05-202-90

1. 1. 1.

Georgia Power

VOGTLE ELECTRIC GENERATING PLANT

TRAINING LESSON PLAN

TILLE:	EMERGENCY DIESEL GENERATOR GENERAL OVERVIEW	NUMBER:	NL-LR-11201-00-C
PROGRAM:	OUTSIDE AREA OPERATOR	REVISION:	0
AUTHOR:	G.D. STONE	DATE:	10/26/87
APPROVED:	TACTAIS	DATE:	5/11/89

INSTRUCTOR GUIDELINES:

- I. LESSON FORMAT
 - A. Lecture with Visual Aids

II. MATERIALS

- A. Transparencies and Dverhead Projector
- B. Dry Erase Board and Markers

III. EVALUATION

A. Written or Oral Exam in conjunction with other Lesson Plans

1

IV. REMARKS

A. Performance-based instructional units (IUs) are attached to the lesson plan as student handouts. After the lecture instruction should be provided for the attached instructional units. The instructor should be available to answer questions that may arise concerning the IU material. After instruction on the IU, the student will perform, simulate, observe or discuss (as identified on the cluster signoff criteria list) the task covered in the instructional unit in the presence of an evaluator.

FOR INFORMATION GULY

9202200296 920116 PDR ADOCK 05000424 S PDR

MASTER COPY

I. PURPOSE STATEMENT:

UPON COMPLETION OF THIS LESSON, THE STUDENT WILL HAVE THOSE KNOWLEDGES SYSTEMATICALLY REQUIRED FOR THE PERFORMANCE OF EMERGENCY DIESEL GENERATOR TASKS

II. LIST OF OBJECTIVES:

- 1. State the purpose of the emergency diesel generators.
- Draw a simple one-line diagram of ESF bus 1AA02 (or 1BA03) indicating normal and alternate supplies.
- List the four cycles of a four-cycle diesel engine, and state what occurs on each.
- Given drawings of a basic diesel engine, identify the following internal components:
 - a. Cylinders
 - b. Pistons and pins
 - c. Crankshaft
 - d. Camshaft
 - e. Valves
- 5. For the emergency diesel engine, state:
 - a. Number of cylinders and arrangement
 - . b. RPM
 - c. Horsepower rating
 - d. Number of engines per unit
- Given drawings of a DSRV-16 diesel engine, identify the following components:

.

- a. Generator
- b. Generator bearing pillow block
- c. Exciter (brushes)
- d. Flywheel
- e. JW standpipe
- f. Turbochargers
- g. Combustion air coolers
- h. Intake air inlet
- 1. Exhaust outlet
- j. Jacket water cooler
- k. NSCW inlet/exit connections on JW cooler
- 1. Crankcase vacuum fan

6

II. LIST OF OBJECTIVES

- State the purposes of the following emergency diesel generator auxiliary systems:
 - a. Fuel oil system
 - b. Air start system
 - c. Lube oil system
 - d. Jacket water system
 - e. Combustion air supply and exhaust system
 - f. Crankcase ventilation system
 - g. Diesel engine control system
 - h. Generator control system
- 8. For the emergency diesel generator, state:
 - a. Voltage rating
 - b. KVA rat g
 - c. Continuous rating in kilowatts
 - d. Overload rating in kilowatts per time
 - e. Hertz rating
 - f. Number of poles
 - g. RPM
- State the functions of the safety sequencer as related to the emergency diesel generators.
- 10. State the location from which the generator can be paralleled.
- 11. List the personal protective equipment necessary for monitoring a running diesel generator.

1.

REFERENCES:

1. PLANT VOGTLE PROCEDURES:

13145 DIESEL GENERATOR (REV 8).
13146 DIESEL GENERATOR FUEL OIL TRANSFER SYSTEM (REV 1)
14980 DIESEL GENERATOR OPERABILITY TEST
13427 4160 VAC 1E ELECTRICAL DISTRIBUTION SYSTEM
17035 ANNUNCIATOR RESPONSE PROCEDURES (REV 3)
17038 ANNUNCIATOR RESPONSE PROCEDURES (REV 3)

2. TECHNICAL SPECIFICATIONS:

- 3.8.1 ELECTRICAL POWER SYSTEM, AC SOURCES

3. VOGTLE TRAINING TEXT, CHAPTER 16C, VEGP

STANDBY (EMERGENCY) DIESEL GENERATOR

4. PLANT MANUAL, CHAPTER 23, REV O

5. P&IDS, LOGICS AND OTHER DRAWINGS

PIPING AND INSTRUMENT DIAGRAMS:

1X4DB170-1 (REV 21) 1X4DB170-2 (REV 21)

VENDOR DRAWINGS:

AX4AK01-27 (LUBE DIL) AX4AK01-26 (JACKET WATER) AX4AK01-29 (STARYING AIR) AX4AK01-28 (FUEL DIL)

CONTROL LOGIC DIAGRAMS:

1X5DN107-1 (DG FUEL OIL SYSTEM) 1X5DN107-2 (DG UNIT ENGINE) 1X5DN107-3 (GENERATOR)

ELEMENTARY DIAGRAMSI

1X3D-BH-GO3C (REV 2) 1X3D-BH-GO3D (REV 1) 1X3D-BH-GO3E (REV 2) 1X3D-BH-GO3F (REV 2) 1X3D-BH-GO3F (REV 2) 1X3D-BH-GO3H (REV 3) 1X3D-BH-GO3I (REV 2) 1X3D-BH-GO3J (REV 3)

ONE LINE DIAGRAMSI

1X3D-AA-A01A (REV 12) 1X3D-AA-K01A (REV 7)

REFERENCES:

6. VENDUR MANUALSI

AX4AK01-509 (REV 0) AX4AK01-510 (REV 2) AX4AK01-563 (REV 6)

7. FSARI

.

8.3, 9.5.4, 9.5.5, 9.5.6, 9.5.7, 9.5.8

B. OAP COMMITMENTS:

SOER 83.006	UNAVAILABILITY OF EMERGENCY POWER CAUSED BY DIESE
SOER 83.001 SOER 84.042	DIESEL GENERATOR FAILURES
IEN 85.028	REDUNDANT SAFEGUARDS FUNCTIONS
IEN 84.069 DMR 297	OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION OPERATIONS
NUREG 1216.000	CONTRIBUTE TO EDG OUTPUT BREAKER LOCKOUT SAFETY EVALUATION REPORT-RELATED TO OPERABILITY AND RELIABILITY OF EMERGENCY DISCE
	AN DAP ACTION ITEM, BUT A TRAINING COMMITMENT)

9. INSTRUCTIONAL UNITS:

NONE

10. TRANSPARENCIES

NL-TP-11201-002	NORMAL, ALTERNATE AND STANDBY PLATER TO
NL-TP-11201-003 NL-TP-11201-004 NL-TP-11201-005 NL-TP-11201-006 NL-TP-11201-007 NL-TP-11201-008	4160V 1E SWGR CROSS SECTION OF RV-16-4 DIESEL ENGINE DIAGRAM OF WORKING PRINCIPLE DG SYSTEM SIMPLIFIED EDG SIDEVIEW EDG TOPVIEW OUTLINE OF SKIDBASE

11. STUDENT HANDOUTS

NL-H0-11201-C-001 EMERGENCY DIESEL GENERATORS GENERAL OVERVIEW

	SOUN OUTLINE:	NOTES
1. 1	NTRODUCTION	i in a star and a star and a star and a star a s
A	This lesson describes the reasons for having emergency diesel generators at Plant Vogtle along with information about the engine, and an introduction to the diesel auxiliary system	
В	Review the objectives	NL-TP-11201-001
II. P	RESENTATION	
A	Purpose and design basis	Commitment
	1. Purpose	FEAR 0430.1
	The emergency diesal generators provide standby Onsite power required by the class 1E AC power systems in the event of a loss of preferred power sources for powering the essential loads necessary to safely shutdown the reactor under any operating and accident conditions	Objective 1
	a. Diesel generator - System 2403	
	 Diesel engine Generator Fuel systems 	NOTE: "Standby Power System", Syst 1821, is supplied 4160V by
	4) Engine auxiliary systems	
	b. The internal combustion diesel engine provides the motive force to drive the generator	
	2. 4160V Class 1E Bus supplies:	
	 A160V switchgear 1AA02 (Control Bldg) Train A 	Sec. 2
	 Normal (preferred) supply from "Y"winding of Reserve Aux Transformer INXRA, Breaker Closed 	RATS step down 230 KV from offsite sources to 13.8 KV
	 Alternate supply available from "Y" winding of Reserve Aux Transformer INXRB. No breaker in cubicle. Would use normal breaker, moved from cubicle 5, but only under achinistrative controls 	A.16 KV (Y winding) Show NL-TP-11201-002 Ubjective 2
	 Standby (onsite) supply: Emergency diesel generator unit 1, Train A, 	

III. LESSON OUTLINE: NOTES through breaker in Cubicle 19 b. 4150V switchgear 1BA03 (Control Building) Train B 1) Normal (preferred) supply from "Y" winding of Reserve Aux Transformer, INXRB, breaker closed 2) Alternate supply available from "Y" winding of Reserve Aux Transformer INXRA, no breaker in cubicle under administrative controls 3) Standby (onsite) supply: Emergency diesel generator Unit 1, Train B. Breaker racked in, open 3. Safety Design Bases Commitments FSARQ 430.1 The diesel generator systems shall be Include design designed to supply power to operate the basis in training safety-related equipment to effect a safe shutdown of the reactor in the event Read to class offsite power supply is unavailable b. Each diesel generator shall be sized to meet the power requirements of one train of safety related equipment. Each diesel generator shall have its own independent lubricating, air intake and exhaust, cooling water, air st rt, fuel oil day tank and storage tank systems c. Each fuel oil storage tank shall be sized for seven days' operation to meet the engineered safety feature load plus an additional amount for periodic testing of the diesel generator (ANSI N195) d. Two full capacity transfer pumps shall be provided on each fuel oil storage tank for redundancy. Each pump's capacity shall be sized to a minimum of three times the maximum diesel engine consumption e. The diesel generator systems shall be capable of accomplishing its function in the event of a single failure of any active component f. The diesel generator and fuel oil storage facilities shall be provided with fire, missile, seismic and tornado protection 7

III. LESSO	IN OUTLINE:	NOTES
B. Gen	eral Overview	
1,	Basic Internal Components	NL-TP-11201-003 Objective 4
	a. Cylinder	(loentity)
	Chamber for the moving piston of an engine	
	1) Our engine has 16 cylinders	Bore 17",
	b. Piston	stroke 21"
	Moved back and forth in cylinder to increase and decrease volume of cylinder	
	c. Pin	
	Transmits forces between piston and rod	
	d. Crankshaft	
	Turns the up-and-down motion of the piston to rotary motion	
	1) Flywheel attached to crankshaft	
	2) Flywheel (and crankshaft)	
	Rotate clockwise when you face the flywheel	
	e. Camshaft	
	Driven by a crankshaft via gears	
	 Lobes (eccentrics) cause up-and-down motion of tappets or pushrods 	
	2) Open intake and exhaust valves	
	3) Operates fuel injection pumps	
	f. Valves	
	1) Two intake valves/cylinder	
	2) Two exhaust valves/cylinder	
	3) Closed by springs	
	4) Opened by pushrod and rockers	
2.	Basis Four-stroke cycle Diesel Engine	Objective 3 NL-TP-11201-004

.

