	ondon	OP-001	-E-	Date: 5/31/84	1 of 1
PROJEC	CT OPEL MING	Title:	EACH BOTTOM	DECONTAMIN	1.00

JUN C5 1984

-

PEACH BOTTOM RECIRCULATION LINE CAN-DECON OPERATING PROCEDURES

STATION SPECIAL PROCEDURE

No.___694____

8406210285 840615 PDR ADOCK 05000277 PDR PDR

..

OP-0	01 TITLE	TABLE OF	REVISION -E-	S/31/84	PAGE 1 of 5
02-00	01	CONTENTS	-2-	5/31/04	1 OF 5
			RECIRCULATION L ERATING PROCEDU		
SECT	ION				PAGE
1.0	Purpo	ose			1 - 1
2.0	Refei	rences			1 - 2
3.0	Prere	equisites			1 - 3
4.0	the second se	utions			1 - 1
5.0		oment and/or Tools			1 - 2
6.0	Opera	ation			1 - 97
	6.1	Applicability			1
	6.2	Definitions		1. 19 C	2
	6.3	Receipt and Uncrat		nt	
	6.4	Mechanical Install			4
	6.5	Temporary Shieldin			12
	6.6	Electrical Connect			14
	6.8	Preparation with ! Pre-operational Te			18
	6.9	Preparation of Dec		vetem	24
	6.10	Pre-operational Te			28
	6.11	Pre-operational Te	sting Discharg	e Side	30
	6.12	Discharge Side Dec	contamination		32
	6.13				37
	6.14				42
	6.15				44
	6.16	Decontamination Sy	stem Dismantli	ng	45
	6.17	Crating & Shipping			46
	6.18	Chemical & Radioch		ing	74
	6.19		5		74
	6.20	Analysis			75
	6.21	Laboratory Familia			78
	6.22	Analytical Equipme			79
	6.23	Preparation of Ana		ons	80
	6.24	Sampling Method &			82
	6.25	Analytical Procedu			82
	6.26	Decontamination Te	the state and the second s	Careford and the second s	91
1	6.27			Monitoring	92
£	6.28				93
	6.29	Personnel Dose & C	contamination C	ontrol	97

SECTION OD	TITLE		REVISION	EFFECTIVE DATE	PAGE
OP-001		ABLE OF ONTENTS	-E-	5/31/84	2 of 5
		TABLE OF CONTE	NTS (CONTINU	ED)	
SECTION					PAGE
APPENDI	X A -	ABNORMAL OPERATIONS			97-A
		 Loss of Temper Loss of Circu Loss of System Loss of System Loss of Electric Slurry Hose File 	lating Pump m Fluid rical Power	51	
APPENDI	х в -	Pipe Isolation			97-B
APPENDI	хс-	Special Hose Couplin	ng Assembly 1	Instructions	97-C
APPENDI	X D -	As Built Flange Join Data Sheet	nt Arrangemen	nt	97-D

...

OP-001	TITLE	TABLE OF	AEVISION	S/31/84	PAGE 3 of 5
		CONTENTS			5015
			TABLES		
Table N	0.				PAGE
6	.1	Valve Status: Dec Static Reference	contamination E State	quipment,	47
6	.2	Miscellaneous Deco Status, Static I			52
6	.3	Valve Status: Sk: Static Reference	ld LN-4 Electri State	c Heater,	53
6	.4	Valve Status: Ter Static Reference			54
6	.4.2	RHR Return Loop Data Sheet	'A' Joint Arra	ngement	56
6	.4.3	RHR Return Loop Data Sheet	'B' 'oint Arra	ngement	57
6	.4.4	RHR - Suction Jo Data Sheet	oint Arrangemen	e	58
6	.4.5	Nozzle N6A Joint Data Sheet	Arrangement		59
	.4.6	Data Sheet	Arrangement		60
6	.4.7	RWCU Joint Arran Data Sheet	igement		61
6	.4.8	N2A-N2B Manifold Data Sheet	and Jumper Jo	int Arrange	ment 62
.6	.4.9	NIA-NIB Joint An	rangement - Da	ta Sheet	64

SECTION OD-001	THE OF	REVISION	EFFECTIVE DATE	PAGE
OP-001	TABLE OF CONTENTS	-E-	5/31/84	4 of 5
		TABLES (Continu	(ed)	
Table N	<u>o.</u>			PAGE
6	.5 Statich Installed Decontamination	Valves, Suctio Status	n Side	65
6	.6 Station Installed Decontamination	Valves, Discha Status	rge Side	66
6	.7 Reagent Addition (Check Sheet		67
6	.8 Sampling Check She	eet		68
6	9 Radiation Monitor:	ing Check Sheet		69
6	.10 Operations Log She	eet		70
6.	.11 Chemistry Monitori	ing Schedule		72
6.	12 Resin Slurry Log			71
6.	13 Final Radiation Su	irvey		73

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
OP-001	TABLE OF CONTENTS	- E-	5/31/84	5 of 5

FIGURES

FIGURE		PAGE
3.1	Decontamination Cut Identification	1-A
6.2	Recirculation, RWCU and RHR Survey Points	97-E
6.3	Field Run Hose and Flange Joint Arrangement	97-F
.4.1-6.	4.9 - Flange Joint Arrangement	97-0

DRAWINGS

NUMBER	TITLE	PAGE
3603-A-5009-1	Flow Diagram Heater System	97-1
3603-C-5000-1	Decontamination Equipment Flow Diagram	97-1
3838-B-5001-1	Discharge Side Decontamination	97-J
3838-B-5001-2	Discharge Side Decontamination	97-K
3838-B-5001-3	Suction Side Decontamination	97-L
3838-B-5001-4	Suction Side Decontamination	97-M
3838-L-2000-1	General Equipment Location	97-N

See. 1

London	Section: OP-001	Revision: -E-	Effective . Date: 5/31/84	Page:
Nuclear PROJECT OPERATING PROCEDURES	Title:	.0 Purpose		D-24

1.0 PURPOSE

The purpose of this document is to provide a set of operating procedures and guidelines for the operation of the Decontamination System as applied to the Peach Bottom Unit 2 Recirculation Piping System including segments of the RHR and RWCU systems.

It is the intent of this procedure to outline the various steps required to decontaminate these systems.

CHANGES THAT DO NOT CHANGE THE INTENT OF THIS PROCEDURE MAY BE MADE PROVIDED THAT THE CHANGES ARE DOCUMENTED ON THIS PROCEDURE AND INITIALED BY A MEMBER OF SHIFT SUPERVISION AND ONE MEMBER OF THE PORC TO SIGNIFY APPROVAL. THE PORC MEMBER APPROVAL MAY BE GRANTED BY TELEPHONE. ANY CHANGE TO THIS PROCEDURE WHICH CHANGES ITS INTENT MUST BE REVIEWED AND APPROVED BY THE PORC PRIOR TO IMPLEMENTATION.

London	Section: OP-001	Revision: =E=	Effective Date: 5/31/84	Page:
PROJECT OPERATING PROCEDURES	Title:	2.0 Reference	ces	D-24
2.0 REFERENCES				
M-351-19		SID Nuclear	Boiler, Un	it 2
M-361-SH1		GID Residua System Unit	1 Heat Remo	val
M-15	,	Unit 2	cation Radwaste Bu ation 135'-	
M-354-17	P&ID Reactor Water Cleanu System			
M-20		quipment Lo Reactor and Unit 2	cation Radwaste Bu	uilding
SK11084	G	E, Piping I Recirculation	sometric of on System	
112D3501	G	E, Manifold		
137C8201	G	E, Pipe Cap	Assembly	
137C8200	G	E, Plate		
137C6202	G	E, Decontam	ination Fitt	ings
3603-C-5000		N-1, Deconta Flow Diagram	amination Eq	uipment
3603-A-5009		N-4/5 Flow I Heater Syste	Diagrams em System Di	agram
3603-B-5001		N-1, Deconta Equipment In Interconnect		uipment

SECTION	teris	REVISION EFFECTIVE DATE PAGE
2.0	References	-E- 5/31/84 2 of 2
	3603-A-5005-1	LN-4, Decontamination Equipment Equipment Installation Interconnections
	3838-B-5000-1	Flow Diagram: Decontamination of Reactor Recirculation Pumps Suction and Discharge
	3838-L-2000-1	General Equipment Location
	3838-B-5001-1 3838-B-5001-2 3838-B-5001-3 3838-B-5001-4	Flow Diagrams: Decontamination of Reactor Recirculation Pumps Suction and Discharge
	112-E-3502 796-E-601	Decon Cuts within Drywell Routing of Decon Hose
	Pigures 6.4.1 - 6.4.9	Flange Joint Arrangements
	Figure 6.2	Field Run Hose and Flang Configuration.

1

London	Section: OP-001	Revision: -E-	Effective Date: 5/31/84	Page:
Nuclear PROJECT OPERATING PROCEDURES	Title:	.0 Prerequis	ites	D-24

PREREQUISITES

3.0

1.5

 The preparation of plant interface locations (valved out/tagged, drained/vented, blanked/adapted, unplugged etc.) with appropriate blocking permits (as required by LN drawing 3838-B-5001-1).

SSV

2) Sufficient concrate shield blocks available to construct temporary shielding as per LN Drawing 3603-B-5001-1. (Drawing specifies a concrete shielding thickness of 2 ft.)

PECo Const.

 Appropriate piping isolated by CB&I. (See Appendix B).

GE

4) 20,000 Gallons condensate transfer available to fill system.

SSV

SSV

1

5) Drains available to accept system volume at end of decontamination. Total system volume will be drained to the torus or radwaste.

	TITLE		REVISION	EFFECTIVE DATE	PAGE
3.0	Prerequi	sites	-E-	5/31/84	of 3
	6)	Preoperation equipment be	al testing an fore shipping	nd inspectio g to Peach B	on of LN ottom
				LNE	c
	7)	Radiation wo	rk permits av	vailable	
				GE	<u>e l'anté</u>
	8)	HP coverage	needed for al	l decon ope	rations.
	9)	All chemica available	ls listed	in Section	6.19 are
	10)	All chemical Section 6.20	l analysis e are availabl	Quipment our	tlined in
	11)			LN	
	11,	Check meter h	batteries and	calibration	n
				LN	
	12)	Remove insul isolation val	ation aroun ves (MO-43A,	d recirculat 43B, 53A, 5	tion line 53B)
				GE	
	13)	Preparations temporary 1 hose outsid Section 6. <u>6.4.9</u>	ines and hos e drywell f	rom traff	tect all ic. See
				GE/I	

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
3.0	Prerequisites	-E-	5/31/84	3 of 3

ŧ

recontion

...

 Verify installation of plastic over drywell openings to torus.

GE/LN

15) Verify that no more than 50% of the insulation on piping and equipment has been removed.

GE/LN

16) Recirculation suction and recirculation discharge valves are to be closed but not back seated.

Unit 2 Operator

London	Section: OP-001	Revision: -E-	Effective Date: 5/31/84	Page: 1 of 1
PROJECT OPERATING PROCEDURES	Title:	0 Precautio	ns	D-24

4.0 1

...

PRECAUTIONS

- During equipment installation, all possible hardware connections are to be installed prior to drywell entry.
- 2) During performance of all phases of decontamination project work, the control room extension 4223 or 4423 shall be notified of any significant leakage from plant systems or decontamination equipment.

:

3) Do not backsod recru, valves

	Lond	2 17 7 R	Section: OP-001	Revision: -E-	Effective Date: 5/31/84	Page:
Nuclear PROJECT OPERATING PROCEDURES		PERATING Title:				
						D-24
5.0 E	QUIPME	INT AND/OR	TOOLS			
5.1	LN	decontami	nation equip	pment consis	ting of:	
	1)		exchange ski			
	2)			ment skid (p	ump skid)	
	3)			eating skids		
5.2	Sup			ent and mi		s supplies
	1)	40 cu. ft	. of IRN-77	and 40 cu.	ft. of IRN	-78
	2)	4 stainle	ess steel co	prrosion coup	pons	
	3)		LND-101A			
	4)	10 gallor	ns of 35% so	olution of hy	vdrazine in	water.
	5)		Rodine 31A			
	6)	miscellan	eous instal	lation tools	s and equips	nent -
	7)	two fabr		l pieces for		
	8)	10 - 2" b	all valves,	16 - 3" bal	l valves	
	9)	2" hose a	nd fittings	, total leng	th of 350 f	ft
				, total leng		
				ings, total		200 ft
				, total leng		

:

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
5.0	Equipment and/or Tools	- E-	5/31/84	2 of 2

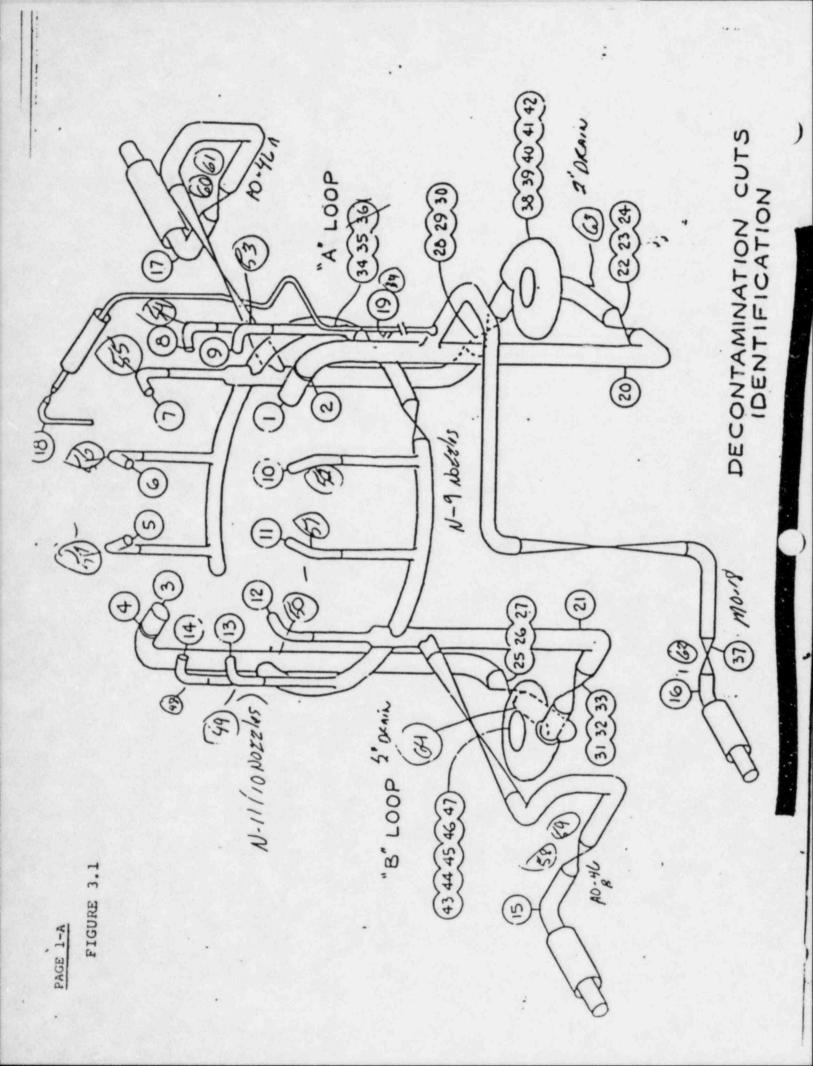
13) 2- 3" 150# crosses

- 14) spray shields and collection pans for each flanged joint in the flow path. Catch pans to be set beneath the 43 and 53 isolation valves. (CB & I supplied.
- 15) hydrostatic test pump

. .

- 16) An overhead crane (or forklift truck) with a 6 ton rat ng. If a forklift truck is used, the required for length is 8-1/2'.
- 17) Eberline E-530N equipped with a HP220A tungsten shielded detector (supplied and calibrated by LN)
- 18) One Gamma meter having a range of 0 to 1000 R/hr (supplied by Station.)
- 19) Two Gamma meters having a range of 0 to 2 R/hr (supplied by Station).
- Station approved plastic sheeting to cover torus vents. (PECo supplied).

London	Section:	Revision:	Effective Date:	Page:
	OP-001	-E-	5/31/84	1 of 97
Nuclear	Title:			1
PROJECT OPERATING PROCEDURES		6.0 Procedu	res	D-24


6.0 PROCEDURES

6.1 Applicability

The decontamination effort, for Peach Bottom Unit #2 Recirculation System, is a one time application prior to replacing the piping in this system and segments of piping in associated systems.

The decontamination system is based on the "all cut scenerio" which eliminates any process fluid from entering the vessel. Prior to cutting the various segments of pipe, it is assumed all preliminary preparations have been carried out as outlined in the Peach Bottom Unit 2 Recirculation Piping Decontamination Activity Schedule, latest revision. The procedure, therefore, is based on receiving the recirculation system in a drained depressurized state with all the appropriate adapters on the cut pipe ends.

The procedure outlines the tasks required to setup the decontamination flow path, to operate and monitor the decontamination equipment and process and to dismantle the temporary connections and components used during this effort.

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	2 of 97

6.2 DEFINITIONS

...

The following terminology is frequently used in the text of the procedure:

Decontamination Connection

"Decontamination connection" is a spool piece fabricated to mate with LN 3"-150# flanged hose fitting and the 4"-900# extended flanges located at the suction of both A and B recirculation pumps. These connections are used as tie-in locations for the decontamination equipment.

Suction Side Decontamination

"Suction side decontamination" is the portion of the recirculation piping system which consists of the piping from the closed recirculation pump discharge valve, through the pump and pump suction isolation valve through the recirculation piping up to the safe ends through the 3" hose connected to the safe end on the suction line of the other loop. Two segments of additional piping, (RHR supply and RWCU suction), are included in this flow path as well (refer to Drawing 3838-5001-3 and 3838-B-5001-4).

Discharge Side Decontamination

"Discharge side decontamination" is the portion of the recirculation piping system which consists of the piping from the closed recirculation pump suction valves, through the pump and pump discharge piping, header and the risers through the temporary decon manifold header to the risers, header and discharge piping of the other loop. Two segments of additional piping, (RHR return loop A and RHR return loop B), are included in this flow path as well (refer to Drawing 3838-B-5001-1 and 3838-B-5001-2).

ECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	3 of 97

Decontamination System

This terminology refers to all piping, valves, components etc. that will be in contact with the CAN-DECON reagent, therefore the decontamination system consists of the recirculation discharge and suction, RHR return, RHR supply and RWCU lines and the decontamination equipment as well.

6.3 Receipt and Uncrating of LN Equipment

a) Inspect exterior of all shipping crates for possible damage. Verify arrival of all containers.

LNEC

- b) Inspect all paperwork pertaining to shipment including:
 - 1) health physics surveys

HP

2) invoice - if any damage is apparent at this time or if crates were not tarped during shipment, ensure it is noted on invoice before acceptance. Have driver sign and, if possible, photograph apparent damage. Notify LN offices immediately.

LNEC

c) Lift equipment from truck with overhead crane or forklift truck.

LNEC

 d) If necessary, temporarily store equipment, accompanying hoses and fittings indoors, if possible, leaving a minimum of 2'-0" on all sides for uncrating.

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	4 of 97
				1.01

 e) HP coverage required. Uncrate skids by removing all lag bolts from top section. Lift top off and out of way. (Check sides of top marked for proper alignment during re-assembly.)

LNEC

HP

f) Depending on equipment availability and overhead clearance, skids can either be lifted out of crate through top (<u>must</u> use lifting lugs, located on top of pump skid and on bottom of IX skid), or can remove sides by removing lag bolts on corners and bottom (mark all joints before removing to insure proper realignment during re-assembly).

LNEC

g) Lift skids off bottom of crates. Lower wheels on skids by tightening nuts on wheel channels located on corners of skids and roll into place as per 3838-L-2000-1.

LNEC

h) Receipt inspection.

(

LNEC/GEQA

6.4 Mechanical Installation and Interconnections

THIS SECTION DEFINES THE FIELD RUN PIPE, HOSE SUPPORT AND JOINT CONNECTION ARRANGEMENT FOR THE TEMPORARY DECONTAMINATION FLOW PATH. SEE THE FOLLOWING REFERENCES AND INSTRUCTIONS REQUIRED TO COMPLETE STEPS 6.4 a) THROUGH 6.4 v). CONTINUOUS HP COVERAGE IS REQUIRED.

1) Drawings 3603-B-5001-1 and 3603-A-5005-1

6.0 Procedures -E- 5/31/84 5	of 97

- 2) Figure 6.3 Routing of Decon Hose.
- 3) Figure 6.4.1, Flange Joint General Arrangement.
- 4) Figure 6.4.2, RHR Return Loop 'A' Joint Arrangement
- 5) Figure 6.4.3, RHR Return Loop 'B' Joint Arrangement
- 6) Figure 6.4.4, RHR Suction Joint Arrangement.
- 7) Figure 6.4.5, Nozzle N6A Joint Arrangement
- 8) Figure 6.4.6, Nozzle N6B Joint Arrangement
- 9) Figure 6.4.7, RWCU Joint Arrangement
- 10) Figure 6.4.8, N2A N2B Manifold and Jumper Joint Arrangement.
- 11) Figure 6.4.9, NIA, NIB Joint Arrangement.
- 12) Figure 6.4.10, Flange Joint Bolt-Up Data Sheet.

ALL HOSE IS FIELD RUN, HOSE CLAMP/RESTRAINTS SHALL BE UTILIZED TO BEAR THE UNSUPPORTED LOAD OF WATER FILLED HOSE, THE CLAMPS/RESTRAINTS SHALL BE SECURED TO AVAILABLE RAILINGS, GRATES, STEEL BEAMS OR NON-VITAL PIPE.

HOSE PROTECTORS SHALL BE INSTALLED AT LOCATIONS WHERE CONTINUOUS PERSONNEL ACCESS OVER INSTALLED HOSE IS NECESSARY. LIMITED ACCESS LOCATIONS WILL NOT BE COVERED WITH HOSE PROTECTORS. HOSE WILL BE RUN HORIZONTIALLY WHERE POSSIBLE, TO PERMIT LAYING FLANGED JOINTS ON THE DECK. LEAK COLLECTION PANS WILL BE INSTALLED UNDER FLANGED JOINTS WHERE POSSIBLE. SPLASH SHIELDS WILL BE PLACED OVER EACH FLANGED HOSE CONNECTION JOINT. LEAK COLLECTION PANS WILL BE PLACED UNDER THE 43A/B AND 53A/B MO VALVES.

....

CTION		TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	- E-	5/31/84	6 of 97
	A PLA DA ATT	SE CRADLES WILL BE INS N OVER SHARP EDGES. PLANGE JOINT BOLT-UP DA ANGE CONNECTIONS AND NO TA SHEET, TABLES 6.4. NACHED TO THIS PROCEDURE OULD IT BECOME NECESS PPLE CONNECTION. SET	ATA SHEET WIL TED ON THE FL 2 - 6.4.9. AS APPENDIX GARY TO FIEL	L BE COMPLET ANGE JOINT A DATA SHEETS D. D. ASSEMBLE	ED FOR ALI RRANGEMENT SHALL BE
	INS	TRUCTIONS.		of brucing	RUULADLI
	a)	CB&I - interconnect heating skid using 2" tion valves at the en and pump skid.	and 3" hose	s. and insta	isola-
				LN	C/GEQA
	р)	CB&I - Bolt one 3" connect to decontaminat	cross-tee f	itting tog	ether and
				LNE	C/GEQA
	c)	CB&I - connect 3" sucti equipment and run to de recirculation pump "B"	contamination	contamination connection	at
		 CB&I - install 3th hose prior to conne 	'isolating '	valve at eac	ch end of
				LNE	C/GEQA
		 CB&I - make final tamination connecti 	connection be on	tween hose a	nd decon-
				GE-	QA/LNEC
		LN - SU REDUCER	PPLY 3"-150#	RF X 4"-900#	T/G

. .

	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	7 of 97
đ	CB&I - connect 3" ho suction and run to F (Tie-in point upstream	RHR return	Loop 'B' co	equipmen nnection
				EC/GEQA
	 CB&I - install 3' hose prior to conne 	' isolating ction	valve at ea	ch end of
				EC/GEQA
	 CB&I - make final loop "B" connection 	connection	between hos	e and RHI
			GEG	QA/LNEC
	CONNECTION	PREPARED WIT	TH 3", 150# H	LANGE
e)	CB&I - connect 3" hose tion and run to RHR re point is upstream of va	turn loop "A'	connection.	oment suc- . (Tie-in
			LNE	C/GEQA
	 CB&I - install 3" hose prior to connect 	isolating s	valve at eac	ch end of
			LNE	C/GEQA
	 CB&I - make final loop "A" connection 	connection	between hose	e and RHF
			GEQ	A/LNEC
	CONNECT	ION PREPARED	WITH 3", 150	# FLANGE
f)	CB&I - connect 3" di equipment at auxiliary e	scharge hose electric heat	e to deconta er skid inle	mination t.
			LNE	C/GEQA
g)	CB&I - bolt one 3" - electric heater outlet.	cross-tee f	fitting to a	uxiliary
		Self is a state of the self.		

