CALLAWAY PLANT

ENGINEERING DEPARTMENTAL PROCEDURE

EDP-ZZ-00005

ASSESSING CORE DAMAGE

RESP.	DEPT. Engi	neeri	3	PREPARED BY	KR	BryANT
APPRO	VED BY	+ 8n	Bar	2	DATE	5/17/84
DATE	ISSUED	4				
This pr	ocedure conta	ins the	follow	ing:		
	Pages		1	_ through _	4	
	Attachments		1	_ through _	2	3
	Appendices			through		
	Appendices			through _		

ASSESSING CORE DAMAGE

1.0 PURPOSE AND SCOPE

This procedure provides a methodology for determining the extent of core damage following an accident using the Post Accident Sampling System (PASS). Preliminary estimates may also be made based on H₂ concentration in the containment, core exit thermocouple readings, reactor vessel water level, and containment radiation readings.

2.0 DEFINITIONS

- 2.1 Clad damage Clad damage is characterized by the release of fission products which have accumulated in the gap between the clad and the fuel. The fission products which diffuse to this gap are the volatile ones such as the noble gases, the iodines, and the cesiums.
- 2.2 Fuel overheating Fuel overheating is characterized by grain boundary release and diffusion from the UO₂ grains. This is estimated to be 20-40% of the noble gas, iodine and cesium inventories.
- Fuel melt Fuel melt leads to rapid release of many noble gases, halides and cesiums remaining in the fuel after overheating. Significant release of the strontium and barium lanthanum groups distinguishes this condition.

3.0 NOTES AND PRECAUTIONS

3.1 This procedure may be copied so that it can be used more than once. Attachment 1 will have to be copied for each isotope to be used in the analysis.

3.2 During accident conditions, it is not known in what order that information will become available. Therefore, this procedure does not have to be completed in the order that it is written. 3.3 If hydrogen recombiners or the hydrogen purge system are operating, core damage estimates based on hydrogen in the containment may be inaccurate. 3.4 Use as many indications as possible to differentiate between the various core damage states. Because of overlapping values of release and potential simultaneous conditions of clad damage, overtemperature, and core melt, considerable judgement needs to be applied. 4.0 PROCEDURE 4.1 Obtain an estimate of core damage using containment hydrogen concentration, core exit thermocouple readings, reactor vessel water level, and the containment radiation monitor. Hydrogen Concentration 4.1.1 4.1.1.1 Record containment hydrogen concentration. 4.1.1.2 From Attachment 9, obtain the % zirconium-water reaction and record here. 4.1.2 Core Exit Thermocouple Readings 4.1.2.1 From Attachment 8, estimate the core damage

based on core exit thermocouple readings.

Core damage:

Reactor Vessel Water Level

4.1.3

! 4.1.3.1	Record the duration of core uncovery.	-
	Duration: minutes	
! 4.1.3.2	From Attachment 8, estimate whether core damage has occurred based on core uncovery.	
	Core damage:	
4.1.4	Containment Radiation Monitor	
4.1.4.1	Record the Containment Radiation Monitor level R =R/hr.	
! 4.1.4.2	Record the 30-day average power (from Attachment 2) P=%	
4.1.4.3	Calculate the normalized dose rate	
1	Normalized Dose Rate = 3.66 x 10 ⁻⁴ x R x P	=
4.1.4.4	Record the time since the accident hours.	
4.1.4.5	Using Attachment 10, estimate the core damage.	
	Core damage:	
4.2	Estimation of core damage using PASS sample results.	
4.2.1	As sample results become available, complete a copy of Attachment 1 for each isotope. If an estimation of core damage was made in 4.1, then preference should be given to those isotopes which are indicative of that type of core damage. Attachment 3 provides a list for this purpose.	
4.2.2	Using the percentage of inventory released and the fission product ratio from Attachment 1, and using Attachment 8 and 11 to 23, estimate the damage and record below.	

			*.		
Sample !	Fission Product	Percentage ! Released !	Fission Product Ratio	! Estimated ! Core ! Damage	
!					
!				1	
!				!	
!					
!					
!					
!		! !		!	

