> Sequoyah Nuclear Plant Offsite Dose Calculation Manual Dates of Revisions

Original ODCM	2/29/80*
Revision 1	4/15/80**
Revision 2	10/7/80**
Revision 3	11/3/80, 2/10/81
	4/8/81 and $6 / 4 / 81$ तt
Revision 4	11/22/82 (10/22/81,
	$11 / 28 / 81$ and 4/29/82
Revision 5	10/21/82**
Revision 6	1/20/83**
Revision 7	3/23/83**
Revision 8	12/16/83**
Revision 9	3/7/84**

[^0]\[

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{9} \sum_{k=1}^{7} \sum_{(2 / \pi)^{1 / 2} f_{j k} Q_{i} P}^{\sum_{z k} u_{j}(2 \pi x / n)} \exp \left(-\lambda_{i} x / u_{j}\right) \tag{1.1}
\end{equation*}
$$

\]

where
$X_{i}=$ air concentration of radionuclide $i, \mu \mathrm{Ci} / \mathrm{m}^{3}$.
$f_{j k}=$ joint relative frequency of occurrence of winds in
windspeed class j, stability class k, blowing toward this
$Q_{i}=$ average release rate of radionuclide $i, \mu \mathrm{Ci} / \mathrm{s}$.
$p=$ fraction of radionuclide remaining in plume, Figure 1.1.
$\Sigma z k=$ vertical dispersion coefficient for stability class k
which includes a building wake adjustment,
$\Sigma \mathrm{zk}=\left(\sigma_{\mathrm{zk}}{ }^{2}+\mathrm{cA} / \pi\right)^{1 / 2}$, where σ_{zk} is the vertical
building shape factor ($\mathrm{c}=0.5$), and A is the minimum
building cross-sectional area ($1800 \mathrm{~m}^{2}$), m.

For determining the total body dose rate

$$
\begin{equation*}
\mathrm{D}_{\mathrm{TB}}=\sum_{i} x_{i} \mathrm{DFB}_{i} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{D}_{\mathrm{TB}} & =\text { total body dose rate, mrem } / \mathrm{y} . \\
\mathrm{X}_{\mathrm{i}} & =\text { air concentration of radionuclide } i, \mu \mathrm{Ci} / \mathrm{m}^{3} . \\
\mathrm{DFB}_{\mathrm{i}} & =\text { total body dose factor due to gamma radiation, mrem } / \mathrm{y} \\
& \text { per } \mu \mathrm{Ci} / \mathrm{m}^{3} \text { (Table } 1.5 \text {). }
\end{aligned}
$$

For determining the skin dose rate

where
$D_{S}=$ skin dose rate, mrem/y.
$X_{i}=$ air concentration of radionuclide $i, \mu \mathrm{Ci} / \mathrm{m}^{3}$.
$D F S_{1}=$ skin dose factor due to beta radiation, mrem/y per $\mu \mathrm{Ci} / \mathrm{m}^{3}$ (Table 1.5).
$1.11=$ the average ratio of tissue to air energy absorption coefficients, mrem/mrad.
$D F^{\gamma_{i}}=g a m m a-t o-a i r$ dose factor for radionuclide i, mrad/y per $\mu_{\mathrm{Ci}} \mathrm{Cm} \mathrm{m}^{3}$ (Table 1.5).
B. Equations and assumptions for calculating doses from radioioaines and particulates are as follows:

Assumptions

1. Dose is to be calculated for the critical organ, thyroid, and the critical age group, infant.
2. Exposure pathways from iodines and particulates are milk ingestion, ground contamination, and inhalation.
3. The radioiodine and particulate mix is based on the design objective source term given in Table 1.1.
4. Basic radionuclide data are given in Table 1.2.
5. All releases are treated as ground-level.
6. Meteorological data are expressed as joint-frequency distributions (JFD's) of wind speed, wind direction, and atmospheric stability for the period January 1972 to December 1975 (Table 1.3).
7. Raw meteorological data for ground-level releases consist of wind speed and direction measurements at 10 m and temperature measurements at 9 m and 46 m .
8. Dose is to be evaluated at the potential offsite exposure point where maximum concentrations are expected to exist.
9. Real cow locations are not considered.

