APPENDIX B

U.S. NUCLEAR REGULATORY COMMISSION
 REGION I

Report No. 50-458/84-02
Docket No. $\quad 50-458$
License No. CPPR-145 \qquad Category \qquad
Licensee: Gulf States Utilities
P. O. Box 2951

Beaumont, Texas 77704
Facility Name: River Bend, Unit 1
Inspection At: St. Francisville, La.
Inspection Conducted: February 13 - March 9, 1984

Inspectors: f. Surer
for ferry W. Kerch
Lead Reactor Engineer

Approved by:

Inspection Summary:

Inspection on February 13 - March 9, 1984 (Report No. 50-458/84-02)
Areas Inspected: A routine, announced NRC Independent measurements inspection was conducted at the utilities construction site using the NRC Mobile Nondestructive Examination (NDE) laboratory. Selected safety related piping, structural and support weldments fabricated to ASME Code, Section III, Classes 1, 2 and 3 and American Welding Society (AWS) Code D1.1 requirements were inspected. Three regional base inspection personnel assisted by two subcontracted NDE personnel were utilized during this inspection. The inspection involved 422 onsite hours and 178 offsite hours.

Results: One violation was identified concerning weld ripples and densities in radiographs 458/84-02-03.

1. Persons Contacted

Gulf States Utilities (GSU)

* R. E. Bailey, Quality Assurance
* T. C. Crouse, Quality Assurance
* R. Carlyle, Construction
* G. P. Cavis, Engineering
* W. M. Searcy, Quality Assurance
* R. W. Helmick, Engineering
* P. E. Freehill, Superintendent
* J. Curless, Plant Manager
* P. J. Davtel, Licensing

General Electric Company (GE)

* W. A. Konkle, Mechanical, Technical Director
* W. E. Smith, Site Manager

Stone \& Webster Engineering Company (SWEC)

D. Dudley, Construction
C. Cox, Preoperational Testing Operation

* W. I. Clifford, Plany Manager
B. G. Schultz, Plant Manager
* R. L. Spence, Field Quality Control
D. M. Cowart, Field Quality Control
J. R. Kinzer, Security
* W. R. Whitley, Field Quality Control
* D. P. Barry, Security
* J. L. Whedbee, QA, Nondestructive Testing
* J. J. Zullo, Quality Assurance

USNRC

* R. E. Farrell, SRI
* D. D. Chamberlain, SRI
* Denotes attendance at exit meeting on March 8, 1984.

2. Independent Measurements-NRC Nondestructive Examination and Quality Records Review of safety Related Systems:

During the period of February 13-24, 1984 quality records received from Gulf States Utilities were reviewed in the regional office for completeness and compliance with the licensee's FSAR commitment to applicable codes,
standards and specifications. Subsequently, an on-site independent verification inspection was conducted during the weeks of February 27, 1984 thru March 9, 1984 using the NRC Mobile Nondestructive examination (NDE) Laboratory. This inspection was conducted by regional based personnel in conjunction with NRC contract personnel.

The purpose of this examination was to verify the adequacy of the licensee's welding quality control program. This was accomplished by duplicating those examinations required of the licensee by the regulations and evaluating the results. In addition to the required examinations, several other confirmatory examinations designed to verify conformance with material specifications were performed and compared to quality assurance records.

An NRC inspector made a random selection of weldments. These were intended to provide a representative sample of piping systems, components, pipe size, shop and field weldments fabricated to AWS and ASME Class 1, 2 and 3 Codes. The items selected were previously accepted by the licensee based on Vender shop and onsite QA/QC records.

2.1 Material Traceability

Forty safety related piping system document packages containing the following documents were reviewed:
-- Material Certification, including weld wire
-- NDE records
-- Fabrication records
-- Drawings (isometrics)
-- Physical Properties
-- Procedures
These documents were reviewed to verify that NRC requirements and licensee's commitments to industry codes and standards were met and were selected from the systems and welds listed in the attached table.
Results: No violations were identified.

2.2 Nondestructive examinations:

Examinations were performed using NRC procedures with addenda written specifically for compliance to the licensee's PSAR commitment to the ASME B\&PV Code, for onsite fabrication. The intent was to duplicate to the extent practicable the techniques and methods of the original examinations.

