## BEFORE THE ATOMIC SAFETY AND LICENSING BOARD

In the Matter of TEXAS UTILITIES ELECTRIC Docket Nos. $\quad 50-445$ COMPANY, et al.
(Comanche Peak Steam
(Application for Electric Station, Units I and 2)

> | TESTIMONY OF NANCY H. WILLIAMS |
| :--- |
| IN RESPONSE TO CASE QUESTIONS OF |
| FEB. 22,1984 TO CYGNA ENERGY SERVe $\$$ CE |

April 12, 1984
DAVID R. PIGOTT
of ORRICK, HERRINGTON \& SUTCLIFFE A Professional Corporation 600 Montgomery Street
San Francisco, CA 94111
Telephone: (415) 392-1122


1. Question: Please state your name, current business position.

Answer: I am Nancy H. williams, Project manager, Cygna Energy Services, 101 California Street, Suite 1000, San Francisco, California
2. Question: What is the purpose of the testimony being presented at this time?

Answer: During hearings of February 20 through February 24, 1984 in this proceeding, Board Exhibit No. I "Independent Assessment Report," Volumes I and 2 were introduced into evidence. During those same hearings I testified in support of the report and was cross-examined by parties to this proceeding. At the conclusion of that set of hearings, it was agreed that intervenor CASE would provide Cygna with its cross-examination questions in writing. Attached hereto as "Attachment I" is a copy of the written questions submitted to Cygna by CASE.

Subsequent to receipt of "Attachment I," Cygna formulated its responses and informally circulated those responses to the Board and the parties in a document entitled "Testimony of Nancy H . Williams in Response to CASE Questions of February 22, 1984 to Cygna Energy Services" and dated March 18, 1984. As a result of conferences between Cygno and CASE on March 21, 1984, Narch 27, 1984 and April 3, 1984, correspondence from CASE, and guidance provided in the Board's "Memorandum (Clarification of Open Items)" dated March 15, 1984 Cygna has reformulated its responses to the questions contained in Attachment I. Attached hereto and inccrporated herein are copies of Cygna's responses to the CASE questions mentioned in Attachment No. 1.

BEFORE THE ATOMIC SAFETY AND LICENSING BOARD

| In the Matter of TEXAS UTILITIES ELECTRIC COMPANY, et al. | Docket Nos. $\begin{aligned} & 50-445 \\ & 50-446\end{aligned}$ |
| :---: | :---: |
| (Comanche Peak Steam Electric Station, Units I and 2) | (Application for Operating Licenses) |

## CERTIFICATE OF SERVICE

I hereby certify that copies of the foregoing Testimony of "Nancy H. Williams in Response to CASE Questions of February 22, 1984 to Cygna Energy Services" in the above-captioned matter were served upon the following persons by overnight delivery (*), or deposit in the United States mail, first class, postage prepaid, this 12th day of April, 1984.
*Peter B. Bloch, Esq.
Chairman, Atonic Sufety and Licensing Board
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
*Dr. Walter H. Jordan
B81 W. Uvie: Drive
Oak Ridge, Tennessee 34830
*Dr. Kenneth A. McCollom
Dean, Division of Engineering
Architecture and Technology

## Oklahomo State University

Stillwater, Oklahoma 74074
Mr. John Collins
Regional Administrator, Region IV U.S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 1000 Arlington, Texas 76011

Chairman, Atomic and Safety Licensing Appeal Favel
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
Mr . William L. Clements
Docketing \& Service Branch
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
*Nicholas S. Reynolds
William A. Horin
Bishop, Liberman, Cook, Purcell \&
Reynolds
1200 Seventeenth Street, N.W.
Washington, D.C. 20036
*Stuart A. Treby, Esq.
Richard G. Bachmanri, Esq.
Office of the Executive Legal Director U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Chairman, Atomic Safety and Licensing Board Panel
U.5. Nuclear Regulatory Commission Washington, D.C. 20555
*Renea Hicks, Esq.
Assistant Attorney General
Environmental Pretection Division
P.O. \{30x 12548, Capitol Station

Austin, Texas 78711
Mr. Lanny A. Sinkin
114 W. 7 th, Suite 220
Austin, Texas 78701
*Mrs. Juanita Ellis
President, CASE
1426 S. Polk Street
Dallas, Texas 75224


BRIEF SUMMARY OF GENERIC PROBLEMS
Omitted from Calculations and Omitted from Checklists

1. Cinched up U-bolts:

- Not in compliance with Cygna criteria
- Not in compliance with NRC criteria
- Stresses of unknown quantity due to pre-stress, thermal and design loads
- Effects on pipe not shown on calculations
- Not in compliance with Board Notification.

2. Local effects on tube walls:

- Punching shear
- Effect on welds

2.04 N,

FILE
CROSS REF. FILE

- Resultant effect due to wall flexibility on moment at tube weld.

3. Dead weight of structure not included in calculations.
4. Weight of support masses as they affect pipe stress.
5. Inaccurate conclusions as relate to $\mathrm{KL} / \mathrm{R}$ for pinned columns:

- If a column fixed at its base and free at the top has an effective $K$ of 2.0 cutting at some point up from the base and adding a pin does not address the problem.

6. 16 -inch pipe with about 20 kip load along $31 / 2$-inch length induces high bearing stresses which require pads. This is not addressed, - ASME Code against flattening.
7. Clip angle $4 \times 4 \times 1 / 2$ which supports $U$-bolt not addressed (critical to maintaining stability):

- Section modulus .04 in cube
- Moment arm at least 2 inches
- 1100 load exceeds Code allowables.
- Pre-tensioning to obtain a clamping force required could exceed


## Jack Doyle to Cygna 2/22/84 Page 2

this (not including themal constraint and design loads)
0 Clamping force with no margin of safety for single degree system (not point contact or line contact) is force/coefficient of friction or about 4 times what is required for clamping force.
8. There is no documentation in calculations to support the conclusion that flair weld is stronger than fillet weld--no calculations, therefore why did Cygna accept this statement?

- Flair weld strength depends on radius of flair (depth).

9. The reduction feld capacity in the calcuation is based on $135^{\circ}$. Astual tangental angle is $150.3^{\circ}$. Therefore, an error exists. Did Cygna take note of this?
o More stress in weld than stated.
0 Wide/thin ratio induces cracking as well as the $1: 4: 1$ ratio width to depth.
10. Changing from flair weld tc fillet weld induces flange bending. Has this been addressed by Cygna?
11. Effects of cut-of-plane seismic excitation of support handware not inciuded in calculation. Did Cygna address this point?

- Additional 'oads on support
- Additional loads on pipe

12. Restraint of rotation by the pipe because of coupling effect of hardware on both sides of a pipe:

- Load increase in 1 of 2 snubbers/struts
- Alteration of dynamics of pipe system during seismic event

13. In Note 2 following page $P S-01-4$ of 4 , Cygna decided to eliminate their stiffness criteria based on their knowledge that a report existed to address the problem (but without personal knowledge of what was contained
in the document in detail). Why didn't Cygna consult with their experts.for example, Eric von Strijgeren (who was the editor on a paper by T.Y. Chow, C.H. Chen and 0 . Bilgen)--in reference to deviations from generic stiffnesses in pipe supports and the effects on piping systems.

- Third paragraph introduction et. seq. (CASE Ex, 884 )

14. In Note 1, same source, did Cygna consider the additive effects of self weight excitation if the stiffness is considered from node point to hard point as opposed to the stiffness of the frame independent of hardware, local effects, base plate and anchor bolts?

- Spring rate of base plate/anchor bolts (particularly tearing-type joints) can be considerable (observation of base plate II finite analysis).

15. Was thermal lockup considered for anchors which restrain pipe radial growth?

- Induces frame moments

16. The base plate analysis is based on distribution of shear relative to load path/stiffness for all bolts in the pattern. Did Cygna address this problem?

- With oversized holes and the inability to eliminate construction tolerances (location of the bolts combined with localtion of the bolt holes), it is not possible for all of the bolts in the system to be active. (See CASE Exhibit 906).
- The stiffness of the bolts is such that deflection cannot be counted on as a means to achieve full pattern participation
- Even if deflection could result in full activity, the first bolts deflecting would receive the larger portion of the load in an ideal symmetrical and systems.
- For non-symmetrical system and systems of variable stiffness, the Inactivity of a number of the bolts will alter the accuracy of the computerized analysis.

17. Has Cygna verified the statement: "No 2 -inch topping"?

- This affects the calculations for Hiltis relative to embednent, since a non-monolithic shear plane has been established.

18. The base plate analysis performed without including stiffeners alters the stiffness matrix of the base plate and consequently the distribution of moments and tension to the bolts. Beyond this point, stiffeners remain unqualified. Has Cygna addressed this?

The preceeding questions are the primary areas in which 1 will be crossexamining Cygna witnesses. (Additional questions may be triggered by Cygna witnesses' answers.)

In addition, CASE has not yet received all of the documents which it requested from Applicants' on the Cygna report. Therefore, additional questions may be triggered from these documents (if and when they are supplied).

## MATRIX OF EXHIBITS AND DOCUMENTS

## CASE Exhibit Concerns

891
892
893
894
895
896
897
898
899
900
901
902
$1,3,4,5,6,7,11,13,14,15,16$
9, minor question relative to pad width dianeter $+(R t)^{\frac{1}{2}}$
$8,10,14$
$1,4,5,11,14$
14, 16
12,14
$1,2,3,4,5,11,14,16$
$14,15,16,18$
$14,15,16,18$
$14,15,16$
Has minimum weid violation (walk-down)
Has support completely rebuilt on CMC and then calculated

This matrix has been compiled to the best of our ability due to time constraints. (It is from notes, etc.)