This section of the ODCM describes the methodology that will be used to perform these monthly calculations.

Doses will first be ca culated by a simplified conservative approach (step 1). If these exceed the specification limits, a more realistic calculation will be performed (step 2).

1.2.1 Noble Gases

Step 1

Doses will be calculated using the methodology described in this step. If any limits are exceeded, step 2 will be performed.

Equations and assumptions for calculating doses from releases of noble gases are as follows:

Assumptions

1. Doses to be calculated are gamma and beta air doses.
2. The highest annual-average X / Q based on licensing meteorology for ground level releases for any offsite location will be used.
3. No credit is taken for radioactive decay.
4. For gamma doses, releases of Xe-131m, Xe-133, Xe-135, Ar-41, and $\mathrm{Kr}-88$ are considered.
5. For beta doses, releases of $\mathrm{Xe}-131 \mathrm{~m}, \mathrm{Xe}-133, \mathrm{Xe}-135, \mathrm{Kr}-85$, and Ar-41 are considered.
6. Dose factors are calculated using data from TVA's nuclide library.
7. The calculations extrapolate doses assuming that only 90 percent of total dose was contributed.
8. A semi-infinite cloud model is used.
9. Building wake effects on effluent dispersion are considered.

Equations

For determining the gamma dose to air:

$$
\begin{equation*}
D_{\gamma}=\frac{(X / Q)}{0.9} \quad \frac{10^{6}}{3.15 \times 10^{7}} \sum_{i} Q_{i} D^{2} \gamma_{i} \tag{1.12}
\end{equation*}
$$

where:

$$
\mathrm{D} \gamma=\text { gamma dose to air, mrad. }
$$

$0.9=$ fraction of total gamma dose expected to be contributed by these nuclides.

$$
10^{6}=\mu \mathrm{Ci} / \mathrm{Ci} \text { conversion factor }
$$

$3.15 \times 10^{7}=\mathrm{s} / \mathrm{yr}$ conversion factor

$$
\begin{aligned}
Q_{i} & =\text { annthly release of radionuciide } 1, \mathrm{Ci} . \\
\mathrm{DFY}_{i}= & \text { gamma-to-air dose factor for radionuclide } i \text {, mrad } / \mathrm{yr} \text { per } \\
& \mu \mathrm{Ci} / \mathrm{m}^{3}(\text { Table } 1.5) .
\end{aligned}
$$

This equation then reduces to

$$
\begin{equation*}
D y=1.81 \times 10^{-7} \sum_{i} Q_{i} \mathrm{DFY}_{i} \tag{1.13}
\end{equation*}
$$

For determining the beta dose to air:

$$
\begin{equation*}
D \beta=\frac{(X / Q)}{0.9} \frac{10^{6}}{3.15 \times 10^{7}} \sum_{i} Q_{i} D F \beta_{i} \tag{1.14}
\end{equation*}
$$

where:

$$
\begin{array}{rl|l}
\mathrm{D} \beta= & \text { beta dose to air, mrad. } \\
\mathrm{X} / \mathrm{Q}= & \begin{array}{l}
\text { highest annual-average relative concentration, } 5.12 \mathrm{x} \\
\\
0.9
\end{array} & \begin{array}{l}
\text { fraction of total beta dose expected to be contributed by } \\
\\
\\
\text { these nuclides. }
\end{array} \\
10^{6}= & \mu \mathrm{Ci} / \mathrm{Ci} \text { conversion factor }
\end{array}
$$

This equation then reduces to:

$$
\begin{equation*}
D \beta=1.81 \times 10^{-7} \sum_{i} Q_{i}{ }^{D F_{\beta i}} \tag{1.15}
\end{equation*}
$$

Step 2

This methodology is to be used if the calculations in Step 1 yield dcses that exceed applicable limits.