The followirg examinations were performed:

Radiographic Examination:

Forty-four welds were examined by radiography using an Iridium 192 source per NRC Independent Measurements Procedure, NDE-5, Rev.0,
addenda RB1-5-1. Welds examined were ASME Classes 1 and 2 .
Results: All examinations were acceptable.

Liquid Penetrant Examination:

 NDE-9, Rev.0, and addenda RB1-9-1 "Samples examined included ASME Class 1 and 2.
Results: All examinations were acceptable.

Visual Examinations:

Forty-nine weldments and adjacent base metal were visually inspected for weld reinforcement, overall workmanship and surface condition per NRC Procedure NDE 14, Rev. 0.
Results: All areas inspected were acceptable.
Magnetic Particle Examination:
Nineteen safety related pipe and structural weldmants were examined per NRC procedure NDE-6, Rev. 0 and addendum RB1-6-1. Samples included ASME and AWS Code welds.
Results: All areas inspected were acceptable.
Ultrasonic Examination (Anchor Bolts):
Thirty-four anchor bolts were examined ultrasonically, for length only per NRC-18, Rev. 0.
Results: All areas inspected were acceptable.
Concrete Test:
3 areas of safety related structural concrete were tested to determine the compressive strength using the Windsor Probe Test Kit
Results: All areas examined were within acceptable limits.

Hardness Measurements:

5 welds were checked for hardness (base material adjacent to welds) using the Equo-tip hardness tester per NRC procedure NDE-12, Revision 0. Hardness numbers were converted to Brinnell values and the approximate tensile strengths were determined by use of conversion tables.
Results: All areas inspected were acceptable.

Thickness Measurement:

The pipe walls of twenty-three weldments and adjacent pipe material were ultrasonically examined per NRC procedure NDE-11, Rev. 0 using a

NORTEC NDT thickness gauge. Minimum wall thickness was determined by using ASTM standard pipe sizes and nominal thickness chart.
Results: All areas inspected were acceptable.

Ferrite Measurements:

Ten stainless steel pipe welds were checked for delta ferrite content using a Type II Ferrite Indicator (Severn Gauge).
Results: All measurements were within acceptable limits.

Alloy Analyzer:

Six pipe welds and adjacent base materials were examined using a Texas Nuclear Alloy Analyzer. A qualitative chemical analysis was made.
r.sults: Materials examined were within 2% of analysis indicated on corresponding certified mill test reports.
3. Additional Confirmatory examination

3.1 Visual:

Eighty-nine, fillet, partial and full penetration weldments were visually inspected per AWS D.1.1 and site visual inspection procedure (QAD-9.12-RB). Welds were inspected for size, surface and workmanship. Areas included structural supports, pipe hangers and electrical cable tray hangers. hesults: All areas examined were acceptable.

3.2 Welder Qualification Records

Thirteen Welder qualification records were reviewed for compliance to ASME section IX. Results: No violations were identified.

3.3 Review of NDE Procedures

The following procedures were reviewed for compliance to the licensee's FSAR commitment to applicable code's, standards and specifications.

Stone and Webster
Radiography: $Q A D-9,41$ Rev. $0, A$ and B
Liquid Penetrant: QAD-9.31 Rev. A QAD-9.32 Rev. 0

Magnetic Particle: QA[-9.61 Rev. A
QAD-9.63 Rev. 0

```
Ultrasonic: QAD-9.52 Rev. O and B
Radiographic Acceptance Standards (ASME III)
    1974 Edition (NB 5000)
Visual: QAD-9.12-RB Rev. A
ITT Grinnel
Radiography: RT-R+P-3-1
    RTA-1-1
Magnetic Particle: MT-M+P-1-1
    MTA-1-0
Liquid Penetrant: PT-PTP-1-0
    PTA-2
```

Associated Pipe and Engineering
Radiography: RT-SPPQ-401-Rev. 4
Liquid Penetrant: PT-SPPQ-201-Rev. 0 addenda R 1
Results: No vio itions were identified.
4. Review of Licensee's Radiographs:

A random sample of the licensee' safety related radiographs were reviewed to verify the adequacy of the radiographic and QA/QC programs. Radiographs were reviewed for technique, tilm quality and weld integrity. Seventy nine complete packages of radiographs were reviewed. Results: No violations were identified.
5. Review of Vendor Radiographs:

A random sample of the vendor radiographs were reviewed to verify the adequacy of the vendor radiographic program and the licensee's vendor acceptance program. Forty complete radiographic film packages from vendors were reviewed.
Results: Unresolved item \#1
Weld B21-G001-RA017X. The radiographic film for this weld identifies the weld as "A" and the date on film is August 22, 1977. The radiographic report identifies the weld as H and the date on report was August 19, 1977. Also, this radiographic report has white outs. This item is unresolved pending clarification of the identification of the proper film and documentation (458/84-02-01).