BRIEF SUMMARY OF CROSS-EXAMINATION QUESTIONS
BY CASE WITNESS MARK WALSH TO CYGNA
.
.

1. Appendix E of Cygna Report

Section $D C-2,4,4$. What was the yield point used for $A 500$ Grade $B$ tube steel?
2. Observation Record PS-02-01: The Applicants did not consider shear cone interaction of adjacent bolts.

3 P1-01-01. There has been no detailed computer analys is performed to consider the concentrated loads (valves, etc.) and their effect on dead weight and seis-ic. Also, the seismic analysis will not be linerally proportional.
$\angle$ P1-02. Is there an error in the table shown?
5. CTS-90-03: See CASE Exhibit 889, sheet 129. $F_{b x}=$ should be 21.2, not 23.2 or 22 . The length is $6^{\prime}$ not $5.5^{\prime}$.

See CASE Exhibit 890: 1) Why was only $1 / 2$ SEE considered?
2) Why was $4 \%$ damping used; not consistent with FSAR? 3) Assumed cable tray was rigid when lumping the mass; this resulted in not combining the dynamic effects of the cable tray itself to the support; did not include effect on welds.
4) The validity that the cable trays have the capacity to transfer a load around a corner when one run of cable tray has no axial restraint, as 5 留 on drawing 2323 EI-0601-01. (NOTE: We only have a $35^{\prime \prime} \times 48^{\prime \prime}$ drawing; please let us know when you want to look at it.). 5) What documentation did Cyma see that justified the hangers' receiving a latera? load around corners resist the axial load from the tray segment that contains no axial restratis:
how did Cygna evaluate it? It appears the axial loa. has not been taken into account. 6) CASE Exhibit 902. Did not consider base plate flexibility.
6. CTS-00-05: In the description, it discusses a channel bent about its weak axis. The resolution does not consider this problem nor does the document CASE requested on discovery; see CASE Exhibit 907. On CMC 88306, are the originator and opprover the same person?
7. ©TS-00-06. What is the "significant design margin" as shown in the resolution?

3 CTS-00-07: The analys is that included the beam element did nut consider prying action and the flexibility of the base plate to determine the center of compression.
2. WD-03-01: What documentation was there that "accept as is" was valid? Were there calculations to support this?

12 WD-07-02: What documentation did Cygna see that showed the temperature indicator would be installed at a later date?

1. Pipe stress checklist, note 3, item a: 1) What is the basis for considering that the effects were negligible? 2) What pipe stress run did Cygna look at, since the inclined load was used in the design of support RH-1-010-003-S22R?
2. Cable Tray Check List: CTS-11, Item 6, problem 4. This was not discussed in CTS-00-07.

The preceeding questions are the primary areas in which I will be cross-examining Cygna witnesses. (Additional questions may be triggered by Cygna witnesses' answers.)

In addition, CASE has not yet received all of the documents which it requested from Applicants' on the Cygna report. Therefore, additional questions may be triggered from these documents (if and when they are supplied).

Comanche Peak ASLB Hearings
Response to CASE Questions
Question iNo.: Doyle \#11
Exhibit No.: 891, 894, 897

### 1.0 CASE Question

Cinched up U-bolts:

- Not in compliance with Cygna criteria
- Not in compliance with NRC criteria
- Stresses of unknown quantity due to pre-stress, thermal and design loads
- Effects on pipe not shown on calculations
- Not in compliance with Board Notification


### 2.0 Cygna Interpretation

N/A

### 3.0 Response

Section 4.1.2 of the Cygna review criteria document, DC-2, states the following:
"A gap shall be provided to accommodate radial expansion and construction tolerances. The maximum total gap allowed in the restrained direction is $1 / 8^{\prime \prime}$. In unrestrained directions, the support design shall allow clearances for the most severe thermal plus seismic movements of the pipe. Proper installation tolerances shall be provided where thermal movement cannot be accommodated within the specified gap minus $1 / 16^{\prime \prime}$."

This criteria is intended to apply only to pipe supports which do not require physical contact with the pipe to insure that the require restraining forces are developed. Supports which require physical contact with the pipe in order to develop the proper restraining forces, such as pipe clamps and cinched U-bolts, cannot have gaps and therefore are not required to satisfy the conditions of DC-2, Section 4.1.2.

The NRC Information Notice No. 83-80 identifies potential significant problems that may exist with the usage of specialized "stiff" clamps. Under certain conditions, these clamps may induce high local stresses in the pipe. Cygna did not encounter any "stiff" clamps during the Cygna IAP review.


# Comonche Peak ASLB Hearings 

Response to CASE Questions
Question No.: Doyle I\#1
Page 2

As defined in the Independent Assessment Program Plan, review of the RHR System included design criteria, analyses, design and drawings. It did not include installation specifications, where torqueing requirements such as cinching, would normally be defined. Cinching was not required or defined in any of the documents reviewed by Cygna. Accordingly, cinching loads were not known and were not considered in the design assessment.

Loads on the pipe due to cinching were not assessed for the reasons discussed above. Pipe loads due to the zero gap were judged to be negligible. The conclusions in the IAP Draft Report are based on that engineering judgment.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#2
Exhibit No.: 897

### 1.0 CASE Question

Local effects on tube walls:

- Punching shear
- Effect on welds
- Resultant effect due to wall flexibility on moment at tube weld


### 2.0 Cygna Interpretation

When tube sections are employed in the design of pipe supports, how were the following local effects considered:
a. Punching shear?
b. Effect on welds?
c. Resultant effect due to wall flexibility on moment at tube weld?

### 3.0 Response

Pipe support RH-1-062-002-S22R (CASE Exhibit 897) is designed using a tube section, TS $4^{\prime \prime} \times 6^{\prime \prime} \times 1 / 2^{\prime \prime}$, weided to a baseplate at one end and to a strut clevis at the other end. Punching shear and welding stresses are discussed below:
a. Punching shear stresses are within allowable for all supports reviewed by Cygna. This is evidenced by the punching shear check provided in Attachment D2-1.

Adequacy with respect to punching shear can also be determined by inspection through a simple comparison of fillet weld size and tube wall thickness. The basic relationship for this comparison is established by considering a unit length of weld and tube wall as a freebody and equating the allowable force in the weld to the allowable shear force through the thickness of the tube wall.

The allowable force in the weld is

$$
P_{w}=F_{w} * 1 * .707 * t_{w}
$$

Comanche Peak ASLB Hear rings
Response to CASE Questions
Question No.: Doyle \#12
Page 2

The allowable shear force in the plate is

$$
P_{c}=F_{c} * 1 * t_{c}
$$

where $\quad{ }^{t_{c}}=$ tube wall thickness, inches
$\mathrm{F}_{\mathrm{c}}=$ allowable weld shear stress, ksi (use 18 ksi )
$t_{w}=$ fillet weld leg size, inches
$F_{w}=$ allowable tube shear stress, ksi (use $0.4 * 31 \mathrm{ksi}$ )
By equating $P_{w}$ to $P_{c}$ and substituting the proper values for allowable stress, the following relationship is established:

$$
\begin{aligned}
& { }_{t_{c}}=\left(18 * .707 * \dagger_{w}\right) /(0.4 * 31) \\
& { }_{t_{c}}=1.0 \dagger_{w}
\end{aligned}
$$

Therefore, assuming the fillet weld is properly sized, if the tube wall thickness is equal to or greater than the fillet weld size, punching shear stresses in the tube wall will be satisfactory. For support RH-1-064-S22R, the tube thickness ( $1 / 2^{\prime \prime}$ ) is twice the attached fillet weld ( $1 / 4^{\prime \prime}$ ).
b. Each welded connection in support $\mathrm{RH}-1-064-011-S 22 \mathrm{R}$ is discussed below: and

## c. Tube-to-Baseplate

This connection is a standard beam-to-column detail, as evidenced by the AISC Manual, Part 4. Furthermore, the flare-bevel weld detail has been properly evaluated and sized by the designer.

## Tube-to-Clevis

Attaching the strut clevis to the tube flange introduces no adverse effects into the connecting fillet weld.

$$
\begin{aligned}
& 2 \\
& 4
\end{aligned}
$$

Comanche Peak ASi.B Hearings
Response to CASE Questions
Question No.: Doyle \#2
Page 3

The flexibility of the tube wall produces no significant additional loads on the weld. This welded connection compares favorably with certain standard weldments shown in Blodgett's Design of Welded Structures (see Attachments D2-1; D2-2 Figure 9; and D2-3, Figure 12). The connections shown in these attachments are more "flexible" than the tube-io-clevis detail in support RH-1-064-S22R, and are not evaluated for added weld stresses due to diaphragm action or plate flexibility.
c. AWS Section 10.5 specifically addresses stepped tube connections and the evaluation of tube wall capacity for the case where the connecting tube transmits both axial and bending loads to the tube wall. The design equation (Section 10.5.1) used in the evaluation is a function of both the ratio of the tube widths (Beta) and the tube wall thickness. It seems implicit that by satisfying the design equation the local stresses within the tube wall are within acceptable limits at the design load.