LONDON N'ICLEAR

			REVIS	SION	EFFECTIVE DATE	PAGE
6.0	Pr	ocedures		- E-	5/31/84	8 of 97
h)	let	- connect 3' and run to c ion pump "A" s	lecontaminat	iliar ion c	y electric h connection a	eater out- it recirc-
					LN	EC/GEQA
	1)	CB&I - insta hose prior to	11 3" isolat connection	ting	valve at ea	ch end of
					LN	EC/GEQA
	2) (CB&I - make f	inal connect connection	ion b	etween 3" ho	se and de-
					GE	QA/LNEC
		LN	TO SUPPLY 3	-150	RF X 4"-90	0# T/G
		RE	DUCER.			
i)	cnar	RE - connect 3 ge and run to ownstream of v	hose to deco RHR supply	ontam	ination equiv	pment dis- e-in point
i)	cnar	RE - connect 3 ge and run to	hose to deco RHR supply	ontam	ination equip ection. (Tio	pment dis- e-in point EC/GEQA
i)	is do	RE - connect 3 ge and run to	DUCER. hose to deco RHR supply alve MO-18.)	conne	ination equip ection. (Tio LNN	e-in point
i)	is do	RE - connect 3" ge and run to ownstream of v CB&I - insta	DUCER. hose to deco RHR supply alve MO-18.)	conne	ination equip ection. (Tio LNN valve at ea	e-in point EC/GEQA
i)	. C	RE - connect 3" ge and run to ownstream of v CB&I - insta	DUCER. hose to deco RHR supply alve MO-18.) 11 3" isolat connection inal connect	conne conne	ination equip ection. (Tio LNN valve at ea LNN	e-in point EC/GEQA ch end of EC/GEQA
i)	. C	RE - connect 3" ge and run to wnstream of v CB&I - instance bose prior to CB&I - make f	DUCER. hose to deco RHR supply alve MO-18.) 11 3" isolat connection inal connect	conne conne	ination equip ection. (Tio LNN valve at ea LNN between hos	e-in point EC/GEQA ch end of EC/GEQA
i)	. C	RE - connect 3* ge and run to winstream of v CB&I - instance cB&I - make f supply connect	DUCER. hose to deco RHR supply alve MO-18.) 11 3" isolat connection inal connect	conne conne ting	ination equip ection. (Tio INN valve at ea LNN between hos GE(e-in point EC/GEQA ch end of EC/GEQA e and RHR QA/LNEC
i) j)	CB&I	RE - connect 3* ge and run to winstream of v CB&I - instance cB&I - make f supply connect	DUCER. hose to deco RHR supply alve MO-18.) 11 3" isolat connection inal connect ion NNECTION PREP hose to deco	ing connection	ination equip ection. (Tio INN valve at ea INN between hos GE(WITH 3", 150	e-in point EC/GEQA ch end of EC/GEQA e and RHR QA/LNEC 0 FLANGE
j)	CB&I	RE - connect 3" ge and run to winstream of v CB&I - instance CB&I - make from to CB&I - make from to CB&I - make from to CB&I - make from to CD - connect 3"	DUCER. hose to deco RHR supply alve MO-18.) 11 3" isolat connection inal connect ion NNECTION PREP hose to deco	ing connection	ination equip ection. (Tio LN valve at ea LN between hos GE(WITH 3", 150 nation equip	e-in point EC/GEQA ch end of EC/GEQA e and RHR QA/LNEC 0 FLANGE
j)	CB6I charg	RE - connect 3" ge and run to winstream of v CB&I - instance CB&I - make from to CB&I - make from to CB&I - make from to CB&I - make from to CD - connect 3"	DUCER. hose to deco RHR supply alve MO-18.) 11 3" isolat connection inal connect ion NNECTION PREP hose to deco RWCU connecti	ontam: conne ting tion PARED ontami	ination equip ection. (Tio INN valve at ea ENN between hos GE(WITH 3", 150 Ination equip INN	e-in point EC/GEQA ch end of EC/GEQA e and RHR QA/LNEC D# FLANGE pment dis-

CTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	9 of 97
	 CB&I - make fina connection 	l connection	between hos	e and RWCU
		TION PREPARED	GE WITH	QA/LNEC
k)	SP - supply and loca connecting hoses, so in the immediate vic skids.	as to minimi	ze radiatio	n exposure
		STAT	TION MAINTEN	ANCE & HP
1)	CB&I - run and conne tion loop "A" connecti connection. (See Draw	on to recircul	ation suction	ation suc- on loop"B"
			GE	QA/LNEC
	CONNEC	TIONS PREPARED	WITH 3", 1	50 #
	 CB&I - install : hose prior to conn 	• isolating • ection	valve at ea	ch end of
			LN	EC/GEQA
m)	CB&I - run 2" hose f "B" and connect to man	rom all 5 rise ifold.	er connectio	ns on loop
			GE	-QA/LNEC
	 CB&I - install 2 hose prior to conn 	isolating va	alve on ris	er end of
			GE	-QA/LNEC
	. CB&I - install man	ifold as per I	rawing 112D	3501
			GE	-QA/LNEC
Sec. 3		ON NUCLEAR	41.00	

			l	1	1
	n) CB&I - "A" an	- run 2" hose nd connect to ma	from all 5 rise anifold.	er connectio	ns on loop
				GE	-QA/LNEC
	- CE	341 - to instal ose prior to cor	ll 2" isolating nnection	valve on ri	ser end of
				LNE	C/GEQA
	. CB	3&I - install ma	nifold as per D	rawing 112D	3501.
				GE	-QA/LNEC
	CB61 - loop "	- run 3" hose B" 3" connectio	from loop "A" m on, and connect.	manifold con	nection to
				GE	-QA/LNEC
	- CB	se prior to con	" isolating va nection	alves at ea	ich end of
				LN	EC/GEQA
1) CB&I - and ru	n to Station se	2" hose to deco ervice water sup	ontamination oply.	equipment
				LN	EC/GEQA
		<pre>%I - make fina pply connection</pre>	al connection I and hose	between ser	vice water
	wa		tell-tale drain decontaminatio lve.	line betwe	
		connect 1-1/ floor drain).	2" hose and run	to Station	Rad waste
				LN	EC/GEQA
			1		

LONDON NUCLEAR

t

TION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	11 of 97
	 CB&I - make fina return connection 	l connection and hose	between coo	ling wate
			GE	-QA/LNEC
r)	CB&I - connect 1" ho and run to Station flo	se from decor oor drain.	tamination	pump ski
			GE	-QA/LNEC
	CB&I - verify drain is	unplugged		
			SP	
s)	CB&I - connect l* hos to Station floor drain	e from electri	ic heater sk	id and ru
			LN	EC/GEQA
	CB&I - verify drain is	unplugged		
			GE	-QA/LNEC
t)	CB&I - connect l* hos Station floor drain.	e from ion exc	change skid a	and run to
			LNI	EC/GEQA
	CB&I - verify drain is	unplugged		
			GE-	QA/LNEC
u)	CB&I - connect 1-1/2 ion exchange skid and supply.	hose to lin run to Statio	e CD1-1/2") n condensate	located or transfer
to	. CB&I - install te Say water supply and with isolation val	decontaminati	line betwee on equipment	Cadasade en service complete
	1" CONDENSATE SUPPLY L SKID (LN-1) WIL	INE LOCATED ON L NOT BE USED.	PUMP	
			LNE	C/GEQA

ŧ

(

LONDON NUCLEAR

			REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	- E-	5/31/84	12 of 97
		 CB&I - make final sate transfer sup 	connection be ply or demin w	tween hose a ater	nd conden
				GE	-QA/LNEC
	V)	CB&I - connect 1-1/2*	slurry hose a	nd run to li	ner.
				LN	EC/GEQA
		. CB&I - make final	connection be	tween hose a	nd liner.
				GE	-QA/LNEC
		. CB&I - supply 1-1	/2" - 150# RF	x 4"-150# RF	reducer
	w)	CB&I - connect Nitro able within the rang equipment.	gen cylinder o e 10-100 psig	c/w regulator ;) to decont	r (adjust- amination
				LN	EC/GEQA
	x)	LN install corrosion of	coupons.		
				LN	EC/GEQA
	y)	LN load ion exchange is initial loading.	resins as pe	r Section 6	.7.2. This
6.5	Temj	porary Shielding			
	a)	CB&I - construct ter blocks) around the i Drawing 3603-B-5001-1.	on exchange s	ding (dense kid as deta:	concrete iled on LM
			MAIN	TENANCE/GEQA	4
			18 M. C.		

e

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84/	13 of 97

 CB&I - lay lead blankets on temporary hose lines, located near pump skid.

MAINTENANCE/GEQA

SHIELD WALL MAY BE CONSTRUCTED DURING EQUIPMENT SETUP.

Verify concrete shielding blocks are installed as designated and that no cracks are present.

LNEC/HP

6.6 Electrical Connections

 a) PECo El Construction - install a 480 Volt, 300 Amp, 3 phase power to LN pump skid (see LN Drawing 3603-B-5001-1).

PECo El Const./GEQA

 b) PECo El Construction - supply 480 Volt, 400 Amp, 3 phase power to electric heater skid (see LN Drawing 3603-A-5005-1).

PECo El Constr./GEQA

SUMMARY - 6.3 - 6.6

...

Final Verification of Completion of Equipment Installation.

LNEC/GEQA

ECTION	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures		- E-	5/31/84	14 of 97
6.7	Preparation f	or Startup			
6.7.1	Decontaminatio	on System Ve	rification		
	from Rec	that Deconta circulation alves (if op	Piping Syst	equipment i em by closi	s isolated ng the fol-
	CU1-V1 CU3-V4 V1 V2 V5 V6	Hose Iso RHR Retu RHR Retu RHR Supp	rn "B" Isol	ocess End ation - Ski ation - Ski n - Skid En	d End
				ī	NEC/GEQA
	to Stati	that decontation services ons 6.4 to 6	and proces	s systems a	s connected s described
				ī	NEC/GEQA
	c) Verify available	that foll e:	owing Sta	tion serv	vices are
	1) condens	sate transfe	r available	to line CD	-301
	2) service	e water avai	lable to li	ne CW-301	
	3) power a plement	available to tary heater	the auxili skids	ary equipme	nt and sup-
				Ī	NEC/GEQA

1

6

4

.

LONDON NUCLEAR

TION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	15 of 97
	d) Verify that co CU-103.	rrosion coupe	ons are in	stalled in
			ī	NEC/GEQA
	e) Verify that the and equipment is LN Drawing 3603 in 6.7.1(a). If	as per Tables -C-5000-1) wit	6.1, 6.2 a h the excep	nd 6.3 (see
			Ī	NEC/GEQA
6.7.2	Addition of Ion Exchan	nge Resin		
	Add ion exchange res follows. Equipment Equivalent designation shown in brackets resp	designations ons for columns	are for col	umn CU-201.
	a) Open CV1-V1 (CV1-V vessel.	2/V3) to relie	we any pres	sure in the
	b) Close CU4-V1 (CU4-V	2/V3) and CU5-	v1 (CU5-V2/	V3)
	c) Remove access flang	le.		
	d) Fill CU-201 approx or demin by openin V2/V3).	imately one th ng CD1-V4 and	ird full of adjusting C	condensate D1-V1 (CD1-
	e) Fill CU-201 (CU- below:	202/203) wit	h resin as	indicated
	6.5 ft^3 IRN-77 (s and 0.5 ft^3 IRN-77 the IRN-77	strong acid cat 8 (strong base	ion) anion) on	top of
22	MAINTAIN WATER LE RESIN DURING ADDI		E THAT OF T	HE
	THIS SECTION IS THE INITIAL FILL I	USED FOR ALL I DESCRIBED IN. SE	RESIN LOADI CTION 6.4 (NG INCLUDIN Y).

4.

8

(

(

,

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	16 of 97

- f) Once addition of resin is complete, raise water level to top of flange, reinstall access flange and fill column with water by opening CDI-V1 (CDI-V2/V3).
- g) When water appears at vent pot CV-206, close CD1-V1 (CD1-V2/V3), CV1-V1 (CV1-V2/V3) and CD1-V4.
- h) Lock RS1-V6 shut to avoid any inadvertent manipulation during the decontamination.

LNEC/GEQA

Ion exchange resin loaded.

6.7.3 Initial Filling and Venting (HP Hold Point)

a) The decontamination equipment is initially filled while the equipment remains isolated from the recirculation system. Prior to filling all the components on decontamination equipment are placed on line by opening or verifying open the following valves:

	the second se
CU2-V6	Main Cooler Inlet
CU6-V1	Reverse Flow Isolation
CU7-V1	Reverse Flow Isolation
CD2-V2	Surge Tank Isolation
CS1-VI	Before Sample Isolation
CS1-V2	Before Sample Isolation
CS3-V1	After IX Sample Isolation
CS3-V2	After IX Sample Isolation
CI2-V1	Chemical Injection Inlet Isolation
CI 3-V1	Chemical Injection Outlet Isolation
CU'-V9	Purification Flow Control
CU5-V8	Purification Flow Control
CU4-V3	IX CU-203 Inlet
CU5-V3	IX CU-203 Outlet
CU4-V2	IX CU-202 Inlet
CU5-V2	IX CU-202 Outlet
CU4-V1	IX CU-201 Inlet
CU5-V1	IX CU-201 Outlet

...

F

(

LNEC/GEQA

6.0	Procedures	REVISION -E-	EFFECTIVE DATE 5/31/84	PAGE 17 of 97
-----	------------	--------------	---------------------------	------------------

D)	Open, or verify o	pen,	. CD1-V4 and CD1-V6 while surge	
	tank sight glass	indi	ication is monitored. Once the	
	water level rises	to	the low water level mark on the	
	tank, throttle back	on	CD1-V4.	

At this point, all components on LN equipment are vented individually as follows:

- c) Open CV5-V1 to vent chemical injection vessel CI-101, when flow is verified to SG-101, close CV5-V1.
- d) Open CV4-V1 to vent main cooler CU-104 outlet line, once flow is verified to SG-101, close CV4-V1.
- e) Open CV3-V1 to vent heater CU-105, once flow is verified to SG-101, close CV3-V1.
- f) Open CS4-V1 to vent sample lines, once flow to sample sink is verified, close CS4-V1.
- g) Open CV1-V1, to vent ion exchange column CU-201, when flow is verified through SG-202, close CV1-V1.
- h) Open CV1-V2 to vent ion exchange column CU-202, when flow is verified through SG-202, close CV1-V2.
- i) Open CV1-V3 to vent ion exchange column CU-203, when flow is verified through SG-202, close CV1-V3.

. ...

TION	TITLE	REVISION	EFFECTIVE DATE	PAGE	
6.0	Procedures	- E-	5/31/84	18 of 97	
	 j) Open CV10-V1 to vent cess line, when flow CV10-V1. k) Close CD1-V4 and CD1 (station side). 1) Supply cooling water ple cooler (CS-101) 	is verified 1-V6. Isola r to main co	l through SG ate condens poler (CU-10	-401, close sate supply 4) and same	
	When condensate appendent of the second seco	ears on sam is verified e cooling w ale to drain	ple cooler . Close va water suppl	coil, then lves CW2-V	
	Decontamination equip	ment filled/	vented		
			ī	NEC/GE-QA	
6.8	<u>Pre-Operational Testing of Decontamination Equipment</u> Carry out a series of tests on the decontaminatio				
6.8.1	equipment prior to system startup. These are as follows: Heater Circuit Test				
	a) Energize the power supplies to heater CU-105 by switch- ing circuit breaker switches to ON.				
	 b) Select individual heater control panel switches to ON. Verify heaters will not energize in the no flow condition. 				
	c) Turn off or verify off all heater switches. Heater circuit test complete.				
			Ī	NEC/GE-QA	
•					

CTION	TITLE	REVISION	EFFECTIVE DATE	PAGE	
6.0	Procedures	- E-	5/31/84	19 of 97	
6.8.2	Decontamination Equipment Leak Test (HP Hold Point) MONITOR HYDRO PRESSURE CONSTANTLY, USING CALIBRATED GAUGE ON PUMP SKID TO PROTECT AGAINST OVER-PRESSURIZATION Hydro test the decontamination equipment to 225 psig by the following method (HP PRESENT FOR LEAK TEST). a) Install hydrostatic test pump to line HT2-1/2" skid.				
	Open valve HT2-V1. b) Isolate all pressu CU3-V5, CU2-V10, CU1-V6.	re gauges by	closing val	ves CU1-V5,	
	c) Use the hydrostatic sure to 130 psig. RV1-V1, RV1-V2, RV checked to ensure experience.	At this poin 1-V3 and RV10	t, the rel -Vl are in	ief valves	
	 d) If required, reset lieve at the desired factory operation plugged for the dura 	d pressure of , each relief	130 psig. valve is	Upon satis- removed or	
	e) Increase system pro cated on pressure test pump.	essure to 225 j indicator lo	psig in ste cated on h	ps as indi- ydrostatic	
	f) Hold pressure at 2 of 30 minutes.	25 psig (<u>+</u> 23	psig) for	a minimum	
	g) Check all exposed j	oints for leak	5.		
	 h) After the system is sary adjustments a pressure to 125 ps and disconnect the line 	ig by opening	decrease CV2-V1, cl	the system	
	ALLOWABLE TOLERANC OVER 30 MINUTE INTE		ROSTATIC TE	EST IS 108	
	to beronce				

SP

LONDON NUCLEAR

CTION	TIT	LE	REVISION	EFFECTIVE DATE	PAGE		
6.0		Procedures	- E-	5/31/84	20 of 97		
	_			-	-		
	i)	Secure demineralized w	ater or con-	densate flow			
	j)	j) Open valves CU1-V5, CU3-V5, CU2-V10, CU2-V11, CI1-V3, CU10-V5 and CU11-V4 CU1-V6.					
		System leak test compl	ete.				
				N	EC/GE-QA		
6.8 3	High/Low Pressure Switch Check No. 1						
	a)	a) With the equipment pressure at 125 psig as per Section 6.8.2, the control switch for circulating pump CU-102 is selected to <u>ON</u> . Verify CU-102 will not energize in the high pressure condition. Return pump switch to <u>OFF</u> position.					
	ь)	Open CV2-V1 to lower pressure (PI-101) to 20 psig, then close CV2-V1.					
	c)	Select CU-102 contro will not energize in t	he low press	o <u>ON</u> . Veris sure conditio	fy CU-102		
	a)	Lower pressure to at valves RV1-V1, RV1-V2 RV10-V1.	mospheric 2 and RV1-V	and reinsta 3 and remove	ll relief plug from		
		Pressure switch test c	omplete.				
				LNI	EC/GE-QA		
1							

.

í

(

-

LONDON NUCLEAR

6.0	Procedures	REVISION	EFFECTIVE DATE	PAGE	
0.0	Frocedures	- E-	5/31/84	21 of 97	
6.8.4	Circulating Pump (CU-10 This test is performed isolated from the recir	with the dec	ontaminatio em.	n equipmen	
	a) Op n or check open				
	CU1-V3 Skid Inlet CU1-V4 Circulatio CU2-V9 Heater Inl CU3-V1 Heater Out	Isolation n Pump Suctio et Isolation let Isolation ow Isolation	n		
	b) Close or check close	d the followi	ng valves:		
	CU10-V1 Hose Isola CU5-V8 Purificati CU2-V3 Circulacio CU4-V4 IX Cleanup CU5-V4 IX Cleanup CU3-V2 Skid Outle V1 RHR Return V2 RHR Return	tion Skid End tion on Flow Contr n Pump Discha Inlet Isolat Outlet Isola t Isolation "A" Isolatio "B" Isolatio n Pump Bypass	ol rge ion tion n		
	c) Adjust pressure in decontamination equipment to 35 psig by opening STI-VI, and STI-V2 until PI-101 indi- cates required pressure.				
	d) Adjust valve CU2-V8 to one turn open.				
	e) Push start button for circulation pump CU-102.				
	f) Slowly open valve CU:	2-V8.			
	g) Adjust flow in pump opening valves CU2 indicator FI-101.	skid loop t -V8 and CU2-	V2. Monit	t 50 GPM by or flow or	
	Pump Te	est Complete		N/GE-QA	
			L	N/GE-QA	
		0.25			

LONDON NUCLEAR

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	22 of 97
			Course de la co	 Institute

6.8.5 High/Low Pressure Switch Check - No. 2

Recheck the pressure switches during pump open flow test to ensure the circulation pump CU-102 will shutdown on increasing and decreasing pressure conditions.

- a) Increasing Pressure
 - Place nitrogen cylinder on line and slowly increase system pressure to <u>100</u> psig + 5 psig (high pressure setpoint 125 psig + 5 psig) as indicated on PI-102 by opening valve STI-V1 and STI-V2. Continue to increase pressure until circulation pump CU-102 stops on high pressure trip. Close STI-V1 and STI-V2. Adjustments to setpoint must be made at this time and the procedure repeated as necessary.
 - Depressurize system to <u>35</u> psig + 5 psig as indicated on PI-101 by opening valve CV2-V1.
 - 3) Restart circulating pump CU-102 by opening CU2-V2 and throttling CU2-V8 to 1 turn open. Start pump and throttle flow to 250 ±50 GPM as indicated on FI-101.

b) Decreasing Pressure

. ..

- While circulation pump CU-102 is running, lower system pressure below setpoint (30 psig ± 4 psig) by opening valve CV2-V1. Continue to decrease pressure until CU-102 stops on low pressure trip. Close CV2-V1. Adjustments to setpoint must be made at the time, and if so, repeat check.
- On completion of check, place the nitrogen cylinder on line by opening valve STI-V1 and STI-V2 to increase system pressure to 45 psig <u>+</u> 10 psig.

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	23 of 97

3) Restart circulating pump CU-102 by opening value CU2-V2 and throttling value CU2-V8 to 1 turn open. Start pump and throttle flow to 250 GPM + 50 GPM as indicated on FI-101.

High/Low Pressure Switch Check - No. 2 Complete

LNEC/GE-OA

6.8.6 Flow Check Through Ion Exchange Columns

...

- a) Check valve CU4-V13 is closed and open valves CU4-V4 and CU5-V4. Monitor flow indicator FI-202.
- b) Adjust flow in ion exchange skid to approximately 40 GPM on FI-202 by adjusting valve CU2-V8. Enter on log sheet as per table 6.10.
- c) Check flow in each ion exchange column by:
 - closing valves CU4-V1/V2 and monitoring flow indicator FI-202 to check flow through ion exchange column CU-203. Record FI-202 reading
 - open valve C04-V2 and close valve CU4-V3. Monitor FI-202 to check flow through ion exchange column CU-202. Record and compare with previous flow through CU-203.
 - 3) open valve CU4-V1 and close valve CU4-V2. Monitor FI-202 to check flow through ion exchange column CU-201. Compare with previous flows through CU-203 and CU-202.

THE FLOWS THROUGH EACH COLUMN SHALL AGREE WITHIN 5 GPM. IF THIS IS NOT THE CASE, RE-PEAT THE TEST TO LOCATE AND RECTIFY THE PROBLEM.

LNEC/GE-QA

CTION	TITLE	REVISION	EFFECTIVE DATE	PAGE	
9.0	Procedures	- E-	5/31/84	24 of 97	
	 d) Upon completion, op the ion exchange col Ion exchange column 	umns valved i	in.	3 and leave	
			Ī	NEC/GE-QA	
6.8.7	Heater Control Checks				
	a) Check high tempe 285°F.	rature cuto	ff switch	is set to	
	b) Turn CU-105 heater s	witches on.			
	c) Check indication lig	hts are on.			
	 d) Check operation of adjusting temper temperature. 				
	e) Repeat sets (a) thro	ugh (d) for h	heater CU-401.		
	f) Restore set points to	o normal cond	lition (285 ⁰	F).	
	Both heater control	checks comple	te.		
			ī	NEC/GE-QA	
6.9	Preparation of the Reci	rculation Dec	contaminatio	n System	
	Both the suction and d decontamination system leaks simultaneously. tion will be carried out	All further	vented and tests and d	tested for	
	PERIODIC WALK-DOWN OF THE HOSES AND SYSTEM A FILLED PRESSURIZED CONNECTIONS AND COMP WALK-DOWN SHALL BE CON TWO ASSIGNED PERSON RECORDED IN A LOG MA SUPERVISOR. THE CONTR	RE PRESSURI HOSE, HOSE ONENT JOINT NUCTED ON TH NEL. ALL O INTAINED BY	ZED. THE I (FLANGE A S SHALL BI E HOUR AND BSERVATION THE DECOM	INTEGRITY OF ND NIPPLE) E VERIFIED. HALF HOUR BY IS SHALL BE NTAMINATION	
	NOTIFIED OF ANY SIGNIE EQUIPMENT.	ICANT LEAKAG	E FROM PLAN	T SYSTEMS OF	

6.0	Procedures		- E-	5/31/84	25 of 97
6.9.1	Decontaminatio	n System Valve St	tatus		
	follows:	irculation RHR	and R	∜CU syst	em valve as
	Valve Designation	Description			Position
	MO-53A	Recirculation Discharge Iso		A	Open
	MO-53B	Recirculation Discharge Isol		B. *	Open
	MO-43A	Recirculation Suction Isola		A	Open
	MO-43B	Recirculation Suction Isolat		B.	Open
	M0-66A	Ring Header */	А" Вура	SS	Open
	MO-66B	Ring Header *1	B" Bypa	ss	Open
	M0-65A	Ring Header *	A" Cros	stie	Open
	MO-65B	Ring Header "	B" Cros	stie	Open
	POS-81A	RHR Return "A			Open
	POS-81B	RHR Return "B	•		Open
	A0-46A	RHR Return "A	Check		Open
	A0-46B	RHR Return "B	Check		Open
	M012-15	RWCU Suction	Isolati	on	Open
	MAN 12-46	RWCU Suction			Open
	MO-10-18	RHR Supply			Open
	MAN10-88	RHR Supply			Open
	M0-12-18	RWCU Supply			Open
	163A	RHR Return 'A	Check	By-Pass	Open
	163B	RHR Return 'B	Check	By-Pass	Open

6

	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0	Procedure	es	- E-	5/31/84	26 of 97
	b) Check op V26 as pe	en, or open, a er Table 6.4	all tempo	rary valves	V1 through
				Ī	NDC/GE-QA
6.9.2	Filling and	Venting (HP Ho	ld Point)		
	a) Open/chec	ck open the fol	lowing val	ves:	
	CU1-V1 CU1-V2 CU10-V1 CU2-V3 CU3-V4 CU3-V1 CU3-V2 CU2-V8 CU2-V8 CU2-V9 CU10-V2 CU3-V3 CU10-V2 CU3-V3 CU6-V1 CU7-V1 CU4-V4 CU4-V14 CU4-V15 V11	Circulation P Hose Isolation Heater Outlet Skid Outlet I -Main Cooler B Heater Inlet Hose Isolation Hose Isolation Reverse Flow IX Cleanup Iso Hose CU-301 I Hose CU-301 I Recirculation	n Skid End n ump Discha n Process Isolation solation ypass Isolation n n Skid End Isolation Isolation olation solation	rge Isolati End Suction Ven	

(

...