III. LESSON OUTLINE: NOTES a. Intake Strcke 1) Intake valve open Preread S&K for Qual Book 2) Piston moves down, drawing air into Chapter 11004 cylinder 3) Intake valve shuts near bottom of stroke b. Compression stroke 1) Cylinder sealed, air compressed as piston rises 2) Air temperature increases under compression 3) Fuel injected near top of stroke. Fuel ignites from high temperature c. Power stroke 1) Hear of combustion expands gases, forcing piston downward 2) Exhaust valve opens near bottom of power stroke d. Exhaust stroke 1) Piston moves upward, pushing gases from cylinder through exhaust valve 2) Air intake valve opens near end of exhaust stroke to aid in purging 04885 3) Gas removal and air supply aided by End Objective 3 turbocharger 3. Emergency Diesel Generators at VEGP a. Engine 1) V-16 cylinder arrangement 2) 450 rpm 3) 9694 horsepower 4) Two engines per nuclear unit

5) Turbocharged

9

Objective 5

.

- Provides lubricating and cooling of engine bearings and other components during engine operation
- Provides lube oil for prelubrication and warming of engine bearings and

ľ

NOTES

III. LESSON OUTLINE:

other components whr engine is in standby

- d. Jacket Water System
 - Provides enough cooling to allow continuous operation at maximum load
 - Provides engine warming when engine is shutdown, to promote starting
- e. Combustion air supply and exhaust
 - Provides filtered, compressed air for combustion
 - Provides means for removal of exhaust products
- f. Crankcase Ventilation System
 - Removes fumes and vapors from the crankcase, and provides partial vacuum
- g. Diesel Engine Control System
 - Provides means for starting, loading, running and stopping the diesel engine, and allow for local operations for maintenance purposes
- h. Generator and Breaker Control
 - Provides means for controlling the electrical output of the generator, and protection for the generator
 - 2) General functions of skid components
 - a) Generator
 - (1) Power to 4160V Class 1E when connected
 - b) Generator bearing pillow block
 - (1) Supports generator shaft bearing
 - 121 Other end of generator shaft
 - (3) Bolted to flywheel

End Objective 7

Dbjective 6 Students identify components from three drawings:

NL-TP-11201-006.

NL-TP-11201-007,

NL-TP-11201-008

.

NOTES

III. LESSON OUTLINE: (4) Has oil reservoir c) Exciter - provides current for the rotating DC field of the generator d) Flywheel - keeps crankshaft turning between power pulses e) JW standpipe - holds supply of water for the engine cooling system Turbochargers - driven by exhaust gases. Compressed air being supplied for combustion - one each bank g) Combustion air coolers - remove some heat of compression from turbocharged air. Air density increased h) Intake air inlet (1) One for each bank (2) Silences air sounds (3) Intake air filter "upstairs" supplies air to inlets (4) Supplies air to turbocharger i) Exhaust outlet (1) One for each bank (2) Pipes exhaust to exhaust silencer (3) Exhaust is from turbocharger outlet j) Jacket water cooler (1) Removes engine heat (heat exchanger) (2) NSCW removes heat from JW k) NSCW inlet/exit connections on JW cooler

0

1

(1) JW on shell side

-

III LESSON OUTLINE:		NL-LF-11201-00-C
IL LESSON C	UTLINE:	NOTES
	(2) NSCH on tube side	i i i i i i i i i i i i i i i i i i i
	(1) Tup (and	
	(1) Iwo tans	
	(2) At flywheel end	End Objective 6
	(3) Vacuum on crankcase oil seepage minimiz	keeps ed
	 Basic interrelationships 	
	 a) Lube cil system cooled b water system 	y jacket
	b) Jacket water system cool NSCW system	ed by
	(1) The EDG will be inconstructed with the inconstruction of the	perable if Commitment er is not
	c) The Jacket water system heat from:	removes
	(1) Combustion air supp aftercoolers	ly, at the
	(2) Engine jackets	
	(3) Exhaust manifold ja	ckets
	(4) Governor	
	(5) Turbocharper intern	*1*
	d) Desigeralized water	
	W. Semineralized water	
	Cooling System	ter
	 Can transfer fuel oil to Beiler FOST (in unusual circumstances) 	the Aux
	f) Starting air system:	
	 Provides supply for pneumatic controls 	engine
	(2) Two redundant syste start on one	ms. Can

III. LESSON OU	LINE	NOTES
	g) Diesel Building HVAC	
	(1) Ventilation and temperature control	
	 biesel Room Fire Protection and Detection 	
	1) 4160V Class 1E	
	 Provided power from diesel generator then D.G. output breaker is closed 	
	3) 480V AC	
	(1) Fuel oil transfer pumps (2)	
	(2) Air compressors and after- cooler fans (2 each)	
	(3) Jacket Water KW pump and heater	
	(4) Lube oil KW pump and heater	
	(5) Generator space heater	
	k) 125V DC System, Class 1E	
	(1) DG field flashing	
	(2) DG control purpose	
4)	Basic Tech Spec Considerations	
	a) Fuel Dil Day Tank minimum volume	Salar Berling
	b) Fuel Dil Storage Tank minimum volume	
	c) Fuel Dil Transfer Pump	More in later
	d) Minimum starting air pressure	lesson
	 e) Many other circumstances can make a diesel generator inoperable examples 	
	(1) NSCW not available	1.1.1.1.1.1.1.1.1
	(2) Control switches misaligned	
	(3) Certain routine operations	Barring, rollin

III. LESSON C	DUTLINE:	NOTES
	(4) Alarms indicate unusual circumstances	
	(5) Fuel Oil or Starting Air isolated	
	 f) L.D. must be notified immediately if you suspect problems affecting operability 	
D. Instrumen	tation and Control (Overview)	Covered in detail
1. Cont	rol Room - controls - GEAB	in later lessons
а.	Unit/Parallel	Presentation
	 Unit position: normal - configures governor and generator voltage regulator to supply the 4160V Class IE bus alone 	FSARQ430.1 Commitment
	2) Parallel: configures governor and regulator to supply the 4160V Class IE bus PARALLEL to the RAT	
b,	Start P.B.	
	1) Starts engine	
	2) Flashes generator field	
	3) Local/remote sw in REMOTE	
с.	Stop P.B.	
	1) Stops diesel engine	
	2) Tripe DG breaker	
	3) Shuts down generator	
	4) Local/remote sw in REMOTE	
d.	Speed Control	
	1) Raise P.B., lower P.B.	
	 If not paralleled, SPEED (and frequency) would be changed 	
	3) If paralleled, LOAD would be changed	
	Voltage control	A State State

-

3

9. · · · ·

III. LESSON	JUILINE:	NOTES
0.	Diesel fuel off puss controls	None on diesel
2. Par	alleling (synchron_sing)	-
a.	Only done from control room	Objective 10
b.	No provisions locally for synchronization	
с.	To parallel DG	
	1) Diesel engine running	
	2) DG sync mode selector sw in AUTO	
	3) Breaker sync switch ON	
	4) Unit paralles switch to PARALLEL	
	5) Voltage adjusted	
	Speed adjusted - sync scope slowly in "Fast" direction	
	7) AUTO SYNC PERMISSIVE pressed at 11 o'clock	
	8) Breaker closes at 12 c'clock	
E. Local Co	ntrols (Overview)	Presented as
1. Loc	al Panels	FSAR Q 4301 Commitment
å.	DG1A Generator Panel: PDG-1	
b.	DGIA Engine Control Panel: PDG-2	
с.	DG1B Generator Panel: PDG~3	More detail in
ď.	DG18 Engine Control Panel: PDG-4	later lesson
2. Pre	matic Control Circuits	
1	Air from scarting air system	
Þ,	Regulated to 60 psig	
3. Elec	tric Control Circuits	
a.	125VDC	
b.	"A" Circuit - white light	

N

3

NOTES

0

III. LESSON OUTLINE:

- c. Emergency Start
 - 1) Breakglass
 - 2) Backs up Auto Emergency Start (SIAS)
- d. Emergency Stop
 - 1) Breakglass, pushbutton
 - DG will not restart unless EMERG TRIP RESET pushed
- e. RESET LOCA
 - 1) Makes all trips available
 - 2) Allows normal stop
- F. Automatic Features (Overview)
 - 1. DG Start Signals
 - a. Nanual
 - 1) Remote (Control Room)
 - 2) Local (DG Room)
 - b. Emergency Manual
 - 1) Breakglass
 - 2) DG starts
 - Running in case needed to power 4160V Class 1E bus
 - 4) Majority of DG trips deactivated
 - c. Emergency Auto
 - 1) Safety injection signal
 - 2) DG start
 - Running in case needed to power 4160V Class 1E bus
 - 4) Majority of DG trips deactivated
 - 5) Local/Remote switch in REMOTE
 - d. Loss of Offsite Power

III. LESSON OUTLINE:	NOTES
1) Local/Remote switch in REMOTE	
2) Jads shed, DG starts	
3) DG breaker closes	
4) Loads sequence back to bus	
5) DG alone then supplying bus	
e. Testing	
 Provision mode for testing - starting the diesel generator 	
 Simulated LOPS, simulated SIAS, or LOPS with SIAS 	
2. Diesel Start - breaker closure sequence	
a. Start signals	
 Safety injection signal - both DGs start 	
 Loss of voltage on associated bus, 2/4 detectors (P.T.s) < 70% for 3/4 second 	DG starts/loads
3) Degraded voltage:	DG starts/loads
2/4 detectors (PTs) < 88.5% voltage for 20 seconds	
4) Testing	
b. Output breaker closure permissives:	Commitment SDER 83.006
1) Bus undervoltage (. (4 detector)	
2) RAT feeder breaker OPEN	
 Diesel at rated speed/voltage 	
4) No bus faults	
5) Breaker handswitch in AUTO	
c. Situations which would prevent Auto DG breaker closure when required	
 Engine did not start (no red "running" light) 	

¢.

