Page: $\frac{26 \text { of } 67}{}$

component	component		CALIBRATION BLOCK if applicable	CATEOEAK	ciot Exam methoi
VESSEL INTERIOR EXAM					
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { Interior } \end{aligned}$	Vessel Interior	80A6474	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~B} 13.10 \end{aligned}$	B-N-1	VT-3
1-SB-RVCore Support	Core Support Structures	80.6474	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~B} 13.10 \end{aligned}$	B-N-3	VT-3

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

11 工
PROGRAM PLAN AND SCHEDULE
5562-SEABROOK

By: App: Rev:

Date: $3 /=4$ Date: $3 / 84$ Pagc: 27 of 67

COMPONENT	COMPONENT		caubration block at applicabie)	COTEE	CODE	$\underset{\substack{\text { 2ONE } \\ \text { NO }}}{ }$	REMAFBKS
	MERIDIONAL WELDS REF. DEG. NO: A-04, A-05						
$\begin{aligned} & 1-S B-R V- \\ & 101-104-450 \end{aligned}$	Closure Head Torus Assy Meridiona! Weld at 45 degrees	8046471	196-102	$\begin{aligned} & \text { B-A } \\ & \text { B1.22 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-104-1350 \end{aligned}$	Closure Head Torus Assy Meridiona! Weld at 45 degrees	80A6471	196-102	$\begin{aligned} & \text { B-A } \\ & \text { B1.22 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-104-2250 \end{aligned}$	Closure Head Torus Assy Meridional Weld at 225 degrees	8046471	196-102	$\begin{aligned} & \text { B-A } \\ & \text { B1. } 22 \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-104-3150 \end{aligned}$	Closure Head Torus Assy Meridional Weld at 315 degrees	80A6471	196-102	$\begin{aligned} & \text { B-A } \\ & \text { B1.22 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 101-154-00 } \end{aligned}$	Bottom Head Torus Assy Meridiona! Weld at 0 degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-102	$\begin{aligned} & \text { B-A } \\ & \text { B1.22 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-154-900 \end{aligned}$	Bottom Head Torus Assy Meridional Weld at 90 degrees	$\begin{aligned} & 80 \text { A6477 } \\ & 80 \text { A } 6480 \end{aligned}$	196-102	$\begin{aligned} & \text { B-A } \\ & \text { B1.22 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 101-154-1800 \end{aligned}$	Bottom Head Torus Assy Meridional Weld at 180 degrees	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \end{aligned}$	196-102	$\begin{aligned} & \text { B-A } \\ & \text { B1.22 } \end{aligned}$	UT		

System: Reactor Pressure Vesse! Document No. 80A6401
Preservice Inspection

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		PROGRAM PLAN AND SCHEDULE5562-SEABROOK			By: App: Rev: \qquad CODE EXAM EETHWOO	$\frac{\frac{m K}{\frac{m A}{1}}}{\underbrace{}_{\substack{\text { ZONE } \\ \text { NO }}}}$	Date: \qquad Date: \qquad Paga: 29 of 67 PEMARTES
COMPONENT	COM		calieration block ilf applicatite)	CaClegory			
	VESSEL NOZZLE REF. DWG. NO: A						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 107-121-A \end{aligned}$	Upper Shell to Outlet Nozzle 'A'	$\begin{aligned} & 80 A 6477 \\ & 80 A 6480 \\ & 80 A 6479 \end{aligned}$	$\begin{aligned} & 196-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3. } 90 \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 105-121-8 \end{aligned}$	Upper Sheil to Inlet Nozzle 'B'	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \\ & 80 \mathrm{~A} 6479 \end{aligned}$	$\begin{aligned} & 196-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3. } 90 \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 105-121-C } \end{aligned}$	Upper Shell to Inlet Nozzle 'C'	$\begin{aligned} & 30 A 6477 \\ & 80 A 6480 \\ & 80 A 6479 \end{aligned}$	$\begin{aligned} & 196-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3.90 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 107-121-D \end{aligned}$	Upper Shell to Outlet Nozzle 'D'	80 A6477 80 A6480 80 A6479	$\begin{aligned} & 196-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3.90 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 107-121-E \end{aligned}$	Upper Shell to Outlet Nozzie 'E'	80 A6477 80 A6480 80A6479	$\begin{aligned} & 196-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3. } 90 \end{aligned}$	UT		
$\begin{aligned} & 1-58-R V- \\ & 105-121-F \end{aligned}$	Upper Shell to Inlet Nozzle 'F'	80 A6477 80 A6480 80A6479	$\begin{aligned} & 190-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3. } 90 \end{aligned}$	UT		
$\begin{aligned} & \text { I-SB-RV- } \\ & 105-121-G \end{aligned}$	Upper Shell to Inlet Nozzle 'G'	80 A6477 80 A6480 80A6479	$\begin{aligned} & 196-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3.90 } \end{aligned}$	UT		

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		AN AND S CH 5562-SEABROO	UUE		By- App: Rev:	$\frac{\frac{p^{n}, c}{1+A}}{1}$	$\begin{aligned} & \text { Date: } \frac{31+4}{3 / 4} \\ & \text { Date: } \\ & \text { Page: } \frac{30 \text { of } 67}{} \end{aligned}$
combonemt	COMCONENT	PROCEDURE NUMBER		categorar	CODE EXAM UETHOC	20ne	Remifors
	VESSEL NOLZLE WELDS REF. D®G. NO: A-06						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 107-121-H \end{aligned}$	Upper Shell to Outlet Nozzle 'H'	$\begin{aligned} & 80 \mathrm{~A} 6477 \\ & 80 \mathrm{~A} 6480 \\ & 80 \mathrm{~A} 6479 \end{aligned}$	$\begin{aligned} & 196-104 \\ & 196-201 \end{aligned}$	$\begin{aligned} & \text { B-D } \\ & \text { B3.90 } \end{aligned}$	UT		
$\begin{aligned} & \text { I-SB-RV-IR } \\ & 128-301-A \end{aligned}$	Outlet Nozzle 'A' Inner Radius and Bore	80 A6480	196-202	B-D B3.100	UT		
$\begin{aligned} & 1-S B-R V-I R \\ & 128-101-8 \end{aligned}$	Inlet Nozzie 'B' Inner Radius and Bore	80 A6480	196-202	$\begin{aligned} & \text { B-D } \\ & \text { B3.100 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV-IR } \\ & 128-101-C \end{aligned}$	Outlet Nozzle 'C' Inner Radius and Bore	80 A6430	196-202	$\begin{aligned} & \text { B-D } \\ & \text { B3.100 } \end{aligned}$	UT		
$\begin{aligned} & \text { I-SB-RV-IR } \\ & \text { 128-301-D } \end{aligned}$	Outlet Nozzle 'D' Inner Radius and Bore	80 A6480	196-202	$\begin{aligned} & \text { B-D } \\ & \text { B3.100 } \end{aligned}$	UT		
$\begin{aligned} & 1-58-R V-\mathbb{R} \\ & 128-301-E \end{aligned}$	Outlet Nozzle "E' Inner Radius and Bore	80 A6480	196-202	$\begin{aligned} & \text { B-D } \\ & \text { B3.100 } \end{aligned}$	UT		
$\begin{aligned} & 1-58-R V-\mathbb{R} \\ & 128-101-F \end{aligned}$	Inlet Nozzle "p Inner Radius and Bore	80A6480	196-202	$\begin{aligned} & \text { B-D } \\ & \text { B3.100 } \end{aligned}$	UT		

System: Reactor Fressure Vessel Document No. 30A6401 Preservice Inspection

Byz

coneronewt centricanow	conponewn ce scomplion	maccebula numben	Cexienation Bock in incicrate	$\begin{gathered} \text { COOE } \\ \text { CNIEGOEN } \end{gathered}$	$\begin{aligned} & \text { Coot } \\ & \text { Exay } \\ & \text { vetivor } \end{aligned}$	zonk 140	Cenerats

VESSEL NOZZLE WELDS
REF. DWG. NO: A-06
-302-121-F

1-S8-RV-SE
-302-121-G

1-SB-RV-SE
$-301-121-H$

Inlet Nozzle F ?
to Safe End

Inlet Nozzie "G"
to Safe End

Outlet Nozzle ${ }^{4 T}$
to Sate End
$80 A 6480$
$80 A 6472$
$80 A 6480$
$80 A 6472$
$80 A 6480$
$80 A 6472$

$176-202$	B-F	UT
N/A	BS.10	PT
$196-202$		B-F
NT	UT	
N/A	B5.10	PT
$196-202$		B-F
N/A	BT.10	
PT		

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

COMPONENT IDENTIFICATION	COMPONENT	PROCEDURE NUMBER	callibration BLOCK (II applicabie)	CODE CATEGOAY	CODE
	CRDM HOUSING WELDS REF DWG. NO: A-07				
$\begin{aligned} & \text { 1-SB-RV- } \\ & 212-112-E \end{aligned}$	CRDM Housing \#58	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 214-112-E \end{aligned}$	CRDM Housing \#70	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 214-112-F \end{aligned}$	CRDM Housing \#71	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 215-112-D \end{aligned}$	CRDM Housing \#77	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 213-112-C \end{aligned}$	CRDM Housing ${ }^{\text {W }} 64$	80A6,472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 212-112-G \end{aligned}$	CRDM Housing \#60	80A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 214-112-G } \end{aligned}$	CRDM Housing \#72	80A6.472	N/ A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		LAN AN $5562-\text { SEA }$	5562-SEABROOK		By: App: Rev:	$\frac{m}{\frac{m}{1}}$	Date: \qquad 3/69 Date: \qquad Page: 34 of 67
COMPPNENT	COMPON		CALIBRATION BLOCK (it applicable)	CODE	CODE	2ONE	REMARKS
	CRDM HOUSING WE REF DWG. NO: A-07						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 214-112-H \end{aligned}$	CRDM Housing \#73	80 A6.472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { I-SB-RV- } \\ & 215-112-E \end{aligned}$	CRD M Housing \$778	80A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 213-112-D \end{aligned}$	CRDM Housing \#65	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B:4.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 212-112-A \end{aligned}$	CRDM Housing \#54	80A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 214-112-A \end{aligned}$	CRDM Housing \#66	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 214-112-B \end{aligned}$	CRDM Housing \#67	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 215-112-A \end{aligned}$	CRDM Housing \#74	80 A6472	N/A	$\begin{aligned} & \mathrm{B}-\mathrm{O} \\ & \mathrm{~B} 14.10 \end{aligned}$	PT		

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

17 Pe PROGRAM PLAN AND SCHEDULE

5562-SEABROOK

By:

Date: $3 / 44$ Date: $3 / 34$ Page: 35 of 67

COMPONENT	COMPONENT DESCRIPTION	PROCEDURE NUMBER	calibration BLOCK III applicabie)	CODE	CODE EXAM METHOD	ZONE	REMARKS
	CRDM HOUSING WELDS REF DWG. NO: A-07						
$\begin{aligned} & 1-S B-R V- \\ & 213-112-A \end{aligned}$	CRDM Housing \#62	80A6472	N/A	$\mathrm{B}-\mathrm{O}$ B14.10	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 215-112-B \end{aligned}$	CRDM Housing \#75	80A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 214-112-C \end{aligned}$	CRDM Housing \#68	80A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 214-112-1) \end{aligned}$	CRDM Housing \#69	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 215-112-C \end{aligned}$	CRDM Housing \$76	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 213-112-B \end{aligned}$	CRDM Housing \#63	80 A6472	N/A	$\begin{aligned} & \text { B-O } \\ & \text { B14.10 } \end{aligned}$	PT		

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

117
PROGRAM PLAN AND SCHEDULE
5562-SEABROOK

By: App: Rev:

Date: $3 / 54$ Date: $3|3|$ Page: 37 of 67

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

Date: $3 / 54$ Date: $\frac{3 / 54}{325}$ Page: 39 of 67

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		LAN AND SCH 5562-SEABROOK	UULE		By: App: Rev:	$\frac{\frac{M K}{A A}}{1}$	Date: \qquad Date \qquad Page: 44 of 67
COMPONENT IDENTIFICATON	${ }_{\text {COMPONENT }}^{\text {CESCRIPTION }}$	($\begin{gathered}\text { PROCEDURE } \\ \text { NUMBER }\end{gathered}$	CALIERATION BL. OCK (If applicable		Cox $\begin{gathered}\text { CODE } \\ \text { EXAM } \\ \text { METMOC }\end{gathered}$	ZONE	Remifiks
	CLOSURE HEAD BOLTIN REF. DWG. NO: A-09 \&						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-03 \end{aligned}$	Closure Head Nut \#3	80A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-04 \end{aligned}$	Closure Head Nut \#\#	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-05 \end{aligned}$	Closure Head Nut \#5	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-06 \end{aligned}$	Closure Head Nut \#6	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-07 \end{aligned}$	Closure Head Nut \#7	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-08 \end{aligned}$	Closure Head Nut \#8	30A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 179-102-09 } \end{aligned}$	Closure Head Nut \#9	80A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection

PROGRAM PLAN AND SCHEDULE
5562-SEABROOK

By:
App:
Rev:

COMPONENT IDENTIFICATION	COMPONENT DESCRIPTION	PROCEDURE number	callibration BLOCK (II applicabie)	CODE CATEGORY	CODE
	CLOSURE HEAD BOLTIN REF. DWG. NO: A-09				
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-17 \end{aligned}$	Closure Head Nut \#17	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-18 \end{aligned}$	Closure Head Nut \#18	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-19 \end{aligned}$	Closure Head Nut \#19	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 179-102-20 } \end{aligned}$	Closure Head Nut \#20	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6. } 10 \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-21 \end{aligned}$	Closure Head Nut \#21	80 A64.72	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-22 \end{aligned}$	Closure Head Nut \#22	80A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-23 \end{aligned}$	Closure Head Nut \#23	80A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6. } 10 \end{aligned}$	PT

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

PROGRAM PLAN AND SCHEDULE
5562-SEABROOK

By:
App:
Rev:

Date: $3 / 54$ Date: 134 Page: 47 of 67

System: Reactor Pressure Vessel Document No. 30A6401 Preservice Inspection		5562-SEABROOK			By: App: Rev:	$\frac{M_{L}}{\frac{\Delta A}{1}}$	Date: \qquad Date: \qquad Page: 48 of 67
COMPONENT IDENTIFICATION	COMPONENT DESCRIPTION	PROCEDURE NUMBER	CALIBRATION BLOCK (i) applicable)	COLE	$\underset{\substack{\text { CODE } \\ \text { EXAM } \\ \text { METHOD }}}{\text { cem }}$	zONE	REMARKS
	CLOSURE HEAD BOLTI REF. DWG. NO: A-09						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-31 \end{aligned}$	Closure Head Nut \#31	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6. } 10 \end{aligned}$	PT		
$\begin{aligned} & 1-S B-R V- \\ & 179-102-32 \end{aligned}$	Closure Head Nut \#32	80A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-33 \end{aligned}$	Closure Head Nut \#33	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-34 \end{aligned}$	Closure Head Nut \#34	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-35 \end{aligned}$	Closure Head Nut \#35	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-36 \end{aligned}$	Closure Head Nut \#36	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-37 \end{aligned}$	Closure Head Nut \#37	80 A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		LAN AND SCHEDUL5562-SEABROOK			By: App: Rev:	$\frac{\frac{n i}{\frac{n A}{A}}}{1}$	Date: \qquad Date: \qquad Page: 51 of 67
COMPONENT	COMPONENT	PROCEDURE NUMBER	calibration Block (if applicabie)	CODE	CODE	zONE	REMARKS
	CLOSURE HEAD BOLTING REF. DWG. NO: A-09						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-52 \end{aligned}$	Closure Head Nut \#52	80A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-53 \end{aligned}$	Closure Head Nut \#53	80A6472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-54 \end{aligned}$	Closure Head Nut \#54	8046472	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.10 } \end{aligned}$	PT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-01 \end{aligned}$	Closure Washer \#1	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-02 \end{aligned}$	Closure Washer \#2	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-03 \end{aligned}$	Closure Washer \#3	80,16474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-04 \end{aligned}$	Closure Washer \#4	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection
1738
PROGRAM PLAN AND SCHEDULE
5562-SEABROOK
PROCEDURE NOMBER
CLOSURE HEAD BOLTING REF. DWG. NO: A-09

$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-12 \end{aligned}$	Closure Washer \#12	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-13 \end{aligned}$	Closure Washer \#13	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6. } 50 \end{aligned}$
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-14 \end{aligned}$	Closure Washer \#14	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6. } 50 \end{aligned}$
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-15 \end{aligned}$	Closure Washer \#15	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-16 \end{aligned}$	Closure Washer \#16	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { E } 6.50 \end{aligned}$
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-17 \end{aligned}$	Closure Washer \#17	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-102-18 \end{aligned}$	Closure Washer \#18	80 A 6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		AN AND SCHE5562 -SEABROOK			By: App: Rev:	$\frac{3 K}{\frac{3}{4} A}$	Date: \qquad Date: \qquad Page: 55 of 67
CORODONENT IDEA FICATION	COMPONENT	PROCEDURE NUMBEA	Calibration Block (If applicabie)	CODE CATEGOAY	CODE	$\underset{\text { zONE }}{\substack{\text { NO }}}$	REMARKS
	CLOSURE HEAD BOLTI REF. DWG. NO: A-09						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-26 \end{aligned}$	Closure Washer \#26	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-27 \end{aligned}$	Closure Washer \#27	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-28 \end{aligned}$	Closure Washer \#28	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & 1-S B-R V- \\ & 179-103-29 \end{aligned}$	Closure Washer \#29	80 A6474	N/A	$\begin{aligned} & \mathrm{B}-\mathrm{G}-1 \\ & \mathrm{~B} 6.50 \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-30 \end{aligned}$	Closure Washer \#30	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-31- \end{aligned}$	Closure Washer \#\#31	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-32 \end{aligned}$	Closure Washer \#32	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

5562-SEABROOK

By:
App:
Rev:

LICOMPONENT	COMPONENT		CALIEAATION BLOCK (If applicable)	$\underset{\text { Categiony }}{\text { CODE }}$		2ONE	Reminks
	CLOSURE HEAD BOLTI REF. DWG. NO: A-10						
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 179-103-33 } \end{aligned}$	Closure Washer \#33	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 179-103-34 } \end{aligned}$	Closure Washer \#34	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 179-103-35 } \end{aligned}$	Closure Washer \#35	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-36 \end{aligned}$	Closure Washer \#36	8UA6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-37 \end{aligned}$	Closure Washer \#37	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-38 \end{aligned}$	Closure Washer \#38	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-39 \end{aligned}$	Closure Washer \#39	80AS6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

5562-SEABROOK

By: App: Rev:

COMPONENT	COMPONENT	PROCEDUARE NUMBER	CALIERATION BLOCK (fi) applicable)	CODE	COOE EXAM METHOD
	CLOSURE HEAD BOLTING REF. DwG. NO: A-10				
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-40 \end{aligned}$	Closure Washer \#40	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1
$\begin{aligned} & 1-S B-R V- \\ & 179-103-41 \end{aligned}$	Closure Washer \#4.1	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-42 \end{aligned}$	Closure Washer \$42	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-43 \end{aligned}$	Closure Washer \#43	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-44 \end{aligned}$	Closure Washer \#44	80 A 6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-45 \end{aligned}$	Closure Washer \#45	80A6474	N/A	$\begin{aligned} & \text { B. G-1 } \\ & \text { B6. } 50 \end{aligned}$	VT-1
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-46 \end{aligned}$	Closure Washer \#46	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection PROGRAM PLAN AND SCH 5562-SEABROOK					By: App: Rev:	$\frac{m K}{\frac{M A}{1}}$	$\begin{aligned} & \text { Date: } \frac{3 / 54}{3 / 54} \\ & \text { Date: } \\ & \text { Page: } \frac{38 \text { of } 67}{} \end{aligned}$
COMPONENT	COMPONENT	Proce NUMBURER	CALIBRATION BLOCK (1) applicable)	CODE	CODE	2ONE	REMARKS
	CLOSURE HEAD BOLTI REF. DWG. NO: A-10						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-47 \end{aligned}$	Closure Washer \$147	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-48 \end{aligned}$	Closure Washer \$48	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-49 \end{aligned}$	Closure Washer \#49	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-50 \end{aligned}$	Closure Washer \#50	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 179-103-51 \end{aligned}$	Closure Washer \#51	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 179-103-52 } \end{aligned}$	Closure Washer \#52	80 A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.50 } \end{aligned}$	VT-1		
$\begin{aligned} & \text { 1-SB-RV- } \\ & \text { 179-103-53 } \end{aligned}$	Closure Washer \$53	80A6474	N/A	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6. } 50 \end{aligned}$	VT-1		

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

5562-SEABROOK

COMPCNENT

 DESCRIPTIONBy:
App:
Rev:

Date: $3 / 54$ Date: $3 / 84$ Page: 59 of 67

System: Reactor Pressure Vessel
Document No. 80A6401
Preservice Inspection

PROGRAM PLAN AND SCHEDULE

Component	COMPONENT	PROCEDURE Number	calibration block uff applicabien	CODE Category	CODE $\begin{gathered}\text { COL } \\ \text { EXAM } \\ \text { METHOD }\end{gathered}$
	CLOSURE HEAD BOLTING REF. DWG. NO: A-10				
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-01 \end{aligned}$	Vessel Flange Threads, Hole \#1	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-02 \end{aligned}$	Vessel Flange Threads, Hole \#2	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-03 \end{aligned}$	Vessel Flange Threads, Hole \#3	80 A64 82	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & 1-S B-R V- \\ & 126-101-04 \end{aligned}$	Vessel Flange Threads, Hole \#4	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & 1-S B-R V- \\ & 126-101-05 \end{aligned}$	Vessel Flange Threads, Hole \#5	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-06 \end{aligned}$	Vessel Fiange Threads, Hole \#6	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection PROGRAM PLAN AND SCH 5562-SEABROO					Ey: App: Rev: CODE EXAM ME THOD	$\frac{\frac{m K}{\frac{A A}{1}}}{\substack{\text { ZONE } \\ \text { NO }}}$	Date: \qquad Date: \qquad Page: $\overline{61}$ of 67
COMPONENT	COMPONENT DESCRIPTION	PROCEDURE NUMBER	CALIBRATION BLCK if applicable)	CATEGORY			REMARKS
	CLOSURE HEAD BOLTI REF. DWG. NO: A-10						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-07 \end{aligned}$	Vessel Flange Threads, Hole \#7	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-08 \end{aligned}$	Vessel Flange Threads, Hole \#8	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV } \\ & 126-101-09 \end{aligned}$	Vessel Flange Threads, Hole \#9	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-10 \end{aligned}$	Vessel Flange Threads, Hole \#10	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { I-SB-RV- } \\ & 126-101-11 \end{aligned}$	Vessel Flange Threads, Hole \#11	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-12 \end{aligned}$	Vessel Flange Threads, Hole \#12	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & 1-S B-R V- \\ & 126-101-13 \end{aligned}$	Vessel Flange Threads Hole \#13	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		

System: Reactor Pressure Vessel
Document No. 80A6401
Preservice Inspection

PROGRAM PLAN AND SCHEDULE
5562-SEABROOK

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

COMPONENT IDENTIFICATION	COMPONENT DESCRIPTION	PROCEDURE NUMBER	CALIBRATION BiOCK (if applicable)	CATEGOAY	CODE EXAM ME THOD
	CLOSURE HEAD BOLTING REF. DWG. NO: A-10				
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-28 \end{aligned}$	Vessel Fiange Threads Hole \#28	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-29 \end{aligned}$	Vessel Flange Threads, Hole \#29	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-30 \end{aligned}$	Vessel Flange Threads, Hole \#30	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-31 \end{aligned}$	Vessel Flange Threads, Hole \#31	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-32 \end{aligned}$	Vessel Flange Threads, Hole \#32	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-33 \end{aligned}$	Vessel Flange Threads, Hole \#33	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6. } 40 \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-34 \end{aligned}$	Vessel Flange Threads, Hole \#34	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT

System: Reactor Pressure Vessel Document No. 80A6401
Preservice Inspection

11 볻 PROGRAM PLAN AND SCHEDULE

5562-SEABROOK

By: App:

Rev:

 Date: $3 / 84$ Date: 354 Page: $\overline{65}$ of 67

COMPONENT IDENTIFICATION	COMPONENT	Paocedure NUMEER	CALIBAATION BLOCK If applicable	CCODE	
	CLOSURE HEAD BOLTING PEF. DWG. NO: A-10				
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-35 \end{aligned}$	Vessel Flange Threads, Hole \#35	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-36 \end{aligned}$	Vessel Flange Threads, Hole \#36	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-37 \end{aligned}$	Vessel Flange Threads, Hole \#37	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-38 \end{aligned}$	Vessel Flange Threads, Hole \#38	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { I-SB-RV- } \\ & 126-101-39 \end{aligned}$	Vessel Flange Threads, Hole \#39	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-40 \end{aligned}$	Vessel Flange Threads, Hole \#40	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-41 \end{aligned}$	Vessel Flange Threads, Hole \#41	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection PROGRAM PLAN AND SCH 5562-SEABROO					By: App: Rev: CODE EXAM ME THOD		Date: \qquad Date: \qquad Page: 66 of 67
COMPONENT IDENTIFICATION	COMPONENT	PROCEDURE NUMBER	calibration BLOCK (if applicablei	CATEGORY			REM ARKS
	CLOSURE HEAD BOLTI REF. DwG. NO: A-10						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-42 \end{aligned}$	Vessel Fiange Threads, Hole \#42	80A6482	196-201	B-G-1	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-43 \end{aligned}$	Vessel Flange Threads, Hole \#43	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & 1-S B-R V- \\ & 126-101-44 \end{aligned}$	Vessel Fiange Threads, Hole \#44	80A64:2	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-45 \end{aligned}$	Vessel Flange Threads, Hole \#45	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & 1-S B-R V- \\ & 125-101-46 \end{aligned}$	Vessel Flange Threads, Hole 非46	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-47 \end{aligned}$	Vessel Flange Threads, Hole \#47	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-48 \end{aligned}$	Vessel Flange Threads, Hole \#48	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		

System: Reactor Pressure Vessel Document No. 80A6401 Preservice Inspection		AN AND SCH 5562-SEABROOH	DULE		By: App: Rev:	$\frac{\frac{m k}{A A}}{\frac{1}{A}}$	Date: \qquad $3 / 24$ Date: \qquad Page: 67 of 67
COMPONENT	COMPONENT	PROCEDURE NUMAER	CALIBRATION BLOCK (it applicabte)	CATEGORY	CODE EXAM METHOD	ZONE	REMARKS
	CLOSURE HEAD BOLTI REF. DWG. NO: A-10						
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-49 \end{aligned}$	Vessel Flange Threads, Hole \#49	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-50 \end{aligned}$	Vessel Flange Threads, Hole \#50	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-51 \end{aligned}$	Vessel Flange Threads, Hole \#51	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-52 \end{aligned}$	Vessel Flange Threads, Hole \#52	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-53 \end{aligned}$	Vessel Flange Threads, Hole \#53	80 A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		
$\begin{aligned} & \text { 1-SB-RV- } \\ & 126-101-54 \end{aligned}$	Vessel Flange Threads, Hole \#54	80A6482	196-201	$\begin{aligned} & \text { B-G-1 } \\ & \text { B6.40 } \end{aligned}$	UT		

\qquad
\qquad

PROCEDURE FOR THE OPERATION

OF THE

RPV ID EXAMINATION POSITIONING DEVICE

FOR

SEABROOK NUCLEAR POWER STATION

UNIT 1

CONTROLLED COPY VALE ONLY IF THIS STAMP IS RED

PAGE II OF II

REV NO.	DATE	PAGE NO.	DESCRIPTION	APPROVAL

\qquad OF 8
\qquad

PROCEDURE FOR THE OPERATION

OF
 RPV ID EXAMINATION POSITIONING DEVICE

 TABLE OF CONTENTS

 TABLE OF CONTENTS}

Section

VII

Description

General Information and Requirements
Installation and Orientation
Examination of the RPV Shell Welds
Examination of Nozzle Welds
Positiona! Repeatability Checks
Examination Records
Operator's Critique
\qquad

SECTION I

GENERAL INFORMATION AND REQUIREMENTS

TABLE OF CONTENTS

Paragraph Title Page

1. Scope 3
2. References 3
3. Procedure Certification 6
4. Personnel Qualification 6
5. Examination Requirements 7
6. Equipment Requirements 7
7. Contractor's Responsibility 8

SECTION I

GENERAL INFORMATION AND REQUIREMENTS

1. SCOPE

1.1 MECHANICAL EXAMINATION POSITIONING EQUIPMENT

1. This document governs the operation of the RPV ID Examination Positioning Device used for ultrasonic examination of the reactor pressure vessel (RPV) from the ID surfaces.
2. Operation of the additional attachments is covered in the Operation and Maintenance Manuals for each device.

1.2 TIME OF EXAMINATION

This document shall be employed for the preservice (baseline) examination and reexamination of any repaired areas of the reactor vessel as required by the ASME Boiler and Pressure Vessel Code, Section XI.

2. REFERENCES

2.1 REFERENCE DOCUMENTS

1. NRC Regulatory Guide 1.150 Rev. 1.
2. ASME Boiler and Pressure Vessel Code, Section XI, 1977 edition through Summer of 1978 addenda.
3. NES Document 80A6401, Reactor Pressure Vessel Preservice Inspection Program Plan for Seabrook Nuclear Power Station Unit 1
4. NES Document 80A5187, Quality Assurance Program Plan for Seabrook Nuclear Power Station Unit I
\qquad OF \qquad
NUCLEAR ENERGY SERVICES, INC.
5. NES Document 80 A 9023 Inservice Inspection Data Control Procedure (latest revision).
6. NES Document 80 A 9060 , Inservice Inspection Field Change Procedure (latest revision).

2.2 APPLICABLE ULTRASONIC PROCEDURES

1. 80 A6477 Automated Ultrasonic Examination Procedure for Reactor Vessel Shell Welds from the ID Surface
2. 80 A6478 Automated Ultrasonic Examination Procedure for Reactor Vessel Lipper Shell to Flange Weld from the Flange Mating Surface
3. 80 A6479 Automated Ultrasonic Examination Procedure for Reactor Vessel Nozzle to Shell Welds from the Nozzle Bore
4. 80 A6480 Automated Ultrasonic Examination Procedure for Reactor Vessel Near Surface Technique

2.3 APPLICABLE DRAWINGS

1. Seabrook Drawings

Drawing No.
A. 10773-161-003
B. 10873-171-004
C. 10873-171-005
D. 10873-121-001
E. 10873-121-002
F. 10873-121-002
G. 10873-121-004
H. 10873-121-005
l. 10873-122-001

Title
As Built Location of Weld Seams Vessel
General Arrangen ent Elevation
General Arrangement Plan
Upper Vessel Assembly
Upper Vessel Machining
Upper Vessel Machining
Upper Vessel Machining
Upper Vessel Machining
Upper Shell
\qquad
NUCLEAR ENERGY SERVICES. INC.
PAGE \qquad OF
J. 10873-124-001 Intermediate Shell
K. 10873-126-001 Vessel Flange
L. 10873-126-002 Vessel Flange Machining \& Cladding
M. 10873-128-001 Inlet Nozzle
N. 10873-128-002 Inlet Nozzle Cladding \& Machining
O. 10873-128-003 Outlet Nozzle
P. 10873-128-004 Outlet Nozzle Cladding \& Machining
Q. 10873-141-001 Lower Vessel Assembly
R. 10873-142-001 Lower Shell
S. 10873-151-001 Bottom Head Welded Assembly
T. 10873-151-002 Bottom Head Penetrations
2. NES Weld Maps

As specified in Zone 1 of NES Document 80A6401, RPV Freservice Inspection Program Plan, Reactor Pressure Vessel.
3. Calibration Block Drawings
A. 80E6306 Basic 7" Calibration Block, Seabrook Unit 1 PC. No.196-102
B. 80E6307 Basic $9^{\prime \prime}$ Calibration Block, Seabrook Unit 1 PC. No. 195-103
C. 80E6308 Basic 11" Calibration Block, Seabrook Unit 1 PC. No. 196104
D. 80D6309 Vessel Flange Ligament Calibration Block, Seabrook Unit 1, PC. No. 196-201
E. 80 D6310 Safe End Calibration Block, Seabrook Unit 1, PC. No. 196202

2.4 OPERATIONAL MANUALS

1. The following special equipment operatioris manuals form a part of this procedure.
A. 80A5405; Operation and Maintenance Manual for the RPV ID Examination Positioning Device
B. 80A5631; Operation and Maintenance Manual, Extencer
C. S0A563?, Operation and Maintenance Manual, I.D. Nor-10 S anner
D. 80A 5633; Operation and Maintenance Manual, Nozzle Bore Scanner
E. S0A5634; Operation and Maintenance Manual, Flange Scanner
F. SOA5635; Operation and Maintenance Manual, Rotators
G. 80A5543; On-site Functional Test Procedure for the RPV ID Examination Positioning Device

3. PROCEDURE CERTIFICATION

The examination procedures described in this document comply with Section XI of the ASME Boiler and Pressure Vessel Code and the NRC Regulatory Guide 1.150 Rev .1 except where coverage is limited by part geometry or access.

4. PERSONNEL QUALIFICATION

4.1 PERSONNEL CERTIFICATION

Each person operating the mechanical equipment has demonstrated sufficient skills and knowledge to the Reactor Services Operations Manager, or his designated alternate.

4.2 PERSONNEL RECORDS

1. Records of personnel qualifications shall be maintained by the Examination Contractor.
2. A copy of each operator's certification shall become a part of the final examination report, with a copy submitted to the Plant Owner, or his
\qquad OF
agent, prior to the performance of examinations per this procedure. A current eye test shall be included.

5. EXAMINATION REQUIREMENTS

5.1 WELD IDENTIFICATION

Each weld shall be located and identified per the appropriate weld map, serial number, or other identification.

5.2 EXAMINATION COVERAGE

The intent of this procedure is to provide maximum examination coverage to insure weld integrity. The amount of transducer overlap and the volume of material examined shall be as required by the appropriate ultrasonic procedure (see paragraph 2.2).

6. EQUIPMENT REQUIREMENTS

6.1 EXAMINATION CONTRACTOR'S EQUIPMENT

The following test equipment or its equivalent shall be provided and/or operated by the Examination Contractor for examination of the reactor vessel welds.

1. RPV ID Examination Positioning Device, Model ISI-2
2. Extender
3. ID Nozzie Scanner
4. Nozzle Bore Scanner
5. Dollar Plate Scanner
6. Flange Scanner
7. Rotators
8. PaR Scanners Control Unit
9. Closed-Circuit Television System(s)
10. Applicable Examination Heads
\qquad
\qquad of \qquad

6.2 PLANT OWNER'S EQUIPMENT

The Plant Owner or his Agent shall provide and maintain the following service facilities and equipment as required. NES shall provide details as to the amounts and ratings of power, water, etc. required.
A. Scaffolding
B. Water, air, and electricity
C. Temporary Lighting
D. Crane or lifting device
*E. Radiation monitoring equipment
*F. Radiation shielding
*G. Decontamination facilities
H. Post-Inspection cleanup of test area

7. CONTRACTOR'S RESPONSIBILITY

The NES Site Supervisor shall have the ultimate responsibility for determining that all examinations have been completed in accordance with the requirements of Section XI of the ASME Boiler and Pressure Vessel Code to the maximum extent possible, and for determining the most effective sequence in which to perform these examinations.

[^0]\qquad
\qquad

DIAGRAM FOR ORIENTATION NUMBERS 3 AND 4 SHELL HEAD NO. 8OD8580-2 FIGURE 1

Orientation No. 4 Shooting Down

Note: Shooting direction refers to the orientation of the 0° straight beam when looking outward from the center of the RPV.

```
Raster Set:
III-7
```

Raster No.:
Scanning Mode:
\qquad
Head Attitude: Vertical
Orient.:_3 Shooting: UP

Index Increment: \qquad 0.45°

Index wi th: Rotate Drive $\left(5.10^{\circ}-354.90^{\circ}\right)$
Sweep With: Hoist (125.66" $-235.63^{\prime \prime}$)

Section:- III
Cal. Data Pkg.: \qquad
Pg. \qquad of \qquad
procedure
\qquad Rev. \qquad
Video Tape No.: \qquad
Cal. Block No. : $196-103$ (9")
Head No. : 80D8580-2
Weld No.: $\quad 1-\mathrm{SB}-\mathrm{RV}-101-124-0^{\circ}$
Weld Centerline:
0°
Weld Title: Intermediate Shell Longitudinal Weld at 0°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 13.2 before scanning.

RASTER SUMMARY SHEET

Raster Set:
III-7
Raster No.:
Scanning Mode: Parallel
Head Attitude: Vratical
Orient. : 3 Shooting: UP

Index Increment 0.45°
Index With: Rotate Urive (114.90 -125.10°)
Sweep With: Hoist (125.66" $\left.-235.63^{\prime \prime}\right)$
Weld Title: Intermediate Shell Longitudinal Weld at 120°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : Refer to Section 13.2 before scanning.
Date \square Time
Time
Reviewer
Date
$-$
\qquad Date

Raster Set: III-7	Section: \qquad PG. \qquad of
Raster No.	Cal. Data Pkg.
Scanning Mode: Parallel	Procedure No.: 80A6477 Rev
Head Attitude: Vertical	Video Tape No.
orient.: 4 Shooting: Down	Cal. Block No.: 196-103 (9')
Index Increment: 0.45°	Head No. : 80D8580-2
Index with: Potate Drave ($114.90^{\circ}-125.10^{\circ}$)	Weld No.: $\quad 1-\mathrm{SB}-\mathrm{RV}-101-124-120^{\circ}$
Sweep with: Hoist (125.66" $-253.63^{\prime \prime}$)	Weld Centerline: $\quad 120^{\circ}$
Weld Title: Intemediate Shell Longitudinal	ld at 120°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOR

Remarks: Befor to Section 13.2 before scanning.

Reviewer

Operator
\qquad Date \square Time

RASTER SUMMARY SHEET

\qquad
Raster No.:
Scanning Mode: Parallel

Head Attitude: Vertical Orient. : 3 Shooting: UP
Index Increment: 0.45°
Index with: Rotate Drive $\left(234.90^{\circ}-245.10^{\circ}\right)$
Sweep With : Hoist (125.66" $\left.-235.63^{\prime \prime}\right)$
Section: \qquad III Pg. \qquad
\qquad Cal. Data Pkg.:

Procedure No.: 80A6477 Video Tape No.:

Cal. Block No. : 196-103 (9')
Head No.: 80D8580-2
Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-124-240^{\circ}$ Weld Centerline: 240°

Weld Title: Intermediate Shell Iongitudinal Weld at 240°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : Refer to Section 13.2 before scanning.

Operator	Time	Reviewer
operator	Time	

Raster Set: III-7	Section: III Pg.__of
Raster No.:	Cal. Data Pkg.:
Scanning Mode: Parallel	Procedure No.: 80A5477 Rev.
Head Attitude: Vertica:	Video Tape No.:
Orient. 4 Shooting: Down	Cal. Block No. : 196-103 (9')
Index Increment: 0.45°	Head No. : 80D8580-2
Index With: Rotate Drive (234.90 ${ }^{\circ}-245.10^{\circ}$)	Weld No. : $\quad 1-\mathrm{SB}-\mathrm{RV}-101-124-240^{\circ}$
Sweep With: Hoist (125.66" $-235.63^{\prime \prime}$)	Weld Centerline: 240°
Weld Title: Intermediate Shell Longitudinal he	ld at 240°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 13.2 before scanning.
operator Date \qquad Time \qquad Reviewer
Operator
Date
Time
Date

Raster Set: III-7	Section: \qquad Pg. \qquad of
Raster No. :	Cal. Data Pkg.:
Scanning Mode: Parallel	Procedure No.: 80A6477 Rev.
Head Attitude: Vertical	Video Tape No.:
Orient. : 3 Shooting: UP	Cal. Block No. : 196-103 (9')
Index Increment: 0.45°	Head No. : 80D8580-2
Index with: Rotate Drive (84.90 ${ }^{\circ}$-95.10 ${ }^{\circ}$)	Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-142-90^{\circ}$
Sweep With: Hoist (235.63' $-341.23^{\prime \prime}$)	Weld Centerline: 90°
Weld Title: Lower Shell Longitudinal Weld	

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP
Rema	Refer	Sect	. 2 be	scann				

Operator	Reviewer
Operator	

Remarks: Refer to Section 13.2 before scanning.

[^1]| Raster Set：III－7 | Section：III ${ }^{\text {Pq }}$ ．＿－＿of |
| :---: | :---: |
| Raster No．t | Cal．Data Pkg． |
| Scanning Mode：Parallel | Procedure No． $\mathrm{S}^{\text {80A6477 }}$ Rev． |
| Head Attitude：Vertical | Video Tape No． |
| Orient． 3 Shooting：＿UP | Cal．Block No．1－126－103（9⿱丷天） |
| Index Increment： 0.45° | Head No．：$\quad 8008580-2$ |
| Index With：Rotate Drive（204．90 ${ }^{\circ} \mathrm{e} 215.10^{\circ}$ ） | Weld No．： $1-$ SB－RV－101－142－210 ${ }^{\circ}$ |
| Sweep With：Hoist（235．63＂$-341.23^{\prime \prime}$ ） | Weld Centerline： 210° |
| Weld Title：Lower Shell Longitudinal held at | |

TNDEX	START	STOP	INDEX	START	STOP	TNDEX	START	STOP

Remerks：．．．2efor to Section 13．2 before scanning，
Operator
Date
Time
eviewer
operator
Date
Time
Date

Section: III ${ }^{\mathrm{Pq}}$.__of ${ }^{\text {II }}$ Cal. Data Pkg, : \qquad
Procedure No. : 80A6477 Rev.__ Video Tape No, : \qquad Ca1. Block No. 1 _ $196-103$ (9") Head No. : \qquad
Index Increment:
0.45°
Weld No. : \qquad Weld Centerline:
210° Sweep With Hoist $\left(235,63^{\prime \prime}-341,23^{\prime \prime}\right)$
Weld Title: Lower Shell tongitixiinal weld at 210°

INDEX	START	STOP	IMDEX	START	STOP	INDEX	START	STOP

Remarks I Pefer to Section 13.2 before scanning,


```
Raster Set:
```

\qquad
Raster No.:
Scanning Mode: \qquad
Head Attitude: Vertical
orient.: \qquad
3 Shooting: \qquad
Index Increment: \qquad 0.45°
Index With: Rotate Drive $\left(324.90^{\circ}-335.10^{\circ}\right)$ Sweep With: Hoist (235.63" $\left.-341.23^{\prime \prime}\right)$
Section: III ${ }^{\mathrm{Pg}}$.__of ${ }^{\circ}$ Cal. Data Pkg.: Procedure No.: 80A6477 Video Tape No.: \qquad Cal. Block No.: 196-103 (9") Head No.: 80D8580-2 Weld No.: $\quad 1-\mathrm{SB}-\mathrm{RV}-101-142-330^{\circ}$ Weld Centerline: 330°

Weld Title: Lower Shell Longitudinal Weld at 330°

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP	

Remarks: Refer to Section 13.2 before scanning.
\qquad Time \qquad Reviewer
operator Date \qquad Time \qquad Date

Section: III
Cal. Data Pkg.:
Procedure No.: 80A6477
Video Tape No.:

Cal. Block No.: $195-103$ (9")
Head No.: 80D8580-2
Weld No.
$1-S B-R V-101-142-330^{\circ}$
Weld Centerline:
330°

Weld Title: Lower Shell Longitudinal Weld at 330°

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 13.2 before scanning.