Unresolved item \#2

Radiographic reports used at this facility are preprinted forms with series of blocks that identifies common indications that radiographic film interpreters generally encounters. Proper
radiographic interpretation requires each discontinuity to be identified, characterize and its location on the radiographic report recorded. The licensee's radiographic film interpreters are not properly interpreting the radiographs, they are checking blocks and are not recording the locations of all the discontinuities that have been identified by check blocks on the radiographic report. Subsequent reviewers are unable to determine what indications have been identified and dispositioned on the radiograpinic report.

This is a unresolved item pending licensee review and action (458/84-02-02).

One Violation:
Review of vendor radiographs for Weld B21-G001/893001, item 16, disclosed weld ripple images in the radiographs that could mask or be confused with rejectable discontinuities. Therefore, the radiographs do not comply with the requirements of ASME Code Section V, paragraph $T-221.2$. Further, it was disclosed that three inspected and accepted class 1 vendor welds, Weld B21-G001-RA-01-9X(F), Weld 5177J/193001/603 SN39-7, and Weld 5377J/193001/601SN35-7, exceeded the plus 30% density requirements of ASME Code Section V, paragraph T-263.2.

The failure to comply with the requirments imposed by 10 CFR 50.55 a for constructions of the reactor coolant pressure boundary in accordance with the applicable codes is a violation (458/84-02-03).
6. Verification of NDE Personnel Qualifications

The NRC inspector made a random selection of nine NDE personnel records of past and present employees. Records were reviewed and accepted based on SNT-TC-1A and ASME criteria.
Results: All areas examined were acceptable per applicable criteria.
7. Attachments:

Attachment No. 1 is a tabulation of the specific items examined and results.
Attachment No. 2 is a list of specific radiographs reviewad.

8. Exit interview

An exit interview was held on March 8, 1984, with members of the licensee's staff. The inspector summarized the scope and findings of this inspection. No written material was provided to the licensee during this inspection.
I NDEPENDENT MEASUREMENT PROGRAM

ATTACHMENT NO												
WELD NUMBER LINF/ISO	CLASS	SIZE.	DATE	THICK	M. T.	R.T.	ALLOY ANAL.	P. T.	HARDNESS	VISUAL	FERRITE	REMARKS
$\begin{aligned} & \text { FW-A } 4 \\ & \text { RCS-800-A } \end{aligned}$	1	$20^{\prime \prime}$	ACC	ACC	N/A	ACC	ACC	ACC	ACC	ACC	ACC	
$\begin{aligned} & \text { FW-A5 } \\ & \text { RCS-800-A } \end{aligned}$	1	$20^{\prime \prime}$	ACC	ACC	N/A	ACC	ACC	ACC	ACC	ACC	ACC	
$\begin{aligned} & \text { SW-A } \\ & \text { RCS-800-A } \end{aligned}$	1	$20^{\prime \prime}$	ACC	ACC	N/A	N/A	ACC	ACC	ACC	ACC	ACC	
$\begin{aligned} & \mathrm{FW}-811 \\ & \mathrm{RCS}-300-\mathrm{C} \end{aligned}$	1	$20^{\prime \prime}$	ACC	N/A	N/A	ACC	ACC	N/A	N/A	ACC	ACC	
$\begin{aligned} & \text { FW-B12 } \\ & \text { RCS- } 900-\mathrm{C} \end{aligned}$	1	$10^{\prime \prime}$	ACC	ACC	N/A	ACC	ACC	ACC	ACC	ACC	ACC	
$\begin{aligned} & \text { SW-A } \\ & \text { RCS-900-C } \end{aligned}$	1	$16^{\prime \prime}$	ACC	ACC	N/A	ACC	ACC	ACC	ACC	ACC	ACC	
$\begin{aligned} & \text { FW-003 } \\ & \text { WCS-001-A } \end{aligned}$	1	$4^{\prime \prime}$	ACC	ACC	ACC	ACC	N/A	N/A	N/A	ACC	N/A	
$\begin{aligned} & W-002 \\ & W C S-171-A \end{aligned}$	2	$4^{\prime \prime}$	ACC	N/A	N/A	ACC	N/A	N/A	N/A	ACC	N/A	
$\begin{aligned} & F W-001-R 3 \\ & \text { FWS-038-A } \end{aligned}$	1	$12^{\prime \prime}$	ACC	N/A	ACC	ACC	N/A	N/A	N/A	ACC	N/A	
$\begin{aligned} & F W-003 \\ & \text { FWS-038-A } \end{aligned}$	1	$12^{\prime \prime}$	ACC	ACC	ACC	ACC	N/A	N/A	N/A	ACC	N/A	
$\begin{aligned} & \text { SW-1 } \\ & \text { FWS-038-A } \end{aligned}$	1	12"	ACC	N/A	ACC	ACC	N/A	N/A	N/A	ACC	N/A	
$\begin{aligned} & F W-001 \\ & \text { FWS-039-A } \end{aligned}$	1	$20^{\prime \prime}$	ACC	ACC	N/A	N/A	N/A	N/A	N/A	ACC	N/A	
FW-004 FWS-063-A	2	$20^{\prime \prime}$	ACC	ACC	N/A	ACC	N/A	N/A	N/A	ACC	N/A	