5.0	REFERENCES
1 5.1	Westinghouse Owner's Group Post Accident Core Damage Assa sment Methodology
5.2	FSAR Table
5.3	Table of leotopes; Lederer, Hollander &

CALCULATION OF PERCENT OF CORE INVENTORY RELEASED

1.0	Isotope
1.1	Decay constant (from Attachment 3) $\lambda = $
1.2	Half-life (from Attachment 3) $T_1/_2 = $
2.0	Time and date of shutdown
3.0	POWER CORRECTION FACTOR
3.1	Determine the power history using Attachment 2.
3.2	For steady-state power (except Cs-134), complete the appropriate section of 3.3. For transient power history (except Cs-134), complete the appropriate section of 3.4. For Cs-134, complete 3.5
3.3	STEADY STATE EXCEPT Cs-134
3.3.1	Half Life <1 day
	Power Correction Factor (PCF) =
	Steady state power percentage for prior 4 days 100 =
3.3.2	Half Life >1 day
	Power Correction Factor (PCF) =
	Steady state power percentage for prior 30 days 100 =
3.3.3	Half Life > 1 year
	Power Correction Factor (PCF) = EFPD Total days of operation =

	3.4	TRANSIENT EXCEPT CS-134
!	3.4.1	Total period of operation > 4 x T ₁ / ₂
		Power Correction Factor (PCF)=Σj[Pj (1-e ^{-λtj})e ^{-λt°j}] =
		100
!	3.4.2	<pre>where tj = operating period in hours at</pre>
		Power Correction Factor (PCF) =
		$\frac{\Sigma j[Pj(1-e^{-\lambda tj})e^{-\lambda t^{\circ}j}]}{100(1-e^{-\lambda \Sigma jtj})} = \frac{100(1-e^{-\lambda \Sigma jtj})}{100(1-e^{-\lambda \Sigma jtj})}$
		100(1-e ^{-λΣjtj})
!	3.4.3	$T_{3} \geq 1$ year
!		Power Correction Factor (PCF) = EFPD Total days of operation =
!	3.5	POWER CORRECTION FACTOR FOR CS-134
		Power Correction Factor (from Attachment 6) =(Use average power during entire period of operation from Attachment 2)
	4.0	RCS ACTIVITY
	4.1	Sample Data
	4.1.1	Time and date of RCS sample
!	4.1.2	Time since shutdown t = (hours)
	4.1.3	RCS volume (from Attachment 4) $V = ft^3$
	4.1.4	RCS temperature TI = °F.
	4.1.5	RCS water density ratio (from Attachment 7) $\rho 1/\rho stp = \underline{\hspace{1cm}}$

	4.1.6	Sample result Cm = µCi/cc
	4.1.7	Sample temperature T2 =°F
!	4.1.8	Sample water density ratio (from Attachment 7) $\rho 2/\rho stp = \underline{\hspace{1cm}}$
	4.2	Decay correction of sample to time of reactor shutdown
	4.2.1	$Cc = Cme^{\lambda t} = \underline{\qquad} \mu Ci/cc$
!	4.3	Parent-Daughter Correction Factor Fr
		NOTE For isotopes which must have a parent-daughter correction factor applied, the parent isotopes are listed in Attachment 3. If no parent isotope is listed, then Fr=1. If 2 isotopes are listed as parents, then a correction factor must be calculated for each parent (Fr _A and Fr _B).
!	4.3.1	FrA
*	4.3.1.1	Parent isotope A (from Attachment 3)
	4.3.1.2	Parent isotope A decay constant (from Attachment 3) λ_{A} =
!	4.3.1.3	Parent isotope A 100% source inventory (from Attachment 3) $Q_{A}^{\circ} = $
		Daughter isotope 100% source inventory (from Attachment 3)Q° =
!	4.3.1.5	Decay Branching Factor (from Attachment 3)K _A =
!!!	4.3.1.6	$\operatorname{Fr}_{A} = \operatorname{K}_{A} \left(\frac{\lambda}{\lambda - \lambda_{A}} \right) Q_{A}^{o} \left(e^{-\lambda_{A}t} - e^{-\lambda t} \right) = \underline{\hspace{1cm}}$
!!	4.3.2	<pre>Fr_B (Fr_B = 0 if only one parent is listed in Attachment 3)</pre>
,	4 3 2 1	Parent isotope R (from Attachment 3)