In addition it should be emphasized that the Beta parameter alone is not sufficient to evaluate the serviceability or strength of stepped tube connections. The Beta parameter must be considered in conjunction with the tube wall thickness. For example, a connection having a Beta $=0.4$ will possess approximately the same ultimate moment capacity and punching shear capacity (as well as the same moment-rotation and axial load-deflection characteristics) as a connection having a Beta $=0.8$, if the connection with Beta $=0.4$ has a wall thickness one-third greater than the wall thickness of the connection with Beta $=0.8$ (see Korol \& Mirza paper, ASCE, Journal of the Structural Division, September 1982, Figures 7, 8, 11 and 12 and Tables 2 and 3). Thus, a tube (or clevis) welded to a $3 / 8^{\prime \prime}$-thick tube for which Beta $=0.8$ will behave approximately the same with respect to deflection, rotation, punching shear and ultimate moment as when the tube (or clevis) is welded to a $1 / 2^{\prime \prime}$-thick tube wall for which Beta $=0.4$.

## ATTACHMENT D2-1

(Page 1 of 3 )

Punching shear check for Support No. RH-1-062-002-S22R.

Reference: American Welding Society (AWS), D1.1, Section 10.5.


FIGURE D2-1

```
APPLIED AXIAL LOAD = 5092 LBS.
```

Since the attachment is not a tube and only welded on the $3^{\prime \prime}$ side, the calculation of $f_{a}$ in the following equation for Acting $V_{p}$ (AWS Section 10.5.1) will be conservatively high, because the loads shared by the $1-1 / 2^{\prime \prime}$ sides of the tube are being neglected.

$$
\text { Acting } v_{p}=\tau\left(\frac{f_{a} \sin \theta}{k_{a}}+\frac{f_{b}}{k_{b}}\right)
$$

$$
\therefore
$$

## ATTACHMENT C2-1 (continued)

(Page 2 of 3 )

```
where
    \(f_{a}=5092 /(3+3) t_{b}=849 / t_{b}\)
    \(f_{b}=0\)
    \(\theta=90\) degrees
    \(\tau=t_{b} / t_{c}\)
    \(B=b / D\)
    \(K_{a}=1.0\)
    Acting \(V_{p}=1698\)
    Basic \(V_{p}=F_{y} /(0.6 \gamma) \quad\) where \(\gamma=0 / 2 t_{c}\)
            \(=31350 /(0.6)(6) \quad=6 / 2(1 / 2)=6\)
    \(U=\left(f_{a}+f_{b}\right) / 0.6 \mathrm{~F}_{y}\) (see Note 1, Table 10.5.1)
    \(f_{a}=849 / t_{b}=849 /(1 / 4)=3395\) psi
```

(Note: $f_{a}$ is conservatively calculated using $t_{b}$ of $1 / 4^{\prime \prime}$, i.e., the weld size).
$U=(3395+0) /(.6)(31350)=0.18$

Since $U$ is less than $0.44, Q_{f}=1.0$; and, since beta ( 0.5 ) is less than $0.6, Q_{b}=1.0$.

```
Allowable }\mp@subsup{V}{p}{}=\mp@subsup{Q}{b}{}\mp@subsup{Q}{f}{f}\mathrm{ (Basic }\mp@subsup{V}{p}{}
    =(1)(1)(8708 psi) = 8708 psi
```


## ATTACHENT D2-1 (continued)

```
(Page 3 of 3)
```

```
This is considerably greater than the Acting A }\mp@subsup{A}{p}{}=1698\mathrm{ psi.
Design margin = (8708/1698)-1=4.12=412%
OK.
```

of 38.4 kips for a weld size of $\omega=3 / 10^{\prime \prime}$ and angle length of $L_{r}=10^{\prime \prime}$ slightly exceeds the reaction. The corresponding (Field) Weld B, using $\omega=\psi_{4^{\prime \prime}}$, also is satisfactory. Since the beam's required web thickness is $0.21^{\prime \prime}$ while the actual web thickness is $0.25^{\prime \prime}$, the indicated $3^{\prime \prime} \times 3^{\prime \prime} \times 5 / e^{\prime \prime}$ is all right.

If the beam is made of A36 steel, this connection's capacity will be reduced in the ratio of $0.25 / 0.29$ of actual to required web thickness. The resulting capacity of 33.1 kips is less than the reaction. The next larger connection with apparently sufficient capacity shows that (Shop) Weld A's capacity is 47 kips , using same angle section but an angle length of $\mathrm{L}_{1}=12^{\prime \prime}$. Applying the multiplier of $0.25 / 0.29$ reduces the capacity of the connection to 40.5 kips , which exceeds the end reaction.

## 5. SINGLE-PLATE OR TEE CONNECTION ON BEAM WEB

In the previous design of the field weld, connecting a pair of web framing angles to the supporting column or girder, it was assumed that the reaction ( R ) applied eccentric to each angle, resulted in a tendency for the angles to twist or rotate. In doing su, they would press together at the top and swing away from each other at the bottom, this being resisted by the welds. These forces are in addition to the vertical forces caused by the reaction (R); see Figure 10.

However, in both the single-plate web connection and the Tee-section type, this portion of the connection welded to the column is solid. Thus, there is no tendency for this spreading action which must be resisted by the welds. These vertical field welds to the


FIG. 10-Double.web froming angle.


FIG. 11-Single plate or Tee.
column would be designed then for just the vertical reaction ( R ); see Figure 11.

In the shop weld of the single plate to the web of the beam, Figure 12. this double vertical weld would be designed for just the vertical reaction ( R ). There is not enough eccentricity to consider any bending action.


FIG. 12-Fiat plate used for flexible connection on web of beam.

## ATTACHMENT D2-2 <br> 3.2-8 / Wolded-Connection Design (Page 1 of 1 )



FIGURE 8

## 5. HORIZONTAL STABILITY

A flexible top angle is usually used to give sufficient horizontal stability to the beam. It is not assumed to carry any of the beam reaction. The most common is a $4^{\prime \prime} \times 4^{\prime \prime} \times 14^{\prime \prime}$ angle, which will not restrain the beam end from rotating under load. After the beam is erected, this top angle is feld welded only along its two toes. For beam flanges $4^{\prime \prime}$ and less in width, the top angle is usually cut $4^{\prime \prime}$ long, for beam flanges over $4^{\prime \prime}$ in width, the angle is usually cut $\theta^{\prime \prime}$ long.

In straight tension tests of top connecting angles at Lehigh University, the $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ " angle pulled out as much as $1.98^{\prime \prime}$ before failure, which is about 20 times
greater than usually required under normal load conditions.

Notice in the following figure, that the greatest movement or rotation occurs in the fillet weld connecting the upper leg of the angle to the column. It is important that this weld be made full size.

This test also indicated that a return of the fillet weld around the ends of the angle at the column equal to about $1 / 4$ of the leg length resulted in the greatest strength and movernent before failure.


FIGURE 10

## Problem 1

Design a lexible seat angle to support a 12" WF 27 \# beam, having an end reaction of $\mathrm{R}=30 \mathrm{kjps}$. Use A36 steel, E70 welds.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#3
Exhibit No.: 891, 897

### 1.0 CASE Question

Dead weight of structure not included in calculations.

### 2.0 Cygna Interpretation

N/A

### 3.0 Response

General purpose structural design codes specify that dead load shall be considered in the design of structures. The significance of the various components of dead load in the design of a structure varies with the type of structure. In the case of a piping system, dead load is considered in the design of pipe supports. The dead load included in the design of a pipe support consists of the piping dead weight and the weight of all material attached to or integral with the piping, such as insulation, valves, etc. Since the dead weight of the pipe support itself is generally very small compared to the piping dead load, thermal load and seismic load for which the support is designed, itt can usually be neglected. Cygna believes that neglecting this specific component of dead load (i.e., support dead weight), except in the case of very unusual supports, is consistent with industry practice.

With respect to the specific supports cited, the total dead weight of the support in CASE Exhibit 891 and 897 is 715 lbs and 82 lbs , respectively. This amounts to $4 \%$ and $2 \%$ of the design load for these supports. These percentages will be even smaller when compared to the support capacities.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#/4
Exhibit No.: 891, 894, 897

### 1.0 CASE Question

Weight of support masses as they affect pipe stress.

### 2.0 Cygna Interpretation

What is the effect of support weights (masses) on the pipe stress analysis?

### 3.0 Response

Standard industry practice is not to include support masses in the analysis of pipe stresses. This practice, which was employed on the RHR system Train B at Cornanche Peak, produces satisfactory results for the following reasons: 1) support weights are relatively small; 2) support stiffnesses are relatively high; 3) support damping is typically higher than piping system damping; 4) standard analysis techniques are structured to envelope minor variations such as those associated with support masses.

The importance of each item is discussed in detail below. In order to help place these discussions in perspective, the following basic equation of motion may be useful.

$$
\begin{equation*}
M \ddot{x}+C \dot{x}+K x=-U g \tag{1}
\end{equation*}
$$

where

| $M$ | $=$ mass |
| :--- | :--- |
| $C$ | $=$ damping |
| $K$ | $=$ stiffness |
| $\ddot{x}$ | $=$ acceleration |
| $\dot{x}$ | $=$ velocity |
| $x$ | $=$ displacement |
| $-U g$ | $=$ input motion |

Equation (1) describes the response of a system (left hand side of the equation) to a particular input motion. If the input motion is set to zero and system domping is small, the response tendencies of the system can be calculated as,

$$
\begin{equation*}
\mathrm{f}=\frac{1}{2 \Pi} \sqrt{\frac{K}{M}} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{f}=\text { fundamental system resprinse (frequency) } \\
& \text { II }=3.1416
\end{aligned}
$$

Equation (2) links the system response (f) to basic system characteristics expressed in terms of stiffness and mass. From this equation, it can be seen that an increase in stiffness will tend to increase the frequency, while an increase in mass will decrease the frequency.