Equations and assumptions for calculating doses to air from releases of noble gases are as follows:

Assumptions

1. Doses to be calculated are gamma and beta air doses.
2. Dose is to be evaluated at the nearest site boundary point in each sector.
3. Historical onsite meteorological data from the period 1972-1975 will be used.
4. All measured radionuclide releases are considered.
5. A semi-infinite cloud model is used.
6. Radioactive decay is considered.
7. Building wake effects on effluent dispersion are considered.
8. Dose factors are calculated using data from TVA's radionuclide library.

Equations
Equations for calculating air concentration, X, is the same as in Section 1.1.1, step 1, part A. Air concentrations are calculated for the site boundary in each sector.

For determining the gamma dose to air

$$
\begin{equation*}
\mathrm{D}_{\mathrm{\gamma n}}=\mathrm{t}_{\mathrm{m}} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ni}} D F \gamma_{i} \tag{1.16}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{D}_{\gamma \mathrm{n}}=\text { gamme dose to air for sector } \mathrm{n} \text {, mrad. } \\
& X_{n i}=\text { air concentration of radionuclide } i \text { in sector } n, \mu C i / m^{3} \\
& \text { DF } \gamma_{\gamma i}=\text { gamma-to-air dose factor for radionuclide } i \text {, mrad/yr per } \\
& \mu \mathrm{t} / \mathrm{m}^{3} \text { (Table 1.5). } \\
& t_{m}=\text { time period considered, } y r
\end{aligned}
$$

For determining the beta dose to air:

$$
\begin{equation*}
D \beta_{n}=t_{m} \sum_{i} x_{n i} \cdot D F \beta_{i} \tag{1.17}
\end{equation*}
$$

where:

$$
\begin{aligned}
D \beta_{n}= & \text { beta dose to air for sector } n \text {, mrad. } \\
X_{n i}= & \text { air concentration of radionuclide i in sector } n, \\
& \mu C i / m^{3}
\end{aligned} \quad \begin{aligned}
D F \beta_{i}= & \text { beta to air dose factor for radionuclide } i \text {, mrad } / y r \text { per } \\
& \mu C i / m^{3}
\end{aligned} \quad \begin{aligned}
t_{m}= & \text { time period considered, yr }
\end{aligned}
$$

The sector having the highest total dose is then used to check compliance with specification 3.11.2.2.
1.2.2 Iodines and Particulates

Step 1

Doses will be calculated using the methodology described in this step. If any limits are exceeded, step 2 will be performed.

Equations and assumptions for calculating doses from releases of iodines and particulates are as follows:

Assumptions

1. Doses are to be calculated for the infant thyroid from milk ingestion and for the child bone and teen g.i. tract from vegetable ingestion.
2. Real cow locations are considered for the milk pathway and nearest resident-locations with home-use gardens are considered for the vegetable pathway.
3. The highest annual-average D / C based on 1972 to 1975 meteorological data for ground level releases will be used for ingestion pathway doses.
4. No credit is taken for radioactive decay.
5. Releases of $1-131$ are considered for the milk pathway.

Sr-90 releases are considered for the vegetable pathway to the child bone.
Co-58 releases are considered for the vegetable pathway to the teen g.i. tract.
6. The calculations extrapolate doses assuming that only 90 percent of the total dose was contributed.
7. The cow is assumed to graze on pasture grass for the whole year.

