Fotrest I. Rhodes
Vice President
Engineerimg s fer inical Servicus

February 26, 1992
En 92-0050
U. S. Nuclear Regulatory Commission ATTN: Document Contral Desk
Mail Station P1-137
Washington, D. C. 20555

Reference: Letter ET $90-0132$ daced August 21, 1990, from F. I. Rhodes, WCNOC, to the USNRC
Subject: Docket No. 50-482: Transmittal of Additonal
Information on the Rod Exchange
Methodology for Startup Physics Testing

Gent lemen:

The purpose of this letter is to submit Wolf Creek Nuclear Operating Cor, oration's (WCNOC) response to questions from the US Nuclear Regulatory Commirsion (USNRC) on WCNOC's Rod Ex zhange Methodology for Startup Physics Testing which was submitted in the Reference. The response to these questions is provided in the attachment.

If you have any questions concerning this matter, please contact me or Mr. S. G. Wideman of my staff.

FTR/aem

Attachaient

CC:
A. T. Howell (NRC), w/a
R. D. Mart in (NRC), w/a
G. A. Pick (NRC), w/a
W. D. Reckley (NRC), w/a

Attachment to ET 92-0050
Page 1 of 21
Wolf Creek Nuclear Operating Corporation (WCNOC) subnitted Rod Exchange Methodology for Startup Physics Testing on August 21, 1990. During telephone conversations on August 8, 1991, and August. 12, 1991, the US Nuclear Regulatory Commission (USNRC) provided a list of questions on the topical to WCNOC. In a meeting held on January 28,1992 , these questlons were discussed between WCNOC and the USNRC, with WCNOC agreeing to submit answers in February, 1992. The questions are listed below with WCNOC's response immediately following each.

Question is PKovide additional information regarding WCNOC's actions in the event taat rod worth measurements fail to meet the Acceptance Criteria outiined in Section 4.2 of the topical report.

Response: Currently, paragrapi \#4 on page 14 of the WCNOC Rod Exchange topical addresses this situation. To further quantify the steps WCNOC will take in this event, paragraph $\$ 4$ will be revised as follows:

Abstract

"Failure of the Acceptance Criteria will result in additional evaluations. Further specific actions depend on evaluation results. Tnese actions can include repeating the tests with more detailed attention to test prereguisites, added tests to search for anomalies, or design personnel performing detailed analyses of potential safety problems because of parameter deviation. If all subsequent actions and tests fail, the rod worths will be measured using the standard boration/dilution technique. Power is not. escalated until evaluation shows that plant safety will not be compromised by such escalation."

Question 2 : Provide additional benchmarks of rod worth predictions for measurements performed with the rod exchange technique as well as those performed with the boron dilution technique. Additionally provide, for comparison, any rod exchange predictions performed by outside contractors.

Response: The benchmark of the Wolf Creek models to rod worths obtained via the dilution technique is shown in the wolf creek topical report, "Qualification of Steady State Core Physios Methodology for Wolf Creek Design and Analysin."

Additionally, the recent wolf creek cycle 6 rod exchange results are reported in Table 1 . These measurement results show excellent agreement with the Wolf Creek prediviions. All are well within the requirements of both the review and acceptance criteria discussed in the topical.

An outside contractor wai used to prowide the rod exchange predictions for wolf Creek c;cles 5 and 6. These data are presented for comparison purposes in Tables 2 and 3 .

Question 34 Several places in the topical text refer to the position of the Reference Bank beiny "at or nearly fully inserted" at the conclusion of the boron dilution messurement of the Reference Bank worth. Provide a more detailed discussion regarding the position of the reference bank being at or nearly fully inserted, including what administrative limits WCNOC will use for this position aB well as an engineering basis for these limits.

Responset When performing the boron dilution measurement of the reference bank, it is necessary to secure the boron dilution process prior to the reference bank actually reaching the fully inserted position, to allow the coolant to complete mixing and reach an aquilibrium boron concentration level. In the ideal case, the final mixing would result in the core being oritioal with the reference bank exactly at the fully inserted position. In practice, however, this is rarely the case, with the usual final position of the reference bank a few steps above the bottom of the core. In order to correct for this small amount of reactivity, the worth of the final few steps of the rod is typically determined using a standard endpoint technique by temporarily inserting the rod to the fully inserted position and measuring the resulting reactivi+y change with the reactivity computer. The reactor is then returned to oriticality by withdrawing the rod back to its original position.