III. LESSON OUTLINE: NOTES 2) Speed and voltage low (no blue "Ready to Load" light) 3) Breaker from RAT did not open 4) Breaker handswitches in MAN 5) Transfer control switches not in control room position 6) Generator lockouts d. Response of Operations to lockouts 1) Lockouts and relay (to right of generator controls) 2) 86A trip - Trips breaker AND shuts down DG any time - Caused by differencial relay (Phase to phase faults) 3) 868 trip - Trips breaker and shuts down DG (except SI cond.) - Caused by: Overcurrent on any phase Overcurrnet on neutral transform Loss of generator field 4) 86C trip - Trips DG breaker only if DG operating parallel with RAT - Engine continues to run - Caused by: Reverse power End SOER 83.006 Phase imbalance 5. Sequencer and Paralleling Operations (Overview) 1. Sequencing

P

r

11

FSAR 0.430.1 Commitment

III. LESS(UO NO	ILINE:	NOTES
	A: Seq	wencer in Control Building	a na sa
	b. Bla	ckout (loss of offsite power)	Objective 9
	1)	Start DG	
	2)	Shed loads (also lockout preferred source)	
	3)	Connect standby power source to 1E bus	
	4)	Sequence loads on in a preprogrammed sequence to prevent overloading DG	
	c. Saf	ety Injection	
	1)	Power from RAT	
	2)	Diesel starts, runs unloaded	
	2)	SI sequencer loads required equipment	
	d. Bla	ckout, then SI, prior to 30.5 sec.	
	1)	Blackout sequence stopped	DG continues
	2)	SI loads shed	to run
	2)	Sequencer resets	
	4)	SI sequence begins	
	e. Bla	ckout - SI occurring after 30.5 sec.	
	1)	SI loads sequence on as required	
	2)	Using simulator, demonstrate to students:	FSAR Q.430.1 commitment
		a) DG response to SI	
		b) DG response to LOSS OF OFFSITE POWER	
		c) Starting from C.R.	
		d) Synchronizing and paralleling	
		e) Loading	
		f) Unloading	
		a) Shutting down D C	

a i

III. LESSON OUTLINE: NOTES 3) Discuss what would be occurring End FSAR Q 430.1 locally (indications) during the above H. Preview of 12 Operations 1. Procedure for diegel generators: 131VJ-1 2. Procedure for DG fuel oil Transfer: 13146-1 3. Observe no-smoking areas 4. Investigate strong fuel oil smells in room 5. Make it a habit to check fire protection (water) and detection before doing anything in room 6. Note if ventilation appears normal a. ESF fans start and downstairs louvers open when engine runs 7. NSCW - note when in room: a. Flow indications - west side, not to sw cooler - slightly above mid-scale b. NSCW pressure - on NSCW to JW cooler c. Feel pipe for flow 8. Personal protective gears reminder Objective 11 a. Hardhat b. Correct shoes c. Loose sleeves dangerous d. Hearing protection 1) Sound powered phones - When at control panel - Communicating with Control Room 2) Earplugs or muffs - When checking DG away from panel e. Loose jewelry, rings can cause finger amputations

III. LESSON	OUTLINE:	NOTES
I. Industr	y Significant Operating Experience Report	Begin BOER 83.001
1. In	dustry Events	
a.	Plant Hatch EDG engine bearing damage due to inadequate pre-lubrication	Examples of LERs associated with
b.	Dresden 3 EDG start failure due to worn cylinder and dirt in the Air Start System	DGs
2. Re	view of Reported Failure Data	
å.	40% failed/degraded mechanical components	
	1) Moisture/corrosion in the Air Start System	
	2) Pre-lubrication	
	3) Lube oil quality	
b.	42% Failed/degraded electrical/I&C	
	1) Contacts	
	2) Relays	
	3) Cabinats - seals	
с.	18% Personnel	60% of which is
	1) Testing conditions	operator error
	a) Frequency	
	b) Loading	
	c) Duration	
	2) Off-normal operating characteristics	
	3) Changing parameters	
3. VEG	P Remedies	
а.	Operating procedures	
b.	Air Drying System incorporated in design	
с.	Frequent inspection of mech and electrical components	
d.	Frequent sampling and analysis of lube oil	

ď

1

- 54

90

.

1

0

III. LESSON OUTLINE: NOTES e. Knowledgeable personnel present during testing Significance - operability of EDG units is important for safe plant shutdown following a loss of off-site power 25

]

Georgia Power POWER GENERATION DEPARTMENT VOGTLE ELECTRIC GENERATING PLANT

FOR INFORMATION ONLY

TRAINING LESSON PLAN

TITLE:	EMERGENCY DIESEL GENERATOR AUXILIARIES	NUMBER :	NL-LP-11203-02-C
PROGRAM:	OUTSIDE AREA OPERATOR	REVISION	2
AUTHOR:	G.D. STONE	DATE:	12/19/88
APPROVED :	Depenhaner	DATE: /	2-20-28

INSTRUCTUR GUIDELINES:

I. LESSON FORMAT

A. Lecture with visual aids

II. MATERIALS

]

- A. Lesson Flan
- B. Slides and Slide Projector

C. Transparencies and Overhead Projector

- D. Student Handouts
- E. Dry Erase Board and Markers

III. REMARKS

Performance-based instructional units (IUs) are attached to the lesson plan as student handouts. After the lecture instruction should be provided for the attached instructional units. The instructor should be available to answer questions that may arise concerning the IU material. After instruction on the IU, the student will perform, simulate, observe or discuss can identified on the cluster signoff criteria list) the task covered in the instructional unit in the presence of an evaluator.

6

MASTER COPY

Dupe of 9202210490

I. PURPOSE STATEMENT:

UPON COMPLETION OF THIS LESSON, THE STUDENT WILL HAVE AN UNDERSTANDING OF THE FUNCTIONS AND OPERATIONS OF THE FOLLOWING EMERGENCY DIESEL ENGINE AUXILIARY SYSTEMS: AIR START, LUBE OIL, JACKET WATER COOLING, COMBUSTION AIR SUPPLY AND EXHAUST, AND CRANKCASE VENTILATION

II. LIST OF OBJECTIVES:

- 1. List the functions of the Air Start System.
- Make a drawing of one train of the air start system, including the following components as a minimum, and stating the function of each:
 - a. Compressor
 - b. Aftercooler
 - c. Air dryer
 - d. Air receiver
 - e. Barring device supply
 - f. Air supply to engine control panel
 - g. Air start solenoid valves (admission valves)
 - 11. Air start distributor
 - i. Air supply manifolds (on engine)
 - J. Air start valves (at cylinder heads)
- Explain the theoretical principle behind the operation of the air dryers.
- 4. List the power supplies for the:
 - a. Air compressors
 - b. Air dryers

- c. Air start solenoid valves
- 5. State the start/stop permissives of the air compressor and aftercooler fons.
- 6. List the diesel engine permissives associated with the Starting Air System, to include how depletion of the Air Start System is prevented during multiple start sequences.
- List the locations in the diesel building where Starting Air System pressures can be read.

II. LIST OF OBJECTIVES

- Describe the respire of the Starting Air System on receipt of a DG start signal (emergency or normal).
- List the points of the Starting Air System which can be "blown down" to check for or remove moisture.
- State the condition indicated by a hot starting air pipe to a cylinder.
- 11. State the pump supplying lube oil when the emergency diesel engine is:
 - a. Running
 - b. In standby
- State the functions of the Diesel Lube Dil System, including major engine components which are lubricated.
- 13. Draw a sketch of the lube oil keep warm circuit, including as a minimum the following components:
 - a. Lube oil sump tank
 - b. Keep warm heater
 - c. Keep warm suction isolation valve
 - d. Keep warm pump
 - e. Keep warm filter
 - f. Keep warm strainer
- 14. Draw a sketch of the engine lube oil pump circuit, including as a minimum the following components:
 - a. Pump suction foot valve
 - b. Engine L.O. pump
 - c. L.O. cooler

.

- d. Duplex oil filter
- e. Lube cil strainers
- f. Pressure regulators
- 15. State the type and power supplies for the following lube oil components:
 - a. Main oil pump
 - b. Keep ware circulating oil pump
 - c. Lube oil keep ware heater
- 16. For the lube oil cooler, state:
 - a. How cooled
 - b. Type of liquid on tube side
 - c. Type of liquid on shell side

NL-LP-11203-02-C

II. LIST OF OBJECTIVES

- 17. For the lube oil sump, state:
 - a. Number of tanks
 - b. Capacity
- 18. List the start/stop permissives of the lube oil keep warm pump.
- 19. State how lube oil temperature is controlled when the diesel generator is in standby, and when running.
- List the diesel generator trips associated with the Lube Oil System, including the setpoints.
- List the various methods by which lube oil sump level can be measured.
- 22. List the pressure (and delta P) instruments for the Diesel Lube Dil System which can be read in the diesel generator building. State what possible problems an abnormal (HI/LOW) reading indicates.
- State the reason that the turbochargers are prelubricated before a planned engine run.
- 24. State how and where lube oil is added.
- 25. State how the dissel engine would respond to:
 - a. Failure of engine-driven main oil pump
 - b. Inoperable lube oil keep warm pump
 - c. Inoperable lube oil keep warm heater
- 26. State the function of the crankcase ventilation system.
- 27. State the causes and effects of high crankcase pressure.
- 28. Give the start/stop permissives of the crankcase fan.
- 29. State the diesel generator trip associated with the crankcase ventilation system.
- State which type of instrument is on the engine control panel for the crankcase ventilation system, and how it is correctly read.
- 31. State the functions of the Jacket Water Cooling System.

NL-LP-11203-02-C

1.4

II. LIST OF OBJECTIVES

ŧ.

- 32. Make a drawing of the flow paths of the jacket cooling water, including as a minimum the following major components, and stating the function of each:
 - a. Jacket water pump
 - b. Jacket water cooler
 - c. Thermostatic control valve
 - d. Jacket water standpipe
 - e. Lube oil cooler
 - f. Jacket water keep warm pump
 - g. Jacket water keep warm heater
- 33. List the power supplies for the following:
 - a. Jacket water keep warm pump
 b. Jacket water keep warm heater
- 34. List the start/stop permissives for the jacket water keep warm pump and heater.
- 35. List the diesel generator trips associated with the Jacket Water System.
- 36. List the temperature, pressure, and level instrumentation of the Jacket Water System which can be read in the diesel generator room. State what an abnormal (HI/LOW) reading indicates.
- 37. Describe how jacket water temperature is maintained during standby and during diesel engine running operations.
- 38. Describe the purpose for which the following systems interface with the emergency diesel generator system:
 - Demineralized water
 NSCW
- 39. State the functions of the combustion air supply and exhaust systems.
- 40. State the principle of operation of a turbocharger.
- 41. Make a simple drawing of the combustion air supply and exhaust system, including as a minimum:
 - a. Cycoil air intake filter
 - b. Air intake silencers
 - c. Turbochargers (air supply blades)
 - d. Combustion air coolers
 - e. Combustion air supply dampers
 - f. Air intake manifolds
 - g. Exhaust outlet manifolds
 - h. Turbochargers (exhaust blades)
 - 1. Exhaust muffler

· . /

ſ

II. LIST OF OBJECTIVES

]

- State the response of the combustion air supply dampers to a diesel engine trip.
- 43. State the maximum cylinder temperature and the reason for that limit.
- 44. State the consequences of water in the intake manifolds, and how it can be detected.
- 45. State the principles of operation of the cycoil air intake filter, and indicate the importance of proper filter cil leval.

1

÷.