Equations

For determining the thyroid dose from milk ingestion of $I-131$:

$$
\begin{equation*}
\mathrm{DTH}_{131}=\frac{\mathrm{Q}_{131} \cdot \mathrm{DF}_{131} \cdot \mathrm{D} / \mathrm{Q}}{(0.9) 3.15 \times 10^{7}} \quad \times 10^{6} \tag{1.18}
\end{equation*}
$$

where:
$\mathrm{DTH}_{131}=$ thyroid dose from I-131, mrem.
$Q_{131}=$ monthly release of $\mathrm{I}-131, \mathrm{Ci}$.
$D F_{131}=I-131$ milk ingestion dose factor to infant, 7.24×10^{11} mrem $/ \mathrm{yr}$ per $\mu \mathrm{Ci} / \mathrm{m}^{2}-\mathrm{s}$ (Table 1.7)
$D / Q=$ relative deposition rate, $2.96 \times 10^{-9} \mathrm{~m}^{-2}$.
$0.9=$ fraction of dose expected to be contributed by I-131.
$3.15 \times 10^{7}=s / y r$. $10^{6}=\mu \mathrm{Ci} / \mathrm{Ci}$

Equation 1.18 then reduces to:
$\mathrm{DTH}_{131}=75.6 \cdot \mathrm{Q}_{131}$

For determining the boue dose from vegetable ingestion:

$$
\begin{equation*}
Q_{s} D F_{s} D / Q \cdot 10^{6} \tag{array}
\end{equation*}
$$

$\mathrm{DBC}_{\mathrm{s}}=$

$$
3.15 \times 10^{7}(0.9)
$$

where:

$$
D B C_{S}=\text { bone dose to child from } \mathrm{Sr}-90 \text {, mrem. }
$$

$Q_{S}=$ monthly release of $\mathrm{Sr}-90, \mathrm{Ci}$.
$D F_{S}=S r-90$ vegetable ingestion dose factor to child,
1.36×10^{13} mrem $/ \mathrm{yr}$ per $\mu \mathrm{Ci} / \mathrm{m}^{2}-\mathrm{s}$. (As per Regulatory Guide 1.109 and NUREG/CR-1004 methodologies).
$\mathrm{D} / \mathrm{Q}=$ relative deposition rate, $7.10 \times 10^{-9 \mathrm{~m}-2}$.
$3.15 \times 10^{7}=\mathrm{s} / \mathrm{yr}$.
$10^{6}=\mu \mathrm{Ci} / \mathrm{Ci}$.
$0.9_{7}=$ fraction of total bone dose expected to be contributed by $\mathrm{Sr}-90$.

Equation 1.19 then reduces to

$$
D B C_{s}=3406 \cdot Q_{s}
$$

For determining the gastrointestinal (g.i.) tract dose from vegetable ingestion:

$$
\begin{equation*}
D G I_{T}=\frac{Q_{c} D F_{c} D / Q \cdot 10^{6}}{(0.9) 3.15 \times 10^{7}} \tag{1.20}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& D_{T}=\text { teen g.i. tract dose from Co-58, mrem } \\
& Q_{C}=\text { monthly release of } \mathrm{Co}-58, \mathrm{Ci} \\
& D F_{C}=C o-58 \text { vegetable ingestion dose factor for the teen g.i. } \\
& \text { tract, } 3.87 \times 10^{9} \mathrm{mrem} / \mathrm{yr} \text { per } \mu \mathrm{Ci} / \mathrm{m}^{2}-\mathrm{s} \text {. (Regulatory } \\
& \text { Guide } 1.109 \text { and NUREG/CR-1004 methodologies.) } \\
& D / Q=\text { relative deposition rate, } 7.10 \times 10^{-9} \mathrm{~m}^{-2} \\
& 3.15 \times 10^{7}=s / y r \\
& 10^{6}=\mu \mathrm{Ci} / \mathrm{Ci} \\
& 0.9=\text { fraction of total g.i. tract dose expected to be contributed } \\
& \text { by Co-58 } \\
& \text { Equation } 1.20 \text { then reduces to } \\
& \mathrm{DGI}_{\mathrm{T}}=0.97 \mathrm{Q}_{\mathrm{c}}
\end{aligned}
$$

Step 2

This methodology is to be used if the calculations in step 1 yield doses that exceed applicable limits.