ECTION	TITLE		REVISION	EFFECTIVE DATE	PAGE			
6.0		Procedures	- E-	5/31/84	27 of 97			
	ь)	Check and record re	eading on TM-	-201, total	izing flow			
	c)	meter. Open CD1-V4 and adj	ust CD1-V6 op	en to obtai	n a reason-			
		able fill rate on supply).	TM-201 (us	ing conden	sate water			
	d)) Check decontamination system temporary connections in- side and outside drywell for leakage.						
	e)	When system water is as indicated on TM- monitor drains from and V27.	-201, throttl	le back on	CD1-V6 and			
	£)	Close Vll, Vl2, a respective drain lin	nd V27 as w e.	ater appea	rs in its			
	g) Flow is reverified the opening CV1-V1 (CV1- through SG-201, CV1-V1		1-V2/V3). W	then flow i	s verified			
	h)	Close CD4-V1 and CD1	-V6 when syst	em is full	of water.			
		System is filled and	vented.					
				ī	NEC/GE-QA			
6.9.3	System Leak Test (HP Hold Point)							
	a)	Place the nitrogen and STI-V2 and the N ually increased to PI-101. Close STI-V	itrogen gas c o 125 psig c	over pressu	re is grad-			
	ь)	Hold pressure at 1 of 30 minutes.	25 psig (<u>+</u> 5	psig) for	a minimum			
	c)	Check all exposed j necessary adjustment the pressure to appr	ts, crack or	pen CV2-V1	and reduce			
	1							

			REVISION	EFFECTIVE DATE	PAGE
6.0	Procedu	res	- E-	5/31/84	28 of 97
	e) If leak ment an tion sha	ndation, and is are detect id/or tempora	ected in sy MRF's for sta ed in the LN ry connection as deemed nec pleted.	tion equipm decontamina s, then cor	ent. tion equip
				ī	NDC/GE-QA
6.10	Preoperatio	onal Testing	- Suction Sid	e	
6.10.1	Pre-deconta	mination Rad	iation Survey		
	a) Perform tem as d	initial rad letailed in S	iation survey ection 6.27.	of recircu	lation sys
				TH /ODOD /	UD
				LN/GEQA/	nr
6.10.2	Valve Statu	15 ·		LN/GEQA/	nr
6.10.2	a) Position 6.5 fo	n valves in or initia:	accordance w l valve st ng on the suc	ith Tables	6.1 through
6.10.2	a) Position 6.5 fo preopera	n valves in or initia: tional testi	l valve st ng on the suc	ith Tables	6.1 through
6.10.2	a) Position 6.5 fo preopera	n valves in or initia:	l valve st ng on the suc	ith Tables	6.1 through commence
6.10.2	a) Position 6.5 fo preopera	n valves in or initia: tional testi 2, 6.2, 6.3	l valve st ng on the suc	ith Tables atus to tion side.	6.1 through commence
6.10.2	a) Position 6.5 fo preopera Table 6.	n valves in or initia: tional testi 2, 6.2, 6.3	l valve st ng on the suc	ith Tables atus to tion side.	6.1 through commence
6.10.2	a) Position 6.5 fo preopera Table 6. Table 6.	n valves in or initia: tional testi 2, 6.2, 6.3	l valve stang on the suc	ith Tables tatus to tion side. LNDC/GE-(6.1 through commence
6.10.2	 a) Position 6.5 fo preopera Table 6. Table 6. b) Close the V1 RH V2 RH V5 RH V6 RW CU2-V2 	n valves in or initia: tional testi 2, 6.2, 6.3 5 e following R Return "A" R Return "B" R Supply Isol CU Isolation	valves: Isolation - Isolation - Skid Skid End Dump Bypass	ith Tables atus to tion side. LNDC/GE-(Unit 2 Op Skid End Skid End	6.1 through commence
	 a) Position 6.5 fo preopera Table 6. Table 6. b) Close the V1 RH V2 RH V5 RH V6 RW CU2-V2 	n valves in or initial tional testin 2, 6.2, 6.3 5 6 7 8 Return "A" 8 Return "A" 8 Return "B" 8 Supply Isol CU Isolation Circulation	valves: Isolation - Isolation - Skid Skid End Dump Bypass	ith Tables atus to tion side. LNDC/GE-(Unit 2 Op Skid End Skid End End	6.1 through commence

	TITLE		REVISION	EFFECTIVE DATE	PAGE		
6.0		Procedures	- E-	5/31/84	29 of 97		
6.10.3		ow Test at Operating C Notify Unit 2 Opera during heat-up and dea	ator to se	cure drywe	ll coolers		
				T.N	-GEQA		
	ь)	Throttle CU2-V8 to 1	turn open.		0.52.1		
	c)	Start circulating p approximately 250 adjusting CU2-V2 to a	+ 50 GPM by	y opening	CU2-V8 and		
	a)	Once flow is esta suction lines, then opening valves V5 connections inside and	and V6.	HR and RWC Check all	U lines by temporary		
	e)	e) Vent decontamination system as necessary.					
	f) Check flow through RHR supply line by closing values CU3-V3 and V6. Monitor FI-101.						
	g) Check flow through RWCU line by opening closing V5. Monitor FI-101.						
	 h) On completion of satisfactory flow the recirculation suction, RWCU and RHR supply valves CU3-V3 and V5 and commence heatup. 			rough the lines open			
	i) Select heater CU-105 to auto to commence $250^{\circ}F \pm 5^{\circ}F$.						
	j)	Select auxiliary elect	tric heater (CU-401 to"a	uto".		
	k)	As temperature is h maintain a system pr dicated on PI-101. valves CD2-V2 and RD2-	essure of 4 This is acc	0 psig + 5 ; complished	psig as in-		
	1)	Monitor system, once at least 30 minutes. inside and outside dr reaches 200°F and corrective action to r	Check all rywell for la again at	temporary eaks, when 250°F + 5	connections		

TION	TITLE		REVISION	EFFECTIVE DATE	PAGE	
6.0	Procedui	res	- E-	5/31/84	30 of 97	
	Tempora	ry hand-hel	tions Log d temperature emperatures a	read-out d	evices will	
			LNDC (200	GLQA L F) (NDC/GEQA 250 F)	
	heaters	CU-105 and below 200°F.	satisfactor CU-401 to <u>O</u>	y operatio FF. Allow	on, select temperature	
	n) On compl	etion of tes	t, select CU-	102 to OFF.		
				ī	NDC/GE-QA	
6.11	Preoperational Testing - Discharge Side					
6.11.1	Valve Status					
	discharg		preoperation and 6.4	LNDC/GE-		
	Table 6.	6				
				Unit 2 O	perator	
	b) Close th	e following	valves:			
	V1 V2 V5 V6 CU2-V2 CU4-V4	RHR Return RHR Supply RWCU Pump	n Pump Bypass	n - Skid En Skid End		
				Ī	NDC/GE-QA	
6.11.2	Flow Test a	t Operating	Conditions			
	a) Throttle	CU2-V8 to 1	turn open.			
	proxima	ately 250	GPM + 50 GP	M on flow	flow to ap indicato	
		by opening (open positio	CU2-V8 and a	djusting Ct	12-V2, to	

ŧ

6.0	TITLE	Procedures	AEVISION	EFFECTIVE DATE	PAGE 31 of 97
		riocedures	-	5/51/04	SI OF 97
	d) e) f) g) h)	Vent decontamination Once flow is estab charge lines, then ing valves Vl and V2 inside and outside du Monitor flow indica required. Flow through RHR ret valves CU1-V2 and V1. Flow through RHR ret Vl and closing V2. M On completion of sa and V2 and commence f	lished in th valve in RHR 2. Check all tywell for le tor FI-101 a urn "B" line Monitor FI turn "A" line fonitor FI-10 tisfactory of heatup.	ne recircul return lin temporary akage. nd continue is checked -101. is checked 1. operation,	es by open- connections venting as by closing by opening open CU1-V2
		Select heater CU-10 $250^{\circ}F \pm 5^{\circ}F$.			
	j)	Select auxiliary elec	tric heater	CU-401 to a	uto.
	k)	As temperature is he to maintain a system on PI-101. This is CD2-V2 and RD2-V4 as	m pressure o accomplish	f 40 psig a	s indicated
	1)	Monitor system, once at least 30 minutes inside and outside d reaches 200°F and corrective action to Log Sheet, Table temperature read-out temperatures.	Check all rywell for l again at o fix leaks. 6.10. Ten	temporary eaks, when 250°F + 5 Record in porary, 1	onnections temperature F. Take Operations hand-held
	m)	On completion of s system temperature at	atisfactory 250°F ± 5°F	operation.	, maintain
		Flow test at operatin	g conditions	completed.	
		LNDC/GE			NDC/GEQA 250 F)

(

. *

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	32 of 97
				102 01

6.12 Discharge Side Decontamination

The following subsections detail the procedure used for performing the decontamination of the discharge side of the recirculation piping and RHR return lines. To decontaminate effectively, the discharge side is divided into two separate flow paths. Refer to LN Drawings 3838-B-5001-1, Flow Path #1 and 3838-B-5001-2, Flow Path #2. Piping and components on Flow Path #1 will be decontaminated first, then Flow Path #2.

6.12.1 Valve Status

Align the decontamination system valves to incorporate the flow path designated in Flow Path #1, Refer to LN Drawing 3838-B-5001-1.

a) Position valves as per Tables 6.1, 6.3, 6.4 and 6.6.

Table 6.1, 6.3 and 6.4

LNDC/GEQA

Table 6.6

Unit 2 Operator

b) Close the following valves:

Vl	RHR Return "A" Isolation Skid End
V2	RHR Return "B" Isolation - Skid End
V5	RHR Supply Isolation - Skid End
V6	RWCU Isolation - Skid End

LNDC/GEQA

c) Throttle the following valves:

MO-65A - Ring Header "A" Crosstie

Unit 2 Operator

-
- Riser Valves: V13, V14, V15, V16, V17, V18, V19, V20, V21, V22 as necessary, to vary decon flows, if needed to accelerate decon in one or more risers.

LNDC/GEQA

ECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	33 of 97
6.12.2	Bydrazine Injection			
	Add sufficient hydrazi water) to the decontant tion vessel CI-101 to oxygen.	nination syst	em via chem	ical injec-
	Add hydrazine according	to the follo	wing steps:	
	a) Open CV5-V1 and mon til vessel pressure i			PI-103 un-
	b) Open RD2-V6 until CI-101 sight glass then close RD2-V6 and	reaches 1/2		
	c) Open CI1-V1 and ad CI-102.	ld 8 litres	of 35% hy	drazine to
	d) Once hydrazine has open CI3-V1 then CI2-	been inject -vl.	ed, close	CI1-V1 and
	e) Keep CI-101 on line - sure hydrazine has be			tes, to en-
	f) Close CI2-V1 and CI3-	-V1.		
	g) Perform sampling to e centration (as per and steps (a) throug lower the dissolved of	Section 6.24 h (f) are re	of this p peated as n	ecessary to
	KEEP HYDRAZINE NOT IN USE. S RUBBER GLOVES HYDRAZINE.	SAFETY GLASS	ES OR FACE	SHIELD AND
	h) Enter appropriate Sheet, Table 6.7.	data in Rea	agent Addi	tion Check
ð	i) Place ion exchange adjusting CU2-V8 FI-202.	columns on 1 to achieve	line by ope 60 GPM <u>+</u>	ning CU4-V4 15 GPM on
	Satisfactory Hydrazin	ne levels.		NDC/GEQA

(

(

. .

TION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	34 of 97
6.12.3	Reagent Injection Add reagent according a)Put information equipment drain operation during decon flow path. 2 Operator shall c extension 4350 or leaked to the sumps	tags on Dryw sump pumps t time when re When sump pump contact the Gi 4441 to verif	ell floor o prevent agent is p out is req E Decon Sur	automatic art of the uired, Unit
			Unit 2 O	perator
	b)Open CV5-V1 and muntil vessel pressu	onitor press re reads 0 psi	ure indica g.	tor PI-103
	c) Open RD2-V6 until CI-101 sight glas then close RD2-V6 an	s reaches 1/2	ssel as in level, <u>+</u>	dicated on 12 inches,
	d) Open CI1-V1 and a LND-101A to CI-101.	add 25 KG of	CAN-DECON	reagent,
	e) Once reagent has b tion valve CII-VI CII-VI and open CI3-	with condensa	te supply	mical addi- then close
	f) Keep CI-101 on li ensure reagent has h	ne for a mini been injected.	mum of 5 m	inutes, to
	g) Close CI2-V1 and CI	3-V1.		
	b) Perform sampling t concentration (as p repeat steps (a) t 0.1 wt% ± 0.02% cond	per Section 6. hrough (f) as	24 of this	procedure),
	 Enter appropriate Sheet; Table 6.7. 	data in Rea	agent Addi	tion Check
	Reagent injection co	ompleted.	L	NDC/GEQA

		REVISION	EFFECTIVE DATE	FAGE
6.0	Procedures	-E-	5/31/84	35 of 97
6.12.4	Rodine 31 A Injection Add sufficient Rodin via chemical injection	on vessel CI-1	decontamina 01 to obtai	tion system n a concen-
	tration of .01% ± 0.00 Add Rodine 31A accordi		owing steps	
	a) Open CV5-V1 and mo til vessel pressure	onitor pressur	e indicator	
	b) Open RD2-V6 until CI-101 sight glas then close RD2-V6 a	s reaches 1/2		
	c) Open CI1-V1 and a CI-102.	dded 0.5 gall	ons of Rod	ine 31A to
	d) Once Rodine 31A ha open CI3-V1 then CI		ted, close	CI1-V1 and
	e) Keep CI-101 on lin sure Rodine 31A has			tes, to en-
	f) Close CI2-V1 and CI	3-V1.		
	g) Sampling as per Se (a) to (g) as a concentration.			
	h) Enter appropriate Sheet, Table 6.7.	e date in Rea	agent Addi	tion Chec)
	Satisfactory Rodine	31A levels.	ī	NDC/GEQA
6.12.5	Reagent Regeneration			
	a) Add reagent (or) maintain a reagent	reagent compo concentration	onents) ne at 0.1 ± 0.1	cessary to 02 wt%.
.*	b) Continue sampling Maintain tempera sampling check shee	ature at 250	F + 5 F.	tion 6.24 Refer to

CTION	TITLE			REVISION	EFFECTIVE DATE	PAGE
6.0		Procedure	5	- E-	5/31/84	36 of 97
		lines to (as per readings accordin	ensure lev Section 6 on Table	evels on dec els are sat .28 of this 6.9). Flow ow for bette: require it.	isfactoril; procedure path may	and record be adjusted
		regenera add new	tion, slurr	sin is requ y spent resi per Section 1.2.	n as per S	ection 6.14,
		approxim LN field	ately hourl	ring the d y intervals : Open CU7-V	or as spec.	ified by the
		equipmen ta in R	t at 2 hour adiation	evels around intervals. Monitor Che e) and f) as	Enter app ck Sheet	ropriate da Table 6.9
		Drawing porate t	3838-B-5001	decontamina -1), adjust t irn lines as 01-2.	the flow pa	th to incor-
		Align val	ves as foll	ows:		
		V1 V2 V25 V26 CU1-V2	RHR Return Manifold " Manifold "	"A" IsoSki "B" IsoSki A" Isolation B" Isolation tion - Skid I	ld End	Open Open Close Close Close
						LNDC/GEQA
		declared PECo C Enginee	d by the LN hemistry	harge side de Chemist in represe . Refer t	conjuncti ntative	on with th , and G

CTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	37 of 97
	 i) When the discharge a completed, select decontamination equivalves: V1 RHR Return Isolat V2 RHR Return Isolat 	pump CU-10 nipment by ion - Skid 1	2 to <u>OFF</u> a <u>closing</u> the End End	nd isolate
6.13	Suction Side Decontamina	tion		
	Upon completion of acti- ing and associated pip: made to decontaminate contaminate effectively divided into two sepa Drawings 3838-B-5001-3 Flow Path #4. Piping a be decontaminated first,	ing segments the suction y, the suction rate flow , Flow Path nd component	piping. Ag on side pip paths. Re #3 and 383 s on Flow P	ons will be ain, to de- ing will be efer to LN 8-B-5001-4,
6.13.1	Valve Status			
	Align the decontaminat: the flow path designate Drawing 3838-B-5001-3.			
	a) Check or adjust value 6.4 and 6.5.	ves to be a	s per Table	s 6.1, 6.3,
	Table 6.1, 6.3 and 6.	•	IN	DC/GEQA
	Table 6.5		Unit 2 O	perator
	b) Check or close the for	llowing valu	es:	
	V1 RHR Return "A" V2 RHR Return "B" V5 RHR Supply Isola V6 RWCU Isolation	Isolation - ation - Skid	Skid End	
		S	LNDC/GEQ	A
6.13.2	Startup and Beatup			
	a) Close CU2-V2 and CU4 open.	-V4. Throt	tle CU2-V8	to one turn

6.0	Procedures	REVISION - E-	5/31/84	38 of 97
			1	
	b) Start circulating pur imately 250 ± 50 GPM	np CU-102 and on FI-101.	raise flow	to approx-
	c) Select heaters CU-1 heatup to 250°F.	05 and CU-40	1 to auto	to commence
	 d) As temperature is ria system pressure PI-101. This is acc and RD2-V4 as necessar 	of 45 psig + complished by	10 as ind	licated or
6.13.3	Hydrazine Injection			
	Add 6 litres of 35% hy Section 6.12.2 of this p	drazine to the procedure.	he suction a	side as per
	Satisfactory Hydrazine 1	evels achieve		NDC/GEQA
6.13.4	Reagent Injection		영화 가지	
	Add 6 kg of LND-101A t 6.12.3 of this procedure	o the suctio	on side as p	per Section
	Reagent injection comple	ted.	L	NDC/GEQA
6.13.5	Rhodine 31A Injection			
	Add Rhodine 31A as per S	ection 6.12.	4	
			LN	NDC/GEQA
6.13.6	Reagent Regeneration			
	The reagent regeneration performed as per Sector procedure.	on phase for ion 6.12.5	the sucti (a) to (f	on side is) of this
•	a) Upon completion of d ponents on Flow Path the flow path is ad ply and RWCU lines Drawing 3838-B-5001-4	justed to inc as shown i	wing 3838-1 corporate th	B-5001-3), e RHR sup-

(

SECTION	Tt	TLE	REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	-E-	5/31/84	39 of 97
		b) Termination of the be declared by th PECo Chemistry Rep as per Section 6.26	e LN Chemists presentative a	s in conjun	ction with
				LN	/GEQA/PECo
6.13.7	Rea	igent Removal (Suction	Side)		
	a)	On completion of th all heater control s			
	b)	Provide cooling wat 106) by opening valve			ooler (CU-
	c)	Cool the decontai (optional).	mination sys	tem to bel	low 180°F
	d)	Once the decontamin below 180°F, coolin CW2-V1 (optional).			
	e)	Isolate the ion exc closing CU5-V1/V2/V3			02/203 by
	£)	Slurry resin from C cedure in Section 6 (7:1 by volume rati procedure in Section	.14 and refill o of anion/ca	with mixed	bed resin
	g)	Put the ion exchan CU4-V1/V2/V3 and C close CU2-V8. Adju flow rate of 90 GPM a	st CU2-V2 to	Open val obtain a pu	ve CU2-V2
	h)	Adjust flow as reco to include the RHR #4). This is accom throttling valve V9 CU3-V3 and V9 and clo	supply and F plished by cl . To return	WCU lines osing valve to Flow Pa	(Flow Path CU3-V3 and
1.1					NDC/GEQA

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	40 of 97
	i) Maintain operation tion side piping is	until the con	nductivity	on the suc-
	Maintain operation tion side piping is time reagent remov menced.	approximatel	y 100 uhmo/	cm at which

a) Select pump CU-102 to OFF, and close V5 and V6.

LNDC/GEQA

b) Set valves as per Tables 6.1, 6.2, 6.3, 6.4, and 6.6 to commence reagent removal on the discharge side. (Valve status is setup for Flow Path #1.)

Tables 6.2, 6.2, 6.3 and 6.4

LNDC/GEQA

Table 6.6

Unit 2 Operator

c) Throttle valve CU2-V8 to 1 turn open.

LNDC/GEQA

- d) Start circulating pump CU-102 and adjust flow to 90 GPM on FI-202 by opening CU2-V2 and CU4-V4.
- e) Adjust flow is adjusted, as recommended by LNFS, during this phase to include the RHR return lines (Flow Path #2). This is accomplished by opening valves V1 and V2 and closing V25 and V26. To return to Flow Path #1, valves V25 and V26 are opened and V1, V2 are closed.
- f) Maintain operation until the conductivity on the discharge side is approximately 10 umho. (Further slurry-ing and refilling of ion exchange columns may be required, if so, see Section 6.14 and 6.7.2).

ECTION	1	ITLE	REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	- E-	5/31/84	41 of 97
	g)	Once conductivity of specified by Statio conductivity levels ing). For further re- ing, see Section 6.1 the conductivity le charge piping is with	n, switch the on the other agent removal 13.7. Operation vels on both	e system to side (suc in suction on is contin the suction quirements.	check the tion pip- side pip- nued until n and dis-
	h)	Remove information	tags from dr		NDC/GEQA
		equipment drain sump	pumps		. uturu un
					Operator
	1)	Remove plastic sheeti	ng from drywe	ll torus ver	nts
				GEQA/1	-N
5.13.9	Sys	stem Shutdown			
	Ond tam	ce the steps in Secti mination equipment is s	on 6.13.9 are hutdown as fol	complete, t	the decon-
	a)	Select heater element	s CU-105 and (CU-401 to OF	<u>'F</u> .
	b)	Select circulating pu	mp CU-102 to g	DFF.	
	c)	Close the following i	solation valve		
		CU1-V1, CU3-V4, V1, V	2, V5 and V6.		
	d)	Depressurize decontam	ination equipm	ment as foll	ows:

t

ł

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	42 of 97
	1	I		
	1) check closed, or c	lose, ST1-V1		
	2) open CD2-V2 and CV	2-V1		
	 3) check pressure i reaches zero 	ndication o	on PI-101	and PI-102
•	e) Commence final slurr and drain down procedu	y operations ares as per S	s as per Se ection 6.15	ection 6.14
	System shutdown	n.		
			L	NDC/GEQA
6.14	Resin Slurry			
	liners The followin resin from ion exchange ment designations fo brackets. <u>Do Not</u> proc concurrence of GE Engi and Shift Supervisor.	column CU-2 r CU-102 and eed further	01. Equiva CU-203 ar without th	lent equip- e shown in e specific
6.14.1	Slurry Preparations			
	 a) Set up radiation mo measure radiation slurry operation. 	nitoring equ levels befor	ipment as e, during,	required to and after
	b) Make all personnel ing the slurry proc the operation are kep	ess. Person	nel not es	azards dur- sential to
			LN/GEQA/	SSV

		REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	43 of 97
		1.1.1.1		15 01 77
6.14.2	Slurry Operation The resins from each ion arately. Valve designat ing column CU-201. Equi CU-202 and CU-203 are show	ions are g	iven below	for slurry-
	a) Check closed, or closed (CU5-V2/V3) and CV1-V1	se, CU4-V1	(CU4-V2/V	
	 b) Unlock and open RS1-V6 proximately half threader. Confirm 	. Open CD ottle to e	1-V4 and CD stablish f	low in the
	c) Open CD1-V1 (CD1-V2/V3 the ion exchange column) to provi to initia	de condensat te slurry.	te water to
	d) Open RS1-V1 (RS1-V2/V sight glass RS-201).	V3), and c	onfirm res	in flow in
	e) Monitor sight glass R gamma probe for resin til the sight glass is ing and radiation me significant amount of r	flow. Con ndicates the asurement	tinue slurry hat no resin ts indicat	flow un- is float- e that no
	f) Stroke RS1-V1 (RS1-V2, for additional resin fl	/V3) and mo ow.	onitor the s	sight glass
	g) Close CD1-V1 (CD1-V2/V are stroked to vent col	V3 and CD1 umns.	-V4). CV1-	·V1 (V2/V3)
	 h) Enter data in Table check offs. 	6.12 (Sec	tion 6.7.2) and sign
	Resin slurry complete for sign-off.	See Ta	ble in Sec	tion 6.7.2

. *

	7171.4		REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	- E-	5/31/84	44 of 97
6.15	The inat from drai a)	following steps of tion system once of the recirculatio ns can be used, or Open valve RD2-V4 Once system has d the following valve RD1-V1/V2/V3 RD2-V1/V2/V3/V4/V CV2-V1 CV3-V1 CV4-V1 CV5-V1 CV1-V1/V2/CV3/V4/V RS2-V1/V2/V3 CU4-V1/V2/V3 CU5-V1/V2/V3 CU5-V1/V2/V3 CU5-V1/V2/V3 CU5-V1/V2/V3 CU5-V1 CV5-V1 CV5-V1 CV5-V1 CV4-V1 CV5-V1 CV4-V1 CV5-V1 CV4-V1 CV3-V1 RD10-V1, RD10-V3	the system is s n system. Verif that drain shou to drain the sur epressurized to es: 5/V6/V7/V8	hutdown an y with SSV ld go to to ge tank.	d isolated that floor rus.
	c)	Open CS1-V1/V2 lines.	and CS3-V1/V3 t	o drain th	e sampling
				LN	DC/GEQA
	d)	Remove the threasuction Loop dr threaded end, ru vent.	ain lines. A	ttach a ho	se to the
				G	EQA/LN
•		SSV to drain re	al seules les al		ab realize

ŧ

(

ECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	45 of 97
		1.56 1.0	Constant of the	

f) Once the ion exchange columns are drained, the remaining radiation fields are checked to make certain they are at acceptable levels.