\qquad
PAGE
OF

14. RASTER SET III-8

THREE UNIT SHELL HEAD 80D8580-2
14.1 This raster set covers the perpendicular examinations for the longitudinal welds in the intermediate shell and lower shell.
14.2 Physical (lower core support pads) obstructions and limitations may exist in several areas throughout the longitudinal welds in the lower shell. Carefuily monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or head contact is lost.
14.3 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting left or right on the raster summary sheets, this direction refers to the orientation of the 0° straight team.
14.4 Each raster summary sheet in this section provides full coverage in one direction perpendicular to the weld. Each weld is examined twice to provide coverage in both perpendicular directions as required.
\qquad

DIAGRAM FOR ORIENTATION NUMBERS 1 AND 2 SHELL HEAD NO. 80D8580-2 FIGRE 1

Transducer

Note: jhooting direction refers to the orientation of the 0° straight beam when looking outward from the center of the RPV.
Raster Set: III-8
Raster No.

Section \qquad PG.__of Cal. Data Pkg.: \qquad Procedure No.: 80A6477 Rev.
Scanning Mode: Perpendicular Video Tape No.: \qquad Cal. Block No.: 196-103 (9")
Orient. 2 Shooting: Left
Index Increment 0.45°

Index With: Iotate Drive $\left(12.90^{\circ}-353.41^{\circ}\right)$
Sweep With: Hoist $\left(124.66^{\prime \prime}-236.63^{\prime \prime}\right)$
Head No.: 80D8580-2
Weld No.: $\quad 1-\mathrm{SB}-\mathrm{RV}-101-124-0^{\circ}$
Weld Centerline:
0°
Weld Title: Intermediate Shell Iongitudinal Weld at 0°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 14.2 before scanning.

Date

Raster Set: III-8	Section: \qquad Pg. \qquad of
Paster No.:	Cal. Data Pkg.:
Scanning Mode: Perpendicular	Procedure No.: 80A6477 Rev.
Head Attitude: Horizontal	Video Tape No.:
Orient. : 1 Shooting: Pight	Cal. Block No. : 196-103 (9')
Index Increment: 0.45°	Head No. : 80D8580-2
Index With: Fotate Drive (347.10 ${ }^{\circ} \mathrm{I} .59^{\circ}$)	Weld No.: $1-\mathrm{SB}-\mathrm{PV}-101-124-0^{\circ}$
Sweep With: Hoist (124.66" $-236.63^{\prime \prime}$)	Weld Centerline: 0°
Weld Title: Intermediate Shell Iongitudinal	ld at n°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 14.2 before scanning.

Operator	Reviewer
crerator	Eate

Remarks: Refer to Section 14.2 before scanning.

Operator	Reviewer
Operater	


```
Raster Set:_ III-8
Raster No.
Scanning Mode: Perpendicular
Head Attitude: Horizontal
Orient.:__ Shooting:__Ilft _
Index Increment:
0.45
96-103 (9")
-
Index With: Dotate Drive (252.90}-238.410)
Section:_III Pg .__of__
Cal. Data Pkg.:
Procedure No.: 80A6477
``` \(\qquad\)
``` Rev.
``` \(\qquad\)
Video Tape No.: -
```Cal. Block No.: 196-103 (9n)
Head No.: 80D8580-2
Weld No.: 1-SB-RV-101-124-240
Sweep With: Hoist (124.66" - 236.63") Weld Centerline: 240'\(240^{\circ}\)
Weld Title: Intemediate Shell Longitudinal Weld at \(240^{\circ}\).
```

| INDEX | START | STOF | INDEX | START | STOP | INDEX | START | STOP | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

Remarks: Refer to Section 14.2 before scanning.

operator Operator	Time	Reviewer
	Time	

Raster Set: III-8	Section: III Pg.__f
Raster No.:	Cal. Data Pkg.
Scanning Mode: Perpendicular	Procedure No. $\underbrace{\text { 80A6477 }}$
Head Attitude: Horizontal	Video Tape No.:
Orient. 1 Shooting: Right	Cal. Block No.: $\quad 196-103$ (9')
Index Increment: 0.145°	Head No. : 80D8580-2
Index with: Potate Drive (227.10 ${ }^{\circ}-241.59^{\circ}$)	Weld No.: 1 -SB-EV-101-124-240
Sweep With: Hoist ($124.66^{\prime \prime}-236.63^{\prime \prime}$)	Weld Centerline: 240°
Weld Title: Intermediate Shell Longitudinal	ld at 240°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Raster Set: \quad III-8

Raster No: \quad| Scanning Mode: Perpendicular |
| :--- |
| Head Attitude: Horizontal |
| Orient. : $\frac{2}{\text { Shooting: Left }}$ |
| Index Increment:_0.45 |
| Index With: Potate Drive $\left(102.90^{\circ}-88.41^{\circ}\right)$ |
| Sweep With: Inist, $\left(234.63^{\prime \prime}-342.23^{\prime \prime}\right)$ |

Section: \qquad $\mathrm{Pg} . \quad$ of \qquad
Cal. Data Pkg.: \qquad
Procedure No.: 80A6477 Rev.

Video Tape No.: \qquad
Cal. Block No.: $196-103$ (9")
Head No. : 80D8580-2
Weld No. : $\quad 1-\mathrm{SB}-\mathrm{RV}-101-142-90^{\circ}$
Weld Centerline:
90°
Weld Title: Lower Shell Longitudinal Weld at 90°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 14.2 before scanning.

Raster Set: III-8	Section: III ${ }^{\text {Pg }}$.__of
Raster No. :	Cal. Data Pkg.:
Scanning Mode: Perpendicular	Procedure No.: 80A6477 Rev.
Head Attitude: Horizontal	Video Tape No.:
Orient. 1 Shooting: Right	Cal. Block No. : 196-103 (9')
Index Increment: 0.45°	Head No. : 80D8580-2
Index With: Rotate Drive (77.10 ${ }^{\circ}$ (91.59 $)$	Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-142-90^{\circ}$
Sweep With: Hoist (234.63" $-342.23^{\prime \prime}$)	Weld Centerline: 90°
Weld Title: Iower Shell Iongitudinal Weld at	90°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 14.2 before scanning.

Section: \qquad III Pg. _of

Cal. Data Pkg. Procedure No.: 80A6477 Rev. Video Tape No.: \qquad Cal. Block No.: 196-103 (9") Head No.: 80D8580-2 Weld No.: $\quad 1-S B-R V-101-142-210^{\circ}$

Weld Centerline:

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 14.2 before scanning.

Raster Set: III-8	Section: III_Pg.__ ${ }^{\text {P }}$
Raster No.:	Cal. Data Pkg :
Scanning Mode: Perpendicular	Procedure No. : 80A6477 Rev.
Head Attitude: Horizontal	Video Tape No.: *
Orient : 1 Shooting: Right	Cal. Block No. : $196-103$ (9")
Index Increment: 0.45	Head No. : 80D8580-2
Index With: 'otate Drive (197.10 - 211.59 ${ }^{\circ}$)	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-142-210^{\circ}$
Sweep With: Hoist (234.63' $-342.23^{\prime \prime}$)	Weld Centerline: 210°
Weld Title: Lower Shell Longitudinal keld at	210°

RASTER SUMMARY SHEET

Raster Set \qquad Section: \qquad
III Pg . of

Cal. Data Pkg.:
Procedure No.: 80A6477 Rev.
Video Tape No.: \qquad
Cal. Block No.: 196-103 (9')
Orient.: \qquad 2 Shooting: Left \qquad
Index Increment 0.45°

Head No.: 80D8580-2

Index With: Poliate Drave $\left(342.99^{\circ}-323.41^{\circ}\right)$ Sweep With: Hoist $\left(234.63^{\prime \prime}-342.23^{\prime \prime}\right)$

Weld No.: $1-S B-R V-101-142-330^{\circ}$
Weld Centerline:
330°
Weld Title: Iower Shell Longitudinal Weld at 330°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : Refer to Section 14.2 before scanning,
\square

Remarks: Refer to Section 14.2 before scanning,

\qquad
PAGE \qquad OF

15. RASTER SET III-9
 THREE UNIT SHELL HEAD 80D8580-2

15.1 This raster set covers the perpendicular examination, shooting up, for the lower shell to bottom head circumferential weld.
15.2 Physical (lower core support pads) obstructions and limitations may exist in severa! areas throughout the weld. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or head contact is lost.
15.3 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting up on the raster summary sheet, this direction refers to the orientation of the 0° straight team.
15.4 Each raster summary sheet in this section provides full coverage in one direction perpendicular to the weld. Each weld is examined twice to provide coverage in woth perpendicular directions as required.
\qquad OF \qquad

DIAGRAM FOR ORIENTATION NUMBERS 3 AND 4 SHELL HEAD NO. 80D8580-2 FIGURE 1

Transducer Position

Beam Direction

Orientation No. 4 Shooting Down

Note: Shooting direction refers to the orientation of the 0° straight beam when looking outward from the center of the RPV.

Raster Set: III-9	Section: III ${ }^{\text {Pg.___of }}$
Raster No.	Cal. Data Pkg.
Scanning Mode: Perpendicular	Procedure No.: 80A6477 Rev
Head Attitude: Vertical	Video Tape No.
Orient. 3 Shooting: UP	Cal. Block No.: 196-102 (7")
Index Increment: 0.45°	Head No. - 80D8580-2
Index with: Boom Swing ($170.29^{\circ}-157.89^{\circ}$)	Weld No. : 1 -SE-RV-104-141
Sweer with: Rotate Drive ($0^{\circ}-361^{\circ}$)	Weld Centerline: $\quad 168.73^{\circ}$

Weld Title: Lower Shell to Bottom Head Circ. Weld

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP	

Remarks: Refer to Section 15.2 before scanning.

\qquad
NUCLEAR ENERGY SERVICES, INC. \qquad F

16. RASTER SET III-10

THREE UNIT SHELL HEAD 80D8580-2
16.1 This raster set covers the parallel examinations for the lower shell to bottom head circumferential weld.
16.2 Physical (lower core support pads) obstructions and limitations may exist in several areas throughout the weld. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or head contact is lost.
16.3 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting left or right on the raster summary sheets, this direction refers to the orientation of the 0° straight beam.
16.4 Each raster summary sheet in this section provides full coverage in one direction parallel to the weld. Each weld is examined twice to provide coverage in both parallel directions as required.
\qquad

DIAGRAM FOR ORIENTATION NUMBERS 1 AND 2 SHELL HEAD NO. 80D8580-2 FIGURE 1

Transducer
Position

Transducer

position

Orientation No. 2 Shooting Left (ccw)

Note: Shooting direction refers to the orientation of the 0° straight beam when looking outward from the center of the RPV.

Raster Set:
III-10
Raster No.:
Scanning Mode: Parallel
Head Attitude: Horizontal
Orient. : 1 Shooting: Right
Index Increment: \qquad $0.70^{\prime \prime}$

Index With: Hoist $\left(333.52^{\prime \prime}-347.64^{\prime \prime}\right)$
Sweep With: Rotate Drive $\left(0^{\circ}-361^{\circ}\right)$

Section: III Pg._ of Cal. Data Pkg.: Procedure No. \qquad Rev. \qquad
Video Tape No. \qquad
Cal. Block No.: 196-102 (7")
Head No.: 80D8580-2

Weld No.: $1-S B-R V-104-141$
Weld Centerline: $\quad 341.23^{\prime \prime}$

Weld Title: Lower Shell to Bottom Head Circ. Weld

INDEX	START	STOP	INDEX	START	¢\%P	INDEX	START	STCP

Remarks: Refer to Section 16.2 before scanning.

Reviewer
operato*
Date
nucleaf energy services. inc. -

INDEX	SZART	STOP	INDEX	START	STOP	INDEX	START	STOP

\qquad
NUCLEAR ENERGY SERVICES, INC
\qquad

17. RASTER SET III-11

THREE UNIT SHELL HEAD 80D8580-2

17.1 This raster set covers the perpendicular examinations for bottom head radial seams.
17.2 Physical (instrumentation tubes or lower core support pads) obstructions and limitations may exist in several areas throughout the bottom head radial seams. Carefuliy monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
17.3 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting right, left, clockwise, or counterclockwise on the raster summary sheets, this direction refers to the orientation of the 0° straight beam.
17.4 Each raster summary sheet in this section provides full coverage in one direction perpendicular to the weld. Each weid is examined twice to provide coverage in both directions as required.
17.5 Lower the hoist to elevation $324.00^{\prime \prime}$ and maintain this position on the roist throughout the exam. With the double pivot boom in a horizontal position, the boom swing read outs should be set at 180.00°.
\qquad OF

DIAGRAM FOR ORIENTATION NUMBERS 1 AND 2 SHELL HEAD NO. 80D8580-2 FIGURE 1

Transducer
Position

Beam
Direction

Transduce:

Pranition

Beam
Direction

Orientation No. 2 Shooting Left (ccw)

Note: Shooting direction refers to the orientation of the 0^{0} straight beam when looking outward from the center of the RPV.

Raster Set:
III-11
Raster No.: \qquad
Scanning Mode: Perpendicular Head Attitude: Horizontal

Orient. : 2 Shooting: Left
Index Increment: 0.45°

Index With: Foom Pivot $\left(9.72^{\circ}-358.52^{\circ}\right)$
Sweep With: Boom Swing (169.38 $\left.{ }^{\circ} 139.09^{\circ}\right)$
Section: III
Pg. \qquad of \qquad
Cal. Data Pkg.:
Procedure No.: 80 A6477 Rev.
\qquad
Cal. Block No. : 196-102 (7")
Head No. : 80D8580-2

Weld No.: $\quad 1-\mathrm{SB}-\mathrm{RV}-101-154-0^{\circ}$
Weld Centerline:
0°
Weld Title: Bottom Head Radial Seam at 0°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Section 17.2 and 17.5 before scanning.


```
Raster Set:
1II-11
```

Raster No.
\qquad
Scanning Mode: Perpendicular Head Attitude: \qquad Horizontal
orient. : 1 Shooting: Right

Index Increment: \qquad 0.45°

Index with: Boam Pivot $\left(350.28^{\circ}-1.40^{\circ}\right)$
Sweep With: Boam Swing (169.38 $\left.{ }^{\circ}-139.09^{\circ}\right)$
Weld Title: Bottom Bead Radial Seam at 0°

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP
-								

Remarks : - Pefer to Sections 17.2 and 17.5 befons scanning.

RASTER SUMMARY SHEET

Section: III Pg.__of
Cal. Data Pkg.:
Procedure No. : 80A6477 Rev.__
Video Tape No.:
Cal. Block No.: 196-102 (7")
Head No. : 80D8580-2
Weld No.: $\quad 1-\mathrm{SB}-\mathrm{EV}-101-154-90^{\circ}$
Weld Centerline:
90°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Raster Set: III-11	Section: III Pg._ of
Raster No.:	Cal. Data Pkg.
Scanning Mode: Perpendicular	Procedure No.: 80A6477 Rev.
Head Attitude: Horizontal	Video Tape No.:
Orient.:_ 1 Shooting: Right	Cal. Block No. : 196-102 (7')
Index Increment : 0.15°	Head No.: 80D8580-2
Index With: Boom Pivot (30,280	Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-154-90^{\circ}$
Sweep With: Boom Swing (169.38 ${ }^{\circ}$ - 139.09°)	Weld Centerline: 90°
Weld Title: Bottom Head Radial Seam at 90°	

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

[^2]| Operator | Reviewer |
| :---: | :---: |
| operator | |

Raster Set: III-11
Raster No.:
Scanning Mode: Perpendicular
Head Attitude: Horizontal
orient.: 2 Shooting: Left
Index Increment: $0.0 .5^{\circ}$
Index With: Boom Pivot $\left(189.72^{\circ}-178.52^{\circ}\right)$
Sweep with: Boom Swing ($169.38^{\circ}-139.09^{\circ}$)
Weld Title: Bcttom Head Radial Seam at 180°

Cal. Data Pkg.:
Procedure No.: 80A6477 Rev. __ Video Tape No.: \qquad
Cal. Block No.: $\quad 196-102$ ($7^{\prime \prime}$)
Head No.: 80D8580-2

Weld No.: $1-S B-$ RV $-101-154-180^{\circ}$ Weld Centerline: 180°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : Refier to Sections 17.2 and 17.5 before scanning.

Remarks: Refer to Section 17.2 and 17.5 before scanning.
\square

RASTER SUMMARY SHEET

Remarks: Refer to Sections 17.2 and 17.5 before scanning.

RASTER SUMMARY SHEET

Raster Set: III-11	Section: III Pg. of
Raster No.:	Cal. Data Pkg.:
Scanning Mode: Perpendimlar	Procedure No.: 80A6477 Rev.
Head Attitude: Horizontal	Video Tape No.:
Orient. : 1 Shooting: Pigint	Cal. Block No.: 196-102. (7')
Index Increment: 0.155°	Head No.: 80D8580-2
Index With: Boom Pivot (260.28 ${ }^{\circ}$ - 271.48°)	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-154-270^{\circ}$
Sweep With: Eoom Swing (169.38 $\left.{ }^{\circ}-139.09^{\circ}\right)$	Weld Centerline: $270{ }^{\circ}$
Weld Title: Bottom Head Radial Seam at 270°	

| INDEX | START | STOF | INDEX | START | STOP | INDEX | START | STOP | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |

Remarks:
Refer to Sections 17.2 and 17.5 befcre scanning.

18. RASTER SET III-12

THREE UNIT SHELL HEAD 80D8580-2

18.1 This raster set covers the parallel examinations for the bottom head radial seams.
18.2 Physical (instrumentation tubes or lower core support pads) obstructions and limitations may exist in several areas throughout bottom head radial seams. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
18.3 Figure 1 is an illustration of the orientations to be used with head $00 \mathrm{D} 8580-2$. Note that when reference is made to shooting up or down on the raster summary sheets, this direction refers to the orientation of the 0° straight beam.
18.4 Each raster summary sheet in this section provides full coverage in on direction parallel to the weld. Each weld is examined twice to provide coverage in both directions as required.
18.5 Lower the hoist to elevation $324.00^{\prime \prime}$ and maintain this position on the hoist throughout the exam. With the double pivot boom in a horizontal position, the boom swing readouts should be set at 180.00°.

DIAGRAM FOR ORIENTATION NUMBERS 3 AND 4 SHELL HEAD NO. 8OD8580-2
FIGURE 1

Orientation No. 4 Shooting Down

Note: Shooting direction refers to the orientation of the 0° straight beam when looking outward from the center of the RPV.

Raster Set: \qquad
Raster No.
Scanning Mode: Parallel
Head Attitude: Vertical
Orient.: 3
3
Shooting: UP
Index Increment: \qquad 0.45°

Index with: Boom Pivot (355.92 ${ }^{\circ}-4.09^{\circ}$) Sweep with: Boom Swing ($168.73^{\circ}-139.74^{\circ}$)
Weld Title: Bottom Head Radial Seam at 0°

Cal. Data Pkg.:
Procedure No.: 80A6477
Rev. \qquad
Video Tape No.: \qquad
Cal. Block No.: 196-102 (7")
Head No.: 80D3580-2
Weld No.: $1-$ SB-RV-101-154-0 ${ }^{\circ}$
Weld Centerline:0°

INDEX	START	STOP	INDEX	START	STOR	INDEX	START	STOP

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

$-$

Remarks:_Refer to Sections 18.2 and 18.5 before scanning.

Raster Set: III-12	Section: III ${ }^{\text {Pg }}$.__f
Raster No.	Cal. Data Pkg.
Scanning Mode: Parallel	Procedure No.: 80A6477 __Rev
Head Attitude: Vertical	Video Tape No.
Orient.: 4 Shooting: Down	Cal. Block No.: 196-102 (7")
Index Increment: 0.45°	Head No.: 8008580-2
Index with: Boom Pivot ($355.92^{\circ}-4.02^{\circ}$)	Weld No.: $\quad 1-\mathrm{SB}-\mathrm{EVV}-101-154-0^{\circ}$
Sweep with: Boom Swing ($168.73^{\circ}-139.74^{\circ}$)	Weld Centerline: 0°
Weld Title: Bottom Head Radial Seam at 0°	

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP	

Remarks: Refer to Sections 18.2 and 18.5 before scanning.

Raster Set: III-12	Section: III Pg.__of
Raster No.:	Cal. Data Pkg.:
Scanning Mode: Parallel	Procedure No. : 80A6477 Rev.
Head Attitude: Vertical	Video Tape No.:
Orient : 3 _ shooting: UP	Cal. Block No. : $196-102$ (7')
Index Increment : 0.45°	Head No. : 8008580-2
Index with : Boom Pivot (85.92 ${ }^{\circ}$-94.09 ${ }^{\circ}$)	Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-154-90^{\circ}$
Sweep With: Boam Swing ($168.73^{\circ}-139.74^{\circ}$)	Weld Centerline: 90°
Weld Title: Bottom Head Radial Seam at 90°	

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Sections 18.2 and 18.5 before scanning.

Operator	Reviewer
operator	

RASTER SUMMARY SHEET

Section: \qquad III Pq . of Cal. Data Pkg.: Procedure No. : \qquad Rev. \qquad
Video Tape No.:
Cal. Block No.: 196-102 (7")
Head No.: 80D8580-2
Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-154-180^{\circ}$
Weld Centerline:
180°
Weld Title: Bottom Head Radial Seam at 180°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remar':s: Ref~r to Sections 18.2 and 18.5 before scanning,

Raster Set: III-12	Section:_III Pg._of
Raster No.:	Cal. Data Pkg.:
Scaining Mode: Parallel	Procedure No.: 80A6477 Rev.
Head Attitude: Vertical	Video Tape No.:
Orient. : 4 Shooting: Down	Cal. Block No.: 196-102 (7')
Index Increment: 0.45°	Head No. : 80D8580-2
Index With: Eoum Pivot (175.92 ${ }^{\circ} 18409^{\circ}$)	Weld No. : $1-\mathrm{SB}-\mathrm{KV}-101-154-180^{\circ}$
Sweep With: Boom Swing (168.730 ${ }^{\circ} 139.74^{\circ}$)	Weld Centerline: 180°
Weld Title: Bottan Head Radial Seam at 180°	

RASTER SUMMARY SHEE' ${ }^{\prime}$

Remarks: Refer to Sections 18.2 and 18.5 before scanning.

Operator \qquad Date Time

Date \qquad Time ne

Reviewer

Raster Set: III-12	Section: III PG._of
Raster No.:	Cal. Data Pkg.:
Scanning Mode: Parallel	Procedure No.: 80A6477 Rev.
Head Attitude: Vertical	Video Tape No.:
orient. : 4 Shooting: Down	Cal. Block No. : 196-102 (7')
Index Increment: 0.45°	Head No.: 80D8580-2
Index with: Boom Pivot. (265.92 ${ }^{\circ}$ - 274.09°)	Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-154-270^{\circ}$
Sweep With: Boom Swing ($168.73^{\circ}-139.74^{\circ}$)	Weld Centerline: 270°
Weld Title: Botton ICad Padial Seam at 270°	

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Refer to Sections 18.2 and 18.5 before scanning,

19. RASTER SET III-13

THREE UNIT SHELL HEAD 80D5915
19.1 This raster set covers the perpendicular examinations for the bottom head to dollar plate circumferential weld.
19.2 Physical (instrumentation tubes) obstructions and limitations may exist in several areas throughout weld 1-SB-RV-102-151. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
19.3 Figure 1 is an illustration of the orientations to be used with head 80D5915. Note that when reference is made to shooting up or down on the raster summary sheets, this direction refers to the orientation of the 45° angle.
19.4 The raster summary sheet in this section provides full coverage in one direction perpendicular to the weld.
19.5 Lower the hoist to elevation $324.00^{\prime \prime}$ and maintain this position on the hoist throughout the exam. With the double pivot boom in a horizontal position, the boom swing readouts should be set at 180.00°.
\qquad
NUCLEAR ENERGY SERVICES, INC.

Orientation No. 4 shooting DOWN

Note: Shooting direction refers to the orientation of the 45° angle beam when looking outward from the center of the RPV.

Raster Set: III-13
Raster No. \qquad
Scanning Mode \qquad
Head Attitude: \qquad Horizontal
orient.: \qquad 4 Shooting: Down 0.45°
Index Increment:

Index With: Rotate Drive $\left(0^{\circ}-361^{\circ}\right)$ Sweep with: Boom Swing ($159.26^{\circ}-145.90^{\circ}$)
Weld Titl : Bottom Head to Dollar Plate Circ. Weld

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : Refer to Sections 19.2 and 19.3 before scanning,

20. RASTER SET III-14

THREE UNIT SHELL HEAD 80D5915
20.1 This raster set covers the parallel examinations for the bottom head to dollar plate circurnferential weld.
20.2 Physical (instrumentation tubes) obstructions and limitations may exist in several areas throughout weld 1-SB-RV-102-151. Carefully monitor all operations in these areas via the television systern. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
20.3 Figure I (next page) is an illustration of the orientations to be used with head 80D5915. Note that when reference is made to shooting right, left, clockwise or counterclockwise on the raster summary sheets, this direction refers to the orientation of the 45° angle beam.
20.4 Each raster summary sheet in this section provides full coverage in one direction parallel to the weld. Each weld is examined twice to provide coverage in both parallel directions as required.
20.5 Lower the hoist to elevation $324.00^{\prime \prime}$ and maintain this position on the hoist throughout the exam. With the double pivot boom in a horizontal position, the boom swing readouts should be set at 180.00°.
\qquad
PACE \qquad OF

DIAGRAM FOR ORIENTATION NUMBERS 1 AND 2
SHELL HEAD NO. 80D5915
FIGURE 1

Orientation No. 1 Shooting Right.

Note: Shooting direction refers to the orientation of the 45° angle beam when looking outward from the centerline of the RPV.

Weld Title: Bottom Head To Dollar Plate Circ. Weld

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

[^3]operator
Date \qquad Time

Reviewer
Operator
Date
Time

RASTER SUMMARY SHEET

Raster Set: III-14	Section: III Pg.__of
Raster No.:	Cal. Data Pkg.:
Scanning Mode: Parallel	Procedure No. : 80A6477 Rev.
Head Attitude: Vertical	Video Tape No.:
Orient. 2 Shooting: Left	Cal. Block No. : $196-102$ (7')
Index Increment: 0.45°	Head No. : \quad O0D5915
Index With: Boom Swing ($150.25^{\circ}-142.08^{\circ}$)	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-102-151$
Sweep With: Rotate Drive ($0^{\circ}-361^{\circ}$)	Weld Centerline: 139.74°
Weld Title: Botton Head to Dollar Plate Circ.	Weld

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOF

Remarks : Refer to Sections 20.2 and 20.5 before scanning,

21. RASTER SET III-15 60° LONGITUDINAL HEAD

21.1 This raster set covers the parallel and perpendicular examinations for the first 25% of the material from the inside (ID) surface.
21.2 To ensure maximum examination coverage of the upper shell longitudinal welds, the following steps will be followed. Scanning above the nozzles, the equipment operator shall position the shell head as close as practical to the nozzle edge (inlet) or nozzle knuckle (outlet). Scan limits will vary depending on the flange taper and nozzle configurations. To examine below the nozzles, the equipment operator shall begin and end scan limits as close as practical to the nozzle edge (inlet) or nozzle knuckle (outlet). Carefully monitor all operations in the obstructed areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
21.3 Figure 1 is an illustration of the orientations of the $60^{\circ} \mathrm{L}$ Dual transducers (Head 80D8580-3). Head 800 $8580-3$ beams are orientated in two directions parallel and two directions perpendicular to the RPV welds.
21.4 Each raster summary sheet in this section provides full coverage in two directions parallel and two directions perpendicular simultaneously.

DIAGRAM FOR ORIENTATION NO. 1 HEAD 80D8580-3

FIGURE 1

NOTE: Head 80D8580-3 beams are orientated in two directions parallel and two directions perpendicular to the RPV welds

Raster Set: III-15	Section: \qquad
Raster No	Cal. Data Pkg
Scanning Mode: Perpendicular/Parallel	Procedure No.: 80A6480
Head Attitude: Horizontal	Video Tape No.
Orient.: 1 Shooting: Spe Remarks	Cal. Block No.: 196-104 (11")
Index Increment: 0.50 "	Head No.: 80D8580-3
Index With: Hioist* (Taper - 38.77")	Weld No. : 1 -SB-RV-101-121
Sweep with: Rotate Drive ($0^{\circ}-361^{\circ}$)	Weld Centerline: $26.38^{\prime \prime}$
Weld Title: Upper Shell to Flange Circ. Weld	

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks :
Head No. 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds. *Refer to Section 21.2 for examination coverage.

Operator \qquad Date \qquad Time \qquad Reviewer
onerator \qquad Date \qquad Time e_

Remarks:
Head No. 80D8580-3 beams are oriented in two directions parallel and too directions perpendicular to the RPV welds. *Refer to Section 21.2 for examination coverage.

RASTER SUMMARY SHEET

Raster Set: III-15
Raster No. : \qquad
Scanning Mode: Perpendicuiar/Parallel
Head Attitude: Vertical
Orient. : 1 Shooting: See Remarks
Index Increment: 0.33°
Index With: Rotate Drive $\left(153.70^{\circ}-170.3^{\circ}\right)$
Sween With: Hoist* (Taper - 126.66")
Weld Title: Upper Shell Longitudinal veld at 162°
Section: III ${ }^{\text {Pq }}$.__ of Cal. Data Pkg . : Procedure No. : 80A6480 1 Video Tape No. : \qquad Ca1. Block No. : 196-104 (11") Head No. : 80D8580-3 weld No. : $\quad 1-\mathrm{SB}-\mathrm{RV}-101-122-162^{\circ}$ Weld Centerline: 162°

INDEX	START	Stop	INDEX	START	STOP	INDEX	START	STOP

Remarks:
Head No. 8008580-3 beams are oriented in two diroctions parallel and two directions perpendicular to the RPV welds. *Refer to Section 21.2 for examination coverage.
operator Date \qquad Time Reviewer operator pate Time Date

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP

22. RASTER SET III-16 60° LONGITUDINAL HEAD

22.1 This raster set covers the parallel and perpendicular examinations for the inner near surface and the first 25% of the material from the inside (ID) surface.
22.2 Physical obstructions and limitations may exist in several areas throughout these examinations. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
22.3 Figure 1 is an illustration of the orientations of the $60^{\circ} \mathrm{L}$ Dual transducers (Head 80D8580-3). Head 80D8580-3 beams are orientated in two directions parallel and two directions perpendicular to the RPV welds.
22.4 Each raster summary sheet in this section provides full coverage in two directions parallel and two directions perpendicular simultaneously.

NUCLEAR ENERGY SERVICES, INC.

DIAGRAM FOR ORIENTATION NO. 1 HEAD 80D8580-3
 FIGURE 1

NOTE: Head 80D8580-3 beams are orientated in two directions parallel and two directions perpendicular to the RPV welds

Document No.: 80A6476 Page 113 of 131

RASTER SUMMARY SHEET

```
Raster Set:
III-16
Raster No.:
Scanning Mode: Perpendicular/Parallel
Head Attitude: Horizontal
Orient. :_1 Shooting: See Remarks
Index Increment: 0.50"
Index With: Hoist (225.23" - 246.03")
Sweep With: Rotate Drive (0}
Section:
```

\qquad

``` JII
                                    Pg.__of
Cal. Data Pkg.:
                            \
Procedure No.:
                80A6480
                                    Rev.
```

\qquad

```
Video Tape No.:
\bullet
Cal. Block No.: 196-103 (9')
Head No.: 80D8580-3
Weld No.:_1-SB-RV-101-171
Weld Centerline:
                                    235.63"
Weld Title: Intermediate Shell to Lower Shell Circ. Weld
```

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Raster Set:_III-16	Section: \qquad Pg. \qquad of
Raster No.:	Cal. Data Pkg.
Scanning Mode: Perpendicular/Parallel	Procedure No.: 80A6480 Rev.
Head Attitucie: Vertical	Video Tape No.:
Orient. 1 Shooting: See Remarks	Cal. Block No. : $196-103$ (9')
Index Increment : 0.33°	Head No.: 80D8580-3
Index With: Rotate Drive (113.12 $\left.{ }^{\circ}-126.88^{\circ}\right)$	Weld No. : $1-S B-R V-101-124-120^{\circ}$
Sweep With: Hoist (124.66" ${ }^{\prime \prime}$ 236.63')	Weld Centerline: 120°

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

.

Remarks : Head No. 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RDV welds. Refer to Section 22.2 before scanning.															

Remarks: Head No, 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
Refer to Section 22.2 before scanning.

RASTER SUMMARY SHEET

Raster Set: \qquad
III-16
Raster No.:
Scanning Mode: Perpendicular/Parallel
Head Attitude: Vertical
Orient.: \qquad 1 Shooting: See Remarks
Index Increment: \qquad 0.33°
Index With: Rotate Drive $\left(83.12^{\circ}-96.88^{\circ}\right)$ Sweep With: Hoist (234.63" $-342.23^{\prime \prime}$)

Video Tape No.: $*$

Cal. Block No. : 196-103 (9")
Head No. : 80D8580-3
Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-142-90^{\circ}$
Weld Centerline:

Weld Title: Lower Shell Longitudinal Weld at 90°

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP

Remarks : Head No, 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds. Refer to Section 22.2 before scanning.

Operator \qquad Date \qquad Time

Operator r Date \qquad Time me ne

Reviewer

Date

Raster Set: III-16	Section: III ${ }^{\text {Pg.__- }}$
Raster No.	al. Data Pkg
Scanning Mode: Perpendicular/Parallel	Procedure No.: 80A6480 Rev
Head Attitude: Vertical	Video Tape No
Orient. : 1 Shooting: See Remarks	Cal. Block No.: 196-103 (9')
Index Increment: 0.33°	Head No. : 80D8580-3
Index With: Rotate Drive (203.12 ${ }^{\circ}$ - 216.88°)	Weld No.: $1-$ SB-RV-101-142-210 ${ }^{\circ}$
Sweep with: Hoist (234.63" $-342.23^{\prime \prime}$)	Weld Centerline: $\quad 210^{\circ}$
Weld Title: Lower Shell Longitudinal Weld at	

INDEX	START	STOP	Index	Start	STOP	INDEX	START	STOP

Remarks:
Head No. 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
Refer to Section 22.2 before scanning.

Remarks: Head No. 80D8580-3 beams are orientea in two directions parallel and two directions perpendicular to the RPV welds. Refer to section 22.2 before scanning.

\qquad
\qquad

23. RASTER SET III-17

 60° LONGITUDINAL HEAD23.1 This raster set covers the parallel and perpendicular examinations for the first 25% of the material from the inside (ID) surface.
23.2 Physical obstructions and limitations may exist in several areas throughout these examinations. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
23.3 Figure 1 is an illustration of the orientations of the $60^{\circ} \mathrm{L}$ Dual transducers (Head 80D8580-3). Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
23.4 Each raster summary sheet in this section provides full coverage in two directions parallel and two directions perpendicular simultaneously.

PAGE \qquad 121
\qquad .

DIAGRAM FOR ORIENTATION NO. 1
HEAD 80D8580-3 FIGURE 1

NOTE: Head 80D8580-3 beams are orientated in two directions parallel and two directions perpendicular to the RPV welds

```
Raster Set: III-17
Raster No.:
Scanning Mode: Perpendicular/Parallel
Head Attitude: Horizontal
Orient.:_1 Shooting: See Remarks
Index Increment: 0.50"
Index With: Hoist (330.83'\prime}-349.2\mp@subsup{0}{}{\prime\prime}
Sweep With: Rotate Drive (0. - 361')
Section:_III Pr________
Cal. Data Pkg.:
Procedure No.:_ 80A6480 Rev.___
Video Tape No.:__
Cal. Block No.:_196-102 (7')
Head No.: 8008580-3
Weld No.:_1-SB-5V-104-141
Weld Centerline: 341.23"
Weld Title: Lover Shell to Bottam Head Circ. Weld
```

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Head No. 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds. Refer to Section 23.2 before scanning.

Operator	Reviewer
Operator	

```
Raster Set:
III-17
Raster No.
```

\qquad
-
Scanning Mode: Perpendicular/Parallel
Head Attitude: Vertical
Orient.:_ Shooting: See Remarks
Index Increment: 0.33'
Index With: Boom Pivot (354.90
Sweep With: Boom Swing (169.38* - 139.09%)
Section: III Pg.__of
Cal. Data Pkg.:

```
\(\qquad\)
```

Procedure No.:_ 80A6480 Rev.___
Video Tape No.:_
Cal. Block No.: 196-102 (7")
Head No.: 80D8580-3
Weld No.:_ 1-SB-RV-101-154-0.
Weld Centerline:
0
Weld Title: Bottom Head Radial Seam at 0}

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Head No. 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds. Refer to Section 23.2 before scanning.

```

Raster Set:
III-17

```

Raster No.:
Scanning Mode: Perpendicular/Parallel
Head Attitude: Vertical
Orient. : 1 Shooting: See Remarks
Index Increment: \(0.33^{\circ}\)
Index With: Boom Pivot \(\left(84.90^{\circ}-9 ., 10^{\circ}\right)\)
Sweep With: Boom Swing (169.38 \(\left.-139.09^{\circ}\right)\)
Weld Title: Bottom Head Radial Seam at \(90^{\circ}\)

Section:_II PG.__ of
Cal. Data Pkg.:
Procedure No.: 80A6480
Video Tape No.:


Cal. Block No. : \(196-102\) (7")
Head No.: 80D8580-3
Weld No. : \(1-\mathrm{SB}-\mathrm{BV}-101-154-90^{\circ}\)
Weld Centerline: \(90^{\circ}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
Remarks: Head No. 80D8580-3 beams are oriented in two directions parallel and
two directions perpendicular to the RPV welds.
Refer to section 23.2 before scanning.
Operator
Orerator_Date_ Rate_ Reviewer

\begin{tabular}{|c|c|}
\hline Procedure No.: 80A6480 & Rev. \\
\hline Video Tape No.: & \\
\hline
\end{tabular}

Cal. Block No. : 196-102 (7")
Head No. : 80D8580-3
Weld No.: \(1-S B-R V-101-154-180^{\circ}\)
Weld Centerline: \(180^{\circ}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
Head No. 8008580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds. Refer to Section 23.2 before scanning.
Operator_Date__Time_ Reviewer

Operator Date \(\qquad\) Time

\section*{RASTER SUMMARY SHEET}

Raster Set:
III-17
Raster No. \(\qquad\) Scanning Mode: Perpendicular/Parallel Head Attitude: Vertical

Orient. : \(\frac{1}{1} \quad\) Shooting: See Remarks
Index Increment: \(0.33^{\circ}\)
Index With: Boom Pivot \(\left(264.90^{\circ}-275.10^{\circ}\right)\)
Sweep With: Boam Swing \(\left(169.38^{\circ}-139.09^{\circ}\right)\)
Weld Title: Bottam Head Radial Seam at \(270^{\circ}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
Head No. 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.

Refer to Section 23.2 before scanning.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline Operator & \\
\hline
\end{tabular}
\(\qquad\)

\section*{24. RASTER SET III-18 EXAMINATION HEAD 80D5770}
24.1 This raster set covers the perpendicular examinations of the flange-to-upper shell circumferential weld. The \(0^{\circ}, 8^{\circ}\), and \(19^{\circ}\) examination head is used to pelform the examinations.
24.2 To ensure inaximum examination coverage of the flange-to-upper shell circumferential weld, the equipment operator shall position the head against the vertical edge of the flange mating surface. This weld shall be scanned with a minimum of two scan passes to ensure maximum coverage.
24.3 Figures 1 and 2 illustrate the orientations to be used with head \#80D5770. Note that when reference is made to shooting in (towards RPV © ) and out iaway from RPV \(\mathbb{E}\) ) on the raster summary sheets, the direction refers to the orientation of the \(19^{\circ}\) angle beam.
DOCUMENT NO. \(\frac{8046476}{\text { PAGE } \frac{123}{\text { POF } 131}}\)

HEAD POSITION \(\# 1\) ANGLE BEAMS DIRECTED TOWARDS RPV \(\mathcal{G}\)
Head should be positioned against the vertical edge of the flange mating surface.


FIGURE 1

DOCUMENT NO.
PAGE 129 OF 131

HEAD POSITION \(\$ 2\) ANGLE BEAMS DIRECTED AWAY FROM RPV \(G\) Head should be positioned \(1.5^{\prime \prime}\) from the vertical edge of the flange mating surface.


FIGURE 2


\(\qquad\)

\section*{SECTION IV}

\section*{EXAMINATION OF NOZZLE WELDS}

\section*{TABLE OF CONTENTS}
Paragraph Title Page
1. Scope ..... 2
2. Examination Prerequisities ..... 2
3. Fixture Installation ..... 3
4. Bore Examinations ..... 5
5. Shell-Side Examinations ..... 8
6. Post-Examination Postional Check ..... 11
7. Raster Set IV-1 Volumetric, Parallel Shell Side Exam ..... 12
Horizontal Quadrants (11")
8. Raster Set IV-2 Volumetric, Parallel Shell Side Exam ..... 46
Vertical Quadrants (11")
9. Raster Set IV-3 Inner \(25 \%\) Of Material Shell Side Exam ..... 80
Horizontal Quadrants (11")
10. Raster Set IV-4 Inner 25\% Of Material Shell Side Exam ..... 98
Vertical Quadrants (11")
11. Raster Set 1/-5 Perpendicular Bore Side Exam ..... 116
12. Raster Set IV-6 Circumferential Exam for ..... 126
Bore and Inner Radius
13. Raster Set IV-7 Parallel Safe-end Exam ..... 136
14. Raster Set IV-8 Perpendicular Safe-end Exam ..... 146

NUCLEAR ENERGY SERVICES, INC

\section*{SEC \({ }^{\top}\) ION IV}

\section*{EXAMINATION OF NOZZLE WELDS}

\section*{1. SCOPE}

This section covers the examination of the nozzle to vessel welds, nozzle to safe end welds safe end to primary piping welds, and the nozzle inner radii. The examinations are conducted from both the nozzle bore and the shell side of the reactor vessel.