ATTACHMENT NO												aqge 5 of 7
WELD NUMBER LINE/ISO	CLASS	SIZE	DATE	THICK	M. T.	R.T.	ALLOY ANAL.	P.T.	HARDNESS	VISUAL	FERRITE	REMARKS
FW-001 BZ71.JR	AinS	N/A	N/A	N/A	ACC	N/A	N/A	N/A	N/A	ACC	N/A	Structural Steel for Pipe Supports
$\begin{aligned} & \mathrm{FW}-003 \\ & \mathrm{BZ} 71 . \mathrm{JR} \end{aligned}$	AWS	N/A	N/A	N/A	ACC	N/A	N/A	N/A	/ $/$ A	ACC	N/A	Structural Steel for Pipe Supports
$\begin{aligned} & \mathrm{FW}-004 \\ & \mathrm{BZ71JR} \end{aligned}$	AWS	N/A	N/A	N/A	ACC	N/A	N/A	N/A	N/A	ACC	N/A	Structural Steel for Pipe Supportsi
$\begin{aligned} & \mathrm{FW}-001 \\ & B Z 970 \mathrm{P} \end{aligned}$	AWS	N/A	ACC	N/A	Structural Steel for Pipe Supports							
$\begin{aligned} & \text { FW-002 } \\ & \text { BZ970P } \end{aligned}$	AWS	N/A	ACC	N/A	Structural Steel for Pipe Supports							
$\begin{aligned} & \text { FW-003 } \\ & \text { BZ970P } \end{aligned}$	AWS	N/A	ACC	N/A	Structural Steel for Pipe Supports							
$\begin{aligned} & \text { FW-001 } \\ & \text { BZ9701. } \end{aligned}$	AWS	N/A	ACC	N/A	Structural Steel for Pipe Supportsi							
$\begin{aligned} & \text { FW-002 } \\ & \text { BZ970L } \end{aligned}$	AWS	N/A	ACC	N/A	Structural Steel for Pipe Supports!							
$\begin{aligned} & \text { FW-003 } \\ & \text { BZ9701. } \end{aligned}$	AWS	N/A	ACC	N/A	Structural Steel for Pipe Supports							
$\begin{aligned} & \text { FW-004 } \\ & \text { BZ970L } \end{aligned}$	AWS	N/A	ACC	N/A	Structural Steel for Pipe Supportsi							
$12210-E E-34-$ LN1B0012	AWS	ACC	illet Welds	N/A	N/A	N/A	N/A	N/A	N/A	ACC	N/A	Structural Steel for Pipe Supports
LN1B0013	AWS	ACC	illet Welds	N/A	N/A	N/A	N/A	N/A	N/A	ACC	N/A	Structural Steel for Pipe Supports
LN1B0014	AWS	ACC	Filiet Welds	N/A	N/A	N/A	N/A	N/A	N/A	ACC	N/A	Structural Steel for Pipe Supports
$12210-E E-340$ 001 A	AWS	ACC	illet Welds	N/A	N/A	N/A	N/A	N/A	N/A	ACC	N/A	Structural Steel for Pipe Supports