Draining complete.

SSV

SIGNIFICANT DEAD-LEGS ARE TO BE MANUALLY DRAINED TO PLASTIC BOTTLES AND RE-ADDED TO THE LONDON NUCLEAR ION EXCHANGE EQUIPMENT

6.16 Decontamination System Dismantling

Upon completion of the decontamination, dismantle the system in the following manner:

- a) Conduct a post-decontamination radiation survey of the reactor recirculation system as detailed in Section 6.18, Radiation Monitoring and Dose Control Procedures.
- b) Conduct a radiation survey of the decontamination equipment to determine if there is any unacceptable radiation. Surface areas that are contaminated are washed until the level of radiation is reduced to acceptable levels.
- c) Uncouple the decontamination equipment from the reactor recirculation system. Hoses are drained at a convenient floor drain connection.
- d) Secure service water supply and open values CW2-V1 and CW3-V1 to drain the service water lines. Disconnect the service water supply and return lines.
- e) Secure demin or condensate water and CD1-V4, CD1-V5, CD1-V6 and open CD1-V1/V2/V3. Close root valve on condensate or demin water valve, and disconnect the condensate or demin water line.
- . 1) Remove the radioactive waste drain line.
 - g) Uncouple the 480 V electrical connection from Skid 2 and 4.

6.0	Procedures	REVISION	5/31/84	46 of 97			
			1				
h) Disconnect the residue to the liner.	n slurry hose	from the	connection			
1	Remove decon test cou	DODO					
t	Disconnect the Nitrogen bottle and regulator from the surge tank.						
k	Remove the temporary	shielding wall	ls.				
11							
m)	Seal all open pipe flanges.	ends on LN e	quipment w	ith blank			
	Dismantling complete.		Lt	NEC/GEQA			
5.17 <u>Cr</u>	ating and Shipping LN E	guipment		8. 4			
a)	Raise wheels on skids sure wheels are full same position as they	y raised and	skids are	located in			
b)	Bolt sides of crate to Use lag bolts (Do <u>Not</u>	together insur use nails or	ing proper glue).	alignment.			
c)	Perform all necessary	Health Physic	s surveys.				
d)	If no additional shi on crates assuring p Not use nails or glue	roper alignme	eded, then nt, use lag	place tops bolts (Do			
e)	Load on truck using with a minimum ratin minimum fork length of	g of 6 tons (crane or f 12,000 poun	ork truck ds) with a			
f)	Tarp and secure all cr	ates to truck					
	Crating Complete.		LN	EC/GEQA			

ECTION	TIT	LE			REVISION	EFFEC	TIVE DATE	AGE
6.0		Pr	ocedures		-E-	5/	31/84	47 of 97
				TABLE 6.1	1			
		v	ALVE STA		INATION E	QUIP	MENT	
				STATIC RI	SFERENCE	STAT	5	
CHECK	VAL	VE #	SIZE	DESCRIPTION	N		POSITION	
					T	YPE		SKID
	CUI	٧l	3*	Hose Iso. Proc	ess B	all	Open	
	CU1	V2	3*	Hose Iso. Skid	в	all	Open	
	CU1		3"	Skid Inlet Isc	В	all	Open	LN-1
	CUI	V4	3*	Circ. Pump Suction		all	0	
	CU1	VS	1/2*	Press. Instr.)			Open	LN-1
	CUI		1/2*	Press. Instr.1		lobe	Open	LN-1
	CU2		2"			lobe	Open	LN-1
	CU2		3-	Circ. Pump Che		heck		LN-1
	CD."		3"	Circ. Pump Byr	bass B	all	Open	LN-1
	CU	V3	3-	Circ. Pump				LN-1
	-			Discharge Iso.		lobe	Open	
	CU2 CU2		$\frac{1-1/2}{1-1/2}$	Coupon Holder		e11	Open	LN-1
	CU2	110	3*	Outlet.		all	Open	LN-1
			3.	Main Cooler In		all	Closed	
	CU2	v/	3-	Main Cooler Ou	it. B	al1	Locked	
	CU2	VR	3*	Main Cooler By			Open	LN-1
	CU 2		3*	Heater In. Isc		lobe all	Open Locked	
	CIL	V10	1/2"	Denne Trester			Open	LN-1
		-V11	1/2"	Press. Instr.I		lobe	Open	LN-1
	CU3		3"	Press. Instr.I		lobe	Open	LN-1
	CU3		3"	Heater Out. Is		al1	Open	LN-1
	CU3		3"	Skid Out. Iso.	B	all	Open	LN-1
	003	43	3	Hose Iso.				LN-1
	(11)	17.4	3*	Skid End		al1	Open	
•	CU3			Hose Iso Proc End		all	Open	LN-1
	CU3		1/2*	Press. Instr.I	so. G	lobe	Open	LN-1
	CU4	VI	1-1/2*	Exch Column CU	-201		1.000	1.1.1
	CILA	112	1-1/20	Inlet Isolatio		lobe	Open	LN-2
	CU4	V2	1-1/2*	Exch Column CU			1	
	CTLA	11.2	1-1 /0-	Inlet Iso.	G	lobe	Open	LN-2
	CU4	V3	1-1/2*	Exch Column CU				
				Inlet Iso.	G	lobe	Open	LN-2

í

(

SECTION	TITLE				REVISION	EFFECTIVE	DATE 6	AGE	
6.0		Procedu	res		- E-	5/31/	84	48 of 9	7
CHECK V	ALVE	• SIZE		LE 6.1 (Con DESCRIPTION	tinued) TY		SITION		
						<u>re</u>		SKID	
	CU4	V4	2*	IX Cleanu	In.Iso.	Ball	Open	LN-2	
	CU4	V5	2*	IX ISO.		Globe		LN-2	
		V13	2*	IX Cleanup	Bypass		Closed		
		V14	2*	Hose CU-30	1 Iso.	Ball	Open		
		V15	2*	Hose CU-30		Ball	Open		
	CU 5		1-1/2"	Exch. Col					
				Out. Iso		Ball	Open	LN-2	
	CU5	V2	1-1/2"	Exch. Col					
				Out. Iso		Ball	Open	LN-2	
	CU 5	V3	1-1/2"	Exch. Col.		1			
			1	Out. Isc	- and and a second second second second	Ball	Open	LN-2	
	CUS	V4	2*	IX Cleanup		Ball	Open	LN-2	
	1000		A 19	Isolatio	on	4444			
	CU5	V5	2*	Hose CU-30		Ball	Open		
	CU5		2*	Hose CU-30		Ball	Open	-	
	CU 5		2*	Purificati			open	-	
				Reverse		Check	N/A	LN-1	
	CU5	VR	2*	Purificati					
	005		•	Flow Cor		Ball	Closed	LN-1	
	CUS	VQ	2"	First Con	a contract of the second s	Dall	Closed		
	003			Flow Cor		Ball	0000	LN-1	
	CU6	V1	3*	Reverse Fl	OW TEO	Globe	Closed		
	CU7-		3*	Reverse Fl		Globe	Closed		
	CI1-		2*	Chemical A	A THE ADDRESS OF A DECK OF	Ball	Locked		
				Sucurear 1		Darr	Closed		
	CI1-	V2	1/2*	Cooling Wa	ter Iso.	Globe			
	CII	V3	1/2*		Injectio				
				Pressure 1		Globe	Open	LN-1	
N. 216.	CI 2	VI	1-	Chemical 1				LN-1	
	-			Inlet Is		Ball	Closed		
	CI 3	VI	1*	Chemical I		-		LN-1	
	-			Outlet I		Ball	Closed		
	ST1	VI	1/2*	Nitrogen I	80.	Globe	Closed	LN-1	
			1 /0 -	much mit					
	CV1	AT.	1/2*	Exch. Colu		-			
			1 100	CU-201 V		Globe	Closed	LN-2	
	CV1	V2	1/2*	Exch. Colu CU-202 V		-	Closed		

* *

TION .	1.00	L.E			NEVISION	EFFECTIVE DATE	PAGE
6.0		Pre	ocedure		- E-	5/31/84	49 of 97
				TABLE 6.1 (Cont	inued)	1.1.1	
				indee ore reone	Anded /		
CHECK	VAL	VE .	SIZE	DESCRIPTION	TYPE	POSITION	Skid
	CV1	V3	1/2*	Exch. Column CU-203 Vent	Claba		
	CV1	V4	1/2"	Vent	Globe	Closed	
		V5	1/2=	Vent	Globe	Closed	
		V4	1/2		Globe	Closed	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
	LAT.			1/2"Relief Iso.	Ball	Locked	
	CV1	110	1*	stant man at an		/Open	
	CAT	vo	10	Vent Pot Check	Swing Check	N/A	LN-2
	CV2	V1	1/2*	Surge Tank Vent	Glo	be Closed	
		V11	1/2*	Heater Vent			
	CV4		1/2-	Main Cooler Out.			
*	CV 5	Vl	1/2" .	Line Vent Chemical Inj.	Glo		
	CV6	Vl	1/2*	Vent Main Cooler Shel	Glo	be Closed	LN-1
	CD1	V1	1-1/2=			be Closed	LN-1
	CD1	V2	1-1/2=	Cond. Inlet Iso. Exch. Col. CU-20	Bal	1 Closed	LN-2
	CD1	V3		Cond. Inlet Iso. Exch. Col. CU-20	Bal	1 Closed	LN-2
				Cond. Inlet Iso.		1 Closed	LN-2
	CD1		1-1/2*	Cond. In. Iso.	Bal		LN-2
	CD1	V5	1-1/2*	Cond. Bypass to			
	-			Slurry	Bal	1 Closed	LN-2
	CD1	v0	1-1/2*	Condensate Bypas			
	-			to Skid Inlet	Bal		LN-2
	CD2		1"	Cond. Supply Iso			LN-1
	ST1		1/2"	Nitrogen Iso.	Glo		LN-1
	ST1		1/2"	Nitrogen Iso.	Glo		LN-1
	CD 2		1-1/2*	Surge Tank Iso.	Bal		LN-1
1	RV1	VI	1/2*	Surge Tank Relie	f Rel		161.0
		113	1/20	Marken Balling		Installed	LN-1
1.1	RV1	4.5	1/2*	Heater Relief	Rel	The second se	
			1 /0 -			Installed	LN-1
	RV1	V3	1/2*	Chemical Injecti		As	LN-1
1.0				Vessel Relief	Rel	ief Install	ed

CTION	TITLE			PE	VISION	EFFECTIV		
6.0		Pro	cedures		- E-	5/31	/84 5	0 of 97
				TABLE 6.1 (Conti	(nued)			
CHECK	VALV	<u>E (</u>	SIZE	DESCRIPTION	TYPE	PC	SITION S	kið
	CW2	V1	1-1/2*	Cooling Water Return Iso.		Ball	Closed	LN-1
	CW 3	Vl	3/4"	Sample Cooler C Supply Iso.	.w. 1	Ball	Open	LN-1
	CW5	VI	1/2"	Chemical Inj. C Supply Iso.	(Check	N/A	LN-1 LN-1
	CWS		1/2*	Wash Down Iso.	(lobe	Closed	DM-1
	CS1		1/2*	Before Sample Isolation		Ball Ball	Closed	LN-1 LN-1
	CS1 CS3		$\frac{1/2}{1/2}$	Before Sample I After IX Sample Isolation		Ball	Closed	LN-1
	CS3	V2	1/2*	After IX Sample Isolation		Ball	Closed	the second se
	CS4 RS1		1/2" 1-1/2"	Sample Sink Iso Exch. Col. CU-2	01	Globe	Closed	
	RS1			Slurry Iso. Exch. Col. CU-2	02	Ball	Closed	LN-2 LN-2
	RS1		1-1/2 "	Slurry Iso. Exch. Col. CU-2	03	Ball Ball	Closed	LN-2
	RS1	V6	1-1/2*	Slurry Iso. Resin Slurry Sk Outlet Iso.	tid	Ball	Locked	-
	80.3	V1	1/2*	Exch. Col. CU-2			Closed	LN-2
		v2	1/2*	Slurry Drain Exch. Col. CU-3		Ball	Closed	
		V3	1/2*	Slurry Drain Exch. Col. CU-3		Ball	Closed	
		V1	1.	Slurry Drain Exch. Column		Ball Ball	Closed	
	RDI	V2	1"	CU-201 Drain Exch. Column		Ball	Closed	
				CU-202 Drain				

ICN	TITLE			REVIS	SION	EFFECTIVE		1.
6.0	1	Pro	cedures		- E-	5/31/	/84 5	1 of 97
				TABLE 6.1 (Contin	nued)			
CHECK	VALV	E I	SIZE	DESCRIPTION	TYPE	PO	SITION	kid
	RD1	V3	1*	Exch. Column CU-203 Drain		Ball	Closed	LN-2 LN-2
	RD1	V6	1*	Skid Drain		Ball	Open	LN-2
	RD2		1.	Circ. Pump Sucti Line Drain	on	Ball	Closed	LN-1
			S	a second a		Ball	Closed	LN-1
	RD2		1*	Heater Drain		Ball	Closed	
	RD2		1"	Process Out. Dra		Ball	Closed	
	RD2		1.	Surge Tank Drain				
	RD2	V5	1"	Coupon Holder Drain		Ball	Closed	LN-1
	RD2	V6	1*	Chemical Injecti	on	Ball	Closed	
				Drain Sample Sink Chec		Check	N/A	LN-1
	RD2		1.	Sample Sink Drai	n	Ball	Open	LN-1
	RD2	V8	1.	Sample Sink Dra.				
	HT1	V1	1/2*	Hydrostatic Test Isolation		Ball	Closed	LN-1
	HT 2	٧l	1/2*	Hydrostatic Test Isolation	t	Ball	Closed	LN-2

t

...

CTION	TITLE		EFFECTIVE DATE	PAGE	
6.0	Proced	lures -E-		5/31/84	52 cf 97
	MISCELL	TABLE 6. ANEOUS DECONTAMINAT STATIC REFEREN	ION EQUIN	PMENT STATUS	
Equip	ment	Description		Status	
CU-20	1/202/203	IX Column		Charged v	with Resin
CU-10	2	Circulating Pump		Off	
CU-10	4	Main Circuit Cooler		Isolated	
CU-10	5	Electric Heater		Off	
CU-20	4/205	Filters		Isolated	
CI-10	01/	Chemical Injection	n Vessel	Isolated	
Nitrogen Bottle and Regulator		Surge Tank Charging System		Connected and Isolated	

SECTION	TITLE	·	EVISION	EFFECTIVE DATE	PAGE
6.0	.0 Procedures		-E-	5/31/84	53 of 97
		TABLE 6.3			
	VA	LVE STATUS: SKID LN-4 STATIC REF			
Valve	Size	Description	Typ	e <u>Stat</u>	us
CU10-V1	3*	Hose Ivolation	Bal	1 Open	
CU10-V2	-	Hose Iso Skid 4 En			
CU10-V3		Process Inlet	Bal		
CU10-V4		Heater (CU-401) Inlet	Bal	1 Open	
CU10-V5	1/2*	Pressure Indicator		de la secola	
	1.2.5	(PI-401) Isolation	Glo		
CU11-V1		Heater (CU-401) Outle			
CU11-V2		Heater (CU-401) Bypas			
CU11-V3		Process Outlet	Bal	1 Open	
CU11-V4	1/2*	Pressure Indicator	Glo	he Oner	
CV10-V1	1/2"	(PI-402) Isolation Process Vent	Glo		
CV12-V1		Heater (CU-401) Vent	Glo		
RD10-V1		Heater (CU-401) Drain			
RD10-V2		Heater (CU-401) Drain			
1010 12	•	Check	Che	ck	
RD10-V3	1*	Drain Isolation	Bal		ed/Open
RD10-V4		Vent Pot (CU-402) Dra	in		
		Check	Che		
RV10-V1	2*	Heater (CU-401) Relie	f) Rel	ief As 1	Installed

F

PAGE
54 of 97
5.

TABLE 6.4

VALVE STATUS: TEMPORARY VALVES STATIC REFERENCE STATE

CHECK VALVE #	SIZE	DESCRIPTION	TYPE	POSITION
VI	3"	RHR Return A - Isolation Skid End	Ball	Open
V2	3*	RHR Return B - Isolation Skid End	Ball	Open
¥3	3*	RHR Return B - Iso. Process End	Ball	Open
V4	3*	RHR Return A - Iso. Process End	Ball	Open
V 5	3*	RHR Supply Iso. Skid End	Ball	Open
V6	3*	RWCU Iso. Skid End	Ball	Open
V7	3*	RWCU Iso. Process End	Ball	Open
V8	3*	RHR Supply Iso Process End	Ball	Open
V9	3*	Regirc. Loop A Suction	Ball	Open
V10	3*	Recirc. Loop <u>B</u> Suction	Ball	Open
V11	2*	Recirc, Loop A Suction Vent	Ball	Closed
V12	2*	Recirc. Loop B Suction Vent	Ball	Closed
V13	2*	Riser JP 1/2 Iso.	Ball	Open
V14	2*	Riser JP 3/4 Iso.	Ball	Open
V15	2*	Riser JP 5/6	Ball	Open
V16	2"	Riser JP 7/8	Ball	Open
V17	2*	Riser JP 9/10	Ball	Open
V18	2*	Riser JP 11/12	Ball	Open
V19	2*	Riser JP 13/14	Ball	Open
V20	2*	Riser JP 15/16	Ball	Open

....

C

SECTION	TITLE		REVI	SION	EFFECTIVE DATE	PAGE
6.0	Pr	ocedures	3	- E-	5/31/84	55 of 97
			TABLE 6.4 continu	ed		
CHECK	VALVE .	SIZE	DESCRIPTION		TYPE	POSITION
CHECK	VALVE	SIZE 2"	DESCRIPTION Riser JP 17/18		TYPE Ball	POSITION Open
CHECK					and the second	
CHECK	V21	2*	Riser JP 17/18		Ball	Open
CHECK	V21 V22	2" 2" 3"	Riser JP 17/18 Riser JP 19/20		Ball Ball	Open Open
CHECK	V21 V22 V25	2"	Riser JP 17/18 Riser JP 19/20 Manifold <u>A</u> Iso.		Ball Ball Ball	Open Open Open
CHECK	V21 V22 V25 V26	2" 2" 3" 3"	Riser JP 17/18 Riser JP 19/20 Manifold A Iso. Manifold <u>B</u> Iso.	in	Ball Ball Ball Ball	Open Open Open Open

...

TION TITLE			REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	al de la de	- E-	5/31/84	56 of 97
		TABLE 6.4	.2		
	RHR RETURN	LOOP 'A' J DATA SHEET		ANGEMENT	
JOINT ID	COMPONENTS	DATA SHEE	T COMPLI	ANCE	REMARKS
		Initial Hookup △	^T 1 Δ ^T 2		
RHR-R-A-01	X/Valve Vl				
RHR-R-A-02	Valve V1/ 50' Hose				
RHR-R-A-03	50' Hose/ X 50' Hose				
	50' Hose/ X Valve (V4)				
RHR-R-A-04					
	Valve V4/ RHR 'A'				

0N	TITLE	Den and and		REVIS	ION	EFFECTIVE	DATE	PAGE	
6.0	F	Procedures			- E-	5/31	/84	57 of 9	7
			TABLE 6.						
		RER RETURN I	DATA SHEE		T ARR	ANGEME	NT		
JOINT	ID	COMPONENTS	DATA SHE	ET C	OMPLI	ANCE		REMARKS	_
			Initial Hookup	∆ ^T 1	∆ ^T 2	∆ ^T 3	∆ ^T 4		
RHR-R-	B-01	X/Valve V2	19.16						
RHR-R-	B-02	Valve V2/ 50' Hose							
RHR-R-	B-03	50' Hose/ Valve V3							
RHR-R-	B-04	50' Valve V3/ RHR 'B'							
						•			

LONDON NUCLEAR

. ..

ION TITLE			REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures		- E-	5/31/84	58 of 97
		TABLE 6.4.		M P.NT	
	RHR-50C	DATA SHEET			
JOINT ID	COMPONENTS	DATA SHEET Initial Hookup 🛆			REMARKS
RHR-S-01	X/Valve V5				
RHR-S-02	Valve V5/ 50' Hose				
RHR-S-03	50' Hose/ X 50' Hose				
RHR-S-04	50' Hose' X Valt V8				
RHR-S-05	Valve Vo! RHR - Suct:	ion			

CTION	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-	- E-	5/31/84	59 of 97
		TABLE 6.4.	5		
JOINT 1	ID <u>COMPONENTS</u>	DATA SHEET	COMPLI	ANCE	REMARKS
		Initial Hookup ∆T	1 △ ^T 2	∆ ^T 3 ∆ ^T 4	
LA-01	Valve CU3-V3				
LA-02	Valve CU3-V3/ 50' Hose				
LA-03	50' hose/ 50' hose				
LA-04	50' hose/ 50' hose				
LA-05	50' Hose/ Valve CU3-V4				
LA-06	Valve CU3-V4/ N6A nozzle				

*

TION	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	1. S. (2	- E-	5/31/84	60 of 97
		TABLE 6.4	.6		
		E N6B JOINT A	ARRANGE	MENT	
JOINT	ID COMPONENTS	DATA SHEE	COMPL	IANCE	REMARKS
		Initial Hookup ∆'	r ₁ ∆ ^T 2		
LB-01	X/Valve CU1-V2				
LB-02	Valve CU1-V2/ 50' Hose				
LB-03	50' Hose/ Valve CU1-VI	í s			
LB-04	Valve CU1-V1 /N6B Nozzle				

ECTION	TITLE	- 14 C	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures		- E-	5/31/84	61 of 97
		TABLE 6	.4.7		
	RWC	CU JOINT A DATA S		T	
JOINT	ID COMPONENTS	DATA SH	EET COMPI	LIANCE	REMARKS
		Initial Hookup		$\Delta^{T}_{3} \Delta^{T}_{4}$	
RWCU-0	1 X/Valve V6				
RWCU-0	2 Valve V6/ 50' hose				
RWCU-0	3 50' hose/ 50' hose				
RWCU-0	4 50' hose/ 50' hose				
RWCU-0	5 50' hose/ 50' hose				
RWCU-0	6 50' hose/ C0' hose				
RWCU-0	7 50' hose/ 50' hose				
RWCU-0	8 Valve V7 RWCU				
			•		

6

ON	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	62 of 97
	N2A-N2B MANIFO	TABLE 6.4.8 OLD AND JUMPER JOI ATA SHEET	INT ARRANGEMEN	T
JOINT 1	D COMPONENTS	DATA SHEET COM	PLIANCE	REMARKS
		Initial Bookup Δ^{T}_{1} Δ^{T}_{1}		
			2 - 5 - 1	
NZA-01	Riser/			
NZA-02	Valve V17 Valve V17/			
MFA-01	20' Hose 20' hose/			
NZA-03	'A' Manifol Riser/	a		
NZA-04	Valve V16 Riser/			
MPA-02	Valve V17 15' hose/ 'A' Manifol			
NZA-05				
NZA-06				
MFA-03		la		
NZA-07				
NZA-08				
MPA-04		Id		
NZA-09	Riser/			
NZA-10		10. State 1.		
MPA-05		14		
NZB-01				

(

(

٠

.

.