\section*{2. EXAMINATION PREREQUISITES}
1. The maximum scanning speed permitted by Section XI of the ASME Boiler and Pressure Vessel Code is six (6) inches per second. Depending on the type of examination equipment used, the actual maximum permissible scanning speed may be less, as required for proper ultrasonic evaluation.
2. Extreme caution must be exercised during the setup and operation of all examinations in which the rotator is used in order to prevent binding of and possible damage to the transducer cables.
3. Nozzle weld examinations are performed from the main inspection boom. Since the inspection boom is at a different elevation than the pivot/swing boom, the hoist position readouts must be re-initialized so that they display " 00.00 " when the centerline of the main inspection boom is aligned with the top of the reactor vessel flange.
4. Due to the number of options available regarding the sequence of examinations covered in this Section, it may well be advantageous to perform the examination in some order other than that which is presented herein. Care must be taken to ensure that all areas to be examined receive adequate coverage. The NES shift engineer shall be responsible for ensuring that all measurements, checks and examinations required by this section have been performed completely and accurately.
\(\qquad\)
\(\qquad\) OF

\section*{3. FIXTURE INSTALLATION AND ALIGNMENT}
1. Install the nozzle bore weld examination fixture on the end of the inspection boom.
2. Using a level, ensure that the main axis of the examination fixture is vertical with the nozzle bore head at the upper end. Set the rotator controller readout equal to zero at this point.

\section*{Controller Readout}

Operator Initial:
Date:
3. Drape the transducer cables in such a manner that a full 360 degrees rotation can be readily achieved in the clockwise direction.
4. Exercising extreme caution to ensure that the transducer cables do not bind or break, rotate the fixture in the clockwise direction. Using the level, place the fixture in both horizontal orientations and the remaining vertical orientation. Record the readout values for these orientations in the applicable boxes in Table IV-1.
5. Exercising extreme caution to ensure that the transducer cables do not bind or break, rotate the fixture in the counterclockwise directions from zero to the first horizontal orientation or as far as the cables will allow the fixture to rotate. If the horizontal orientation is achievable, use the level to verify that the fixture is, in fact, horizontal and record the readout value in Table IV-1. Fill in the maximum achievable value below.

Controller Readout \(\qquad\) Operator Initial
Date
\(\qquad\)
PAGE \(\qquad\) OF \(\qquad\)
NUCLEAR ENERGY SERVICES, INC.

\section*{TABLE IV-I}

ROTATOR CONTROLLER READOUT CHECKS
\begin{tabular}{lc} 
Orientation & \begin{tabular}{c} 
Degrees \\
from Zero
\end{tabular} \\
Vertical & 0 \\
Horizontal & 90 \\
Vertical & 180 \\
Horizontal & 270 \\
Horizontal & 90
\end{tabular}

Direction
from Zero
N/A
CW
CW
CW
CCW
Operator Signature:

Actual Readout Counts
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Date:
6. Using the hoist and boom rotate mechanism, line up the main boom on the centerline of the first nozzle to be examined.

NOTE: This step is to be carried out with the boom retracted \(10-15\) inches from the wall.
7. In cooperation with the ultrasonics operator, carefully extend the fixture into the nozzle until an echo is obtained from the search unit oriented to transmit sound approximately perpendicular to the nozzle bore. While maintaining a very close watch on the transducer cables, rotate the nozzle scanning mechanism, watching the return echo from that search unit. Adjust the hoist and/or boom rotate mechanisms as necessary, until the timing of the echo is unchanged through a full rotation. This centerline determination is the one used for the examination. Record the readings (in turn) for the centerline locations of each nozzle bore in Table IV-2.
8. Record the time and date of the initial determination in the "Before Examinations" block on the Positional Check Log Sheet in Section V.

Operator Signature:

TABLE IV-2
NOZZLE BORE CENTERLINE COORDINATES
\begin{tabular}{ccc}
\begin{tabular}{c} 
Nozzle \\
Location
\end{tabular} & \begin{tabular}{c} 
Hoist \\
Readout
\end{tabular} & \begin{tabular}{c} 
Boom Rotate \\
Readout
\end{tabular} \\
22 Degrees-Outlet & - & \begin{tabular}{c} 
Operator \\
Sign/Date
\end{tabular} \\
67 Degrees-Inlet & - & - \\
113 Degrees-Inlet & - & - \\
158 Degrees-Outlet & - & - \\
202 Degrees-Outlet & - & - \\
247 Degrees-Inlet & - & - \\
293 Degrees-Inlet & - & - \\
338 Degrees-Outlet & - & -
\end{tabular}
9. Proceed with the bore exarnination of the nozzle whose centerline has just been located (refer to paragraph 4 of this section). If this is not possible at this time, consult the Shift Engineer.
10. Locate the centerlines of each remaining nozzle prior to beginning exa atinations of that nozzle. Follow the procedure given in paragraphs 3.6 and 3.7.

\section*{4. NOZZLE WELD EXAMINATIONS}
1. The maximum permissible scanning speed is \(6 \mathrm{in} . / \mathrm{sec}\). Table IV-3 gives the equivalent angular speed for inlet and outlet nozzles. The speed used should be at or below the maximum permissible.

\section*{TABLE IV-3 \\ MAXIMUM SCAN SPEEDS}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Examination \\
Area
\end{tabular} & Max. Exam Dia. & Maximum Speed (in/sec.) & Maximum Speed (deg/sec.) \\
\hline Outlet Nozzle Bore & \(29.41^{\prime \prime}\) & 6 & 23.38 \\
\hline Outlet Nozzle-to-Shell & 65.98" & 6 & 10.42 \\
\hline \multicolumn{4}{|l|}{(Shell Side)} \\
\hline Inlet Nozzle Bore & \(35.63{ }^{\prime \prime}\) & 6 & 19.30 \\
\hline Inlet Nozzle-to-shell & 73.92 " & 6 & \(9.30^{\prime \prime}\) \\
\hline \multicolumn{4}{|l|}{(Shell Side)} \\
\hline \multicolumn{4}{|l|}{2. Locate the datum point for the nozzle to be exarained and record the boom extend readout in Table IV-4.} \\
\hline \begin{tabular}{l}
NOTE: \\
Use 5 \\
degree
\end{tabular} & \begin{tabular}{l}
examinatio \\
ination head
\end{tabular} & \begin{tabular}{l}
(80D5780) for the \\
50) for the outlet
\end{tabular} & nozzles and 0 \\
\hline
\end{tabular}
\(\qquad\)

TABLE IV-4
NOZZLE BORE DATUM POINTS

\begin{abstract}
Nozzle
Datum Point Location
Operator
(Boom Extend Readout)
Sign/Date
22 Degrees Outlet
67 Degrees Inlet
113 Degrees Inlet
\(\qquad\)
\(\qquad\)

158 Degrees Outlet
202 Degrees Outlet
247 Degrees Inlet
293 Degrees Inlet
338 Degrees Outlet
\(\qquad\)
3. In cooperation with the ultrasonics operator, locate the fixture at the datum point and advance the search unit head to contact the wall.
4. Perform the appropriate examination in accordance with the scan limits listed on the raster summary sheet at the rear of this section. Begin the first scan with the rotator controller readout at 00000 and rotate the fixture 360 degrees clockwise, carefully watching the transducer cables throughout the course of the exarns.
5. Index the examination fixture th ruired amount (see paragraph 4.6 and scan in the opposite direction unt \({ }^{\prime \prime}\).at tof 00000 is obtained. Repeat scanning, alternating between clo se counterclockwise sweeps, until the total required examination area has been inspected. The examination is complete when the fixture has withdrawn far enough that no front reflection is observed throughout a rotation.
\end{abstract}
\(\qquad\)
PAGE OF
6. Required index increments to be used for the various tranducer sizes are as follows:

Transducer Size Index Increment
\[
\begin{array}{ll}
1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} & 0.37 \prime \prime \\
1^{\prime \prime} \text { Dia. } & 0.70^{\prime \prime}
\end{array}
\]
7. Return to paragraph 3.7 and repeat each applicable step for the remaining nozzles to be examined.
8. During examinations from the nozzle bores, use Table IV-3 for scanning speed and Table IV-4 for "Datum Point" locations.
9. The scan starting and end positions are noted on the following pages. The Boom Extend position shall be indexed in increments as listed in paragraph 4.6 above.

\section*{5. SHELL-SIDE EXAMINATIONS}
1. Install the ID nozzle scanner and extender on the end of the main inspection boom, such that the rotator controller reads 00000 with the fixture vertical. Use a level to verify that the fixture is, in fact, vertical.
2. Drape the cables such that a full 360 degree rotation can be made beginning at either end of the upper vertical quadrant with head at full extension of index.
3. Verify proper operation of the rotation system by rotating the fixture 360 degrees once in each direction.
4. Verify proper operation of the I.D. nozzle scanner and its readout by running the head holder to its limit of travel once in each direction as per paragraph 5.5.
\(\qquad\)
5. Prior to performing examinations with the I.D. Nozzle Scanner, verify the accuracy of the position readout as follows:
A. Drive the I.D. Nozzle Scanner to its minimum travel point, and set the encoder to a convenient whole number. Extend the radial arm towards its maximum point stopping at three points to verify actual distance traveled versus digital readout. Position readout shall agree with actual position to a tolerance of plus or minus. \(5^{\prime \prime}\). If it does not, notify the Shift Engineer.
6. Obtain the maximum permissible scanning speed for the shell side examinations from Table IV-3. The maximum linear speed will be obtained when the search unit is traversed radially outward the greatest distance for each type of nozzle.
7. Set the proper speed for the type (inlet or outlet) nozzle to be examined using the speed pot. on the front of the controller. Time the rotation of the fixture through a continuous 360 degree cycle (approximate). (DO NOT JOG TO OBTAIN 360 DEGREE.) Repeat this operation, as necessary, until the speed of rotation is at or below the applicable value in Table IV-3.
8. Determine the scan speeds to be used in Table IV-6.

NOTE: Enter only the final figures in the Table. Trial calculations may be made on other paper.
\(\qquad\)

\section*{TABLE IV-6}

\title{
EXAMINATION SCAN SPEEDS \\ Examination Area
}
1. Final Controller Readout
2. Initial Controller Readout
3. Degrees of Rotation
(Line 1 - Line 2)
4. Elapsed Time (secs..)
5. Scan Speed (deg/sec.)

Inlet
Outlet


Operator Signature:
Date:
9. Using the hoist and boom rotate controls, position the main boom at the center of the nozzle to be examined. The coordinates of the nozzle bore centers are listed in Table IV-2.
10. Extend the boom so that the head contacts the vessel wall and position the test head at the nozzle radius to shell junctions.
11. Visually monitor the head on the remote TV screen, and rotate the fixture about the nozzle to ensure it is centered. If necessary, make fine adjustments using the hoist and boom rotate.
12. If there is any difference in the hoist and boom rotate values for the nozzle centerlines, record the appropriate information in Table IV-7. If all centers correspond to the values in Table IV-2, enter N/A in each column of Table IV-7.

TABLE IV-7
NOZZLE BORE CENTERLINE COORDINATES

\begin{abstract}
Nozzle
Location
22 Degrees-Outlet
67 Degrees-Inlet
113 Degrees-Inlet
158 Degrees-Outlet
202 Degrees-Outlet
247 Degrees-Inlet
293 Degrees-Inlet
338 Degrees-Outlet

Hoist
Readout
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Boom Rotate
Readout
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Operator Sign/Date
\end{abstract}

NUCLEAR ENERGY SERVICES, INC
DOCUMENT NO. \(\qquad\)
PAGE

\section*{7. RASTER SET IV I \\ THREE-UNIT SHELL HEAD 80D8580-2}
7.1 This raster set covers the parallel examinations for the nozzle to shell weld from the shell side, right and left horizontal quadrants.
7.2 These examinations are performed in \(90^{\circ}\) quadrants, with the quadrant boundaries at \(45^{\circ}\) angles to the horizontal/vertical nozzle centerlines. Thus, the quadrants which straddle \(0^{\circ}\) and \(180^{\circ}\) on each nozzle are referred to as the vertical quadrants, while those straddling \(90^{\circ}\) and \(270^{\circ}\) are called the horizontal quadrants.
7.3 For each quadrant, start the examination as specified on the raster summary sheet or where head contact can be established. The examination is carried out by rotating the fixture back through the same quadrant. This pattern is continued until the outer examination radius is reached. The boom extend/retract may be used as necessary to maintain optimum wall contact.
7.4 Rotate the fixture \(180^{\circ}\) to provide the same examination angles in the opposite directions and perform the examination again, beginning at the inner examination radius.
7.5 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting clockwise or counterclockwise on the raster summary sheets, this direction refers to the orientation of the \(0^{\circ}\) straight beam.
7.6 Each raster summary sheet in this section provides full coverage in one direction parallel to the weld. Each weld is examined twice to provide coverage in both parallel directions as required.
7.7 Weld centerline refers to readout on ID nozzle scanner.

DOCUMENT NO. \(\qquad\) PAGE 13 OF \(\qquad\)

\author{
DIAGRAM FOR ORIENTATION NUMBERS 1 and 2 SHELL HEAD NO. 80D8580-2 FIGRE 1
}

Beam Direction


Beam Direction


NOTE: Shooting direction refers to the orientation of the \(0^{\circ}\) straight beam when looking outward from the center of the RPV.

Raster Set: IV-1

Raster No.: \(\qquad\)
Scanning Mode: Parallel

Head Attitude: Horizontal Orient. : 1 Shooting: CW Index Increment: \(0.70^{\prime \prime}\)
Index With: Nozzle Scanner (18.41" - Nozzle
Sweep With: Rotator \(\left(44^{\circ}-136^{\circ}\right)\)

Section: \(\qquad\) IV Pg.__of \(\qquad\) Cal. Data Pkg.: Procedure No.: 80A6477 Rev._ Video Tape No.: \(\qquad\)
Cal. Block No. : 196-104 (11")
Head No.: \(\qquad\)
Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{A}\) Weld Centerline:

Weld Title: Outlet Nozzle to Shell at \(22^{\circ}\) (Right Horizontal Ouadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & , \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} & \multicolumn{4}{|l|}{Section: \(\qquad\) IV} \\
\hline \multicolumn{9}{|l|}{Raster No.: \(\qquad\) Cal. Data Pk} \\
\hline Scanning Mode: Parallel & \multicolumn{4}{|l|}{Mode: Parallel} & procedure & \multicolumn{3}{|c|}{\[
80 A 6477
\]} \\
\hline Head Attitude: Horizontal
\(\qquad\) & \multicolumn{4}{|l|}{tude: Horizontal} & \multicolumn{4}{|l|}{Video Tape No.:} \\
\hline \multicolumn{2}{|l|}{Orient. : 1 Shooting: CW} & \multicolumn{3}{|l|}{Shooting: CW} & Cal. Block No. : 1 & \multicolumn{3}{|l|}{196-104 (11")} \\
\hline \multicolumn{2}{|l|}{Index Increment: 0.70"} & \multicolumn{3}{|l|}{\(0.70^{\prime \prime}\)} & Head No.: & \multicolumn{3}{|l|}{80D8580-2} \\
\hline \multicolumn{2}{|l|}{Index With: \(\qquad\) Nozzle Scanner (22.64" \(-4.63^{\prime \prime}\) ) Weld No.: \(\qquad\) \(1-S B-R V-105-121-B\)} & Scanner (22.64" \(\left.-4.63^{\prime \prime}\right)\) & \multicolumn{2}{|l|}{\(\left.22.64^{\prime \prime}-4.63^{\prime \prime}\right)\)} & \multicolumn{4}{|l|}{Weld No.: \(\quad 1-S B-R V-105-121-B\)} \\
\hline \multicolumn{2}{|l|}{Sweep With: \(\qquad\) Rotator \(\left(44^{\circ}-136^{\circ}\right)\)} & \multicolumn{3}{|l|}{\[
\left(44^{\circ}-136^{\circ}\right)
\]} & Weld Centerline: & \multicolumn{3}{|l|}{: \(13.63^{\prime \prime}\)} \\
\hline \multicolumn{9}{|l|}{Weld Title: Inlet Nozzle to Shell at \(67^{\circ}\) (Right Horizontal Quadrant)} \\
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & * \\
\hline Remar & See & ion & for ex & ion 0 & ge. & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \(\square\) \\
\hline
\end{tabular}

Remarks : See Section 7.3 for examination coverage.
Operator_Date__Date__ Reviewer

\section*{RASTER SUMMARY SHEET}


Operator \(\square\) Date \(\qquad\) Time \(\qquad\) Reviewer

Operator Dace Time Date
\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: IV Pg._ of \\
\hline Raster No.: & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No. : 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. 1 Shooting: CW & Cal. Block No. : 196-104 (11') \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (22.64' \(-4.63^{\prime \prime}\) ) & Weld No.: \(\quad 1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{C}\) \\
\hline Sweep With : Rotator (224* \(\left.{ }^{\circ} 316^{\circ}\right)\) & Weld Centerline: 13.63' \\
\hline Weld Title: Inlet Nozzle to Shell at \(113^{\circ}\) & Horizontal Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} & \multicolumn{4}{|l|}{Section:__ IV \({ }^{\text {Pg.___ }}\) -} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Raster Set: \\
Raster No.: \(\qquad\)
\end{tabular}} & \multicolumn{4}{|l|}{Cal. Data Pkg. :} \\
\hline \multicolumn{5}{|l|}{Scanning Mode: Parallel} & \multicolumn{4}{|l|}{Procedure No.: 80 A6477
\(\qquad\) Rev. \(\qquad\)} \\
\hline \multicolumn{5}{|c|}{Horizontal} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Video Tape No.: \(\qquad\) \\
196-104 (11")
\end{tabular}} \\
\hline Orient & 1 & \multicolumn{3}{|l|}{Shooting: __W} & \multicolumn{4}{|l|}{Cal. Block No.: \(\quad\) 196-104 (11")} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Index Ircrement: \(\frac{0.70^{\prime \prime}}{\text { Index With: Nozzle Scanner (18.41" - Nozzle }}\)}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
\(\qquad\) \\
Head No. : 80D8580-2
\end{tabular}} \\
\hline & & & & & \multicolumn{4}{|l|}{Neld No.: \(1-\mathrm{SB}-\mathrm{EV}-107-121-\mathrm{D}\)} \\
\hline \multicolumn{5}{|l|}{Sweep with: Rotator ( \(44^{\circ}-136^{\circ}\) )} & \multicolumn{2}{|l|}{Weld Centerline:} & \multicolumn{2}{|l|}{9.41"} \\
\hline \multicolumn{9}{|l|}{Weld Title: Outlet Nozzle to Shell at \(158^{\circ}\) (Right Horizontal Quadrant)} \\
\hline INDEX & START & STOP & Index & START & STOP & INDEX & START & STOP \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.



Raster No. \(\qquad\)
Scanning Mode: Parallel
Section:_IV Pg._of
Cal. Data Pkg.:
Procedure No.: 80A6477 Rev.__
Head Attitude: Horizontal
Video Tape No.:
Cal. Block No. : \(196-104\left(11^{\prime \prime}\right)\)
Head No. : 80D8580-2
Index Increment: \(\qquad\)
Index with: Nozzle Scanner (18.41" - Nozzle
Sweep With: Rotator \(\left(224^{\circ}-316^{\circ}\right)\)
e) Weld No. : \(\quad 1-S B-R V-107-121-D\)

Weld Centerline: 9.41"
Weld Title: Outlet Nozzle to Shell at \(158^{\circ}\) (Left Horizontal Quadrant)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline
\end{tabular}


Remarks: See Section 7.3 for examination coverage.
operator
Operator \(\qquad\) pate Date
\(\qquad\) Time \(\qquad\) Time \(\qquad\) Reviewer

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{manex}^{\text {m }}\) & stape & stop & ziodex & start & stop & zapex \(^{\text {d }}\) & start & srop \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & 兂 & - & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & 兂 & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: \(\qquad\)

Operator \(\square\) Date \(\qquad\) Time \(\qquad\) Reviewer
orerator \(\underline{\square}\) sate \(\qquad\) Time \(\qquad\) Date
nuclear energy services. inc.

\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: IV \({ }^{\text {Pg.___f }}\) \\
\hline Raster No. & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient. 1 Shooting: CW & Cal. Block No. \({ }^{\text {196-104 (11") }}\) \\
\hline Index Increment: \(\quad 0.70^{\prime \prime}\) & Head No.: 80A8580-2 \\
\hline Index With: Nozzle Scanner (22.64 \(\left.{ }^{\prime \prime}-4.53^{\prime \prime}\right)\) & Weld No.: \(\quad 1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{F}\) \\
\hline Sweep Wi th: Rotator ( \(44^{\circ}-126^{\circ}\) ) & Weld Centerline: \(13.63^{\prime \prime}\) \\
\hline Weld Title: Inlet Nozzle to Shell at \(247^{\circ}\) ( & ht Horizontal Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & Start & STOP & INDEX & Start & STOP & Index & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks : See Section 7.3 for examinacion coverage.

Raster Set: IV-1
Section:_IV Pg.__of__ Raster No. \(\qquad\)
Scanning Mode: Parallel
Head Attitude: Horizontal
Cal. Data Pkg. :
Procedure No.: 80A6477 Rev.__
orient.: \(\qquad\) Shooting: \(\qquad\) Cal. Blcck No.: 196-104 (11")
Index Increment: \(0.70^{\prime \prime}\)
Head No. : 80D8580-2

Index With : Nozzile Scanner (22.64" \(\left.-4.63^{\prime \prime}\right)\)
Weld No, : \(1-S B-R V-105-12 l-F\) Sweep With: Potator \(\left(224^{\circ}-316^{\circ}\right)\)
Weld Title: Inlet Nozzle to Shell at \(247^{\circ}\) (Left Horizontal Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & , \\
\hline
\end{tabular}

Remarks:
See Section 7.3 for examination coverage.



Remarks: See Section 7.3 for examination coverage.



\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & , \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.



Raster No.:
Scanning Mode: Parallel
Head Attitude: \(\quad\) Horizontal
Orient.: \(\quad 1\)

Index Increment: \(\quad 0.70^{\prime \prime}\)
Index with: Nozzle Scanner (18.41"- Nozzle \(\left.\begin{array}{c}\text { Knuckle }\end{array}\right)\) Weld No. : \(1-\) SB-RV-107-121-H Sweep With: Rotator \(\left(224^{\circ}-316^{\circ}\right)\) Weld Centerline: 9.41"
Weld Title: Gutlet Nozzle to Shell at \(338^{\circ}\) (Ieft Horizontal Guadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & , \\
\hline
\end{tabular}

Remarks: See section 7.3 for examination coverage.
operator Date Time
*ime \(\qquad\)

Dare
operazor \(\qquad\)

Section: \(\qquad\) Cal. Data Pkg.:

Procedure No. : 80A6477 Rev.
Video Tape No.:
Cal. Block No.: 196-104 (11")
Head No.:
80D8580-2
\(\qquad\)
\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: IV PG.__of \\
\hline Raster No. & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No. : 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. & Cal. Block No. : 196-104 (11") \\
\hline Index Increment: 0.70' & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (18.41" - Nozzle Knukje) & Weld No. : \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{A}\) \\
\hline Sweep With: Potator (44 \({ }^{\circ}-136^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlet Nozzle to Shell at \(22^{\circ}\) (Rig & ht Horizontal Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Remarks:
See Section 7.3 for examination coverage.
}

Operator \(\qquad\) Date Date Time Time
\(\square\) pate
\(\qquad\)


Remarks: See Section 7.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}

\section*{RASTER SUMMARY SHEET}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: IV Pg._of \\
\hline Raster No. & Cal. Data Pkg. : \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. : 2 Shooting: CCW & Cal. Block No. : \(196-104\) (11') \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No.: 80D8580-2 \\
\hline Index With: Nozzle Scanner (18.41" - 4,63") & Weid No.: \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{B}\) \\
\hline Sweep With: Rotator \(\left(44^{\circ}-136^{\circ}\right)\) & Weld Centerline: \(\quad 13.63^{\prime \prime}\) \\
\hline Weld Title: Inlet Nozzle to Shell at \(67^{\circ}\) (R & \(t\) Horizontal Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l||l|l|l||l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline mmdex & Start & STOP & Index & Start & STOP & INDEX & Start & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks : Soe Section 7.3 for examulation coverage.

Operator_Date_Dat__ Date
Reviewer

\[
-
\]
\[
-
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Scanning Mode: Parallel} & \multicolumn{3}{|l|}{Parallel} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Cal. Data Pkg.: \(\qquad\) \\
Procedure No.: 80A6477 Rev. \(\qquad\)
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Head Attitude: \(\qquad\) Horizontal} & \multicolumn{3}{|l|}{Horizontal} & \multicolumn{4}{|l|}{Video Tape No. :} \\
\hline Orient & \[
2
\] & \multicolumn{3}{|l|}{Shooting: CCW} & Block & \multicolumn{3}{|c|}{196-104 (11")} \\
\hline \multicolumn{2}{|l|}{Index Increment: \(0.70^{\prime \prime}\)} & \multicolumn{3}{|c|}{\(0.70^{\prime \prime}\)} & Head No.: 80D8580-2 & \multicolumn{3}{|l|}{80D8580-2} \\
\hline \multicolumn{2}{|l|}{Index Wi th: Nozzle Scanner (22.64' \(-4.63^{\prime \prime}\) )} & \multicolumn{3}{|l|}{Scanner \(\left(22.64^{\prime \prime}-4.63^{\prime \prime}\right)\)} & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{C}\) & \multicolumn{3}{|l|}{-SB-RV-105-121-C} \\
\hline \multicolumn{2}{|l|}{Sweep With: Rotator ( \(44^{\circ}-136^{\circ}\) )
\(\qquad\)} & \multicolumn{3}{|l|}{\[
\left(44^{\circ}-136^{\circ}\right)
\]} & Weld Centerline: \(13.63^{\prime \prime}\) & \multicolumn{3}{|l|}{: \(\quad 13.63^{\prime \prime}\)} \\
\hline \multicolumn{9}{|l|}{Weld Title: Inlet Nozzle to Shell at \(113^{\circ}\) (Right Horizontal Ouadrant)} \\
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \(\cdots\) \\
\hline
\end{tabular}

Remarks : See Section 7.3 for examination coverage.
operator
Date
Time
-

\section*{Reviewer}
operator
Date
Time


Remarks: See Section 7.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline Operator & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: TV Pg.__of \\
\hline Raster No.: & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orıent. 2 Shooting: CCW & Cal. Block No.: 196-104 (11") \\
\hline Index Increment: 0.70" & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (18.41" - Nozzle Knucke) & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{D}\) \\
\hline Sweep with: Rotator ( \(44^{\circ}-136^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlet Nozzle to Shell at \(158^{\circ}\) (P) & ight Horizontal Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
See Section 7.3 for examination coverage.

\(\square\)
Operator
Date
Time
\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: IV \({ }^{\text {PG }}\) ___f \\
\hline Raster No. & . Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient. : 2 Shooting: CCW & Cal. Block No.: 196-104 (11") \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No. : 80D8580-2 \\
\hline Index with: Nozzle Scanner (18.41" - Nozzle Kruckle) & weld No. : \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{D}\) \\
\hline Sweep with: Potator ( \(224^{\circ}-316^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlet Nozzle to Shell at \(158^{\circ}\) (Le & ft Horizontal Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
See Section 7.3 for examination coverage.

\section*{Onerator}
\(\qquad\) Date \(\qquad\) Time \(\qquad\) Date
```

Raster Set:
IV-1
Raster No.:
Scanning Mode: Parallel
Head Attitude: Horizontal
orient.:_ 2 Shooting:_ CCW _

```

```

Cal. Data Pkg.:
Procedure No.:_ 80A6477 Rev.

```
\(\qquad\)
```

Video Tape No.:______
Cal. Block No.:_196-104 (11")
Index Increment: 0.70"
Head No.: 80D8580-2
Index with:Nozzle Scanner (18.41" - NOzzIE}e) Weld No.: 1-SB-RV-107-121-E
Sweep With: Potator (44* - 136)
Weld Centerline:
9.41"
Weld Title: Outlet Nozzle to Shell at 202* (Right Horizontal Quadrant)

```
\begin{tabular}{|l|l|l|l|l|l|l||l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: IV Pg.__of \\
\hline Raster No.: & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No. : 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient. 2 . Shooting: CCW & Cal. Block No.: 196-104 (11") \\
\hline Index Increment: 0.70" & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (18.41" - Nouzle & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{E}\) \\
\hline Sweep With: Rotator (224* \(-316^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline
\end{tabular}

Weld Title: Outlet Nozzle to Shell at \(202^{\circ}\) (Left Horizontal Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
See Section 7.3 for examination coverage.
Operator

Date \(\qquad\) Time \(\qquad\) Reviewer
operator Date \(\qquad\) Time \(\qquad\) Date

Document 110.: 804.6475 Page 40 of 155

\section*{RASTER SUMMARY SHEET}

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.

\begin{tabular}{|c|c|}
\hline Raster Set: IV-1 & Section: IV Pg.__of \\
\hline Raster No.: & Cal. Data Pkg. : \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Viceo Tape No.: \\
\hline Orient. \(\mathrm{O}_{\text {_ } 2 \text { Shooting: CCW }}\) & Cal. Block No. : 196-104 (11") \\
\hline Index Increment: 0.70" & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (22.64' \(-4.63^{\prime \prime}\) ) & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{F}\) \\
\hline Sweep With: Rotator ( \(224^{\circ}-316^{\circ}\) ) & Weld Centerline: \(13.63^{\prime \prime}\) \\
\hline
\end{tabular}

Weld Title: Inlet Nozzle to Shell at \(247^{\circ}\) (Left Horizontal Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.


Raster Set:
IV-1
Raster No.:
Scanning Mode: Parallel
Head Attitude: Horizontal
Orient. :_ 2 Shooting: CC.
Index Increment: \(\quad 0.70^{\prime \prime}\)
Index with: Nozzle Scanner (18.41" - Nozzle
Sweep With: Rotator \(\left(44^{\circ}-136^{\circ}\right)\)

Section: IV PG._of Cal. Data Pkg.: Procedure No. : 80A6477 Rev.__ Video Tape No.: Cal. Block No. : 196-104 (11") Head No.: 30D8580-2
Weld No. : \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{H}\)
Weld Centerline: 9.41"

Weld Title: outlet Nozzle to Shell at \(338^{\circ}\) (Right Horizontal Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 7.3 for examination coverage.
operator Date \(\square\) Time \(\qquad\) Reviewer
Operator Date Time \(\qquad\)

PAGE \(46 \quad\) OF 155

\section*{8. RASTER SET IV-2 \\ THREE-UNIT SHELL HEAD 80D8580-2}
8.1 This raster set covers the parallel examinations for the nozzle to shell weld from the shell side, upper and lower vertical quadrants.
8.2 These examinations are performed in \(90^{\circ}\) quadrants, with the quadrant boundaries at \(45^{\circ}\) angles to the horizontal/vertical nozzle centerlines. Thus, the quadrant which straddle \(0^{\circ}\) and \(180^{\circ}\) on each nozzle are referred to as the vertical quadrants, while those straddling \(90^{\circ}\) and \(270^{\circ}\) are called the horizontal quadrants.
8.3 For each quadrant, start the examination as specified on the raster summary sheet or where head contact can be established. The examination is carried out by rotating the fixture through the quadrant, indexing outward by the specified increment, and rotating the fixture back through the same quadrant. This pattern is continued until the outer examination radius is reached. The boom extend/retract may be used as necessary to maintain optimum wall contact.
8.4 Rotate the fixture \(180^{\circ}\) to provide the same examination angles in the opposite directions and perform the examination again, beginning at the inner examination radius.
8.5 Figure 1 is an illustration of the orientations to be used with head 8008580-2. Note that when reference is make to shooting clockwise or counterclockwise on the raster summary sheets, this direction refers to the orientation of the \(0^{\circ}\) straight beam.
8.6 Each raster summary sheet in this section provides full coverage in one direction parallel to the weld. Each weld is examined twice to provide coverage in both parallel directions as required.
8.7 Weld center line refers to readout on ID nozzle scanner.
\(\qquad\) 30A6476

NUCLEAR ENERGY SERVICES, INC.
\(\qquad\)

DIAGRAM FOR ORIENTATION NUMBERS 1 and 2 SHELL HEAD NO. 80D8580-2 FIGURE 1


Beam Direction


NOTE: Shooting direction refers to the orientation of the \(0^{\circ}\) straight beam when looking outward from the center of the RPV.
\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV PG. of \\
\hline Raster No. : & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No. : 80A6477 Rev \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. 1 Shooting: CW & Cal. Block No. : 196-104 (11") \\
\hline Index Increment: 0.70 " & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (18.41" - Nozzlele) & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{A}\) \\
\hline Sweep with: Rotator ( \(314^{\circ}-46^{\circ}\) ) & Weld Centerline: \(\quad 9.41^{\prime \prime}\) \\
\hline Weld Title: Outlet Nozzle to Shell at \(22^{\circ}\) (Upp & er Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Remarks: See Section 8.3 for examination coverage.
}



Remarks: See Section 8.3 for examination coverage.

\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV \({ }^{\text {Pg.___f }}\) \\
\hline Raster No. & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No. 80 A6477 Rev \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient. : 1 Shooting: CW & Cal. Block No.: 196-104 (11') \\
\hline Index Increment: 0.70" & Head No.: 80D8580-2 \\
\hline Index With: Nozzle Scanner (22.64" \(-4.63^{\prime \prime}\) ) & Weld No.: \(1-\) SB-RV-105-121-B \\
\hline Sweep with: Potator ( \(314^{\circ}-46^{\circ}\) ) & Weld Centerline: \(13.63^{\prime \prime}\) \\
\hline Weld Title: Inlet Nozzle to Shell at \(67^{\circ}\) (Up & r Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}


Remarks: \(\qquad\)
operator Date Time Reviewer
arerator
Date
Time

\section*{RASTER SUMMARY SHEET}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV \({ }^{\text {PG }}\).__of \\
\hline Raster No.: & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient.: 1 Shooting: CW & Cal. Block No.: 196-104 (11") \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No.: 80D8580-2 \\
\hline Index Wi th: Nozzle Scanner (22.64" - 4.63') & Weld No.: \(1-\) SB-RV-105-121-B \\
\hline Sweep With: Potator ( \(134^{\circ}-226^{\circ}\) ) & Weld Centerline: 13.63" \\
\hline Weld Title: Inlet Nozzle to Shell at \(67^{\circ}\) (Low & Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l||l|l|l||l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\section*{- \\ }


\(\square\)

\begin{tabular}{|l|l}
\hline & \\
\hline
\end{tabular}

Remarks :
\[
\text { See Section } 8.3 \text { for examination coverage. }
\]
operator \(\square\) Date \(\qquad\) Time \(\qquad\)
Prerator Date 7:-me

\section*{RASTER SUMMARY SHEET}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline zmosx & stane & stop & zrimex & stans & stop & z:xesx & stant & stop \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & - \\
\hline
\end{tabular}

Remarks: \(\qquad\)


\section*{RASTER SUMMARY SHEET}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: \(\qquad\) Pg. \(\qquad\) of \\
\hline Raster No. & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient. : 1 Shooting: CW & Cal. Block No.: 196-104 (111) \\
\hline Index Increment: \(\quad 0.70^{\prime \prime}\) & Head No.: 80D8580-2 \\
\hline Index with : Nozzle Scanner (18.41" - Nozzle & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{D}\) \\
\hline Sweep With: Rotator ( \(314^{\circ}-46^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlet Nozzle to Shell at \(158^{\circ}\) & er Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOR & IMDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
See Section 8.3 for examination coverage.
\(\qquad\) Date \(\qquad\) Time \(-\)

\section*{Reviewer}
orerator \(\qquad\) Date "ine
Raster Set:
IV-2
Raster No. : \(\qquad\)
Scanning Mode: Parallel Section: IV \({ }^{\text {Pg.___of }}\) Cal. Data Pkg.:
Procedure No.: 80A6477 Rev.
Video Tape No.: \(\qquad\) Cal. Block No.: 196-104 (11") Head No.: 80D8580-2
Index Increment: \(\qquad\) \(0.70^{\prime \prime}\)
Index With: Nozzle Scanner (18.41" - Kozzlefe) Sweep With: Rotator \(\left(134^{\circ}-226^{\circ}\right)\) Weld Centerline: Weld Centerline: \(\quad 9.41^{\prime \prime}\) Weld Title: Outlet Nozzle to Shell at \(158^{\circ}\) (Lower Vertical Quadrant)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & STAKT & STOP & INDEX & START & STOP \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage. Date \(\qquad\) Time \(\qquad\)

\section*{Reviewer}

Sperator \(\qquad\) pate Time \(\qquad\)

\section*{RASTER SUMMARY SHEET}


Remarks: See Section 8.3 for examination coverage.

Operator_Sate_Time_ Reviewer
Operacor Date \(\qquad\) Time


Raster No.
Scanning Mode: \(\quad\) Parallel
Head Attitude: Horizontal

Orient.: \(\qquad\) 1 \(\qquad\) Shooting: CW
Index Increment: \(\qquad\) \(0.70^{\prime \prime}\)

Section: \(\qquad\) IV

Cal. Data Pkg.: \(\qquad\) Procedure No.: 80A6477 Rev._ Video Tape No.: Cal. 3lock No. : 196-104 (11") Head No. : 8008580-2 Weld No. : \(1-S B-R V-107-121-E\) Weld Centerline: \(9.41^{\prime \prime}\) Sweep With: Rotator \(\left(134^{\circ}-226^{\circ}\right)\)
Weld Title: Outlet Nozzle to shell at \(202^{\circ}\) (Lower Vertical Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\section*{Remarks: See Section 8.3 for examination coverage.}
operator \(\qquad\) Date \(\qquad\) Time
Reviewer
orerator
Date
Inte


Remarks:- See Section 8.3 for examination coverage.

\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV \({ }^{\text {Pg .__of }}\) \\
\hline Raster No. & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 - Rev \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient.: 1 Shooting: CW & Cal. Block No.: 196-104 (11") \\
\hline Index Increment: \(\quad 0.70^{\prime \prime}\) & Head No.: 80D8580-2 \\
\hline Index with: Nozzile Scanner (22.64" \(-4.63^{\prime \prime}\) ) & Weid No.: \(\quad 1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{F}\) \\
\hline Sweef With: Rotator ( \(134^{\circ}-226^{\circ}\) ) & Weld Centerline: 13.63' \\
\hline Weld Title: Inlet Nozzle to Shell at \(247^{\circ}\) ( & er Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \({ }_{\text {ImoEx }}\) & start & stop & minex & stare & stop & mosx & start & srop \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & - & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.