Standard response spectrum techniques are founded on Equations (1) and (2), such that the system response can be directly related to accelerations plotted on a response spectrum. Damping effects are normally included in this process by developing sets of response spectra for various standard damping values.

## Relative Support Weights

Except for particularly unbalanced and massive support configurations, which were not observed in the RHR reviewed by Cygna at Comanche Peak, support masses are small relative to the piping system masses that drive the overall response.

In order to test this effect on Comanche Peak, Cygna performed an analysis of a segment of piping within our scope of review, using the ANSYS code. As illustrated in Attachment D $4-1$, the main piping from the RHR pump to the heat exchanger was studied. Branch lines, including the safety injection lines, were omitted to moke the model more manageable for this test. Basically, the test model contains about 95 feet of main piping


Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle /il
Page 3
with 16 supports. This model was analyzed with and without support masses using the same standard analysis techniques employed on Comanche Peak. The only difference between the two analyses was support masses, which are listed below:

## Support Masses

Support Number Weight ( (b ss)
R4-1-010-003 ..... 72
RH-1 $=010-004$ ..... 42
RH-1 $=010-002$ ..... 11
RHO $-010-001$ ..... 87
RH-1 $=064-010$ ..... 41
RH-1 $=064-004$ ..... 77
RH-1 $=064-01$ I ..... 25
RH-1 $=064-003$ ..... 15
RHo $=064-005$ ..... 26
RH-1 -064-009 ..... 24
RH-1 $=064-002$ ..... 27
RH-1 $=064-006$ ..... 50
RH-1 -064-007 ..... 56
RHo $=064-008$ ..... 122
RH-1 -064-001 ..... 31
RHO $=010-005$ ..... 30

The results of this test are contained in Attachments D4-2 (calculation package), D4-3 (computer output without support masses), and D4-4 (computer output with support masses). A summary of the system frequencies and pipe stresses at the most massive support (RHR-1 -064-008) is provided below:

Comanche Peok ASLB Hearings
Response to CASE Questions
Question No.: Doyle 14
Poge 4

## Frequencies

| Made No. | Without Support Mass (hertz) | With <br> Support Mass (hertz) | Difference (\%) |
| :---: | :---: | :---: | :---: |
| 1 | 7.7 | 7.6 | 1.1 decrease |
| 2 | 10.3 | 10.1 | 1.9 decrease |
| 3 | 12.3 | 11.4 | 7.5 decrease |
| 4 | 20.0 | 19.4 | 2.9 decrease |
| 5 | 22.1 | 21.9 | 1.0 decrease |
| 6 | 23.2 | 22.9 | 1.3 decrease |
| 7 | 28.2 | 27.6 | 2.3 decrease |
| 8 | 33.0 | 31.4 | 5.0 decrease |

Pipe Stress (at Support RH-1-064-008)


| $\sigma_{1}$ | $=$ maximum principal stress |
| :--- | :--- |
| $\sigma_{3}$ | $=$ minimum principal stress |
| $S I$ | $=$ stress intensity $=$ maximum of $\sigma_{1}-\sigma_{2}, \sigma_{2}-\sigma_{3}, \sigma_{3}-\sigma_{1}$ |
| $\sigma_{E}$ | $=$ equivalent stress $=\frac{1}{2}\left[\left(\alpha_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{2}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]^{\frac{1}{2}}$ |

(1) From computer output dated 4/10/84 @ 10:29 for element II, node 4
(2) From computer output dated 4/10/84 @ 10:21 for element 13, node 14.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#/4
Poge 5

Interpreting these ;esults, it can be seen that the added mass results in only a minor decrease in system frequencies. Pipe stresses actually decrease slightly, but the changes are negligible.

## Pipe Stiffness

Pipe supports are normally designed to be rigid in their support direction relative to the attached piping. This design method tends to uncouple support response from overall system response.

In the off (non-support) direction, the support stiffness normally has no effect. Unless gaps are provided to uncouple the support mass in the off-direction, the moss will participate with the piping. The effect of this interaction has already been shown to be negligible in the "Relative Support Weights" discussion.

## Support Damping

Damping directly associated with pipe supports is not considered on Comanche Peak, However, if support masses and stiffnesses are included in the analysis, then support damping should also be included.

As shown in Equation (1), the occeleration and displacement terms will tend to decrease for a given input motion as damping (velocity term) increases. USNRC Regulatory Guide 1.61 recommends damping values up to $; \%$ for structures and $3 \%$ for piping under SSE loadings. Therefore, if support response is a significant contributor to overall system response, then the overall system damping will fall somewhere between the individual damping values for piping and supports.

## Standard Analysis Techniques

There are many conservatisms built into the standard analysis techniques that are intended to simplify the analysis and focus on the most significant mechanisms. A few of these are briefly discussed below:

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#4
Page 6

## a. Low System Damping

Researchers have shown that piping systems exhibit damping values greater than those allowed by USNRC Regulatory Guide 1.61. For example, the Pressure Vessel Research Council (PVRC) has proposed the damping values shown in Attachment D4-5.

## b. Modal Response Method

This method combines individual system responses (modes) without regard for direction (or signs). For example, even though responses may be either left or right, this technique assumes that all responses act to the right. A more refined analysis would circumvent this combination technique, but the costs are not practical for production analyses.

## c. Spectra Broadening

Motions input to the piping analyses in the form of response spectra contain two significant conservatisms: (1) the rough (saw-toothed) spectra are broadened, usually $\pm 15 \%$, and (2) the rough shape is enveloped by a smooth curve.

## d. Ground Spectra

The shape of the ground spectrum is generically defined per USNRC Regulatory Guide 1.60 . A site-specific spectrum would normally impose significantly less demands on the structures, systems and components. The peak ground accelerations are also based on conservative interpretations of the geotechnical conditions.

## e. Elastic Analyses

Pipe systems have considerable inherent strength that is not tapped by the standard analysis/design technioues. Being constructed of steel, these systems exhibit strength well beyond the yield point. This is often defined as ductility, In Attachment D4-6 (Appendix A to Standard Review Plan, Section 3.5.3) the NRC

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#4
Page 7
recognizes this fact. Although Attachment D4-6 is intended for impact or impulse loads, it shows that steel members in tension can resist strains up to 10 times yield and still perform their intended function.

In conclusion, Cygna does not recommend that the conservatisms noted above be deleted from the Comanche Peak analyses. But, on the other hand, the presence of these conservatisms should be recalled whenever minor effects are considered, such as the effect of support masses on pipe stress analyses. Regarding the Comanche Peak practice of not including support masses in the piping analysis, Cygna considers this practice to be consistent with industry practice and with the degree of refinement of the analysis techniques. Furthermore, the test problem results show that support masses have a negligible effect on pipe stresses in a system similar to the one reviewed by Cygna.

oetall A

Eaclosure D4-1 RHR Systea-Sample Piping Analysis

5


## APPENDIX A

# STANDARD REVIEW PLAN SECTION 3.5.3 <br> PERMISSIBLE DUCTILITY RATIO <br> FOR OVERALL DAMAGE PREDICTION 

## I. INTRODUCTION

In the evaluation of overall response of reinforced concrete and steel structural elements (e.g., missile barriers, columns, slabs, etc.) subjected to impactive or impulsive loads, such as impacts due to missiles, assumption of nonlinear is generally acceptable provided that the intenity) of the structural elements structural elements and those of safety-related safety functions of the or protected by the elements are maintained positions for review and acceptance of ductility following summarizes specific and steel structural elements subjected to impactivios for reinforced concrete
11. SPECIFIC POSITIONS

## 1. Reinforced Concrete Members

The technical position of the regulatory staff with regard to permissible of Revision 1 of Regulatory Guide 1142, the staff 1.142 . Prior to publication ductility will be provided to applicants on a case-by-case regarding
2. Structural Steel Members
a. For tension due to flexure

$$
\mu_{d} \leq 10.0
$$

b. For columns with slenderness ratio $(1 / r)$ equal to or less than 20

$$
\mu_{d} \leq 1.3
$$

Where $I=$ effective length of the member

$$
r=\text { the least radius of gyration }
$$

For columns with slenderness ratio greater than 20

$$
\mu_{d} \leq 1.0 \quad \therefore
$$

c. For members subjected to tension

$$
\mu_{d} \leq 0.5 \frac{e_{u}}{e_{y}}
$$

Where $e_{u}=$ Ultimate strain

$$
e_{y}=\text { Yield strain }
$$

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#/5
Exhibit No.: 891, 894, 897

### 1.0 CASE Question

Inaccurate conclusions as related to $\mathrm{KL} / \mathrm{R}$ for pinned columns:

- If a column fixed at its base and free at the top has an effective $K$ of 2.0 , cutting at some point up from the base and adding a pin does mot address the problem.


### 2.0 Cygna Interpretation

Does a stability problem exist for CASE Exhibits 891, 894 and 897?