ON TITLE			REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures		- E-	5/31/84	63 of 97
	N2A-N2B MANIFO	E 6.4.8 (Co LD AND JUM) TA SHEET			т
JOINT ID	COMPONENTS	REMARKS			
		Initial Hookup	$\Delta^{T_1} \Delta^{T_2}$		
NZB-02	Valve V22/ 20' hose				
MPB-01	20' hose/ 'B' Manifold				
NZB-03	Riser/Valve V2	21			
NZB-04	Valve V21/				
	15' hose	1.11.11.1			
MPB-02	15' hose/'B' m	manifold			
NZB-05	Riser/ Valve V20				
NZB-06	Valve V20/ 10' hose				
MPB-03	10' Hose/ 'B' manifold	1			
N2B-07	Riser/ Valve V19				
N2B-08	Valve V19/ 15' hose				
MFB-04	15' hose/ 'B' manifold	a			
N2B-09	Riser/ Valve V18				
N2B-10	Valve V18/ 20' hose				
MFB-05	20' hose/ 'B' manifol				
MFA-J-06	'A' manifold/ Valve V25				
MFA-J-07	Valve V25/ 50' hose				
MFB-5-06	50' hose/ Valve V26				
MPB-J-07	Valve V26/ 'B' manifol	đ			

E

ECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	64 of 97
	NIA-	TABLE 6.4.9	ENT	
		DATA SHEET	-	
JOINT I	D COMPONENTS	DATA SHEET COMPL	IANCE	REMARKS
		Initial Hookup $\triangle^{T}_{1} \triangle^{T}_{2}$	Δ^{T}_{3} Δ^{T}_{4}	
NIA-01	NIA/ Valve V9			
NIA-02	Valve V9/ 50' hose			
N1B-01	50' hose/ Valve V10			
N1B-02	Valve V10/			

ION	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0	Pro	ocedures	- E-	5/31/84	65 of 97
		TABLE 6	.5		
		STATION INSTAL SUCTION SIDE DECONT	LED VALVES AMINATION	STATUS	
Val Design		Description			Position
M0-	-53A	Recirculation Pump A	Discharge	e Iso.	Closed
M0-	-53B	Recirculation Pump			Closed
M0-	-43A	Recirculation A Suct	ion Iso.		Open
MO-	-43B	Recirculation B Suct	ion Iso.		Open
MO-	-66A	Ring Header A Bypass			Open
MO	-66B	Ring Header B Bypass			Open
MO	-65A	Ring Header A Cross-	-Tie		Open
MO	-65B	Ring Header B Cross-	-Tie		Open
PO	S-81B	RHR Return B Isolat:	ion		Open
PO	S-81A	RHR Return A Isolat	ion		Open
MO	-10-18	RHR Supply Isolation	n		Open
MO	12-15	RWCU Suction Isolat	ion		Open
MA	N 12-46	RWCU Suction Isolat	ion		Open
MO	-12-18	RWCU Supply			Open
		Temporary A Suction	Loop Val	ve	Closed
		Temporary B Suction	Loop Val	ve	Closed

ON	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0	Pro	ocedures	- E-	5/31/84	66 of 97
	DI	TABLE 6 STATION INSTAL SCHARGE SIDE DECONTAM	LED VALVES	ALVE STATUS	
Val Desigr		Descri	ption		Position
M0-	-53A	Recirculation Pump	Discharge	e Iso.	Open
M0-	-53B	Recirculation Pump	B Discharg	e Iso.	Open
MO-	-43A	Recirculation Pump	A Suction	Isolation	Closed
MO	-43B	Recirculation Pump	B Suction	Isolation	Closed
MO	-66A	Ring Header A Bypass	s		Open
MO	-66B	Ring Header B Bypas	s		Open
MO	-65A	Ring Header A Cross	-Tie		Open
MO	-65B	Ring Header <u>B</u> Cross	-Tie		Open
PO	S-81B	RHR Return <u>B</u> Isolat	ion		Open
PO	S-81A	RHR Return A Isolat	ion		Open
MO	-10-18	RHR Supply Isolatio	n		Open
MO	12-15	RWCU Suction Isolat	ion		Open
MA	N12-46	RWCU Suction Isolat	ion		Open
MO	-12-18	RWCU Supply			Open
		Temporary A Suction	Loop Val	ve	Closed
		Temporay B Suction	Loop Valv	e	Closed

TION	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures		- E-	5/31/84	67 of 97
		TABLE 6.	7		
	REAG	SENT ADDITION	CHECK SHE	ET	
SYSTEM	BEING DECONTAMI	NATED:			
Time	Chemica Date Type		Concn	Signa	ture
	•				
		1	1. g - 1. j -		

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	68 of 97

TABLE 6.8

SAMPLING CHECK SHEET

System Being Decontaminated:

Phase of Decontamination:

Sample Quantity:

Sample No. Date Time

....

Sample Location Signature

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	69 of 97

TABLE 6.9

RADIATION MONITORING CHECK SHEET

Comments to be Noted Where Necessary

...

LOCATION

				ION		
DATE TIME	Latin and the state	OUTLET HOSE	SAMPLING AREA	EXCHANGE COLUMN(S)	GENERAL AREA	SIGNATURE

TION	TITLE			REVISION		IVE DATE	PAGE
6.0	Proced	ures		- E	- 5/3	1/84	70 of 97
			TABLE	6.10			
		OP	ERATIONS	LOG SHE	ET		
DATE TI	PI-101 ME (psig)	PI-102 (psig)	PI-103 (psig)	PI-104 (psig)	TI-101 (°F)	FI-101 (GPM)	FI-202 (GPM)
						•	
				•			

N N	ITLE			REVISION	EFFECTIVE DATE	PAGE
6.0	Proce	edures		- E-	5/31/84	11 of 97
			TABLE (5.12		
		IX (IO	N EXCHANGE) RESIN L	OADING	
		DECTN	COLUMN			SIGN-OFF
BATCH	IX LOT	RESIN	NUMBER	DATE	TIME	LN/GE
			LONDON			

TABLE 6.11

CHEMISTRY MONITORING SCHEDULE

1.1.1			Decontami	nation		
	Readings and	Predecon- tamination	THE TANK THE TANK		LND-101A Removal	
	Analyses	Step -	First * 2 h.			
	pH and conductivity	analyses	30-min.	30-min		
During the first two hours or the.	conductivity	as required	intervals.	inter	vals	
econtamination, ore frequent	Temperature	v *	1-1	i .	• • •	
nalysis may be performed if			interval	ls _		
conditions permit.	Dissolved oxygen .	analyses as required				
TOC will be measured when	ox Jy c	after N ₂ H ₄ addition				
conductivity during cleanup falls below 200	Reagent		analyse	. j	1.0	
mho/cm and at			as requir	red	1.1.1.4	
one hour intervals fterwards.	Crud	an	alyses			
		as required				
	Dissolved	analyses	30 -min	30-min	or 1-h	
	fetals Dissolved radionuclides	as required	intervals	interv	als	

Total Organic		as required**	
Carbon	-		1

TABLE 6.1 ATION RADIATION Initial Reading (mR/h)	N LEVEL At En	d of <u>tamination</u> ng DF	73 of	97
ATION RADIATION Initial Reading	N LEVEL At En <u>Decon</u> Final Readi	d of <u>tamination</u> ng DF		
ATION RADIATION Initial Reading	N LEVEL At En <u>Decon</u> Final Readi	d of <u>tamination</u> ng DF		
Initial Reading	At En <u>Decon</u> Final Readi	d of <u>tamination</u> ng DF		
Reading	Decon Final Readi	tamination ng DF		
Reading	Readi	ng DF		

LONDON NUCLEAR

6.0	Procedures	REVISION -E-	5/31/84	74 of 97
0.0				<u> </u>
		A. Million and		
5.18	CHEMICAL AND RADIOCHEMIC DURING DECONTAMINATION	CAL MONITORING		
5.18.1	Parameters to be Moniton			
	Monitor the follo decontamination:	wing param	neters du	iring the
	a) Gross Activity			
	b) Dissolved Radionuc.	lides		
	c) Dissolved Metals			
	d) Conductivity and p	Н		
	e) LN_Reagent Analysis f) Fe ² to Total Iron	Patio		
		RACIO		
	g) Crud Samplingh) Hydrazine			
	i) Dissolved Oxygen			
	j) Total Organic Carb	on (TOC)		
	The parameters are list order of their import With the exception of	tance and Ire	guency in	monitoring.
	are usually routinely as part of normal opera	monitored at	nuclear po	wer stations
	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p	monitored at tions. ons in the equ es. Install a ipe, flange,	ipment auto	clave to de- ns, cut from
	are usually routinely as part of normal opera Install non-active coup	monitored at tions. oons in the equ es. Install a ipe, flange, actors. Peach Bottom w	nuclear po nipment auto active coupo gasket etc.	clave to de- ns, cut from), to deter-
6.19	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for	monitored at tions. oons in the equ es. Install a ipe, flange, actors. Peach Bottom w	nuclear po nipment auto active coupo gasket etc.	clave to de- ns, cut from), to deter-
6.19 6.19.1	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u>	monitored at tions. oons in the equ es. Install a ipe, flange, actors. Peach Bottom w ceel.	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels
	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u> Concentrated Acids and	monitored at tions. oons in the equ es. Install a ipe, flange, ictors. Peach Bottom w ceel. Bases (Supplice NH,OH	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels
6.19 6.19.1	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u> Concentrated Acids and Ammonium hydroxide	monitored at tions. oons in the equ es. Install a ipe, flange, actors. Peach Bottom w ceel. Bases (Supplie	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels
	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u> Concentrated Acids and	monitored at tions. ons in the equ es. Install a ipe, flange, actors. Peach Bottom w teel. Bases (Supplie NH OH HCI HNO ₃	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels
6.19.1	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u> Concentrated Acids and Ammonium hydroxide Hydrochloric acid Nitric acid Sulphuric acid	monitored at tions. oons in the equ es. Install a ipe, flange, actors. Peach Bottom w teel. Bases (Supplie NH OH HCI	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels
6.19.1	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u> Concentrated Acids and Ammonium hydroxide Hydrochloric acid Nitric acid Sulphuric acid	monitored at tions. ons in the equ es. Install a ipe, flange, actors. Peach Bottom w teel. Bases (Supplie NH OH HCI HNO ₃	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels
6.19.1	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u> Concentrated Acids and Ammonium hydroxide Hydrochloric acid Nitric acid	monitored at tions. ons in the equ es. Install a ipe, flange, actors. Peach Bottom w teel. Bases (Supplie NH OH HCI HNO ₃	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels
6.19.1	are usually routinely as part of normal opera Install non-active coup termine corrosion rat a reactor artifact (p mine decontamination fa Inactive coupons for 304, 316L and carbon st <u>Required Chemicals</u> Concentrated Acids and Ammonium hydroxide Hydrochloric acid Nitric acid Sulphuric acid	monitored at tions. ons in the equ es. Install a ipe, flange, actors. Peach Bottom w teel. Bases (Supplie NH OH HCI HNO ₃	nuclear po nipment auto sctive coupo gasket etc.	clave to de- ns, cut from), to deter- nless steels

Met 6.19.3 Oth Buf Cal (or Che (Or Eth (So Eth (So Hyd Hyd Ir (C Or Po Po Sa So	imony (III) oxide fers (pH 4, 7 and 10)	H (CH ₃ CH		75 of 97
Met 6.19.3 Oth Buf Cal (or Che (Or Eth (So Eth (So Hyd Hyd Ir (C Or Po Po Sa So	hanol (OR Ethanol) CH ₃ O her Reagents (Supplied by LN imony (III) oxide fers (pH 4, 7 and 10)	H (CH ₃ CH		
Met 6.19.3 Oth Buf Cal (or Che (Or Eth (So Eth (So Hyd Hyd Ir (C Or Po Po Sa So	hanol (OR Ethanol) CH ₃ O her Reagents (Supplied by LN imony (III) oxide fers (pH 4, 7 and 10)	H (CH ₃ CH		
6.19.3 Oth Buf Cal (or Che (Or Eth (So Eth (So Hyv Hyv Ir (C Or Po Po Sa So	imony (III) oxide fers (pH 4, 7 and 10)		1 ₂ OH)	
Ant Buf Cal (or Che (Or Et) (se Hye Hye Ir (c Or Po Po Sa So	imony (III) oxide fers (pH 4, 7 and 10)	,		
Buf Cal (or Che (Or Et) (so Et) (so Hyp Hyp Ir (c Or Po Po Sa So	fers (pH 4, 7 and 10)		Ch O	
Buf Cal (or Che (Or Et) (so Et) (so Hyp Hyp Ir (c Or Po Po Sa So	fers (pH 4, 7 and 10)		Sb203	
(or Che (Or Et) (so Hyo Hyo Ir (c O- Po Po Sa So			CaCl.	
Che (O) Etl (Sc Hy Hy Ir (C O- Po Po Sa So	cium chloride		[Ca(Nog)	1
(O) P-(Etl (sc Hy Hy Ir (c O- Po Po Sa So	Calcium nitrate			2
p-c Etl (sc Hyd Hyd Irc (c O- Po Po Sa So	emet Test Kit			
Etl (sc Hyd Hyd Ird (c Po Po Sa So	tygen low range) 0-100 ppb dimethylaminobenzaldehyde		CoHIINO	
(so Hyd Hyd Ird (c O- Po Po Sa So	hylenediamine tetra acetic a	cid	C10 16 N	0,0
Hy Hy Ir (c O- Po Po Sa So	odium salts may be used)			
Hy Ir (c O- Po Po Sa So	drazine hydrochloride		N2H4.2H	C1
Ir (c O- Po Po Sa So	droxylamine hydrochloride		NH2OH.HO	C1
Ir (c o- Po Po Sa So	on (TT) ammonium sulphate			
(c o- Po Po Sa So	Fe(t	1H4)2(SO	4'2.6H20	
(c o- Po Po Sa So	on (III) sulphate		4 2 Fe2(SO4	'3
o- Po Po Sa So	hloride or nitrate salts may	be sub	stituted/	
Po Sa So	phenanthroline		KC1 ^H 8 ^N 1	
Sa So	tassium chloride		KMnO,	
So	tassium permanganate			
So	licylic acid		C7H603 NAC2H30	-
	dium acetate		SnC1,3	2
	n (II) chloride		4	
Alby	l chemicals supplied by L LN upon completion of the	N under job.	6.19.3 wil	1 be remove
	tal Standard Solutions (Supplied by Station)			
Me	etal solutions (1000 ug/ml) ons (Fe, Ni, Cr, Zr, Mn, Cu)	are re	quired for t	the following

ŧ

6

6.0	Procedures	REVISION	S/31/84	76 of 97
				_

6.20 Analysis

6.20.1 Radionuclide Analysis

Radionuclides will be determined by PECo using gamma spectrophotometry. Preferred equipment requirements are a multi-channel analyzer of at least 1024 channels coupled to a GeLi detector. NaI(T1) detector could be used if required, but resolution is poorer. The energy range of main interest is 0.1 to 2.0 Mev. Computer analysis involving peak identification and printout of concentrations is highly desirable. Equipment of this type is now standard at most nuclear power plants and was used during previous decontaminations at Peachbottom (1982 and 1983). This includes a GeLi detector.

Previous decontamination on Unit 2 RWCU system showed the following major radionuclides:

Radionuclide

Major Emissions (MEV)

Cr-51	0.324
Mn-54	0.835
Co-58	0.81
Co-60	1.17, 1.33
Zn-65	1.11

Cs-137 may also be present in minor quantities. Its emissions at 0.662 Mev will also be measured to meet 10CFR61 requirements.

6.20.2 Direct Current Plasma Jet Analyzer

Analyze following elements, Fe, Ni, Cr, Mn, Zn, Cu, simultaneously, using the direct current plasma jet analyzer.

	TITLE		REVISION	EFFECTIVE DATE	77 of 97
6.0	Procedures		- E-	5/31/04	11 01 97
6.20.3	Conductivity A multi-range	conductivit	y meter	and cell sp	panning the
	range 1 umho co ity cell is reco	10,000 umho : ommended.	is require	a. A spare	conducerv
	The instrument chloride solution	ons. Specific	c conducta	ing standar inces are gi	iven below:
	Grams KCl/kg of Solution	K ia ohm <u>18</u> <u>C</u>	<u>25</u> = <u>C</u>		
	71.1352 7.4191 0.7453	0.09784 0.01117 0.001221	0.11	286	
6.20.4	pШ				
	A typical labo electrodes sho tion. Readou				
	feature.				
		uld be calibr			
6.20.5	feature. Instrument sho tions (pH 4, 7, Oltraviolet/Vis	and 10).	ated usin	g standard	buffer solu-
6.20.5	feature. Instrument sho tions (pH 4, 7,	and 10).	ated usin photometer meter is	g standard used to m	buffer solu-
6.20.5	feature. Instrument sho tions (pH 4, 7, Ultraviolet/Vis An UV/VIS sp absorbance of t Iron (II) and c	uld be calibr and 10). able Spectrop ectrophoto the following phenanthroli	botometer meter is complexes ine at 518	g standard used to m	buffer solu-
6.20.5	feature. Instrument sho tions (pH 4, 7, Ultraviolet/Vis An UV/VIS sp absorbance of t	uld be calibr and 10). able Spectrop ectrophoto the following phenanthroli	botometer meter is complexes ine at 518	g standard used to m	buffer solu-
6.20.5	feature. Instrument sho tions (pH 4, 7, Ultraviolet/Vis An UV/VIS sp absorbance of t Iron (II) and c	ould be calibr and 10). wible Spectrop ectrophoto the following p-phenanthrolic p-dimethylamin cell is require th cell is a performant of the checked on	ated usin photometer meter is complexes ine at 518 nobenzalde red but la desirable the instr	g standard used to m nm shyde at 458 arger cells e feature.	buffer solu- neasure the nm may be used Absorption
6.20.5	feature. Instrument sho tions (pH 4, 7, Ultraviolet/Vis An UV/VIS sp absorbance of t Iron (II) and o Hydrazine and p A one (1) cm o A flow throug maxima should	ould be calibr and 10). wible Spectrop ectrophoto the following p-phenanthrolic p-dimethylamin cell is require th cell is a performant of the checked on	ated usin photometer meter is complexes ine at 518 nobenzalde red but la desirable the instr	g standard used to m nm shyde at 458 arger cells e feature.	buffer solu- neasure the nm may be used Absorption
6.20.5	feature. Instrument sho tions (pH 4, 7, Ultraviolet/Vis An UV/VIS sp absorbance of t Iron (II) and o Hydrazine and p A one (1) cm o A flow throug maxima should b ble errors in t	ould be calibr and 10). wible Spectrop ectrophoto the following p-phenanthrolic p-dimethylamin cell is require th cell is a performant of the checked on	ated usin photometer meter is complexes ine at 518 nobenzalde red but la desirable the instr	g standard used to m nm shyde at 458 arger cells e feature.	buffer solu- neasure the nm may be used Absorption
6.20.5	feature. Instrument sho tions (pH 4, 7, Ultraviolet/Vis An UV/VIS sp absorbance of t Iron (II) and o Hydrazine and p A one (1) cm o A flow throug maxima should b ble errors in t	ould be calibr and 10). wible Spectrop ectrophoto the following p-phenanthrolic p-dimethylamin cell is require th cell is a performant of the checked on	ated usin photometer meter is complexes ine at 518 nobenzalde red but la desirable the instr	g standard used to m nm shyde at 458 arger cells e feature.	buffer solu- neasure the nm may be used Absorption

.

SECTION	THE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	78 of 97
6.20.6	Total Organic Carbon Analyzer			
	A total organic carbon (TOC sure reagent removal duri decontamination.	ng clea	nup at the	end of the
6.20.7				
	The following general lat required:	boratory	support eq	quipment is
	 a) Weighing facility to+0. b) Supply of demineralized c) Supply of water and dra 4) stirrers and hot plates 5) Filtration equipment 6) Fume hood 	water inage to		
6.21	Laboratory Familiarization			
×-0	The two London Nuclear che themselves with the Familiarization shall consis	Peach	BOLLOW Ta	familiarize boratory.
	a) Safety procedures for chemical cleanup kits e	tc.).	ire, shower	s, eyewash,

ECTION	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	- E-	5/31/84	79 of 97
	ь)	Radiological proce radioactive waste tive samples.	edures for la handling pro	b (radiologi cedures, sto	cal zoning, prage of ac-
	c)	Layout and stora equipment (beaker kimwipes, marking p	s, flasks, V	olumetrics	, htherees
	a)	Operation and loc (balances, stirrers	ation of comm s, fume hoods	on laborato: etc.).	ry equipment
		Review complete.			LNDC/PEC.
6.22		ytical Equipment Far			
	sel	two London Nuclea ves with the Pea iliarization will be the following equip	complete when	the chemis	Equapment
	1)	Cond stivity Meter			
	2)	pH Meter			
					LNDC/PECo
	POI	IPMENT FAMILIARIZATI	ON SHOULD TAK	E TWO TO FOU	JR HOURS.
	EQ0				

fm-

6.0	TITLE	Procedures	REVISION	EFFECTIVE DATE	80 of 97				
6.23	Prep	aration of Analytic	al Solutions						
		shall prepare the fo		ons.					
6.23.1		gents							
	Requ	Required accuracy of these reagents is + 10%. Unless other- wise specified, all reagents are in water.							
	a)	o-phenanthroline (0.5% wt/Vol in me	nthanol)						
	ь)	Sodium acetate (2 M)							
	c)	Hydroxylamine hydr (10% wt/Vol)	ochloride						
	a)	Salicylic acid (2% wt/Vol in meth	nanol)						
	e)	Calcium chloride ((0.05 M)	or calcium nit	rate)					
	f)	Sulphuric acid (1 M)							
	g)	p-dimethylaminober (4 g to 200 ml CH concentrated HCl)	nzaldehyde 3 ^{0H} and 20 ml						
		THIS COMPOUND IS I EN TO PROTECT IT	LIGHT SENSITIVE FROM THE LIGHT	AND STEPS	MUST BE TAK-				
	h)	HCl (1% conc. acid in							
	i)	Descaling solutio solution) (1 L 35 20.0 g Sb ₂ O ₃ 50.0 g SnCl ₂	n for stainles: % HCl	s steel 304	(Clarke's				
		Preparation of an	alytical solut	ions complet	е.				
					LNDC/PECO				

TION	TITLE		RE	VISION	EFFECTIVE DATE	PAGE 81 of 97
6.0		Procedures				discine.
.23.2	Stand	ards				
	deco	ired accuracy ntamination, lute values.	of these st parameter tr	andard ends a	s is <u>+</u> 2%. re more imp	portant than
	a)	EDTA (0.02% wt/Vol				
	ь)	Fe ³⁺ (0.02%)				
	c)	KMnO4 (0.01 N)				
	DEPE	NDING ON REAG DARDIZED AGAI	ENT PURITY, TH NST SODIUM OXA	LATE OF	ALITY MAY E OXALIC AC	BE CID.
	d)	Ferrous ammo (25 ug/l, to all in 0.1%	nium sulphate ug/l, 100 ug/ LND-101A	/1		
	e)	Metals ions	for atomic abs	sorptio	n analysis	
		To minimize dards can co	the number of ontain more that	standa an one	rd solution.	ns, the stan
			<u>ug/1</u>	Solu	tion	
		Iron	10,50,100,1	50 0.18	LND-101A	
		Nickel	10,25,50	0.19	LND-101A	
		Chromium	10,25,50	0.1	LND-101A	
		Copper	5,10,25	0.1	LND-101A	
1		Manganese	5,10,25	0.1	LND-101A	
		Zinc	5,10,25	0.1	LND-101A	
	f)	Hydrazine h (100 mg/l N	ydrochloride 2 ^H 4 in 1% HCl	(if req	uired)	
Sec. 1			of all stands		lata	

6

•

6.0	TITL	Procedures	- E-	5/31/84	82 of 97
6.24	The nec "IX lat pro sol the ion of rad or A r	pling Method and Sched sampling points on ted to the ion excha out") and to a proce ing reagent (usually vides information on ved metals, and diss efficiency of the di exchange sample pro- the ion exchange colu ionuclides, and is us "breakthrough".	the decontam nge column o ss line to sa called "IX the process olved radionu econtaminati vides informa mn in removin sed to deter schedule is	utlet (usua mple the bu in"). The parameters clides, whi on process. tion on the g dissolved mine column given in T	ally called lk recircu- bulk sample - pH, dis- ch indicate The after efficiency metals and saturation Table 6.11.
	the rec Eng one sam date	"as required" freque LN chemist conduct quested by PECo ineer/Manager. Mo -litre sample is re ples will be clearly e, time, and location to the potentially i	ting the de chemistry ost samples quired for a labeled to of sampling.	contaminat staff o will be 2 crud anal indicate th	tion or as the GE 50 mL. A ysis. All he sampling
		s during the decontamin Extra care is require	nation: ed in handlin	g solutions	; appropri-
	ь)	ate protective cloth All samples should be ea when the analyses	e stored in a	suitable s	
6.25	Anal	lytical Procedures			
	The	following procedures	are used duri	ng a decont	amination.
	A11	results are:			
	a)	Logged on a laborate chemist performing t		t and initi	aled by the
	b)	Results on laborato the decontamination in an inactive area checked and initia stroyed at the end of	chemistry 1 . The log a led. The wo	og book, wh and work sh ork sheets	ich is kept eet will be
	c)	Plotted on graph pape			

ECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	83 of 97
				11 Mar 1996

6.25.1 Gross Activity

All filled sample bottles will be checked for gross gamma activity at the decontamination skid immediately after sampling. A standard gamma (or Beta-gamma) survey meter will be used in, if available, a shielded location such as a lead castel. This analysis will be used as the first indication of activity breakthrough on the cation resin column.