! 4.3.2.2 Parent isotope B decay constant (from Attachment $3)\lambda_{R} =$! 4.3.2.3 Parent isotope B 100% source inventory (from Attachment 3)QB = ! 4.3.2.4 Decay Branching Factor (from Attachment 3)Kp = $\operatorname{Fr}_{B} = \operatorname{K}_{B} \left(\frac{\lambda}{\lambda - \lambda_{B}} \right) \operatorname{Q}_{B}^{\circ} \left(e^{-\lambda_{B} t} - e^{-\lambda t} \right) =$! 4.3.3 $Fr = Q^{\circ}e^{-\lambda t}$ Qe-ht + Fr_A + Fr_B ! 4.3.4 Corrected sample activity $C_F = C_C \times Fr = \underline{\qquad} \mu Ci/cc$! 4.4 Temperature correction of sample ! 4.4.1 p₁/pstp $C = C_F \times \rho_2/\rho stp = \mu Ci/cc$ RCS Activity A(RC) ! 4.5 $! 4.5.1 \cdot A(RC) = V \times C \times 2.83 \times 10^4 = Ci$ 5.0 CONTAINMENT SUMP ACTIVITY 5.1 Sample Data 5.1.1 Time and date of containment sump sample ! 5.1.2 Time since shutdown t= (hours) Containment sump volume (from Attachment 5) 5.1.3 5.1.4 Containment sump temperature T1 = °F 5.1.5 Containment sump water density ratio (from Attachment 7) p1/pstp = 5.1.6 Sample result $Cm = \mu Ci/cc$

	5.1.7	Sample temperature T2 =°F
!	5.1.8	Sample water density ratio (from Attachment 7) p2/pstp =
	5.2	Decay correction of sample to time of reactor shutdown
	5.2.1	$Cc = Cm \times e^{\lambda t} = \underline{\qquad} \mu Ci/cc$
!	5.3	Parent-Daughter Correction Factor Fr
!!!!!!!!!!!!		NOTE For isotopes which must have a parent-daughter correction factor applied, the parent isotopes are listed in Attachment 3. If no parent isotope is listed, then Fr=1. If 2 isotopes are listed as parents, then a correction factor must be calculated for each parent (Fr _A and Fr _B).
!	5.3.1	Fr _A
!	5.3.1.1	Parent isotope A (from Attachment 3)
!	5.3.1.2	Parent isotope A decay constant (from Attach- ment 3) $\lambda_A = $
!	5.3.1.3	Parent isotope A 100% source inventory (from Attachment 3) QA =
!	5.3.1.4	Daughter isotope 100% source inventory (from Attachment 3)Q° =
!	5.3.1.5	Decay Branching Factor (from Attachment 3)K _A =
!	5.3.1.6	$\operatorname{Fr}_{A} = \operatorname{K}_{A} \left(\frac{\lambda}{\lambda - \lambda_{A}} \right) \operatorname{Q}_{A}^{\circ} \left(e^{-\lambda_{A}t} - e^{-\lambda t} \right) = \underline{\hspace{1cm}}$
!	5.3.2	Fr _B (Fr _B = 0 if only one parent is listed in Attachment 3)
	5.3.2.1	Parent isotope B (from Attachment 3)
* *	5.3.2.2	Parent isotope B decay constant (from Attachment 3) $\lambda_{B} = $