REFERENCES:

13

1. Plant Vogtle Procedures:

13145	"Diesel Generator" (Rey 8)
13146	"Diesel Generator Fuel Oil Transfer System" (Pay 1)
14980	"Diesel Generator Operability Tast"
13427	"4160 VAC 1E Electrical Distribution Guster"
17035.	Annunciator Response Procedures (Pres 7)
17038,	Annunciator Response Procedures (Rev 3)

- Technical Specifications:
 3.8.1 Electrical Power Systems, AC sources
- 3. "Emergency Diesel Generator" Vogtle Training Text Chapter 160
- 4. Plant Manual Chapter 23 (Rev 0)
- 5. F&IDs, Logics and Other Drawings

Piping and Instrument Diagrams 1X4DB170-1 (Rev 21) 1X4DB170-2 (Rev 21)

Vendor Drawings

AX4AK01-27	(Lube Gil)
AX4AK01-26	(Jacket Water)
AX4AK01-29	(Starting Air)
AX4AK01-28	(Fuel Oil)

Control Logic Diagrams:

1X20N107-1	(DG Fue)	Oil	System)	(Rev	6)
1X5DN107-2	(DG Unit	Engi	ne) (Rev	3)	
1X5DN107-3	(Generat	or)	(Rev 2)		

Elementary Diagrams

1X3D-BH-GO3C	(Rev.	2)
1X3D-BH-GO3D	(Rev	1)
1X3D-BH-GOJE	(Rev	2)
1X3D-BH-GO3F	(Rev	2)
1X3D-BH-603G	(Rev	1)
1X3D-BH-GO3H	(Rev	3)
1X3D-BH-6031	(Rev	2)
1X3D-BH-GO3J	(Rev	3)

One Line Diagrams

1X3D-AA-AO1A (Rev 12) 1X3D-AA-KO1A (Rev 7)

6

.

REFERENCES:

đ

SCA.

6. Vendor Manuals

AX4AKQ	1-509	(Rev	(0)
AX4AKO	1-510	(Rev	2)
AX4AKO	1-563	(Rev	6)

7. FSAR: 8.3, 9.5.4, 9.5.5, 9.5.6, 9.5.7, 9.5.8

8. OAP Commitments:

SDER 33.006 "Unavailability of emergency power caused by diesel and breaker unavailability" SDER 83.001 "Diesel generator failures" SER 84.042 "System interdependency oversights results in loss of redundant so equards functions" IEN 85.028 "Partial loss of AC power and diesel generator degradation" IEN 84.069 "Operation of emergency diesel generators" OMR 297 "Grid high voltage and undervoltage trip relays contribute to EDG output breaker lockout" NUREG 1216.000 "Safety evaluation report-related to operability and reliability of emergency diesel generators manufactured by Transamerica DeLaval Inc." (Not an OAP action item, but a training commitment)

9. INSTRUCTIONAL UNITS:

NL-IU-11203-C-001 Respond to Emergency Diesel Generator Lube Oil System Alarms NL-IU-11203-C-002 Respond to Emergency Diesel Generator Jacket Water System Alarms

10. TRANSPARENCIESI

NL-TP-11203-C-001 Starting Air System NL-TP-11203-C-002 Starting Air System, Dne Circuit NL-TP-11203-C-003 Air Compressor, Cutaway Front View NL-TP-11203-C-004 Air Compressor, Cutaway Side View NL-TP-11203-C-005 Air Dryer, Basic Flow Paths NL-TP-11203-C-006 'A' Train DSL GEN Air Start Solenoid Valves NL-TP-11203-C-007 Starting Air Valve NL-TP-11203-C-008 Air Start Distributor Layout NL-TP-11203-C-009 Diesel Alarms Assoc. with Starting Air NL-TP-11203-C-010 Lube Oil Keepwarm Syst. Basic Flowpath NL-TP-11203-C-011 Engine-Driven L.O. Syst. Basic Flowpath NL-TP-11203-C-013 Alarms Associated with Lube Oil System NL-TP-11203-C-014 Major Flowpaths. Jacket Water Syst. NL-TP-11203-C-015 Alarms Associated with Jacket Wtr. Cooling Syst.

REFERENCES:

11. Student Handouts

NL-HO-11203-C-001 Emergency Diesel Generator Auxiliaries

12. Other

1

DCP 88.049 Jacket Water

NL-LP-11203-02-C

ġ

III. LESSON OUTLINE: NOTES I. INTRODUCTION This lesson describes the operation of the enginerelated auxiliary systems of the diesel generator. Auxiliary systems to be presented include: Air Start System Lube Dil System Crankcase Ventilation Jacket Water Cooling System Combustion Air Supply and Exhaust System The fuel oil system, which includes fuel oil transfer. is covered separately as one control of the engine and generator II. PRESENTATION A. Air Start System 1. Purpose Have students refer to 1X4DB170-1. Provide means for quick starting of the diesel Rev 21 upon receipt of a start signal, by injecting high pressure air into the cylinders 2. Functions Objective 1 a. Starting Air Supply - 2 circuits b. Supply engine pneumatic control air NL-TP-11203-C-001 (60 psi) to operate logic for engine protective circuits c. Air for barring device d. Air for rolling engine e. Air for governor booster servomotor Governor oil pressure low 3. Components and Flowpaths initially NL-TP-11203-C-002 a. Compressors (2 per engine) Students must be able to draw 1) Two stage, reciprocating, three cylinder, with intercodier between low and high pressure stages. Lubricated by constant-temp splash NL-TP-11203-C-003 system. Compressors are air-cooled, and intercooler is forced-air cooled by shaft mounted fan NL-TP-11203-C-004 76 scfm, 250 psig

đ

NL-LP-11203-02-C

III. LESSON C	DUTL	INE:	NOTES
	2)	480V Electric motor and belt drive INBI (Train A), INBO (Train B)	Objective 4a
	3)	Function: Provide a method of re- filling the starting air receiver, and sized to refill its receiver from minimum cranking pressure to 250 psig within 30 minutes	Objective 2a
b.	Afte	ercooler (2 per engine)	
	1)	Air-to-air heat exchanger	
	2)	480V electric motor drives famblade	
	3)	Function: Removes heat of compression from high-pressure air being discharged from the compressor	Objective 2b
с,	Air	dryer (2 per engine)	NL-TP-11203-C-005
	1)	Mechanical, refrigeration, 200 scfm, powered from 120V/240V DIST PN INYII (Tr. A) INYD1 (Tr. B)	Objective 4b Similar to house air conditioner
	2)	Runs continuously, independent of air compressor	
	3)	Function: Remove moisture from compressed air discharged from compressor	Objective 2c
d.	Air r	eceivers (2)	
	1)	Vertical, cylindrical, rated for 275 psig	
	2)	Function: Allow at least five starting attempts consecutively without compressor assistance	Objecti∨e 2d
	2)	On normal starts, each attempt is five seconds maximum	
	4)	On emergency starts, starting air is supplied until engine runs, or <150 psig in receivers	
	5)	Engine can still be started down to about 90 psig (normal start)	
2

l.

.

]

.

III. LESSON OUT	LINE:	NOTES
3	5) Spring pressure (plus firing pressure) to close	NOTES
4	 Function: Open to supply starting air to cylinders, from the two starting air supply manifolds 	
i. Ai	r start distributors (2)	Objective 2h
1) One per bank, camshaft-driven	NL-TP-11203-C-008
2	Lubricated by "oil spitter"	
3)	Air supplied to distributor from starting air manifolds (one per bank) when manifold is pressurized	
4)	Air distributed <u>from</u> distributors for piloting open the starting air valves for each cylinder in the correct sequence	
J. Air	start supply manifold	
1)	One per engine bank	
2)	Located at engine heads, in front of injector pumps	
2)	Function: Distribute starting air to the air start valve for each bank cylinder, and to the air start distributor for that bank, when the air start admission valve is open	Objective 2i
4)	If a cylinder's air start valve sticks open, air start manifold gets very hot - paint burning off and piping may turn red. If feeling manifold to check for stuck-open air start valve do not grasp with hand	Objective 10
4. Instrume	ntation, controls and permissives	
a. Air (compressors	
1)	Auto start at 225 psig, decreasing receiver pressure	Objective 5
2)	Auto stop at 250 psig, increasing receiver pressure	

III. LESS	ON OUTLINE:	NOTES
	f. Pressure instruments and alarms	NOTES
	 Receiver pressure, each receiver, gauge at the receiver 	Objective 7
	 Starting air pressure - left bank (eng. control panel) 	5
	 Starting air pressure - right bank (eng. control panel) 	
	 Control air pressure (engine control panel) 	Directly related
	5) DG "LOW PRESS CONTROL AIR" annunciator, 55 psig decr.	NL-TP-11203-C-009
	b) DG "DISABLED, LOW PPESS STARTING AIR", either beader press than 215 psig	
	7) DG "HIGH PRESS STARTING AIR" annunciator, either header 260 psi or greater	
	B) D6 "FAILED TO START" annunciator, engine did not reach 200 rpm within 5 seconds of start signal	
	9) DG "SWITCH NOT IN AUTO" annunciator air compressor or aftercooler switch not in AUTO	Plus several other DG switches
	5. Operations	
	a. Checks made on rounds	
	 Control and starting air bank pressure control air, 58 - 62 psig starting air, 225 - 250 psig 	
	2) Air compressor opparel inconsting	
	3) Air compressor power on	
	 Air receivers and dryers - blowdown until moisture free 	Note - May require indiv. verification from Proc. 11882-1,
	b. DG Operability test	Rev 1

III. LESSON (JUILINE:	NOTES
ς.	 31 day test, can be more often Depending on what month it is, an air receiver is isolated for test start of DG, then reopened During the new DG run (or afterwards), each compressor is checked for autostarting, and checked for amount of time required to recover from 150 to 250 psig. Must be 1/2 hour or less Air dryers - principle of operation 	Also a 184-day test Certain months, neither isolated Proc. 14980-1
	 Moist, compressed air, saturated with water vapor, enters dryer Precooled by outgoing refrigerated air 	
	 Further cooled at air-to-refrigerant heat exchanger. Vapor in the cooled air condensing to water droplets by chilling 	Objective 3 Principle of opera- tion: Chilling to condense moisture
	 At separator, water droplets separate to a drain trap Cooled dry air travels to air-to-air heat exchanger where it takes heat from incoming air 	
d.	Blowing down to remove moisture 1) Places <u>possibles</u> Receiver drains After rooler drain trans	Individual verifi- cation possibly required. See P&ID-170-1
•.	Dryer blowdown 2 Capped drain valves Capped strainer drain Abnormal conditions	UDJECTIVE 9
	 "Hot" starting air manifold after start a) Indicates stuck or leaking air start valve for one or more cylinders b) Can get hot enough to burn paint from pipe 	Objective 10
	Trum pipe	

- 10

(24

 LESSON OUT	LINE	NOTES
		an an an an address and an an an an ann an an an an an an an an
	- supplies lube oil for prelubrication	
	when engine is in standby	Objective lia
	- Fowered from 480V MCC INB0/INBI	Objective 15b
5)	Keep-warm filter (one/engine)	
6)	Keep-warm strainer (one/engine)	
b. Flo	wpath when engine is funning	NL-TP-11203-C-011 Objective 14
1)	Sump tank	main flowpath
	- 2 interconnected, 350 gal tanks/ engines	Objective 17a, +
2)	Pump suction foot valve	
	- Suction pressurized by keep-warm system when in standby	
	- 70 pain relief, protects subton	
	Dibing between sums and fost value	
	during engine "rock back", or	
	reversing, just when engine comes	
	to stop	
3)	Engine-driven main lube oil pump	
	- 500 apm	
	- positive dis lacement, rotary near	
	- driven by engine gearset	Objective 15a
4)	Pressure regulators	
	- 2 in parallel	
	- regulate oil pressure to 55 pain	
	- sensing line from main oil header	
	- regulators receive part of pump	and the second second second
	discharge, divert it to sump to	
	maintain pressure (on main header)	
5)	Lube oil cooler (1 per engine)	NL-TP-11203-C-012
	- lube oil on shell side, 500 one	Objective 144
	being cooled	CODECCIAR IOC
	- Jacket water on tube side, as	Objective 16b
	cooling medium	

Νř.

i M.