Remarks: See section 8.3 for examination coverage.

```

Raster Set:_ IV-2
Raster No.:
Scanning Mode: Parallel
Head Attitude: Horizontal
Orient.:

```
\(\qquad\)
``` Shooting: CW
Index Increment:
``` \(\qquad\)
```

Index With: Nozzle Scanner (22.64" $\left.-4.53^{\prime \prime}\right)$ Sweep with: Rotator $\left(134^{\circ}-226^{\circ}\right)$
Section:

``` \(\qquad\)
``` IV PG.___of
``` \(\qquad\)
```

Cal. Data Pkg.:
Procedure No.: 80A6477
Video Tape No.:
Cal. Block No.:

``` \(\qquad\)
```

Head No.: 80D8580-2
Weld No. : $1-$ SB-RV-105-121-G Weld Centerline: 13.63"
Weld Title: Inlet Nozzle to Shell at 293° (Lower Vertical Quadrant)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \(\cdots\) \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverace.


\section*{RASTER SUMMARY SHEET}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV _Pg.__of \\
\hline Raster No.: & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Re \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient.: 1 Shooting: C. C/ & Cal. Block No.: 196-104 (11') \\
\hline Index Increment: 0.70" & Head No. : \(\quad 8008580-2\) \\
\hline Index with: Nozzle Scanner (18.41" - Nozzle & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{H}\) \\
\hline Sweep with: Rotator ( \(314^{\circ}-46^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlet Nozzle to Shell at \(338^{\circ}\) (Uppe & per Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Index & START & STOP & INDEX & START & STOP & Index & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.

\begin{tabular}{|c|c|}
\hline ster Set: IV-2 & Section: IV \({ }^{\text {PG }}\) __of \\
\hline Raster No.: & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Reverner \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. : 1 Shooting: CW & Cal. Block No.: 196-104 (11") \\
\hline Index Increment: \(\quad 0.70\) " & Head No.: 80D8580-2 \\
\hline Index with: Nozzle Scanner (18.41" - Nnzzlife) & Weld No. : \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{H}\) \\
\hline Sweep With: Rotator ( \(134^{\circ}-226^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline
\end{tabular}

We.d Title: Outlet Nozzle to Shell at \(338^{\circ}\) (Lower Vertical Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & Start & stop & nmex & start & STOP & index & Start & Stop \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.



Remarks: See Section 8.3 for examination coverage.


\section*{RASTER SUMMARY SHEET}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: TV PG.__of \\
\hline Raster No. & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient. : 2 Shooting: CCW & Cal. Block No.: \(196-104\) (11") \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No.: 80D8580-2 \\
\hline Index with: Nozzle Scanner (18.41" - Kozzle) & ld No.: \(1-S B-R V-107-121-A\) \\
\hline Sweep with: Rotator ( \(134^{\circ}-226^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlat Nozzle to Shell at \(22^{\circ}\) (Low & \(r\) Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & * \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.
Operator_ Date_ Date_ Reviewer

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & . \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examinarion coverage.
\begin{tabular}{lll} 
Operator_ Dace & Dime & Reviewer \\
Dnerator & Dace & Ime
\end{tabular}

Date
I: m :
Raster Set: ..... IV-2
Paster No.
\(\qquad\)
Scanning Mode: _ Parallel
\begin{tabular}{|c|}
\hline Procedure No.: 80A6477 \\
\hline
\end{tabular}
Head \(k\) ttitude: _ Horizontal
Video Tape No.:
Cal. Block No.: 196-104 (11")
orient.: 2 \(\qquad\) Shooting: CCW
Head No.:
\(\qquad\)
Index Increment: \(\qquad\) 0.70 " \(\qquad\)
Index with: Nozzle Scanner (22.64" \(-4.63^{\prime \prime}\) )
Weld No.: \(\quad 1-S B-R V-105-121-B\)
Weld Centerline:
\(13.63^{\prime \prime}\)
Sweef With: Potator \(\left(134^{\circ}-226^{\circ}\right)\)
Weld Title: Inlet Nozzle to Shell at \(67^{\circ}\) (Tower Vertical quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & Start & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.



Remarks: See Section 8.3 for examination coverage.
Oyerator_Date_ Reviewer
```

RASTER SUMMARY SHEET

```
\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV PG._of \\
\hline Raster No. & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. 2 Shooting:_ CCA & Cal. Block No.: 196-104 (11") \\
\hline Index Increment : 0.70 " & Head No.: 80D8580-2 \\
\hline Index With: Nozzle Scanner (22.64' \(-4.63^{\prime \prime}\) ) & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{C}\) \\
\hline Sweep With: Potator (134* \(-226^{\circ}\) ) & Weld Centerline: \(13.63^{\prime \prime}\) \\
\hline Weld Title: Inlet Nozzle to Shell at \(113^{\circ}\) ( & er Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \(\cdots\) \\
\hline
\end{tabular}

Remarks: \(\qquad\)


\section*{RASTER SUMMARY SHEET}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV Pg. of \\
\hline Raster No.: & Cal. Data Pkg. : \\
\hline Scanning Mode: Parallel & Procedure No. : 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. \(\mathrm{O}_{\text {a }}\) Shooting:_ CWW & Cal. Block No. : 196-104 (11') \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No.: 80D8580-2 \\
\hline Index with: Nozzle Scanmer (18.41" - Knuzkle) & Weld No.: \(1-\mathrm{SB}-\mathrm{PV}-107-121-\mathrm{D}\) \\
\hline Sweef With: Rotator (314* \(-46^{\circ}\) ) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlet Nozzle to Shell at \(158^{\circ}\) (Up & er Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & , \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.
Operator_ Date__Ime_ Reviewer
operator \(\square\) Date Time


Raster Set: IV-2
Raster No.:
Scanning Mode: Parallel
Head Attitude: Horizontal
Orient.: \(\qquad\) 2 \(\qquad\) Shooting: CCW
Index Increment: \(0.70^{\prime \prime}\)
Index with: Nozzle Scanner (18.41" - Kozzle
Index with: Nozzie Scanner (18.41 - Knuckle)

Section: IV PG.__of
Cal. Data Pkg.:
Procedure No.: B0A6477 Rev.__
Video Tape No. : \(\qquad\)
Cal. Block No. : 196-104 (11")
Head No. : 80D8580-2
Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{E}\)
Weld Centerline: 9.41"

Weld Title: Outlet Nozzle to Shell at \(202^{\circ}\) (Upper Vertical Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & . \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: See Section 8.3 for examination coverage.
operator Date Time
Orerator Date

Time
Reviewer
Date
NUCLEAR ENEAGY SERVICES. INC. -

Raster Set:
IV-2
Raster No.
\(\qquad\) Section:
IV V PG.__of \(\qquad\)
Scanning Mode: \begin{tabular}{l} 
Parallel \\
Head Attitude: Horizontal
\end{tabular}. Cal. Data Pkg.
Procedure No.: 80A6477 Rev. Video Tape No. \(\qquad\)
Orient. \(\qquad\) 2 Shooting: CCW
Index Increment: \(0.70^{\prime \prime}\)
Index With: Nozzle Scanner (22.64" - 4.63")
Sweep with: Rotator \(\left(314^{\circ}-46^{\circ}\right)\)
Cal. Block No. : 196-104 (11")
Head No.: 80D8580-2
weld No.: \(1-S B-R V-105-121-F\)
Weld Centerline:
13.63"
Weld Title: Inlet Nozzle to Shell at \(247^{\circ}\) (Upper Vertical Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \(\square\) \\
\hline
\end{tabular}

Remarks: St Section 8.3 for examination coverage.



Remarks : See Section 8.3 for examination coverage.

\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV Pg.__of \\
\hline Raster No.: & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel & Procedure No. : 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No. : \\
\hline Orient. 2 Shooting: CCW & Cal. Block No. : \(196-104\) (11") \\
\hline Index Increment: 0.70" & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (22.64' \(-4.63^{\prime \prime}\) ) & Weld No. : \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{G}\) \\
\hline Sweep With: Rotator (314 \({ }^{\circ}-46^{\circ}\) ) & Weld Centerline: 13.63" \\
\hline Weld Title: Inlet Nozzle to Shell at \(293^{\circ}\) ( & er Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & , \\
\hline
\end{tabular}

Remarks : See Section 8.3 for examination coverage.
\(\square\)
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}
Raster Set: \(\qquad\)

Raster No.:
Scanning Mode: Paralle:
Head Attitude:_ Horizontal

Index Increment: \(\quad 0.70^{\prime \prime}\)
Index with: Nozzle Scanner (22.64" \(\left.-4.63^{\prime \prime}\right)\)
Sweer with: Potator \(\left(134^{\circ}-226^{\circ}\right)\)
CCW

Weld Title: Inlet Nozzle to Shell at \(293^{\circ}\) (Lower Vertical Quadrant)
\begin{tabular}{l|l|l|l|l|l|l|l|l}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline
\end{tabular}


Remarks: See Section 8.3 for examination coverage.

\begin{tabular}{|c|c|}
\hline Raster Set: IV-2 & Section: IV Pg. of \\
\hline Raster No. & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel & Procedure No.: 80A6477 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No. : \\
\hline Orient. 2 Shooting: CCN & Cal. Block No. : 196-104 (11") \\
\hline Index Increment : 0.70" & Head No. : 80D8580-2 \\
\hline Index With: Nozzle Scanner (18.41" - Knuckle) & Weld No. : \(1-\mathrm{SE}-\mathrm{RV}-107-121-\mathrm{H}\) \\
\hline Sweep With: Rotator (314 \(\left.{ }^{\circ}-46^{\circ}\right)\) & Weld Centerline: 9.41" \\
\hline Weld Title: Outlet Nozzle to shell to \(338^{\circ}\) (Upper & er Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & , \\
\hline
\end{tabular}

Remarks : See Section 8.3 for examination coverage.

\begin{tabular}{|c|c|c|}
\hline IV-2 & \multicolumn{2}{|l|}{Section: \(\qquad\)} \\
\hline Raster No. : & Cal. Data Pkg. : & \\
\hline Scanning Mode: Parallel & Procedure No.: & 3046477 \\
\hline Head Attitude: llorizontal & Video Tape No. : & \\
\hline Orient. 2 Shooting: CCW & Cal. Block No. & 196-104 (11") \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No.: & 80D8580-2 \\
\hline Index With: Nozzle Scanner (18.41" - Knuckle) & Weld No.: 1 & SB-RV-107-121-H \\
\hline Sweep With: Potator (134 \(\left.{ }^{\circ}-226^{\circ}\right)\) & Weld Centerline & \(9.41^{\prime \prime}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
'iemarks: See Section 8.3 for examination coverage.


\section*{9. RASTER SET IV-3 \(60^{\circ}\) LONGITUDINAL HEAD}
9.1 This raster set covers the parallel and perpendicular examinations for the first 25 percent of the material from the inside (ID) surface of the nozzle to shel! welds. The following examinations are performed from the shell side, right and left horizontal quadrants.
9.2 These examinations are performed in \(90^{\circ}\) quadrants, with the quadrant boundaries at \(45^{\circ}\) angles to the horizontal/vertical nozzle centerlines. Thus, the quadrants which straddle \(0^{\circ}\) and \(180^{\circ}\) on each nozzle are referred to as the vertical quadrants, while those straddling \(90^{\circ}\) and \(270^{\circ}\) are called the horizontal quadrants.
9.3 For each quadrant, start the examination as specified on the raster summary sheet or where head contact can be established. The examination is carried out by rotating the fixture through the quadrant, indexing outward by the specified increment, and rotating the fixture back through the same quadrant. This pattern is continued until the outer examination radius is reached. The boom extend/retract may be used as necessary to maintain optimum wall contact.
9.4 Rotate the fixture \(180^{\circ}\) to provide the same examination angles in the opposite directions and perform the examination again, beginning at the inner examination radius.
9.5 Figure 1 is an illustration of the orientations of the \(60^{\circ} \mathrm{L}\) Dual transducers (Head 80D8580-3). Head 80D8580-3 bearns are orientated in two directions perpendicular and two directions parallel to the RPV welds.
9.6 Each raster summary sheet in this section provides full coverage in two directions parallel and two directions perpendicular simultaneously.
9.7 Weld centerline refers to readout on ID nozzle scanner.

NUCLEAR ENERGY SERVICES, INC.
\(\qquad\)


NOTE: Head 80D8580-3 beams are orientated in two directions parallel and two directions perpendicular to the RPV welds


Remarks: *head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds. **See Scction 9.3 for examination coverage.
\(\qquad\) Date \(\qquad\) Time \(\qquad\) Reviewer
\(\qquad\) Date \(\qquad\) Time \(\qquad\)
\(\qquad\) Date


\(\square\) Cal. Data Pkg. Procedure No.: B0A6430 Rev. Video Tape No.: \(\qquad\) orient. : 1 Shooting: *See Remar'is Cal. Block No. : \(156-10 \leq\left(1^{\prime \prime}\right)\) Index Increment: \(\quad 0.50^{\prime \prime}\) Head No. : \(8028530-3\) Index With: (2** thzzle scanner dme) Sweep With: Botator \(\left(44^{\circ}-136^{\circ}\right)\) Weld No. : \(1-\mathrm{SB}-\mathrm{RV}-105-121-3\) - Weld Centerline: \(13 \mathrm{fin}^{\prime \prime}\) Weld Title: Inlet Nozzle at \(67^{\circ}\) (Nicht Jorizontal Juadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & STAPT & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
*Eead 30D3580-3 beams are oriented in two directions parallel and two directions perpendicular to the ?nv welds.
```

 **See Section 9.3 for examination coverase.
    ```
operator \(\qquad\) Date \(\qquad\) Time \(-\) Reviewer Operator \(\underline{\square}\) Date \(\qquad\) Time
```

Raster Set:_IV-3
Raster No.
-
Scanning Mode:_Parallel/Perpendicular
Head Attitude: Forizontal

```

Section: IV
Cal. Data Pkg.
Procedure No. : somaciso
Video Tape No.
``` Forizontal
```

Index Increment: 0.50"


```
çal. Block No.: \(126-105_{4}\) (111)
Head No. : \(\operatorname{seDS550}-3\)
Weld No. : \(1-\mathrm{SB}-\mathrm{PV}-105-121-\mathrm{E}\)
Weld Centerline: \(13.62^{\prime \prime}\)
Weld Title: Inlet jozzle at. \(67^{\circ}\) (Left Vorizontal quarrant)
```

INDEX	START	STOE	INDEX	START	STOP	INDEX	START	STOP

Remarks: *Yead 8008580-3 beams are oriented in two direction parallel and two directions perpendicular to the gDV welds. **See Section 2, 3 for examination coverage.


```
Raster Set:_IV-3
Raster No.
Scanning Mode:_Parallel/Perpendicular
Head Attitude: Horizontal
```

$\qquad$ Cal. Data Pkg.:

Procedure No.: SOA.i480 Rev.__ Video Tape No.:
$\square$
cal. Block No.:
(196-104 (11")
orient.: 1
Shooting: *See Remar
Index Increment: $0.50^{\prime \prime}$
Head No.: - 30D3550-3

Weld No. : $1-S B-R V-105-121-C$
Sweep with: Rotator $\left(14^{\circ}-136^{\circ}\right)$
Weld Centerline: $13.63^{\prime \prime}$
Weld Title Irlet Wozzle at $113^{\circ}$ (Right Horizontal Quadrant)

tNDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP

Remarks

- *Head 80D8580-3 beams are oriented in iwo iitreations parallel and two directions perpendicular to the RpV welds.
**See Seccion 3.3 for examination covorage.

Operator	Reviewer
Operator	



INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP



Remarks : - *Hoad 80D8580-3 oeams are oriented iu two difectious parallel and two directions perpondicular to the RDV welter **See Saction 9 i for examiuatiou covevage.


Remarks:_*Head 80D8580-3 beams are oriented in two directions parallel and two directions perpeudicular to the BPV welca.
**See Section 9.3 for examination coverage.
Operator_Date_Time_ Reviewer

Date $\qquad$ Time

Date $\qquad$

```
Raster Set:
 IV-3
```

Raster No.
Scanning Mode: Parallel/Perpendicular Head Attitude: $\qquad$ Horizontal
Section:_IV Pg._._of
Cal. Data Pkg.:

Procedure No : : 80A6480 Rev. Video Tape No.:

Orient. : 1 Shooting: *See Remarks Cal. Block No. : $\frac{190-104 \text { (11' })}{(2)}$ Index Increment:

Index with: (22,19" - nozzle knuckle)
Sweep With: Rotator $\left(224^{\circ}-316^{\circ}\right)$
Head No.:
30D8580-3

Weld No. $:-1-S B-R V-107-121-D$

Weld Title: Outlet Nozzle at $158^{\circ}$ (Left Horizontal OuaÖrant)

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : *Head 80D8580-3 beams are oxiented in two dixeotione peyelleland two directions perpendicular to the RPV welds. **See Section 9.3 for examination coverage.

operator	Reviewer
operator	



INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : *Head 80D8580-3 beams are oriented in two directions parallel and two directions perpenciicular to tio RPV welds **See Section 9.3 for examination coverage.
operator $\qquad$ Date $\qquad$ Time $\qquad$ Reviewer
operator $\qquad$ Date $\qquad$ Time $\qquad$ Date

NUCLEAR ENERGY SERVICES, INC.

Raster Set: IV-3	Section: IV Pg.__of
Raster No.	Cal. Data Pkg.:
Scanning Mode: Parallel/Perpendicular	Procedure No. : Song4so Rev.
Head Attitude: Horizontal	Video Tape No. :
Orient : 1 Shootinq *See Remarks	Cal. 810 ck No. : $190-104$ (11')
Index Increment: 0.50 $0^{\prime \prime}$	Head No. : 3008580-3
Index with: ${ }^{* * 2202210}$ (23.19* - nozzie knuckle)	Weld No. : $\quad 1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{L}$
Sweep With : Motatur- $\left(224^{\circ}-316^{\circ}\right)$	Weld Centerline: $\quad 2.41^{\prime \prime}$
Weld Title: Outlet Nozzle at $203^{\circ}$ (Left	Horizontal Quadrant)


INDEX	START	STOE	INDEX	START	STOP	INDEX	START	STOP



Remarks:
*Head 8008580-3 beams are oriented in two directious paraleed and two directions perpeadicular to the RDV welds.
**See Section 9.3 for examinatiou coverage.

Operator Date $\qquad$ Time

Reviewer
oparator Date pime
nuclear energy services. inc. -

```
Raster Set:_ IV-3
Raster No.
Scanning Mode: Parallel/Perpendicular
Head Attitude: Horizontal
Orient.:_ Shooting:*See Remarks
Index Increment: 0.50"
Head No.: _ 30DO5B0-3
Index with: **ap2%192scanpgrinle edge) Weld No.:_
Sweep With: Rotator (44 - 130)}\mathrm{ Weld Centerline: - 13.63"
Weld Title: Lulot iomale at \(347^{\circ}\) (Right iorizontal Quacirant)
```

INDEX	Start	Stor	INDEX	START	STOP	Index	START	STOP
				,				

Remarks: *ifead 30D8580-3 beams are orieated in two directions parallel anci two ifpoctions perpendichiar to the RPV welus **See Section 9.3 for examination coverage.


```
Raster Set: IV-3
Raster No.
```

$\qquad$

```
Scanning Mode: Parallel/Perpendicular
Head Attitude: ilorizontal
```

orient.
$\qquad$ Shooting: *See Remariçal. Block No. $\qquad$ Head No.: $30 \mathrm{D} 3 \mathrm{H} 80-3$
Index Increment: $0.50^{\prime \prime}$
Weld No.: $\qquad$ $1-S B-B V-105-121-F$ Index with: (2, 2 . 2 ozde scanner Sweep With: Rotiator $\left(224^{Q}-310^{\circ}\right)$ Weld Centerline: $13.63^{\prime \prime}$ Weld Title: Inlet Nozivle at $247^{\circ}$
(Lefi Ilorinontal Quadrant)

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP

Remarks: *Head 8018580-3 beams are oriented in two ciirections parallel and two directions perpendicular to the RPV welcis.
**See Section 9.3 for examination coverage.


```
Raster Set: \(\square\) IV-3
Raster No.
``` \(\qquad\)

Scanning Mode: Darallel/Perpendicular
Head Attitude: \(\qquad\) Forizontal
orient.: 1 Shooting: *See Bramarksal. Block No. : \(19 \mathrm{C}-104\) (11")
Index Increment : \(0.50^{\prime \prime}\) Head No. : 80D8580-3

Weld No. : \(1-\mathrm{SB}-\mathrm{BV}-105-1 \times 1-\mathrm{G}\)
Index With : \({ }^{* * i n O Z Z 1 e}\) scanner \(26.12^{\prime \prime}\) - nomiole edye)
Sweep With: Rotator \(\left(44^{\circ}-130^{\circ}\right)\)
Weld Title: Inlet Nozzle af 2930 (Right liori: 20 ontal Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & &  & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Head 80D8580-3 beams are oriented in two directions
parallel and two directions perpendicular to the RPV welds.
**Set Section 9,3 for examination coverage
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}
```

Raster Set:_ IV-3
Raster No.
Scanning Mode: Parallel/Perpendicular

```
Section: IV PG.__of
Cal. Data Pkg.:

Procedure No.: solfi48 Rev._
Video Tape No. :
\(\qquad\)
Orient. : 1 Shooting: *See Remarisfal. Block No. : \(196-104\) ( \(11^{\prime \prime}\) )
Index Increment: \(0.50^{\prime \prime}\)
Index Wi th: (2G 42.1 - nowin odge)
Sweep with: Rotator \(\left(224^{\circ}-316^{\circ}\right)\)
Head No. : 800 \(5580-3\)
weld No. : \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{G}\)
\(\qquad\) Sweep with: Rotator \(\left(224^{\circ}-316^{\circ}\right)\) Weld Centerline: \(\quad 13.63^{\prime \prime}\) Weld Title: Inlet Nozzle at \(293^{\circ}\) (Left Horizontal Quacirant.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Head 80D3580-3 beams are orieuted in two directions paxallel and two directions perpendicular to the RDV welds.
**See Section 9.3 for exsminetion everege.

```

Raster Set:
IV - 3
Raster No.
Scanning Mode:_Parallel/Perpendicular
Head Attituce: llorizontal
orient.: 1 Shooting:*See Remarks
Index Increment: 0.50"
Index With:
**\&Ozghe_scanner knuckle)
Sweef With: Rotator (44*)
Weld Title: Outlet nozzle at 338'0}\mathrm{ (Right Horizontal Quadrant)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
*Head \(8008580-3\) beams are oriented in two directions parallel and two directions perpendicular to the RPV welds **See Section 9.3 for examination coverage.
\(\qquad\) Date \(\qquad\) Time \(\qquad\) Reviewer Operator Date Time

NUCLEAR ENERGY SERVICES, INC. -


Remarks: *Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welcis.
**See Section 9.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline onerator & Date \\
\hline
\end{tabular}
\(\qquad\)

\section*{10. RASTER SET IV-4 \(60^{\circ}\) LONGITUDINAL HEAD}
10.1 This raster set covers the parallel and perpendicular exarrinations for the first 25 percent of the material from the inside (ID) surface of the nozzle to shell welds. The following examinations are performed from the shell side, upper and lower vertical quadrants.
10.2 These examinations are performed in \(90^{\circ}\) quadrants, with the quadrant boundaries at \(45^{\circ}\) angles to the horizontal/vertical nozzle centerlines. Thus, the quadrants which straddle \(0^{\circ}\) and \(180^{\circ}\) on each nozzle are referred to as the vertical quadrants, while those straddling \(90^{\circ}\) and \(270^{\circ}\) are called the horizontal quadrants.
10.3 For each quadrant, start the examinauon as specified on the raster summary sheet or where head contact can be established. The examination is carried out by rotating the fixture through the quadrant, indexing outward by the specified increment, and rotating the fixture back through the same quadrant. This pattern is continued until the outer examination radius is reached. The boom extend/retract may be used as necessary to maintain optimum wall contact.
10.4 Rotate the fixture \(180^{\circ}\) to provide the same examination angles in the opposite directions and perform the examination again, beginning at the inner examination radius.
10.5 Figure 1 is an illustration of the orientations of the \(60^{\circ} \mathrm{L}\) Dual transducers (Head 80D8580-3). Head 80D8580-3 beams are orientated in two directions perpendicular and two directions parallel to the RPV welds.
10.6 Each raster summary sheet in this section provides full coverage in two directions parallel and two directions perpendicular simultaneously.
10.7 Weld centerline refers to readout on ID nozzle scanner.
\(\qquad\) of

DIAGRAM FOR ORIENTATION NO. 1
HEAD 80D8580-3
FIGUPE 1


NOIE: Head 80D8580-3 beams are orientated in two directions parallel and two directions perpendicular to the RPV welds
```

Raster Set:_IV-4
Raster No.
Scanning Mode:_Parallel/Perpendicular
Head Attitude: Horizontal.

```
orient.: 1 Shooting *See Remarks
Index Increment: \(0.50^{\prime \prime}\) Head No.:
- 8008580-3
Index with: ** nozzle (26anher - nozzle edgeweld No.: 1 -SB-RV-105-121-B
Sweep with: Rotator \(\left(314^{\circ}-46^{\circ}\right) \quad\) Weld Centerline: \(1363^{\prime \prime}\)
Weld Title: Inlet Nozzle at \(67^{\circ}\) (Upper Vertical Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
Remarks: *Head 80D8580-3 beams are oriented in two directions parallel
and two directions perpendiculur to the BPV welds.
**See Section 10,3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Raster Set: \(\qquad\) IV-4} & \multicolumn{4}{|l|}{Section: IV} \\
\hline Scanning Mode Parallel/Penvenciicular Procedure Wo.: 8046480 & \multicolumn{4}{|l|}{Mode \(\qquad\) parallel/Pervendicular} & \multicolumn{4}{|l|}{Procedure No.: \(\qquad\) 30A6480 Rev.} \\
\hline Head Attitude: Horizontal & \multicolumn{4}{|l|}{tude: Horizontal} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Video Tape No.}} \\
\hline Orient & \multicolumn{4}{|l|}{1} & & & & \\
\hline Index Increment: \(0.50^{\prime \prime}\)
\(\qquad\) & \multicolumn{4}{|l|}{rement: \(\qquad\) \(0.50^{\prime \prime}\)} & \multicolumn{4}{|l|}{Head No. : \(8008530-3\)} \\
\hline Index With: **Nozzle scanner
\(\qquad\) & \multicolumn{4}{|l|}{\(\qquad\)} & \multicolumn{4}{|l|}{weld No.: \(1-\mathrm{SD}-\mathrm{BV}-105-121-\mathrm{C}\)} \\
\hline Sweep with \(\qquad\) Rotator \(\left(314^{\circ}-46^{\circ}\right)\) & \multicolumn{4}{|l|}{\[
\text { Rotator }\left(314^{\circ}-46^{\circ}\right)
\]} & \multicolumn{4}{|l|}{Weld Centerline: 13,63"} \\
\hline Weld Title: Inlet Nozzle at 113 & \multicolumn{3}{|l|}{e: Inlet Nozzle at 113} & \multicolumn{5}{|c|}{Vertical Quadrant)} \\
\hline INDEX & START & Stor & Index & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Head sons \(580-3\) beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.


Raster Set:_IV-4
Raster \(\%\).
mining Mode: Parallel/Perpendicular Head Attitude: Horizontal

Section: \(\qquad\) PG.__of Cal. Data Pkg.: \(\qquad\)
Procedure No.: 80A6480 Rev.

Video Tape No.: \(\qquad\)
crient. : \(\qquad\) Shooting:*See Remarks
Index Increment: \(\quad 0.50^{\prime \prime}\)
Cal. Block No.
196-104 (11")
**nozZle scanner
Index With: (26.42" -nozzle edge)
Head No.:
80D8580-3

Sweep With: Rotator \(\left(314^{\circ}-46^{\circ}\right)\) Weld Centerline: \(133^{\circ} 3^{\prime \prime}\) Weld Title: Inlet Nozzle at \(247^{\circ}\) (Upper Vertical Quadrant)
\begin{tabular}{|l|l|l||l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Remarks : *Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.

\begin{tabular}{|c|c|}
\hline Raster Set: IV-4 & Section: IV \\
\hline Raster No. & Cal. Data Pkg.: \\
\hline Scanning Mode: Parallel/Perpendicular & Procedure No.: \\
\hline Head Attitudioxicontal & Video Tape No. \\
\hline orient : 1 Shooting: *See Remark & Cal. Block No.: 196-104 (11") \\
\hline Index Increment: \(0.50^{\prime \prime}\) & Head No.: 8008580-3 \\
\hline  & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{F}\) \\
\hline Sweer with: Rotator ( \(134^{\circ}-226^{\circ}\) ) & Weld Centerline: \(13.63^{\prime \prime}\) \\
\hline
\end{tabular}

Weld Title: Inlet Nozzle at \(247^{\circ}\) (Lower Vertical Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
*Head 80D8580-3 beams are oriented in two directions paralle1 and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage
```

Raster Set: IV-4
Raster No.:
Scanning Mode: Parallel/Perpendicular
Head Attitude: Horizontal
Orient. : 1 Shooting:*See Remarks
Index Increment: 0.50"
**nozz1e scanner
Index With: (26.42"* - nomizle edge)
Sweep With: Rotator (314*O}-4\mp@subsup{6}{}{\circ}
Weld Title: Inlet Nozzle at 293 }\mp@subsup{}{}{\circ}\mathrm{ (Upper Vertical Quadrant)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
Remarks:
*Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds
**See Section 10.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline onerator & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-4 & Section: IV Pg.__of \\
\hline Raster No & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel/Perpendicular & Procedure No.: 80A6480 Rever \\
\hline Head Attitude: Herizontal & Video Tape No. \\
\hline Orient. : 1 Shooting: *See Remarks & Cal. Block No.: 196-104 (11') \\
\hline Index Increment: \(0.50^{\prime \prime}\) & Head No.: 30D8580-3 \\
\hline Index with: **nozzle scanner \(\left(26.42^{\text {² }}\right.\) - nozzle edge) & Weld No.: \(1-\mathrm{SB}-\mathrm{BV}-105-121-\mathrm{G}\) \\
\hline Sweer With: Rotator \(\left(134^{\circ}-220^{\circ}\right)\) & Weld Centerline: \(13.63^{\prime \prime}\) \\
\hline Weld Title: Inlet nozzle at \(293^{\circ}\) (lower & Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Hiead \(8008580=3\) beams are oriontod in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.
Operator_Date_ Time_ Reviewer
\begin{tabular}{|c|c|}
\hline IV-4 & Section:_IV Pg._of \\
\hline Raster No. : & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel/Perpendicular & Procedure No.: 80A6480 Rev. \\
\hline Head Attitude: Horizontal & Video Tape No.: \\
\hline Orient. 1 Shooting: *See Rema & 3al. Block No. : \(196-104\) (11' \({ }^{\prime \prime}\) ) \\
\hline Index Increment: \(0.50^{\prime \prime}\) & Head No. : 80D8580-3 \\
\hline Index with: (22,19 - nozzle knuckle) & Weld No. : \(1-\mathrm{SB}-\mathrm{BV}-107-121-\mathrm{A}\) \\
\hline Sweep With: Rotator (314 \({ }^{\circ}-46^{\circ}\) ) & Weld Centerline : 9.41 " \\
\hline Weld Title: Outlet Nozzle at \(22^{\circ}\) (Uppe & Vertical Quadrant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline + & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.
Operator \(\qquad\) Date \(\qquad\) Time \(\qquad\) Reviewer
Operator Date Time Date \(\qquad\)

\section*{RASTER SUMMARY SHEET}


Remarks:
*Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.
Operator__Date__Dime___ Date__ Reviewer
Operator__

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks : *Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.
Operator \(\qquad\) Date \(\qquad\) Time
Reviewer
onerator
Date Time
\begin{tabular}{|c|c|}
\hline Raster Set: IV-4 & Section: IV Pg.__of \\
\hline Raster No.: & Cal. Data Pkg. \\
\hline Scanning Mode: Parallel/Perpendicular & Procedure No.: 80A6480 Rev \\
\hline Head Attitude: Horizontal & Video Tape No. \\
\hline Orient. 1 Shooting: *See Remarks & Cal. Block No. : \(196-104\) (11') \\
\hline Index Increment: \(0.50{ }^{\prime \prime}\) & Head No. : 80085.580-3 \\
\hline Index with: **nozzle scanner \({ }^{(22.19}{ }^{\text {a }}\) - nozzle knuckle) & Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{D}\) \\
\hline Sweer with: Rotator (134 \({ }^{\circ}-226^{\circ}\) ) & Weld centerline: \({ }^{9.411^{\prime \prime}}\) \\
\hline Weld Title: gut.let Nozzle at \(1588^{\circ}\) (Lower & Vertical Quacirant) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & \(\cdots\) & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
*Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.
Operator_Date__Dime__ Reviewer
Raster Set: \(\frac{\text { IV-4 }}{}\)
Raster No.:
Scanning Mode: Parallel/Perpendicular
Head Attitude: Horizontal
\(\qquad\)
Cal. Data Pkg.:
Procedure No.: \(\qquad\) Rev. Video Tape No.: \(\qquad\)

Ocient. : 1 Shooting: *See Remarks Cal. Block No.: \(196-104\) (11'")
Index Increment : \(0.50^{\prime \prime}\)
Head No. : 30D8580-3
Index with: **nozz \& \(_{2}\) sqignner nozzle knuck Fefd No. : \(1-\mathrm{SB}-\mathrm{RV}-107-121-\mathrm{E}\)
Sweep with: Rotator \(\left(314^{\circ}-46^{\circ}\right)\) Weld Centerline: \(9.41^{\prime \prime}\)
Weld Title: Outlet Nozzle at \(202^{\circ}\) (Upper Vertical Quadrant)
(Upper Vertical Quadrant)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOF & JEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Head 30D8580-3 beams are oriented in two directions parallel and two directions perpencicular to the RPV welds.
**See Section 10.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline
\end{tabular}


Remarks: *Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage,
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}

\section*{RASTER SUMMARY SHEET}
Raster Set: \(\frac{\text { IV-4 }}{}\)
Raster No.:
Scanning Mode: Parallel/Perpendicular
Head AttitudeHorizontal

Section: IV Cal. Data Pkg. \(\qquad\)
Procedure No.: 8مAG480 \(\qquad\) Rev. Video Tape No.: \(\qquad\) orient. 1 Shooting: *See Remarkscal. Block No. : \(\quad 196-104\) (11")

Index Increment: \(0.50^{\prime \prime}\) Head No.: 80D8580-3

Index with: (22.19 - nozzle knuckle) Weld No.: \(\qquad\) \(1-S B-R V-107-121-H\) Sweep with: Rotator \(\left(314^{\circ}-46^{\circ}\right)\) Weld Centerline: \(9.41^{\prime \prime}\) Weld Title: Outlet Nozzle at \(338^{\circ}\) (Upper Vertical Quadirant)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOF & INDEX & START & STOF & INDEX & START & STOF \\
\hline & & & & & & & & \\
\hline
\end{tabular}

3


Remarks:
*Head 80D8580-3 beams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.
0
Operator__Date__Date_ Time___ Reviewer
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{RASTER SUMMARY SHEET} \\
\hline \multicolumn{5}{|l|}{Raster Set: IV-4} & \multicolumn{4}{|l|}{Section: IV} \\
\hline \multicolumn{9}{|l|}{Raster No. \(\qquad\) Cal. Data Pkg.} \\
\hline Scanni & \multicolumn{4}{|r|}{Parallel/Perpendicular} & \multicolumn{4}{|l|}{Procedure No.: 80A6480} \\
\hline Head & \multicolumn{4}{|c|}{Horizontal} & \multicolumn{4}{|l|}{Video Tape No.:} \\
\hline orien & 1 & \multicolumn{7}{|l|}{Shooting: *See Remarks Cal. Block No. : \(196-104\) (11")} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{4}{|l|}{Head No.: 80D8580-3} \\
\hline & & & & & \multicolumn{4}{|l|}{Weld No.: \(\quad 1-\) SB - PV \(-107-121-H\)} \\
\hline \multicolumn{5}{|l|}{Sweer With: Rotator \(\left(134^{\circ}-226^{\circ}\right)\)} & \multicolumn{4}{|l|}{Weld Centerline: 9.41"} \\
\hline \multicolumn{9}{|l|}{Weld Title: Outlet Nozzle at \(338^{\circ}\) (Lower Vertical Quadrant)} \\
\hline INDEX & START & Stor & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline \multicolumn{9}{|l|}{} \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Head \(8008580-3\) heams are oriented in two directions parallel and two directions perpendicular to the RPV welds.
**See Section 10.3 for examination coverage.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline Operator & \\
\hline
\end{tabular}

\section*{11. RASTER SET IV-5 \\ EXAMINATION HEAD 80D5780 and 80D5790}
11.1 This raster set covers the perpendicular examinations of the nozzle to shell from the nozzle bore. The \(5^{\circ}\) and \(20^{\circ}\) examination heads are used to perform the perpendicular examinations.
11.2 In cooperation with the ultrasonics operator, locate the examination heads at the datum point found in Table IV-4 of this section.
11.3 Examination of the inlet nozzle shall begin at the datum point. The outlet nozzle examination begins \(3.13^{\prime \prime}\) inboard from the daturn.
11.4 NOTE: If the boom extend mechanism, on an indexing motion, is inadvertently run past the specified index, do not simply run the fixture back to the proper index. To insure that mechanical flexing and backlash do not result in an unexamined region, run the fixture back 1 " \(-2^{\prime \prime}\) beyond the desired point and then advance it to the correct position.
11.5 Figure 1 is an illustration of the orientation of the \(5^{\circ}\) and \(20^{\circ}\) examination heads and how they should be mounted on the nozzle bore scanner.
11.6 The examination is complete when the fixture has withdrawn far enough that head contact is lost for \(360^{\circ}\) rotation.

NOTE: Visual observation of scanner should be monitored as soon as contact is initially lost for either channel.

Raster Set: IV-5
Section: \(\qquad\) \(\mathrm{IV} \quad \mathrm{Pg}\) \(\qquad\) f \(\qquad\) Raster No.: \(\qquad\)
Scanning Mode: Perpendicular
Head Attitudrotational
Orient. : N/A Shooting: W/A
Index Increment: \(\frac{\mathrm{N} .70^{\prime \prime}}{\text { Index With: Boom Extend (See Note) }}\)
Sweep With: Rotator \(\left(0^{\circ}-361^{\circ}\right)\)

Index Increment: \(\quad 0.70^{\prime \prime}\)
Cal. Data Pkg.: Procedure No : : 80A6479 Rev._ 1 Video Tape No.: \(\qquad\) Cal. Block No. : 196-201 (fiange) Head No. : 80D5780/80D5790 Weld No. : \(1-S B-R V-107-121-A\) Weld centerline: \(\frac{24.53^{\prime \prime} \text { radius from }}{\text { nozZle } \mathrm{C}_{\mathrm{L}}}\) Weld Title: Outlet nozzle to shell at \(22^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Note: Index limits are established after nozzle datum points are lorated. (See Section 11,3 forscan limits.




Remarks: Note: Index limits are established after nozzle datum points are located. (See Section 11.3 for scan limits.)
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline operator & \\
\hline
\end{tabular}

Raster Set: IV-5
Raster No.:
Scanning Mode: Perpendicular
Head Attitude: Rotational
orient. : \(\qquad\) Shooting: iv/A
Index Increment: \(0.70^{\prime \prime}\)
Index with: Boom Extend (See note)
Sweep With : Rotatoi \(\left(0^{\circ}-361^{\circ}\right)\) Weld Centerline: \(24.53^{\prime \prime}\) radius from Weld Title: Outlet nozzle to shell at \(158^{\circ}\)

Section: IV Pg.
Cal. Data Pkg.:
Procedure No.: 80A6479 Rev._1 Video Tape No.: \(\qquad\)
Cal. Block No.: 196-301 (Elange) Head No. : 80D5780/80D5790
Weld No. : \(1-S B-12 V-107-121-D\) nozzle \(\mathrm{C}_{\mathrm{L}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Note: Index limits are established after nozzle datum points are located. (See Seation 11.3 for scan limits.)
operator \(\qquad\) Date \(\qquad\) Time \(\qquad\) Reviewer

Operator \(\qquad\) Date Time \(\qquad\) \(11 巴 5\) Date
\begin{tabular}{|c|c|}
\hline Raster Set: IV-5 & Section: IV Pg._of \\
\hline Raster No. & Cal. Data Pkg.: \\
\hline Scanning Mode: Perpendicular & Procedure No.: 80A6479 \\
\hline Head Attitude: Botational & Video Tape No. : \\
\hline Orient. : \(\mathrm{N} / \mathrm{A}\) Shooting \(\mathrm{N} / \mathrm{A}\) & Cal. Block No.: 196-201 (Flange) \\
\hline Index Increment : \(0.70^{\prime \prime}\) & Head No. : \(80 \mathrm{D} 5780 / 8005790\) \\
\hline Index Wi th: Boom extend (See nate) & Weld No.: \(1-\mathrm{SB}-\mathrm{BV}-107-121-\mathrm{E}\) \\
\hline Sweep With: Rotator ( \(0^{\circ}-361^{\circ}\) ) & Weld Centerline: \(24.53^{\prime \prime}\) radius from \\
\hline Weld Title: Outlet nozzle to shell & O nozzle \(\mathrm{C}_{\mathrm{L}}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Note: Index limits are established after nozzle datum points are located. (See Section 11.3 for san limits.)