This correction shows up as the (Δp) corr term in Equation (7) of the topical. WCNOC uses guidelines promulgated by Westinghouse regarding the allowable magnitude of this zorrection, which is to maintain this correction lower than 50 pcm in magnitude. Historically, the average value of this correction from Wolf creek Generating Station (WCGS) Cycles 3, 5, and 6 has been 13.6 p.in. ".ne cuerage of the correctior from wCas cycle 1 was 34.2 pcm. Note that although the correction from cycle 1 was larger, this is to be expected since cycle 1 was a completely fresh core with associated higher differential rod worths near the ends of the core. The average rod position for these corrections from wCGS cycles 1, 3, 5, and 6 was 25,8 steps withdrawn.

The effect of beginning with the raference bank slightly above the bottom of the core will be to cause the measured oritical height of the referesce bank to be higher. If the reference bank begins at a position 50 pom from the bottom of the core, the new critical height will be at a position which corresponds to 50 pcm higher in the core.

Figure 1: Ideal and Actual Rod Positions

In Figure 1, the new critical height is 50 pom higher than the ideal case critical height. The actual step difference will be different for each rod bank, depending on the differential rod worth of the shadowed reference bank in the region near the critical height. For rod banks which have a critical height very near the top of the core, it is possible that this variation in critical height could be guive significant, since the differential rod worths can be low in this region. However, for all cases, the actual worth difference will still be 50 pom, regardless of how different the new critical height may be.

In the ideal case, the inferred worth of the test bank is given by Equation (3) of the topical (repeated here);

$$
w_{\text {inf }}=w_{\text {ref }}-\left(a_{x}\right)(\Delta \rho)_{\text {un }}
$$

where the value of α_{X} is calculated for the ideal vase predicted critical height. For the actual case, a correction is made to the above equation to sccount for the initial position of the reference bank. This equation is given in the topical as Equation (7):

$$
w_{\text {inf }}=W_{r e f}-\left(\alpha_{x}\right)(\Delta \rho)_{\text {un }}-(\Delta \rho)_{\text {eorr }}
$$

There will be a small error introduced into the determination of $W_{\text {inf }}$ with this equation, since the value of α_{x} is calculated assuming a given critical height, which has changed. However, since α_{X} is largely insensitive to critical height, the introduced error is small (see discussion on page 7 of topical).

To show that the introduced errors are small, and to conclusively demonstrate that small variations in critical height do not significantly affect the calculation results, the following steps can be taken:

1. Assume an initial position of the reference bank at some known worth above the boltonk of the core. For the purposes of this discussion 50 pom will be assumed.
2. Determine the new critical height:
o determine the differential rod worth of the reference bank, shadowed by the fully inserted test bank, in the area near the critical height
o adjust the refarence bank critical height nearer the top of the core by 50 pom
3. Using the new critical height, determine the new value of $(\Delta \rho)$ un. Kecall that this term is defined as the worth of the unshadowed reference bank worth from the critical height position to fully withdrawn.
4. The α_{x} values are NOT adjusted for the new critical height. The values based on the ideal oritical heights are used.
5. Use Equation (7) of the topical to determine the new Winf test bank values.
6. Compare the new $W_{i n f}$ values with the ideal case $W_{\text {inf }}$ values.

Note that this procedure exactly simulates the steps which would oe taken during the measurement process, i.e. the initial position of the reference bank induces a small change to the critical height, but the ideal case values of α_{x} are used in the calculation. Note also that the assumption of a +50 pcm shift in the critical height can be further generalized into a +/- 50 pom variation either up or down in the ideal critical height.

This calculation was performed on the WCGS data from Cycles 1, 3, 5 , and 6. The results are shown in Tables 4 through 18 . The results show that the introduction of a 50 pom critical height variation results in almost negligible changes in the test bank $W_{\text {inf }}$ values. The maximum error introduced on any bank was 3.1 pom. The average error was 1.1 pom. Based on these results, WCNOC will use 50 pom as the $1 i \mathrm{mit}$ for the magnitude of the rod endpoint correction, and will attempt to minimize this correction in any case.

