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Abstract

A detailed review of the available light water reactor source term information is presented as a
technical basis for development of updated source terms into the containment under severe
accident conditions. Simplified estimates of radionuclide release and transport characteristics
are specified for each unique combination of the reactor coolant and containment system condi-

tions. A quantitative uncertainty analysis in the release to the containment using NUREG-1150
methodology is also presented,
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Historical Development

based on individual computer calculations that had been completed and documented in
NUREG-0773 [14).

23  Current Source Term Studies

Much of the quantitative assessment in NUREG-0772 was based on scoping calculations that
were applicable only to the specific conditions assumed for the calculations. In order to achieve
an integrated application of the findings of NUREG-0772, the Battelle Columbus Laboratories
performed a source term study. This study involved the development and modification of a
number of severe acaident computer codes based on emerging severe accident research results.
These codes were then coupled to form a suite of codes that would provide feedback in acci-
dent sequences, The Battelle suite of codes and the sample analyses were reported in the
multi-volume report, BMI-2104 [4).

As a result of the reassessment activities, the Source Term Code Package (STCP) emerged as
an integrated tool for severe accident analysis. The STCP is an upgraded version of the BMI-
2104 suite of codes and has been used in support of the NUREG-1150 study.

A second-generation source term code, MELCOR (15}, has been developed at Sandia National
Laboratories as the successor to the STCP. MELCOR has been especially designed to facilitate
sensitivity and uncertainty analyses and is currently being used to estimate severe accident
source terms and their associated sensitivities and uncertainties in a variety of applications
including the NUREG-1150 study and the Independent Risk Assessment Plant study (in which
the LaSalle plant is being considered).

2.1.1 Source Term Code Package (STCP)

The Source Term Code Package (STCP) is an integrated set of computer codes which more
mechanistically simulates severe accident progression and which was believed to provide more
realistic estimates of severe accident source terms (han previous studies, such as the Reactor
Safety Study. In particular, the characteristics of the source terms obtained with STCP (or
uther current methods) are clearly different than the hypothetical source term proposed in TID-
14844,

The codes are basically those used in the analyses performed for the BMI-2104 report, but have
been integrated into one self-consistent code package. A number of changes were made in the
process of integrating these codes. Many of the changes merely simplified the use of the cudes
and reduced the potential for input errors during data transfer by automating the data transfer

between some of the codes. The other changes, however, involved actual improvements in the

madels or in the coupling between modeis.

The STCP consists of four major computer codes (Figure 2.1). The MARCH3 code is a combi-

nation of the MARCH2, CORSOR and CORCON-MOD2 codes. The TRAPMELT3 code is a
combination of the TRAPMELT2 and MERGE codes that takes input from the MARCH3

NUREG/CR-5747 6
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BWR Mark Il (LaSalle) STCP Calculated Accident Sequence




Historical Development

Table 2.10 BWR Mark 111 (Grand Guih STCP Calculated Accident Seques ey

m—_
Sequence Description

T An anticipated transient without scram. The containment was assumed to fail by over-
pressurization prior to core melting due to elevated power input to the suppression
pool; containment failure was assumed to lead to failure of emergency core cooling

system pumps.

TB1 Loss of all AC power accompanied by loss of all active engineered safety features with
the exception of the stcam-turbine driven emergency core cooling systems. The latter,
however, would fail when the station batteries are depleted (6 hours after start of acci-
dent).

TH2 A variation of TB1 with containment failure due to hydrogen burn following failure of
the reactor vessel.

TBS Loss of AC power accompanied by loss of all active engincered safety features. Howev-
er, the operator was assumed to successfully depressurize the primary system,

TBR A varirtion of TBS except that electric power is reestablished shortly after vessel melt-
through and thus the sprays in containment operate.

Release of fission products from the fuel is determined by application of CORSOR or
CORSOR-M models as specified by the user. A dynamic surface-to-volume ratio can also be
applied to either model to account for changes in the core geometry. Released fission products
may exist as vapors, aerosols, or both, depending on the material's vapor pressure. If the vapor
mass ‘s greater than the saturation value for the fission product vapor, the excess vapor mass is
converted to aerosol mass,

MELCOR contains a number of physics packages or modules which model all essential phe-
nomena and plant features. Key packages include those modelling control volume thermody-
namics and hydrodynamics, heat structure thermal response, core heatup and degradation,
reactor cavity interactions (i.e., core-concrete interaction), and radionuclide behavior.

Thermal-hydraulic behavior is modeled in MELCOR in terms of control volumes and flow
paths in Control Volume Hydrodynamics (CVH) and Flow Path (FL) packages. No formal
distinction is made between the RCS and containment; the same models and solution algo-
rithms are used for both and the resulting equations are solved simultaneously.