! 5.3.2.3 Parent isotope B 100% source inventory (from Attachment 3)QB = ___ ! 5.3.2.4 Decay Branching Factor (from Attachment 3)Kp = $\operatorname{Fr}_{B} = \operatorname{K}_{B} \left(\frac{1}{\lambda - \lambda_{B}} \right) Q_{B}^{\circ} \left(e^{-\lambda_{B}t} - e^{-\lambda t} \right) =$! 5.3.2.5 Fr = Q°e^{-\lambdat} ! 5.3.3 Qc-At + Fr + Fr ! 5.3.4 Corrected sample activity $C_F = C_C \times Fr = ____ \mu Ci/cc$ Temperature correction of sample ! 5.4 p₁/pstp ! 5.4.1 $C = C_F \times \rho_2/\rho stp = ___ \mu Ci/cc$ Containment Sump Activity A(CS) ! 5.5 $A(CS) = V \times C \times 2.83 \times 10^4$ Ci ! 5.5.1 CONTAINMENT ATMOSPHERE ACTIVITY 6.0 6.1 Sample Data Time and date of containment atmosphere 6.1.1 sample ! 6.1.2 Time since shutdown t = ____ (hours) 6.1.3 Containment atmosphere temperature Containment atmosphere pressure P1 = psia 6.1.4 Sample result $Cm = \mu Ci/cc$ 6.1.5 6.1.6 Sample temperature T2 = °F

Decay correction of sample to time of reactor

Sample pressure P2 = psia

6.1.7

shutdown

6.2

Proced.	No.	EDP-2Z-00005
Rev.	A DESCRIPTION OF THE PERSON OF	1

POWER HISTORY

!	Days Before Shutdown	Average Power(%)
	1	
	2 3	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
	14	
	15	
	16	
	17	
	18	
	19	
	20	
	21	
	22	-
	23	
	24	
	25	
	26	Name of Street, Street
	27	
	28	
	29	
	30	
1	30-day average power	
2.	Total number of days of operation	on D =
3.	EFPD =	
4.	Average power during entire peri P = EFPD x 100% =	iod of operation

Proced.	No.	EDP-ZZ-00005
Rev.		0

DE	T ⁴ 2	λ	INVENTORY Q ^O (Curies)	PARENT	PARENT λ	PARENT INVENTORY (Curies)	BRANCHING DECAY FACTOR, K	CORE DAMAGE STATE
	76m	.5472h ⁻¹	4.0E7					CLAD
	17.8m	2.336h ⁻¹	5.8E7	Kr-88	.248h ⁻¹	5.7E7	1.0	FAILURE
	11.8d	2.45E-3h ⁻¹	6.3E5	1-131	3.59E-3h ⁻¹	9.8E7	.008	
	5.274		2.0E8	1-133	3.41E-2h ⁻¹	2.0E8	.976	
		5.50E-3h ⁻¹		Xe-133m	1.28E-2h	2.8E7	1.0	
	8.05d	3.59E-3h ⁻¹	9.8E7		1			
-	2.26h	. 3067h	1.4E8	Te-132	8.92E-3h-1	1.4E8	1.0	
	20.3h	3.41E-2h ⁻¹	2.0E8					
	6.68h	.104h	1.8E8	To The State of th				
34	2y	3.96E-5h-1	2.3E7		1		-	FUEL
37	30y	2.64E-6h ⁻¹	1.1E7					OVERHEAT
19	68.7m	.605h	3.3E7	Sb-129	.161h ⁻¹	3.2E7	.827	
				Te-129m	8.47E-4h ⁻¹	8.066	.680	
32	77.7h	8.92E-3h ⁻¹	1.4E8					
	52.7d	5.48E-4h ⁻¹	7.9E7				-	FUEL
0	12.8d	2.25E-3h ⁻¹	1.7E8					MELT
	40.22h	1.72E-2h ⁻¹	1.8E8	Ba-140	2.25E-3h-1	1.7E8	1.0	
	92.5m	.4496h ⁻¹	1.5E8	Ba-142	3.78h ⁻¹	1.6E8	1.0	
	17.27m	2.408h ⁻¹	1.2E8	Ce-144	1.02E-4h-1	1.1E8	1.0	

RCS VOLUME

Proced. No. EDP-ZZ-00005
Rev. 0

CYCLE OPERATION (CALENDAR DAYS)

POWER CORRECTION FACTOR FOR CS-134 BASED ON AVERAGE POWER DURING OPERATION

800. 700. 600. 500. Temperature, °F 400. 300. 200 -100 0 o.