Table is Cycle 6 Rod Exchange Final Result,

Bank	MCP	(Af) un	${ }^{a_{x}}$	(Ap) enarr	Meas $W_{\text {inf }}$	$\begin{aligned} & \text { Pred } \\ & W_{\text {inf }} \end{aligned}$	8Diff	$\begin{aligned} & \text { PCM } \\ & \text { Diff } \end{aligned}$
D	201	50	1.2163	10	637.2	615,4	3.5	21.8
C	193	76	0.9250	10	627.7	642.6	-2.3	-. 4.9
B	228*	6**	0.8442	12	702.0	679.5	2.4	26.5
A	113.5	402	1.0643	10	270.2	300.7	-10.3	-30.5
SE	120	371	0.8806	10	371.3	389.5	-4.7	-18.2
SD	149	241	1.0425	10	446.8	422.6	5.7	24.2
SC	147	249	1.0421	9	439.5	422.6	4.0	16,9
SA	110	419	1.0527	7	259.4	251.6	3.1	2.8
SB					708.0	711.7	-0.5	-3.7
Total					4462.1	4436.2	0.6	25.9

* Reference Bank SB fully withdrawr
${ }^{*} W_{\text {final }}$

Table 2: Contractor Cycle 5 Rod Exchange Results

Meas	Pred			
Bank	Winf	Winf	QDiff	Diff
D	540.5	595	-9.2	-54.5
C	686.8	776	-11.5	-89.2
B	785.6	797	-1.4	-11.4
A	192.4	249	-22.7	-56.6
SE	330.7	374	-11.6	-43.3
SD	452.1	463	-2.4	-10.9
SC	448.6	465	-3.5	-16.4
SA	370.2	369	0.3	1.2
SB	781.6	838	-6.7	-56.4
Total	4588.5	4926	-6.9	-337.5

Table 3: Contractor Cycle 6 Rcd Exchange Results

Bank	Meas Winf	Pred Winf	8Diff	Diff
D	638	656	-2.7	-18
C	628	682	-7.9	-54
B	702	746	-5.9	-44
A	269	307	-12.4	-38
SE	365	399	-8.5	-34
SD	453	459	-1.3	-6
SC	446	454	-1.8	-8
SA	266	278	-4.3	-12
SB	708	756	-6.3	-48
Total	4475	4737	-5.5	-252

Table 4: Wolf Creek Cycle 1, Banks D and C

```
RESULTS, Cycle 1, Bank D
Stressed amount (pom) : 50
original critical height : 125.3
New oritical height : 132.7
Original Test Bank worth (pom): 637.9
New Test Bank worth (pom) : 637.6
Worth Percent difference (8) : - 0.04
Height Percent difference (8) : 5.51
RESULTS, Cycle 1, Bank D
Stressed amount (pom) : -50
original cistical height : 125.8
New critical height : 218.9
Original Test Bank worth (pom): 637.9
New Test Bank worth (pom) : 638.6
Worth Percent difference (8) : 0.11
Height Percent difference (8) : -5.51
```

RESULTS, Cycle 1, Bank C
Stressed amount (pcm) : 50
original critical height : 187.9
New oritical height : 213.1
Original Test [snk worth (pom): 942.5
New Test Bank warth (pcm) : 944.1
Worth Percent difference (*) : 0.17
Height Percent difference (8) : 13.40
RESULTS, Cycle 1, Bank C
Stressed anount (pom) : -50
original critical height : 187.9
New critical height : 162.7
Original Test Bank worth (pom): 942.5
Now Test Bank worth (pcm) : 941.0
Worth Percent difference (8) : -0.16
Height Percent difference (8) : -13.40

Attachment to ET 92-0050
Page 8 of 21

Table 5 : Wolf Creek cycle 1, Banks B and A

Results, Cyole 1, Bank B
Stressed amount (pom) : 50
original oritical height : 119.4
New oritical height $: 130.1$
Original Test Bank worth (pom): 721.4
New Test Bank worth (pom) : 721.8
Worth Percent difference (8) : 0.05
Height Percent difference (8) ; 8.97
RESULTS, Cycle 1 , Bank B
stressed amount (pom) : -50
original oritical height $\quad+119.4$
New oritical height : 108.7
Original Test Bank worth (pom) : 721.4
New Test Bank worth (pom) \& 720.6
Worth Percent difference (8) : -0.11
Height Percent difference (8) : -8.97