6.25.2 Dissolved Radionuclide Analysis

Dissolved radionuclide analyses will be performed on both bulk and after ion exchange column samples. Samples sent to the counting laboratory will be diluted as necessary and analyzed by a multi-channel gamma spectrophotometer equipped with a GeLi detector, or equivalent.

Radionuclide analysis is one of the more important parameters determined and is used to monitor the progress of the decontamination. For these reasons, the samples should be analyzed as soon as possible after arriving in the sample reception area.

All computer printouts of radionuclides must be kept.

6.25.3 Dissolved Metals by Direct Current Plasma Jet Analyzer

Reagents

...

6

Analytical standards:

Dissolved metals analysis will be performed on both the bulk and after ion exchange column samples during the oxide dissolution phase. Other samples will be analyzed on an "as required" basis. Simultaneous analysis of iron, chromium, nickel, manganese, zinc and copper will be done. Dissolved iron is a critical process parameter and the analysis should be performed as quickly as possible.

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE	
6.0	Procedures	-E-	5/31/84	84 of 97	

6.25.4 Conductivity and pH Measurement

Reagents

The electrical conductivity and pH will be measured for each sample. These measurements will be preformed on Station laboratory calibrated equipment.

Temperature will be recorded on samples during measurements and corrections made if required.

- Buffers pH4, 7 and 10 a)
- Conductivity standards. b)

6.25.5 LN Reagent Analysis

. ...

a) EDTA Analysis

Reagents

- 2% salicylic acid in methanol
 0.02% Fe⁻ solution
 0.02% EDTA solution

Procedure

- 1) analyze sample for iron III concentration
- 2) take a 25 mL aliquot sample
- 3) add 1 mL salicylic acid solution

If the resulting solution is colorless, follow item (a) below; if the solution is colored (violet), follow item (b) below.

a) titrate the sample with the standard iron III solution until a violet color appears

one mole EDTA reacts with one mole iron III, EDTA concentration equals original iron III concentration plus iron III concentration in titer

SECTION	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	- E-	5/31/84	85 of 97
				1	
		b) titrate the	sample with t	he standard	EDTA solu-
		tion until t	the color ch	nanges from	violet to
		colorless.			
		Original EDTA	concentratio	n equals ir	on III con-
		centration le	ss EDTA conce	ntration ad	ded.
	ь)	Oxalate Analysis			
		Reagents			
		1) 0.05 M CaCl,			
		2) dilute NH40H			
		3) 1 M H SO 4 4) 0.01 N KMnO 4			
		Procedure			
		1) take 25 mL aliqu	ot of sample		
		2) add 50 mL of 0.0	5 <u>M</u> calcium o	chloride	
		3) adjust pH to 7.5	-8.0 with NH	ОН	
		4) let stand 10-15	minutes		
		5) filter solution			
		6) wash filter cake	with water		
		7) dissolve filter	cake in 1 M	H2 ^{SO} 4	
		8) heat solution to	at least 60	°c	
		9) titrate with	0.01N KMnO4	until a pi	nk endpoin
		persists for at			
		10) determine the	oxalate conc	entration f	rom a previ
		ously determin	ed calibrati	on curve or	mL OI 0.01
		KMnO4 reacts with	ch 0.03 mg m2	204.202	

6

LONDON NUCLEAR

6.0	TITLE	Procedures	REVISION	S/31/84	86 of 97
5.25.6	Firs iron sure Fe ³⁴ valu <u>Fe²⁺</u>	to Total Iron Ratio t Fe ²⁺ is measured us is reduced to the H d using o-phenanthroli concentration is es. <u>Analysis</u> ents	re' state a ine.	ind total ir	on is mea-
		o-phrenantroline in (сн3 он		
	a)	Accurately pipette a taining 10 to 100 uping solution).	an aliquot (g of iron (of sample so usually 1 m	lution con- L of strip-
	ь)	Add a few millilitr 0.5 percent o-phena flask.	es of distinthroline,	illed water to a 25 mL	and 1 mL of volumetric
	c)	Mix and makeup to ma mine the optical den	rk with dist sity at 518	illed water, nm.	and deter-
	a)	Wait 5-10 minutes determination.	for color de	velopment be	fore making
	Tota	al Iron Analysis			
	Tet	al iron is determine h hydroxylamine hydroc	d by reduci hloride and	ng iron III anaylzing fo	to iron II or iron II.
	Reag	gents			
	a)	10 wt% hydroxylamine	hydrochlor	Ide(NH2OH.HCI	.).
	b)	2 molar sodium aceta	ite. •		

e

	TITLE		REVISION	EFFECTIVE DATE	PAGE
6.0		Procedures	- E-	5/31/84	87 of 97
	c)	0.5 percent o-phen	anthroline (in	CH3OH).	
	Proc	edure			
	a)	Accurately pipetting 10 to 100 ug (usually 1 mL of s	of iron into a	25 mL volum	on contain- etric flask
	ь)	Add a few millili 10 percent hydroxly	tres of disti ylamine hydroch	lled water loride.	and 2 mL of
	c)	Adjust the volum tilled water and adding 2 mL of 2 m	adjust the cH	to between	with dis- 3 and 6 by
	d)	Mix and let stand o-phenanthroline.	five to 10 min	utes, then	add 1 mL of
•	e)	Makeup to mark with 10 minutes for col tical density at 51	lor development	ter, mix and and determ	d wait 5 to ine the op-
	IF 1	THE ORIGIANL SAMP SAMPLE AGAINST A REAGENTS, LESS O-PH	BLANK CONSISTI	S COLORED NG OF THE S	, READ THE AMPLE, PLUS
		IF SAMPLE SOLUTIO OF WATER, PLUS READ	N IS COLORLESS GENTS, PLUS O-P	HENANTHROLI	MAY CONSIST
6.25.7	Cruđ	Sampling			
	Wate the 6.11	r samples will be t ion exchange colu	taken both upst umn as per sch	ream and dou edule give	wnstream of n in Table
	usin twee filt and	cted water samples g 0.45-micron fil n 500 and 100 mL wi er papers back-to-b the second is to	ill be filtered back. The firs be used as a	A standard through two t will reta: blank corr	volume be- o identical in the crud ection for
•	0.5	ht loss. If signi mg/l), it will be gamma activity, ar	analyzed for	weight, sp	ecific and

ECTION	TITA	٤	REVISION	EFFECTIVE DATE	PAGE	
6.0		Procedures	-E-	5/31/84	88 of 97	
6.25.8	and	crud filtrates will dissolved radionuclide razine (for passivation	es.		lved metals	
	Rea	gents				
	a)	1000 mg/L N2H4 stands	ard in 1% HCl	le seguere d		
	ь)	2% p-dimethylaminobe	nzaldehyde in	methanol-H	c1	
	Procedure					
	a)	The 100 mg/L standa BCl in water to give				
		10 mg/L, 25 mg/L, 50	mg/L, 100 mg	/L.		
	ь)	The sample is added water solution cont dilution step will limits of the standay	aining 1% co bring the co	oncentrated	HCl. This	
	c)	Add indicator in th mL of standard or d minimum of 10 minut The solutions are a 458 nm. The blank of 1% HCl.	iluted unkno es, but not nalyzed in a	own. Let s more than 1 a spectroph	otometer at	
6.25.9	Dis	solved Oxygen				
		or to reagent additio				

Prior to reagent addition, hydrazine will be added to the coolant to remove dissolved oxygen and to initiate reducing conditions. An oxygen analysis will be performed after hydrazine addition, but before the LND-101A addition to ensure less than 100 ppb 0, present. A colorimetric method such as the Chemet dissolved oxygen test can be used for these measurements.

THE CHEMET METHOD CANNOT BE USED AFTER LND-101A RE-AGENT ADDITION.

....

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	89 of 97
				1 10 10 10 10 10 10 10 10 10 10 10 10 10

If the Station has reagents and equipment setup for dissolved oxygen by other means (i.e. such as iodometric, indigo carmine etc.) the normal Station test procedure may be substituted for the Chemet method.

6.25.10 Coupon Procedures

Coupons (1010 carbon steel; 304, 316L stainless steel) will be stored in a dessirator or sealed container before use. All coupon handling must be done using gloves.

inactive Coupons

a) all coupons must be weighed and measured before installation.

LNDC/PECO

b) A control set of coupons must be kept.

LNDC/PECO

c) Following decontamination, all coupons will be examined and descaled as required.

Reagent Used: Clarke's solution item (i) of 9.6.1

Descaling solution for stainless steel 304

Procedure

. ..

 at ambient temperature, insert 304 stainless steel coupons for up to 30 seconds or until scale is removed

2) rinse and dry

3) perform a blank correction on control specimens

SECTION	TITLE	HEVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	90 of 97
	and the second		Sec. Salar	

- All coupons will be weighed after decontamination. d)
- e) Coupons may be gamma scanned and counted after decontamination to note any buildup of activity.
- f) Corrosion rate will be calculated using the formula:

Corrosion Rate (um/h) = 10 MtpA

- M = weight lost by coupon during decontamination
- p = density of coupon material (g cm A = surface area of coupons (cm²)
- t = time coupon exposed to reducing chemistry in hours

For stainless steel 304:

 $p = 7.94 \text{ gcm}^{-3}$

Radioactive Coupons

. ..

Radioactive coupons will be both gamma scanned and a) gross counted before decontamination. Scanning counting and geometries and time must be noted.

LNDC/PECO

b) After decontamination, radioactive coupons will be gamma scanned and counted in the same geometry.

LNDC/PECO

SECTION	T	TLE		REVISION	EFFECTIVE DATE	PAGE
6.0		Pr	ocedures	- E-	5/31/84	91 of 97
		c)	Decontamination each coupon. DF = <u>Radio</u> Radio	factor (DF) activity Befo activity Afte	re Decontami	nation
					ī	NDC/PECo
6.26	De	conta	mination Terminat	ion Decision		
		cis Eng	termination of a ion which is ineer/Manager and its to that decisi	made joint LN. The fol	ly by the	PECO, GE
		a)	Decontamination duction targets.	has met requi	red radiatio	on field re-
		ы	Chemical and rad is essentially of are:	iclogical ind complete. So	ications tha me indicati	t the decomons of this
			 significant solution and 	reduction in in radioacti	radionuclid vity removal	le levels i L rates
			- reduction levels	in radiation	fields to	background
		c)	Corrosion indica occurring. Some	indications of	ase metal at of this are:	tack may b
				metal ion co		
			- changes in H	re ²⁺ to total	iron ratio	
		d)	Project scheduli at a certain po- tained, PECo or ceed with other with the decontar	GE Engineer/M r work rathe	a DF of 3 Manager may to than cont	wish to pro inue longe
		e)	Operation facto performance, ne impact on the te ter the DF has r	ed to change ermination dec	resin etc.) cision, part	may have a

c.

TION	TITLE		REVISION	EFFECTIVE DATE	PAGE		
6.0	Pro	cedures	- E-	5/31/84	92 of 97		
6.27	SAP	ETY, DOSE CONTRO	L AND RADIATIO	N MONITORIN	łG		
		211, 0000 000100					
6.27.1	Gen	General					
	Thi	s section detail	s the procedur	es required	to:		
	a)	Maintain a sa decontaminatio		conment thr	oughout th		
	ь)	Access the ne the recircula segments and R	tion piping,	the deconta RHR return	amination of and suppl		
	c)	Monitor and co	ontrol personne	el dose expe	enditure.		
	d)	Contamination	control.				
6.27.2	2 Ger	General Safety Procedures					
	-sal	ection of all wor ry hazards have aware of the fol Proper clothi	been eliminate	ed. All per	rsonnel mu		
	ы		station emerg		ures for t		
	c)	Response and	notification ent operation	requirement (see Sectio	s to any a n 11.0).		
	a)	Maintenance of	f a clean work	area.			
	e)	Minimize pers	onnel traffic	through wor	k area.		
	£)	eral good pra	concerning pl actices, as pr ning", shall b	esented in	the "Gener		

1. "

ECTION	TITLE		REVISION	EFFECTIVE DATE	PAGE		
6.0	Proc	cedures	- E-	5/31/84	93 of 97		
	g) h)	materials. Keep personne	nstructions wh el informed of t during the de	potential h	azards that		
6.28	Rad	iation Field Mon	nitoring				
	pro	order to asses cess, contact a at various loca l area both befo	radiation field ations inside a	d readings wand outside	of the dry-		
6.28.1	Inst	trumentation Set	tup				
	tio	Place Gamma meter(s) strategically in the decontamina- tion system, in order to monitor the radiation levels throughout the decontamination, as follows:					
	a)	umns, behind at the mid-s used must ha LN will assist er location	e probe between the shield was section of th ve a meter ra t during instal of the probe. adily accessible	all and loca e columns. nge of 0 to llation to e The meter	The probe 100 R/hr. msure prop- must be lo-		
	b)	b) Minimize personnel dose by placing at least two Gamma meters with remote probes at the most active-on-contact spots. Typically, the recirculation pump bowls, ringheader and risers are ideal locations for monitoring the radiation fields.					
		Location of site, after taken.	the probes the initial rate	will be det diation surv	ermined at vey has been		
	c)	ized hot spo	decontaminations and record are aware of	ed in Table	e 6.9 to en-		
			649				

F

LONDON NUCLEAR

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	- E-	5/31/84	94 of 97

- d) Monitor the decontamination flow path lines initially 8 to 10 hours after injecting chemical, then regularly every 2 hours. The "*" asterisk points shown in Figure 6.2 are used to give a general estimate of how the decontamination is progressing. Localized hot spots may develop on the decontamination equipment. All data must be recorded in Table 6.9 and personnel made aware of high dose areas.
- e) As the regeneration phase of the decontamination reaches completion, take a general survey of 8 to 10 points to give a gross estimate of the DF achieved and to ensure all the "hot spots" have been removed. Continue the decontamination on the recirculation system piping until the hot spots are reduced as much as possible. This may be achieved by adjusting flow rates through pipe sections as instructed by the LN.

6.28.2 Initial Radiation Survey

- Take the initial radiation survey immediately after the system leak test has been completed (see Section 6.9.3).
- b) Drywell entry by qualified personnel equipped with the Eberline E-530N meter and shielded probe.
- Check meter battery operation and calibration data taken.
- Record information on Radiation Survey Map, Figure 6.2 (protected in plastic) at the predesignated points.
- e) Upon completion, transfer data points to Table
 6.13, Decontamination Radiation Level Readings, and are kept as an official record.

Prod	cedures	-E-	E /21 /04		
		-	5/31/84	95 of 97	
Rad					
a)	probes are Radiation Mon will determin	read hourly itoring Check e the effecti	and record Sheet, Tabl	led on the e 6.9. This	
Final Radiation Survey					
a)	removal step	has been comp	leted (Sect	the reagent ion 6.13.7)	
ь)	Use qualifie with the shi meter.	d personnel t elded probe	to enter dr and Eberli	ywell area ine E-530N	
c)	Check meter date.	battery opera	ation and c	alibration	
d)	Record date o 6.13 (protect points.	n the Radiati ed in plastic	on Survey) at the pr	Map, Figure edesignated	
e)	Transfer date are kept as an	, upon complet official reco	ion, to Tab	le 6.13 and	
Eval	uation of Decon	tamination Fac	tors		
(DF) od. read ing: or t a di due will	s) by using the The WHM is sidings divided b s. If discrepa two points infl ifferent approa weight to thos now be calcul	Weighted Har mply the total y the total su uncies are end uence the end ich is used. se points hav lated for eac	monic Mean al sum of t m of the "a countered su result unre This avoids ing low DFs h of severa	(WHM) meth- he "before" fter" read- ch that one alistically giving un- c. A WHM DF al areas or	
	a) Fina a) b) c) d) c) d) e) Eval Lond (DF: od. read ing: or di a di due will	 a) Throughout the probes are Radiation Monwill determinduring operation of the second step prior to drain b) Use qualifie with the shimeter. c) Check meter date. d) Record date of 6.13 (protect points. e) Transfer date are kept as an Evaluation of Decom London Nuclear det (DFs) by using the od. The WHM is sireadings divided bings. If discrepa or two points infla different approximation of the will now be calculated by a second box of the second box	 probes are read hourly Radiation Monitoring Check will determine the effection during operation. Pinal Radiation Survey a) Take the final radiation surremoval step has been composite prior to draining the system b) Use qualified personnel to with the shielded probe meter. c) Check meter battery operadate. d) Record date on the Radiation for the field of the shielded is a straight of the straig	 a) Throughout the decontamination, insta probes are read hourly and record Radiation Monitoring Check Sheet, Tabl will determine the effectiveness of during operation. Final Radiation Survey a) Take the final radiation survey after removal step has been completed (Sect prior to draining the system. b) Use qualified personnel to enter dr with the shielded probe and Eberlimeter. c) Check meter battery operation and c date. d) Record date on the Radiation Survey 6.13 (protected in plastic) at the pr points. 	

.

SECTION	TITLE	REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	96 of 97

For a typical recirculation system, these might be: recirculation risers, ring headers, pump area, and main piping. For each of these areas, an average (total divided by number of points) initial and final readings would be calculated and the DF calculated by dividing the average of the initial readings by the average of the final readings.

Calculate the overall DF by taking a single average of these before and after readings and dividing the average before by the average after.

6.29 Personnel Dose and Contamination Control

- 6.29.1 Personnel dose is controlled in the following manner:
 - All LN staff members are to wear a TLD supplied by LN, TLD and pencil chamber supplied by Station.
 - b) Strive for ALARA at all times.
 - Routinely check for changing radiation levels around the decontamination equipment.
 - Review radiation survey data sheets taken by HP assigned to area.
- 6.29.2 All LN staff entering the radiation areas shall read and understand the RWP associated with the decontamination. All necessary protective clothing and dosimetry requirements, as well as special instructions shall be described and followed. A good understanding of the latest survey data will be helpful in minimizing personnel exposures. Any questions on the requirements or special concerns should be resolved with a Station health physics representative.

		REVISION	EFFECTIVE DATE	PAGE
6.0	Procedures	-E-	5/31/84	97 of 97

- 6.29.3 Carry out personnel contamination control out in the following manner:
 - a) The required protective clothing is worn as specified on the Station RWP's.
 - b) Minimize contact with the decontamination equipment. Valve manipulation and sampling are the only occasions normally requiring direct contact.
 - c) Ensure all spillages are properly cleaned up.

...

London Nuclear	Section: OP-001	Revision: -E-	Effective Date: 5/31/84	Page: 97-A		
Nuclear PROJECT OPERATING PROCEDURES	Title: APPENDIX A					
A	BNORMAL OPER	ATIONS				
			:			

TION	TITLE	REVISION	EFFECTIVE DATE	PAGE
OP-001	Abnormal Operations	- E-	5/31/84	97A D-23

APPENDIX A

ABNORMAL OPERATIONS

.1

The following sections outline potentially abnormal operating conditions which could occur during the CAN-DECON application. Below is a listing of operator response required to ensure personnel safety, to prevent further damage to system components, and/or to permit continued safe system operation. The information is summarized in Table 11-1.

Loss of Temperature Control

a) Failure to Control Rising Temperature

This could occur should the heater temperature controller (CU-204 or TC-401) fail to de-energize. Should the process temperature continue to rise, the LN operator would manually shutoff the heaters. A high temperature cut out switch (CU-203 or TSH-401) will also shutdown the heater at 300° F. The LN operators are able to run the heaters manually with no detrimental effects on the decontamination.

b) Failure to Maintain Temperature

The failure to maintain temperature could be the result of:

1) Inadequate power supply

ECTION	TITLE			REVISION	EFFECTIVE DATE	PAGE
OP-001	Ab	norm	al Operations	- E-	5/31/84	97A
		2)	Failure of tem TC-401), or an detected during would be correc personnel. Fai lers would be h the heaters man LN-4 heater ele 300 KW LN-5 hea KW beater will 200 F while the and connected t the decontamina dissolution rate	inadequate pre-appl ted by th lure of th andled as mually. H ments wou ter skid t maintain 300 KW L to the sys tion to p	power supplication tes e appropri te temperatu in 11.1. b Failure of ld require o be shippe system tem N-5 heater tem. This	ly would be ting. This ate support re control- by operating the 300 Kw the backup d. The 150 perature at is shipped would allow
			Failure of the the heatup rate can be maintai heater alone. heater are readi	ned at 25 Spare ele	, process 50 F using ements for	temperature the 300 KW
		3)	Failure of heate	r elements		
.1.1	Beat	er I	solate/Drain Proc	edure		
	a)	Hea	ter CU-105			
		1)	check <u>all</u> heater	controls	are OFF	
		2)	allow heater to temperature drop	s below 20	Monitor 1	CI-101 until
		3)	shut circulating	pump CU-1	LO2 to OFF	
		4)	close valves CU2	-v9 and Ct	J3-V1	
		5)	vent heater by s Monitor sight gl	lowly open ass SG-101	ning valve (l	2V3-V1.
				*		

PAGE	EFFECTIVE DATE	REVISION	TITLE	SECTION
97A	5/31/84	-E-	Abnormal Operations	OP-001
97A	5/31/84	-E-	Abnormal Operations	OP-001

6) open heater drain valve RD2-V2 until all water has drained out

IF PUMP OPERATION IS PERMITTED, THEN IT IS ADVISABLE TO LOWER THE SYSTEM TEMPERATURE. THIS IS ACCOMPLISHED BY USING MAIN COOLER CU-104 AND OPENING VALVES U2-V2, CU2-V6 CU2-V7 AND CLOSING VALVE CU2-V8. ONCE SYSTEM HAS COOLED SUFFICIENTLY, THEN STEPS 11.1.1 (a) THROUGH (f) ARE FOLLOWED.

b) Heater CU-401

Heater CU-401 may be removed from system while pump is operating.

- open valve CU11-V2 and close CU10-V4 and CU11-V1
- slowly open vent valves CV10-V1 and CV11-V1. Monitor sight glass SG-401
- 3) open drain valve RD10-V1 and monitor sight glass SG-402 until all water has been drained

Loss of Circulating Pump

.2

....

The most likely failure to occur on a centrifugal pump would be a mechanical failure. A complete set of spare parts is available at site. LN operators are trained to trouble shoot and repair the pump as necessary. In the event the pump cannot be repaired, a spare pump is available on short notice.

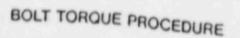
- .2.1 Circulating Pump Isolate/Drain Procedure
 - a) Close valves CU1-V3, CU1-V4, CU7-V1, CD2-V2, CU2-V3 and CU2-V5.
 - b) Open valve RD2-V1 and allow pump to depressurize to 0 psig as indicated on PI-101.
 - c) Loosen drain plug, located in pump bowl and allow pump to completely drain.