Raster Set: IV-5
Raster No. \(\qquad\)
Scanning Mode: Perpendicular
Head Attitude: Rotational
orient. : N/A Shooting: N/A
Index Increment: \(0.70^{\prime \prime}\)
Index with: Boom Extend (See note)
Sweep with: Rotator \(\left(0^{\circ}-361^{\circ}\right)\)
Weld Title: Inlet nozzle to shell at \(247^{\circ}\)
Section: IV
\(\mathrm{Pq} . \quad o f\) \(\qquad\)
Cal. Data Pkg.: \(\qquad\)
Procedure No.: 80 N6479 Rev. 1
Video Tape No.:
Cal. Block No.: 196-201 (Flange)
Head No.: - \(80 \mathrm{DF} 780 / 80 \mathrm{D} 5790\)
Weld No.: \(1-\mathrm{SB}-\mathrm{RV}-105-121-\mathrm{F}\)
Weld Centerline: 28 . 50" radius from nozzle \(C_{L}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & \(\div\) & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Note: Index limits are established after nozzle datum points are located. (See Section 11.3 for sean 1imite.)
operator Date \(\qquad\) Time

Reviewer
operator Date \(\qquad\) rime \(\qquad\) Date
```

RASTER SUMMARY SHEET

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Note: Index limits are established after nezzle datum points are located. (See Section 11.3 for scan limits.)


\footnotetext{
Form 028-110/1 1/83
}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-5 & Section: IV PG.__of \\
\hline Raster No.: & Cal. Data Pkg.: \\
\hline Scanning Mode: Perpendicular & Procedure No. : 30AG472 Rev. 1 \\
\hline Head Attitude: Rotational & Video Tape No.: \\
\hline Orient. N/A Shooting: W/A & Cal. Block No. : \(196-201\) (Flange) \\
\hline Index Increment: \(0.70^{\prime \prime}\) & Head No. : 80D5780/30D5790 \\
\hline Index With : Boom extend (See note) & Weld No. : \(1-\mathrm{SiB}-\mathrm{RV}-107-121-\mathrm{H}\) \\
\hline Sweer With: Rotator ( \(0^{\circ}-316^{\circ}\) ) & Weld Centerline: \(2^{24} \frac{5}{} 3^{\prime \prime}\) radius from \\
\hline Weld Title: Outlet nozzle to shell & \(8^{\circ}\) nozzle L \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Note: Index limits are established after nozzie datum points are located. (See Section 11.3 for scan limits.)
Reviewer
Operator \(\qquad\) Date ime \(\qquad\) Date

NUCLEAR ENEAGY SEAVICES, INC. -

\section*{12. RASTER SET IV-6 EXAMINATION HEAD 80D5720}
12.1 This raster set covers the circumferential examination of the ID nozzle bore and inner radius. The \(65^{\circ}\) dual inner radius scanner is used to perform this examination.
12.2 In cooperation with the ultrasonics operator, locate the examination heads at the datum point found in Table IV-4 of this section.
12.3 Examination of the inlet nozzles shall begin \(9.5^{\prime \prime}\) outboard from the datum point. The outlet nozzle examination begins \(4.5^{\prime \prime}\) outboard from the datum point.
12.4 There is a \(3.0^{\prime \prime}\) spacer that must be added to the inner radius scanner wexamine the inlet nozzles. The spacer must be removed to examine the outlet nozzles.
12.5 NOTE: If the boom extend mechanism, on an indexing motion, is inadvertently run past the specified index, do not simply run the fixture back to the proper index. To insure that mechanical flexing and backlash do not result in an unexamined region, run the fixture back \(1^{\prime \prime}-2^{\prime \prime}\) beyond the desired point and then advance it to the correct position.
12.6 The examination is complete when the fixture has withdrawn far enough that head contact is lost for \(360^{\circ}\) rotation.
12.7 Figure 1 is an illustration of the equipment setup for the nozzle inner radii examination.

DOCUMENT NO.
\(\qquad\)
\(\qquad\)
\(\qquad\)

Centerline of RPV
1

Main Inspection
Boom

```

Raster Set:_ IV-6
Raster No.:
Scanning Mode: Circumferential
Head Attitude: Rotational
orient.:N/A Shooting:N/N
Index Increment: 0.37'
Index With: Boom extend (See note)
Sweep With: Rotator (00}-36\mp@subsup{1}{}{\circ}
Section:_IV PG.__of._
Cal. Data Pkg.:
Procedure No.: 80AG480 Rev.
Video Tape No.:
Cal. Block No.: 196-202 (S.E.)
Head No.: 80D5720
Weld No.: 1-SB-RV-IR-128-301-A
Weld Centerline: N/A

```

Weld Title: Qutlet nozzle at \(22^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & STA \({ }^{\text {T }}\) & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks:
Note: Index limits are established after nozzle datum points are located. (See Section 12.3 for scan limits.)
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline Operator & pate \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Raster Set: IV-6 & Section: \(\qquad\) IV Pg. \(\qquad\) of \\
\hline Raster No.: & Cal. Datã Pkg.: \\
\hline Scanning Modeircumferential & Procedure No.: 80A6480 Rev \\
\hline Head Attitude: Rotational & Video Tape No.: \\
\hline orient. : N/A Shooting: N/A & Cal. Block No. : \(196-202\) (S.E.) \\
\hline Index Increment : \(0.37{ }^{\prime \prime}\) & Head No. : 80205720 \\
\hline Index with: Boom extend (See note) & Weld No. : \(1-\mathrm{SB}-\mathrm{RV}-18-128-101-\mathrm{B}\) \\
\hline Sweep With: Rotator ( \(0^{\circ}-361^{\circ}\) ) & Weld Centerline: \(\mathrm{N} / \mathrm{A}\) \\
\hline Weld Title: Inlet nozzle at \(67^{\circ}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
Remarks: \(\frac{\text { Note: Index limits are established after nozzle datum points }}{\text { are located. (See section } 12.3 \text { for scan limits.) }}\)
\begin{tabular}{|c|c|}
\hline operator & Reviewer \\
\hline Orerator & \\
\hline
\end{tabular}
```

RASTER SUMMARY SHEET

```



Remarks: Note: Index limits are established after nozzle datum points are located. (See Section 12,3 ion scan limits.)
Operator_ Date_ Time_ Rate Time \(\quad\) Reviewer

Operator__ Date___ Time Date
```

Raster Set:_IV-6
Raster No.
-
Scanning Mode: Circumferential
Head Attitude: Rotational
orient.:

```
\(\qquad\)
``` Shooting: N/A
```

Section:_IV ${ }^{\text {Pg.___ }}{ }^{\text {IV }}$
Cal. Data Pkg.:
Procedure No.: SOAG480 Rev._ Video Tape No.: $\qquad$
Cal. Block No. $\qquad$
Head No : : 30~57~0
Weld No.: $1-$ SB-RV-IR-128-301-D
Weld Centerline: N/A

```
Sweep with: Rotator \(\left(0^{\circ}-361^{\circ}\right)\)
Weld Title: Outlet nozzle at \(158^{\circ}\)
```

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Note: Index limits are estabi ished after nozzle datum pouts are located. (See Section 12.3 for scan limits.)

Operator Date $\qquad$ Time Reviewer
operator Date $\qquad$ Time Date


INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : Note: Index limits are established after nozzle slatum points.


Raster Set: IV-6	Section: IV ${ }^{\text {PG }}$.__of
Raster No.	Cal. Data Pkg.
Scanning Mode: Circumferential	Procedure No.: 80A6480 Rev
Head Attitude: Rotational	Video Tape No.
orient. : N/A Shooting: N/A	Cal. Block No. : $196-202$ (S.E.)
Index Increment: 0.37 "	Head No. :
Index with: Boom extend (See note)	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-\mathrm{IR}-128-101-\mathrm{F}$
Sweer With: Rotator ( $0^{\circ}-361^{\circ}$ )	Weld Centerline: N/A
Weld Title: Inlet nozzle at $247^{\circ}$	


INDEX	START	STOP	Index	Start	STOP	INDEX	START	STOP

Remarks: Note: Index limits are fstablished after nozzle datum points are located. (See Sectica 12.3 for scan limits.)
operator

## Reviewer

Operator
Date
Time
NUCLEAR ENERGY SERVICES, INC. -


INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks : Note: Index limits are established after nozzle datum points. are located. (See Section 12.3 for scan limits.)

Operator $\qquad$ Date $\qquad$ Time $\qquad$ Reviewer
operator Date $\qquad$ Time $\qquad$ pate
nuclear energy services, inc. -

## RASTER SUMMARY SHEET



INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Note: index limits are established after nozzle datum points are located. (See Section 12.3 for scan limits.)


## 13. RASTER SET IV-7

EXAMINATION HEAD 80D5720
13.1 This raster set covers the parallel examinations of the inlet and outlet nozzle safe-ends. The $65^{\circ}$ dual examination head is used to perform this examination.
13.2 In cooperation with the ultrasonics operation, locate the examination heads at the datum point found in Table IV-4 of this section.
13.3 The parallel examination of the inlet nozzle safe-end shall begin $3.2^{\prime \prime}$ outboard form the datum point. The outlet nozzle safe-end parallel examination begins $4.3^{\prime \prime}$ inboard from the datum point. There is a $3.0^{\prime \prime}$ spacer that must be removed to examine the inlet and outlet nozzle safe-ends. Scans are completed $7^{\prime \prime}$ outboard of the start point or when weld root geometry precludes further ultrasonic examination.
13.4 Note: If the boom extend mechanism, on an indexing motion, is inadvertently run past the specified index, do not simply run the fixture back to the proper index. To insure that mechanical flexing and backlash do not result in an unexamined region, run the fixture back $1^{\prime \prime}-2^{\prime \prime}$ beyond the desired point and then advance it to the correct position.
13.5 Figure 1 is an illustration of the equipment setup for the parallel examination of the nozzle safe-ends.


FIGURE 1. EOUIPMENT SET-UP FOR PARALLEL EXAMINATION OF SAFE-END WELDS.


Remarks: Note: Index limits are established after nozzle datum points are located. (See paragraph 13.3 for scan limits.)



## RASTER SUMMARY SHEET

Raster Set
IV-7
Raster No.
Scanning Mode: Parallel

Head Attitude: Rotational
orient.: N/A Shooting: N/A
Index Increment: $0.37^{\prime \prime}$
Index with: Boom extend (See note) Weld No.: 1-SB-RV-SE-302-121-C
Sweer With: Rotator ( $0^{\circ}-361^{\circ}$ )
Weld Title: Inlet nozzle safe-end at $113^{\circ}$

INDEX	START	STOR	INDEX	START	STOP	INDEX	START	STOP	

Remarks: Note: Index limits are established after nozzle datum points are located. (See paragraph 13.3 for scan limits.)
operator Date $\square$ Time $\qquad$

## Reviewer

operator $\qquad$ Date Time $\qquad$ Date
$\square \boldsymbol{\square}$

## RASTER SUMMARY SHEET



INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks:
Note: Index limits are established after nozzle datum points
are located. (See paragrapli l3.3 for scan limits.)


## RASTER SUMMARY SHEET

```
Raster Set:
[V-7
```

Raster No.

Scanning Mode: Parallel
Head Attitude: Rotational
orient.
N/A
Shooting:
$\mathrm{N} / \mathrm{A}$

Index Increment: $0.37^{\prime \prime}$
Index with: Boom extend (See note)
Sweep with: Rotator $\left(0^{\circ}-361^{\circ}\right)$
weld Fitle: Outlet nozzle safe-end at $202^{\circ}$

Section: IV PG.__of
Cal. Data Pkg.:
Procedure No . : 80,16480 Rev.

Video Tape No.:
cal. Block No. : 196-202 (S.E.)
Head No. : SOD5720
Weld No. : $1-\mathrm{SB}-\mathrm{RV}-\mathrm{SE}-301-121-\mathrm{E}$
Weld Centerline: $\frac{12.38^{\prime \prime} \text { from datum }}{\text { point }}$

| INDEX | START | STOR | INDEX | START | STOP | INDEX | START |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | STOP | STA |
| :--- |



Remarks: Note: Index limits are established after nozzle datum points. are located. (See paragraph 13.3 for scan limits.)

Operator
Date
Time
$-$

## Reviewer

nuclear energu services, inc. -


Index Increment: $0.37^{\prime \prime}$
Index with: Boom extend (See note) Weld No. : $1-\mathrm{SB}-\mathrm{RV}-\mathrm{SE}-302-121-\mathrm{F}$
Sweer With: Rotator $\left(0^{\circ}-3 G 1^{\circ}\right) \quad$ Weld centerline: $\frac{19.88^{\prime \prime} \text { from datum }}{\text { Weld Title: Inlet nozzleint }}$ Weld Title: Inlet nozzle safe-end at $247^{\circ}$

Section:_IV PG.___ of
Cal. Data Pkg. :
Procedure No.: 8016480_Rev._
Video Tape No.:
Cal. Block No.: 196-202 (S E.)
Head No. : 8025720
Weld No.: $\frac{1-\mathrm{SB}-\mathrm{RV}-\mathrm{SE}-302-121-\mathrm{F}}{\text { Weld Centerline: } \frac{19.88^{\prime \prime} \text { from datum }}{\text { point }}}$
W

INDEX	START	STOE	INDEX	START	STOP	INDEX	START	STOP
					-			
								,

Remarks: Note: Index limits are established after nozzle datum peinteare located. (See paragraph 13.3 for scan limits.)

Operator___ Date__Time
Onerator
operator
Date
Time

IV-7	Section: IV Pg._of
Raster No.:	Cal. Data Pkg.
Scanning Mode: Parallel	Procedure No. : 80A6480 Rev.
Head Attitude: Rotational	Video Tape No.
Orient. N/A Shooting: N/A	Cal. Block No. : $196-202$ (S.E.)
Index Increment : $0.37^{\prime \prime}$	
Index with: Boom extend (See note)	Weld No. : $1-\mathrm{SB}-\mathrm{RV}-\mathrm{SE}-302-121-\mathrm{G}$
Sweer With: Rotator $\left(0^{\circ}-361^{\circ}\right)$	Weld Centerline: $19.88^{\prime \prime}$ from datum
Weld Title: Inlet nozzle safe-end at $293{ }^{\circ}$	O point


INDEX	START	STOE	INDEX	START	STOP	INDEX	START	STOP

Remarks: Note: Index limits are establisined after nozzle datum points are located. (See paragraph 13.3 for scan limits.

Operator $\qquad$ Date $\qquad$ Time $\qquad$ Time
$\qquad$ e
$\qquad$ Date
 Reviewer

Raster Set: IV-7	Section: IV ${ }^{\text {Pg }}$ ___of
Raster No.	Cal. Data Pkg.
Scanning Mode: Parallel	
Head Attitude: Rotational	Video Tape No.:
orient. : N/A Shooting: N/A	Cal. Block No.: 196-202 (S.E.)
Index Increment: 0.37 "	Head No. : 80D5720
Index with: Boon extend (See note)	Weld No.: $1-$ SB-RV-SE-301-121-H
Sweep With: Rotator ( $0^{\circ}-361^{\circ}$ )	Weld Centerline: ${ }^{12.38^{\prime \prime}}$ from datum
Weld Title: Outlet nozzle safe-en	


INDEX	START	Stoe	INDEX	START	STOP	INDEX	START	STOP

Remarks: Note: Index limits are established after nozzle datum points are located. (See paragraph 13.3 for scan limits.)

Operator	Reviewer
Orerator	

## 14. RASTER SET IV-8 <br> EXAMINATION HEAD 80D6005

14.1 This raster set covers the perpendicular examinations of the inlet and outlet nozzle safe-ends. The $65^{\circ}$ dual examination head is used to perform this examination.
14.2 In cooperation with the ultrasonics operator, locate the examination heads at the datum point found in Table IV-4 of this section.
14.3 The perpendicular examination of the inlet nozzle safe-ends shall begin $16.38^{\prime \prime}$ outboard from the datum point. The outlet nozzle safe-ends examination begins $3.8^{\prime \prime}$ outboard from the datum point. The inner radius scanner must be removed to examine (perpendicular) the inlet and outlet nozzle safe-ends. Scans are completed $7^{\prime \prime}$ outboard of the start point or when weld root geometry precludes further ultrasonic examination.
14.4 NOTE: If the boom extend mechanism, on an indexing motion, is inadvertently run past the specified index, do not simply run the fixture back to the proper index. To insure that mechanical flexing and backlash do not result in an unexamined region, run the fixture back $1^{\prime \prime}-2^{\prime \prime}$ beyond the desired point and then advance it to the correct position.
14.5 Figure 1 is an illustration of the equipment setup for the perpendicular examination of the nozzle safe-ends.


Raster Set: $\qquad$ Raster No. : $\qquad$
Scanning Mode: Perpendicular
Head Attitude: Rotational
orient : N/A Shooting: N/A
Index Increment: $0.37^{\prime}$
Index with: Boom Extend (See note)
Sweer with: Rotator $\left(0^{\circ}-361^{\circ}\right)$
Weld Title: Outhet nozizlo safe-ond at $22^{\circ}$

INDEX	START	STOE	INDEX	START	STOP	INDEX	START	STOP

Remarks: Note: Index limits are established after nozzle datum points are located. (See paragraph 14.3 for scan limits.)
operator $\qquad$ Date $\qquad$ Time $\qquad$ Reviewer
orerator $\qquad$ Date $\qquad$ Time $\square$ Date $\qquad$
nuclear energy semvices. inc.

Document No.: 80^6476 ?age 149 of 155
RASTER SUMMARY SHEET

IV-8
Raster No.: $\qquad$ $\qquad$   Perpendicular
orient.
Index Increment: $0.37^{\prime \prime}$
Index With:i3oum extend (See note)
Sweep with: Rotator ( $0^{\circ}-361^{\circ}$ )
Weld Title:Inlet nozzle safe-end

Section:_IV ${ }^{\mathrm{Pq}}$.__of
Cal. Data Fkg.: $\qquad$
Procedure No. : 8046480 Rev.
Video Tape No.: $\qquad$
Cal. Block No.: 196-202 (S.E_) Head No. : 80D6005

Weld No. $1-S B-D V-S E-302-121-B$
Weld Centerline: $1 \underline{\underline{2}} 88^{\prime \prime}$ from datum
point

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP

Remarks: Note: Index limits are established after nozzle datum points are located. (See paragraph 14.3 for scan 1imits.)

Operator	Reviewer
operator	



Remarks: Note: Index limits are established after nozale qatum points are located. (See paragraph 14.3 for scan limits.)


RASTER SUMMARY SHEET								
Raster Set: IV-8					Section: IV			
Raster No.: Cal. Data Pkg.								
Perpendicular								
Head Attitude: Rotational Video Tap								
orient.: N/A Shooting: N/A Cal. Block No. :196-202 (S.E.)								
Index with:Boom extend (See rote) Weld No.: $1-\mathrm{SB}-\mathrm{RV}-\mathrm{SE}-301-121-\mathrm{D}$								
Sweep With: Rotator $\left(0^{\circ}-361^{\circ}\right)$ Weld Centerline: $12.38^{\prime \prime}$ from datum								
Weld Title: Outlet nozzle safe-end at $158^{\circ}$ point								
INDEX	START	STOP	Index	START	STOP	INDEX	START	STOP
Remarks: $\frac{\text { vote: Index limits are established after nozzle datum points }}{\text { are located. (See paragraph } 14.3 \text { for scan limits.) }}$								
Operator $\qquad$ Date $\qquad$ Tine $\qquad$ Reviewer   Operator $\qquad$ Date $\qquad$ Time $\qquad$ Date $\qquad$								






## SECTION V <br> POSITIONAL REPEATABILITY CHECKS

## 1. GENERAL REQUIREMENTS

1. Record the date and time of all checks on the Positional Check Log Sheet(s) provided in this Section.
2. Positional repeatability checks shall be conducted, as a minimum, one time within each 24 hour period. Positional checks with a longer interval shall be brought to the attention of the Shift Supervisor.

NOTE: Ultrasonic system calibration checks and scanning shall take precedence over positional repeatability checks.

NOTE: Positional ch *ks are required only prior to and after completion of nozzles.
3. Positional repeatability shall be verified whenever power to the system has been secured for 12 hours or more, prior to performing weld scans.
4. Additiona! repeatability checks may be performed at the discretion of the NES Shift Engineer.
5. The location of the ultrasonic target shall be within $\pm 1.00^{\prime \prime}\left(.0 .67^{\circ}\right)$ of the values recorded for the target in Section II. If the readouts fail to conform to these tolerances, the following steps shall be taken:
A. Notify the NES Site Supervisor immediately.
B. Return the search unit assembly to the ultrasonic target called out in paragraph 6.1, 6.2, and 6.3 of section II. Relocate the exact center ultrasonically, and record the values of the positional readouts. Reset the appropriate thumbswitches to the values recorded in the applicable paragraph.
$\qquad$ of
C. The NES Site Supervisor shall determine the extent of rescanning necessary to ensure adequate coverage of the weld and required volume. As a minimum, all reportable indications found since the last valid position check shall be relocated, and their correct locations recorded.

NOTE: All scan patterns are extended a minimum of $1.0^{\prime \prime}$ or 1.00 beyond that which is required.
D. Indicate any checks in which out-of-spec readings were encountered by an asterisk (*) on the Positional Check Log Sheet.

## 2. SHELL WELDS

Ensure all the requirements of paragraph 1 above have been met.

## 3. NOZZLE WELDS

Location checks shall be performed at the beginning and end of the nozzle examinations to insure the proper recording of the centerlines of the nozzles.

Any deviations of $\pm 1 / 2^{\circ}$ or $1 / 2^{\prime \prime}$ shall result in reevaluation of any indications found since the last location check. Any deviation of $\pm 1^{\circ}$ or $3 / 4^{\prime \prime}$ shall result in voiding of data taken since last location check and reexamination of the subject areas.

## 4. BOTTOM HEAD WELDS

A positional check per paragraph 1 will be performed before the hoist is positioned in the fixed location.

## POSITIONAL CHECK LOG SHEET

Record the times and dates of the periodic position repeatability checks below.
$\qquad$
Time
Date
Component Checked
Reading
Operator
$\qquad$
$\qquad$ $\longrightarrow-10-1+2$
$\qquad$ $\longrightarrow$ $\square-\cdots$

## POSITIONAL CHECK LOG SHEET

Record the times and dates of the periodic position repeatability checks below.
$\qquad$
Time Date Component Checked Reading Operator
$\qquad$

Record the times and dates of the positional checks carried out before and after the nozzle examinations below.

Time
Date
Operator
Before Examinations
After Examinations
$\qquad$

NUCLEAR ENERGY SERVICES, INC.
PAGE 1 OF 2

## SECTION VI

## EXAMINATION RECORDS

## TABLE OF CONTENTS

Paragraph	Title	Page
NA	Table of Contents	1
1.	Certification of Records	2
2.	Filing of Records	2

## SECTION VI EXAMINATION RECORDS

## 1. CERTIFICATION OF RECORDS

The operator shall complete and sign the appropriate positioning system data sheets immediately upon the completion of each weld examination, noting the date, the applicable UT calibration data sheet number, and the tape number.

## 2. FILING OF RECORDS

The Examination Contractor is responsible for submitting to the Plant Owner or his Agent a complete set of certified examination records.

NUCLEAR ENERGY SERVICES, INC
$\qquad$
$\qquad$ OF

## SECTION VII

## OPERATOR'S CRITIQUE

## TABLE OF CONTENTS

Paragraph	Title	Page
NA	Table of Contents	1
1.	Procedure Corrections and Additions	2
NA	Record of Revisions	3

$\qquad$ OF

## SECTION VII OPERATORS' CRITIQUE

## 1. PROCEDURE CORRECTIONS AND ADDITIONS

All procedure corrections and/or additions to the text of this procedure, which are required during the Preservice Examinations, shall be made in accordance with the document referenced in Section I, Paragraph 2.2.2(5). Corrections and/or additions to the Raster Summary Sheets, however, which are required during the course of the examination, and which do not in any way diminish examination requirements, may be made in the Equipment Operator's Controlled Copy of this Procedure(80A6476)by drawing a single line through the entry to be corrected, writing in the correction, and initialing and dating the item. All changes shall be recorded on the "Raster Summary Sheet Log of Revisions". All such corrections shall be incorporated into the next revision of the procedure.

$\qquad$
$\qquad$ OF $\qquad$

## SECTION II

## INSTALLATION AND ORIENTATION

## TABLE OF CONTENTS

Paragraph Title Page

1. Introduction ..... 2
2. Assembly ..... 2
3. Pre-Installation Checks ..... 2
4. Ultrasonic Transducer Head Installation ..... 2
5. Orientation ..... 3
6. Certification of Compliance ..... 4
$\qquad$
$\qquad$ OF.

## SE.CTION II

## INSTALLATION AND ORIENTATION

## 1. INTRODUCTION

The Reactor Pressure Vessel for the Seabrook Nuclear Power Station has a nominal inside diameter of 173.25 in ., with a 191.88 in . bolt hole circle.

Ultrasonic examinations are conducted from the inside diameter (ID) of the Reactor Pressure Vessel using remotely operated positioning equipment. The equipment to be used is the RPV ID Examination Positioning Device and appropriate attachments and controllers.

## 2. ASSEMBLY

The positioning device shall be assembled in accordance with the instructions given in the Operation and Maintenance Manual referenced in Section I, Paragraph 2.4A. The basic mounting feet with the appropriate extension blocks shall be used.

The positioning device should be assembled such that the rotate drive mounting bolt circle is lined up with the match mark stamped on the flange of the $6^{\prime \prime}$ dia. hoist tube.

## 3. PRE-INSTALLATION CHECKS

After the positioning device has been assembled in accordance with Paragraph 2.0 above, the positioning device checks shall be performed in accordance with 80A5543 On-site Functional Test Procedure, referenced in Section I, Paragraph 2.4G.

## 4. ULTRASONIC TRANSDUCER HEAD INSTALLATION

1. Ultrasonic transducer head 80D8580-2 (Shell head) must have its rotator readouts recorded for both horizontal and both vertical orientations. This step shall be performed prior to examination with this examination head. Using a carpenter's level to ensure proper orientation, record the actual readouts beiow.
$\qquad$
2. The applicable orientation diagrams for all appropriate ultrasonic test heads are shown in Raster sets 1 through 23.

## ROTATION CHECK FOR TEST HEAD 80D8580-2

## ORIENTATION

1. Vertical (shooting up)
2. Vertical (shooting down)
3. Horizontal (shooting right)
4. Horizontal (shooting left)

READOUT
$\qquad$
$\qquad$
$\qquad$

Operators initials: $\qquad$
Date: $\qquad$

NOTE: Orientation is reference when looking outward from center of the RPV.

## 5. ORIENTATION

1. Using any necessary aids such as tape measure and straight edge, adjust the vertical position of the inspection boom until the rotator output shaft centerline is aligned with the reactor vessel flange and the vertical centerline of the 180 degree keyway.
2. Set the thumbwheel switches so that the digital readout indications for the hoist and boom rotate are 0.00 inches and $180.00^{\circ}$ respectively. This is done to establish an approximation between the actual references of the reactor vessel and the coordinate readouts of the RPV ID Examination Positioning Device.
3. Using the 0 degree longitudinal ultrasonic beam, locate the exact center of the ultrasonic target. For a given scan in one direction the exact center is defined as the average of the two points where the magnitude of the echo falls to onehalf that of the central region. The determinations of the center in each direction should alternate, scanning along the centerline previously determined in one direction to find the center in the other. This process is to be continued
$\qquad$

Intil there is no change larger than $0.5^{\prime \prime}$ or 0.30 between successive measurements in each direction. Reset the thumb switches to correspond exactly to the values given for the center of the ultrasonic target and record the thumbswitch settings in Table II-3 below:

## T: ${ }^{2}$ BLE II-3

THUMBSWITCH SETTINGS (ULTRASONIC TARGET)

> Hoist

Boom Rotate

Operator Initials: $\qquad$ Date: $\qquad$

## 6. CERTIFICATION OF COMPLIANCE

Certification is hereby given that all the above operations required for the performance of examinations have been accomplished, and that all checks established herein are correct.

NES Shift Engineer: $\qquad$
Date:

## SECTION III

## EXAMINATION OF RPV SHELL WELDS

## TABLE OF CONTENTS

Paragraph Title ..... Page

1. Scope ..... 3
2. Examination Area ..... 3
3. Corrections for Misalignment ..... 3
4. Concentricity Checks ..... 3
5. Weld Examination Prerequisites ..... 4
6. General Examination Procedures ..... 6
7. Raster Set III-1-Volumetric, parallel exams for circumferential ..... 7welds (11")8. Raster Set III-2-Volumetric, perpendicular exams for longitudinalwelds (11")
8. Raster Set III-3-Volumetric, parallel exams for longitudinal ..... 19 welds (11")
9. Raster Set III-4-Volumetric, perpendicular exams for circumfereritial ..... 27 welds (11")
10. Raster Set III-5-Volumetric, perpendicular exams for circumferential ..... 30 welds (9")12. Raster Set III-6-Volumetric, parallel exams for circumferential36
weids ( $9^{\prime \prime}$ )
11. Raster Set III-7-Volumetric, parallel exams for longitudinal welds (9") ..... 42
12. Raster Set III-8-Volumetric, perpendicular exams for longitudinal ..... 56
welds (9")
13. Raster Set III-9-Volumetric, perpendicular exams for circumferential ..... 70 welds (7")16. Raster Set III-10-Volumetric, parallel exams for circumferential73welds (7")
14. Raster Set III-11-Volumetric, perpendicular exams for radial seams (7") ..... 77
15. Raster Set Ili-12-Volumetric, parallel exams for radial seams (7") ..... 87
16. Raster Set II-13-Volumetric, perpendicular exams for circumferential ..... 97welds (7")

NUCLEAR ENERGY SERVICES, INC
$\qquad$
PAGE of

## SECTION III

## EXAMINATION OF RPV SHELL WELDS

TABLE OF CONTENTS (cont')
Paragraph Title Page
20. Raster Set III-14-Volumetric, parallel exams for ..... 100
circumferential welds (7")
21. Raster Set III-15-Inner $25 \%$ of material (11") ..... 104
22. Raster Set III-16-Inner near surface and inner $25 \%$ of ..... 111 material ( $9^{\prime \prime}$ )
23. Raster Set III-17-Inner 25\% of material ( $7^{\prime \prime}$ ) ..... 120
24. Raster Set III-18-Volumetric, perpendicular exam for ..... 127flange-to-upper shell circumferential weld (flange)
$\qquad$
$\qquad$ OF $\qquad$

## SECTION III

## EXAMINATION OF RPV SHELL WELDS

## 1. SCOPE

This section covers the examinations to be performed on the Reactor Pressure Vessel longitudinal and circumferential welds in the upper, intermediate, and lower shell regions.

## 2. EXAMINATION AREAS

The areas to be covered for the various shell weld examinations and the applicable raster summary sheets are contained in this Section. The different types and modes of examination, with the individual scan parameters required for each, are categorized in the Raster Sets outlined in Paragraphs of this Section.

## 3. CORRECTIONS FOR MISALIGNMENT

The required scan dimensions listed in each Raster Set are defined by the actual vessel dimensions obtained from the manufacturer's drawings. The dimensions indicated by the digital readouts of the positioning device may differ from the drawing dimensions because of possible misalignment of the positioning device relative to the reactor vessel.

NOTE: All scan patterns are extended a minimum of $1.0^{\prime \prime}$ beyond that which are required. Therefore, no correction is necessary where the measured misalignment falls within these values.

## 4. CONCENTRICITY CHECKS

In cooperation with the ultrasonic operator, position the inspection boom so that the shell head is $2^{\prime \prime}-4^{\prime \prime}$ off the vessel wall, ensuring that a front surface echo is displayed on the 00 CRT. Calibrate the CRT so that a motion of $1 / 4^{\prime \prime}$ can oe discerned.
$\qquad$ OF

While rotating the inspection boom, move the shell head towards and away from the vessel wall. Monitor the front surface echo (on the UT scope) to determine the relationship between the exam head movement and the signal's sweep position on the screen.

The concentricity check is to be performed on the upper and lower shell course. This will enable the shift engineer to verify and report any severe irregularities of the RPV or gross misalignment of the RPV ID Examination Positioning Device.

NOTE: Change of $1.5^{\prime \prime}$ or greater in concentricity of any shell course should be brought to the attention of the Site Supervisor for disposition.

## 5. WELD EXAMINATION PREREQUISITES

### 5.1 PRECAUTIONS

1. Certain regions of some welds are (or will be during inservice examinations) obscured by attachments on the vessel interior surface. For this reason, some of these regions must be scanned using a number of different ultrasonic techniques and search unit fixture angles. The applicable areas and the different techniques to be used are covered in this procedure, and the relevant information will be recorded on the appropriate pages and raster summary sheets.
2. In other areas where internal attachments make complete coverage impossible, closed-circuit television is used to monitor the boom motion and ensure that maximum possible coverage is obtained by moving the fixture as close as possible to the obstruction. These areas, as well as any search unit fixture changes which may be necessary, are covered in this procedure. The scan limits in each region, as determined visually, shall be recorded on the appropriate raster summary sheet(s).
3. Care must be taken when scanning in tapered areas to index downward only. An upward index in these areas could bind the spring loading of the shell head fixture or cause serious damage to the inspection equipment.
$\qquad$
NUCLEAR ENERGY SERVICES, INC.
$\qquad$ OF
4. Weld scans in which obstructions may be expected are noted with an asterisk (*). Extreme caution must be exercised when scanning in these areas to prevent damage to the equipment. Refer to the appropriate weld drawing to obtain approximate locations of obstructions prior to scanning these welds.

### 5.2 SCAN REQUIREMENTS

1. The index increments to be used in all of the examinations specified in this procedure shall provide a nominal 25 percent overlap between adjacent scans.

The actual increments to be used for exam heads carrying $1.0^{\prime \prime}$ transducers shall be:

Horizontal (angular) Index:	0.450
Vertical Index:	$0.70^{\prime \prime}$

2. In order to assure that each transducer examines the total required volume for a given weld, the remaining transducers on a given search unit fixture will be moved beyond the required examination area. The result is that more metal volume will be examined than is required by Section XI of the ASME Boiler and Pressure Vessel Code. Any indications which are found in these non-required areas shall be reported and recorded in accordance with the requirements of the applicable ultrasonic procedure.
3. If an indication or group of indications are found by the ultrasonics, a more detailed examination of that area may be carried out at a lower speed, if such is deemed necessary by the examiner. This is in addition to the evaluation of indications as required by the applicable ultrasonics procedure.
$\qquad$

4. After a set of welds have been examined with one shell head configuration, the shell head will be changed to the next configuration, as directed by the NES Shift Engineer. The Shift Engineer shall be responsible for ensuring that all required examinations in a given Raster Set have been performed to the maximum extent practical prior to proceeding to the next Raster Set.
5. The sequence in which these examinations are performed shall be at the discretion of the Site Supervisor or his designee.

## 6. GENERAL EXAMINATION PROCEDURES

The types of Reactor Pressure Vessel Shell Welds covered by this section can be divided into two general categories. These are longitudinal welds and circumferential welds. A brief description of the examination procedure for each is given below.

The Raster Sets which follow are divided into categories. The criteria used to categorize the various rasters into Raster Sets is the type of weld (circumferential or longitudinal), shell course thickness and scanning mode (perpendicular or parallel). The categories are also set up to allow for the fewest calibrations and equipment changes. The 80D8580-2 Shell Head will be used to examine all longitudinal and circumferentiai welds in the shell course areas to the maximum extent possible. The definitions of head orientations called for on the data sheets are provided in the applicable section(s) of the procedure. In cases where obstructions or component geometry prevent complete scanning, the areas not scanned shall be completely defined and recorded.

NOTE: All references to Examination Head 80D8580-2 within this procedure do not prevent the use of an equivalent examination head for the performance of ultrasonic examinations.

NUCLEAF ENERGY SERVICES, INC.
$\qquad$ OF $\qquad$
7. RASTER SET III-1

FLANGE EXAMINATION
7.1 This raster set covers the parallel examinations of the flange-to-upper shell circumference weld. Three-unit shell head \#\#80D5850-2 is used for the parallel examinations.
7.2 To ensure the maximum examination coverage of the flange-to-upper shell weld, the equipment operator shall position the shell head as close as possible to the taper. The examination will start at these coordinates indexing downward until the coverage below the weld is completed.
7.3 Figure 1 is an illus ation of the orientations to be used with Head \#80D5850-2. Note that when reference is made to shooting right, left, clockwise or councerclockwise on the raster summary sheets, this direction refers to the orientation of the 450 angle beam.

NOTE: Only the parallel examinations are performed on this weld from the I.D. surface. Perpendicular examinations are conducted from the flange mating surface.
$\qquad$

```
DIAGRAM FOR ORIENTATION NUMBERS 1 AND 2
 SHELL HEAD NO. 80D5850-2
 FIGURE 1
```



Looking down from top of RPV.


Note: Shooting direction refers to the orientation of the $45^{\circ}$ angle beam when looking outward from the center of the RPV.

Raster Set: III-1	Section: III ${ }^{\text {Pg }}$.__of
Raster No.:	Cal. Data Pkg.
Scanning Mode: Parallel	Procedure No.: 80A6477 Rev.
Head Attitude: Horizontal	Video Tape No.:
Orient. : 1 Shooting: Right	Cal. Block No.: 196-104 (11")
Index Increment: 0.70 "	Head No.: 80D5850-2
Index With: Hoist (See Note - 34.41")	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-121$
Sweep With: Rotate Drive ( $0^{\circ}-361^{\circ}$ )	Weld Centerline: $26.38{ }^{\prime \prime}$
Weld Title: Flange to Upper Shell Circ. Weld	


INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP

Remarks: $\qquad$ Upper index limit arbitrary; begin scan at bottom edge of
flange taper where head contact is established.

[^4]


INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP	

Remarks: NOTE: Upper indexlimit arbitrary; begin scan at bottom edge of flange taper where head contact is established.

$\qquad$

## 8. RASTER III-2

## THREE UNIT SHELL HEAD 80D8580-2

8.1 This raster set covers the perpendicular examinations for the longitudinal welds in the upper shell.
8.2 To ensure maximum examination coverage of the upper shell longitudinal welds, the following steps will be followed. Scanning above the nozzles, the equipment operator shall position the shell head as close as practical to the flange taper and scan downward as close as practical to the nozzle edge (inlet) or nozzle knuckle (outlet). Scan limits will vary depending on the flange taper and nozzle configurations. To examine below the nozzles, the equipment operator shall begin and end scan limits as close as practical to the nozzle edge (inlet) or nozzle knuckle (outlet). Carefully monitor all operations in the obstructed areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
8.3 Figure 1 is an illustration of the orientations to be used with head 80 D8580-2. Note that when reference is made to shooting left, right, clockwise or counterclockwise on the raster summary sheets, this direction refers to the orientation of the $0^{\circ}$ straight beam.
8.4 Each raster summary sheet in this section provides full coverage in one direction perpendicular to the weld. Each weld is examined twice to provide coverage in both perpendicular directions as required.
$\qquad$

DIAGRAM FCR ORIENTATION NUMBERS 1 AND 2 SHELL HEAD NO. 80D8580-2 FICURE 1

Transducer
Position


Beam
Direction


Transducer
Position


Orientation No. 2 Shooting Left (ccw)

Note: Shooting direction refers to the orientation of the $0^{\circ}$ straight beam when looking outward from the center of the RPV.
Raster Set:
III-2
Raster No.:
Scanning Mode: $\quad$ Perpendicular
Head Attitude: Horizontal
Orient. : 2 Shooting: Left
Section: III PG.__of
Cal. Data Pkg.:
Procedure No.: 80 A6477 Rev.
Video Tape No.:
Cal. Block No.: 196-104 (11")
Index Increment: $\qquad$ Head No.: 80D8580-2
Index With: Potate Drive $\left(57.26^{\circ}-40.31^{\circ}\right)$
Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-122-42^{\circ}$
Sweep With: Hoist* (Taper to 126.66")
Weld Centerline:
$42^{\circ}$
Weld Title: Upper Shell Longitudinal Weld at $42^{\circ}$

INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP

Remarks: $\qquad$
*Refer to Section 8.2 for examination coverage.


Raster Set: III-2	Section: III PG. of
Raster No.	Cal. Data Pkg. :
Scanning Mode: Perpendicular	Procedure No.: 80A6477 Rev.
Head Attitude: Horizontal	Video Tape No.:
Orient. 2 Shooting: Left	Cal. Block No.: 196-104 (11 ${ }^{\prime \prime}$ )
Index Increment: $0.45^{\circ}$	Head No. : 80D8580-2
Index With: Potate Drive (177.26 ${ }^{\circ}$ (160.31 $)$	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-122-162^{\circ}$
Sweep With: Hoist* (Taper to 126.66")	Weld Centerline: $162^{\circ}$
Weld Title: Upper Shell Longitudinal Weld at	$162^{\circ}$


INDEX	START	STOF	INDEX	START	STOP	INDEX	START	STOP


							$\square$	
					$\square$			
					$H$			
					-			
					$\square$			
					$\square$			
				$\square$				

Remarks: *Refe to Section 8.2 for examination coverage.


## RASTER SUMMARY SHEET

Raster Set: III-2
Rascer No.:
Scanning Mode: Perpendicular
Head Attitude: $\qquad$ Horizontal

Orient.: $\qquad$ 1 $\qquad$ Shooting: Right
Index Increment: $0.125^{\circ}$
Section: III $\qquad$ Pg. of Cal. Data Pkg.: $\qquad$ Procedure No. : $\qquad$ Rev. Video Tape No.: $\qquad$ Cal. Block No.: 196-104 (11") Head No.: 80D8580-2

Index With: Eotate Drive (146.74 $\left.-163.69^{\circ}\right)$ Sweep With: Hoist* (Taper to 126.66") Weld Title: Upper Shell Longitudinal Weld at $162^{\circ}$

INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP
					-			

Remarks:
*Refer to Section 8.2 for examination coverage.

Ster Set: III-2	III
Raster No.:	
Scanning Mode: Perpendicular	Procedure No.: 80A6477
Head Attitude: Horizontal	Video Tape No.
Orient.: 2 Shooting: Left	Cal. Block No.: 196-104 (11")
Index Increment: $0.45^{\circ}$	Head No.: 80D8580-2
Index wi th: Potate Drive (297.26 ${ }^{\circ}-230.31^{\circ}$ )	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-122-282^{\circ}$
Sweep With: Hoist* (Taper to 126.66")	Weld Centerline: $282{ }^{\circ}$
Weld Title: Upper Shell Longitudinal Weld at $282^{\circ}$	


INDEX	START	STOR	INDEX	START	STOP	INDEX	START	STOP

Remarks:
*Refer to Section 8.2 for examination coverage.


## RASTER SUMMARY SHEET

Raster Set:
III-2
Raster No.:
Scanning Mode: Perpendicular
Head Attitude: Horizontal
Orient. : 1 Shooting: Right
Index Increment: $0.45^{\circ}$
Index With: Rotaze Drive (266.74 $\left.{ }^{\circ}-2.53 .69^{\circ}\right)$
Sweep With: Hoist* (Taper to $126.66^{\prime \prime}$ )

Section: III Cal. Data Pkg.: Procedure No.: 80A6477 Rev.__ Video Tape No.:

Cal. Block No. : 196-104 (11")
Head No.: 80D8580-2
Weld No. : $1-\mathrm{SB}-\mathrm{RV}-101-122-282^{\circ}$
Weld Centerline: $282^{\circ}$
$282^{\circ}$

Weld Title:Upper Shell Longitudinal Weld at

INDEX	START	STOR	INDEX	START	STOP	INDEX	START	STOP

Remarks:
*Refer to Section 8.2 for exdl ination coverage.


## 9. RASTER III-3 <br> THREE UNIT SHELL HEAD 80D8580-2

9.1 This raster set covers the parallel examinations for the longitudinal welds in the upper shell.
9.2 To ensure maximum examination coverage of the upper shell longitudinal welds, the following steps will be followed. Scanning above the nozzles, the equipment operator shall position the shell head as close as practical to the flange taper and scan downward as close as practical to the nozzle edge (inlet) or nozzle knuckle (outlet). Scan limits will vary depending on the flange taper and the nozzle configurations. To examine below the nozzles, the equipment operator shall begin and end scan limits as close as practical to the nozzle edge (inlet) or nozzle knuckle (outlet). Carefully monitor all operations in the obstructed areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is !ost.
9.3 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting up or down on the raster summary sheets, this direction refers to the orientation of the $0^{\circ}$ straight beam.
9.4 Each raster summary sheet in this section provides full coverage in one direction parallel to the weld. Each weld is examir ed twice to provide coverage in both parallel directions as requirea.
$\qquad$ OF 131

## DIAGRAM FOR ORIENTATION NUMBERS 3 AND 4 SHELL HEAD NO. 80D8580-2 FIGURE 1



4
Note: Siooting direction refers to the orientation of the $0^{\circ}$ straight beam when looking outward from the center of the RPV.