RESULTS, Cycle 1, Bank A
Stressed amount (pom) : 50
original critical height : 87.6
New critical height $\quad 92.7$
Original Test Bank worth (pom): 354.9
New Test Bank worth (pom) : 354.7
Worth Percent difference (8) : -0.06
Height Percent difference (8) : 5.85
RESULTS, Cycle 1 , Bank A
Streised amount (pem) : -50
original oritioal height : 87.6
New oritical height : 82.5
Original Test Bank worth (pom): 354.9
New Test Bank worth (pom) : 354.4
Worth Percent difference (8) : -0.15
Height Fercent difference (8) : -5.85

Table 6: Wolf Creek Cycle 1, Banks SE and SA

```
RESULTS, Cycle 1, Bank SE
Stressed amount (pom) : 50
Original oritical height & 94
New critical height : 101.3
Original Test Rank worth (pom); 552.7
New Test Bank worth (pom) : 554.5
Worth Percent difference (8) : 0,32
Height Percent difference (8) : %,80
RESULTS, Cycle 1, Bank SE
Stressed amount (pcm) ; -50
original critical height ; 94
New critical height : 86.7
Original Test Bank worth (pam): 552.7
New Test Bank worth (pom) ; 550.7
Worth Percent difference (*) : -0.36
Height Percent difference (8) : -7.80
```

RESULTS, Cycle 1, Bank SA
Stressed amount (pom) : 50
Original critical height : 91.6
New oritical height : 96.8
Original Test Bank worth (pom): 392.4
New Test Ba k worth (pcm) : 392.0
Worth Percent difference 8) : -0.11
Height Percent difference 1 : 5.70
RESULTS, Cycle 1, Bank SA
Stressed amount (pem) : -50
Original critical height : 91.6
New oritiral height $\quad 86.4$
Original Test Bank worth (pcin): 392.4
New Test Bank wo t. (pcm) $\ddagger 393.9$
Worth Percent difference (8) : 0.37
Height Percent difference (\&) : -5.70

Table 7: Wolf Creek Cycle 1, Bank SD/SC

```
RESULTS, Cycle 1, Bank SD/SC
Stressed amount (pom) : 50
original critical height : 94.1
New critical height ; 99.8
Original Test Bank worth (pom): 439.9
New Test Bank worth (pom) : 441.6
Worth Percent difference (8) : 0.40
Height Percent difference (8) ; 6.07
RESULTS, Cycle 1, Bank SD/SC
Stressed amount (pom) : -50
original critical height : 94.1
New critical height ; 88.4
Original Test Bank worth (pom): 439.9
New Test Bank worth (pom) : 438.y
Worth Percent difference (%) : -0.22
Height percent difference (8) : -6.07
```

```
Attachment to ET 92-0050
```


Table 8: Wolf Creek Cycle 3, Banks D and B

```
RESULTS, Cycle 3, Bank D
Stressed amount (pom) & 50
Original critical height : 177.9
New eritical height 4 187.4
Original Test Bank worth (pcm): 521.3
New Test Bank worth (pom) : 523.0
Worth Percent difference (8) : 0.33
Height Percent difference (*) : 5.35
RESULTS, Cycle 3, Bank D
Stressed amount (pom) : -50
Original oritical height : 177.9
New oritical height ; 168.4
Original Test Bank worth (pom): 521.3
New Test Bank worth (pom) : 519.9
Worth Percent difference (8) : -0.28
Height Percent differenro (8) : -5.35
```

RESULTS, Cycle 3, Bank B
Stressed amount (pcm) : 50
original critical height : 211.8
New critical height $: 223.1$
Original Test Bank worth (pom): 678.7
New Test Bank worth (pcm) : 678.9
Worth Percent difference (8) : 0.03
Height Percent difference (*) : 5.31
RESULTS, Cycle 3, Bank B
Stressed amount (pem) : -50
Original critical height : 211.8
New critical height : 200.5
Original Test Bank worth (pcm): 678.7
New Test Bank worth (pcm) : 678.2
Worth Percent difference (8) : -0.07
Height Percent difference (8) : -5.31