### 3.0 Response

The stability characteristics of a structure under the action of compressive loads can generally be separated into three categories. These include rigid brody modes of instability, Euler column buckling, and beam-column effects. For the purposes of discussion, the three support configurations in question (CASE Exhibits 899, 894 and 897) can all be idealized to the basic configuration shown in Figure 1, wherein the $x$ component of reaction at A is provided by frictional clamping forces. For this basic configuration, the rigid body modes of instability generally account for the overall stability characteristics of the entire structure, while Euler column buckling and beamcolumn effects are confined to the individual members.


Figure 1
14

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle //5
Page 2

The rigid body mode of instability can be initiated in three ways: (1) when the clamping force at $A$ is insufficient to develop the lateral ( $x$ ) component of frictional force necessary to prevent sliding; (2) when the clamping force ot $A$ is insufficient to develop the resisting torque necessary to prevent the clamp from rotating; and (3) for the specific case of alpha equals theta, when the cantilevered mernber $B C$ does not provide sufficient lateral stiffness at point $B$ to prevent rigid body rotation of member $A B$.

Euler column buckling of member $A B$ can occur for all values of alpha and theta given in the three exhibits. The correct value of $K$ to be used in evaluating the stability of member $A B$ is 1.0 , since the member is pinned at both ends and can therefore only develop axial loads. Similarly, Euler column buckling can cccur in member BC but only when alpha equals theta. The correct value of K to be used in evaluating the stability of this member is 2.0 since the member is fixed at one end and free at the other.

Beam-column effects account for the fact that the bending stresses produced by lateral loads on a column are amplified by the presence of the axial lioad. What this means is that the moximum stress in a laterally loaded column is not simply the sum of the oxial stress and bending stress, but is in fact the sum of the axiail stress and an amplified bending stress. This amplified bending stress is the product of the bending stress produced by the lateral locd and an amplification factor which is given by the expression

$$
\left(\frac{1}{-P^{2} / p_{c r}}\right)
$$

where $P$ is the axial load in the column and $P_{c r}$ is the Euler buckling load for the column. Only member BC is influenced by the beam-column effect. Obviously bearncolumn effects have no influence on member $B C$ when members $A B$ and $B C$ are either co-linear or perpendicular.

Each of the three CASE exhibits can now be briefly discussedl with respect to each of these three categories of instability.

Comanche Peak ASLB Hearings Response to CASE Questions
Question No.: Doyle //5
Page 3

## TABLE D5-1

|  | CASE Exhibits |  |  |
| :--- | :---: | :---: | :---: |
|  | 891 | 894 | 897 |
| Required Lateral Stiffness <br> at point B (lbs/in) | 800 | 40 | $\mathrm{~N} / \mathrm{A}$ |
| Actual Lateral Stiffness <br> at point B (lbs/in) | 700,000 | 2,000 | $\mathrm{~N} / \mathrm{A}$ |

## TABLE D5-2

| CASE <br> Exhibit | Type of <br> Clamping Force <br> Resistance | Required <br> Clamping <br> Force <br> (lbs) | Required <br> Brolt |
| :---: | :--- | :---: | :---: |
| Torque |  |  |  |
| (ft-lbs) |  |  |  |

Euler Buckling of member $B C$ has been accounted for in the calculation and is not a problem. Member $A B$ is a pre-qualified component and as such is stable with respect to Euler Buckling.
Comanche Peak ASLB Hearings

## Response to CASE Questions

Question No.: Doyle \#5
Page 4

The only support for which beam-column effects are applicable is CASE Exhibit 891. Since the critical buckling load for member BC is so large the amplification factor is 1.00. Therefore, beam-column effects have no influence.
$\qquad$

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle $\$ 6$
Exhibit No.: 891

### 1.0 CASE Question

16 -inch pipe with about 20 kips load along $3-1 / 2$ inchrs of length induces high bearing stresses which require pads. This is not addressed.

- ASME Code against flattening.


### 2.0 Cygna Interpretation

How did Cygna evaluate the stresses induced into the piping by the following, as related to the ASME Code caution agoinst inducing excessive flattening into the pipe walls
a. U-bolt?
b. $\quad 5^{\prime \prime} \times 5^{\prime \prime} \times 1 / 2^{\prime \prime}$ tube steel frame?

### 3.0 Response

Cygna originally evaluated the general code requirements for attachments to piping and Texas Utilities' application of the code.

In Section III, the ASME B\&PV Code provides the following cautions

## Subsection NB-3645 (Class I Components)

"Lugs, brackets, stiffeners, and other attachments may be welded, bolted, or studded to the outside or inside of piping. The effects of attochments in producing thermal stresses, stress concentrations, and restraints on pressure retaining members shell be taken into account in checking for enmpliance with stress criteria."

## Subsections MC. ${ }^{2} 645$ (Class 2) and ND-3645 (Class 3)

"External ond |aternat ettacbments to plping shatl be designed so as not to cause flattening of the pipe, excussive localized beiding stresses, or harmful thermal gradients in the pipe wall. It is impertant that such attachments be dusigned to minimize stress concentrations in applications where the number of stress cycles, due either to pressure or thermal effect, is relatively terge for the expected life of the equipment."

## 8



Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle //6
Page 2

The Code statement for Class I components specifies the local effects due to attachments shall be taken into account for compliance with the stress criteria. The Code statement for Class 2 and 3 components, such as those associated with RHR systems, specifies that attachments shall be designed to minimize localized stresses of the pipe. It does not define the term "flattening." A reasonable interpretation would be that the designer of Class 2 and 3 piping should consider the significance of any additional stress induced in the pipe due to attachments. Such a consideration does not imply a requirement for calculations in all instances depending upon the method of attachment.

The Comanche Peak project did use CYLNOZ, a local stress analysis program, when welded attachments were made to the RHR system. It is not common practice to analyze the effects of bearing or clamping except where judgement indicates the need for such an evaluation based on the specifics of a particular design.

In its original review of the adequacy of the loads introduced into the pipe wall by support S1-1-325-002-S32R (CASE Exhibit 891), Cygno considered the following:
a. U-bolt. Cygna judged that the loads introduced into the piping due to design loads would not prevent the piping from performing its intended function. U-bolts are frequently used in the industry for similar applications. Further discussions on U-bolt applications are provided in response to Doyle Question III.
b. $5^{\prime \prime} \times 5^{\prime \prime} \times 1 / 2^{\prime \prime}$ Tube. Although an unlikely achievement, the drawing detail specifies a $0^{\prime \prime}$ gap at all four bearing points. Cygna reviewers concluded significant stresses would not develop in the pipe. It should be noted that radial thermal growth for such a $16^{\prime \prime}$ pipe would be $1 / 50^{\prime \prime}$, about the width of two business cards. An analysis of these effects on the pipe was performed to substantiate our judgement on the worst case effects and is contained in Attachment D6-1. The results show that the stresses are acceptable. It is important to note that this is not a typical detail.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \$17
Exhibit No.: 891

### 1.0 CASE Question

Clip angle $4^{\prime \prime} \times 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ which supports U-bolt not addressed (critical to maintaining stability):

- Section modulus .04 in cube
- Moment arm at least 2 inches
- 1100 \# load exceeds Code allowables.
- Pre-tensioning to obtain a clamping force required could exceed this (not including thermal constraint and design loads)
- Clamping force with no margin of safety for single degree system (not point contact or line contact) is force/coefficient of friction or about 4 times what is required for clamping force.


### 2.0 Cygna Interpretation

Did Cygna check the clip angles (item 15 on support no. SI-1-325-002-S32R) for a potential overstress condition due to: U-bolt torquing, thermal toacds, and mechanical loads?

### 3.0 Response

During the original Cygna review of this pipe support, a judgement was mode that the friction forces necessary to resist sliding of the support along the lengrth of the pipe were minimal. At first, these small resisting forces were assumed to be developed by the U-bolt while the mechanical loads, those resulting from static, thermal, and dynamic analyses would be resisted by the box frame. Cygna believes that thiis was a reasonable assumption to make, given that the support drawing calls for gr clearance between the pipe and the box frame. However, because the U-bolt was connected to the support through clip angles that were not considered substantial, a theoretical loss of U-bolt capability was assumed. The reviewer assessed that given this possible loss of U-bolt function and capabilities, sufficient friction forces to resist sliding would still be developed between the box frame and the pipe. These frictional forces were calculated as part of the response to Doyle Question $\$ 5$ and found to be sufficient to resist the sliding effects required to maintain stability.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \$7
Page 2

A review of the installation instructions (not within the scope of the Cygna audit) indicates that the torque placed on the U-bolt nut in the regular course of installation would theoretically overstress the clip angles. Although the installation procedures were not considered in the Cygna review, the correct conclusion was reached since the reviewer assumed a loss of U-bolt capability.

Cygna does consider this support to be a poor detail if significant cinching loads have been applied to the U-bolt. Installation practice is a new consideration which will be accounted for as part of the on-going Phase 3 review.

Comanche Peak ASLB Hearings
Question No.: Doyle \#8
Exhibit No.:
893

### 1.0 CASE Question

There is no documentation in calculations to support the conciusion Cygna accept this statement?

- Flare weld strength depends on radius of flare (depth).
2.0 Cygna Interpretation

Why did Cygna consider flare welds stronger than fi, iet welds when no calcula made?