```
Raster Set:_ III-3
Raster No.:
Scanning Mode:_ Parallel
orient. : 3 Shooting: UP
Index Increment: 0.45'
Index Wi th: Rotate Drive (36.08* - 47.92%)_Weld No.: 1-SB-RV-101-122-420
Sweep With: Hoist* (Taper - 126.66")
```

Section: III ${ }^{\mathrm{Pg}}$.__of Cal. Data Pkg.:
Procedure No.: 80 A6477 Rev. Rev._ Video Tape No.: Cal. Block No.: __ 196-104 (11") Head No.: 80D8580-2

Weld No.: $\quad 1-\mathrm{SB}-\mathrm{RV}-101-122-42^{\circ}$
Weld Centerline:
$42^{\circ}$

Weld Title: Upper Shell Longitudinal Weld at $42^{\circ}$

INDEX	START	Stop	INDEX	START	STOP	INDEX	START	STOP

Remarks: *Refer to Section 9.2 for examination coverage.

operator	Reviewer
operator	


Raster Set: III-3	Section: III PG. of
Raster No.:	
Scanning Mode: Parallel	Procedure No.: 80A6477 Rev.
Head Attitude: Vertical	Video Tape No.:
Orient. : 4 Shooting: Down	Cal. Block No.: 196-104 (11')
Index Increment: $0.45^{\circ}$	Head No. : 80D8580-2
Index With: Rotate Drive (36.08 ${ }^{\circ}-47.92^{\circ}$ )	Weld No.: $1-\mathrm{SB}-\mathrm{RV}-101-122-42^{\circ}$
Sweep With: Hoist* (Taper - 126.66")	Weld Centerline: $42^{\circ}$
Weld Title: Upper Shell Longitudinal Weld at $42^{\circ}$	


INDEX	START	STOP	INDEX	START	STOP	INDEX	START	STOP



Remarks: *Refer to Section 9.2 for examination coverage.

Operator or_ Date $\qquad$ Time operator r Date $\qquad$ Time Reviewer 1125 nUCLEAR ENERGY SERVICES, INC. -


Raster Set: III-3	Section: III PG.__of
Raster Nu.	Cal. Data Pkg.:
Scanning Mode: Parallel	Procedure No.:__80A6477
Head Attitude: Vertical	Video Tape No.:
Orient. : 4 Shooting: Eown	Cal. Block No.: 196-104 (11")
Index Increment: $0.45^{\circ}$	Head No.: 80D8580-2
Index With: Rotate Drive (156.08 $\left.{ }^{\circ}-167.92^{\circ}\right)$	Weld No. : $\quad 1-\mathrm{SB}-\mathrm{RJ} \mathrm{H}-101-122-162^{\circ}$
Sweer With: Hoist* (Taper - 126.66")	Weld Centerline: $\quad 162^{\circ}$
Weld Title: Upper Shell Iongitudinal Weld at 1	


INDEX	START	STOP	INDEX	Start	STOP	INDEX	Start	STOP


Operator	Reviewer
onerator	

```
Raster Set:
III-3
Raster No.
Scanning Mode: Parallel
Head Attitude: Vertical
orient.:
```

$\qquad$

``` 3
\(\square\) Shooting: UP
Index Increment:
``` \(\qquad\)
```

Index With: Rotate Drive $\left(276.08^{\circ}-287.92^{\circ}\right)$ Sweep With: Hoist* (Taper $-126.66^{\prime \prime}$)

```
\(\qquad\) Cal. Data Pkg.: Procedure No.: 80A6477 Rev. Rev.
Video Tape No.:
Cal. Block No.: 196-104 (11")

Head No.: 80D8580-2
Weld No.: \(\quad 1-\mathrm{SB}-\mathrm{RV}-101-122-282^{\circ}\)
Weld Centerline:
Weld Title: Upper Shell Iongitudinal Weld at \(282^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOF & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: *Refer to Section 9.2 for examination coverage.



Remarks: *Refer to Section 9.2 for examination coverage.

Operator \(\qquad\) Date \(\qquad\) Time Time

Date
\(\qquad\)
onerator \(\qquad\)
\(\square\)

Reviewer
Date
\(\qquad\)
NUCLEAR ENERGY SERVICES, INC.

\section*{PAGE}

\section*{10. RASTER SET III-4}

THREE UNIT SHELL HEAD 80D8580-2
10.1 This raster set covers the perpendicular examination, shooting down, for the circumferential weld, upper shell to intermediate shell.
10.? Physical (nozzles) obstructions and limitations exist in several areas throughout weld 1-SB-RV-103-121. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
10.3 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting down on the raster summary sheet, this direction refers to the orientation of the 00 straight beam.
10.4 Each raster summary sheet in this section provides full coverage in one direction perpendicular to the weld. Each weld is examined twice to provide coverage in both perpendicular directions as required.
\(\qquad\)
PAGE
\(\qquad\)

DIAGRAM FOR ORIENTATION NUMBERS 3 AND 4 SHELL HEAD NO. 80D8580-2 FIGURE 1


Transducer Position


Beam Direction


Note: Shooting direction refers to the orientation of the \(0^{\circ}\) straight beam when looking outward from the center of the RPV.

\begin{tabular}{|l|l|l|l|l|l||l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\(\qquad\)

\section*{11. RASTER SET III-5}

THREE UNIT SHELL HEAD 80D8580-2
11.1 This raster set covers the following: The perpendicular examination, shooting up, for the upper shell to intermediate shell circumferential weld; the perpendicular examination for the intermediate shell to lower shell circumferential weld; the perpendicular examination, shooting down, for the lower shell to bottonı head circumferential weld.
11.2 Physical (lower core support pads) obstructions and limitations may exist in several areas throughout weld 1-SB-RV-104-141. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
11.3 Figure 1 is an illustration of the orientations to be used with head 80D8580-2. Note that when reference is made to shooting up or down on the raster summary sheets, this direction refers to the orientation of the \(0^{\circ}\) straight beam.
11.4 Each raster summary sheet in this section provides full coverage in one direction perpendicular to the weld. Each weld is examined twice to provide coverage in both perpendicular directions as required.
\(\qquad\)

\author{
DIAGRAM FOR ORIENTATION NUMBERS 3 AND 4 \\ SHELL HEAD NO. 80D8580-2 FIGURE 1
}


Note: Shooting direction refers to the orientation of the \(0^{\circ}\) straight beam when looking outward from the center of the RPV.


\section*{RASTER SUMMARY SHEET}

\begin{tabular}{|l|l|l||l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Refer to Section 11.2 before scanning,


NUCLEAR ENERGY SERVICES, INC. -
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Raster No.: \(\qquad\) \\
Scanning Mode: \(\qquad\)
\end{tabular} \\
\hline Head Attitude: Vertical \\
\hline Orient. \(\mathrm{C}_{\text {a }}\) Shooting : Down \\
\hline Index Increment: \(0.70^{\prime \prime}\) \\
\hline Index With: Hoist (213.14 \({ }^{\prime \prime}\) - 238.08 \({ }^{\prime \prime}\) ) \\
\hline Sweep With: Rotate Drive ( \(0^{\circ}-361^{\circ}\) ) \\
\hline
\end{tabular}

Section: III Pg.__of
Cal. Data Pkg.:
Procedure No.: 30A6477 Rev.__
Video Tape No.: Cal. Block No. : 196-103 (9")

Head No. : 80D8580-2
We 'd No. : \(1-\mathrm{SB}-\mathrm{RV}-101-171\)
Weld Centerline: 235.63"
Weld Title: Intermediate Shell to Lower Shell Circ. Weld
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline INDEX & START & STOP & INDEX & START & STOP & INDEX & START & STOP \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline  & & & & & & & & \\
\hline  & & & & & & & &  \\
\hline & & & & & & & & \\
\hline | & & & & & &  &  & - \\
\hline  & & & & & &  &  & \\
\hline & & & & & & & &  \\
\hline & & & & & &  &  & \(\square\) \\
\hline & & & & & &  &  &  \\
\hline & & & & & &  &  & \\
\hline & & & & & &  & & \\
\hline \[
7
\] & & & & & &  & & \\
\hline  & & & & & &  & &  \\
\hline & & & & & &  &  &  \\
\hline & & & & & &  & &  \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks : Refer to section 11.2 before scanning


\section*{RASTER SUMMARY SHEET}


Remarks: Refer to Section 11.2 before scanning,

\(\qquad\)

\section*{12. RASTER SET III-6 \\ THREE UNIT SHELL HEAD 80D8580-2}
12.1 This raster set covers the parallel examination for the circumferential welds, upper shell to intermediate shell and intermediate shell to lower shell.
12.2 Physical (nozzles) obstructions and limitations exist in several areas throughout weld 1-SB-RV-103-121. Careiully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or when head contact is lost.
12.3 Figure 1 is an illustration of the orientations to be used with head 8008580-2. Note that when reference is made to shooting right, left, clockwise or counterclockwise on the raster summary sheets, this direction refers to the orientation of the \(0^{\circ}\) straight beam.
12.4 Each raster summary sheet in this section provides full coverage in one direction parallel to the weld. Each weld is examined twice to provide coverage in both parallel directions as required.

\section*{DIAGRAM FOR ORIENTATION NUMBERS 1 AND 2}

SHELL HEAD NO. 80D8580-2 FIGURE 1

\section*{Transducer}

Position


Beam


Transducer


Position


Orientation No. 2 Shooting Left (ccw)

Note: Shooting direction refers to the orientation of the \(0^{\circ}\) straight beam when looking outward from the center of the RPV.




Remarks:
Refer to Section 12.2 before scanning.
\begin{tabular}{|c|c|}
\hline Operator & Reviewer \\
\hline orerator & \\
\hline
\end{tabular}

\section*{RASTER SUMMARY SHEET}

Raster Set: III-6
Raster No.
Scanning Mode : Parallel
Head Attitude: Horizontal

Orient.: \(\qquad\) Shooting: Ieft
Index Increment: \(0.0 .70^{\prime \prime}\)
Index With : Hoist \(\left(227.92^{\prime \prime}-243.34^{\prime \prime}\right)\)
Sweep With: Potate Drive \(\left(0^{\circ}-361^{\circ}\right)\)

Section: \(\qquad\) Cal. Data Pkg.:
Procedure No.: 80A6477 Rev.__
Video Tape No.: \(\qquad\)
Cal. Block No. : \(196-103\) (9")
Head No.:
80D8580-2
Weld No. : \(\quad 1-S B-R V /-101-171\)
Weld Centerline: \(\quad 235.63^{\prime \prime}\)
Weld Title: Intermediate Shell to Iover Shell Circ. Weld
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INDEX & START & STOE & INDEX & START & STOP & INDEX & START & STOF \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks: Refer to Section 12.2 before scanning.


Date
\(\qquad\)
\(\qquad\) of \(\qquad\)

\section*{13. RASTER SET III-7 \\ THREE UNIT SHELL HEAD \(8008580-2\)}
13.1 This raste: set covers the parallel examinations for the longitudinal welds in the intermediate shell and lower shell.
13.2 Physical (lower core support pads) obstructions and limitations may exist in several areas throughout the longitudinal welds in the lower shell. Carefully monitor all operations in these areas via the television system. Scanning is to be stopped whenever an obstruction is met, or head contact is lost.
13.3 Figure 1 is an illustration of the orientations to be used with head \(80 \mathrm{D} 8580-2\). Note that when reference is made to shooting up or down on the raster summary sheets, this direction refers to the orientation of the \(0^{\circ}\) straight beam.
13.4 Each raster summary sheet in this section provides full coverage in one direction parallel to the weld. Each weld is examined twice to provide coverage in both parallel directions as required.

NUCLEAR ENERGY SERVICES, INC.

\section*{AUTOMATED ULTRASONIC EXAMINATION}

\section*{PROCEDURE FOR REACTOR PRESSURE VESSEL SHELL WELDS}

FROM THE ID SURFACE

\section*{SEABROOK NUCLEAR POWER STATION}

\section*{UNIT 1}

\title{
CONTROLLED COPY \\ VAUD ONLY IF THIS STAMP IS RED
}



\title{
AUTOMATED ULTRASONIC EXAMINATION PROCEDURE FOR REACTOR PRESSURE VESSEL SHELL WELDS FROM THE ID SURFACE
}

\section*{1. SCOPE}

\subsection*{1.1 AREA OF EXAMINATION}
1. This document covers the Uitrasonic examination procedures for the Reactor Pressure Vessel (RPV) welds as follows:
A. Flange to upper shell circumferential weld shown in Figures 1 and 2.
B. Upper shell to intermediate shell circumferential weld shown in Figures 1 and 3.
C. Upper shell longitudinal welds shown in Figures 1 and 4.
D. Intermediate shell and lower shell longitudinal welds shown in Figures 1 and 5.
E. Intermediate shell to lower shell circumferential weld shown in Figures 1 and 6.
F. Inlet nozzle to shell welds shown in Figures 1 and 7.
G. Outlet nozzle to shell welds shown in Figures 1 and 8.
H. Lower shell to bottom head circumferential weld shown in Figures 1 and 9.
I. Bottom head circumferential (dollar plate) weld and bottom head meridional welds shown in Figures 1 and 10 .
2. Flange and nozzle weld examinations, specified in this procedure, provide parallel only coverage of those welds. Perpendicular coverage of flange and nozzle welds is specified in Procedures 80A6478 and 80A6479.
3. Near Surface coverage of the welds mentioned in \(1.1(1)\) shall be specified in NES Document 80A6480.
\(\qquad\)

\subsection*{1.2 TYPE OF EXAMINATION}
1. Volumetric examination shall be performed using ultrasonic pulse echo nominal 450 and 600 shear wave angle beams and \(0^{\circ}\) straight beam terchniques applied to the clad inside (ID) surfaces of the RPV.
2. The examinations will be performed using the RPV ID Examination Positioning Device and immersion search units (transducers).

\subsection*{1.3 TIME OF EXAMINATION}

These procedures shall govern the preservice (baseline) examination of the Reactor Vessel as required by the ASME Boiler and Pressure Vessel Code, Section XI and the NRC Regulatory Guide 1.150 Rev .1 .

\subsection*{1.4 MATERIALS}

The RPV shell, bottom head, and flange assembly are constructed of low carbon steel with stainless steel cladding on the inside (ID) surfaces.

\section*{2. REFERENCES}

\subsection*{2.1 REFERENCE DOCUMENTS}
1. NRC Regulatory Guide 1.150 Rev .1 .
2. ASME Boiler and Pressure Vessel Code, Section XI, 1977 Edition through Summer of 1978 Addenda
3. ASNT Recommended Practice, SNT-TC-1A, 1975 Edition
\(\qquad\) OF \(\qquad\) 42
4. NES Document 80A6401, Reactor Pressure Vessel Preservice Inspection Program Plan for Seabrook Nuclear Power Station Unit 1
5. NES Document 80A5187, Quality Assurance Program Plan for Seabrook Nuclear Power Station Unit I
6. NES Document 80A9068, Procedure for Training and Certification of Nondestructive Exarnination Personnel (latest revision)
7. NES Document 80A9053, Procedure for Ultrasonic Instrument Linearity Verification (latest revision), as modified in paragraph 7.4.2 of this procedure
8. NES Document 80A9060, Inservice Inspection Field Change Procedure (latest revision)
9. NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device

\subsection*{2.2 APPLICABLE DRAWINGS}
1. Seabrook Drawings

Drawing No.
A. 10773-161-003
B. 10873-171-004
C. 10873-171-005

Title
As Built Location of Weld Seams Vessel
General Arrangement Elevation
General Arrangement Plan
2. Calibration Block Drawings:
A. NES Drawing No. 80 E6306 Basic 7" Calibration Block, Seabrook Unit 1 PC. NO. 196-102
B. NES Drawing No. 80 E 6307 Basic \(9^{\prime \prime}\) Calibration Block, Seabrook Unit PC. NO. 196-103
C. NES Drawing No. 80 E 6308 Basic 11" Calibration Block, Seabrook Unit PC. NO. 196-104
\(\qquad\)
\(\qquad\)

\section*{3. PROCEDURE COMPLIANCE}

The examination procedures described in this document comply with Section XI of the ASME Boiler and Pressure Vessel Code and the NRC Regulatory Guide 1.150 Rev. 1 except where examination coverage is limited by part geometry or access. Where part geometry or access result in limited coverage, such limitations shall be identified and described on the appropriate documentation for reporting the examination.

\section*{4. PREREQUISITES}

\subsection*{4.1 PERSONNEL CERTIFICATION REQUIREMENTS}
1. Each person performing ultrasonic examinations governed by this procedure shall be certified in accordance with ASME Boiler and Pressure Vessel Code Section XI, 1977 Edition through Summer of 1978 Addenda and NES 80A9068, Procedure for Training and Certification of Nondestructive Examination Personnel.
2. Examination crews shall have two or more members on each shift as necessary. At least one member of each crew shall have a minimum qualification of Level II in accordance with the above referenced documents. At least one additional member must have a minimum qualification of Level I. Supplemental data evaluations/reporting required by RG 1.150 shall be conducted by a Level II (minimum).

\subsection*{4.2 PERSONNEL RECORDS}
1. Records of personnel qualification shall be maintained by the on-site NES Automated Site Supervisor, or Data Reviewer.
2. A copy of the examiner's certification summary and a current eye test shall be submitted to the Plant Owner or his Agent, prior to performing examinations per this procedure.

\subsection*{4.3 SURFACE PREPARATION}

All examination surfaces must be clean and free of dirt, weld spatter, etc., or any other condition which would interfere with the examination by impairing proper transmission of the sound beam, or by preventing free movement of the search unit along the examination surface.

\section*{5. EXAMINATION REQUIREMENTS}

\subsection*{5.1 EXAMINATION FREQUENCY}
1. The nominal examination frequency shall be 2.25 MHz for all straight beam and angle beam examinations.
2. During preservice examination, other pulse frequencies shall be used if such variables as material attenuation, grain structure, etc., necessitate their use to achieve penetration or resolution. This information shall be recorded on the data sheets.

\subsection*{5.2 EXAMINATION ANGLES AND COVERAGE}
1. The intent of this procedure is to provide maximum examination coverage. Each weld shall be scanned with a minimal \(25 \%\) over lap of the transducer width (diameter) for each scan pass.
2. The rate of search unit movement shall be recorded as required and in no case shall the scanning speed exceed 6 inches/second.
3. Each weld and the volume of metal for \(1 / 2 \mathrm{~T}\) on each side of the weld (WRV)* shall be examined using 00 longitudinal techniques, 450 and \(60^{\circ}\) shear wave angle beam techniques, except where restricted by part

\footnotetext{
*WRV = Weld and Required Volume
}
geometry or access and as noted in Paragraph 1.1(2). The angle beams shall be oriented both perpendicular and parallel to the weld.
4. Straight beam techniques shall be applied to the required examination volume (WRV) and to all adjacent base material through which angle beams will pass during angle beam examination of the WRV.
5. Other angles and techniques may be used if required for aid in evaluation and the appropriate information (angle, frequency, techniques, etc.) shall be recorded.
6. Examination coverage for the welds specified in this procedure is shown in Figures 2 through 10. Actual scan dimensions and coordinates are specified in NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device.

\subsection*{5.3 LIQUID COUPLANT}

The ultrasonic couplant shall be the inhibited water used to fill the RPV.

\subsection*{5.4 SCAN COVERAGE LIMITATIONS}

Where the surface or other conditions do not permit a neaningful examination of the scan areas designated, the examiner shall record the location and the particular interfering cundition in the space provideo on the Regulatory Guide 1.150 Examination Limitation Report Sheet and report same to the NES Automated Site Supervisor for corrective action or disposition.

\subsection*{5.5 WELD IDENTIFICATION}

The appropriate weld maps in NES Document 80A6401, Reactor Pressure Vessel, Preservice Inspection Program Plan shall be used to locate each weld.
\(\qquad\)
\(\qquad\)

\subsection*{5.6 REFERENCE POINT}
1. The reference point for all RPV shell welds (except the nozzle - shell welds) shall be RPV 00 at the flange mating surface.
2. The reference points for the RPV nozzle - shell welds shall be 00 at the nozzle top dead center for angular displacement and the nozzle axis for radial displacement.

\section*{6. EQUIPMENT REQUIREMENTS}

\subsection*{6.1 EXAMINATION EQUIPMENT}

The following test equipment or its equivalent shall be provided (as a minimum) for examination of the welds specified in this procedure.
1. Nuclear Reflectoscope System.
2. RPV ID Examination Positioning Device.
3. Calibration Tank.
4. Transducers, as required.
5. Examination Head Assemblies.
6. Other ultrasonic equipment as required.

\subsection*{6.2 PLANT OWNER'S EQUIPMENT}

The Plant Owner or his Agent shall provide the following service facilities and equipment as required.
1. Scaffolding.
2. Air and Electricity.
3. Temporary Lighting.
4. Moving or Lifting Devices.
5. Calibration Blocks.
A. 196-102
\(\qquad\)
\(\qquad\) of
B. 196-103
C. 196-104
6. Inhibited Water (couplant).
7. Test Surface Preparation.
8. Post-Examination Cleanup of Test Area.
9. Work Space Adjacent to the RPV Cavity (defined by separate cover).
10. Office Space with Phone Communication (defined by separate cover).

\section*{7. CALIBRATION REQUIREMENTS}

\subsection*{7.1 CALIBRATION DATA PACKAGES}

Calibration Data Packages shall be numbered 6477-1, 6477-2, and 6477-3 etc., at the time of calibration and shall be signed by the examiner(s) upon completion, noting applicable NDE levels. A Calibration Data Package shall consist of a Weld Scan Data Sheet, Calibration Data Sheets, Daily Linearity Sheet (one per 24 hour period), and Supplements as requir sd.

\subsection*{7.2 CALIBRATION BLOCKS}
1. The calibration blocks designated in \(6.2(5)\), shall be used for basic instrument calibration and for establishing reference sensitivity levels for examinations.
2. The identity of the calibration block used for performing the calibration shall be recorded on each Calibration Data Sheet.
3. System calibration shall be performed on the clad surface of the calibration blocks.
4. The temperature of the calibration couplant shall be within 250 F of the component couplant temperature. Calibration couplant and component couplant temperatures shall be recorded on the Calibration Data Sheet.
5. Spot Thickness Checks of the components shall be made prior to the preservice examination to ensure that the proper calibration sweep length includes the maximum thickness. Readings shall be taken at 3 locations on each vessel shell weld and shall be recorded on the Weld Thickness Spot Check Data Sheet.

\subsection*{7.3 EXAMINATION SENSITIVITY LEVELS}
1. Primary Reference Sensitivity

The primary reference sensitivity level shall be the distance-amplitude correction (DAC) curve initially established on the calibration block.
2. Equalized Response Sensitivity

When an electronic DAC is used, the primary reference response shall be equalized at a nominal \(80 \%\) FSH over the distance to be gated during the examination. The equalized response sensitivity setting of the ultrasonic instrument is that control setting which provides an \(80 \%\) FSH response from all calibration reflectors after the electronic DAC curve equalization. If equalization is not possible refer to Paragraph 8.1(E).

\section*{3. Examination Sensitivity}

The examination sensitivity shall be the equalized response sensitivity with correction factors included as determined in NES 80A5533, Automated Ultrasonic Examination Technique Qualification Procedure.

\subsection*{7.4 TIMES OF CALIBRATION}
1. Examination system calibration shall be performed prior to the examination of the specified welds and shall include establishment of DAC curve(s), correction factors, setting of gates, establishment of electronic DAC curve(s) and the programming of Transponding Ultrasonic Calibrator (TUC) cards to establish equalized amplitude response.
2. Instrument vertical and amplitude control linearity checks shall be performed at the beginning of each day of examination, in accordance with NES 80A9053, Procedure for Ultrasonic Instrument Linearity Verification, using an angle beam search unit applied to the appropriate Code Calibration block, TUC pulses, or other sources of suitable stable signals.

When performing the vertical linearity check required on the Daily Linearity Sheet, the smaller signal amplitude shall be equal to half the corresponding larger signal amplitude, within \(\pm 5 \% \mathrm{FSH}\), for all high points 80\% FSH and below. This information shall be recorded on the Daily Linearity Sheet shown in Figure 12.
3. Calibration checks using the TUC shall be performed at the beginning of each 12 hour period of the examination, and at the change of Level II examination personnel. A TUC check shall be made at any time there is a reason to suspect equipment malfunction.
4. A check of the examination system calibration, search unit heads and coaxial cables shall be performed each time the head, transducers, cables, etc. require replacement or each time the equipment is removed from the examination area or at the beginning and end of each 12 hour examination period, whichever is sooner.

\subsection*{7.5 CALIBRATION RESPONSE}
1. Calibration response shall be checked at the equalized response sensitivity level.
2. Signal response obtained during calibration check shall be within plus or minus 20\% of that established during basic system calibration.
3. If any point of the equalized response level has decreased by more than \(20 \%\) of its amplitude, the examiner shall:
A. Void all scans completed since previous calibration or calibration check.
B. Recalibrate examination system.
C. Re-examine voided areas.
4. If any point of the equalized response level has increased by more than \(20 \%\) of its amplitude, the examiner shall:
A. Recalibrate examination system.
B. Re-evaluate all indications recorded since the previous calibration check at the corrected equalized response level.
5. If any point on the DAC curve has moved horizontally more than \(10 \%\) of the sweep line from its original settings, the examiner shall:
A. Correct sweep calibration, noting correction on the Calibration Data Sheet.
B. Void any scans made since the previous calibration or calibration check which have recorded indications, perform and record the new calibration, and re-examine those areas.

\subsection*{7.6 CALIBRATION FIXTURES}

Calibration shall be performed using the same mounting fixture as required for the examination.

\section*{8. EXAMINATION SYSTEM CALIBRATION}

\subsection*{8.1 BASIC SYSTEM CALIBRATION}

The Level II Examiner of each shift shall establish basic examination system calibration settings and parameters at any time prior to the ultrasonic examination of the RPV welds. Initial calibration shall be from the clad side of the appropriate calibration block.
\(\qquad\)
\(\qquad\)
1. First half vee angle beam calibration not including the inner \(25 \%\) shall be performed as follows:
A. Adjust instrument sweep range to correspond with the area to be covered during the examination. For initial 00 straight beam and \(60^{\circ}\) angle beam calibration, the \(1 / 4 \mathrm{~T}\) hole indication from the calibration block shall occur at the second horizontal screen division; the \(3 / 4 \mathrm{~T}\) indication shall occur at the sixth horizontal screen division; and the 1/2T indication will occur at approximately the fourth horizontal screen division. For angle beam examination, the far surface notch and the \(3 / 4 \mathrm{~T}\) hole after bounce ( \(1-1 / 4 \mathrm{~T}\) hole, when it can be adequately resolved) shall occur at approximately the 8 th and 10 th horizontal divisions, respectively.
B. For 00 , start the first gated area as close as practical to the front interface signal and end the gated area as close as practical to the back reflection signal. Do not set the start of the first gated area so close to the front interface signal as to cause the gate to trigger, as this will produce large amounts of meaningless data. A second gate shall be used on the 00 channel to monitor the back reflection signal. For the angle beam exams, the start of the gated area shall include at least 1 inch of material before the \(1 / 4 \mathrm{~T}\) hole. Similarly, end the gated area far enough to incluce the far surface notch and include the \(11 / 4 \mathrm{~T}\) hole wherever possible. The final gate set-up should be flexible enough to allow for minor adjustments as may be required by the actual examination conditions, provided the required examination volume is included.
C. Establish actual DAC curve for the proper angle and examination depth combination by plotting the signal response amplitudes from the \(1 / 4 \mathrm{~T}, 1 / 2 \mathrm{~T}\), and \(3 / 4 \mathrm{~T}\) (and \(1-1 / 4 \mathrm{~T}\) for angle beams wherever possible) reference holes. Adjust the response from the hole giving the highest amplitude to \(80 \%\) Full Screen Height (FSH). Connect the points plotted on the CRT with a continuous line covering the examination range.
D. Program a TUC card to match the distance-amplitude curve established in (C) above.
E. Electronically equalize the reference sensitivity at \(80 \% \mathrm{FSH}\) over the examination range. If the sensitivity cannot be equalized over the entire range, the minimum response level from the side drilled holes (1/4T, 1/2T or \(3 / 4 \mathrm{~T}\) ) will be used for determining recording levels. In this case, \(50 \%\) of the lowest of the above responses shall be used as the recording level. For the angle beam exams, if the far surface notch and/or \(11 / 4 \mathrm{~T}\) hole cannot be equalized note its best equalized sensitivity and the amount of db (+ or -) necessary to bring its echo to 80\% FSH on the Calibration Data Sheet.
F. Record all information required on the Calibration Data Sheet. The ultrasonic examiner(s) shall sign the completed data sheet(s), noting their applicable NDE certification levels.
G. If the \(45^{\circ}\) and \(60^{\circ}\) angle beam examinations are to be displayed on the same CRT (dual traces) the \(45^{\circ}\) examination shall use the sweep settings established for the \(60^{\circ}\) examination. Repeat steps (B) through (F) for the complete calibration of the \(45^{\circ}\) angle beam channel.
2. Special calibration for the Lower Head Dollar Plate full vee angle beam calibration shall be performed using \(45^{\circ}\) shear wave angle beam and as follows:

NOTE: If the \(45^{\circ}\) full vee and \(60^{\circ}\) half vee examinations are to be displayed on the same CRT, the \(60^{\circ}\) half vee examination shall use the sweep settings established for the \(45^{\circ}\) full vee examination. Repeat steps \(8.1 .1(B)\) through \(8.1 .1(F)\) for complete calibration of the \(60^{\circ}\) half vee examination.
\(\qquad\) of
A. Adjust the instrument sweep range to correspond with the area to be covered during the examination. Position the \(1 / 4 \mathrm{~T}\) hole indication to occur at the first horizontal screen division and the \(13 / 4 \mathrm{~T}\) hole indication to occur at the seventh horizontal screen division. The \(1 / 2 \mathrm{~T}, 3 / 4 \mathrm{~T}, 11 / 4 \mathrm{~T}\), and \(11 / 2 \mathrm{~T}\) hole indications shall occur at approximately the second, third, fifth, and sixth horizontal screen divisions respectively. The 1T notch and the 2T notch shall occur at approximately the four th and eighth horizontal screen divisions respectively.
B. Start the gate as close as practical to the front interface. End the gate at the ninth horizontal screen division or higher.
C. Position search unit to obtain maximum response from the hole which gives the highest amplitude signal. Adjust sensitivity controls to provide a signal amplitude of \(80 \%\) FSH and mark location and amplitude on the CRT.
D. Without changing sensitivity, position search unit on the remaining angle beam calibration holes and mark signal amplitudes and locations on the CRT.
E. Plot a DAC curve by connecting the locations with a continuous line extended to cover the full examination range.
F. Program a TUC card to match the DAC Curve established in (D) above.
G. Electronically equalize the primary reference response to \(80 \% \mathrm{FSH}\) over the entire depth range to be used during the examination. If equalization within \(\pm 10 \%\) FSH is not possible, the equalized sensitivity shall be raised until the lowest response is at \(80 \% \mathrm{FSH}\).
\(\qquad\)
\(\qquad\)

NOTE: If the \(1 / 4 \mathrm{~T}\) hole can not be equalized, it is permissable to equalize, starting with the \(1 / 2 \mathrm{~T}\) hole, provided the \(1 / 4 \mathrm{~T}\) hole amplitude is at least \(80 \%\) FSH after the 8 dB increase described in 8.1.2. (H), and any indications occuring between gate start and the second horizontal screen division are initially recorded at the increased examination sensitivity.
H. Examination sensitivity shall be increased a minimum 8 db and the 2 T notch should be at least \(80 \%\) FSH. This increased sensitivity shall be used to size any indication (to 50\% DAC) between the seventh and ninth horizontal screen divisions. This additional goin shall be reduced to equalized sensitivity for indication sizing between gate start and the seventh horizontal screen division.

\subsection*{8.2 SYSTEM CALIBRATION CHECK}
1. Calibration checks of the examination system, as required by paragraph 7.4(3), shall be performed as follows:
A. Use the TUC and previously recorded instrument settings to perform a check of the examination instrumentation system including sensitivity level, gate function and position, and data recordirg system.
B. Verify that the amplitude response is within plus or minus \(20 \%\) of the equalized response obtained during initial zalibration.
2. Performance checks of search units and cables, as required by paragraph 7.4(4), shall be performed as tollows:
A. Reposition search unit on the calibration block at each test hole and observe maximum signal response amplitude and horizontal positions.
\(\qquad\) of
B. Verify that all amplitudes fall within \(20 \%\) of the equalized response sensitivity level and the horizontal displacement is within the required \(\pm 10 \%\). Refer to paragraph 7.5 if the response from any hole is beyond the allowed tolerance.
3. Record time, date, examiner's initials, and type of calibration check in the space provided on the appropriate Calibration Data Sheet.

\subsection*{8.3 BEAM SPREAD}

An alternative data record may be used when establishing a search unit beam spread.

Beam spread measurements for the vertical plane of each angle beam search unit may be made as follows:

NOTE: This is only one of the optional beam spread measurement methods which may be performed. Additional beam spread measurements may be made at the time of evaluations.
1. Position search unit for maximum response from 1/4 Thole.
2. Beam spread measurements should be made at the reference sensitivity required for sizing. For example, if sizing will be done '? both \(50 \%\) and 20\% DAC, beam spread measurements will be done to both criteria. Move the search unit towards the \(1 / 4 \mathrm{~T}\) hole, through the maximum amplitude point until the signal amplitude reads \(50 \%\) then \(20 \%\) of the DAC line on the screen. Mark the corresponding positions of the fixture on the block surface at some convenient point.
3. Move the search unit back past the \(1 / 4 \mathrm{~T}\) hole, through the maximum amplitude point, until the signal amplitude comes again to \(50 \%\) and \(20 \%\) of the DAC line on the screen. Again, mark the block to indicate the new fixture positions.
\(\qquad\)
4. Repeat steps (2) and (3) for the 1/2T and 3/4 Tholes.
5. Using suitable paper, transfer the measurements from the biock to the paper. Connect points to determine beam spread and angle information.

NOTE: Curvature of the calibration block used may cause some deviation in beam spread and beam angle information.
6. Beam spread plots shail become part of the examination record.

\section*{9. EXAMINATION PROCEDURES}
1. Refer to Figures (2) through (10) and to NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device for scan coverage and scan sequence information.
2. Calibrate examination equipment as required by Section 8.1 ; or if 12 hours have elapsed since initial calibration, perform calibration checks as required by Section 8.2.
3. Locate the datum point, position the head on the RPV ID Examination Positioning Device and begin examination.
4. Continue scanning sequences until all welds requiring the same calibration have been examined. Examinations shall not be considered complete until all recordable indications have been investigated, recorded and evaluated as required in 10.

\section*{10. RECORDING CRITERIA}

\subsection*{10.1 GEOMETRIC INDICATIONS}

Indications that are evaluated as geometric in origin and are equal to or greater than 50\% DAC shall be recorded at one location and noted as "Geometric caused
\(\qquad\)
by weld prep design," or "ID or OD design geometry," etc, and verified by the applicable drawings. All geometric indications shall be recorded on the "Report Sheet for Geometric Reflectors".

\subsection*{10.2 INDICATIONS WITH CHANGING METAL PATH}

Indications that change metal distances and are within the outer \(75 \%\) of the through-wall dimension shall be recorded at 50\% DAC.

The inner \(25 \%\) of the through-wall dimension recording criteria is specified in NES Document 80A6480. Refer to 8.1.2 (H) for recording indications using the full vee calibration technique.

\subsection*{10.3 INDICATIONS WITHOUT CHANGING METAL OATH}
1. Indications equal to or greater than 50\% DAC which do not change metal path distances and are within the outer \(75 \%\) of the through-wall dimension shall be recorded when any continuous dimension exceeds one inch. The inner \(25 \%\) of the through-wall dimension recording criteria is specified in NES Document 80A6480, Refer to \(8.1 .2(\mathrm{H})\) for recording indications using the full vee calibration technique.
2. Indications lying parallel to welds may appear as nontraveling (without changing metal path) when scanned by parallel moving transducers whose beams are aimed normai to the weld, ie, at 900 . Multiple scans, however, may reveal that these indications are traveling indications.

NOTEt Any non-traveling indication appearing in more than one scan shall be investigated for travel for travel by comparing the multiple scans. If the multiple scan evaluation reveals travel record the indication in accordance with Section 10.2.
\(\qquad\)

\section*{11. EVALUATION CRITERIA}
1. Evaluation of flaw indications (excluding geometry) shall be performed in accordance with the Flaw Evaluation Procedure 80A5535.
2. Results of the evaluation shall be reported to the Plant Owner or his Agent.

\section*{12. EXAMINA IION RECORDS}

\subsection*{12.1 CERTIFICATION OF RECORDS}
1. The examiner(s) shall complete and sign the appropriate data sheet(s) immediately upon the completion of RPV shell weld examinations, noting their applicable NDE certification levels. All Calibration Data Packages shall be reviewed for procedural compliance by the Data Reviewer or the designee of the site supervisor.
2. Should the performance of an examination overlap two shifts, the Level II Examiners of each shift shall sign the appropriate data sheets.

\subsection*{12.2 FILING OF RECORDS}

NES shall be responsible for submitting to the Plant Owner or his Agent, a completely documented set of examination records including certification of personnel qualifications with current eye test reports.

\subsection*{12.3 PROCEDURE CORRECTIONS AND ADDITIONS}
1. All procedure corrections and/or additions required during the preservice examinations may be initiated by either the owner or the senior NES site representative. All such changes shall have the approval of the owner and an NES Level III.
\(\qquad\) of \(\qquad\)
2. Each procedure revision shall be documented in accordance with the NES Field Change Procedure. The Plant Owner or his Agent shall be notified of such changes and approval obtained as required.
1. Flange to Upper Shell Circumferential Held
2. Upper Shell Longitudinal Welds
3. Upper Shell to Intermediate Shell Circumferential Weld
4. Intermediate Shell Longitudinal Welds
5. Intermediate Shell to Lover Shell Circumferential Weld
6. Lowar Shell Longitudinal Welds
7. Lower Shell to 3ottom Head Circumerential Weld
8. Sottom Head Meridional "elds
9. Bottom Iead Circumferentiai Neld (Dollar Plate)
10. Outlet Nozzle to Shell Kelds
11. Talet Nozzle to Shell Velde
12. Nozzle to Safe thd Welda


FIGURE 1

FIGURE 2
FLANGE TO UPPER SHELL CIRCUMFERENTIAL WELD


FIGURE 3
UPPER SHELL TO
INTERMEDIATE SHELI
CIRCUMFERENTIAL WELD


FIGURE 4
UPPER SHELL LONGITUDINAL WELDS


DOCUMENT NO.

FIGURE 5
INTERMEDIATE AND LOWER SHELL LONGITUDINAL WELDS


FIGURE 7
INLET NOZZLE TO SHELL WELDS
(PARALLEL COVERAGE)


FIGURE 8
OUTLET NOZZLE TO SHELL WELDS
(PARALLEL COVERAGE)


FIGURE 9
LOWER SHELL TO BOTTOM HEAD
CIRCUMFERENTIAL WELD


DOCUMENT NO
\(\qquad\) OF_ 42

FIGURE 10
BOTTOM HEAD MERIDION IL
WELDS AND BOTTOM HEAD
CIRCUMFERENTIAL (DOLLAR PLATE) WELD

\(\qquad\)
\(\qquad\) OF:

\section*{17es}

ULTRASONIC :NSTRUMENT
ILTHSNO:C INRTRIMENT LINEAW'TY RECOFD

MODEL NO. \(\qquad\) SER:AL NO. \(\qquad\) TYPE \(\qquad\) SERTAL NO. \(\qquad\)
TRANSDUCER
\begin{tabular}{l} 
BRAND \\
BRAND \\
\hline
\end{tabular}

VERTICAL LINEARITY
SIGNAL ARPLTTUDES TN : FSH
HORIZONTAL LINEARITY

 AMGLITUDE CONTROL LINEARITY
\begin{tabular}{|c|c|c|c|}
\hline INTTUL AMPLITLDE & db Change & REsme & LTMTT \\
\hline 80\% FSE & DOSN 6 & & \(12 *-68 \%\) \\
\hline 30\% FEE & DCFV 12 & & \(16 \%-24 \%\) \\
\hline 602 FSE & TP 6 & & \(64 \%-96 \%\) \\
\hline 208 FSE & CP 12 & & \(64 \%-96 \%\) \\
\hline
\end{tabular}

TE1S INSTRUMENT IS CONSTDERED:
( ) ACCEPTABLE
() NOT ACCEPTABLE

STGNED \(\qquad\) LEME \(\qquad\) \(0: T E\) \(\qquad\) nucuear eremgy senvices. INC.
\(\qquad\)
BAILY IITMEARITY SHEET

FOPM 078 \(103 / 8\) 2782

PAGE
\(\qquad\) nroc．No． \(\qquad\) Rev． \(\qquad\)

WLLD THICRESS STOT CHECK DATA SHEET
Transducer Icentifiestion－ \(0^{\circ}\)
Size \(\qquad\)
SAMPLE ONLY

\section*{SIMILAR VERSIONS WHICH} REQUIRE TH゙E SAME
INFORMATYON ARE ACCEPTABLE
Calibrate the screen in inches，using either two different size biodid or the tirst two bach echoes within one block．Record thickness at various points on the welds as re－ guirec．Oigital thickness instruments art accegrable．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline vald Musear & \(\mathrm{Late}_{\mathrm{up}}\) & \＆ & Mome & \({ }_{\text {Lete }}^{\substack{\text { ute }}}\) & \＆ & \(cnane
come\) &  & \＆ &  \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

Examiner \(\qquad\) Level \(\qquad\) Date \(\qquad\) 11巴ร
FORM 028－119／0 1／83

PAGE

WETD SCAN DATA SHEIT
\begin{tabular}{|c|c|}
\hline Plant/Unit & Page \\
\hline & Cal. Daea Pkg. \\
\hline Subject & Procedure No.__ Rev. \\
\hline NR System & Video Tape No. \\
\hline
\end{tabular}


FIGURE 14


FORM 028-116/1 1/83

Page \(\qquad\) of \(\qquad\)
Cal．Data Pkg． －
Procadure No． \(\qquad\) Rev．

INDICATION EVALUATION SHEET

SUPPLEMENT B

Page \(\qquad\)
CaL．Daca Pkg． of \(\qquad\)
\(\qquad\)
 \(\qquad\) Procedure No．\(\longrightarrow\) Rev．

EVALUATION SHEET FOR RECORDABLE INOICAIIONS


Flaw characteristic calculations：

C．Comparison of pertinent evaluation standard（Para． \(\qquad\) to actual flaw size．

－If a rejectable indication is found during an inservice examination，additiona evaluation analy is shall oe pertormed．

PAGE


Pley．No． \(\qquad\)

SUPPLDMERT D
REPORT SHEET TOR GEOMTRIC RETLETORS

Depth of Reilector（in．） \(\qquad\) Channel \(\qquad\)
Maximim ：DAC \(\qquad\) Indication（s）No． \(\qquad\)

Poeitional Coortinates
SAMPLE ONLY
corments（Dse sketches to provide elarity）：Rei．Dus，Wo． SHU V VERSNO WHIII REQUIRE THE SAME INFORMATION ARE ACCEPTABLE
－
－

Page \(\qquad\) of \(\qquad\)
Cal．Data Pkg． \(\qquad\)
Proc．No． \(\qquad\) Rev．

SUPFLEmart E
\＆ะGULATOET GUIDE 1.250 ETAKENATION LTMTATION
REPOR SEET

Weld Number \(\qquad\)

SIMILAR VERSIONS WHICH
＂TEDUTRE＂THE SAME
TNEQRMATIQN．ARE ACCEPTABLE
\(\qquad\) 1 OF \(\qquad\) 31

AUTOMATED ULTRASONIC EXAMINATION PROCEDURE

FOR

REACTOR PRESSURE VESSEL

UPPER SHELL TO FLANGE WELD FROM THE FLANGE MATING SURFACE

SEABROOK NUCLEAR POWER STATION

CONTROLLED COPY
VALD DIIIY If THIS STRict is RED

\begin{tabular}{|c|c|c|c|c|}
\hline REv.
NO. & DATE & PAGE
NO. & DESCRYPTION & APPROVAL \\
\hline 1 & 2/24/84 & \(\frac{1}{6}\) \& & Incorporate changes 1isted on CRA 4056 & R. Phime \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline & &  &  & \\
\hline & &  &  & \\
\hline & & & & \\
\hline & &  & & \\
\hline & &  &  & \\
\hline & &  & & \\
\hline & &  & & \\
\hline & &  & & \\
\hline &  &  & & \\
\hline &  &  & & \\
\hline & &  & & \\
\hline & &  & & \\
\hline & &  & & \\
\hline & &  & & \\
\hline & &  & & \\
\hline & &  & & \\
\hline & &  & & \\
\hline &  &  & & \\
\hline &  &  & & \\
\hline &  &  & & \\
\hline & & & & \\
\hline & & & & \\
\hline &  & & & \\
\hline &  & & & \\
\hline
\end{tabular}
\(\qquad\)

\title{
AUTOMATED ULTRASONIC EXAMINATION PROCEDURE FOR REACTOR PRESSURE VESSEL UPPER SHELL TO FLANGE WELD FROM THE FLANGE MATING SURFACE
}

\section*{1. SCOPE}

\subsection*{1.1 AREA OF EXAMINATION}
1. This dozument covers the ultrasonic examination procedure for the Reactor Pressure Vessel (RPV) Flange to Upper Shell Weld from the flange step (mating) surface, shown in Figures 1 and 2.
2. Examinations required by this procedure provide beam direction essentially normal to the plane of the weld only. Parallel coverage of this weld is specified in 80A6477.

\subsection*{1.2 TYPE OF EXAMINATION}
1. Volumetric examination shall be performed using ultrasonic pulse echo \(0^{\circ}\) straight beam and 80 and 190 refracted longitudinal beam techniques applied to the step surface of the RPV Flange as shown in Figure 2. The three longitudinal beams are used to provide coverage for the complete width of the weld.
2. The examination will be performed using the RPV ID Examination Positioning Device and/or manual scanning techniques.

\subsection*{1.3 TIME OF EXAMINATION}

These procedures shall govern the preservice (baseline) examination of the Reactor Vessel as required by the ASME Boiler and Pressure Vessel Code, Section XI and the NRC Regulatory Guide 1.150 Rev, 1.
\(\qquad\)

\subsection*{1.4 MATERIALS}

The Reactor Vessel and Flange Assembly are constructed of low carbon steel with stainless stee! cladding on the inside (ID) surfaces.

\section*{2. REFERENCES}

\subsection*{2.1 REFERENCE DOCUMENTS}
1. NRC Regulatory Guide \(1.150 \mathrm{Rev}, \mathrm{I}\)
2. ASME Boiler and Pressure Vessel Code, Section XI, 1977 Edition through Summer of 1978 Addenda
3. ASNT Recommended Practice, SNT-TC-1A, 1975 Edition
4. NES Document 80A6401, Reactor Pressure Vessel Preservice Inspection Program Plan for Seabrook Nuclear Power Station Unit 1
5. NES Document 80A5187, Quality Assurance Program Plan for Seabrook Nuclear Power Station Unit I
6. NES Document 80A9068, Procedure for Training and Certification of Nondestructive Examination Personnel (latest revision)
7. NES Document 80A9053, Procedure for Ultrasonic Instrument Linearity Verification (latest revision), as modified in paragraph 7.4.2 of this procedure
8. NES Document 80A9060, Inservice Inspection Field Change Procedure (latest revision)
9. NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device
\(\qquad\)

\subsection*{2.2 APPLICABLE DRAWINGS}
1. Seabrook Drawings

Drawing No.
A. 10773-161-003
B. 10873-171-004
C. 10873-121-001
D. 10873-121-002
E. 10873-121-005
F. 10873-126-001
G. 10873-126-002
2. Calibration Block Drawing

NES Drawing 80D6,09

Vessel Flange Ligament Calibration Block, Seabrook Unit 1
PC No. 196-201

\section*{3. PROCEDURE COMPLIAN E}

The examination procedures described in this document comply with Section XI of the ASME Boiler and Pressure Vessui Code and the NRC Regulatory Guide 1.150 Rev. 1 except where examination coverage is limited by part geometry or access. Where part geometry or access result in limited coverage, such limitations shall be identified and described on the appropriate documentation for reporting the examination.

\section*{4. PRERFQUISITES}

\subsection*{4.1 PERSONNEL CERTIFICATION REQUIREMENTS}
1. Each person performing ultrasonic examinations governed by this procedure shall be certified in accordance with ASME Boiler and Pressure Vessel

Code Section XI, 1977 Edition through Summer of 1978 Addenda and NES 80A9068, Procedure for Training and Certification of Nondestructive Examination Personnel.
2. Examination crews shall have two or more members on each shift as necessary. At least one member of each crew shall have a minimum qualification of Level II in accordance with the above referenced documents. At least one additional member must have a minimurn qualification of Level I. Supplemental data evaluations/reporting required by RG 1.150 shall be conducted by a Level II (minimum).

\subsection*{4.2 PERSONNEL RECORDS}
1. Records of personnel qualification shall be maintained by the on-site NES Automated Site Supervisor, or Data Reviewer.
2. A copy of each examiner's certification summary and a current eye test report shall be submitted to the Plant Owner or his Agent, prior to performing examinations per this procedure.

\subsection*{4.3 SURFACE PREPARATION}

All examination surfaces must be clean and free of dirt, weld spatter, etc., or any other condition which would interfere with the examination by impairing proper transmission of the sound beam, or by preventing free movement of the search unit along the examination surface.
\(\qquad\)
PAGE \(\qquad\) of \(\qquad\)

\section*{5. EXAMINATION REQUIREMENTS}

\subsection*{5.1 EXAMINATION FREQUENCY}
1. The nominal examination frequency shall be 2.25 MHz for all examinations.
2. During preservice examinations, other pulse frequencies shall be used if variables such as material attenuation, grain structure, etc., necessitate their use to achieve penetration or resolution. This information shall be recorded on the data sheets.

\subsection*{5.2 EXAMINATION ANGLES AND COVERAGE}
1. The intent of this procedure is to provide maximum examination coverage. This weld shall be scanned with a minimum of two scan passes to insure maximum coverage.
2. The rate of search unit movement shall not exceed \(6^{\prime \prime}\) per second.
3. The Reactor Vessel to Flange Weld shall be uitrasonically examined using 00,80 and 190 longitudinal beam techniques applied in one direction through the weld. Coverage for this weld is shown in Figure 2.
4. Other angles may be used if required for aid in evaluation, and the appropriate information (angle, frequency, technique, etc.) shall be recorded.

\subsection*{5.3 LIQUID COUPLANT}

The ultrasonic couplant shali be the inhibited water used to flood the RPV.
5.4 SCAN COVERAGE LIMITATIONS

Where the surface or other conditions do not permit a meaningful examination of
the scan areas designated, the examiner shall record the location and the particular interfering condition in the space provided on the Regulatory Guide 1.150 Examination Limitation Report Sheet and report same to the NES Automated Site Supervisor for corrective action or disposition.

\subsection*{5.5 WELD IDENTIFICATION}

The appropriate weld maps in NES Document 80A6401, Reactor Pressure Vessel, Preservice Inspection Program Plan shall be used to locate each weld.

\subsection*{5.6 REFERENCE POINT}

The reference point for this examination shall be the flange mating surface at Reactor Pressure Vessel 00 reference location.

\section*{6. EQUIPMENT REQUIREMENTS}

\subsection*{6.1 EXAMINATION CONTRACTOR'S EQUIPMENT}

The following test equipment or its equivalent shall be provided by the Examination Contractor (as a minimum) for examination of the welds specified in this procedure.
1. Nuclear Reflectoscope System.
2. RPV ID Examination Positioning Device.
3. Transducers, as required.
4. Examination Head Assembly
5. Other Ultrasonic Equipment as Required.

\subsection*{6.2 PLANT OWNER EQUIPMENT}

The Plant Owner or his Agent shall provide the following service, facilities and equipment as required.
1. Scaffolding
2. Air, and Electricity
3. Temporary lighting
4. Moving or Lifting Devices
5. Calibration Block, PC. No. 196-201
6. Inhibited Water (couplant)
7. Test surface Preparation
8. Post-Examination Cleanup of Test Area
9. Work Space Adjacent to the RPV Cavity (defined by separate cover).
10. Office Space with Phone Communication (defined by separate cover).

\section*{7. CALIBRATION REQUIREMENTS}

\subsection*{7.1 CALIBRATION DATA PACKAGES}

Calibration Data Packages shall be numbered 6478-1, 6478-2 and 6478-3 etc., at the time of each calibration and shall be signed by the examiner(s) upon completion, noting applicable NDE levels. A Calibration Data Package shall consist of a Weld Scan Data Sheet, Calibration Data Sheet(s), Daily Linearity Sheet (as required), and supplements as required.

\subsection*{7.2 CALIBRATION BLOCKS}
1. The calibration blocks designated in 6.2 .5 shall be used for basic instrument calibration and for establishing reference sensitivity levels for examinations.
2. The identity of the calibration block used for performing calibration shall be recorded on each Calibration Data Sheet.
3. System Calibration shall be performed on the clad surface of the calibration block.
\(\qquad\) OF
4. The temperature of the calibration couplant shall be within 250 F of the component couplant temperature. The calibration couplant and component couplant temperatures shall be recorded on the Calibration Data Sheet.

\subsection*{7.3 EXAMINATION SENSITIVITY LEVELS}
1. Primary Reference Sensitivity

The primary reference sensitivity level shall be the distance-amplitude correction (DAC) curve initially established on the calibration block.
2. Equalized Response Sensitivity

When an electronic DAC is used, the primary reference response shall be equalized at a nominal \(80 \%\) FSH over the distance to be gated during the examination. The equalized response sensitivity setting of the ultrasonic instrument is that control setting which provides an \(80 \%( \pm 10 \%) \mathrm{FSH}\) response from all calibration reflectors after the electronic DAC curve equalization. If equalization is not possible, refer to paragraph 8.1.5.

\section*{3. Examination Sensitivity}

The examination sensitivity shall be the equalized response sensitivity with correction factors included as determined in NES 80A5533, Automated Ultrasonic Examination Technique Qualification Procedure.

\subsection*{7.4 TIMES OF CALIBRATION}
1. Examination system calibration shall be performed prior to the examination of the specified welds and shall include establishment of DAC curve(s), correction factors, setting of gates, establishment of electronic DAC curve(s) and the programming of Transponding Ultrasonic Calibrator (TUC) cards to establish equalized amplitude response.
2. Instrument vertical and amplitude control linearity checks shall be performed at the beginning of each day of examination, in accordance with NES 80A9053, Procedure for Ultrasonic Instrument Linearity Verification using a search unit applied to an appropriate calibration block, TUC pulses, or other sources of suitable stable signals. When performing the vertical linearity check required on the Daily Linearity Sheet, the smaller signal amplitude shall be equal to half the corresponding larger signal amplitude, within \(\pm 5 \%\) FSH, for all high points \(80 \%\) FSH and below. This information shall be recorded on the Daily Linearity Sheet.
3. Calibration checks using the TUC shall be performed at the beginning of each 12 hour period of the examination, and at the change of Level II examination personnel. A TUC check shall be done at any time there is a reason to suspect equipment malfunction.
4. A calibration check of the examination system, search unit heads and coaxial cables shall be performed each time the head, transducers, cables, etc. require replacement, or each time the equipment is removed from the examination area, or at the beginning and end of each 12 hour examination period, whichever is sooner. This calibration check shall be performed also at the completion of examination of welds specified in this procedure.

\subsection*{7.5 CALIBRATION RESPONSE}
1. Calibration response shall be checked at the equalized response sensitivity level.
2. Signal response obtained during calibration check shall be within plus or minus \(20 \%\) of that established during basic system calibration.
3. If any point of the equalized response level has decreased by more than \(20 \%\) of its amplitude, the examiner shall:
\(\qquad\) OF
A. Void all scans completed since previous calibration or calibration check
B. Recalibrate examination system
C. Re-examine voided areas
4. If any point of the equalized response level has increased by more than \(20 \%\) of its amplitude, the examiner shall:
A. Recalibrate examination system
B. Re-evaluate all indications recorded since the previous calibration check at the corrected equalized response level.
5. If any point on the DAC curve has moved horizontally more than \(10 \%\) of the sweep reading from its original settings, the examiner shall:
A. Correct sweep calibration, noting correction on the Calibration Data Sheet.
B. Void any scans made since the previous calibration or calibration check which have recorded indications, perform and record a new calibration, and reexamine those areas.

\subsection*{7.6 CALIBRATION FIXTURES}

Calibration shall be performed using the same mounting fixture as required for the examination.

\section*{8. EXAMINATION SYSTEM CALIBRATION}

\subsection*{8.1 BASIC SYSTEM CALIBRATION}

The Level II Examiner shall establish basic examination system calibration
\(\qquad\) OF
settings and parameters at any time prior to the ultrasonic examination of Reactor Pressure Vessel Flange Weld. Initial calibration shall consist of the following:

NOTE: In order to display the dual traces, one each for \(8^{\circ}\) and \(19^{\circ}\), on a single time base ultrasonic scope the examination system sweep will be calibrated for the \(19^{\circ}\) exam and calibration echo positions recorded on the calibration sheet for the \(8^{\circ}\) exam.
1. Adjust instrument sweep and delay to correspond with the area to be covered during the examination. For the 00 and 190 search units, the indication from the \(24.75^{\prime \prime}\) hole (D in Figure 3) shall occur at 3.5 horizontal screen divisions; the indication from the \(28.875^{\prime \prime}\) hole ( E in Figure 3) shall occur at 6.0 horizontal screen divisions.
2. Adjust gate positions to cover the entire examination range extending from the 0 to the 10 horizontal screen divisions.
3. Establish a DAC curve for the examination area by plotting the signal response amplitudes from the "D" hole and "E" hole with the \(D\) hole response set at \(80 \% \mathrm{FSH}\). Connect the TUC to the proper channel and match the "D" hole and " E " hole signal responses. A third TUC pulse should be programmed beyond the "E" hole response. All 3 TUC pulses should be equally spaced along the time base line. The amplitude for the third TUC pulse should be programmed to reflect the same db difference as that between the "D" hole and "E" hole responses established above. Connect the three points and extrapolate the line to cover the entire examination range (horizontal screen divisions 0 through 10).
4. Program a TUC card to match the distance amplitude curve established above.
5. Electronically equalize the TUC pulses at the specified ( \(80 \% \mathrm{FSH}\) ) amplitude over the entire depth range to be used during the examination.

If the response can not be equalized, the reference sensitivity level shall be the DAC curve initially established in 8.1.3 and shall be the sensitivity used for evaluating and recording all indications. During actual weld scanning the reference sensitivity level shall be increased a minimum of 2 X .
6. Record all information required on the Calibration Data Sheet. The ultrasonic examiner(s) shall sign the completed Calibration Data Sheet, noting applicable NDE level(s).
7. For the 80 examination use the sweep settings established for the 190 examination. Repeat steps 2 through 6 for remaining calibration of the \(8^{\circ}\) channel.

\subsection*{8.2 SYSTEM CALIBRATION CHECK}
1. Calibration checks of the examination system, as required by paragraph 7.4.3, shall be performed as follows:
A. Use the TUC and previously recorded instrument settings to perform a check of the examination instrumentation system including sensitivity level, gate function and position, and data recording system.
B. Verify that the amplitude response is within plus or minus \(20 \%\) of the equalized response obtained during initial calibration.
2. Performance checks of search units and cables, as required by paragraph 7.4.4, shall be performed as follows:
A. Reposition search unit on the calibration block at each test hole and observe maximum signal response amplitudes and horizontal positions.
\(\qquad\)
NUCLEAR ENERGY SERVICES, INC.
B. Verify that all amplitudes fall within \(20 \%\) of the equalized response sensitivity level and the horizontal displacement is within the required \(\pm 10 \%\). Refer to paragraph 7.5 if the response from any hole is beyond the allowed tolerance.
3. Record time, date, examiner's signature, and type of calibration check in the space provided on the appropriate Calibration Data Sheet.

\subsection*{8.3 BEAM SPREAD}

An alternative data record may be used when establishing a search unit bearn spread.

Beam spread measurements for the vertical plane of each angle beam search unit may be made as follows:

NOTE: This is only one of the optional beam spread measurement methods which may be performed. Additional bearn spread measurements may be made at the time of evaluations.
1. Position search unit for maximum response from \(1 / 4 \mathrm{~T}\) hole.
2. Beam spread measurements should be made at the reference sensitivity required for sizing. For example, if sizing will be done to both \(50 \%\) and \(20 \%\) DAC, beam spread measurements will be done to both criteria. Move the search unit towards the \(1 / 4 \mathrm{~T}\) hole, through the maximum amplitude point until the signal amplitude reads \(50 \%\) then \(20 \%\) of the DAC line on the screen. Mark the corresponding positions of the fixture on the block surface at some convenient point.
3. Move the search unit back past the \(1 / 4 \mathrm{~T}\) hole, through the maximum amplitude point, until the signal amplitude comes again to \(50 \%\) and \(20 \%\) of the DAC line on the screen. Again, mark the block to indicate the new fixture positions.
4. Repeat steps (2) and (3) for the \(1 / 2 \mathrm{~T}\) and \(3 / 4 \mathrm{~T}\) holes.
5. Using suitable paper, transfer the measurements from the block to the paper. Connect points to determine beam spread and angle information.

NOTE: Curvature of the calibration block used may cause some deviation in beam spread and beam angle information.
6. Beam spread plots shall become part of the examination record.

\section*{9. EXAMINATION SEQUENCE}
1. Refer to Figure 2 and to NES 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device, for scan coverage and scan sequence information.
2. Calibrate examination equipment or perform calibration check as required by Section \(8(2)\).
3. Locate the datum point, position head either manually or on the RPV ID Examination Positioning Device and commence examination.
4. Continue scanning sequences until the weld has been examined. Examinations shall not be considered complete until all recordable indications have been investigated, recorded and evaluated as required in 10.

\section*{10. RECORDING CRITERIA}

\subsection*{10.1 GEOMETRIC INDICATIONS}

Indications that are determined to be geometric in origin and are ' jual to or greater than 50\% DAC shall be recorded at one location and noted as "Geometric
caused by weld prep design," or "ID or OL design geometry," etc. and verified by the applicable drawings. All geometric indications shall be recorded on the "Report Sheet for Geometric Reflectors".

\subsection*{10.2 INDICATIONS WITH CHANGING METAL PATH}
1. Indications that change metal path distances and are within the outer \(75 \%\) of the through-wall dimension shall be recorded at 50\% DAC.
2. Indications that change metal path distances and are within the inner \(25 \%\) of the through-wall dimensions, shall be recorded at 20\% DAC and 50\% DAC.

\subsection*{10.3 INDICATIONS WITHOUT CHANGING METAL PATH}
1. Indications equal to or greater than \(50 \%\) DAC which do not change metal path distances and are within the outer \(75 \%\) of the through-wall dimension should be recorded when any continuous dimension exceeds one inch.
2. Indications which do not change metal path distances and are within the inner \(25 \%\) of the through-wall dimensions, should be recorded at \(20 \%\) DAC and \(50 \%\) DAC.
3. Indications lying parallel to welds may appear as nontraveling (without changing metal path) when scanned by parallel moving transducers whose beams are aimed normal to the weld, ie. at \(90^{\circ}\). Multiple scans, however, may reveal that these indications are traveling indications.

NOTE: Any non-traveling indication appearing in more than one scan, shall be investigated for travel by comparing the multiple scans. If the multiple scan evaluation reveals travel record the indication in accordance with 10.2 .
\(\qquad\)
\(\qquad\)

\section*{11. EVALUATION CRITERIA}
1. Evaluation of flaw indications (excluding geometry) shall be in accordance with Flaw Evaluation Procedure 80A5535.
2. Results of the evaluation shall be reported to the Plant Owner or his Agent.

\section*{12. EXAMINATION RECORDS}

\subsection*{12.1 CERTIFICATION OF RECORDS}
1. The examiner(s) shall complete and sign the appropriate data sheet(s) immediately upon the completion of RPV shell weld examinations, noting applicable NDE certification levels. All Calibration Data Packages shall be reviewed for Procedural Compliance by the Data Reviewer or the designee of Automated Site Supervisor.
2. Should the performance of an examination overlap two shifts, the Level II Examiners of each shift shall sign the appropriate data sheets.

\subsection*{12.2 FILING OF RECORDS}

NES shall be responsible for submitting to the Plant Owner or his Agent, a completely documented set of examination records including certifications of personnel qualifications with current eye test reports.

\subsection*{12.3 PROCEDURE CORRECTIONS AND ADDITIONS}
i. All procedure corrections and/or additions required during the preservice examinations may be initiated by either the owner or the senior NES site representative. All such changes shall have the approval of the owner and an NES Level III.
2. Each procedure revision shall be documented in accordance with the NES Field Change Procedure. The Plant Owner or his Agent shall be notified of such changes and approval obtained as required.

\section*{NUCLEAR ENERGY SERVICES, INC.}
```