0.

-

1

N.

ľ

P

 LESSON	OUTL	.INE:	NOTES
5,	Operatio	Dipstick located at top of right-hand tank (tank nearest the lube oil duplex filters)	(right-hand, as facing the engine from the flywheel end)
	a. Oil	temperature control	
	1)	In standby, temperature is controlled by thermostat setting of keep-warm heater	Objective 19
	2)	When engine is running, temperature controlled by jacket water temperature which is, in turn, controlled by JW temperature control valve	JW - Jacket water
	b. DG T	rips	Some have already been mentions:
	1)	2/3 low lube oil pressure on main lube oil header, 30 psig Trips DG regardless of how started "LOW OIL PRESS SENSOR MALFUNCTION" alarm if 1/3 sensors nave malfunctioned. A second sensor mal- function can cause trip	Listed together here. Objective 20
	2)	"TRIP, HIGH TEMP LUBE DIL" (200 ⁰ F)	
	2)	"TRIP, LOW PRESS TURBO DIL" (15 paig)	
	4)	"TRIP, HIGH TEMP ENGINE BEARING" (228 F) #	#A related trip
		- After a low pressure turbo oil trip, or high temperature trip, the engine is prevented from normal restart for 90 seconds. Engine will still emergency start	
		- The high engine bearing trip can not be reset until maintenance personnel replace some fusible metal rods which are part of the detection system of the main bearings. The D5 will still emergency start	The fusible rods melt at 228°F
		- After low lube oil pressure trip, EMERGENCY TRIP RESET pushbutton must be pressed to allow a restart attempt	

 LESSON	0	UTI	LINE:	NOTES
	6.	Che	cks made on rounds for lube oil system	From Froc 11882-1
		1)	Lube oil temp - IN pos. 19 on thermocouple readout. 140 - 165 ⁰ F (temperature to engine)	Note Proc 13145-1 calls for 142-
		2)	Lube oil temp - OUT pos. 20 on thermo- couple readout, 140 - 165°F (temperature from engine)	170 +
		3)	DG lube oil sump level high or low	
		4)	Lube oil keep-warm pump pressure 30 to 50 psi	
		5)	Lube oil keep-warm strainer 0 - 20 psid	
		6)	Lube oil keep-warm filter 0 - 20 psid	
	d.	Addi	ng oil to sump	Objective 24
		1)	Added to sump in accordance with procedure 13145-1	
		2)	Can be added while running or shut- down	
		3)	Level should increase 1" for each 55 gal.	
		4)	Added to dipstick connection on top of sump	
		5)	Using electric or hand-driven pump	
	e.	Prel	ubricating turbocharger	NL-TP-11203-C-014
		1)	Turbocharger prelubricated prior to planned run	
		2)	One to two minutes before enging start, turbocharger orifice bypass value is opened, providing flow of lube oil to turbocharger bearings	
		3)	Bypasses the drip orifices	
		4)	Bypass valve closed shortly after engine start	

 LESSON	OUTI	INE:	NOTES
	5)	Drip lubrication lubricates turbo bearings using oil supplied by the keep-warm circuit, at a rate low enough not to leak past seals into the turbine section	Objective 23 Thrust bearing has high delta P foross
		Drip bypass supplies pressurized lube oil from the keep-warm circuit to <u>augment</u> drip lubrication to the turbocharger bearings for planned start by providing lube oil at a higher rate	it initially at start
	6)	Number of non-prelubricated starts are tracked	
	f. Asha	rmal operations	
	1)	Failure of engine-driven main oil pump	Objective 25a
		- Engine trips on low lube oil pressure or high bearing temperature (228°F)	Reg: FSAR 9.5.7 table 9.5.7-2
		- Engine inoperable	
	2)	Failure of cooling system - how lube oil is affected	
		- Engine temperatures rise, and rate of rise depends on load	
		 Engine will trip, on a jacket water trip, or possibly lube oil temperature high 	
	2)	Inoperable keep-warm pump	Objective 25b
		- detected by low lube cil temperature alarms	
		- DG declared inoperable, and MAINTENANCE MODE selected until pump can be restored	From 17035-1, 13145-1
	4)	Inoperable lube oil keep-s -m heater	Objective 25c
		- 1/ lube oil temperature drops below 120°F, the DG is started to maintain temperature above 120°F	

111.	LESSON	OUTI	LINE:	NOTES
		51	Tube looks in tube of the total	to the second
			Tube reaks in lube oil heat exchanger	
			 Engine L.O. pressure higher than jacket water pressure 	
			 Fossibly discovered by increasing JW standpipe level, along with decreasing lube oil sump level 	
		6)	From lube oil pressure on <u>engine</u> control panel gauge (engine running)	Objective 22
			- Approx. 55 psig normal; <u>lpw</u> pressure alarm at 40 psig	
			- Lube oil filter clogged	
			- Lupe oil strainer clogged	
			- Lube oil pressure regulator is failed open	
			- Engine driven pump malfunction	
			- Low lube oil level in sump	
			- High oil temperature	
		7)	Low turbocharger oil pressure on dual gauge at engine control panel (left or right) <u>low</u> pressure:	Objective 22
			- Lube oil filter clogged	
			- Lube oil strainer clogged	
			- Lube oil pressure regulators fail open	
			- Engine-driven lube oil pump mal- function	
			- Low lube oil sump level	
			- Turbocharger prelube valve open	
			- High oil temperatures	
		8)	High differential pressure on the lube oil filter diff pressure gauge, engine control panel	Objective 22 1X4DB170-1

0

Ĉ

t

6

 LESSON	001	INE:	NOTES
		- in service lube filter clogged	Alarms at 20 psid
	9)	PDI at engine front gauge panel lube oil filter diff pressure high reading	Objective 22
		- in service lube filter clogged	Same as above
	10)	Hi differential pressure across lube bil keep-warm strainer or filter (keep-warm pump running)	Objective 22
		- clogged filter or strainer	
	11)	High differential pressure across lube strainer	Objective 22
		One in service, one in standby	
		In-service strainer clogged	
	12)	Pump discharge pressure main oil pump	Objective 22
		- Some general causes as low header pressure (6) above	
	13)	Keep-warm pump discharge pressure	Objective 22
		Low: possible pump failure, or hot oil	1X4DB170-1
		High: strainer or filter blocking	
C. Cran	kcase Ven	tilation System	
1.	Purpose		
	Removes	fumes and vapors from the crankcase	
2.	Function		Objective 26
	a. Remo driv	ve vapors and fumes with 2 electrically en fans	
	b. Main redu	tain negative crankcase pressure to ce oil swepare	
	c. Reli	eve gases in event of a crankcase	

3. Components and Flowpaths

.

. .

.

NOTES

III. LESSON OUTLINE:

3) Crankcase explosion

Cause crankcase relief doors to open, relieving pressure, at approx. 1 1/2 psig

Cause of crankcase explosion: Hot spot, such as a hot bearing or other internal components igniting vapors

Engine trips at 3 psig crankcase pressure

If the engine had tripped due to the high crankcase pressure sensor, and you are not sure if it was real or spurious, if the liquid was blown out of the manometer, it was real

- D. Jacket Water Cooling System
 - 1. Purpose

ĥ

ų,

- a. The jacket water system provides enough engine cooling to allow continuous engine operational maximum load
- b. When the engine is shutdown, the jacket water systum provides engine warming to promote engine starting
- 2. Functions
 - a. Engine running, provides cooling water for:
 - 1) Lube cil, at lube cil cooler
 - Combustion air, at 2 combustion air coolers
 - 3) Governor oil, at governor cooler
 - 4) Turbochargers (2)
 - 5) Exhaust jackets
 - 6) Engine, through internal passages
 - 7) Standpipe supports
 - b. Engine in standby, provides heating of the above

Objective 31 NL-TP-11203-C-018

100

 \mathbf{p}

III. LESS	SON	OUT	LINE:	NOTES
	3.	Compone	nts and flowpaths	NL-TP-11203-C-014
		a. Jac	ket water pump	Students to be able
		1)	Single stage, centrifugal	to draw for Objec- tive 32 and give
		2)	Driven by engine, through gearset	functions
		2)	1800 gal/min, 117 ft head, 1470 rpm	
		4)	Function to circulate water through the coolant loop of the diesel innerator during periods of engine ineration to remove heat from the engine	Objective 32a
		b. Ther	mostatic valve Objective 32c	
		1)	Function: Provide capability to bypass the jacket water around the jacket water cooler, for temperature control	
		2)	Full bypass at 152°F or less	
		2)	Full flow at 170°F for greater	
		4)	Inlet of value receives 750 gpm of JW pump	Travel stop attach- ed to TCV 19096 to
		c. Jack	et water cooler	limit travel to con trol max flow
		1)	Function: Provides a means of removing heat from the engine when the engine is operating, transforring heat to NSCW	Objective 32b
		2)	Jacket water on shell side	
		3)	NSCM on tube side, flows continually	
		d. Jack	et water standpipe	Objective 32d
		1)	Functions:	
54			- Allow for volumetric changes due to temperature variations	
			- Provide makeup water	
			- Absorb pump pressure variations	

31

.