The COR package calculates the thermal response of structures in the core and lower plenum.
This package treats all important modes of heat transfer within the core, as well as oxidation,

15 NUREG/CR-5747
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Quantification

PWR-1 = System setpoint pressure (2500 psia); release through a eveling PORV,
PWR-2 -~ High pressure (600 to 2000 psia); release through a very small break or
pump seal LOCA.

PWR-3 - Intermediate Pressure (200 to 600 psia); release through a break of
approximately two inches diameter,
PWR-4 . Low pressure (below 200 psia); release through a large break.

BWR-1 - High pressure fast station blackout (TBUX).
BWR2 -« Low pressure fast station blackout (TBU).
BWR-3 «  High pressure ATWS sequences (TCUX),

The panel agreed before elicitation that cases PWR-2 and PWR-3 could be considered together.
The detailed results of expert panel elicitation may be found in Reference [23). The uncertain-
ty distributions of FVES values are shown in Figure 5.3 - 5.4. These distributions were ob-
tained from aggregate cumulative probability distributions tabulated in Reference (23), using the
LLHS sampling method. Logarithmic interpolation was used to determine FVES values between
fractiles. The mean and median values for these distributions are presented in Table 5.10. The
estimated values for FVES depends strongly on the RCS pressure during the release, as might
be expected. The uncertainties in retention of fission products (except noble gases) within the
RCS are high. There is much uncertainty as to the kinetics and mechanics of the interactions
of volatile fission products within RCS gases and on solid structures, These uncertainties are
compounded by uncertainties about aerosol agglomeration and deposition rates and chemical
interactions of fission products on the RCS structural surfaces.

53 Summary of In-Vessel Releases Into the Containment at, or Before Vessel
Breach

Since FCOR and FVES are correlated in a phenomenological sense, it is more reasonable to
present the STCP results in terms of STy, (FCOR*FVES). The STCP results for fraction of
initial core inventory released from the vessel into the containment at, or before, vessel failure
(§Tyy) are tabulated in Table 5.11 through 5.14. In the STCP modeling, it is assumed that the

fission products in the atmosphere of the RCS are released instantaneously to the containment
as a puff release at the time of vessel failure.

The NUREG-1150 source term expert panel did not identify any correlation between the
FCOR and FVES distributions that they provided. The mean and median values for the distri-
butions of in-vessel releases into the containment (ST, ) are presented in Tables 5.15 and 5.16.
These values were obtained from propagation of the uncertainty distributions for FCOR and
FVES (discussed in previous sections), using the LHS Sampling method.

The estimated fractional releases depends strongly on the volatility of the fission products, as
might be expected. Volatile fission products, iodine and cesium, have similar releases. The
difference between semi-volatile fission products Sr and Ba are not great. Low volatile fission
products Ce and La have also similar releases.

39 NUREG/CR-5747
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STCP Rasults for Fraction of initial Core Inventory Released into Containment

sding Pulf Release (ST, ) BWR. Low RCS Pressure Sequences

Peach Bottom
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i Radionuclide Releases Associated With High Pressure Melt Expulsion From
the Reactor Pressure Vessel

Ex-vesse! Releases Into the Containment Duge to Core-concrete

Interaction







Quantufication

Vo - f-

LT SRt WL SE AR ERTEERIBUTERRNS, <Y

R A G et






sion Product Species (i} Present in the Malt Participating

Mean and Median Valuas of Fraction of Fi«
in HPME That is Released to Containment in a2 Direct Containment Heating Event (FDCHj)

RCSE Pressure’
at Vessel
Breach
0.009

{0.07)

H

0.006
{(0.07)

0.006

{(0.07)

0.005
(0.07)

0.006
{(0.07)

G 0.9 J.9¢ 0.025

L4

0} (0.80} 0.80) (0.16)

Pressure, respectively.




{ Breach Due to High Pressure Melt Ejection (S

Mean and Median Values of Releases Into Containment at Vesse

ST,

Ba Bu

PWRs 'v:;’“-""\/.i
High Pressure, Hiqh Zr Oxidation 0.007 0.9 .00, ¢.002 0.003 0.006 0.002

{0.09) (GC.04) {0.02) {0.03) {0.03) (0.007)
0.09 0.005 0.0025 0.003 0.006 0.002

High Pressure, Low Zr Oxidation
(0.01) {0.03) {0.03) (0.007)

(0.12) (0.05)
sressure, High Zr Oxidation 0.07 D.15 0.001 0.002 0.004 c.0G2
(0.09) {(0.12) {0.04) {0.02) (0.02) {0.03) (0.005)