TACHMENT N												age 6 of 7
WELD NUMBER LINE/ISO	I) CLASS	SIZE	DATE	THICK	M. T.	R.T.	ALLOY ANAL.	P.T.	HARDNESS	VISUAL	FERRITE	REMARKS
$\begin{aligned} & 12210-E E-340 \\ & 002 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -\mathrm{AA-4} \\ & \text { \|1 Fillet } \\ & \text { 1 Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structura: Steel Ior Etectrical forpports Sup						
12210-EE-340 003 A	$\begin{aligned} & \text {-AA-4 } \\ & \text { II Fillet } \\ & \text { If Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						
12210-EE-340 004 A	$\begin{aligned} & \text { AA-4 } \\ & \text { ! Fillet } \\ & \text { ! } \text { Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						
12210-EE-340 005 A	$\begin{aligned} & \text { AA-4 } \\ & \text { \| Fillet } \\ & \text { II WeIds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Stee for Electrical Supports						
$12210-E E-340$ 006 F	$\begin{aligned} & -\mathrm{AA-4} \\ & \text { If Fillet } \\ & 11 \text { Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						
$12210-E E-340$ 007 F	$-A A-4$ if Fillet if Welds	ACC	N/A	N/A	N/A	N / A	N/A	N/A	N/A	ACC	N/A	Structural Stee I for Electrical Supports
12210-EE-340 008 AS	$\begin{aligned} & -\mathrm{AA}-4 \\ & \text { If Fillet } \\ & \text { II Welds } \end{aligned}$	ACC	N/A	ACC	N/A	I Structural Steel \| for Electrival 1 Supports						
12210-EE-340 009 AS	$\begin{aligned} & \text {-AA-4 } \\ & \text { If Fillet } \\ & \text { if Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						
12210-EE-340 010AS	$\begin{aligned} & \text { AA-4 } \\ & \text { \|1 Fillet } \\ & \text { If Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						
12210-EE-340 011 AS	$\begin{aligned} & \text {-AA-4 } \\ & \text { II Fillet } \\ & \text { if Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						
$12210-E E-340$ 012	$\begin{aligned} & \text { AA-4 } \\ & \text { if Fillet } \\ & \text { II Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						
$12210-E E-340$ 013	$\begin{aligned} & \text {-AA-4 } \\ & \text { \|\| Filiet } \\ & \text { ! Welds } \end{aligned}$	ACC	N/A	ACC	N/A	Structural Steel for Electrical I Supports						
$12210-E E-340$ $014 A S$	$\begin{aligned} & \text {-AA-4 } \\ & \text { II Fillet } \\ & \text { II Welds } \end{aligned}$	ACC	N/A	ACC	N/A	\| Structural Steel I for Electrical 1 Supports						
$\begin{aligned} & \text { 12210-EE-340 } \\ & 091 \mathrm{AS} \end{aligned}$	$\begin{aligned} & \text {-AA-4 } \\ & \text { if Filiet } \\ & \text { II Welds } \end{aligned}$	ACC	N/A	N/A	N/A	N/A	N/A	N / A	N/A	ACC	N/A	\| Structural Steel \| for Electrical L Supports

ATTACHMENT NO, 1 Page 7 of												
WELD NUMBER LINE/ISO	CLASS	SIZE	DATE	THICK	M. T.	R. T.	ALLOY ANAL.	P.T.	HARDNESS	VISUAL	FERRITE	REMARKS
$12210-E E-340$ 042 A	-4 Fillet Welds	ACC	N/A	ACC	N/A	Structural Steel for Electrical Supports						

C - CRACK	LF - LACK FUSION	A - ARTIFACTS
SL - SLAG	IP - INADEQUATE PENETRATION	S - SURFACE
P - POROSITY	LI - LINEAR INDICATION	CC - CONCAVITY
T - TUNGSTEN	UI - UNFUSED INSERT	CV - CONVEXITY