Doses for releases of iodines and particulates shall be calculated using the methodology in Section 1.1.1, step 1, part B, with the following exceptions:

1. All measured radionuclide releases will be used.
2. Dose will be evaluated at real cow locations and will consider actual grazing information.

The receptor having the highest total dose is then used to check compliance with specification 3.11.2.3.

Calendar quarter doses are first estimated by summing the doses calculated for each month in that quarter. Calendar year doses are first estimated by summing the doses calculated for each month in that year. However, if the annual doses determined in this manner exceed or approach the specification limits, doses calculated for previous quarters with the methodology of section 1.4 will be used instead of the doses estimated by summing monthly results.

1.3 Dose Projections

In accordance with specification 3.11.2.4, dose projections will be performed. This will be done by averaging the calculated dose for the most recent month and the calculated dose for the previous month and assigning that average dose as the projection for the current month.

1.4 Quarterly and Annual Dose Calculations

A complete dose analysis utilizing the total estimated gaseous releases for each calendar quarter will be performed and reported as required in Specifications 6.9.1.8 and 6.9.1.9. Methodology for this analysis is the same as that described in Section 1.1.1, except that real pathways and receptor locations (Table 1.4) are considered. In addition, meteorological data representative of a ground level release for each corresponding calendar quarter will be used. This analysis will replace the estimates in Section 1.2.

At the end of the vear an annual dose analysis will be performed by calculating the sum of the quarterly doses to the critical receptors.

1.5 Gaseous Radwaste Treatment System Operation

The gaseous radwaste treatment system (GRTS) described below shall be maintained and operated to keep releases ALARA.

1.5.1 System Description

A flow diagram for the GRTS is given in Figure 1.3. The system consists of two waste-gas compressor packages, nine gas decay tanks, and the associated piping, valves, and instrumentation. Gaseous
wastes are received from the following: degassing of the reactor coolant and purging of the volume control tank prior to a cold shutdown, displacing of cover gases caused by liquid accumulation in the tanks connected to the vent header, and boron recycle process operation.

1.5.2 Dose Calculations

Doses will be calculated monthly using the methodology described in Section 1.2. These doses will be used to ensure that the GRTS is operating as designed.