Table 9: Wolf Creek Cyole 3, Banks A and SE

```
RESULTS, Cycle 3, Bank A
Stressed amount (pom) : 50
original critical height i 102.2
New critical height ; 115.5
Original Test Bank worth (pem): 268.8
New Test Bank worth (pem) : 268.0
Worth Percent difference (*) : -0.29
Height Fercent difference (*) : 13.00
RESULTS, Cyule 3, Bank A
Stressed amount (pom) : -50
original cxitical height ; 102.2
New critical height ; 88,9
Original Test Bank worth (pom): 268.8
New Test Bank Worth (50m) : 269.5
Worth Percent difference (8) : 0.27
Height Percent difference (*) : -13.00
```

```
RESULTS, Cycle 3, Bank SE
Stressed amount (pem) : 50
original oritical beight : 129.8
New critical height : 142.3
Original Teat Bank worth (pom): 372,2
New Test Bank worth (pom) ; 372.0
Worth Percent difference (8) ; -0.05
Height Percent difference (%) : 9.60
RESULTS, Cycle 3, Bank SE
Stressed amount (pom) : -50
Original critical height & 129.8
New critical height : 117.3
Original Test Bank worth (pcm): 372.2
New Test Bank worth (pom) : 372.8
Worth Percent difference (%) : 0.15
Height Percent difference (%) ; -9.60
```


Table 10: Wolf Creek Cycle 3, Banks SA and SD/SC

```
RESULTS, Cycle 3, Bank SA
Stressed amount (pom) : 50
original critical height t 181.9
New critical height : 109.7
Original Test Bank worth (pom): 497.5
New Test Bank worth (pom) : 500.6
Worth Percent difference (%) : 0.63
Height Percent difference (8) : 4.27
RESULTS, Cycle 3, Bank SA
Stressed amount (pom) : -50
Original critical height : 181.9
New critical height : 174.1
Original Test Bank worth (pom): 497.5
New Test Bank worth (pom) & 495.1
Worth Percent difference (8) : -0,49
Height percent difference (%) : -4.27
```

| RESULTS, Cycle 3, Bank SD/SC | |
| :--- | :--- | :--- |
| Stressed amount (pom) | $: 50$ |
| Original critical height | $: 159.4$ |
| New critical height | $: 168.7$ |
| Original Test Bank worth (pom) | 420.5 |
| New Test Bank worth (pom) | $: 418.3$ |
| Worth Percent difference (8) | $:-0.52$ |
| Height Percent difference (8) | $: 5.80$ |
| | |
| RESULTS, Cycle 3, Bank SD/SC | |
| Stressed amount (pcm) | $:-50$ |
| Original critical height | $: 159.4$ |
| New oritical height | $: 150.1$ |
| Original Test Bank worth (pcm) | |
| New Test Bank worth (pom) | $: 420.5$ |
| Worth Percent difference (8) | $: 0.55$ |
| Height Percent difference (8) | $:-5.80$ |

Table 11: Wolf Creek Cycle 5, Banks D and C

```
RESULTS, Cycle F, Bank D
Stressed amount (pom) : 50
Original critical height : 181.1
New critical height ; 191.0
original Test Bank worth (pom): 557.1
New Test Bank worth (pom) ; 55p.3
Worth Perotnt difference (8) ; 0.21
Height Percent difference (*) ; 5.49
RESULTS, Cycle 5, Bank D
Stressed amount (pom) : -50
original critical height + 181.1
New critical height : 171.2
Original Test Bank worth (pom): 557.1
New Test Bank worth (pom) : 555.9
Worth Percent difference (8) : -0.22
Height Percent difference (8) ; -5,49
```

```
RESULTS, Cycle 5, Bank C
Stressed amount (pom) ; 50
Original critical height ; 208.9
New critical height : 229.1
Original Test Bank wortn (pom): 696.1
New Test Bank worth (pom) : 696.6
Worth Percent difference (8) : 0.07
Height Percent difference (8) : 9.66
RESULTS, Cycle 5, Bank C
Stressed amount (pcm) : -50
original critical height : 208.9
New critical height ; ; B.7
Original Test Bank worth (pom): 690.1
New Test Bank Worth (pom) : 695.4
Worth Percent difference (%) : -0.10
Height Percent difference (8) ; -9.66
```