| SYSTEM/LINE | WELD ID | ACC | REJ] | | \|SL| | P | | TILF | IIP | | | A) | | CCI | CVI | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L-FWS-038-1 | FW003 | x | | | | | | | | | | x | | | | |
| L-FWS-038-1 | SW-1 | x | | | | | | | | | | | | | | |
| FWS-035-A | FW001 | x | | | | | | | | | | X | | | | |
| FWS-035-A | SW2 | x | | | | | | | | | | X | | | | |
| MSS-700-A | FWB2 | x | | | | | | | | | | | | | | |
| MSS-800-A | FWC1 | x | | | | | | | | | | X | | | | |
| MSS-800-A | FWCO20 | x | | | | | | | | | | | | | | |
| MSS-800-A | FWC8 | \times | | | | | | | | | | x | | | | |
| MSS-800-A | SW-A | x | | | | | | | | | | | | | | |
| CSH-041-A | FW004 | \times | | | | | | | | | | x | | | | |
| CSH-020-A | FW002 | x | | | | | X | | | | | X | | | | |
| CSH-041-A | SW-1 | x | | | | | | | | | | | | | | |
| CSL-043-A | SW-2 | x | | | | | | | | | | x | | | | |
| CSL-015-A | SW-1 | x | | | | | | | | | | | | | | |
| RHS-054-A | FW002 | x | | | | | | | | | | | | | | |
| RHS -053-C | SW-6 | x | | | | | | | | | | X | | | | |
| ICS-19-1 | SW-1 | x | | | | | | | | | | | | | | |
| RHS-19-1 | FW004 | x | | | | | | | | | | | | | | |
| RHS-19-1 | SW-1 | x | | | | | | | | | | x | | | | |
| RHS-158-2 | SW-6 | x | | | | | | | | | | | | | | |
| RCS-900-C | SW-B | x | | | | | | | | | | | | | | Pullman Kellogg |
| RCS-900-C | SW-C | x | | | | | | | | | | | | | | pullman Kellogg |
| RCS-900-C | SW-D | x | | | | | | | | | | | | | | pullman Kellogg |
| MSS-800-A | SW-AR1 | x | | | | | | | | | | | | | | ITT Grinnell |
| 1-RHS-004-071-2 | FW004R1 | X | | | | | X | | | | | X | | X | | Q8ا -24 |

C - CRACK	LF - LACK FUSION	A - ARTIFACTS
SL - SLAG	IP - INADEQUATE PENETRATION	S - SURFACE
P - POROSITY	LI - LINEAR INDICATION	CC - CONCAVITY
T - TUNGSTEN	UI - UNFUSED INSERT	$C V$ - CONVEXITY

| SYSTEM/LINE | WELD 10 | ACC | REJ | | SLI | P1 | | ILF | IP | | \|UI| | A | | \|CC | CVI | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-RHS-010-019-1 | FW003 | x | | | | | | | | | | X | | | | |
| 1-RHS-010-158-2 | FW001 | x | | | | | | | | | | x | | X | | |
| 1-WCS-004-001-1 | FW002 | x | | | | | | | | | | | | | | |
| 1-WCS-004-001-1 | FW003 | x | | | | | | | | | | X | | | | |
| 1-FWS-063A-2 | FW004 | \times | | | | | | | | | | | | | | |
| 1-FWS-047-1 | FW002 | x | | | | | | | | | | | | | | |
| 1-FWS-039-1 | FW001 | x | | | | x | | | | | | x | | | | (11) \& 16 |
| 1-FWS-038-1 | $F_{W 001}^{R 3}$ | \times | | | | | x | | | | | x | | x | | cee $20-30$ |
| 1-RHS-010-153-2 | FW002 | x | | | | | | | | | | | | | | |
| 1-ICS-006-007-1 | FW005 | \times | | | | | | | | | | x | | | | |
| 1-ICS-006-17-2 | FW002 | x | | | | | | | | | | * | | | | |
| 1-RHS-018-055-2 | FW003 | \times | | | | | | | | | | x | | | | |
| 1-CSL-020-012-2 | $\text { FW001 }{ }^{\text {R3 }}$ | x | | | | | X | | | | | | | | | |
| 1-CSL-010-009-2 | FW004A | \times | | | | x | | | | | | x | | X | | ccolo - 25 |
| 1-CSH-010-45-1 | FW001 | \times | | | | x | | | | | | x | | | | |
| 1-CSL-010-043-1 | FW004 | \times | | | | \times | | | | | | X | | | | Check Surface |
| 1-CSL-004-015-2 | FW002 | x | | | | | | | | | | | | | | |
| 1-CSL-004-005-2 | FW001A | \times | | | | | | | | | | \times | | | | |
| 1-RCS-800-A | FWA4 | x | | | | | | | | | | | | | | |
| 1-RCS-800-A | FWA5 | x | | | | | | | | | | x | | | | |
| 1-RCS-800-A | SW-A | x | | | | | | | | | | | | | | Pullman Kellogg |
| RCS $=900-\mathrm{C}$ | FWB11 | x | | | | | | | | | | | | | | |
| RCS -900-C | FWB12 | x | | | | | | | | | | | | | | |
| RCS -900-C | SW-A | x | | | | | | | | | | | | | | Pullman Kellogg |
| WCS-004-171-2 | FW004 | x | | | | X | | | | | | X | | | | |