### 3.0 Response

As specified in Cygna Design Criteria DC-2, "Pipe Support Design Review Criteria," welds were reviewed for compliance with AWJ D... a welded beam attachinent for atisfoctory." As shown below, in the S1-1-079-001-S325, flare welds are stronger than a $1 / 4^{\prime \prime}$ fillet weld for two reasons

1) Minimum effective throat thickness ( ${ }_{\mathrm{e}} \mathrm{e}$ ) is greater

- For flare weld:

$$
t_{e}=5 / 16 R=5 / 16\left(5 / 8^{\prime \prime}\right)=0.20^{\prime \prime}
$$

where $R=$ minimum weld groove radius

$$
\begin{aligned}
& =\text { minimuni wer thickness } \\
& =\text { inside radius }+ \text { to" }
\end{aligned}
$$

$$
\begin{aligned}
& =\text { insid } \\
& =1 / 8^{\prime \prime}+1 / 2^{\prime \prime}=5 / 8^{\prime \prime}
\end{aligned}
$$

- For fillet weld:

$$
t_{e}=0.707\left(1 / 4^{\prime \prime}\right)=0.18^{\prime \prime}
$$

since $0.20^{\prime \prime}>-0.18^{\prime \prime}$, a flare weld is $10^{\prime \prime}$ stronger than a $1 /^{\prime \prime \prime}$ fillet weld.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#8
Page 2
2) More weld length

For the welded beam attachment considered, the weld length is $2^{\prime \prime}$ along the square side versus $3^{\prime \prime}$ along the beveled side. Consequently the installed flare weld along the bevel will give this support $50 \%$ more capacity for the same ${ }^{t} \mathrm{e}$.

Therefore, changing from a $1 / 4^{\prime \prime}$ fillet weld to a minimum flare bevel groove weld increases the capacity of the weld by $65 \%$.

```
Comanche Peak ASL.B Hearings
Response to CASE Questions
Question No.: Doyle #9
Exhibit No.: }89
```


### 1.0 CASE Question

The reduction of weld capacity in the calculation is based on 135 degrees. Actual tangential angle is 150.3 degrees. Therefore, an error exists. Did Cygna take note of this?

- More stress in weld than stated.
- Wide/thin ratio induces cracking as well as the 1.4:1 ratio of width to depth.


### 2.0 Cygna Interpretation

What was the basis for concluding that the stanchion-to-pipe weld shown in CASE Exhibit 892 is adequate?

### 3.0 Response

ITT Grinnell design procedure, SA 3912, (Attachment D9-1) states that credit shall only be taken for the portion of the weld up to 135 degrees. Cygna concurred with this procedure and confirmed that it was properly employed on the subject support. Attachment D9-2 shows that the weld length included in the strength calculation was only that portion where the angle between the stanchion and the pipe was less than or equal to $135^{\circ}$.
(Page 1 of 4 )
SA 3912 Rev. $A$ Page 1 of 32

WELD PROPERTIES FOR
PIPE/STANCHION AND ELḂO'//STANCHICH CONNECTIONS
FOR
COMANCHE PEAK PROJECT
PROCEDURE SA 3912

## FOR INFORMATION ONLY

Prepared By Anwansitikon $2 \cdot 8$ checked By Fracas 入M mandizy $=1 \%$;
 Revision: 02/08/83

$$
\begin{gathered}
\operatorname{cmp}-6 \text { Rcv.l } \\
c c
\end{gathered}
$$

(Cont.)
(Page 2 of 4 )

## WELD ANGLES FOR STRAIGIT FIPES WITH

 STANCHION ATTACHMENTS

THE $\beta$-VALUES OSTAINED FRR $\theta$ VARYING FACM $O^{\circ}$ TO OC ARE REPEATED EVEAY SCO FCR STRAGHT P!PE ATTACHMENTS

FIG. 1
1.T.T. GRINNELL PIPE HANGER CIVISION SA-39:2 REV.A PAGE 20 OF 33

ATTACHMENT D9-1 (Page 3 of 4) (Cont.)

$$
4.1 \text { TABLE } 1
$$

WELD PROPERTIES OF STRAIGHT PIPES WITH STANCHION ATTACHMENTS (Nef. Fis. 1 \& 4) LIMITING WELD PNGLE $=135^{\circ}$

| NOM. <br> PIPE <br> SIZ | $\begin{aligned} & \text { NOM. } \\ & \text { STANCH. } \\ & \text { SIZE } \end{aligned}$ | OVERALL WELDED LENGTH | WELD PROPPERTIES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Lw | $S_{Y}$ | $S_{x}$ | $J_{\text {w }}$ | Ls |
| $21 / 2$ | 1 | 4.24 | 4.24 | 1.35 | 1.36 | 1.79 | 4.24 |
|  | $11 / 2$ | 6.24 | 6.24 | 2.84 | 2.84 | 5.39 | 6.24 |
|  | 2 | 8.04 | 5.36 | 4.17 | 1.74 | 7.01 | 5.36 |
|  | $21 / 2$ | 11.08 | 6.15 | 5.64 | 1.57 | 10.37 | 6.15 |
| 3 | $11 / 2$ | 6.16 | 6.16 | 2.84 | 2.34 | 5.39 | E.16 |
|  | 2 | 7.82 | 7.32 | 4.43 | 4.43 | 10.52 | 7.82 |
|  | $21 / 2$ | 9.72 | 6.48 | 6.12 | 2.54 | 12.44 | 5.48 |
|  | 3 | 13.49 | 7.50 | 8.36 | 2.32 | 18.71 | 7.50 |
| 4 | 2 | 7.69 | 7.69 | 4.43 | 4.43 | 10.52 | 7.59 |
|  | $21 / 2$ | 9.42 | 9.42 | 6.49 | 6.49 | 18.66 | 9.42 |
|  | 3 | 11.72 | 8.46 | 9.29 | 4.60 | 22.32 | 2.45 |
|  | 4 | 17.35 | 9.64 | 13.8: | 3.85 | 39.76 | 9.64 |
| 6 | 3. | 11.34 | 11.34 | 9.62 | 9.62 | 33:67 | 11.24 |
|  | 4 | 14.82 | 14.32 | 15.90 | 15.90 | 71.57 | 14.82 |
|  | 6 | 25.54 | 14.19 | 29.96 | 8.34 | 126.37 | 14.19 |

## FOR INFORMATION ONLY

1.T.T. GRINNELL PIPE HANSER DIVISION SA-3912 RIEV. A PAGE 2:OF 33
ATTACHMENT D9-1
(Cont.)
(Poage 4 of 4 )
4.1 TABLE 1

WELD PROPERTIES OF STRAIGHT PIPES WITH STANCHION ATTACHMENTS (Ref. Fig. 1 \& 4) LIMITING WELD ANGLE $=235^{\circ}$

| $\begin{aligned} & \text { NCM. } \\ & \text { PIPE } \\ & \text { SIZE } \end{aligned}$ | $\begin{aligned} & \text { NOM } \\ & \text { STANCH. } \\ & \text { SIZE } \end{aligned}$ | OVERALL WELDED LENGTH | WELD PRCPERTIES |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Lw | $S_{Y}$ | 5 x | $J_{w}$ | Ls |
| 8 | 4 | 14.57 | 14.57 | 15.90 | 15.90 | 71.57 | 14.57 |
|  | 6 | 22.14 | 17.22 | 33.86 | 19.76 | 177.62 | 17.22 |
|  | 8 | 33.25 | 18.47 | 50.77 | 12.14 | 279.96 | 18.47 |
| 10 | 4 | 14.46 | 14.46 | 15.90 | 15.90 | 71.57 | 14.46 |
|  | 6 | 21.65 | 21.65 | 34.47 | 34:.47 | 229.37 | 21.55 |
|  | 8 | 29.05 | 20.97 | 56.44 | 277.95 | 363.95 | 20.97 |
|  | 10 | 41.44 | 23.02 | 78.88 | $22-7$ | 522.05 | 23.02 |
| 12 | 4 | 14.41 | 14.41 | 15.90 | 1 12 | 71.57 | 14.41 |
|  | 6 | 21.45 | 21.45 | 34.47 | 32., 47 | 228.37 | 21.45 |
|  | 8 | 28.40 | 28.40 | 58.43 | 5æ. 43 | 503.93 | 25.40 |
|  | 10 | 36.56 | 24.37 | 85.53 | 355.49 | 650.26 | 24.37 |
|  | 12 | 49.15 | 27.31 | 110.95 | 300.91 | 904.37 | 27.31 |
| 14 | 6 | 21.37 | 21.37 | 34.47 | 34, | 228. 37 | 21.37 |
|  | 8 | 28.18 | 28.18 | 58.43 | 58.43 | 503.93 | $2 \Sigma .18$ |
|  | 10 | 35.93 | 2784 | 89.16 | 52.02 | 755.87 | 27.84 |

SORINFORMATION ONTY


> STANCHION - TO - PIPE WELD

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#10
Exhibit No.: 893

### 1.0 CASE Question

Changing from a flare weld to a fillet weld induces flange brending. Has this been addressed by Cygna?

### 2.0 Cygna interpretation

The calculation sheet attached to Exhibit 893 states that the weildment between the rear bracket and the beam flange was changed from a fillet to a flare:/bevel weld. This fillet-to-flare change results in a 90 degree re-orientation of the weld lines, from perpendicular-to-parallel to the web of the wide flange. Did Cygna evaluate the additional loads on the flange?

### 3.0 Response

Cygna judged that this re-orientation would not cause an oversstress in the flange. The following calculation verifies that judgement:


Cygna agrees that the maximum stress condition is due to flange bending.