0.001 0.002 0.004 202

Pressure, Low Zr Oxidation 0.09 ;
{0.02) {0.02) {0.02) {0.06)

{0.12)

1 Pressure, High Zr Oxidation 0.0075 0.002
{0.02) {0.007}
0.0025 0.005

{0.02) {0.€08)

i Pressure, Low Zr Cxidation
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Table 5.19 WBMMMFMdeCmmMWWW(STW)M,

10°

10°

0.17
1.4x10*
1.3x10°
ax10*
5x10”

ax10°

Limestone Concreta
Zion Sequoyah
$2DCR S2DCF1  S2DCF2 S3HF $38 $381 TMLB' TBA ACD
0 0 0 o () 0 0 ) 0
ax10” ax10’ 3.5x10° 0.03 0.03 0.0% 0.03 0.9x10° 0.9x10°
axi0’ 4x10’ ax10’ 0.03 0.03 0.02 0.03 08x10’  0.9x10°
0.22 0.40 0.28 006 008 007 0.40 0.09 0.22
0.32 0.10 0.34 0.17 017  0.17 0.53 0.17 0.51
0.23 0.07 0.23 .10 010  0.10 0.29 0.10 o027
10° ex10* 3x10° 2x9°  4x10° Sx10° asx10®  axip®  08x10°
™10°  2x10° 8x10” ex16®  Tx10°  7x10°  3x107 6x10° 0.8x10”
5x10° 8x10” ox10® 9107 gyug?  2x10? 1.2x107 6x10°

7x10°
MM

o
=4
=3
=
.
=
g
.5.
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521 STCP Results for Fraction of Initial Core Invantory Released During Core-concrete interactions {ST.,
Limestone Concrate

) BWR,

Peach Bottom

1B TBUX

0.60
1x10° . 1x10° 1x10°

0.04 0.09 0.06 0.07

La 0.02 0.02

0.06 €.03 0.03

Basaltic concrate was assumed in calculations.




5.6 Radionuclide Releases Into the Containment Associated With Late
Revolatilization From the RCS
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Figure 58 Uncertainty Distributions for Fission Product Release During Core-concrete

Interaction CChH. PWR, Limestone Concrete, Dry Cavity
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Uncertainty Distributions for Fission Product Release During Core-concrete Interaction

PYWR, Basaltic Concrete, Wet Cavity
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Conditions

Pedestal Condi
tion

Concrete

D

Zirconium
Content in the

Meit

H

L refars to limestone concrete
D and W refer to dry and wet pedestal conditions
H and L refer to high and low Zirconium conient in the melt

FCCi

Ba

0.05
{C.24)

0.06
{0.23}

0.03
(0.20)

0.03
(0.20)

5x10*
(0.004)
Sxi0”
(0.004)
2x10°
{0.002)

2x19°
{0.002)

0.002
{0.n2)

0.002
{(0.01)
0.002
{0.01)

0.002
{0.01)
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(D) 1w penIngs A.ter VB
Figure 5,14 Uncertainty Distributions fot the ki

action of R

adionuclide Group | Retained in RCS Which is

Released lato the Containment at Later Times (FREV for PWRs




n After VB and High Drywell Temp.
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(b) No Water Injection After VB and Low Drywell Temp
Uncertainty Distributions for the Fraction of Radionuclide Grour | Retained ia RCS Which is

Released Into Containment al Later Times (F REV) for U\"R\
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Table 5.24 Mean & Median Vaiues for the Fraction of Radionuclide Group | Retained in RCS
Released Into Containment Afier Vessel Failure (FREV,

FREV

Conditions
Cs

One opening after vessel breach 0.02
) (0.05)

Two openings after vessel breach x 0.095
5 {0.20)

Mo water injection afier vessel breach
and high drywell temperature

No water injection after vessel breach
and low dryweil temperature

Water injection after vessel breach

The mean values are shown in parenthesis




Effective Decontamination Factor (DF) of the Water Pool Overlying the
Corium During Core-concrete interaction
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STCP Results for Effective Decontamination Factor of the Water Pool Overlying the Corium

zﬁ)il";"(} Core concrete interaction VIDF ’

Species




Quantification

Tuble 526 STCP Results for Timing of In-vessel Releases Into Contalnment for PWR Accident Sequences

R N T TR S AT TR SRRSO AT 2 L AL R RN RIS TAT
Time of In-Vessel

Relense Into lo-vessel Release
Accident Sequence Containment (min) Duration (min)