 E330N	OUIL	INE:	NOTES
		- Provide positive suction head to the jacket water and keep-warm pumps	
	2)	600 gallons	
	e. Lube	oil cooler	Objective 32e
	1)	Purpose: Provide means of removing heat from engine lube oil	
	2)	Jacket water through tube side, at 900 gpm	
	3)	Lube oil through shell side	
	f. Jacke	et water keep-warm pump	Objective 32f
	1)	Function:	
		 Circulate heated water from the standpipe through the lube oil cooler and engine components, while the engine is in standby, to promote engine starting 	
	2)	Horizontal, centrifugal pump	
	3)	50 gal/min, 50 ft head	
	4)	Powered from 480 VAC MCC INBI/INBD	Objective 33a
	g. Jacke	et water keep-warm heater	Objective 32g
	1)	75 KW immersion heater	
	2)	Function:	
		Heats the water which the keep-warm pump circulates	
	3)	Thermostatically controlled	
	4)	480VAC MCC INBI/INBO	Objective 33b
4.	Instrumen	tation, controls, permissives	
	a. Jacke	t water keep-warm pump permissives	Objective 34
	1)	Stops when engine starts	김 동물을 얻으며 영
	2)	Starts when engine stops	이 그 운영을 물

ļ

 LESSON	0	UTL	INE:	NOTES
			- Power to INBI/INBD not available in SI conditions	
	b.	Jack	et water keep-warm heater permissives	
		1)	Starts if keep-warm pump is running AND thermostat (150°F) demands start	•
		2)	De-energized when pump stops	
	с.	Dies syst	el generator trips associated with JW em	Objective 35
		1)	2/3 high jacket water temperature sensors	
			- 200 ⁰ F water temperature exiting engine	
			- trips DG, regardless of how started	
			- shutdown signal terminated after about 90 seconds, and engine can be restarted if problem was corrected	
		2)	Jacket water pressure low trip	
			- 6 psig or less JW pressure	
			- Trips DG after normal start	Alarms only if
	d.	Annu	nciator alarms	emergency start
		1)	DG LOW TEMP JACKET WATER - IN 140°F	NL-TP-11203-C-015
		2)	DG LOW TEMP JACKET WATER - OUT 140°F	
		3)	DG HI TEMP JACKET WATER - "IN 175"F	
		4)	DG HI TEMP JACKET WATER - OUT 1900F	
		5)	DG TRIP HI TEMP JACKET WATER 2/3 Outlet header temp. detectors 200 F	
		6)	DG LOW PRESS JACKET WATER	
			< 8 psi water pressure being supplied	
		7)	DG TRIP LOW PRESS JACKET WATER	

-

1.4

.

111.	LESSON	OUTL	INE:	NOTES
		3)	Jacket water pressure gauge on engine control panel	HOTES
			- Reads JW pressure downstream of lube oil cooler, being supplied to engine	
			- Low Pressure	
			Engine driven JW pump malfunction Leak in JW system Low level in JW standpipe	
		4)	JW IN, JW OUT thermocouple digital readouts	
			- At engine control panel	
			- At normal range 142°F to 170°F	
			 Low reading can indicate: Keep-warm pump heater or thermostat malfunction 	
			- High reading can indicate: Three-way temperature control valve stuck in bypass Engine driven JW pump malfunction Loss of or insufficient NSCW flow Engine overload Biofouling of NSCW side of jacket water cooler	
		5)	Wide range level instrumentation, and narrow level instrumentation	
			- Low level indicated: Loss of water (leak or drain valve open) Water temperature low	
			- High level indicated: Temperature increase Leak into system (NSCW or lube oil)	
	5, (Operation		
		a. Engin	e normally in standby	
		1)	JW temperature being maintained by cycling on/off of JW KW heater, controlled by thermostat set for 150 ³ F Water being circulated by JW keep-warm	Objective 37 (Partial)
			.5	

.

III. LE	SSON OUT	INE:	A LOB MALINE C
	an a		NOTES
		pump, running concinuously (whi)e in standby)	
	2)	Checked on rounds, every 8 hours	
		 JW IN (thermocouple readout) JW DUT (thermocouple readout) Jacket water keep-warm pump pressure (engine front panel) 	
	3)	NSCW flowing through JW cooler, engine running or in standby. NSCW provides cooling water for the diesel generators	Objective 38
		Engine can run loaded only about 3 minutes without NSCW flow	
	4)	Demineralized water	
		- Provides makeup of water to the standpipe	Objective 38
		 Manual makeup through normally isolated valves 	
		- Chemistry Dept. treats jacket cooling water by adding chemicals to control PH, copper corrosion and ferrous corrosion	
	b. Engi	ne running	
	1)	Checks mode, and readings taken on DG operating log (11885-C)	Including JW checks
	2)	JW temperature is being maintained by thermostatic control valve, by- passing some flow around, and allowing some flow through the JW cooler, to maintain JW temperature	Objective 37 (Partial)
		 152°F and below, valve is fully by- passing 170°F and above, full flow through cooler 	

and the second of

E. Combustion Air Supply and Exhaust

1. Purpose

.

•

- 10 C &

10 ¹

 LESSON	OUTLINE:	NOTES
	Provide filtered, compressed air for combustion, and a means for removal of exhaust products	
2.	Functions of system	Objective 39
	a. Filter air being supplied to engine,	
	b. Silence air being supplied to engine, and exhaust from engine, to minimize noise levels in DG building	
	c. Increase engine efficiency by compressing the air being supplied for combustion, then cooling it through coolers	
	d. Isolate when required on an engine trip, by shutting off the combustion air damper for each bank	
3,	Components and Flowpaths	NL-TP-11203-C-016
	a. Intake air filter	Objective 41 Students draw
	 Removes dust and grit from air before it enters engine 	system flowpath NL-TP-11203-C-017
	Oil bath type ("Cycoil" brand)	
	3) 109 gal of oil in reservoir	
	4) 25,100 scim rated flow	
	5) Located on 2nd level of building	
	b. Intake silencers	
	1) Minimize DG room noises -	
	2) 2 Tubular duct silencers per unit	
	c. Turbochargers	
	 Combination exhaust driven turbine/ centrifugal blower on common shaft 	
	2) Two, one for each bank	
	3) Exhaust turbine function: to cause blower to turn	

H(U)

III. LESSON OUTLINE: NOTES 4) Blower function; to pressurize the fresh, filtered combustion air 5) Water cooled by Jacket Water system 6) Oil lubricated bearings d. Combustion air coclers (internoolers) 1) One for each bank 2) Jacket water cooling medium 3) Removes heat of compression from turbocharged air 4) 900 gpm jacket water flow e. Combustion air supply dampers 1) Two, one per cylinder bank 2) Close on engine trips to irolate combustion air supply (smother) 3) Actuated by cylinder-type pneumatic actuators Air supplied to extend actuators, closing the dampers Spring pressure opens dampers when air is vented from actuator f. Air intake manifold 1) Distribute combustion air supply to each cylinder 2) Runs beneath "catwalks", each bank Exhaust outlet manifolds Q. 1) Exhaust gasses from each cylinder 2) Collect in common pipe and discharge to turbocharger h. Turbochargers 1) Turbine blades driven by gasses exhausting from engine cylinders 18

ġ.

 III. LESSON	OUTLINE:	NOTES
	i. Exhaust silencer (muffler)	
	1) Upstairs in DG building	
	 Conducts heat and exhaust products out of building, plus minimizes DG building noise 	
4.	Instrumentation, Controls, Permissives	
	a. No active controls (Start/Stop switches)	
	b. On engine trip, combustion air dampers close, strangling air supply to engine	
	c. Shut rapidly (less than about 1.5 sec.) on overspeed of engine	Overspeed trip
	d. Shut slowly on other trips due to the path that the control air must take	occurs at 517.5 rpm
	NOTE: Dampers shutting more quickly on over- speed is due to an engine-damaging over- speed incident at Grand Gulf. Slow response of overspeed tripping devices, plus improper recovery from governor maintenance allowed the engine to overspeed on a test start. Modification at VEGP added a second overspeed vent valve to ensure dampers close rapidly on an over- speed trip	From IEN B6.007
	e. Associated DS trips and alarms	
	1) LOW PRESS TURBO OIL - RIGHT	Already covered with
	2) LOW PRESS TURBO OIL - LEFT	lube oil information
	3) TRIP, LOW PRESS TURBO OIL	
	 4) Vibration trip - vibration sensor on each turbocharger, plus two engine vibration sensors 	
	5) Turbacharger associated trips will not trip the DG if DG had been emergency started (SIS, or manual)	
	. Local engine panel	
	1) Combustion air pressure	
	39	

-

6

41

reservoir

NOTES

III. LESSON OUTLINE:

- Mist eliminator pad further removes oil mist
- 2) Importance of proper oil level
 - Level too high, could be from: Water is reservoir Dust displacing oil level
 - Low or no oil level Dust enters engine cylinders and can cause premature wear
 - Slight sludge buildup in bottom of reservoir a part of normal operation
- d. Water in intake manifolds
 - Can damage engine head or cylinder, if water also enters a cylinder, causing cracks, leaks
 - Detected by 1/4" bleed line at bottom of each intake manifold
 - 4 lines total, "one at each engine corner"
 - Provide tell-tale, in case there is water intake manifold
 - Provide small but continual blowdown with engine running
 - 6) Water leaks possible from turbocharger or intercooler

42

III. SUMMARY

- A. Review Objective
- B. Answer Questions

Water is incompressible Objective 44

Date Docklolg

Unit COMMON

NUCLEAR OPERATIONS

Georgia Power

1	91	00	- C	
evis	ion	No 4		
Por	No	£	24	

05-21-90

MANUAL SET

F

903190472

EMERGENCY OPERATING PROCEDURE

Paranter an are and a second

ECA-0.0 LOSS OF ALL AC POWER

PURPOSE

This procedure provides actions to respond to a loss of all AC power.

SYMPTOMS/ENTRY CONDITIONS

The symptoms are:

· Both emergency AC buses are de-energized.

The entry conditions are:

19000-C, E-O REACTOR TRIP OR SAFETY INJECTION, Step 3.

OCI CON ATOLON

1021	19100-C	4			2
					- 01 1
4	CTION/EXPECTED RESPONSE		RESPONSE	NOT OBT	AINED
Ī	MMEDIATE OPERATOR ACTIONS				
	CSESTs should be monthered	DTE			
	Function restoration processimplemented.	dures sh	nould NOT b	enly.	
1. V	erify Reactor Trip:	1.	Manually	trip rea	actor.
•	Reactor trip and bypass breakers - OPEN.				
•	Neutron flux - LOWERING.				
. Ve	rify Turbine Trip:	2.	Manually	trip tur	hine
• •	All turbine stop valves - SHUT.				

VEUI	19100-0	4 3 of 24
	ACTION/EXPECTED RESPONSE	RESPONSE NOT OBTAINED
3.	Check If RCS Is Isolated:	
	a. PRZR PORVs - SHUT.	a. IF PRZR pressure is less than 2315 psig, THEN manually shut PORVs.
	b. Letdown orifice isolation valves - SHUT.	b. Manually shut valves.
	 HV-8149A HV-8149B HV-8149C 	
	c. Letdown isolation valves - SHUT:	c. Manually shut valves.
	 LV-0459 LV-0460 	
•	d. Excess letdown isolation valves - SHUT.	d. Manually shut valves.
	 HV-8153 HV-8154 	
e	. Reactor vessel head vent isolation valves - SHUT:	e. Manually shut valves.
	 HV-8095A HV-8095B HV-8096A HV-8096B 	
f	. RCS sample valves - SHUT:	f. Manually shut valves.
	 HV-3548 HV-3502 HV-3513 HV-3514 HV-3507 HV-3508 	

	VEGF	19100-0	4	10.00	4 of 24				
		ACTION/EXPECTED RESPONSE	RE	SPONSE	NOT OBTAINED				
	4.	Verify AFW Flow - GREATE THAN 570 GPM.	CR 4. Pe	rform t	the following:				
			а.	Ensure	TDAFW pump is				
				• HV-	5106 - OPEN.				
1				e HV-	3009 - OPEN.				
1					- OR -				
1				HV-	3019 - OPEN.				
			b.	Ensure valves	AFW throttle - OPEN.				
		SUBSEQUENT OPERATOR ACTIO	ONS						
			NOTE						
	•	• 91001, EMERGENCY CLASSIFICATION AND IMPLEMENTING PROCEDURE should be implemented at this time							
		 If LOP sequencer has in to reset sequencer by to OFF before normal in closed. 	nitiated, it p placing sequer ncoming feeder	nay be n ncer pow breake	necessary wer switch er can be				
5	. Т А	ry To Restore Power To ny AC Emergency Bus:							
	a	. Start diesel generator	а.	Dispato emerger generat emerger glass s panel b 13145,	th operator to acy start diesel for using the acy start break station at the DG by initiating DIESEL GENERATORS				

0.