Table 121 Wolf Creek Cycle 5, Banks B and A

```
RESULTS, Cycle 5, Bank B
Stressed amount (pom) & 50
original oritioal height : 206.8
New oritical height ; 227.2
Original Test Bank worth (pom): 692.1
New Test Bank worth (pom) : 691.3
Worth Percent difference (8) ; -0.12
Height Percent difference (8) : 9.87
RESULTS, Cycle 5, Bank b
Stressed amount (pom) : -50
Original critical height : 206.8
New critical height : 186.4
Original Test Bank worth (pcm): 692.1
New Test Bank worth (pom) : 693.1
Worth Percent difference (%) : 0.14
Height Percent difference (8) : -9.87
```

```
RESULTS, Cyole 5, Bank A
Stressed amount (pen) : 50
Original oritical height : 110.1
New eritical height : 119.4
Original Test Bank worth (pom) : 240.1
New Test Bank worth (pom) : 237.7
Worth Percent difference (8) : -1.01
Height Percent difference (8) : 8,42
RESULTS, Cycle 5, Bank A
stressed amount (pcm) : -50
original critical height : 110.1
New critical height : 100.8
Original Test Bank worth (pcm) : 240.1
New Test Bank worth (pcm) : 242.1
Worth Percent difference (8) : 0.84
Height Percent difference (8) : \(-8,42\)
```

```
RESULTS, Cycle 5, Bank SE
Stressed amount (pcra) : 50
original oritical height : 113.1
New oritical height i 125,6
Original Test Bank worth (pom): }34
New Test Bank worth (pori) i 340.8
Worth Percent difference (8) : 0.24
Height Percent difference (*) : 10.66
RESULTS, Cycle 5, Bank SE
Stressed amount (pom) ; -50
Original critical height : 113.1
New critical height : 101.0
Original Test Bank worth (pom): }34
New Test Bank worth (porm) : 338,8
Worth Percent difference (&) ; -0.35
Height Percent difference (&) : -10.66
```

| RESULTs, Cycle 5, Bank SA | |
| :--- | :--- | :--- |
| Stressed anount (pcm) | $: 50$ |
| Original critical height | $: 133.6$ |
| New critical height | $: 143.5$ |
| Original Test Bank worth (pom) : | 342.9 |
| New Test Bank worth (pcm) | $: 343.8$ |
| Worth Percent difference (8) | $: 0.25$ |
| Height Percent difference (8) | $: 7.41$ |
| | |
| REsults, Cycle 5, Bank SA | |
| Stressed amount (pom) | $:-50$ |
| Original critical height | $: 133.6$ |
| New critical height | $: 123.7$ |
| Original Test Bank worth (pcm: | |
| New Test Bank worth (pom) | $: 342.9$ |
| Worth Percent difference (8) | $:-0.30$ |
| Height Percent difference (8) | $:-7.41$ |

```
Attachment to ET 92-0050
```

Page 17 of 21

Table 14: Wolf Creek Cycle 5, Bank SD/SC

Stressed amount (pom)	1	50
original oritical height		12
New critical height	4	15
Original Test Bank worth (pc		429
New Test Bank worth (pom)		428.0
Worth Percent difference (\%)	;	-0.28
Height Percent difference (8)	;	7.28
Esults, Cycle 5, Bank Sn/SC		
Stressed emount (pcm)	:	-50
original critical height.		148
New critical height		137
Original Test Bank worth (pom)		429.2
New Test Bank worth (pom)		430.4
Worth Percent difference (8)		0.2
eight Percent difference (8)		-7.28

Table 15: Wolf Creek Cycle 6, Banke D and C

```
RESULTS, Cycle 6, Bank D
Stressed amount (pcm) : 50
Original critical height : 192.6
New critical height : 205.8
Original Test Bank worth (pom) : 615.4
New Tesc Bank worth (pom) ; 616.5
Worth Percent difference (8) : 0.17
Height Percent difference (*) : 6.86
RESULTS, Cycle 6, Bank D
Stressed amount (pom) ; -50
original oritical height ; 192.6
New critical height ; 179.4
Original Test Bank worth (pom): 615.4
New Test Bank worth (pem) : 614.3
Worth Percent difference (i) ; -0.18
Height Percent difference (%) : -6.86
```

