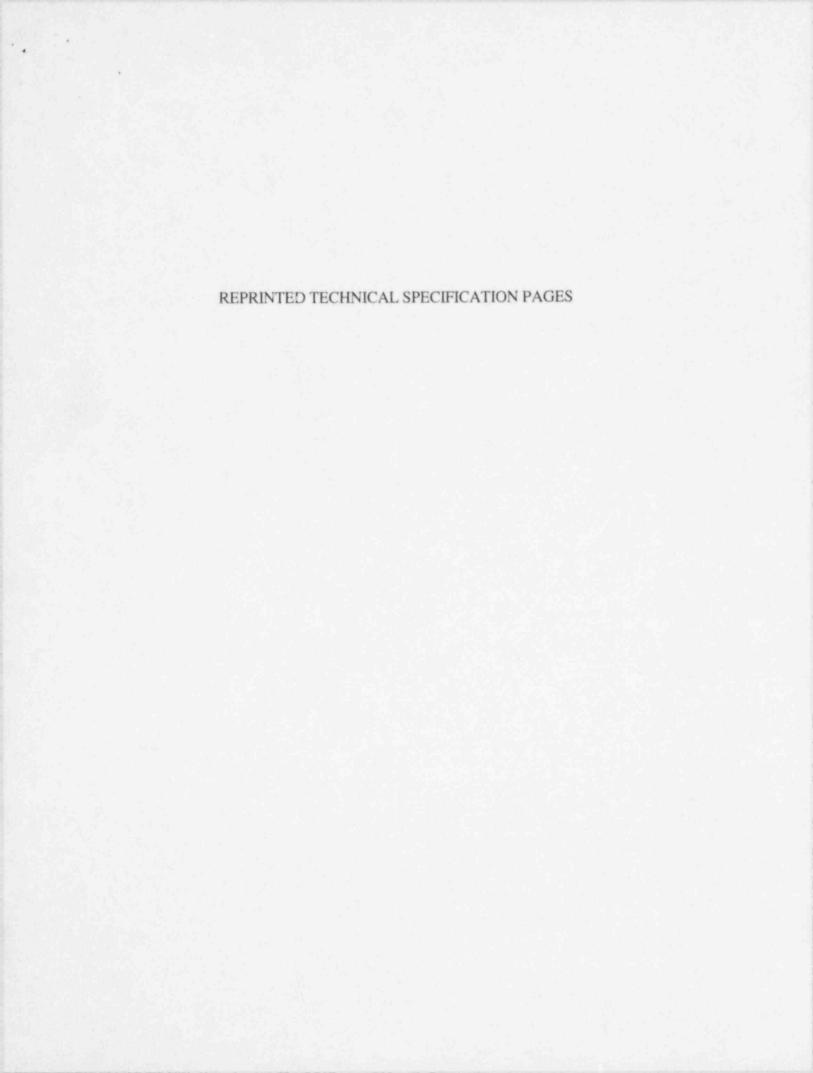
NOTE 4:

TABLE 2.2-1 (Continuec, TABLE NOTATIONS (Continued)


NOTE 3: (Continued)

- Overpower ΔT reactor trip heatup setpoint penalty coefficient as presented in the Core Operating Limits Report for $T > 590.0^{\circ}T$ and $K_A = 0$ for $T \le 590.8^{\circ}T$,
- As defined in Note 1,
- Indicated Tava at RATED THERMAL POWER (Calibration temperature for ΔI instrumentation, < 590.8°F).
- As defined in Note 1.

and f_{2} (ΔI) is a function of the indicated differences between top and bottom detectors of the power-range neutron ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:

- for $q_r q_b$ between the "positive" and "negative" $f_2(\Delta I)$ breakpoints as presented in (i) the Core Operating Limits Report; $f_2(\Delta I) = 0$, where q, and q, are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and q, + q, is total THERMAL POWER in percent of RATED THERMAL POWER;
- for each percent ΔI that the magnitude of $q_r q_b$ is more negative than the $f_2(\Delta I)$ (11)"negative" breakpoint presented in the Core Operating Limits Report, the AT Trip Setpoint shall be automatically reduced by the $f_2(\Delta I)$ "negative" slope presented in the Core Operating Limits Report; and
- for each percent ΔI that magnitude of $q_t q_b$ is more positive than the $f_2(\Delta I)$ "positive" breakpoint presented in the Core Operating Limits Report the AT Trip Setpoint shall be automatically reduced by the $f_2(\Delta I)$ "positive" slope presented in the Core Operating Limits Report.

The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 3.0% (Unit 1) and 3.3% (Unit 2) of Rated Thermal Power.

NOTE 4:

TABLE 2.2-1 (Continued) TABLE NOTATIONS (Continued)

NOTE 3: (Continued)

 K_6 = Overpower ΔT reactor trip heatup setpoint penalty coefficient as presented in the Core Operating Limits Report for T > T" and K_6 = 0 for T \leq T",

T = As defined in Note 1,

T'' = Indicated T_{avg} at RATED THERMAL POWER (Calibration temperature for ΔT instrumentation, ≤ 590.8 °F),

S = As defined in Note 1,

and f_2 (ΔI) is a function of the indicated differences between top and bottom detectors of the power-range neutron ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:

- (i) For $q_t q_b$ between the "positive" and "negative" $f_2(\Delta I)$ breakpoints as presented in the Core Operating Limits Report; $f_2(\Delta I) = 0$, where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and $q_t + q_b$ is tota! THERMAL POWER in percent of RATED THERMAL POWER;
- (ii) For each percent ΔI that the magnitude of $q_t q_b$ is more negative than the $f_2(\Delta I)$ "negative" breakpoint presented in the Core Operating Limits Report, the ΔI Trip Setpoint shall be automatically reduced by the $f_2(\Delta I)$ "negative" slope presented in the Core Operating Limits Report; and
- (iii) For each percent ΔI that the magnitude of q_t q_b is more positive than the $f_2(\Delta I)$ "positive" breakpoint presented in the Core Operating Limits Report, the ΔI Trip Setpoint shall be automatically reduced by the $f_2(\Delta I)$ "positive" slope presented in the Core Operating Limits Report.

The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 3.0% (Unit 1) and 3.3% (Unit 2) of Rated Thermal Power.