TABLE 1.4

SQN - RECEPTOR LOCATIONS

POINT					distance	elevation	CHI-OVER-Q	O-CVER-0
				SECTOR	(H)	(4)	(S/M.*3)	(1/4**)
1	LaND	SIte	boundary	N	950.	-6.	5.125-06	1.29E-OB
,	LaNO	SITE	boundary	nne	2260.	-6.	$1.93 \mathrm{E}-06$	$5.288=09$
3	Lano	SITE	boundary	NE	1910.	-6.	$2.32 \varepsilon-06$	6.33E-09
4	LANO	SITE	boundary	Ene	1680.	-6.	1.12t-26	$2.648-19$
5	LaNO	SITE	boundarar	E	1570.	-6.	7.10 - 07	$1.46 \mathrm{E}=09$
6	LanO	SIte	boundary	Ese	1460.	-6.	7.918-07	$1.58 \mathrm{E}=-9$
7	Lavo	Stte	boundary	SE	1460.	-6.	$9.14 E-07$	2.416-09
8	Lano	Site	boundary	SSE	1550.	-6.	$1.345-06$	3.235-09
9	Land	SITE	boundary	S	1570.	-6.	2.375-06	4.188-09
10	LANO	SITE	boundary	SS	1840.	-6.	$4.51 \mathrm{E}-06$	$9.26 E-09$
11	LaND	Stte	boundary	SW	2470.	-6.	1.3AE-06	2.638-09
12	LANO	SITE.	aoundary	USV	910.	-6.	$2.935-06$	3. H6E-09
13	LANO	SIte	buundary	\checkmark	670.	-6.	$3.63 t-06$	3.74E-09
14	Land	SITE	boundary	WNW	660.	-6.	2.49E-C6	2.44c-09
15	LaNO	SITE	boundary	NW	660.	-6.	$2.85 E-06$	3.67E-09
16	Lavo	Stte	moundary	NNY	730.	-6.	$3.95 E-06$	6.595-09
17	RESIDENT, GARDEN			N	1370.	0.	2.98E-06	7.10E-09
18	afstoent			NNE	2710.	0.	1.49t-06	$3.88 E-39$
19	restioent garotn, betF			NE	3430.	15.	1.f1t-06	2.535-09
20	aESIIOENT, GARDEN			ENE	2290.	0.	7.13E-07	1.576-09
21	Resiotwt			E	1790.	8.	5.85E-07	1.1 AE -09
22	RESIDENT			Ese	1790.	46.	5.86E-07	$1.140-59$
23	resideevt			se	1680.	2.	7.42E-07	$1.925=09$
4	QESIDENT, GARDEN, BEEF			SSE	2210.	46.	7.99E-07	$1.798-09$
5	aesioent			s	2020.	0.	$1.65 E-06$	2.75E-09
26	RESIOENT,GARDEN			SSW	2670.	0.	$2.66 \mathrm{E}-06$	$4.925-09$
27	aESIDENT			Sv	3010.	0.	$1.04 \mathrm{E}-06$	1. RBE $=09$
20	RESIDENT,GARDEN			*S*	1140.	8.	$2.09 \mathrm{c}-26$	2.67E-C9
	resiotntagarden			\checkmark	1750.	47.	A.53E-01	7.82E-10
30	arsioevt, gardenace			UNW	1750.	12.	$5.715=07$	4. $98 E-10$
31	aesidevt			NY	1140.	11.	$1.25 c-06$	$1.508=09$
32	RESIDENT			nNH	800.	0.	$3.42 t-06$	5.6.7t-c9
33	GARDEN, BEEF			NnE	3010.	0.	1.28E-06	3, $24 \mathrm{E}=09$
34	garden			t	2630.	9.	$3.3 \mathrm{BE}-07$	6.14E-10
35	GARDEV			Ese	1940.	29.	$5.23 \mathrm{c}=07$	S.91E-10
36	GARDEN			SE	3010.	47.	$3.195-07$	7.16E-10
	garden			5	2292.	0.	1.3日t-06	2.225-09
30	carotn			SV	3320.	0.	$9.10 \mathrm{E}^{-07}$	1.54E-C9
	GAROCN			Nu	1180.	11.	1.195-06	$1.42 \mathrm{E}=09$
18	GAROEN			NVE	1750.	17.	1.06E-06	1.59r-09
4	8CEF			ENE	2130.	14.	7.92E-07	$1.77 E=09$
42	BEEF			¢	2130.	17.	$4.575-07$	8.78E-10
42	BEEF			EsE	3010.	53.	2.76E-07	4.692-10
4	BecF			SE	2630.	90.	$3.88 t-07$	$9.011-10$
	BEEF			USY	2060.	17.	A. 7AE -07	1.01¢-09
4	AEEF			\checkmark	680.	0.	$3.55 t=06$	$3.655-09$
46	BECF			UNV	670.	0 .	2.43e-06	$2.38 \mathrm{E}=09$
47	BeEf			NY	670.	c.	2.7AE -06	3.59E-09
${ }_{4}$	M ILK	cor a	AOUL tobeEf	N	4120.	0.	$6.18 \mathrm{c}-07$	1.102-09
49	M ILK	cou a	AOULT	NNE	4380.	0.	7.55E-07	1.69t-09
50	\#It天	cou a	ADULT	NE	5220.	47.	$5.59 E-07$	1.12E-c9
\$1	N16\%	cou a	ADULT, BECF	55 L	3580.	6.	1.76t-06	2.96e-09
53	mitk	cou a	ADULT	NY	1980.	5.	$5.616-07$	$6.09 \mathrm{c}-10$
54	\#t5	604t	A0ULT	556	5340.	29.	2.2BC-07	$3.89 \mathrm{t}-10$
		coat	a 0 Lt	5	5530.	37.	$4.076=07$	4.816-10
6	- IL*	doat	TEEN	SE	2940.	61.	$3.30 \mathrm{C}=07$	7.4hE-10

Table 1.4a Deleted by
Revision 9
b. During aay calendar year to ≤ 3 mrem to the total body and to ≤ 10 mrem to any organ.