PAGE
20 _OF

1. Flange to Upper Shell Circumferential Weld
2. Upper Shell Longitudinal Welds
3. Upper Shell to Iatermediate Shell Circumferential Weld
4. Incermediate ,hell Longitudiaal Welds
5. Intersediate Snell to Lover Shell Circumierential Weld
6. Lower Shell Longitudinal Welds
7. Lower Shell to Bottom Head Eircuaferential Weld
8. Bottom Head Meridional ields
9. Bottom llead Circumferentiai Neld (Dollar Plate)
10. Outlet Nozzle to Shell Welds
11. Talet Nozzle to Shell velds
12. Nozzle to Safe End Velds
(4)

FIGURE 1

DOCUMENT NO. \qquad

PAGE 22 OF 31

NUCLEAR ENERGY SERVICES, INC.

Mfg/Montel No.
Level

 mta/model no.
 Serial mo.

Channel 1

\qquad

-

$-$
Level

S

 C
Channel ?
Channel

Serial No
Bate
Bevel
nate
\qquad Rev. \qquad

WELD THICKIESS STOT CHECX DATA SHEIT

 Transducer icentification - 2^{0} Size SAMPLE ONLY

SIMILAR VERSTONS WHICH

 REQUIRE THEE SAMEINFORMATHON ARE ACCEPTABLE
Guibrste the screen in inches. using either two dilferent size blocks or the first two bach echoes within one block. Record thickness at various points on the weids as reduired. Digital thickness instriments ars accestable.

Weld Hupber	$\begin{gathered} \text { Left } \\ \text { Up } \end{gathered}$	$\underline{4}$	RLath Down	Left Un	E	Riane Down	Lest Up	E	Riqne Dorm
$-$									

txaminer \qquad tevel \qquad Dace \qquad 11上s
\qquad

\qquad

\qquad

NUCLEAR ENERGY SERVICES, INC.

30

N

\qquad

\qquad . OF

AUTOMATED ULTRASONIC EXAMINATION

 PROCEDURE FOR REACTOR VESSEL NOZZLE TO SHELL WELDSFROM THE NOZZLE BORE

SEABROOK

NUCLEAR POWER STATION

CONTROLLED COPY VALID ONLY IF Thu SABinA is RED

AEV. NO.	DATE	PAGE NO.	DESCRIPT:ON	APPROVAL
1	2/24/84	1,5	Incorporate changes 1isted on CRA 4055	$x 2$

AUTOMATED ULTRASONIC EXAMINATION PROCEDURE FOR REACTOR VESSEL NOZZLE TO SHELL WELDS
 FROM THE NOZZLE BORE

I. SCOPE

1.1 AREA OF EXAMINATION

1. This document covers the ultrasonic examination procedures for the Reacior Pressure Vessel (RPV) welds as follows:
A. RPV to Outlet Nozzle Welds, shown in Figures 1 and 2.
B. RPV to Inlet Nozzle Welds, shown in Figures I and 3.
2. The examination of RPV to Nozzle Welds specified in ihis procedure provide coverage with the beam direction essentially normal to the plane of the weld. For parallel coverage of these welds see Procedure 80A6477. For near surface coverage of these areas, refer to Procedure 80 A 6480.

1.2 TYPE OF EXAMINATION

1. Volumetric examinations for the RPV to Nozzle Welds shall be performed using ultrasonic pulse echo 50 and 200 refracted longitudinal beam techniques from the clad inside (1D) surface, one direction perpendicular to, and through the weld as shown in Figures 2 and 3.
2. At the discretion of the on-site NES Level III, a supplemental 00 examination from the examination surface specified for the 50 and 20° examinations shall be performed to a depth of at least $7^{\prime \prime}$. This examination will provide additional volumetric coverage of material which may be obscured during performance of the 50 and 200 examinations.
3. The examinations will be performed using the RPV ID Examinations Positioning Device and immersion search units (transducers).

1.3 TIME OF EXAMINATION

These procedures shall govern the preservice (baseline) examination of the Reactor Vessel as required by the ASME Boiler and Pressure Vessel Code, Section XI and the NRC Regulatory Guide 1.150 Rev .1 .

1.4 MATERIALS

The RPV Inlet and Outlet Nozzles are constructed of low carbon steel with stainless steel cladding on the ID surfaces.

2. REFERENCES

2.1 REFERENCES DOCUMENTS

1. NRC Regulatory Guide 1.150 Rev .1 .
2. ASME Boiler and Pressure Vessel Code, Section XI, 1977 Edition through Summer of 1978 Addenda
3. ASNT Recommended Practice, SNT-TC-1A, 1975 Edition
4. NES Dorument 80A6401, Reactor Pressure Vessel Preservice Inspection Program Plan for Seabrook Nuclear Power Station Unit 1
5. NES Document 80A5187, Quality Assurance Program Plan for Seabrook Nuclear Power Station Unit 1
6. NES Document 80A9068, Procedure for Training and Certification of Nondestructive Examination Personnel (latest revision)
\qquad
7. NES Document 80A9053, Procedure for Ultrasonic Instrument Linearity Verification (latest revision), as modified in paragraph 7.4.2 of this procedure
8. NES Document 80A9060, Inservice Inspection Field Change Procedure (latest revision)
9. NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device

2.2 APPLICABLE DRAWINGS

1. Seabrook Drawings

Drawing No.
A. 10773-161-003
B. 10873-171-004
C. 10873-121-001
D. 10873-121-003
E. 10873-121-004
F. 10873-128-001
G. 10873-128-002
H. 10873-128-003
I. 10873-128-004
2. Calibration Block Drawing

NES Drawing 80D6309

Title

As Built Location of Weid Seams
Vessel and Closure Head
General Arrangement Elevation
Upper Vessel Assembly
Upper Vessel Machining
Upper Vessel Machining
Inlet Nozzle
Inlet Nozzle Machining and Cladding
Outlet Nozzle
Outlet Nozzle Machining and Cladding

Vessel Flange Ligament Calibration Block, Seabrook Unit 1, PC No. 196-201

3. PROCEDURE COMPLIANCE

The examination procedures described in this document comply with Section XI of the ASME Boiler and Pressure Vessel Code and the NRC Regulatory Guide 1.150 Rev . 1 except where examination coverage is limited by part geometry or access. Where part geometry or access result in limited coverage, such limitations shall be identified and described on the appropriate documentation for reporting the examination.

4. PREREQUISITES

4.1 PERSONNEL CERTIFICATION REQUIREMENTS

1. Each person performing ultrasonic examinations governed by this procedure shall be certified in accordance with ASME Boiler and Pressure Vessel Code, Section XI, 1977 Edition through Summer of 1978 Addenda and NES 80A9068, Procedure for Training and Certification of Nondestructive Examination Personnel.
2. Examination crews sha!! have two or more members on each shift as necessary. At least one member of each crew shall have a minimum qualification of Level II in accordance with the above referenced documents. At least one additional member must have a minimum qualification of Level I. Supplemental data evaluations/renorting required by RG 1.150 shall be conducted by a Level II (minimum).

4.2 PERSONNEL RECORDS

1. Records of personnel qualification shall be maintained by the on-site NES Automated Site Supervisor, or Data Reviewer.
2. A copy of each examiner's certification summary and a current eye test report shall be submitted to the Plant Owner or his Agent, prior to performing examinations per this procedure.

4.3 SURFACE PREPARATION

All examination surfaces mus: be clean and free of dirt, weld spatter, etc., or any other condition which would interfere with the examination by impairing proper transmission of the sound beam, or by preventing free movement of the search unit along the examination surface.

5. EXAMINATION REQUIREMENTS

5.1 EXAMINATION FREQUENCY

1. The nominal examination frequency shall be either 5 MHz or 2.25 MHz for all straight beam and angle beam examinations.
2. During preservice examination, other pulse frequencies shall be used if such variables as material attenuation, grain structure, etc., necessitate their use to achieve penetration or resolution. This information shall be recurved on the data sheets.

5.2 EXAMINATION ANGLES AND COVERAGE

1. The intent of this procedure is to provide maximum examination coverage. Each weld shall be scanned with a minimal 25% overlap of the transducer width (diameter) for each scan pass.
2. The rate of search unit movement shall be recorded as required and in no case shall the scanning speed exceed 6 inches/second.
3. Each RPV to Inlet and Outlet Nozzle Weld shall be ultrasonically examined using 50 and 200 refracted longitudinal beam techniques applied in one direction, perpendicular to, and through the weld, except where restricted by part geometry or access.
4. The 50 angle provides a beam essentially perpendicular to the weld; the 200 angle ensures adequate coverage of the weld and adjacent base material in areas where vessel/nozzle geometry limits perpendicular coverage.
5. Other angles and techniques may be used if required for aid in evaluation, and the appropriate information (angle, frequency, technique, etc.) shall be recorded.
6. Examination coverage for the weld specified in this procedure is shown in Figures 2 and 3. Actual scan dimensions and coordinates are specified in NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device.

5.3 LIQUID COUPLANT

The ultrasonic couplant shall be the inhibited water used to fill the RPV.

5.4 SCAN COVERAGE LIMITATIONS

Where the surface or other conditions do not permit a meaningful examination of the scan areas designated, the examiner shall record the location and the particular interfering condition in the space provided on the Regulatory Guide 1.150 Examination Report Sheet and report same to the NES Automated Site Supervisor for corrsctive action or disposition.

5.5 WELD IDENTIFICATION

NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device, shall be used to locate each weld.

5.6 REFERENCE PCINT

1. Datum points for the RPV to Nozzle Welds shall be the change of section between the barrel and cone of the nozzle as shown in Figures 2 and 3 and at the uppermost point of the nozzle.
2. Datum point to transducer location correspondence shall be established per NES Document 80A6476.

6. EQUIPMENT REQUIREMENTS

6.1 EXAMINATION CONTRACTOR'S EQUIPMENT

The following test equipment or its equivalent shall be provided by the Examination Contractor (as a minimum) for examination of the welds specified in this procedure.

1. Nuclear Reflectoscope System
2. RPV ID Examination Positioning Device
3. Calibration Tank
4. 1" Diameter, 2.25 MHz or 5 MHz Transducers, as required
5. Head Assemblies
6. Other Ultrasonic Equipment as Required

6.2 PLANT OWNER'S EQUIPMENT

The Plant Owner or his Agent shall provide the following service, facilities and equipment as required.

1. Scaffolding
2. Air and Electricity
3. Temporary Lighting
4. Moving or Lifting Devices
5. Calibration Blocks
A. 196-102
B. 196-201
6. Inhibited Water (couplant)
7. Test Surface Preparation
8. Post-Examination Cleanup of Test Area
9. Work Space Adjacent to the RPV Cavity (defined by separate cover).
10. Office Space With Phene Communication (defined by separate cover).

7. CALIBRATION REQUIREMENTS

7.1 CALIBRATION DATA PACKAGES

Calibration Data Packages shall be numbered 6479-1, 6479-2, and 6479-3 etc., at the time of calibration and shall be signed by the examiner(s) upon completion, noting applicable NDE levels. A Calibration Data Package shall consist of a Weld Scan Data Sheet, Calibration Data Sheets, Daily Linearity Sheet (one per 24 hour period), and Supplements as required.

7.2 CALIBRATION BLOCKS

1. The calibration blocks designated in 6.2(5), shall be used for basic instrument calibration and for establishing reference sensitivity levels for examinations.
2. The identity of the calibration block used for performing calibration shall be recordeả un each Caiibration Data Sुneet.
3. System Calibration shall be performed from the clad surface of the calibration blocks.
4. The temperature of the calibration couplant shall be within 25 degrees F of the component couplant temperature. Calibration couplant and component couplant temperatures shall be recorded on the Calibration Data Sheet.

7.3 EXAMINATION SENSITIVITY LEVELS

1. Primary Reference Sensitivity

The primary reference sensitivity level shall be the distance-amplitude correction (DAC) curve initially established on the calibration block.
\qquad
\qquad of

2. Equalized Response Sensitivity

When an electionic DAC is used, the primary reference response shall te equalized at a nominal $80 \%(\pm 10 \%)$ FSH over the distance to be gated during the examination. The equalized response sensitivity setting of the ultrasonic instrument is that control setting which provides an 80% FSH response from all calibration refiectors after the electronic DAC curve equalization.

3. Examination Sensitivity

The examination sensitivity shall be the equalized response sensitivity with correction factors included as determined in NES 80A5533, Automated Ultrasonic Examination Head Qualification Procedure. If equalization is not possible, refer to paragraph 8.1(E).

7.4 TIMES OF CALIBRATION

1. Examination system calibration shall be performeu prior to examination of the specified welds and shall include establishment of DAC curve(s), correction factors, setting of gates, establishment of electronic DAC curve(s) and the programming of Transponding Ultrasonic Calibrator (TUC) cards to establish equalized amplitude response.
2. Instrument vertical and amplitude control linearity checks shall be performed at the beginning of each day of examination, in accordance with NES 80A9053, Procedure for Ultrasonic Instrument Linearity Verification, using a search unit applied to an appropriate Calibration block, TUC pulses, or other sources of suitable stable signals. When performing the vertical linearity check required on the Daily Linearity Sheet, the smaller signal amplitude shall be equal to half the corresponding larger signal amplitude, within $\pm 5 \% \mathrm{FSH}$, for all high points 80% FSH and below. This information shall be recorded on the Daily Linearity Sheet.
3. Calibration checks using the TUC shall be performed at the beginning of each 12 hour period of the examination, and at the change of Level II
\qquad
examination personnel. A TUC check shall be done at any time there is a reason to suspect equipment malfunction.
4. Calibration of the examination system, search unit heads and coaxial cables shall be verified each time the head, transducers, cables, etc. require replacement or each time the equipment is removed from the examination area or at the beginning and end of each 12 hour examination period, whichever is sooner. This calibration check shall also be performed at the completion of examination of welds specified in this procedure.

7.5 CALIBRATION RESPONSE

1. Calibration response shall be checked at the equalized response sensitivity leve!.
2. Signal response obtained during calibration check shall be within plus or minus 20% of that established during basic system calibration.
3. If any point of the equalized response level has decreased by more than 20% of its amplitude, the examiner shall:
A. Void all scans completed since previous calibration or calibration check
B. Recalibrate examination system
C. Re-examine voided areas.
4. If any point of the equalized response level has increased by more than 20% of its amplitude, the examiner shall:

A. Recalibrate examination system

B. Re-evaluate all indications recorded since the previous calibration check at the corrected equalized response level.
\qquad
PAGE
5. If any point on the DAC curve has moved horizontally more than 10% of the sweep line from its original settings, the examiner shall:
A. Correct sweep calibration, noting correction on the Calibration Data Sheet
B. Void any scans made since the previous calibration or calibration check which have recorded indications, perform and record the new calibrations, and re-examine those areas.

7.6 CALIBRATION FIXTURES

Calibration shall be performed using the same mounting fixture as required for the examination.

8. EXAMINATION SYSTEM CALIBRATION

8.1 BASIC SYSTEM CALIBRATION

The Level II Examinerf(s) of each shifi shail estabiish basic examination system calibration settings and parameters at any time prior to the ultrasonic examination of the specified welds.

1. Initial calibration for 50 and 200 examination of the RFV nozzle to shell welds shall be performed as follows:
A. Adjust instrument sweep range to correspond with the material volume covered by the examination. For the 200 examination the reflection from the hole in the calibration block (A in Figure 4) shall occur at the second horizontal screen division; and the reflection from the hole in the calibration block (C in Figure 4) shall occur at the eighth horizontal screen division.
B. Adjust the gated area to include the complete WRV. Do not start the gated volume so close as to cause the gate to trigger from the front interface multiples, as this will produce large amounts of meaningless

PAGE \qquad of \qquad
data. The final gate set-up should be flexible enough to allow for minor adjustments as may be required by the actual examination conditions provided the required examination volume is included.
C. Establish actual distance-amplitude curve for the proper angle and examination depth combination by plotting the signal response amplitudes from the A, B, and C reference holes. Adjust the response from the hole giving the highest amplitude to 80% Full Screen Height (FSH). Connect the points plotted on the CRT with a continuous line covering the examination range.
D. Program a TUC card to match the distance-amplitude curve established in (C) above.
E. Electronically equalize the examination sensitivity at $80 \%(\pm 10 \%)$ FSH over the examination range. If the sensitivity cannot be equalized over the entire range, the minimum response level from the side drilied holes (A, B, or C) wiil be used for determining recording levels. In this case, 50% of the lowest of the above responses shall be used as the recording level.
F. Record all information required on the Calibration Data Sheet. The ultrasonic examiner(s) shall sign the completed data sheet(s), noting their applicable NDE certification levels.
G. Repeat steps (A) through (F) for the complete calibration of the 50 channel.
2. Initial Calibration for the supplemental 00 examination of RPV Iniet Nozzle and Outlet Nozzles shall be performed as follows:
A. Adjust instrument sweep range to correspond with the area to be covered during the examination. For initial calibration the $1 / 4 \mathrm{~T}$ hole indication from the calibration block ($7^{\prime \prime}$) shall occur at the second
horizontal screen division; the $3 / 4 \mathrm{~T}$ indication shall occur at the sixth horizontal screen division; and the $1 / 2 \mathrm{~T}$ indication shall occur at approximately the fourth horizontal screen division.
B. Adjust the gated area as close as practical to the front interface signal. Do not set the start of the gated area so close as to cause the first gate to trigger as this will produce large amounts of meaningless data. Similarly, end the gated area to cover at least the first $7^{\prime \prime}$. The final gate set-up should be flexible enough to allow for minor adjustments as may be required by the actual examination conditions, provided the required examination volume is included.
C. Establish actual (DAC) curve for the proper angle and examination depth combination by plotting the signal response amplitudes from the $1 / 4 \mathrm{~T}, 1 / 2 \mathrm{~T}$, and $3 / 4 \mathrm{~T}$ reference holes. Adjust the response from the hole giving the highest amplitude to 80% Full Screen Height (FSH). Connect the points plotted on the CRT with a continuous line covering the examination range.
D. Program a TUC card to match the (DAC) curve established above.
E. Electronically equalize the examination sensitivity at $80 \%(\pm 10 \%)$ FSH over the examination range. If the sensitivity cannot be equalized over the entire range, the minimum response level from the side drilled holes ($1 / 4 \mathrm{~T}, 1 / 2 \mathrm{~T}$ or $3 / 4 \mathrm{~T}$) will be used for determining recording levels. In this case, 50% of the lowest of the above response shall be used as the recording level.
F. Record all information required on the Calibration Data Sheet. The ultrasonic examiner(s) shall sign the completed data sheet(s), noting their applicable NDE certification levels.

8.2 SYSTEM CALIBRATION CHECK

1. Calibration checks of the exarnination system, as required by paragraph 7.4(3), shall be performed as follows:
\qquad
PAGE 16
A. Use the TUC and previously recorded instrument settings to perform a check of the examination instrumentation system including sensitivity level, gate function and position, and data recording system.
B. Verify that the amplitude response is within plus or minus 20% of the equalized response obtained during initial calibration.
2. Performance checks of search units and cables, as required by paragraph 7.4(4), shall be performed as follows:
A. Reposition search unit on the calibration block at each test hole and observe maximum signal response amplitudes and horizontal positions.
B. Verify that all amplitudes fall within 20% of the equalized response sensitivity level and the horizontal displacement is within the required $\pm 10 \%$. Refer to paragraph 7.5 if the response from any hole is beyond the allowed tolerance.
C. Record time, date, examiner's signature, and type of calibration check in the space provided on the appropriate Calibration Data Sheet.

8.3 BEAM SPREAD

An alterr.ative data record may be used when establishing a search unit beam spread.

Beam spread measurements for the vertical plane of each angle beam search unit may be made as follows:

NOTE: This is only one of the optional beam spread measurement methods which may be performed. Additional beam spread measurements may be made at the time of evaluations.

1. Position search unit for maximum response from $1 / 4 \mathrm{~T}$ hole.
2. Beam spread measurements should be made at the reference sensitivity required for sizing. For example, if sizing will be done to both 50% and 20\% DAC, beam spread measurements will be done to both criteria. Move the search unit towards the $1 / 4 \mathrm{~T}$ hole, through the maximum amplitude point until the signal amplitude reads 50% then 20% of the DAC line on the screen. Mark the corresponding positions of the fixture on the block surface at some convenient point.
3. Mive the search unit back past the $1 / 4 \mathrm{~T}$ hole, through the maximum amplitude point, until the signal amplitude comes again to 50% and 20% of the DAC line on the screen. Again, mark the block to indicate the new fixture positions.
4. Repeat steps (2) and (3) for the $1 / 2 \mathrm{~T}$ and $3 / 4 \mathrm{~T}$ holes.
5. Using suitable paper, transfer the measurements from the block to the paper. Connect points to determine beam spread and angle information.

NOTE: Curvature of the calibration block used may cause some deviation in beam spread and beam angle information.
6. Beam spread plots shall become part of the examination record.

9. EXAMINATION SEQUENCE

1. Refer to Figures (1) through (3) and to NES Document 806476 for scan coverage and scan sefzuence information.
2. Calibrate examina ion equipment or perform calibration check as required.
3. Locate the datum point, position the head on the RPV ID Examination Positioning Device and begin examination.
4. Continue scanning sequences until all welds requiring the same calibration have been examined. Examinations shall not be considered complete until all recordable indications have been investigated, recorded and evaluated as required in 10.

10. RECORDING CRITERIA

10.1 GEOMETRIC INDICATIONS

Indications that are determined to be geometric in origin and are equal to or greater that 50\% DAC shall be recorded at one location and noted as "Geometric caused by weld prep design," or "ID or OD design geornetry," etc. and verified by the applicable drawirgs. All geometric indications shall be recorded on the "Report Sheet for Geometric Reflectors".

10.2 NON-GEOMETRIC INDICATIONS

Record all non-geometric indications $\geq 50 \%$ DAC on the Indication Report Sheet, using 50\% DAC end points.

11. EVALUATION CRITERIA

1. Evaluation of flaw indications (excluding geometry) shall be performed in accordance with Flaw Evaluation Procedure 80A5535.
2. Results of the evaluation shall be reported to the Plant Owner or his Agent.

12. EXAMINATION RECORDS

12.1 CERTIFICATION OF RECORDS

1. The examiner(s) shall complete and sign the appropriate data sheet(s) immediately upon the completion of RPV shell weld examinations, noting
their applicable NDE certification levels. All Calibration Data Packages shall be reviewed for proct tural compliance by the Data Reviewer or the designee of the site supervisor.
2. Should the performance of an examination overlap two shifts, the Level II Examiners of each shift shall sign the appropriate data sheets.

12.2 FILING OF RECORDS

NES shall be responsible for submitting to the Plant Owner or his Agent, a completely documented set of examination records including certification of personnel qualifications with current eye test reports.

12.3 PROCEDURE CORRECTIONS AND ADDITIONS

1. All procedure corrections and/or additions required during the preservice examinations may be initiated by either the ow'ner or the senior NES site representative. All such changes shall have the approval of the owner and an NES Leve! III.
2. The Plant Owner of his Agent shall be notified of such changes and approval obtained as required.