### 1.0 CASE Question

Effects of out-of-plane seismic excitation of support hardware not included in calculation. Did Cygna address this point?

- Additional loads on support?
- Additional loads on pipe?


### 2.0 Cygna Interpretation

Did Cygna evaluate the effects of support self-weight excitation in the off-direction, as related to:
a. support design?
b. pipe design?

### 3.0 Response

a. During Phase 2 of the Independent Assessment Program Cygna did identify this as a potential problem. In the IAP Report, Cygna noted that self-weight excitation was not included in the support design. Note I to Checklist PS-01 states:

## "Support Self-Weight Excitation

In general, pipe support vendors have not included support loads due to selfweight excitation in their loading. Texas Utilities has done a generic study in response to Walsh/Doyle allegations which shows the effects are negligible. The NRC Site Inspection Team (SIT) has reviewed and accepted this evaluation in Item 3.h of Inspection Reports 50-445/82-26 and 50-446/82-14."

Since the IAP was performed for the NRC Staff, further evaluation of an issue already identified and reviewed by the Staff would have been redundant. Accordingly, Cygna noted the potential deficiency on the appropriate checklist and deferred to the Staff evaluation.
b. The effect of support masses on the piping analysis is discussed in the response to Doyle Question \#\#4.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#|2
Exhibit No.: None

### 1.0 CASE Question

Restraint of rotation by the pipe because of coupling effect of hardware on both sides of a pipe:

- Load increase in 1 of 2 snubbers/struts
- Alteration of dynamics of pipe system during seismic event


### 2.0 Cygna Interpretation

Support RH-1-010-003-S22R consists of two struts attached to trunnions, which are welded to the pipe at diametrically opposing points. How was this considered in the piping and support evaluations?

### 3.0 Response

Cygna reviewed the pipe stress analysis to determine whether or not accepted modeling techniques were employed. Cygna determined that the RHR pipe stress model used by Gibbs \& Hill was acceptable when compared to general practice. CASE has proposed the need to model certain pipe support configurations into the stress analysis which is different than the existing approach. Gibbs \& Hill reran the analysis of piping segment AB-1-10 (see Walsh Question 非1) using the CASE technique The results, when compared to the original analysis, were different, however, there ; no reason to believe the Gibbs \& Hill model is inappropriate.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#13
Exhibit No.: 891

### 1.0 CASE Question

In Note 2 following pages PS-01-4 of 4 , Cygna decided to eliminate their stiffness criteria based on their knowledge that a report existed to address the problem (but without personal knowledge of what was contained in the document in detail). Why didn't Cygna consult with their experts - for example Eric van Stijgeren (who was the editor on a paper by T.Y. Chow, C.H. Chen and O. Bilgen) - in reference to deviations from generic stiffnesses in pipe supports and the effects on piping systems.

- Third paragraph introduction et. seq. (CASE Ex. 884).


### 2.0 Cygna Interpretation

Did Cygna evaluate the effects of support stiffnesses on the piping analyses?

### 3.0 Response

During Phase 2 of the Independent Assessment Program Cygna did identify this issue as a potential problem. As stated in the IAP Draft Report, Cygna questioned the pipe support stiffnesses utilized on Comanche Peak. Note 2 to Checklist PS -01 states:

## "Pipe Support Stiffnesses

The NRC SIT raised the issue of support stiffness in item 3.j of the above referenced reports. Gibbs \& Hill has performed a generic study for review by an NRC consultant. The study shows that using $1 / 16^{\prime \prime}$ deflection criteria on support design provides acceptable stiffnesses for the piping analysis (changes in support stiffness do not greatly affect piping results). The NRC review results were not available at the time of the Cygna review."

Since the IAP was performed for the NRC Staff, further evaluation of an issue already identified and reviewed by -the Staff would have been redundant. Accordingly, Cygna recorded the potential deficiency on the appropriate checklist and deferred to the Staff evaluation.

## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Doyle \$1/4
Exhibit No.: 891, 893, 894, 895, 896, 897, 898, 899, 900

### 1.0 CASE Question

In Note 1, the same source, did Cygna consider the additive effects of self-weight excitation if the stiffness is considered from node point to hard point as opposed to the stiffness of the frame independent of hardware, local effects, baseplate and anchor bolts?

- Spring rate of baseplate/anchor bolts (particularly bearing-type joints) can be considerable (observation of baseplate II finite analysis).


### 2.0 Cys interpretation

Did Cygne consider the following:
c. The effect of support stiffness on the evaluation of self-weight excitation?
b. The flexibility of each element in the support load path?

### 3.0 Response

a. In order to evalute the influence of self-weight excitation on support design, one must apply the appropriate dynamic loads and then calculate the induced stresses and deformations. The applied load, in this case, is the support self-weight. Support stiffness is effectively considered twice in this process. First, it is included in calculating the applied dynamic load. This can be illustrated by the following elementary formulas:
I. Load = function (freq)
2. freq $=(1 / 6.28) \cdot$ SQRT $(\mathrm{Kg} / \mathrm{F})$

$$
\begin{aligned}
& \text { where freq }=\text { support fundamental frequency } \\
& \mathrm{K} \therefore \\
&=\text { support stiffness } \\
& \mathrm{F}=\text { self-weight } \\
& \mathrm{g}=\text { gravity }
\end{aligned}
$$

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle /\$14
Page 2
Secondly, the determination of support stresses and deflections involves a structural evaluation which considers the support stiffness.

For a further description of Cygna's review process relative to support self-weight excitation, see the Cygna response to Doyle Question \#\#11.
b. As stated in the response to Doyle question $\# 13$, Cygna recorded that support stiffness calculations on Comanche Peak were potentially deficient. When it was learned that the NRC Staff had evaluated this issue, Cygna deferred to the Staff evaluation rather than performing a redundant review.

Regarding the effects of component flexibilities on the overall support stiffness, current standard practice is not to include the baseplate connection. These effects are being studied by various industry groups. One such group is the Structural Engineers Association of California (SEAOC). An update on their activities is provided in Attachment WI4-1. Until resolution is reached on the relative merits of considering the baseplate connection in the stiffness calculation, Cygna does not consider it reasonable to evaluate Comanche Peak against a requirement to include these effect.

# Communications 

## (Page 1 of 2 )


T. Wittig (415) 397-5600 Cygna

| Item Required |
| :--- | :--- |
| Comments Action By |

## Reference: "Recommended Lateral Force Requirements and Commentary," SEAOC, 1980.

Mr. Krawinkler chairs a Structural Engineer Association of California (SEAOC) subcommittee on "Steel."

I asked for an update on activities related to the following excerpt from Commentary Section 4 of the referenced publication:
> "Column base connection performance is of particular concern where a fixed base is assumed in design. The effects of inelastic extension of anchor bolts on column moments, frame drift and stability need investigation;"

Mr. Krawinkler noted that this question is complex and that SEAOC has not established a position. Furthermore, there will be no position stated in the upcoming revision to the referenced document.

Regarding the application of this question to pipe supports, he emphasized that Section 4 is titled "Steel Ductile Moment Resisting Frames." The commentary note was added because hinge formation needed to develop ductile behavior in steel framed buildings could conceivably occur within the column base plate connection. Since information on the ductile behavior of such connections is insufficient, the issue was identified as

Communications Report
requiring study. Applying this question to pipe supports is clearly inappropriate, because they are not designed as ductile moment resisting space frames.

I told Mr. Krawinkler that our conversation would be reported during the hearings on Comanche Peak.

## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Doyle \#115
Exhibit No.: 891, 898, 899, 900

### 1.0 CASE Question

Was thermal lockup considered for anchors which restrain pipe radial growth?

- Induces frame moments.


### 2.0 Cygna Interpretation

- How was the effect of thermal radial pipe growth considered in the review of CASE Exhibits 891, 898,899 , and 900 ?


### 3.0 Response

## Exhibit 891 (Suppurt S1-1-325-002-S22R)

Exhibit 891 shows a box-frame enclosing a $16^{\prime \prime}$ diameter pipe. The design details specify a zero gap between the pipe and frame at the four points of contact. Cygno reviewers evaluated this configuration and judged that the thermal stresses would be acceptable.

To address some concerns raised during the ASLB hearing regarding this issue, Cygno performed a finite element analysis of the frame/pipe with zero gaps. Figure DI5-1 shows the model. The pipe was heated to $350^{\circ} \mathrm{F}\left(T=280^{\circ} \mathrm{F}\right.$ ) and the flexibility of both the pipe and frame were considered.

BOI-FRAME THEROWL NODEL


Comanche Peok. ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#\#15
Page 2

The results are summarized below:
Thermal Only

| Element | Stress <br> $($ psi $)$ | Allowable <br> $($ psi) | \% Allowable |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| Pipe | 37,700 | $64,800^{(1)}$ | $58 \%$ |
| Frame | 38,300 | 56,400 | $68 \%$ |

Thermal + Mechanical

Element
Stress
(psi)

Allowable
\% Allowable

Pipe
39,300
64,800
61\%
Frame
39,800
56,400
71\%

Nores:
(I) $3 \mathrm{~S}_{\mathrm{m}}$ per ASME B\&PV Code, Section III, Figure NB-3222-1. $\mathrm{S}_{\mathrm{m}}=19,300$ psi per Appendix I for SA376, Type 304, material at $350^{\circ} \mathrm{F}$.
(2) 35 per ASME B\&PV Code, Section III, Paragraphs NF3213.10 and NF3231.1a. $S=0.6$ Sy, where $S y=36,000$ psi per Appendix $I$ for A500, Grade B, tube steel at $70^{\circ} \mathrm{F}$.