To ensure compliance, cumulative dose calculations will be performed at least once per month according to the following methodology.

2.3.2 Monthly Analys is

Principal radionuclides will be used to conservatively estimate the monthly contribution to the cumulative dose. If the projected dose exceeds the above limits, the methodology in Section 2.3 .3 will be implemented.

The 11 nuclides (listed below) contribute more than 95 percent of the dose to the total body and the three most critical organs for each patliway. The critical organs considered for fish ingestion are the gastrointestinal tract (GIT), bone, and liver. The critical organs for water ingestion are the GIT, bone, and thyroid.

A conservative calculation of the monthly dose will be done according to the following procedure. First, the monthly operating report containing the release data will be obtained and the activities | released of each of the above eleven radionuclides will be noted. This | 3 |
| :--- | :--- |
| information will then be used in the following calculations. | |

2.3.2.1 Water Ingestion

The dose to an individual from ingestion of water is described by the following equation.

$$
D_{j}=\frac{1}{.95} \sum_{i=1}^{11}(D C F)_{i j} \cdot I_{i j}, \text { rem }
$$

where:
$D_{j}=$ dose for the $j^{\text {th }}$ organ from eleven radionuclides, rem
$j=$ the organ of interest (bone GI tract and total body).
$.95=$ conservative correction factor, considering only eleven radionuclides.
$\begin{aligned} D C F_{i j}= & \begin{array}{c}\text { critical ingestion dose commitment }\end{array} \text { factor for the } j^{\text {th }} \\ & \text { organ of adult or child from the in radionuclide rem } / \mu C i,\end{aligned}$ see attached as Table 2.1.
$I_{i j}=\underset{c r i t i c a l}{\text { monthly activity ingested of group for the } \mathrm{t}^{\text {the }} i^{\text {th }} \text { radionuclide by the } \mu \mathrm{Ci} \text {. }}$ $I_{i j}$ is described by

$$
\begin{align*}
I_{i j}= & A_{i} V_{i j}(30) \tag{2.12}\\
& F d\left(7.34 \times 10^{10}\right)
\end{align*}
$$

where:

$$
\begin{aligned}
A_{i}= & \text { activity released of } i^{t h} \text { radionuclide during the month, } \\
& \mu \mathrm{Ci} .
\end{aligned}
$$

$$
\begin{aligned}
& V_{i j}= \text { maximum individual's water consumption rate corresponding } \\
& \text { to the age group selected for the critical DCF } \\
& \text { (Adult: } 2000 \mathrm{~mL} / \mathrm{d} \text {, Child: } 1400 \mathrm{~mL} / \mathrm{d} \text {; Regulatory } \\
& \text { Guide } 1.109 \text {) }
\end{aligned}
$$

$30=$ days per month
,$\mu \mathrm{Ci}$
$F=$ average river flow at Chickamauga Dam for the month (cubic feet per second)
$d=$ fraction of river flow available for dilution ($1 / 5$)
$7.34 \times 10^{10}=$ conversion from cubic feet per second to milliliters per month.

The dose equation then becomes

$$
D_{j}=\frac{2.15 \times 10^{-6}}{F} \sum^{11}(V \times D C F)_{i j} \times A_{i}, \text { mem }
$$

considering the conversion factor from rem to mem.

[^0]: *Low Power license for Sequoyah unit 1 **RARC Meeting date