C - CRACK	LF - LACK FUSION	A - ARTIFACTS
SL - SLAG	IP - INADEQUATE PENETRATION	S - SURFACE
P - POROSITY	LI - LINEAR INDICATION	CC - CONCAVITY
T - TUNGSTEN	UI - UNFUSED INSERT	CV - CONVEXITY

SYSTEM/LINE	WELD IO	ACC	REJ		SLI		T/LF	$\|I P\|$		UI)	A)		CCI	CV\|	COMMENTS
															Pullman
RCS-800-A	SW-C	x													Kellog
															Pullman
RCS-800-A	SW-D	x													Kellog
															Pullman
MSS-800-A	SW-BRI	\times													Kellog
RHS -071-A	FW004R1	\times											x	X	202 - 3 立
CSL-005-D	FW004	x											x		
CSL-043-B	FW002	\times			X								X		$\begin{aligned} & \text { Intermittent } \\ & \text { a32 } \end{aligned}$
1-CSL-004-005-2															
1-CSL-004-005-2	FW001A	x													
1-CSH-150-030-2	FW0018	x													
1-CSH-010-041-1	FW004RI	x													
1-CSL-004-005-2	Fwoola	x													
1-CSH-150-030-2	FW011B	\times													
1 1-CSH-014-142-2	FW007	x													
1-CSH-014-4-2	FW008	\times													
1-CNS-004-18-2	FW002	x													
1-CNS-004-18-2	FW002	\times													
1-CSH-014-004-2	FW001A														(Area 14)
1-CSL-010-043-1	FW008	X													
1-CSL-010-043-1	FW007	x													
1-DTM-002-097-1	FW001B	X													
1-DTM-003-072-1	FW004	x													
$1-C S L-010-043-1$	FW002 ${ }^{\text {R1 }}$														Area 32\% has
1-CSL-010-043-1	FW002														linear indic.
1-FWR-008-003-4	FW006	x													
1-DER-008-286-2	FW002	\times													
	R6														
1-CSL-010-042-2	FW007A	X													
															Density was
1-FWS-020-001-4	FW001														marginal.
1-FWS-020-007-4	FW008A	x													

Attachment 2

C - CRACK	LF - LACK FUSION	A - ARTIFACTS
SL - SLAG	IP - INADEQUATE PENETRATION	S - SURFACE
P - POROSITY	LI - LINEAR INDICATION	$C C$ - CONCAVITY
T - TUNGSTEN	UI - UNFUSED INSERT	$C V ~-~ C O N V E X I T Y ~$

| SYSTEM/LINE | WELD ID | ACC | REJ | | SLI | P) | | \|LF| | | LII | UI | A | S | \|CC| | CVI | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-RHS-020-001-2 | FW021 | x | | | | | | | | | | | | | | |
| 1-RHS-020-001-2 | FW021 | x | | | | | | | | | | | | | | |
| 1-RHS-158-A | FW009 | \times | | | | | | | | | | | | | | |
| 1-RHS-154-B | FW001A | X | | | | | | | | | | | | | | |
| APE-B336G001 | | | | | | | | | | | | | | | | |
| G006-A-006-1 | B | x | | | | | | | | | | | | | | |
| 6006-A-006-1 | C | K | | | | | | | | | | | | | | |
| G006-A-006-1 | 0 | \times | | | | | | | | | | | | | | |
| G005-A-005-1 | H | x | | | | | | | | | | | | | | |
| G005-A-005-1 | G | x | | | | | | | | | | | | | | |
| G005-A-005-1 | A | \times | | | | | | | | | | | | | | |
| G005-A-005-1 | F | x | | | | | | | | | | | | | | |
| G005-A-005-1 | E | x | | | | | | | | | | | | | | |
| G012-A-012-1 | A | x | | | | | | | | | | | | | | |
| 6012-A-012-1 | C | \times | | | | | | | | | | | | | | |
| G010-A-010-1 | CC | x | | | | | | | | | | | | | | |
| 6010-A-010-1 | 88 | x | | | | | | | | | | | | | | |
| G010-A-010-1 | AA | \times | | | | | | | | | | | | | | |
| Q910-A-1 55\#13A | W-A | x | | | | | | | | | | | | | | |
| G010-A-1 SSH13A | W-B | x | | | | | | | | | | | | | | |
| 6010-A-1 5SA13A | W-C | x | | | | | | | | | | | | | | |
| G010-A-1 SSH13B | A | x | | | | | | | | | | | | | | |
| G010-A-1 SSH13B | 8 | x | | | | | | | | | | | | | | |
| G010-A-1 SSH138 | C | x | | | | | | | | | | | | | | |
| G010-A-1 SSH14 | A | x | | | | | | | | | | | | | | |
| G010-A-1 SS\#14 | B | $\times 1$ | | | | | 1 | | | | | | | | | |