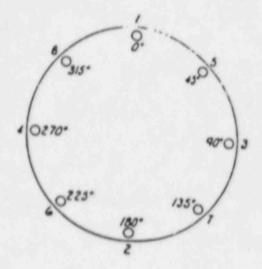
CTION	TITLE	REVISION	EFFECTIVE DATE	PAGE			
OP-001	Abnormal Operations	- E-	5/31/84	97A			
.3	Loss of System Fluid A loss of system fluid	can occur	through a	variety of			
	 means; most notably would be: a) Major leakage from a decontamination system 						
	component.						
	b) Hose failure at fits						
	All system components a twice the maximum opera- ination startup. All each end to minimize lead dition, the LN operator process piping for leaks	hoses hav kage from thourly is	sure prior t e isolation a hose failu	valves at re. In ad-			
.4	Loss of Power						
	Loss of power would esse tion system. If the lived (less than 10 day secure the decontaminat repairs. If the power then an alternate source vided by the SP to remov	power los s to repai ion equipm loss app of power	s appears (r) the LN of ent for the ears to be (480V/30A)	duration of long term, will be pro-			
.5	Slurry Hose Failure						
	As per 0.3 above, the s "dead head" pressure whi vertent valve operation.	ch could b	is tested a e applied t	at twice the hrough inad-			
	During the slurry opera monitored (at a safe d no leakage. Adequate c in advance between per and the LN equipment o problem which might occu	istance) communicati sonnel mon perator to	on lines winitoring the respond ra	slurry line pidly to any			
	•	4					

			ABNORMA	L OFERATIONS		5 of 6
11.1	-	ORMAL CONDITIONS s of Temperature Control	PRELIMINARY PRECAUTIONS	PRIMARY CONTROL	BACKUP	RECOMMENDED OPERATOR ACTION
		Failure to control rising temperature POSSIBLE CAUSE Failure of Temperature controller CU-204/TC-401	Testing heater control circuits before decon as per operating procedure	Equipment operator available 24 h.urs taking readings at regular intervals	High temperature cutout switch to trip heaters (CU-203/TSH-401)	Manually switch heater circuits to "OFF" and let system cool down. Continue to circulate. Operate heater manually.
	(b)	Failure to maintain temperature <u>POSSIBLE CAUSE</u> - Inadequate power supply - Failure of temperature controller CU-204 or TC-401 - Failure of heater elements	Testing heater control circuits before decon as per operating procedure	Equipment operator available 24 hours taking readings ~*. regular intervals	Backup 300 KW heater. Skid available on short notice. 150 KW heater elements available on short notice.	Operate at lower process temperature (200 P) until 300 KW heater is replaced.
11.2.	Los	s of circulating pump <u>POSSIBLE CAUSE</u> Mechanical failure of circulating pump CU- 104	Functional test- ing of circulat- ing pump before decon as per operating pro- cedure	Equipment operator available 24 hours taking readings at regular intervals	Manufacturer's recommended spare parts available during decon- tamination Backup pump availab	Select pump CU-104 to "OFF" and initiate repairs to circulating pump.
11.3.	Los	<pre>s of system fluid <u>POSSIBLE CAUSE</u> - Major leakage from decontamination system component - Hose failure at fittings</pre>	 Leak testing before decon as per operating procedure. Isolation valves at critical locations to limit leakage 	Equipment operator available 24 hours taking readings at regular intervals	in short notice. Manufacturer's recommended spare parts available during decontam- ination.	-Select pump Cu-104 to "OFP" and isolate area of leakage -Initiate cleanup and commence repairs as necessary
11.4.	Los	or fracture in weak spot s of 480/440V power <u>POSSIBLE CAUSE</u> various causes	Testing of circuitry	Station backup f: ar supplies available	Operator	-Secure Decontamination Equ -Investigate cause -Perform necessary repairs -Remove chemicals from system if necessary

••

London Nuclear	Section: OP-001	Revision:	Effective Date: 5/31/84	Page: 97-B	
PROJECT OPERATING PROCEDURES	Title: API	Title: APPENDIX B			
	PIPE ISOLATI	LON			
			,		


London Nuclear	Section: OP-001	Revision: -E-	Effective Date: 5/31/84	Page: . 97-0
PROJECT OPERATING PROCEDURES	Title: APPENDIX C			
		10.11		
SPECIAL HOSE	COUPLING ASS	EMBLY INSTR	UCTIONS	
A Carton				
			E. J. Con	
151				


PROCEDURE FOR APPLICATION OF BOLT TORQUE ON FLANGED JOINTS

- STEP 1. ALIGN COMPONENT PARTS AND CLAMP TOGETHER WITH HOLD DOWN.
- STEP 2. LUBRICATE STUD (OR BOLT) THREADS IN AREA OF NUT (OR FORGED RING) ENGAGEMENT, ALSO LUBRICATE FACE OF NUTS (OR BOLT HEAD) USING A SUITABLE LUBRICANT.
- STEP 3. INSTALL ALL BOLTS AND NUTS FINGER TIGHT.
- STEP 4. NUMBER BOLTS SO THAT TORQUING RE-QUIREMENTS CAN BE FOLLOWED.
- STEP 6. AFFLY TORQUE IN 20% (1/6) STEPS OF REQUIRED FINAL TORQUE, LOADING ALL BOLTS AT EACH STEP BEFORE PRO-CEEDING TO NEXT STEP.
- STEP 4. TIGHTEN BOLTS IN SEQUENTIAL ORDER 0-180°, 90°-270°, 48°-225° 4 135°-315° AT EACH STEP UNTIL FINAL TORQUE IS REACHED. (SEE ATTACHED SKETCHES)
- STEP 7. USE ROTATIONAL TIGHTENING UNTIL ALL BOLTS ARE STABLE AT FINAL TORQUE LEVEL (TWO COMPLETE TIMES AROUND IS USUALLY REQUIRED.) SEE ATTACHED SKETCHES.

. ..

100

ROTATIONAL ORDER
1
1
5
3
7
2
6
4
8
35

London Nuclear	Section:	Revision: C	Effective Date: 6/1/84	Page:
Nuclear		London Nucle Coupling Pro		D-HI

Step 1

If hose end is to be cut prior to coupling installation, place on a bench or other support and secure in place. Wet the knife blade for easier cutting; some types ... hose will cut more easily if flexed slightly.

Step 2

Cut hose ends squarely; square ends are necessary to insure the proper alignment and depth of the hose on the coupling shank (n'pple).

Step 3

Lubricate the hose and coupling shank for easier insertion; soap and water, or water alone, are recommended lubricants.

Step 4

Do not cut or burn out any of the inner tube to accommodate a coupling shank that is too large; however, countersinking the end of the tube 45° may help to insert the coupling.

Step 5

Do not alter the shank of the coupling; doing so may either reduce some of the holding power or create sharp edges which could puncture the hose tube.

Step 6

...

Keep hose and coupling shank aligned as they are being pressed together to avoid damaging the hose tube and to assure that they reach full insertion depth; place the coupling in a vise so it can be held securely.

	Title .	Revision	Effective Date	Paçe
	Hose Coupling Procedure	c	6/1/84	2 of 3

Step 7

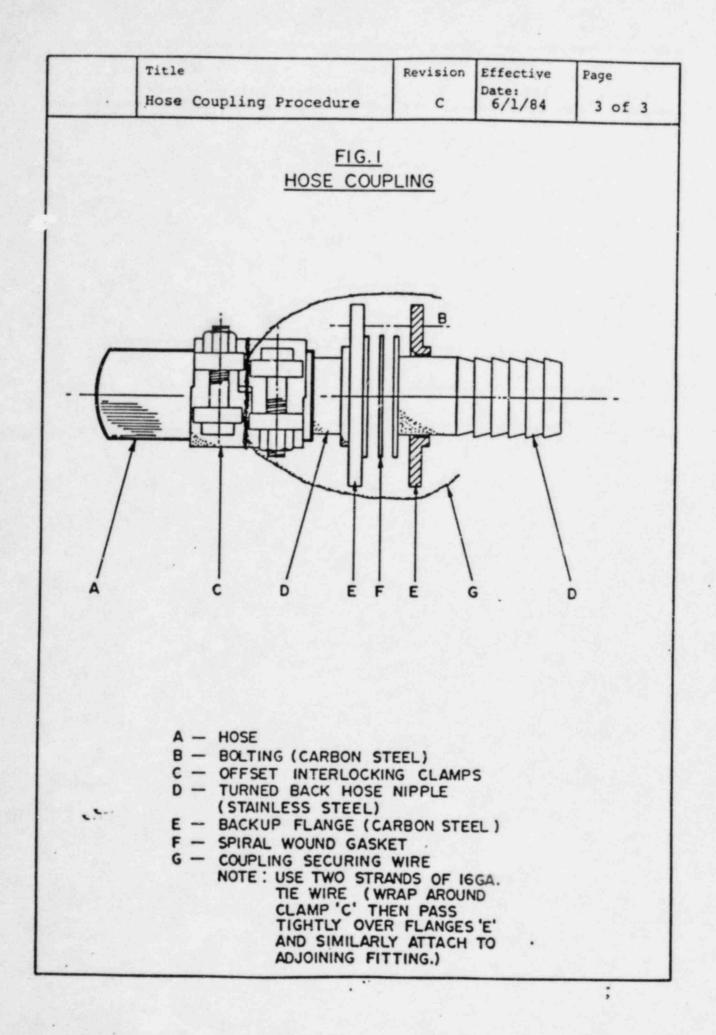
Locate clamp(s) over hose barb and tighten. Tighten clamp hex nuts with a wrench or socket. Turn nuts until clamp halves are pulled tight around hose, but leave a litle space between clamp ears for later takeup.

Note: After hose has cycled from hot to cold, retighten all clamp bolts.

Step 8

Do not remove any part of the hose cover (except in accordance with manufacturer's specific coupling instruction). Doing so can expose the reinforcement and shorten the life of the hose.

Step 9


After assembly of couplings, inspect the inside of the hose at the end of the coupling for cuts, tears, folds, or bulges resulting from improper assembly.

Note: Refer to London Nuclear Procedure for bolting of flanged joints in process systems for interconnection details.

Step 10

. ..

Once joint interconnection is complete, install coupling securing wire (see Figure 1, Item G).

	Section:	Revision:	Effective Date:	Page:	
London Nuclear	OP-001	- E-	5/31/84	971	
PROJECT OPERATING PROCEDURES	Title: APPENDIX D				
PROCEDURES					
AS BUILT	FLANGE JOIN		NT		
	DATA SHEE	TS			
			4 19 1		
			1		
		2.194			
		•			
			Sec. 12		
and the second					
			:		

(

5/31/84 REV -E-

APPENDIX D"

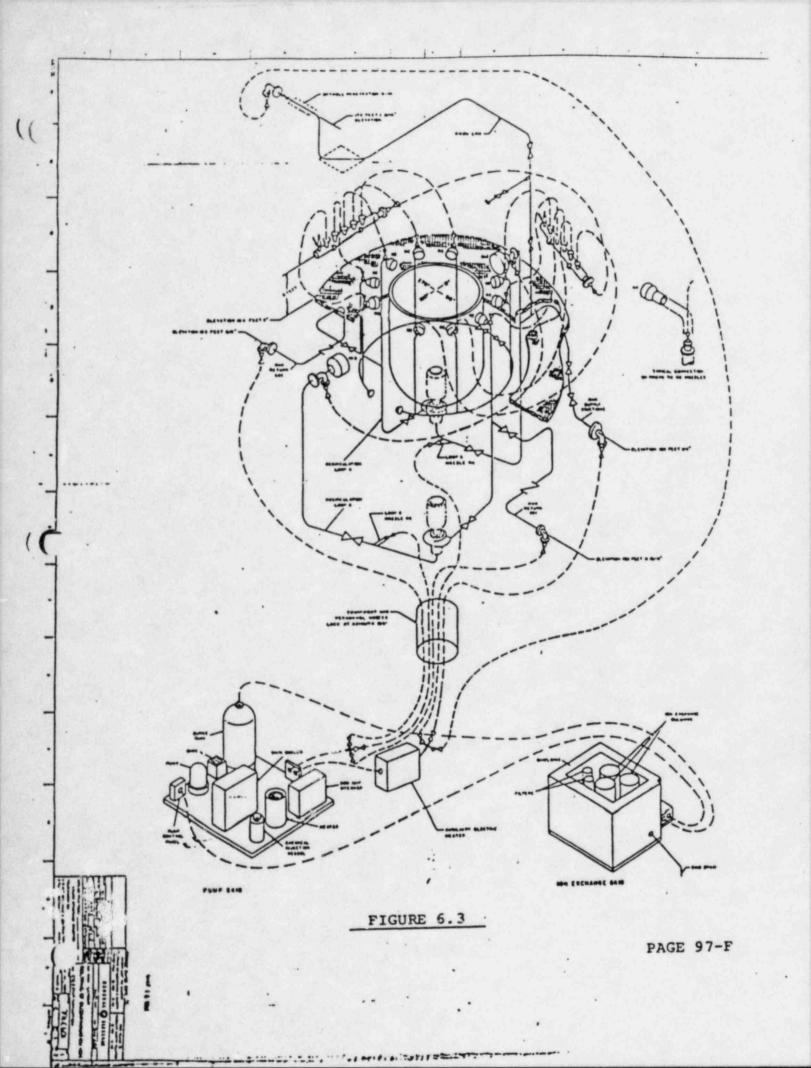
PAGE 97.D.

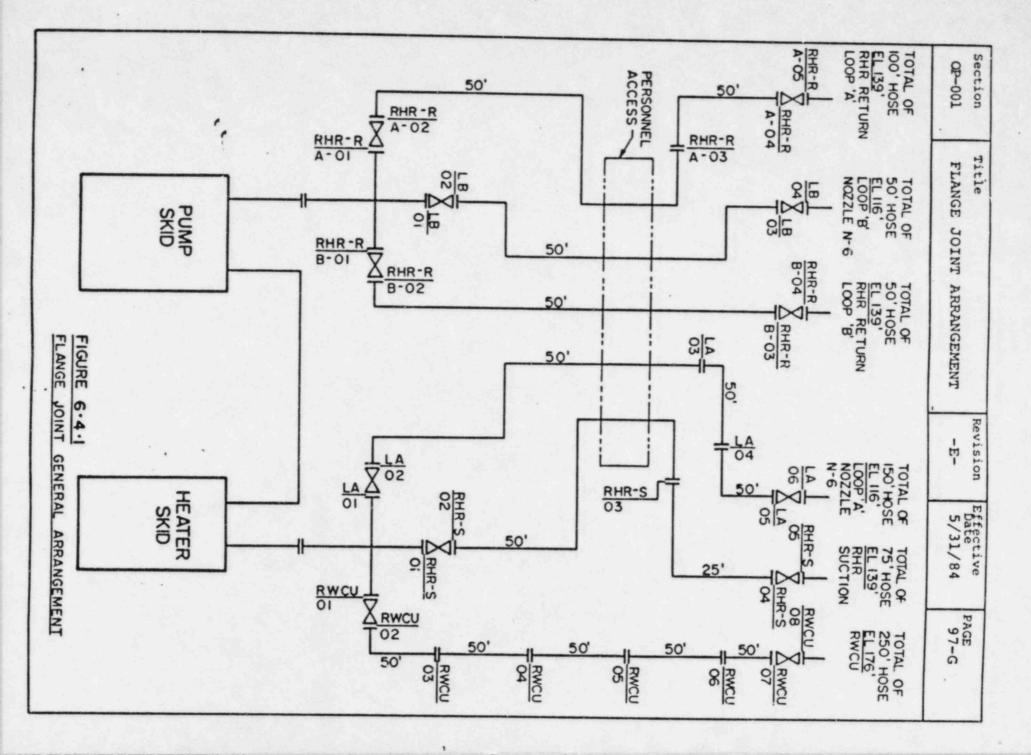
Joint I.D.

1

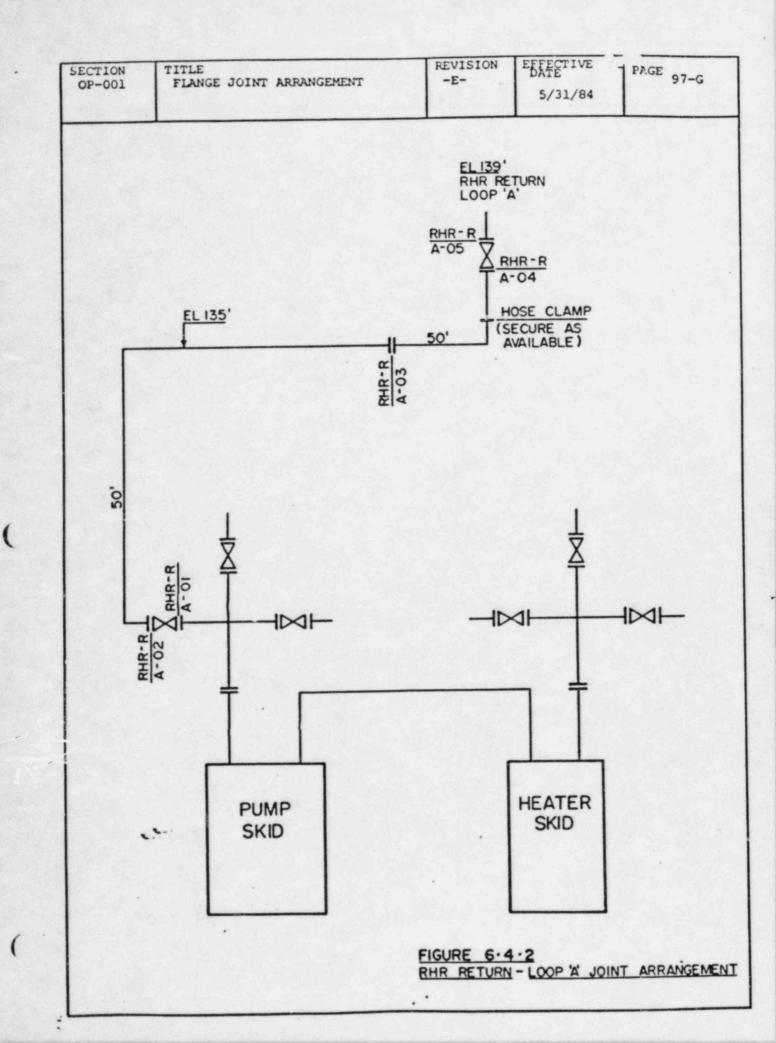
1-

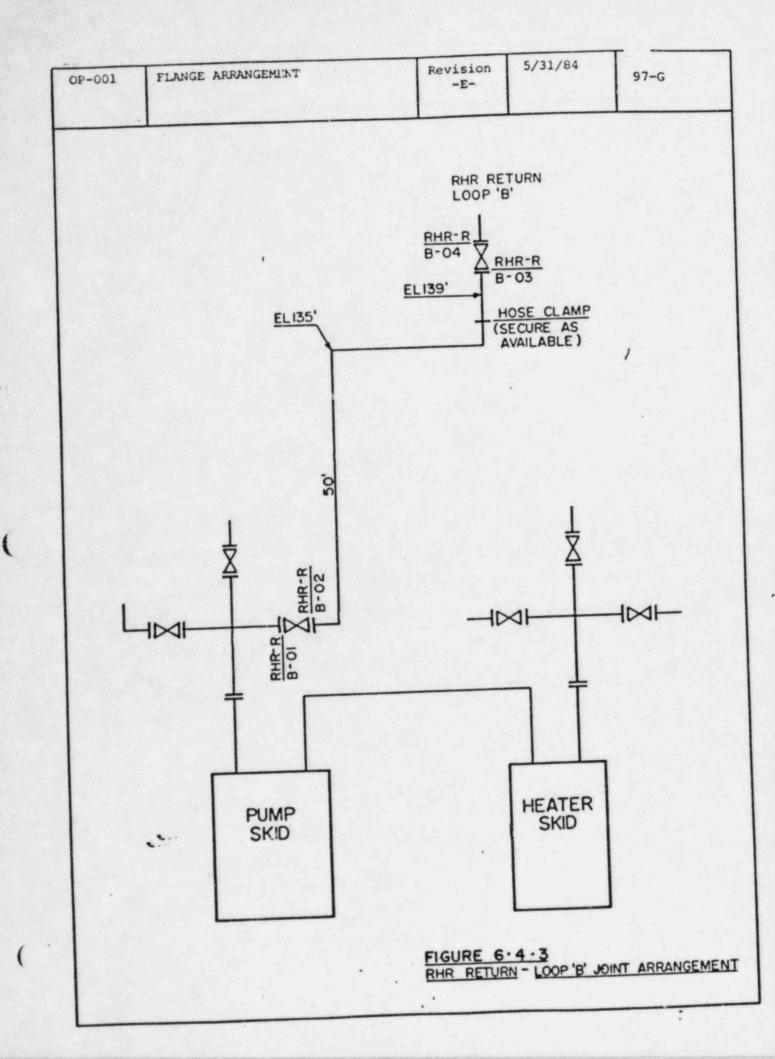
measurement points Gasket 1 A. N. B.

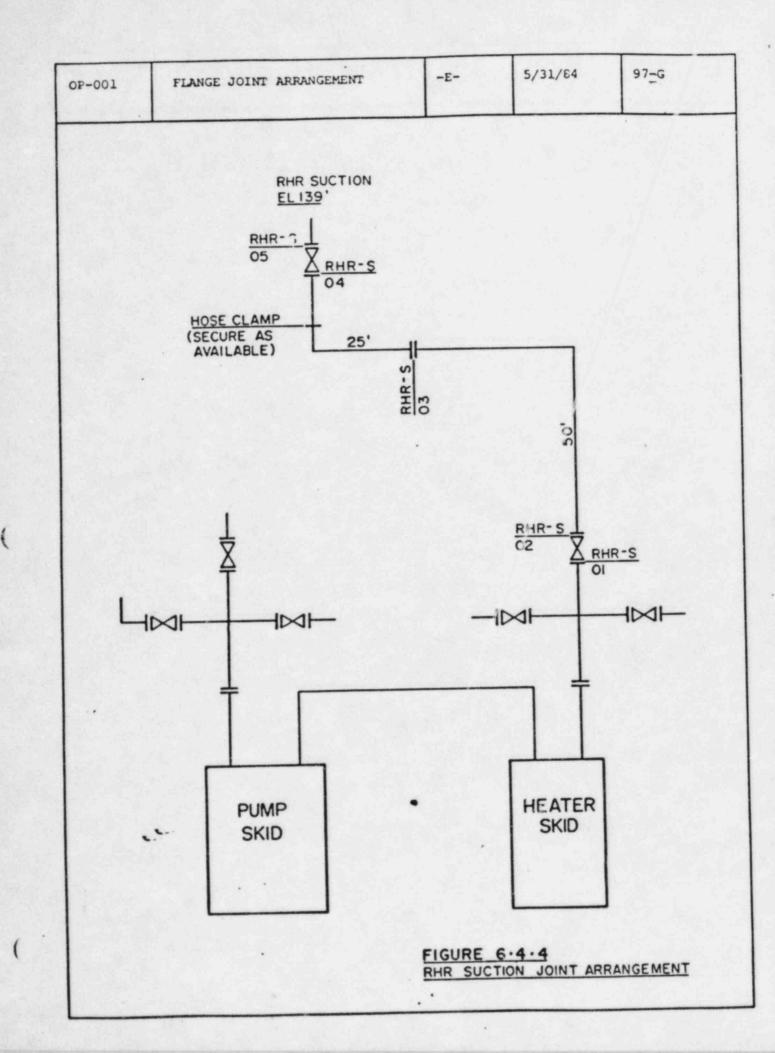


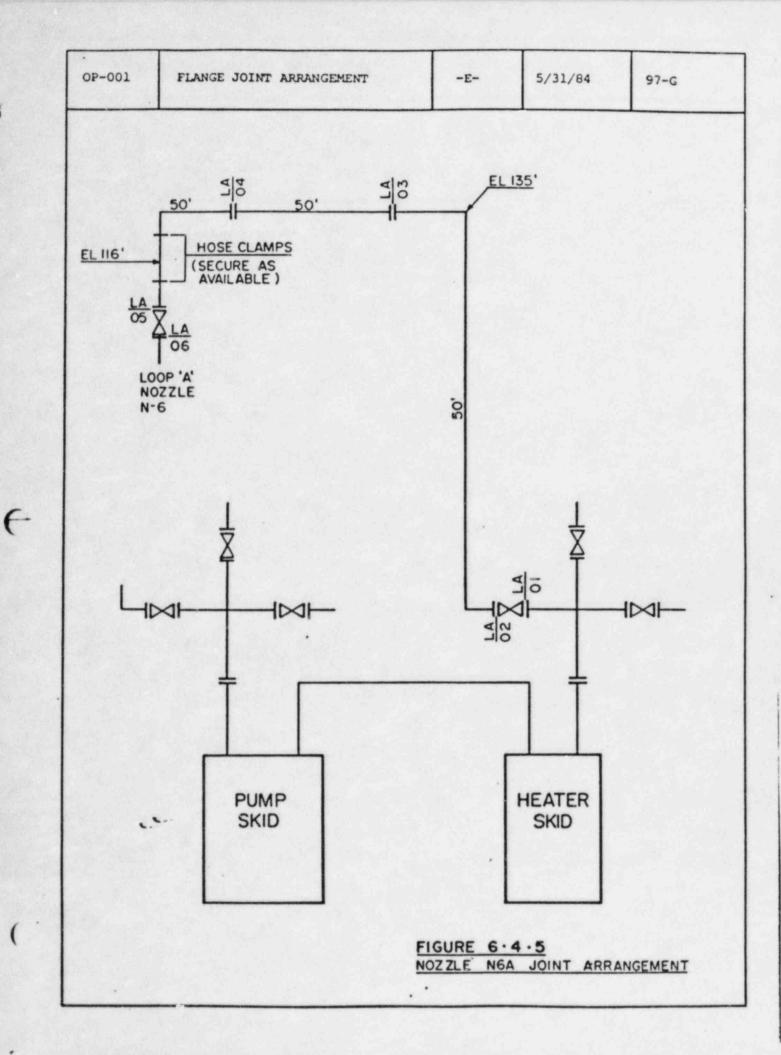

(N) Gasket thickness New (G) Desired gasket compression (Crush) (-)_ C =

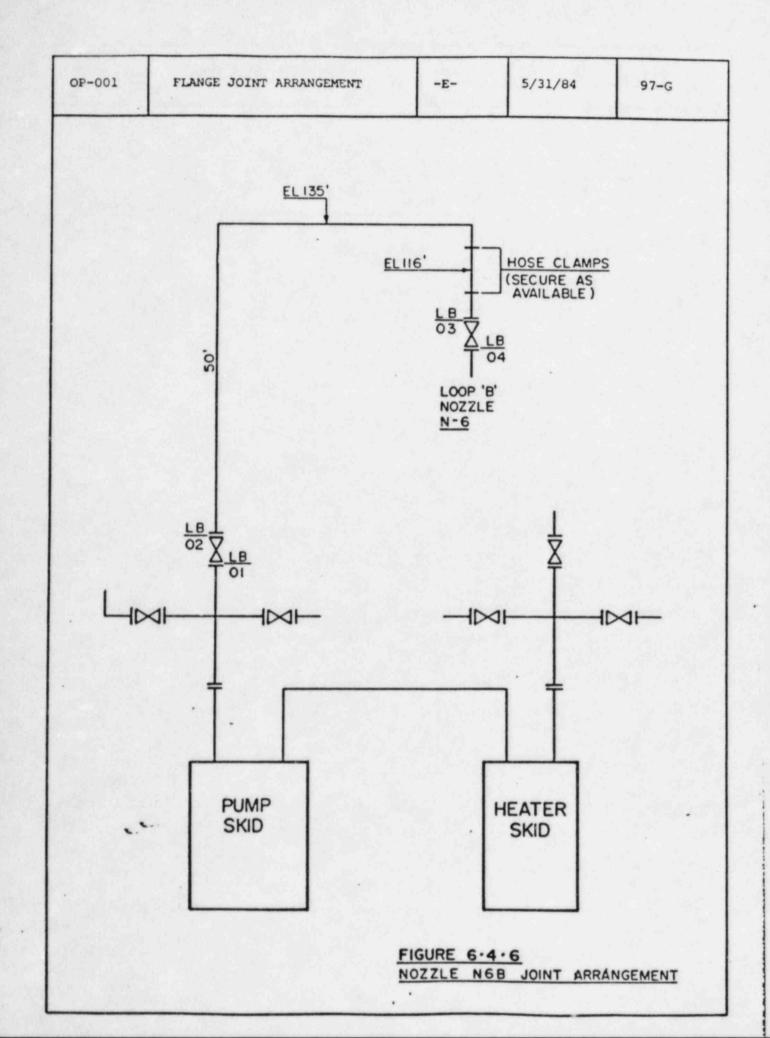
- (A) Raised face height (B) Raised face height
- (C) seated gasket thickness (D) Torqued flonge distance