CORE DAMAGE	FISSION PRODUCT RATIO	CORE EXIT THERMOCOUPLE READINGS (OF)	CORE UNCOVERY INDICATION	H ₂ Monitor (VOL % H ₂)
No Clad Damage	Not Applicable	<750	None	Negligible
0-50% Clad Damage	Kr-87=0.022 I-133=0.71	750-1300	Core Uncovery	0-6
50-100% Clad Damage	Kr-87=0.022 I-133=0.71	1300-1650	Core Uncovery	6-11
0-50% Overtemperature	Kr-87=0.22 I-133=2.1	>1650	Core Uncovery	6-11
50-100% Overtemperature	Kr-87=0.22 I-133=2.1	>1650	Core Uncovery	6-11
0-50% Fuel Melt	Kr-87=0.22 I-133=2.1	>1650	Core Uncovery	6-11
50-100% Fuel Melt	Kr-87=0.22 I-133=2.1	>1650	Core Uncovery	6-11

H2 CONCENTRATION VS. ZIRCONIUM-WATER REACTION

Proced. No. EDP-ZZ-00005

1000.01 100% Noble Gas Release 100.0 Melting 52% Noble Gas Release 10.0 Y EXPOSURE RATE (R/HR-MAT) 1.0 Overheating 1.0-1 0.3% Noble Gas 1.0-2 Clad Damage ANS 18.1 Normal Operating Noble Gas Release 1.0-3 1.0-4 1.0-5 1000.0 100.0 10.0 1.0

TIME AFTER ACCIDENT (HOURS)

PERCENT NOBLE GASES IN CONTAINMENT

RELATIONSHIP OF % FUEL MELT WITH % CORE INVENTORY RELEASED OF XE, KR, I, CS, OR TE

Proced. No. EDP-ZZ-00005

100.0 10.0 Core Inventory Released (%) 1.0 0.1 0.01 10.0 1.0 100.0 Fuel Melt (%)

RELATIONSHIP OF % FUEL MELT WITH % CORE INVENTORY RELEASED OF BA OR SR

Fuel Overtemperature (%)

RELATIONSHIP OF % FUEL OVERTEMPER TURE WITH % CORE INVENTORY RELEASED OF XE, KR, I, OR CS

0.7 0.5 0.3 0.2 0.14 .07 . 05 Core Inventory Released (*) .03 .02 .01 .007 .005 .003 .002 . 001. 7.0-4 5.0-4 3.0-4 2.0-4 1.0-4 20. 30. 50. 70. .00 ż 10.

Fuel Overtemperature (%)

RELATIONSHIP OF % FUEL OVERTEMPERATURE WITH % CORE INVENTORY RELEASED OF BA UR SR

RELATIONSHIP OF % FUEL MELT WITH % CORE INVENTORY RELEASED OF PR

ATTACHMENT 15 Page 1 of 1

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF XE-133

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF I-131

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF I-131 WITH SPIKING

.07 .05 .03 .02 .04 . 007 .005 .003 Core Inventory Released (%) .002 .004 7.0-4 5.0-4 3.0-4 2.0-4 1.3-4 7.0-5 5.0-5 3.0-5 2.0-5 1.0-5 30. 30. Clad Damage (%)

ATTACHMENT 19 Page 1 of 1

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF KR-87

Proced. No. EDP-ZZ-00005
Rev. 0

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF XE-131M

ATTACHMENT 20 Page 1 of 1

01 . 007 .005 .003 Core Inventory Released (%) .002 .00 L 7.0-4 5.0-4 3.0-4 2.0-4 1.0-4 7.0-5 5.0-5 3.0-5 2.0-5 1.0-5 Clad Damage (%)

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF I-132

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF I-133

. 07 .05 .03 .02 Core Inventory Released (1) .01 . 007 .005 .003 . 002 .001 7.0-4 5.0-4 3.0-4 2.0-4 1.0-4 7.0-5 5.0-5 3.0-5 2.0-5 1.0-5 70. 30

RELATIONSHIP OF % CLAD DAMAGE WITH % CORE INVENTORY RELEASED OF I-135

Clad Damage (%)