NUCLEAR ENERGY SERVICES, INC

1. Flange to Upper Shell Circumferential neld
2. Upper Shell Longitudinal Helds
3. Upper Shell to Incermediate Shell Circumfer mntial Heid
4. Intermediate Shell Longitudinal Welds
5. Incermediate Shell to Lower Shell Circumfervntial Held
6. Lower Shell Longitudinal Helds
7. Lower Shell to Botrom Head Circrafiarential Held
8. Sottom Head Meridional ïeidu
9. Bottom Bead Circumferentid Weld (Dollar Plate)
10. Outlet Nozzle to Shell Hields
11. Inlet Nozzle to Shell Welda
12. Nozzle to Safe End Welds

FIGURE 1

NUCLEAR ENERGY SERVICES. INC.
DOCUMENT NO. $\frac{80 \text { A6479 }}{21 \text { PAGE } 30}$

Scan Paths for the
Outlet Nozzles Start
6.5" Inboard of Datum Point

FIGURE 2 - OUTLE NOZZLE

FIGURE 4 - UT-6
nuclear energy services, inc.

DOCUMENT NO \qquad 80A6479

NUCLEAR ENERGY SERVICES, INC.
pAGE

\qquad of \qquad
Ga1. Qaca Pkg \qquad
Procedure No. \qquad Rev. \qquad

GVALUATION SIEET FOR RECORDARLE LMOTCATIONS

SIM:LAR VERS:ONS WHICH SEQUIRE THE SAME

1. FFORMATION ARE ACCEPTABLE.
G. Gimparisan ut zertinent avaluation standart Parz. to uctual tlaw suze.

*if a reiectabie indicstion is found during an inservice examination, accitional evaiuation anairsis shall oe pertormed.

DOCUMENT NO. \qquad
PAGE \qquad 30 of F 30

AUTOMATED ULTRASONIC EXAMINATION

PROCEDURE FOR NEAR SURFACE TECHNIQUE

FROM THE ID SURFACE

SEABROOK

NUCLEAR POWER STATION

CONTROLLED COPY VALD ONLY IF THIS STALIP IS RED

Proiect Apolication 5562	Prepared By S. Larson	Date $11 / 21 / 83$
	APPROVALS	
TITLE/DEPT.	SIGNATURE	OATE
Level III		
Project Engineer		$124 / 84$
Reactor Services Opers. Mgr.	D	
Project Manager	$\bigcirc P$	4
QA Manager	MGD ingul for WSG	$2 / 24 / 84$

\qquad
\qquad 2

AUTOMATED EXAMINATION PROCEDURE FOR NEAR SURFACE ULTRASONIC TECHNIQUE

1. SCOPE

1.1 AREA OF EXAMINATION

1. This document covers the Near Surface Ultrasonic examination procedures for the following areas:
A. RPV outlet nozzle inner radii and bore shown in Figures 1 and 2.
B. RPV inlet nozzle inner radii and bore shown in Figures 1 and 3.
C. RPV outlet nozzle to safe-end weld and nozzle to shell weld shown in Figures 1 and 2.
D. RPV inlet nozzle to safe-end weld and nozzle to shell weld shown in Figures 1 and 3.
E. Flange to upper shell circumferential weld shown in Figures 1 and 4.
F. Upper shell to intermediate shell circumferential weld shown in Figures 1 and 5.
G. Intermediate to lower shell circumferential weld shown in Figures 1 and 6.
H. Upper shell longitudinal welds shown in Figures 1 and 7.
I. Intermediate and lower shell longitudinal welds shown in Figures I and 8.
J. Lower shell to bottom head circumferential weld shown in Figures 1 and 9 .
K. Bottom head meridional welds shown in Figures 1 and 10.

1.2 TYPE OF EXAMINATION

1. Nozzle bore and Inner Radius and Nozzle to Safe End Weld examinations shall be performed using ultrasonic nominal 650 dual longitudinal technique.
2. The first 25% of the materi_. from the inside (ID) surfaces of the RPV shall be examined using an ultrasonic nominal 600 dual longitudinal beam technique. All nozzle to shell welds shall be examined to $1 / 2 \mathrm{~T}$ to provide additional perpendicular coverage using the 600 dual longitudinal technique.
3. The examinations will be performed using the RPV ID Examination Positioning Device and immersion search units (transducers).

1.3 TIME OF EXAMINATION

These procedures shall govern the preservice (baseline) examination of the Reactor Vessel as required by the ASME Boiler and Pressure Vessel Code, Section XI and the NRC Regulatory Guide 1.150 position Rev. 1.

1.4 MATERIALS

The RPV shell, bottom head, and flange assembly are constructed of low carbon steel with stainless steel cladding on the inside (ID) surfaces.

2. REFERENCES

2.1 REFERENCE DOCUMENTS

1. NRC Regulatory Guide 1.150 Rev. 1 .
2. ASME Boiler and Pressure Vessel Code, Section XI, 1977 Edition through Summer of 1978 Addenda
3. ASNT Recommended Practice, SNT-TC-1A, 1975 Edition
4. NES Document 80A6401, Reactor Pressure Vessel Preservice Inspection Program Plan for Seabrook Nuclear Power Station Unit 1
5. NES Document 80A5187, Quality Assurance Program Plan for Seabrook Nuclear Power Station Unit 1
6. NES Document 80A9068, Procedure for Training and Certification of Nondestructive Examination Personnel (latest revision)
7. NES Document 80A9053, Procedure for Ultrasonic Instrument Linearity Verification (latest revision), as modified in paragraph 7.4.2 of this procedure
8. NES Document 80A9060, Inservice Inspection Field Change Procedure (latest revision)
9. NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device

2.2 APPLICABLE DRAWINGS

1. Seabrook Drawings

Drawing No.
A. 10773-161-003
B. 10873-171-004
C. 10873-171-005

Title
As Built Location of Weld Seams Vessel
General Arrangement Elevation
General Arrangement Plan
2. Calibration Block Drawings:
A. NES Drawing No. 80 E 6306 Basic 7" Calibration Block, Seabrook Unit 1 PC. NO. 196-102
B. NES Drawing No. 80 E6307 Basic 9" Calibration Block, Seabrook Unit PC. NO. 196-103
C. NES Drawing No. 80 E 6308 Basic $11^{\prime \prime}$ Calibration Block, Seabrook Unit PC. NO. 196-104
D. NES Drawing No. 80 D6310 Safe End Calibration Block, Seabrook Unit 1 PC. NO. 196-202

3. PROCEDURE COMPLIANCE

The examination procedures described in this document comply with Section XI of the ASME Boiler and Pressure Vessel Code and the NRC Regulatory Guide 1.150 Rev .1 except where examination coverage is limited by part geometry or access. Where part geometry or access result in limited coverage, such limitations shall be identified and described on the appropriate documentation for reporting the examination.

4. PREREQUISITES

4.1 PERSONNEL CERTIFICA TON REQUIREMENTS

1. Each person ,erforming ultrasonic examinations governed by this procedure shall be certified in accordance with ASME Boiler and Pressure Vessel Code Section XI, 1977 Edition through Summer of 1978 Addenda and NES 80A9068, Procedure for Training and Certification of Nondestructive Examination Personnel.
2. Examination crews shall have two or more members on each shift as necessary. At least one mernber of each crew shall have a minimurn qualification of Level II in accordance with the above referenced documents. At least one additional member must have a minimum qualification of Level I. Supplemental data evaluations/reporting required by RG 1.150 shall be conducted by a Level II (minimum).

4.2 PERSONNEL RECORDS

1. Records of personnel qualification shall be maintained by the on-site NES Automated Site Supervisor, or Data Reviewer.
2. A copy of the examiner's certification summary and a current eye test shall be submitted to the Plant Owner or his Agent, prior to performing examinations per this procedure.

5. EXAMINATION REQUIREMENTS

5.1 EXAMINATION FREQUENCY

1. The nominal examination frequency shall be 2.25 MHz for all angle beam examinations.
2. During preservice examination, other pulse frequencies shall be used if such variables as material attenuation, grain structure, etc., necessitate their use to achieve perietration or resolution. This information shall be recorded on the data sheets.

5.2 EXAMINATION ANGLES AND COVERAGE

1. The rate of search unit movement shall be recorded as required and in no case shall the scanning speed exceed 6 inches/second.
2. Each RPV shell weld (except the bottom head circumferential weld) and the volume of metal for $1 / 2 \mathrm{~T}$ on each side of the weld (WRV)* shall be examined using 600 dual longitudinal wave technique except where restricted by part geometry or access. The angle beams shall be oriented both perpendicular and parallel to the weld.
3. The inner $1 / 3$ only of the nozzle safe-end welds shal! be examined for 2.5 inches either side of the weld using a rominal 650 dual longitudinal angle beam technique. The angle beams shall be oriented both perpendicular and parallel to the weld.
4. The Inner Radii and Bore examination shall be performed using a 650 dual longitudinal angle beam technique applied in two directions circumferentially from the clad ID surface of the nozzles.

[^5]5. Other angles and techniques may be used if required for aid in evaluation, and the appropriate information (angle, frequency, techniques, etc.) shall be recorded.
6. Examination coverage for the welds specified in this procedure is shown in Figures 2 through 10. Actual scan dimensions and coordinates are specified in NES Document 80A6476, Procedure for the Operation of the RPV ID Examination Positioning Device.

5.3 LIQUID COUPLANT

The ultrasonic couplant shall be the inhibited water used to fill the RPV.

5.4 SCAN COVERAGE LIMITATIONS

Where the surface or other conditions do not permit a meaningful examination of the scan areas designated, the examiner shall record the location and the particular interfering condition in the space provided on the Regulatory Guide 1.150 Examination Report Sheet and report same to the NES Automated Site Supervisor for corrective action or disposition.

5.5 WELD IDENTIFICATION

The appropriate weld maps in NES Document 80A6401, Reactor Pressure Vessel, Preservice Inspection Program Plan shall be used to locate each weld.

5.6 REFERENCE POINT

1. The reference point for all RPV shell welds (except the nozzle - shell welds) shall be RPV 00 reference location at the flange mating surface.
2. The reference points for the RPV nozzle - shell welds shall be 0° at the nozzle top dead center for angular displacement and the nozzle axis for radial displacement.
3. The reference point for Reactor Vessel Nozzle Inner Radii and Bore and Nozzle to Safe-End welds shall be the change of section between the barrel and the cone of the nozzles as located by the Datum Point search unit at the upper most point of the nozzle.

6. EQUIPMENT REQUIREMENTS

6.1 EXAMINATION EQUIPMENT

The following test equipment or its equivalent shall be provided (as a minimum) for examination of the welds specified in this procedure.

1. Nuclear Reflectoscope System.
2. RPV ID Examination Positioning Device.
3. Calibration Tank.
4. Transducers, as required.
5. Examination Head Assemblies.
6. Other ultrasonic equipment as required.

6.2 PLANT OWNER'S EQUIPMENT

The Plant Owner or his Agent shall provide the following service, facilities and equipment as required.

1. Scaffolding.
2. Air and Electricity.
3. Temporary Lighting.
4. Moving or Lifting Devices.
5. Calibration Blocks.
A. 196-102
B. 196-103
C. 196-104
D. 196-202
6. Inhibited Water (couplant).
7. Test Surface Preparation.
8. Post-Examination Cleanup of Test Area.
9. Work Space Adjacent to the RPV Cavity (defined by separate cover).
10. Office Space with Phone Communication (defined by separate cover).

7. CALIBRATION REQUIREMENTS

7.1 CALIBRATION DATA PACKACES

Calibration Data Packages shall be numbered 6480-1, 6480-2, and 6480-3 etc., at the time of calibration and shall be signed by the examiner(s) upon completion, noting applicable NDE levels. A Calibration Data Package shall consist of a Weld Scan Data Sheet, Calibration Data Sheets, Daily Linearity Sheet (one per 24 hour period), and Supplements as required.

7.2 CALIBRATION BLOCKS

1. The calibration blocks designated in $6.2(5)$, shall be used for basic instrument calibration and for establishing reference sensitivity levels for examinations.
2. The identity of the calibration block used for performing the calibration shall be recorded on each Calibration Data Sheet.
3. System calibration shall be performed from the clad surface of the calibration blocks.
4. The temperature of the calibration couplant shall be within 250 F of the component couplant temperature. Calibration couplant and component couplant temperatures shall be recorded on the Calibration Data Sheet.
5. Spot Thickness Checks of the components shall be made prior to the preservice examination to ensure that the proper calibration sweep length
includes the maximum thickness. Readings shall be taken at 3 locations on each vessel shell weld and shall be recorded on the Weld Thickness Spot Check Data Sheet.

7.3 EXAMINATION SENSITIVITY LEVELS

1. Primary Reference Sensitivity

The primary reference sensitivity level shall be the distance-amplitude correction (DAC) curve initially established on the calibration block.
2. Equalized Response Sensitivity

When an electronic DAC is user, the primary reference response shall be equalized at a nominal $80 \%(\pm 10 \%)$ FSH over the distance to be gated during the examination. The equalized response sensitivity setting of the ultrasonic instrument is that control setting which provides an $80 \% \mathrm{FSH}$ response from all calibration reflectors after the electronic DAC curve equalization.
3. Examination Sensitivity

The examination sensitivity shall be the equalized response sensitivity with correction factors included as determined in NES 80A5533, Automated Ultrasonic Examination Technique Qualification Procedure.

7.4 TIMES OF CALIBRATION

1. Examination system calibration shall be performed prior to the examination of the specified welds and shall include establishment of DAC curve(s), correction factors, setting of gates, establishment of electronic DAC curve(s) and the programming of Transponding Ultrasonic Calibrator (TUC) cards to establish equalized amplitude response.
2. Instrument vertical and amplitude control linearity checks shall be performed at the beginning of each day of examination, in accordance with NES 80A9053, Procedure for Ultrasonic Instrument Linearity Verification, using a search unit applied to an appropriate Code Calibration block, TUC pulses, or other sources of suitable stable signals. When performing the vertical linearity check required on the Daily Linearity Sheet, the smaller signal amplitude shall be equal to half the corresponding larger signal amplitude, within $\pm 5 \%$ FSH, for all high points 80% FSH and below. This information shall be recorded on the Daily Linearity Sheet.
3. Calibration checks using the TUC shall be performed at the beginning of each 12 hour period of the examination, and at the change of Level II examination personnel. A TUC check shall be done at any time there is a reason to suspect equipment malfunction.
4. A calibration check of the examination system search unit heads and coaxial cables shall be performed each time the head, transducers, cables, etc. require replacement or each time the equipment is removed from the examination area or at the beginning and end of each 12 hour examination period, whichever is sooner.

7.5 CALIBRATION RESPONSE

1. Calibration response shall be checked at the equalized response sensitivity level.
2. Signal response obtained during calibration check shall be within plus or minus 20% of that established during basic system calibration.
3. If any point of the equalized response level has decreased by more than 20% of its amplitude, the examiner shall:
A. Void all scans completed since previous calibration or calibration check.
B. Recalibrate examination system.
C. Re-examine voided areas.
4. If any point of the equalized response level has increased by more than 20% of its amplitude, the examiner shall:
A. Recalibrate examination system.
B. Re-evaluate all indications recorded since the previous calibration check at the corrected equalized response level.
5. If any point on the DAC curve has moved horizontally more than 10% of the sweep line from its original settings, the examiner shall:
A. Correct sweep calibration, noting correction on the Calibration Data Sheet.
B. Void any scans made since the previous calibration or calibration check which have recorded indications, perform and record the new calibration, and re-examine those areas.

7.6 CALIBRATION FIXTURES

Calibration shall be performed using the same mounting fixture as required for the examination.

8. EXAMINATION SYSTEM CALIBRATION

8.1 BASIC SYSTEM CALIBRATION

The Level II Examiner of each shift shall establish basic examination system calibration settings and parameters at any time prior to the ultrasonic
\qquad
\qquad of
examination of the RPV welds. Initial calibration shall be from the clad side of the appropriate calibration block.

1. First $1 / 4 \mathrm{~T}$ and near surface angle beam calibration shall be performed as follows:
A. Adjust instrument sweep range to correspond with the area to be covered during the examination. The near surface hole A and the $1 / 4 \mathrm{~T}$ code size hole in Figure 11 shall occur at approximately the second and eighth horizontal screen divisions.

Note: When two angle beams are displayed on the same CRT (single time base) it is necessary to use the instrument sweep settings established for the first angle beam calibration for the second angle beam calibration also.
B. The gated time shall be from horizontal screen division 1 to a width to include the $1 / 4 \mathrm{~T}$ code hole response.
C. Establish the actual DAC curve for the proper angle and examination depth combination by plotting the signal response amplitudes from the code size near surface hole and the $1 / 4 \mathrm{~T}$ code hole. Adjust the response from the near surface hole giving the highest amplitude to 80% Full Screen Height (FSH). Connect the points plotted on the CRT with a continuous line covering the examination range.
D. Program a TUC card to match the DAC curve established in (C) above.
E. Electronically equalize the sensitivity at $80 \% \mathrm{FSH}$ over the examination range.
\qquad
F. Increase the equalized sensitivity established above by a minimum of 8 db . Verify that the near surface holes A and B (Figure 11) are at least $80 \% \mathrm{FSH}$. If not, increase the sensitivity until both the A and B near surface holes are at least 80% FSH.

Note: Pre-development Technique Qualification Data shall include amplitudes from the end notches as well as the holes for direct comparison at examination sensitivity. Previous empirical results have shown a very close relationship. The relationship may be demonstrated during any calibration.
G. Record all information required on the Calibration Data Sheet. The ultrasonic examiner(s) shall sign the coinpleted data sheet(s) noting their applicable NDE certification levels.
H. Repeat steps (A) through (G) for each angle beam to be used for the examination.
2. The inner radii/nozzle bore and the nozzle to safe-end calibration shall be performed as follows:
A. Due to the flat calibration block versus the concave examination area it is necessary to shim the examination head up off the calibration block with $.100^{\prime \prime}$ shims. These shims shall be removed for the actual examination.

Note: Use of the $.100^{\prime \prime}$ shims during calibration compensates for the increase in water path caused by the concave curvature of the examination area.
B. Adjust instrument sweep range to correspond with the area to be covered during the examination. The near surface holes A and C in Figure 12 shall occur at approximately the second and sixth horizontal screen divisions.
C. Set the gate to correspond with the area to be covered during the examination.
D. Establish the actual DAC curve for the proper angle and examination depth combination by plotting the signal response amplitudes fron the three near surface holes (A, B and C in Figure 12). Adjust the response from the near surface hole (A, B or C) giving the highest amplitude to 80% Full Screen Height (FSH). Connect the points plotted on the CRT with a cuntinuous line covering the examination range.
E. Program a TUC card to match the DAC curve established above.
F. Electronically equalize the sensitivity at 80% FSH over the examination range. If the sensitivity cannot be equalized over the entire range, the minimum response level from the near surface holes (A, B and C in Figure 12) will be used for determining recording levels. In this case, 50% of the lowest of the above responses shall be used as the recording level.
G. Record the location and amplitude of the code size near surface hole and $1 / 4 \mathrm{~T}$ code size hole on the calibration data sheet. For nozzle to safe-end calibration also record the location and amplitude of the remaining near surface holes (D, E, and F in Figure 12) on the calibration data sheet.
H. Record all information required on the Calibration Data Sheet. The ultrasonic examiner(s) shall sign the completed data sheet(s) noting their applicable NDE certification levels.
I. Repeat steps (A) through (H) for each channe! to be used for the examination.
\qquad
PAGE

8.2 SYSTEM CALIBRATION CHECK

1. Calibration checks of the examination system, as required by paragraph 7.4(3), shall be performed as follows:
A. Use the TUC and previously recorded instrument settings to perform a check of the examination instrumentation system including sensitivity level, gate function and position, and data recording system.
B. Verify that the amplitude response is within plus or minus 20% of the equalized response obtained during initial calibration.
2. Performance checks of search units and cables, as required by paragraph 7.4(4), shall be performed as follows:
A. Reposition search unit on the calibration block at each test hole and observe maximum signal response amplitude and horizontal positions.
B. Verify that all amplitudes fall within 20% of the equalized response sensitivity level and the horizontal displacement is within the required $\pm 10 \%$. Refer to paragraph 7.5 if the response from any hole is beyond the allowed tolerance.
3. Record time, date, examiner's initials, and type of calibration check in the space provided on the appropriate Calibration Data Sheet.

8.3 BEAM SPREAD

An alternative data record may be used when establishing a search unit beam spread.

Beam spread measurements for the vertical plane of each angle beam search unit may be made as follows:

NOTE: This is only one of the optional beam spread measurement methods which may be performed. Additional beam spread measurements may be made at the time of evaluations.

1. Position search unit for maximum response from $1 / 4 \mathrm{~T}$ hole.
2. Beam spread measurements should be made at the reference sensitivity required for sizing. For example, if sizing will be cone to both 50% and 20\% DAC, beam spread measurements will be done to both criteria. Move the search unit towards the $1 / 4 \mathrm{~T}$ hole, through the maximum amplitude point until the signal amplitude reads 50% then 20% of the DAC line on the screen. Mark the corresponding positions of the fixture on the block surface at some convenient point.
3. Move the search unit back past the $1 / 4 \mathrm{~T}$ hole, through the maximum amplitude point, until the signal amplitude comes again to 50% and 20% of the DAC line on the screen. Again, mark the block to indicate the new fixture positions.
4. Repeat steps (2) and (3) for the $1 / 2 \mathrm{~T}$ and $3 / 4 \mathrm{~T}$ holes.
5. Using suitable paper, transfer the measurements from the block to the paper. Connect points to determine beam spread and angle information.

NOTE: Curvature of the calibration block used may cause some deviation in beam spread and beam angle information.
6. Beam spread plots shall become part of the examination record.

9. EXAMINATION SEQUENCE

1. Refer to Figures (2) through (10) and to NES Document 80 A 6476 for scan coverage and scan sequence information.
2. Calibrate examination equipment as required by Section 8.1 ; or if 12 hours have elapsed since initial calibration, perform calibration checks as required by Section 8.2.
3. Locate the datum point, position the head on the RPV ID Examination Posi ioning Device and begin examination.
4. Continue scanning sequences until all welds requiring the same calibration have been examined. Examinations shall not be considered complete until all recordable indications have been investigated, recorded and evaluated as required in 10.

10. RECORDING CRITERIA

10.1 GEOMETRIC INDICATIONS

Indications that are determined to be geometric in origin and are equal to or greater than 50% DA.C need be recorded at one location only and noted as "Geometric caused by weld prep design," or "ID or OD design geometry," etc. and verified by the applicable drawings. All geometric indications shall be recorded on the "Report Sheet for Geometric Reflectors".

10.2 NON-GEOMETRIC INDICATIONS

Record all non-geometric indications equal to or greater than 50\% DAC on the Indication Report Sheet, using 50\% DAC and points.

11. EVALUATION CRITERIA

1. Evaluation of flaw indications (excluding geometry) shall be performed in accordance with the Flaw Evaluation Procedure 80A5535.
2. Results of the evaluation shall be reported to the Plant Owner or his Agent.
\qquad
\qquad OF \qquad

12. EXAMINATION RECORDS

12.1 CERTIFICATION OF RECORDS

1. The examiner(s) shall complete and sign the appropriate data sheet(s) immediately upon the completion of RPV shell weld examinations, noting their applicable NDE certification levels. All Calibration Data Packages shall be reviewed for procedural compliance by the Data Reviewer or the designee of the Site Supervisor.
2. Should the performance of an examination overlap two shifts, the Level II Examiners of each shift shall sign the appropriate data sheets.

12.2 FILING OF RECORDS

NES shall be responsible for submitting to the Plant Owner or his Agent, a completely documented set of examination records including certification of personnel qualifications with current eye test reports.

12.3 PROCEDURE CORRECTIONS AND ADDITIONS

1. All procedure corrections and/or additions required during the preservice examinations may be initiated by either the owner or the senior NES site representative. All such changes shall have the approval of the owner and an NES Level III.
2. Each procedure revision shall be documented in accordance with the NES Field Change Procedure. The Plant Owner or his Agent shall be notified of such changes and approval obtained as required.

NUCLEAR ENERGY SERVICES, INC.
PAGE 21 40

1. Flange to Upper Shell Circuaferential Weld
2. Upper Shell Longitudinal Welds
3. Upper Shell to Intermediate Shell Circumferential Weld
4. Intermediate Sheil Longitudinal Weids
5. Intermediate Shell to Lover Shell Circumferential Weld
6. Lover Shell Longitudinal Welds
7. Lower Shell to Sottom Head C1rcumferential Neld
8. Bottom Head Meridional ïelds
9. Bottoa Iead Circumferential Meld (Dollar Plate)
10. Outlet Nozzle to Shell Hields
11. Talee Nozzle to Shell welds
12. Nozzle to Safe End Welds
(4)

FIGURE 1
\qquad

Nozzle
to
She 11
Exam
Area

Inner Radius
Nozzle Bore
Exam Area

Nozzle
to
Shell
Exam

FIGURE 3
INLET NOZZLES, INNER RADIUS, NOZZLE BORE AND SAFE END WELD

FIGURE 4

FIGURE 6

FIGURE 7

FIGURE 8
\qquad OF \qquad

FIGURE 9
Lower Shell To Bottom Head Circumferentlal Weld

FIGURE 10
Bottom Head Meridional Welds

NUCLEAR ENERGY SERVICES, INC.

FIGURE 11
Near Surface (Inner 25\%)
Calibration Blocks

NUCiEAR ENERGY SERVICES. INC.
DOCUMENT NO. $\frac{\text { 30A54SO }}{32}$

Figure 12

Nozzle Inner Radius, Nozzle Bore and Nozzle to Safe End
Calibration Block

NUCLEAR ENERGY SERVICES. INC.
\qquad

	memen			
$\begin{aligned} & \text { mald } \\ & \hline \end{aligned}$	incication evaluation sheet SUPPLEMENT B			
$-i$				
-		Stin $1 \cdot 10$	14	
2itely SaMPLE ONLY				
- SIMILAR VIRSIONS WFICH				
RÉQUVIRE THE SAME - I				
STMUFORMATION ARE ACCEPTABLE.	ARE ACCEPTABLE.			
"		-	+	
		-	,	
		\square		
-1		+		
-		+! !	+	
10, ${ }^{103}$		1	+	
- \square_{\circ}		atsp		

\qquad F

\qquad OF \qquad

Plane/Onit

\qquad

Ateachment to Callbration Data
Preq. No. \qquad

SUPPLEMETT 0
REPORT SHEET POR GEONETRIC RETEECONS

Depeh of Reflector (in.) \qquad Channel \qquad
Maxiant - DAC Indication (s) No. \qquad

Positional Coordiantes

 REQUIRE THE SAME INFORMATION ARE ACCEPTABLE

Page \qquad of \qquad
Cal. Data Pkg. \qquad
Proc. No. \qquad Rev. \qquad

SUPPTEMETI E regutarory gutde 1.150 exammation timitaiton 35PORE SEEET

Ueld Sumber \qquad
volem of any nee "SAMPLLE ONLYY SIMILAR VERSIONS WHICH 'TEDUTRE' THE SAME
CNEQRMATTQN.ARE, ACCEPTABLE

VISUAL EXAMINATION PROCEDURE

FOR

SEABROOK NUCLEAR POWER STATION

WIID CIIN IF Hill STAir is RED

NUCLEAR ENERGY SERVICES, INC
APPROVAL

\qquad OF \qquad

VISUAL EXAMINP.TION PROCEDURE GENERAL 「EQUIREMENTS

1. SCOPE

1.1 INTENT

This procedure shall be utilized during the performance of visuai examinations of nuclear power systems and related components as required by the ASME Boiler and Pressure Vessel Code Section XI, 1977 Edition through the Summer of 1978 Addenda.

1.2 GENERAL AREAS OF EXAMINATION

1. Pressure retaining welds
2. Support members and welds
3. Valves
4. Pumps
5. Bolting
6. Cladding.

1.3 TIME OF EXAMINATION

This procedure shall be utilized for Preservice Inspection (PSI), and reexamination after repairs of components and piping systems as required by ASME Boiler and Pressure Vessel Code Section XI, 1977 Edition through the Summer of 1978 Addenda.

2. REFERENCES

1. ASME Boiler and Pressure Vessel Code, Section V and Section XI, 1977 Edition through the Summer of 1978 Addenda
2. NES Document 80A9069; NES "Procedure for Certification of Visual Examination Personnel" (Latest revision)
3. ANSI/ASME N45.2.6 - 1978; "Qualifications of Inspection, Examination, and Testing Personnel for Nuclear Power Plants"
4. The American Society for Nondestructive Testing, SNT-TC-1A, 1975 Edition
5. The applicable Appendices shall be used in conjunction with this procedure.
A) Appendix A;
VT-1 Examination Category
B) Appendix B;
VT-2 Examination Category (Later)
\qquad
\qquad
C) Appendix C; VT-3 Examination Category
D) Appendix D; VT-4 Examination Category (Later)

3. PROCEDURE CERTIFICATION

The examination procedures described in this document are in compliance with the ASME Boiler and Pressure Vessel Code Section XI, 1977 Edition through the Summer of 1978 Addenda, except where limited by part geometry or access.

4. PERSONNEL CERTIFICATION

At least one member of a visual examination team shall be certified to at least Level II and shall have passed his/her visual acuity examination in accordance with the minimum qualification requirements defined in NES Document 80 A9069 (Latest revision).

5. EQUIPMENT REQUIREMENTS

5.1 EXAMINATION CONTRACTOR'S EQUIPMENT

The following test equipment or its equivalent shall be provided by the Examination Contractor (as a minimum) for examination of the areas specified in this procedure.

1. Telescope/Binoculars
2. Low and high power magnifying lenses
3. Mirrors
4. Dimensional measuring equipment
5. 18% neutral gray card with $1 / 32^{\prime \prime}$ black line
6. Portable light source
7. Any additional equipment to aid in visual examination.
8. Camera and Video recording system.

5.2 PLANT OWNER'S EQUIPMENT

The Plant Owner, or his Agent, shall provide the following service facilities and equipment as required:
\qquad
\qquad

1. Scaffolding

2. Water, air and electricity
3. Adequate temporary lighting
4. Moving or lifting devices
5. Fiber optic devices and borescopes
6. Test surface preparation
7. Pressure gages and sensors as required for system pressure tests
8. Various tools required for disassembly of components
9. Post-examination cleanup.

6. EXAMINATION REQUIREMENTS

6.1 EXAMINATION COVERAGE

This procedure shall be utilized in providing examination coverage of Class 1, 2, and 3 systems in accordance with the areas identified in Tables IWA-5210-1, IWB-2500-1, IWC-2500-1, and IWD-2500-1 of Section XI of the ASME Boiler and Pressure Vessel Code, 1977 Edition through the Summer of 1978 Addenda, except where limited by part geometry or access. To ensure total examination of the welds or components, additional visual review techniques may be required.

6.2 EXAMINATION METHOD

1. The direct visual examination is utilized to provide a report on the general condition of the part, component (and its supports), or surface(s) to be examined, including but not limited to such conditions as scratches, wear, cracks, structural distress, corrosion, or erosion on the surfaces, misalignment or movement of the part or component, or signs of leakage.
2. Remote visual examinations may be substituted for direct visual examinations. Remote visual examinations may use visual aids such as telescopes, borescopes, mirrors, fiber optics, cameras, or any other instruments as may be required. These systems shall have a resolution capability at least equivalent to that of direct visual examination.
3. Surface replication methods shall be considered acceptable and may be utilized, provided the surface resolution is at least equivalent to resolution obtained in direct visual examination.
4. All preservice visual examinations shall be performed in the same manner as subsequent inservice examinations whenever feasible.
\qquad

6.3 SURFACE CONDITIONS

Surfaces of components to be examined shall be clean to ensure that visual examination and evaluation is valid.

6.4 EXAMINATION CATEGORIES

1. VT-1 visual examinations shall be conducted to determine the condition of the parts, component, or surface(s) examined, including but not limited to such conditions as cracks, wear, erosion, corrosion, or physical damage. Refer to Appendix A for specific examination requirements.
2. VT-2 (later)
3. VT-3 visual examinations shall be conducted to determine the general mechanical and structural condition of components and their supports. Conditions to be examined include but are not limited to, the presence of loose parts, debris, corrosior., wear, erosion, and the loss of integrity at bolted or welded connections. This examination category is applicable in the examination of both component supports and component interiors. Refer to Appendix C for specific examination requirements.
4. VT-4 (later)

7. RECORDING OF INDICATIONS

All recordable indications shall be reported and detailed on the corresponding data shett for the applicable area being examined, which shall contain as a minimum the data listed below. The results of the examination(s) shall be submitted to the Plant Owner, or his Agent, for final disposition.

1. Date of examination
2. Identification and signature of Examiner
3. Identification of item examined and its location in the system
4. Description of indication
5. Special equipment used
6. Photographs used to assist in evaluation
7. Location of indications with respect to a convenient reference point on the object
8. Any limitation due to geometry or access and additional information as required
9. Data sheets shall be numbered 6474-1, 6474-2, 6474-3, etc. and signed by the Examiner, noting applicable NDE certification levels.
\qquad OF \qquad

8. EVALUATION OF INDICATIONS

8.1 Evaluation of indications shall be in accordance with the ASME Boiler and Pressure Vessel Code Section XI, 1977 Edition through the Summer of 1978 Addenda. Specific evaluation criteria are referenced in Article IWB-3000 and Table IWB-2500-1 for Class 1 Pressure Retaining Components, Article IWC-3000 and Table IWC-2500-1 for Class 2 Pressure Retaining Components, and Article IWD-3000 and Table IWD-2500-1 for Class 3 Pressure Retaining Components.
8.2 Evaluation of indications shall be performed by a Level III Visual Examiner. Evaluations shall be sumbitted to the Plant Owner, or his Agent, for final disposition.
8.3 Any components or welds with surface flaw indications detected through visual examination shall be unacceptable for continued service unless supplemental examinations verify the indications to be acceptable.
8.4 In the event that there are no code requirements for evaluation of indications, technical specifications or the requirements of the Plant Owner, or his Agent, shall be used as the evaluation criteria.

9. EXAMINATION RECORDS

9.1 FILING OF RECORDS

The Examination Contractor shall be responsible for submitting to the Plant Owner, or his Agent, a complete set of examination records, including certification of personnel qualifications with a current eye test. The examination contractor shall maintain permanent records.

9.2 PROCEDURE CORRECTIONS AND ADDITIONS

All procedure corrections and additions required during examinations shall be initiated by the NES Site Superivsor. All corrections and additions require approval by the Plant Owner, or his Agent, and an Level III Visual Examiner.

10. PROCEDURE QUALIFICATION

This procedure, when required, shall be qualified to demonstrate compliance with the applicable code and addenda. Qualification of this procedure will be to the satisfaction of the Plant Owner, or his Agent, and the Authorized Nuclear Inservice Inspector.
\qquad of

APPENDIX A
 VT-1 EXAMINATION CATEGORY

1. SCOPE

1.1 INTENT

This Appendix is to be used in conjunction with the General Requirements for the examination of the surface condition of parts and components. Included in this examination shall be measures to determine the existence and dimension (where possible) of cracks, wear, erosion, corrosion, or physical surface damage. This examination may be performed either directly or remotely. Remote examinations shall have resolution capabilities equivalent to direct visual examination.

1.2 AREA OF EXAMINATION

This Appendix is applicable for all VT-1 surface examinations including but not limited to washers, bushings and bolting for the reactor vessel, heat exchangers, piping, pumps, and valves.

2. EXAMINATION REQUIREMENTS

In addition to the examination requirements referenced in the General Requirements section, the specific requirements applicable to VT-1 examinations shall include but are not limited to the following steps.

2.1 GENERAL VISIBILITY

A direct visual examination shall be used when accessibility and visibility permit the Examiner to place the eye within $24^{\prime \prime}$ of the surface to the examined, and at an angle to be no less than 30° to the surface being examined. Mirrors may be used to improve the angle of vision. lighting shall be sufficient to resolve a $1 / 32^{\prime \prime}$ black line on an 18% neutral gray card at the least discernible area.

2.2 EXAMINATION LOCATION

The isometric drawings of the system shall be used in referencing the location of a weld or component to be examined. Where no isometric drawing exists, the area of interest shall be referenced according to construction drawings and noted as such in the data sheet.

2.3 WELD EXAMINATION

1. Ensure that the weld and at least $1^{\prime \prime}$ on each side is clean enough to permit examination of the weld.
2. In the case where a longitudinal weld intersects a circumferential weld, at least $12^{\prime \prime}$ of the adjoining longitudinal weld shall be examined.
\qquad OF \qquad
3. Examine the weld or component surface for leakage, excessive grinding, arc strikes, cracks, linear indications, wear, gouges, corrosion, undercut, ace porosity, or any other symptoms of structural distress.

2.4 BOLTING MATERIAL EXAMINATION

Examine the surfaces of bolts and bolting material for any cracks, wear, erosion, corrosion, or physical damage. Typical bolting material includes the following: studs, nuts, bushings, threads in flange stud holes, and washers.

3. RECORDING OF INDICATIONS

The Examiner shall record all surface conditions in detail and submit the results of the examination to the Plant Owner, or his Agent, for final disposition. Detrimental surface conditions shall include evidence of the following:

- leakage
- excessive grinding
- cracks
- arc strikes
- wear
- corrosion
- physical damage
- undercut
- errosion
- linear indication
- surface porosity

Any other conditions possibly affecting the integrity of the examination area shall be recorded for further disposition by qualified NES personnel and the Plant Owner, or his Agent.

4. EVALUATION OF INDICATIONS

All indications shall be evaluated by a Level III Visual Examiner in accordance with Section 8 of the General Requirements for this procedure. Evaluations shall be submitted to the Plant Owner, or his Agent, for final disposition.

APPENDIX C VT-3 CATEGORY

1. SCOPE

1.1 INTENT

This appendix is to be used in conjunction with the General Requirements for the examination and evaluation of the general mechanical and structural conditions of the components and their supports. The VT-3 visual examination may require the measuring of clearances, detection of physical displacements, structural soundness of supporting elements, cennections between load carrying structural members, and tightness of bolting.

Direct examination shall be used unless conditions warrant the use of remote examination.

1.2 AREA OF EXAMINATION

VT-3 visual examinations shall be conducted on all components and supports in the system that are subjected to mechanical or structural stress. Specific areas subject to VT-3 visual examination include but are not limited to internal surfaces of pump casings, valve bodies exceeding $4^{\prime \prime}$ nominal pipe size (NPS), reactor vessel interiors, accessible surfaces and welds of core support structures (snubbers, supports, restraints, and shock absorbers) for integral attachments. Further details of areas requiring examination are referenced in Table IWB-25001, Table IWD-2500-1 and IWC-2500-1.

2. EXAMINATION REQUIREMENTS

In addition to the examination requirements in the General Requirements section of this procedure, the following specific requirements are applicable for VT-3 visual inspections.

2.1 GENERAL VISIBILITY

Lighting shall be sufficient to resolve a $1 / 32^{\prime \prime}$ black line on an 18% neutral gray card, in least discernible area.

2.2 PUMP CASING AND VALVE BODIES

Examine the internal surfaces of pump casings and valve bodies for evidence of erosion, cracks, and galling caused by close clearances between rotating, reciprocating and stationary parts, mechanical damage, corrosion and wear.

2.3 REACTOR VESSEL INTERIOR

Examine all accessible areas of vessel interior including the spaces above and below the reactor core. Examine the clad surface for evidence of cracking and surface nonconformity.

2.4 SUPPORT STRUCTURE FOR REACTOR VESSEL

Examine all accessible welds and base metal surfaces for indications of wear, corrosion, erosion, cracks, physical damage or loss of structural integrity.

2.5 INTEGRAL ATTACHMENTS

Examine all integral attachments including snubbers, supports, restraints, and shock absorbers for evidence of cracks, misalignment, or other signs of loss of structural integrity.

3. RECORDING OF INDICATIONS

The Examiner shall record all indications and detrimental conditions in detail and submit the results of the examination to the Plant Owner, or his Agent, for final disposition. Description of the shape, size, orientation, and exact location of the indication shall also be recorded. Where applicable, the description of indication location shall use a routine examination point as a reference.

1. Any surface flaw indications revealed in VT-3 visual examinations require recording and description. Verification of component acceptability or rejection shall be determined by supplemental examination.
2. Where applicable, depth of wear, corrosion, or surface erosion shall be measured as a percentage of thickness.

4. EVALUATION OF iNDICATIONS

All indications shall be evaluated by a Level III Visual Examiner in accordance with Section 8 of the General Requirements for this procedure. Evaluations shall be submitted to the Plant Owner, or his Agent, for final disposition.

APPENDIX D VT-4 CATEGORY
 (Later)

DOCJMENT NO.	8086474	REV.	0
Page	14		16

VISUAL EXAMINATION DATA SHEET NO.

SYSTEM/AREA
-
ITEM
PHOTOS
TEMP \qquad PRESSURE \qquad
HOLDING TIME
VISUAL AIDS

$$
\begin{array}{cl}
\text { DOCUMENT NO. } \frac{80 \text { A6474 }}{n} \text { REV. }-\frac{0}{16} \\
\text { Page } & 15
\end{array}
$$

VISUAL EXAMINATION DATA SHEET NO.
SYSTEM/AREA ITEM
pHOTOS
TEMP \qquad PRESSURE \qquad

HOLDING TIME
VISUAL AIDS

WELDS	YES	NO	
Cracks/Linear Indication			
Wear/Corrosion			
Gouges/Grind Marks			
ARC strikes/Undercut			
Surface Porosity			
Leakage			
Other Indications			

NUCLEAR ENERGY SERVICES, INC.
DOCUMENT NO. $\frac{80 \text { A6474 }}{\text { REV. } \frac{0}{16}}$ Page -16 of

VISUAL EXAMINATION DATA SHEET NO. \qquad
SYSTEM/AREA
ITEM
PHOTOS
TEMP \qquad PRESSURE
HOLDING TIME \qquad VISUAL AIDS \qquad
\qquad

Corrosion of Ferritics
SAMPLE ONLY
SIMILAR VERSIONS WHICH REQUIRE THE SAME INFORMATION ARE ACCEPTABLE.

NUCLEAR ENERGY SERVICES. INC.

[^0]: * If applicable

[^1]: Form 028-110/1
 $1 / 83$

[^2]: Remarks: Refer to Sections 17.2 and 17.5 before scanning.

[^3]: Remarks:
 Refer to Sections 20.2 and 20.5 before scanning.

[^4]: Form 028-110/1 1/83

[^5]: *WRV = Weld and Required Volume