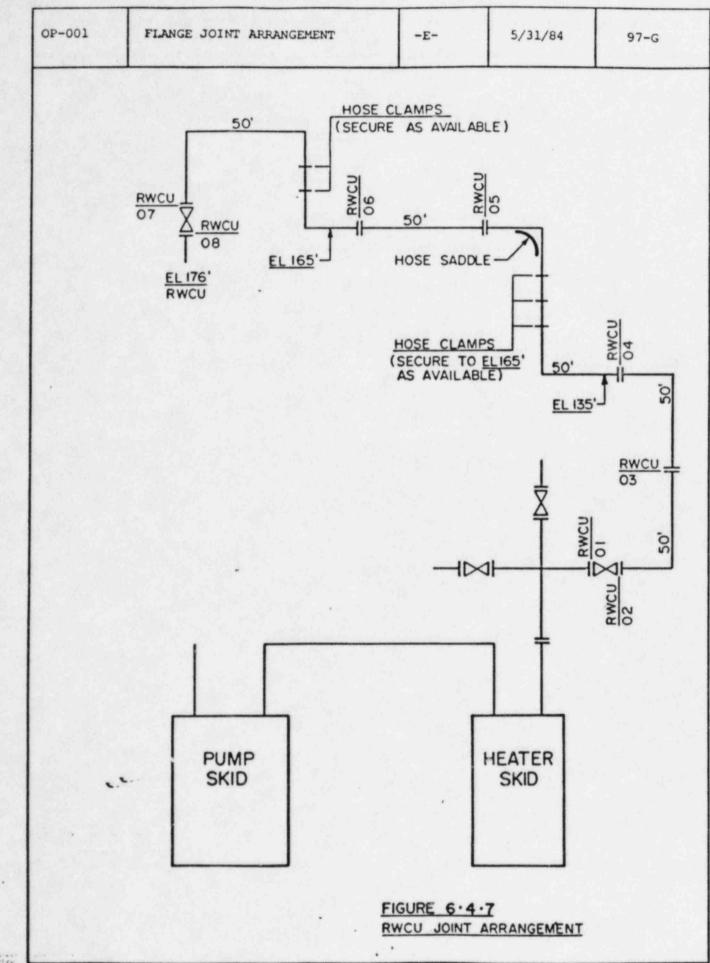

Formula D-(A+B)=C (measured in thousand the inches) - (A + B) = C Q.A. initial

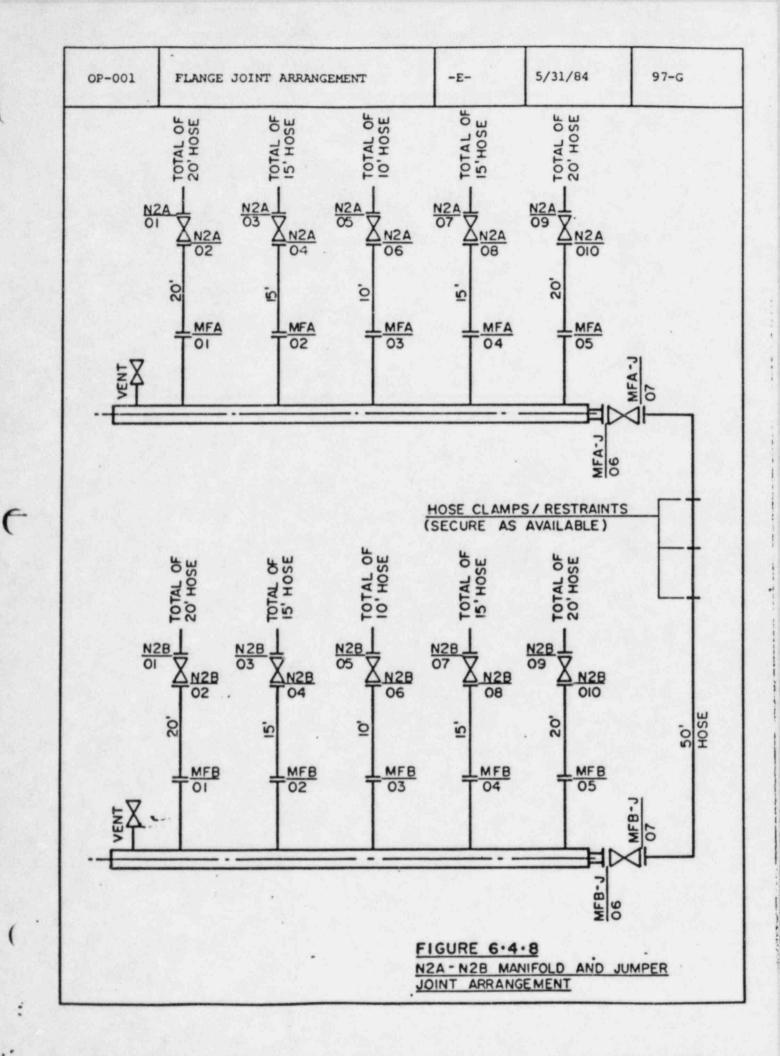


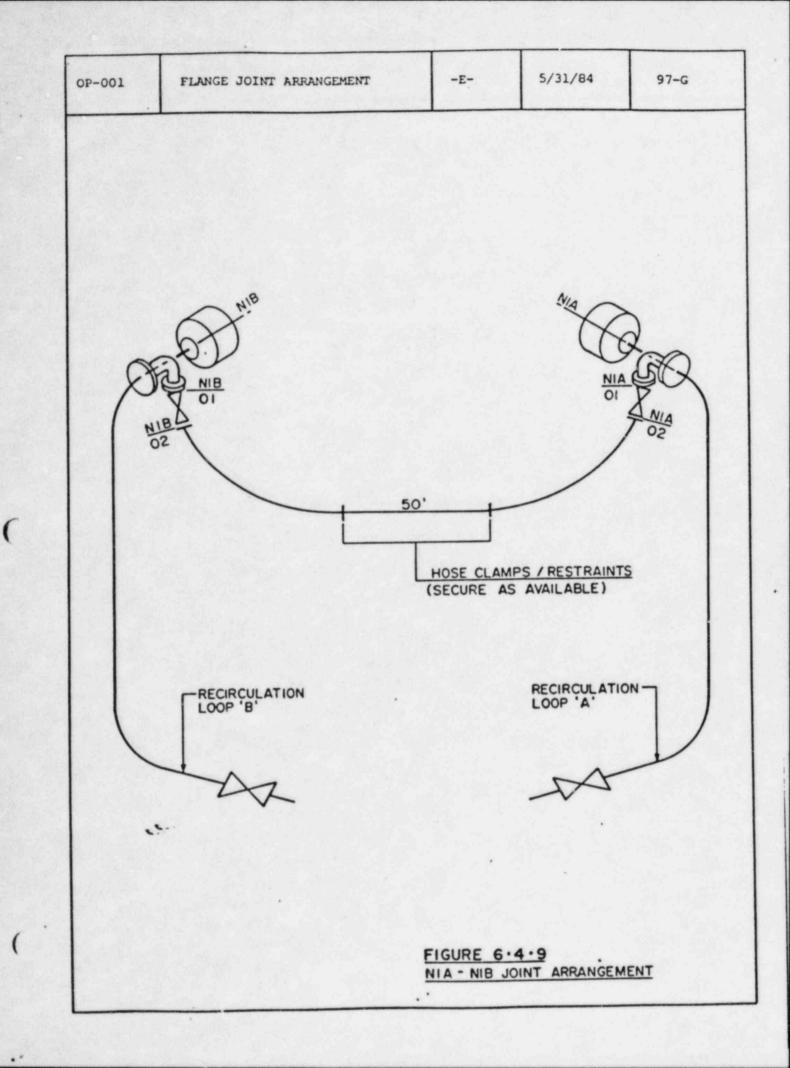


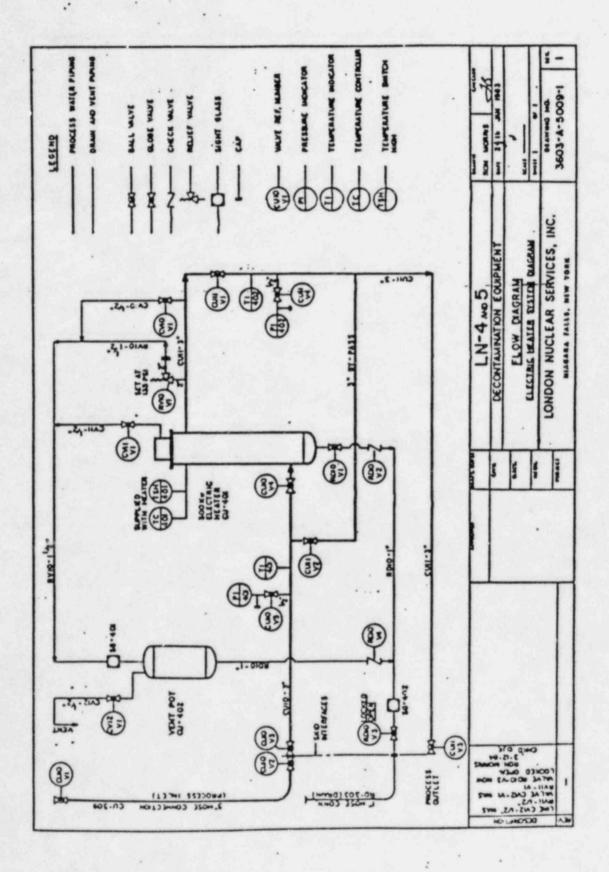


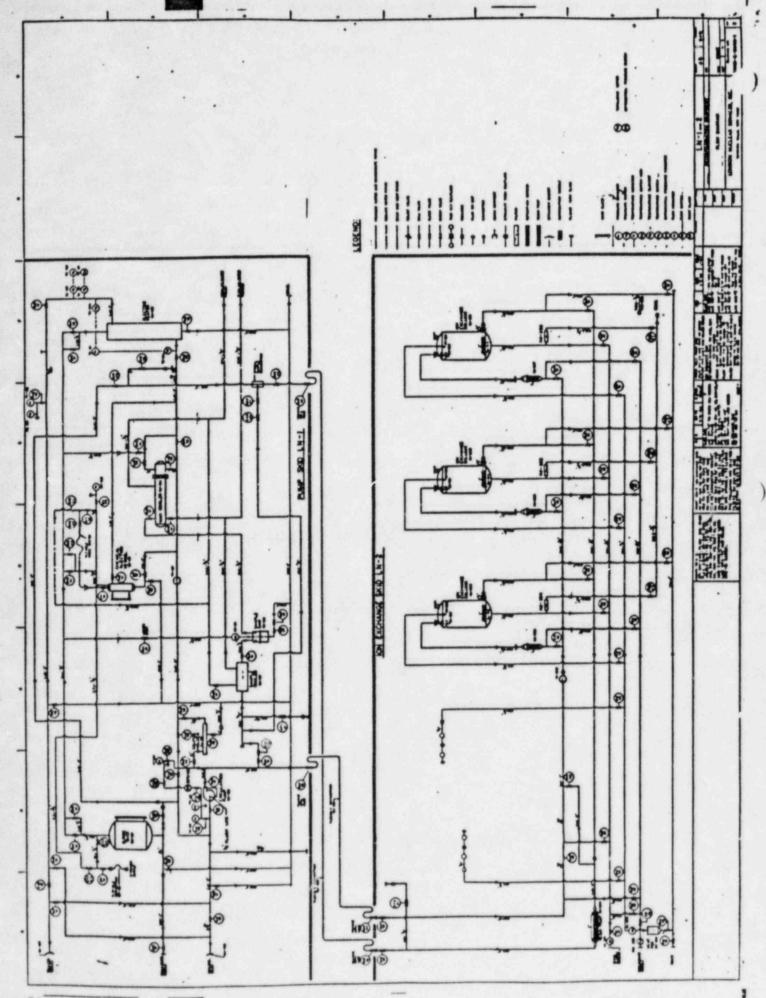

-



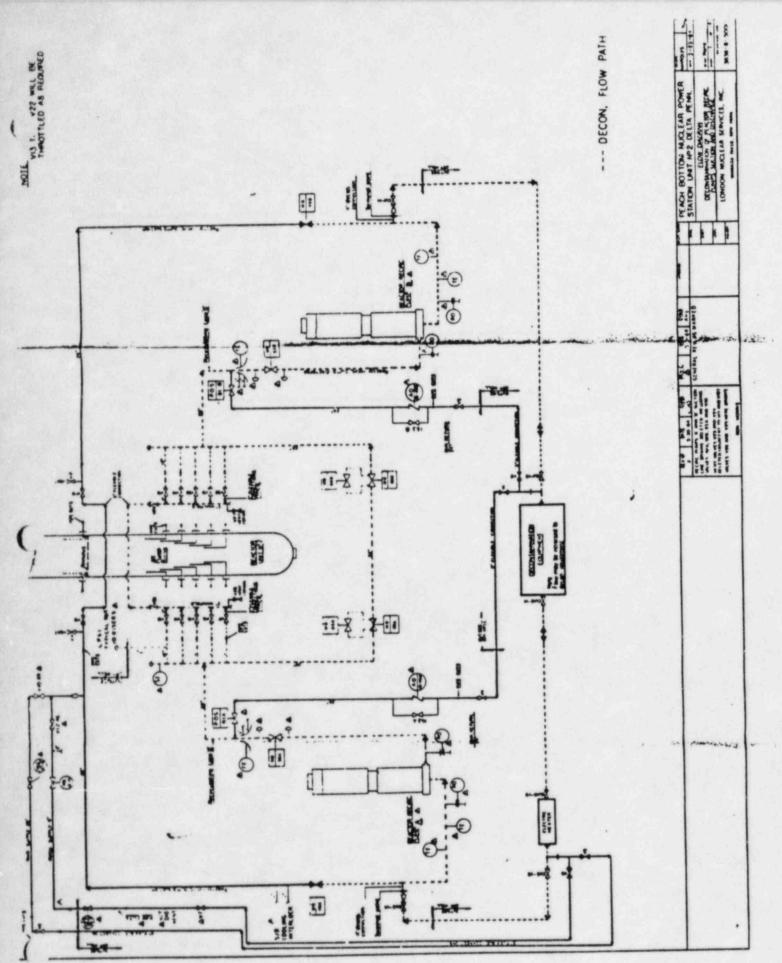


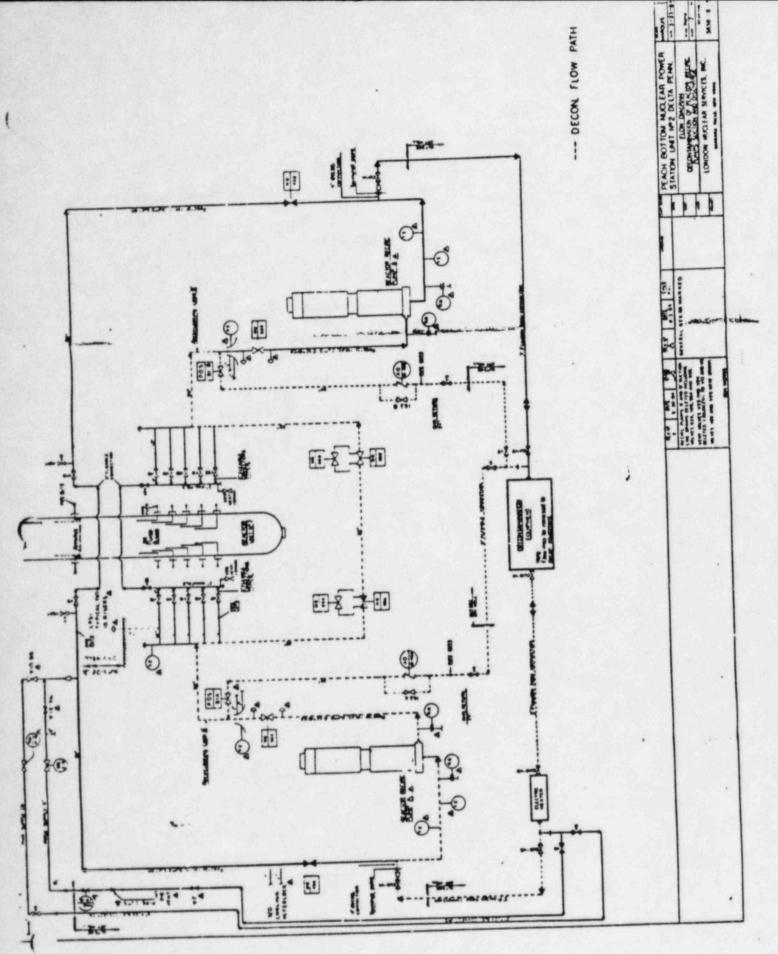




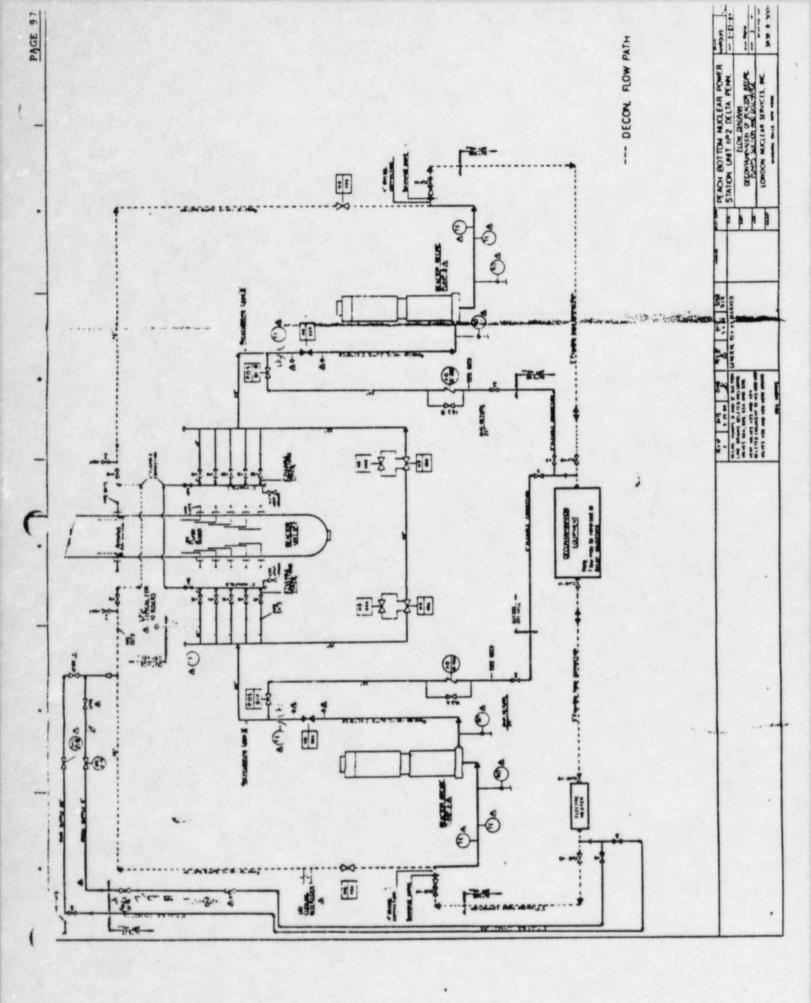


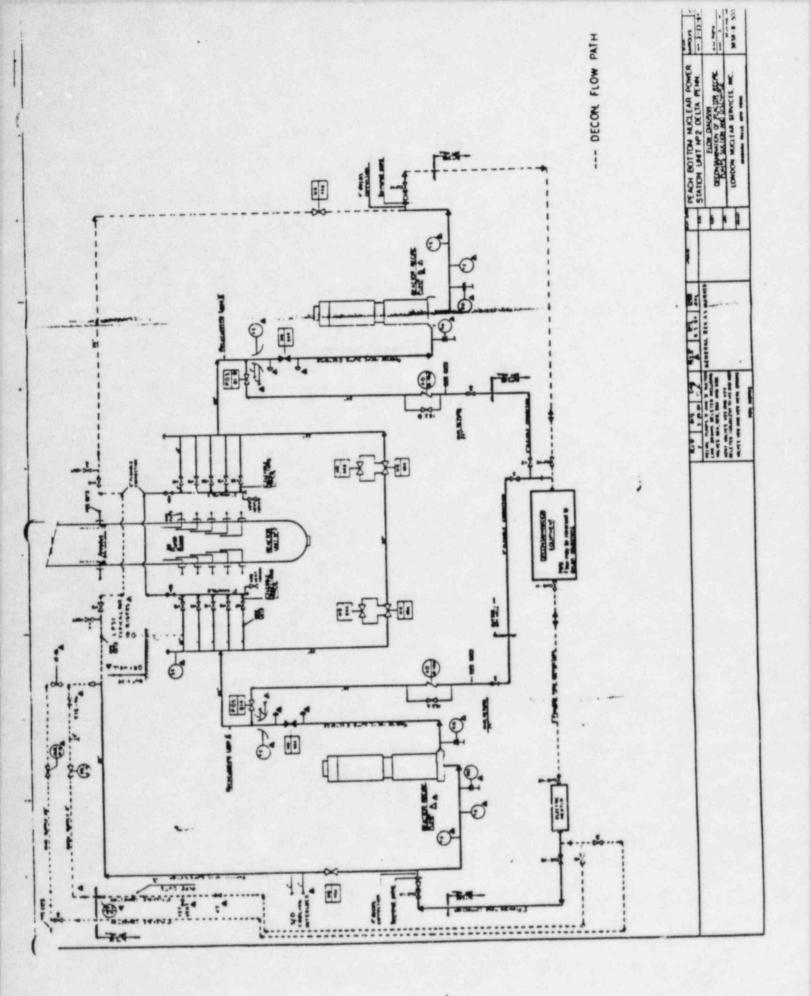
(

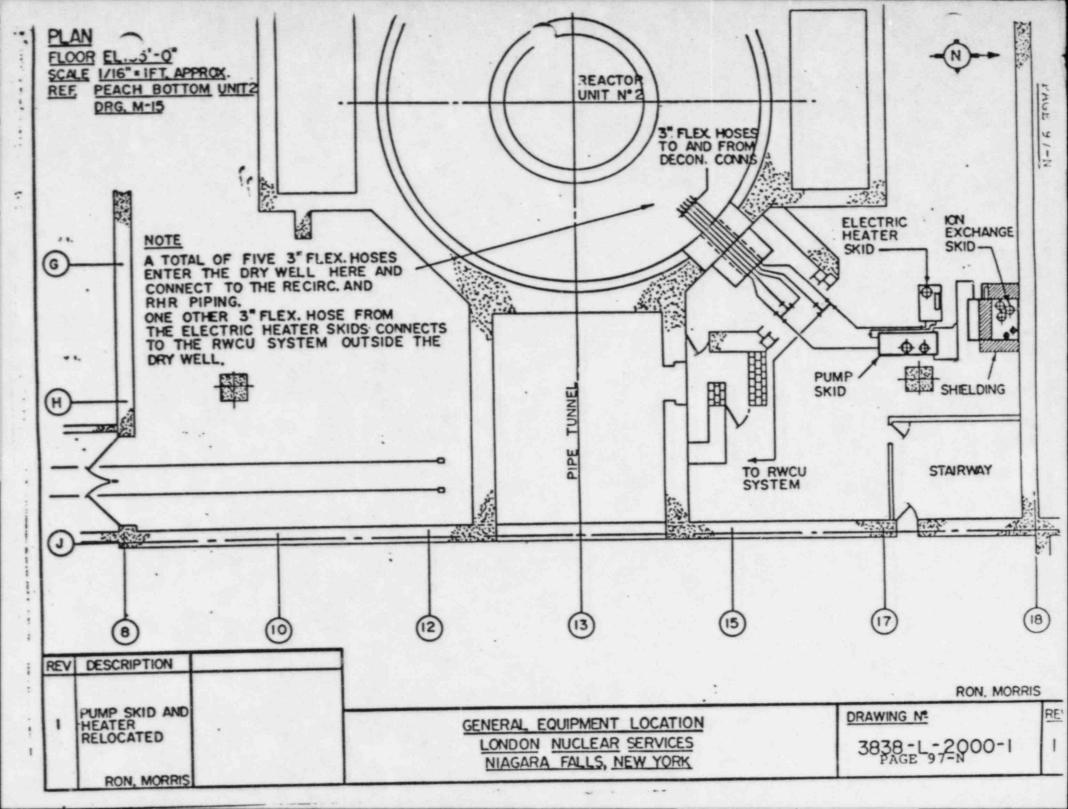



¢

LACE 97-H




TOWI T = 1 C



.