TMLB 138 41
S\AB 110 A6
AG 1140 218

™I 180 41
SIDCR/S2DCH 94 19

Seguoyah SIHY 164 46
SiB 127 46
SiB) 434 78
I'™MLB 116 Ly
I'BA 52
ACD 28 13

(conee T™LB 3s
STDCE .2

Tuble 527 STCP Results for Timing of In-vessel Releases Into Containment for BWR Accident Sequences

- S —

Time of In-Vessel
Accidernt Release Into In-Vessel Bolease
Plant Sequence Lontainment (min) Dyration (min)
Peach Botiosi 1C2 62
rca &%
I'Cl 134
I'B1/TB2 642
S2E 110
TBUX 134

Hb

LaSalle B

Grand Gulf s
1C1
I'BS/TBR
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Table 6.1 Updated Bounding Value of Radionuciide Releases Into the Containment

Under Severe Accident Cenditions for PWRs

ST

Low RCS High RCS
o

Fressure Pressur

O

Sr-Ba
Ru

LaCe
Release

Duration

Ali entries are fractions of initial core inventory
Assuming 100% of the core participate in CCl

Excent for Te and Ru where the duration is extended to five hours




Tabie 6.2 Updated Bounding Value of Rz fionuclide Releases Into the Containment

Under Severa Accident Conditions for BWRs

Basaftic
Concrete

High RCS
Pressure

0

10 howrs

ANl entries are fractions of intial core inventory
High pressure ATWS are also considered in this cate gory
Assuming 100% of the core participate in CCl

Except for Te and Ru where the duration is extended to six hours

LYLS MO/ DTUNN
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Table 6.4 Some Statistical Parameters for Total Release into a E'NR Containment
Using NUREG-1150 Methodology

Median
Mean
95th Percentile

High Pressure Fast Station
Blackout, Low Zr Oxidation,
Limestone Concrete, Dry Pedestal,
High Drywell Temperaturse

Low Pressure Fast Station Mr dian
Blackout, Low Zr Oxidation, Mean
Limestone Concrete, Dry Pedestal, 95ih Percentiie

Low Dryweli Temperature

ah Pressure ATWS Sequences, Median
Zr Oxidation, Limestone Mean
‘e, Water Injection Afier VB as5th Percentile

L
L




Coniainment Under Severe Accident Condiions

Tabia 6 5 Mean Values of Radionuclide Reileases into

High Zr Oxidation, Dry Cavity Two Openings After vB)

(PWRs, Low RCS Pressure

LPLS YD/ DTUNN

All entries are fractions of initial core inventory

Assuming 100% of *he core participate in CCl




Table 6 6 Mean Values of Radionuclide Releases inty Containment Under Severe Accident Conditions
{SWRs, Low RCS Pressure. High Zr Oxidation, Dry Pedestal, High Drywsll Temperature)

ST

0.005

Alli entries are fractions of initial core inventory

.

Assuming 109% of the core participate in CCl

LYLS UMD/ OHANN
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APPENDIX A

UNCERTAINTY DISTRIBUTIONS FOR IN-VESSE]

RELEASES INTO CONTAINMENT

NUREG/CR-5747







Figure A2 Uncertainty Distributions for In-Vessel Releases Into Coutainment (ST,,.) PWR, High

and Intarmediate RCS Pressure
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APPENDIX B

UNCERTAINTY DISTRIBUTIONS FOR TOTAL RADIONUCLIDI

RELEASES INTO CONTAINMEN1T

MUREG/CR-5747




Lncertainty |

atament PWR Setpain! Pressurt

Concrete, Dry
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tal Releases lnto 4 .
Dy . { ontainment PWER. Low RCS Press .
Lavul wo Openings Alter VB, FPART ‘ ' ure, Lime




! w Zircot " )y " “l 7 | Mealt

Uncertalnty Distributions for Total Releases Into Containment PWR, Setpoint Pressure, Basaltie
Conerete, Dry Cavity, FPART = 0.6, FPMI 0.4




(a) High Zirconium Oxidation (Low

» Al

i

y ' y
w'&.l,“\l reonium Oxie ' ‘r.lE{JV r{ . ' “_1‘17

‘ y {)
Figure B4 Uncertainty Distributions for Tota) Releases Into Cor talnment PWR, Low RCS Pressure, Basaltic
Concrete, Dry Cavity, Two Openings After VR, FPART = |

NUREG/CR-5747




b) 1

Uncertainty tri ) otal Releases Into Containment BWR, High Pressure Fast Station
Biackout, Lin nerete, Dry Pedestal, High Drywell Temperature, FPART (.6,
PN 0

NUREG/CR-5747




Distributions for Total Releases Into Containment BWR, Low Pressure Fast Station

Limestone Concrets, Dry Pedestal, Low Dryweil Temperature, FPART |
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