ACTION/EXPECTED RESPONSE

LILUU+L

- b. Verify AC emergency bus of started DG automatically energized:
 - DG output breaker -CLOSED.

RESPONSE NOT OBTAINED

44

b. Manually energize AC emergency bus.

> IF bus car. NOT be energized, THEN manually trip diesel generator.

Initiate 13427, 160V AC ELECTRICAL DISTRIBUTION SYSTEM to energize at least one AC emergency bus using any available power supply.

- Either RAT via Normal Incoming Feeder Breaker if off site power available.
- Either diesel generator.
- Either RAT via Emergency Incoming Feeder Breaker if offsite power available.

c. Go to Step 6.

- Check AC emergency busses - AT LEAST ONE ENERGIZED.
- d. Return to procedure and step in effect.
| VEGT | 19100-C | 4 | | 6 of 24 |
|------|--|--|--|---|
| | ACTION/EXPECTED RESP | ONSE | RESPONSE | NOT OBTAINED |
| | | CAUTION | 1999 - Tanan San San San San San San San San San | |
| | When power is restructed actions Step 24. | tored to any AC should continue | emergenc;
starting | y bus,
with |
| | If an SI signal en
actuated during th
to permit manual is
emergency bus. | kists or i1 an S
his procedure, i
loading of equip | I signal
t should
ment on a | is
be reset
an AC |
| | • Two NSCW pumps sho
load on its AC eme
generator cooling. | ould be available
ergency bus to p | e to auto
rovide di | omatically
lesel |
| | Equipment Switches In
PULL-TO-LOCK Position
CCPs
RHR pumps
SI pumps
Containment spray
CCW pumps
ACCW pumps
MDAFW pumps
Containment fan co | olers | | |
| 00 | Theck AC Emergency Eu
Status: | 8 S E S | | |
| a | At least one AC
emergency bus -
ENERGIZED. | a | . Dispat
locall
emerge | ch operator to
y restore AC
mcy busses. |
| | | | WHEN of
is ene
THEN g | rgized,
to Step 24. |
| b | . Go to Step 24. | | Contin | ue with Step 8. |
| | | | | |

波

	ACTION/EXPECTED RESPONSE
8.	Dispatch Operator To Locally Shut Valves To Isolate RCP Seals:
	 PCP seal injection isolation valves outside containment:
	 HV-8103A HV-8103B HV-8103C HV-8103D
	 RCP seal return isolation valve outside containment:
	 HV-8100
	 ACCW return isolation valve outside containment:
	e HV-1975
9.	Verify If CST Is Isolated From Hotwell:
	Dispatch operator to verify hotwell level valve positions:
	a. COND MAKEUP IV-4415B - SHUT.
	b. COND DUMP LV-4415A - SHUT.
10.	Check SG Status:
	a. MSIVs and their bypass valves - SHUT.
	b. MFIVs and BFIVs - SHUT.
	c. Blowdown isolation valves - SHUT.
	d. SG sample isolation valves - SHUT.

Ð

19100-C

VEGP

RESPONSE NOT OBTAINED

4

- a. Shut COND MAKEUP LV-4415B INLET ISO 1305-U4-044.
- b. Shut COND DUMP LV-4415A OUTLET ISO 1305-U4-043.

10. Manually shut valves.

IF valves can NOT be manually shut, THEN locally shut valves.

S. 11

19100-C

VE.G.

RESPONSE NOT OBTAINED

CAUTION

4

A faulted or ruptured SG that is isolated should remain isolated. Steam supply to the TDAFW pump must be maintained from at least one SG.

NOTE

To preserve battery life, operate only one value at a time.

- 11. Check SGs Secondary Pressure Boundaries:
 - Check pressures in all SGs :
 - NO SG PRESSURE LOWERING IN AN UNCONTROLLED MANNER.
 - · NO SG COMPLETELY DEPRESSURIZED.

- Isolate faulted SGs:
 - Shut the TDAFW throttle valves on affected SG(s).
 - HV-5122 (SG 1) .
 - HV-5125 (SG 2) 0
 - HV-5127 (SG 3) .
 - HV-5120 (SG 4)
 - Shut TDAFW pump steam supply valve from affected SC:
 - HV-3009 (SG 1)

-OR-

· Verify SG ARV shut.

IF SG ARV NOT shut, THEN manually shut.

· Locally shut the MDAFW throttle valves on affected SG(s):

•	HV-5139	(SG	1)
Ŷ	HV-5132	(SG	2)
0	HV-5134	(SG	3)
	HV-5137	(SG	45

19100-C

12. Check If SG Tubes are Intact:

VEUL

- Main steamline radiation monitors - NORMAL.
- Condenser air ejector radiation - NORMAL.
- SG sample radiation -NORMAL.
- SG blowdown radiation -NORMAL.

RESPONSE NOT OBTAINED

12. Try to identify ruptured SGs.

WHEN ruptured SGs identified, THEN isolate ruptured SGs:

- Isolate AFW flow by shutting the TDAFW throttle values on affected SG(s):
 - HV-5122 (SG 1)
 - HV-5125 (SG 2)
 HV-5127 (SG 3)
 - HV-5120 (SG 4)
- Shut TDAFW steam supply valve from affected SG:

• HV-3009 (SG 1)

-OR-

- HV-3019 (SG 2)
- WHEN SG pressure is less than 1160 psig, THEN verify SG ARV shut.

IF SG ARV NOT shut, THEM manually shut.

 Locally shut the MDAFW throttle valves on affected SG(s):

	HV-5139	(SG	1)
	HV-5132	(SG	2)
0	HV-5134	(SG	3)
	HV-5137	(SG	4)

TATAN-P

13. Check Intact SG Levels:

YLLL

- a. Narrow range level -GREATER THAN 51 [27% FOR ADVERS# CNMT] .
- b. Control AFW flow to maintain narrow range level between 57 [27% FOR ADVERSE CNMT] and 50%.

RESPONSE NOT OBTAINED

4

- a. Maintain maximum AFW flow until narrow range level GREATER THAN 5% [27% FOR ADVERSE CNMT) in at least one SG.
- b. IF narrow range level in any SG continues to rise in an uncontrolled manner, THEN isolate ruptured SG:
 - · Isolate AFW flow by shutting the TDAFW throttle valves on affected SG(s):

V.

1

- HV-5122 (SG 1) .
- HV-5125 (SG 2) HV-5127 (SG 3) ۵
- . .
- HV-5120 (SG 4)
- · Shut TDAFW pump steam supply valve from affected SG:
 - HV-3009 (SG 1)

-OR-

- HV-3019 (SG 2)
- WHEN SG pressure less than 1160 psig, THEN verify SG ARV shut.

IF SG ARV NOT shut, THEN manually shut.

Locally shut the MDAFW throttle valves on affected SG(s):

	HV-S	51	39	(SG	1)
	HV-S	51	32	(SG	2)
0	HV-S	51	34	(SG	3)
	HV-S	51	37	1	SG	41

19100-C

14. Check DC Bus Loads:

VEGP

C. 14

- a. As time permits and at the discretion of the Unit Shift Supervisor, shed all unnecessary battery loads using Attachment A.
- b. Monitor all battery voltages.
- 15. Check CST Level GREATER 15. Switch to alternate CST.

RESPONSE NOT OBTAINED

4

· Locally open HV-5113.

703445

RESPONSE NOT OBTAINED

CAUTION

- To prevent injection of accumulator nitrogen into the RCS, SG pressure should not be lowered to less than 165 psig.
- SG NARROW range level should be maintained GREATER THAN 5% [27% FOR ADVERSE CNMT] in at least one intact SG. If level cannot be maintained, SG depressurization should be stopped until level is restored in at least one SG.

NOTE

- The SGs should be depressurized at a rapid rate (within the capacity of the TDAFW pump) to minimize RCS inventory loss
- PRZR level may be lost and reactor vessel upper head voiding may occur due to depressurization of the SGs. Depressurization should not be stopped to prevent these occurrences.
- Depressurize Intact SGs To 265 PSIG:
 - a. Check SG narrow range levels - GREATER THAN 51 [271 FOR ADVERSE CNMT] in at least one SG.

a. Perform the following:

- Maintain maximum TDAFW flow until narrow range level GREATER THAN 51 [277 FOR ADVERSE CNMT] in at least one SG.
- 2) WHEN narrow range level GREATER THAN 52 [272 FOR ADVERSE CNMT] in at least one SG, THEN do Steps 16b, c, d, and e.

Continue with Step 17.

 Dispatch operator to locally dump steam using SG ARVs.

3100-0

- c. Check RCS cold leg temperatures - GREATER THAN 280°F [290°F FOR ADVERSE CNMT].
- d. Check SG pressure -LESS THAN 265 PSIG.
- e. Locally control SG ARVs to maintain SG pressures at 265 psig.
- - Intermediate range channels - ZERO OR NEGATIVE STARTUP RATE.
 - Source range channels -ZERO OR NEGATIVE STARTUP RATE.

703445

RESPONSE NOT OBTAINED

- c. Perform the following:
 - 1) Control SG ARVs to stop SG depressurizat on.
 - 2) Continue with Step 17.
- d. WHEN SG pressures lowered to less than 265 psig, THEN do Step 16e.

Continue with Step 17.

17. Check Reactor Subcritical: 17. Control SG ARVs to stop SG depressurization and allow RCS to heat up.

VEG	Р 19100-С	4	14 of 24
	ACTION/EXPECTED RESI	PONSE RESPON	SE NOT OBTAINED
		NOTE	
	Depressurization of SI should be reset equipment on AC eme	f SGs will result in SI to permit menual loadin ergency bus.	actuation. ng of
18.	Check SI Signal Stat	us:	
	a. SI - HAS BEEN ACT	UATED. a. WHEI THEI 20.	N SI actuated. N do Step 18b, 19 and
	b. Reset SI.	Go	to Step 21.
19.	Verify Containment Isolation Phase A -	19. Manuall	ly actuate Phase A.
•	CI-A MLB indicators CORRECT FOR SI.	- IF valu THEN ma shut at each pe	ves do not shut, anually or locally t least one valve at enetration.
		Locally as time	y shut any open valve permits.
20.	Verify Containment Ventilation Isolation	n:	
	Dampers and valves - SHUT:	Manuall Valves.	ly shut dampers and
	* MLB indicators - CORRECT FOR SI.	IF damp manuall THEN 10	pers can <u>NOT</u> be y shut, ocally shut dampers.
1.	Check Containment Radiation - LESS THAN 100 R/HR.	21. Manuall isolati necessa	y shut containment on valves as iry.
		IF valu shut, THEN 10	ves can <u>NOT</u> be manually

L.LUU-L

22. Check If AC Emergency Power Is Restored:

2

.0

9

.....