RESULTS, Cycle 6, Bank C
Stressed amount (pom) $\ddagger 50$
Original critical height : 194.0
New critical height $\quad: 210.9$
Original Test Bank worth (pom) : 642.6
New Test Brink worth (pcin) : 642.2
Worth Percent difference (8) : - 0.06
Height Fercent difference (8) : 8.70
RESULTS, Cycle 6 , Bank C
Stressed aunount (pcm) : -50
Original critical height : 194.0
New critical height : 177.2
Original Test Bank worth (pcm): 642.6
New Test Bank worth (pom) : 643.1
Worth Percent difference (*) : 0.06
Height Percent difference (8) : -8.70

Table 16 , Wolf Creek Cycle 6, Banks B and A

REsulTs, Cycle 6, Bank B	
Stressed amount (pom)	$: 50$
Original oritical height	$: 205.9$
New critical height	$: 229.6$
Original Test Bank worth (pom)	$: 679.5$
New Test Bank worth (pcin)	$: 679.5$
Worth Percent difference (8)	$: 00.00$
Height Percent difference (8)	$: 11.4$?

RESULTS, Cyole 6, Bank B
Stressed amount (pom) : -50
original oritical height : 205.9
New critical height $: 182.3$
Original Test Bank worth (poin): 679.5
New Test Bank worth (pam) : Eie.5
Worth Percent difference () : 0.00
Height Percent difference ((\%) , -11.47

Stressed amount (pura)	t	50
Original critical height	t	117.4
New oritical height	\%	127.5
Original Test Bank worth (pom)	:	300.7
New Test Bank worth (poia)	$!$	298.5
Worth Percent difference (\%)	;	-0.74
Height Percent difference (\%)	1	8.61
RESULTS, Cycle 6, Bank A	,	
Stressed amount (pcm)	:	-50
Original oritical height	$?$	117.4
New critical height	1	107.3
Original Test Bank worth (pom)	:	300.7
New Tost Bank worth (pom)	$!$	302.9
Worth Fercent difference (\%)	:	0.74
Height Percent difference (*)	:	-8,61

Table 17: Wolf Creek Cycle 6, Banks SA and SE

```
RESULTS, Cycle 6, Bank SA
Stressed amount (pom) & 50
Original critical heigb }\mp@subsup{}{}{2}\mathrm{ : 106.9
New oritical height : 116.7
Original Test Bank worth (pom): 251.6
New Test Bank Worth (pem) : 251.6
Worth Percent difference (8) : 0,02
Height Percent difference (%) : 9.15
RESULTS, Cycle 6, Bank SA
Stressed amount (pom) : -50
Original critical height : 106.9
New critioal height & 97.2
Original Test Bank worth (pom): 251.6
New Test Bank worth (pom) : 250.4
Worth Percent difference (8) : -0,47
Height Percent difference (8) : -9.15
```

RESULTS, Cycle 6, Bank SE
Stressed amount (pom) : 50
Original critical height : 121.9
New critical height : 134.7
Original Test Bank worth (pcm) 4389.5
New Test Bank worth (pom) : 389.2
Worth Percent difference (8) : -0.09
Height Percent difference (8) : 10.42
RESULTS, Cysle 6, Bank SE
Stressed amount (pom) : -50
original critical neight : 121.9
New critical height : 109.2
Original Test Bank worth (pom): 389.5
New Test Bank worth (pcm) : 389.9
Worth Percent difference (\&) : 0.09
Height Percent difference (8) : -10.42

Table 18: Wol Creek Cycle 6, Bank SD/SC

```
RESULTS, Cycle 6, Bank SD/SC
Stressed amcunt (pom) : 50
original oritical height : 141.7
New eritical height : 153.4
Original Test Bank worth (pom); 422.6
New Test Bank worth (pom) : 426,6
Worth Percent difference (8) : 0.94
Height Percent difference (8) : 8.21
RESULTs, Cycle 6, Bank SD/SC
Stressed amount (pom) i -50
original critical height +141.7
New critical height :130.1
Original Test Bank worth (pcm): 422.6
New Test Bank worth (pom) : 418.1
Worth Fercent difference (8) ; -1.06
Height Percent difference (8) : -8.21
```