C - CRACK	LF - LACK FUSION	A - ARTIFACTS
SL - SLAG	IP - INADEQUATE PENETRATION	S - SURFACE
P - POROSITY	LI - LINEAR INDICATION	CC - CONCAVITY
T - TUNGSTEN	UI - UNFUSED INSERT	CV - CONVEXITY

| SYSTEM/LINE | WELD ID | ACC | REJ | | SLI | P | \|LF| | $\|I P\|$ | LI\|UI| | A) | S | CC | CV | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G010-A-1 SS\#22 | A | X | | | | | | | | | | | | |
| G010-A-1 SS\#22 | B | X | | | | | | | | | | | | |
| ITT Grinnel1 | | | | | | | | | i | | | | | |
| B21-6001 | | | | | | | | | 1 | | | | | |
| RA-01-9X | F | | X | | | V | | | | | | | | Density |
| 893001 Item 16 | 16 | | X | | | V | | | | | | | | Stringer Beads |
| Taylor Forge | | | | | | | | | | | | | | |
| RA019X | $\begin{aligned} & 3378 \mathrm{RI} \\ & \mathrm{~B} 0212 \\ & \hline \end{aligned}$ | X | | | | | | | | | | | | |
| RAO19x | ARI | X | | | | | | | | | | | | |
| RA-01-9X | B | X | | | | | | | | | | | | |
| RA-01-9X | C | x | | | | | | | | | | | | |
| RA-01-9x | D | X | | | | | | | | | | | | |
| RA-01-4X | B | X | | | | | | | | | | | | |
| $R A-01-9 x$ | A | X | | | | | | | 1 | | | | | |
| 5177J-193001 | Taylor | | x | | | | | | 1 | | | | | Density |
| 6015N33-7 | Forge | | | | | | | | | | | | | |
| $R A-01-7 x$ | BRI | X | | | | | | | | | | | | |
| RA017X | A | | film | dat | e | on | 1 m 8 | /22 | 177. | | | | | Unresolved |
| RA017X | H | | fte
 Repo | | | | rts)
 Repo | $\left.\right\|_{\text {prt }} 1$ | $\begin{gathered} 1 \\ 8 / 19 / 77 \end{gathered}$ | 7.1 | | | | Unresolved |
| $R A=01-9 x$ | E | $\times 1$ | | | | | | | 1 | | | | | |
| $5377 \mathrm{~J} / 193001$ | Taylor | | X | | | | 1 | | | | | | | Density |
| 6015 N35-7 | Forge | | | | | | | | | | | | | |
| RA01-14X | $\begin{aligned} & \text { BVZA21 } \\ & 121377 \\ & \hline \end{aligned}$ | | | | | | | | | | | | | |
| RA01-14X | $A B C D$ | X | | | | | | | | | | | | |

C - CRACK	LF - LACK FUSION	A - ARTIFACTS
SL - SLAG	IP - INADEQUATE PENETRATION	S - SURFACE
P - POROSITY	LI - LINEAR INDICATION	CC - CONCAVITY
T - TUNGSTEN	UI - UNFUSED INSERT	$C V$ - CONVEXITY

SYSTEM/LINE	WELD ID	\|ACC]	REJ	C\|SLI	P1	TILF	IP	LI	UII	A	S	CC	CV	COMMENTS
ITT Grinnell						I								
B21-G001														
RA-01-14X	BVA	$\times 1$				1								