 Check AC emergency busses - AT LEAST ONE ENERGIZED. RESPONSE NOT OBTAINED

- Continue to control RCS conditions and monitor plant status:
 - Check status of local actions;
 - AC power restoration.
 - RCP seal isolation.
 - DC power supply.
 - Check status of auxiliary boration system:
 - BAST temperature greater than 78°F.

IF temperature less than setpoint, THEN dispatch personnel to reduce BAST boron concentration.

- Check status of spent fuel cooling:
 - Spent fuel pool low level annunciator -NOT ACTUATED.

IF actuated,

THEN dispatch personnel to initiate makeup to the spent fuel pool using 13719, SPENT FUEL POOL COOLING AND PURIFICATION SYSTEM.

d.

4) Return to Step 11.

19100-C.

(NT)

VEGF

103445

23. Restore any DC loads shed in previous actions. Align de-energized inverters per 13431, 120V AC 12 VITAL INSTRUMENTS DISTRIBUTION SYSTEM, prior to closing DC Feeder Breakers.

24. Stabilize SG Pressures:

 Manually control SG ARVs. RESPONSE NOT OBTAINED

4

· Locally control SG ARVs.

ACTION/EXPECTED RESPONSE

19100-0

RESPONSE NOT OBTAINED

CAUTION

4

The loads placed on the energized AC emergency bus should not exceed the capacity of the power source.

25. Verify Following Equipment 25. Manually or locally load Loaded On Energized AC Emergency Bus:

equipment as necessary using the appropriate electrical procedures.

480V AC switchgear:

TRAIL

		Wat de de	
N	A	TRAIN	B

1AB04	18806
1AB05	18807
1AB15	1BB16
INB01	1NB10

UNIT 2

TRAIN A	TRAIN B
2AB04	23806
2AB05	28807
2AB15	28816
2NB01	2NB10

- Essential 480V AC loads:
 - · Battery chargers.
 - Instrumentation and control.
 - Emergency lighting.
 - Communications.
 - Battery room fans.

703445

		Jul 1	a the second second
VLGI	19100-0	4	18 of 24
	ACTION/EXPECTED RESPON	SE RESPONS	SE NOT OBTAINED
26.	Varify NSCW Operation:		
	a. Verify valve alignm OPEN.	ent - a. Manu nece	ally align valves as assary.
	TRAIN A TRAIN	B	
	HV-1806 HV-180 HV-1808 HV-180 HV-1822 HV-182 HV-1830 HV-183	07 09 23 31	
	b. Verify at least two NSCW pumps - RUNNING	b. Manu	ally start pumps.
27.	Select Recovery Procedu	ire:	
	a. Check RCS subcooling monitor indication GREATER THAN 24°F [38°F FOR ADVERSE CN	a. Go t LOSS RECO	0 19102-C, ECA-0.2 OF ALL AC POWER VERY WITH SI REQUIRED.
	b. Check PRZR level - GREATER THAN 9% [36% FOR ADVERSE CNM	b. Go t LOSS RECO	o 19102 C, ECA-0.2 OF ALL AC POWER VERY WITH SI REQUIRED.
	c. Check ECCS equipment HAS NOT ALIGNED FCR INJECTION UPON AC PO RESTORATION.	SI WER C. IF E alig phas THEN ECA- RECO	CCS equipment has ned to injection e, go to 19102-C, 0.2 LOSS OF AC POWER VERY WITH SI REQUIRED.
	1 0		

d. Go to 19101-C. ECA-0.1 LOSS OF ALL AC POWER RECOVERY WITHOUT SI REQUIRED.

END OF PROCEDURE TEXT

- -----

103445

Sheet 1 of 6

DC Loads Which May Be Shed During Loss Of All AC

ATTACHMENT A

4

Breaker Affected Loads 1AD1 1AD1-04 Miscellaneous Radiation Monitors, SSMP,

19100-C

1AD11

SG ARVs, BOP Actuations, Sequencer

1AD11-01 4160 SWGR Control Power 1AD11-02 480 SWGR Instrument Power 1AD11-03 480 SWGR Instrument Power 1AD11-04 480 SWGR Instrument Power 1AD11-05 SG ARV 1AD11-07 SG ARV 1AD11-08 Miscellaneous Sample & CNMT Isolation Valves 1AD11-09 RX Trip SWGR 1AD11-10 HVAC Panel 1AD11-12 SSPS 1AD11-13 13.8 SWGR Control Power 1AD11-14 13.8 SWGR Control Power 1AD11-15 13.8 SWGR Control Power 1AD11-17 Accumulator N2 Isolation 1AD11-20 13.8 SWGR Control Power

03445

VEGP	19100-C		4	20 of 24
			ATTACHMENT A (CONT'D)	Sheet 2 of 6
		DC	Loads Which May Be Shed During Loss Of All AC	
	Breaker		Affected Loads	
	1AD12			
	1AD12-04		RCDT Vent & Pump Discharg Isolation, Instrument Air NSCW Tower Blowdown Isola	e Valves, Letdown CNMT Isclation,
	1AD12-05		Accumulator Test CNMT Isc	lation
	1AD12-07		PSDA Control Power	
	1AD12-08		MSIVs, FWIVs, BFIVs	
	1AD12-10		Isolation Devices	
	1AD12-14		SG Blowdown Isolation, MS SI Actuation Control Powe	IVs, NSCW Acid Pump
	1AD12-16		Letdown Isolation, Isolat	ion Devices
	1AD12-18		Isolation Devices	Tow Delifes

S

VEG	P 19100-C	4 21 of 24
		Sheet 3 of 6
		ATTACHMENT A (CONT'D)
	DC	Loads Which May Be Shed During Loss Of All AC
	Breaker	Affected Loads
	<u>1801</u>	
	1 BD1 - 0 4	Miscellaneous Radiation Monitors, SSMP, BOP Actuations, Sequencer
	1BD11	
	1BD11-01	4160 SWGR Control Power
	1BD11-02	480 SWGR Instrument Power
	1BD11-03	480 SWGR Instrument Power
	1BD11-04	480 SWGR Instrument Power
	1BD11-07	SG ARV
4.5	18D11-08	Miscellaneous Sample & CNMT Isolation Values
	1BD11-09	RX Trip SWGR
	1BD11-10	HVAC Panel Control Power
	1BD11-13	13.8 SWGR Control Power
	1BD11-14	SG ARV
	1BD11-15	13.8 SWGR Control Power
	1BD11-17	Accumulator N2 Isolation
	1BD11-19	13.8 SWGR Control Power
	1BD11-20	13.8 SWGR Control Power

VEGP	19100-C		
	and a second		22 OF 24
		ATTACHMENT A (CONT'D)	Sheet 4 of 6
	DC	Loads Which May Be Shed During Loss Of All AC	
	Breaker	Affected Loads	
	<u>1BD12</u>		
	1BD12-02	Boric Acid to Charging Va	lve from PSDB
	1BD12-04	Instrument Air CNMT Isola Blowdown Isolation	tion, NSCW Tower
	1BD12-05	SSPS	
	1BD12-06	ACCUMULATOR Test Isolatio Isolation, Letdown Isolat Isolation	n, SI Test ion, Excess Letdown
	1BD12-07	PSDB Control Power	
. '	1BD12-08	MSIVs, FWIVs, VFIVs, PRT Primary Water Isolation	Vent Isolation, MRT
	18D12-10	Isolation Devices	*
	1BD12-14	Isolation Devices	
	1BD12-16	Isolation Devices	
	1BD12-17	Boric Acid To Charging Va	Ve From OMCD
	1BD12-20	SG Blowdown Isolation, AFT Valves, RHR Hx Out Positic ESF Supply Fan, MFRV, BFR Isolation	V Pump B Discharge on Indication, DG V, NSCW Acid Pump

Sheet 5 of 6

ATTACHMENT A (CONT'D)

4

DC Loads Which May Be Shed During Loss Of All AC

NOTE

The "C" battery should be carefully conserved to maintain power for Train C AFW control.

Affected Loads

	14	m.	*	
7	C	D	7	
-	-	***	****	

Breaker

VEGP

1CD1-08

19100-C

1CD1-09

RHR HL Suction Isolation

Vital Instrumentation powered from 120V AC Panel 1CY1A:

LI-518
1.1-528
TT 538
LT. 548
LT-503*
PT-526A
PT-536A
TT-432*
LT-461
PT-457
LT-992A
NI-43B

* All instrumentation listed above except SG 3 WR level and RCS Loop 3 Tavg have redundant indications powered from IAYIA or IBYIB. These parameters for Loop 3 can be monitored using equivalent instrumentation powered from IAYIA or IBYIB. SG 2 level can be obtained from NR instruments and RCS Loop 3 temperature can be obtained from WR TC and/or WR TH.

1CD11

1CD11-10

	DC SWGR Space Heaters
1CD11-14	HVAC Panel
1CD11-15	Isolation Devices
1CD11-18	Isolation Devices
1CD11-21	13.8 SWGR Control Power

703445

See.

Sheet 6 of 6

ATTACHMENT A (CONT'D)

DC Loads Which May Be Shed During Loss Of All AC

NOTE

All loads on "D" battery may be shed. "D" battery may be held in reserve to maintain the capability of providing selected vital instrumentation powered from 120V AC Panel 1DY1B if "A" or "B" batteries degrade.

Breaker

19100-C

Affected Loads

1DD1

VELLER

1DD1-04

1DD1-08

1DD1-09

DC SWGR Space Heaters, Isolation Devices, 13.8 SWGR Control Power

RHR HL Suction Isolation

Vital Instrumentat on Powered From 120V AC Pnl 1DY18.

SG I NR	Level			TT-517
SG 2 NR	Leve?			77 207
SG 3 NR	Level			LI=32/
SG 4 NR	Level			L1-537
SG 4 WP	Level			LI-547
SC 1 Dr	Level			LI-504*
SG I FI	essure			PI-516
SG 4 Pr	essure			PT-5464
RCS Loop	p 4 Tau	18		77 1100
PRZR Pr	PASIITA	0		11-442
POWER R	ange NT			21-458
Source	ange ni			NI-44B
Jource !	Range S	UR		NI-31D*
interme	diate R	lange	SUR	NT - 35D
				8.1.10 No. 10 Aut

* All instrumentation listed above except SUR, SG 4 WR level and RCS Loop 4 Tavg have redundant indications powered from LAYLA or IBYLB. These parameters for Loop 4 can be monitored using equivalent inscrumentation powered from LAYLA or IBYLB. SG 4 level can be obtained from NR instruments and RCS Loop 4 temperature can be obtained from WR TC and/or WR TH. Source Range instrumentation powered from LAYLA and LBYLB is available.