Note that the element stress allowables are Dased on membrane plus bending stresses defined in the ASME code. This is appropriate because the model employed discrete, shell elements.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \$/15
Page 3

Exhibits 898 and 900 (Supports S1-1-037-005-S22A and SI-1-030-003-S32A, respectively)
Exhibits 898 and 900 show iwo variations of framed supports where the pipe is welded to diametrically opposed trunions which form the horizontal member of the frame. Figure


Cygno reviewers considered the FIGURE 015-2 impact on the support design since the stresses inmal expansion to have negligible constraint of free end displacements. Under these conced in the support result from increase in allowoble stress when the mechanical conditions the Code allows a 200\% the pipe thermal expansion.

To demonstrate this conclusion, Cygna performed a hand calculation for CASE Exhibit with mechanical loads. The results of this calculation show that all stresses in the frame

## Exhibit 899

Figure DI5-3 illustrates this configuration.


FIGURE D15-3

## 33

## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Doyle \#15
Page 4

By inspection, thermal radial growth of the pipe is primarily unrestrained. A secondary restraint will develop at the bimetallic weld due to thermal gradients and the material differences. Cygna's reviewers judged the effect of this secondary restraint to be negligible.

## Comanche Peak ASLB Hearings

## Response to CASE Questions

Question No.: Doyle \#\#16
Exhibit No.: 891, 897, 898, 899, 900, 906

### 1.0 CASE Question

The baseplate analysis is based on distribution of shear relative to load path/stiffness for all bolts in the pattern. Did Cygna address this problem?

- With oversized holes and the inability to eliminate construction tolerances (location of the bolts combined with location of the bolt holes), it is not possible for all of the bolts in the system to be active (see CASE Exhibit 906).
- The stiffness of the bolts is such that deflection cannot be counted on as a means to achieve full pattern participation.
- Even if deflection could result in full activity, the first bolts deflecting would receive the larger portion of the load in an ideal symmetrical and ystems.
- For non-symmetrical system and systems of variable stiffness, the inactivity of a number of the bolts will alter the accuracy of the computerized analysis.


### 2.0 Cygna Interpretation

N/A

### 3.0 Response

The determination of the distribution of snear forces to the anchor bolts of a baseplate is based upon the same methodology which has for decades been sucessfully used for the design of bolted connections of both bearing and friction type. In this "conventional method" of bolted connection design it is assumed that all bolts in the pattern are active to one degree or another depending upon the location of the pattern center of twist relative to each bolt. Should the center of twist lie within the bolt pattern, some bolts may be completely inactive compared to others in the pattern. Where the pattern center of twist is for exterior to the bolt pattern it is more likely that all bolts will be equally octive in resisting shear forces. Using this method the forces on the most highly stressed bolt within the pattern then determines the bolt size to be used for the entire pattern.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#16
Page 2

Cygna finds no problem with this standard design methodology which is referenced in all standard textbooks which deal with the design of bolted connections.

In responding to the question, it will be assumed (conservatively) that no friction whatsoever can be developed between either the baseplate and the concrete or the anchor bolt nut/washer and the baseplate. For this extreme case it will be explained how full baseplate functionality to resist the ultimate design shear forces is maintained.

Construction tolerances associated with either locating the bolt hole in the baseplate or the bolt hole in the concrete have absolutely no influence on the distance that a baseplate must move before it bears directly on an anchor bolt. The only thing that affects the maximum distance that a baseplate must move until it bears directly against the bolt is the difference between the diameters of the bolt hole and the bolt. At Comanche Peak this maximum distance is $1 / 16^{\prime \prime}$ for bolts less than $I^{\prime \prime}$ and $1 / 8^{\prime \prime}$ for bolts I" and greater, although most baseplates with I" holes which have the lesser oversize of $1 / 16^{\prime \prime}$ specified. Oversized holes is a fact of life in connection design. Codes specify the allowable oversize for various types of connections.

With oversized holes (and again conservatively neglecting friction) it is not possible for all bolts to be initially active. Even after all bolts become active some bolts will be resisting much higher forces than others. This is a well recognized fact in any bearing connection. What is essential for a bearing connection is that it be able to reach its design ultimate capacity. It is not important that all bolts be stressed to the same level.

In the design of a connection oversized holes would never be specified in a connection constructed from brittle material or from materials which exhibit non-ductile behavior. Connections must be made of materials which exhibit relatively ductile behavior so that shear force redistribuition can occur among the bolts in the pattern.

For a bearing connection a relationship exists among the size of the hole oversize, the ultimate shear displacement of the bolts, the stiffness characteristics of the bolts, the percentage of bolts not initially in bearing and the desired baseplate safety factor. This relationship is derived below.

二

Comanche Peak ASL.B Hearings
Response to CASE Questions
Question No.: Doyle \#16
Page 3

Consider a baseplate with N total bolts of the same diameter and embedment. X of the N bolts are in immediate bearing with the baseplate. Therefore, $\mathrm{N}-\mathrm{X}$ bolts are not in immediate bearing and are all (conservatively) assumed to have a maximum gap of $\Delta_{0}$ (the hole oversize). Thus ( $\mathrm{N}-\mathrm{X}$ ) bolts will lag the response of the X bolts by a displacement of

Let

$$
P_{o}=\text { Total Design Shear Load on Baseplate }
$$

SF = Baseplate Safety Factor Desired
$P_{U}=$ Ultimate Baseplate Load $=(S F) P_{0}$
$F_{U}=$ Ultimate Bolt Shear Force
$F_{D}=$ Allowable Bolt Shear Force $=\frac{F_{u}}{5}$ per Design Criteria
The actual bolt shear force-displacement curves can be closely approximated by a bilinear force - displacement curve such as the one shown below.


$$
\begin{align*}
& P_{u}=X F_{u}+(N-X)\left(F_{u}-K_{T} \Delta_{0}\right)  \tag{1}\\
& P_{0}=N F_{D}=N F_{U} /_{5}  \tag{2}\\
& P_{U}=(S F) P_{D}=(S F) N F_{u} /_{5} \tag{3}
\end{align*}
$$

Comanche Peak ASLB Hearings
Response to CASE Questions

Page 5

This is a sufficiently high safety factor for a baseplate. It can be seen that the $1 / 8^{\prime \prime}$ oversize hole only reduced the overall baseplate factor of safety below the bolt factor of safety by $4 \%$.

The "conventional method" is the basis for both hand analysis and computerized anolysis of boseplates to determine the relative distribution of shear forces within a bolt group. The "conventional method" is a design tool, it is not a rigorous nonlinear analytical technique. Where used for connection design with sufficiently ductile materials it guarantees that the required ultimate shear capacity of the baseplate will be reached.

## ABEOT A. HANKS

File No. $112189-82$

BAN PAANCISCO. CA 9407
(415) 282-8600

Jenvart 30 . 1974
HILTL FASTBNING SYSTENS. IWC. 300 Pairfield Avenue
Stanford, Connecticut 06904
SURIECT: KWIK-SCLT TUSTING PPRCRAM - LOAD VS. DISPLACEAPMT GRAPHS
At your reguesi, we heve conducted a cormprehensive piozmam of cesting of the seven difforent diameters of hwik-Bolts ( $1 / 4^{\prime \prime}$ eliroughh $1 / /^{\prime \prime}$ ) to determine cheir performance characteristice in 2,000. 4,000 and 6,000 pai concrete. The results obtainedifrom this program are as noted on the betached graphs.
Anchors, drilis and drili bies were furnished by HILTI fifom regular production rus and are considered to be indlcative of that materiand nornoliy used for inseallations of chis type.
Concrete was wupplied by a local betch plant and placed under Abbot A. Hanks superiasion by a gencral concractor. Non reinforced slabs were usod for reatinc. Tho concreta mix for the tost slabs used ilinestone aggregate in accorclance with AST.4 C. 33 (3/4" maximar) and Type II. cemant. The concreve was placed in typical censtruction manner and finished with a bull-float.
 Coupressive strengtis were verifiod from standardo x il2 inch cyilingers from each slab prinares in accerdance with ASTM C-31 and ces:ted in accordance with A5N C-39.
iunsile and shear tevcing wu erforn od using a hollow-cocore frydrmalic jack -quiples with a calibratod prusurogauge. for tonsile testing the testing equiment wes supprortad by a yuree 16 bscd reaction rripond wtich distributed


 Mor ano ell aruhe sher choso to the of the histrauite rosting oqui, motia stiu of bending. In madition, several
 filetion betweon rie two surfaces.

## Enclosure D16-1



Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#17
Exhibit No.: None

### 1.0 CASE Question

Has Cygna verified the statement: "No 2-inch topping"?

- This affects the calculation for Hiltis relative to embedment, since a nonmonolithic shear plane has been established.


### 2.0 Cygna Interpretation

Three support drawings within Cygna's scope of review contain a note regarding the $\mathbf{2}^{\prime \prime}$ topping. These are:

- RH-1-010-002-S22S, Rev. 5
- RH-1-024-011-S22f. Rev. I
- SI-1-038-013-S22A, Rev. 2

On the first two drawings, the note states "No 2-inch topping". On the oiher drawing, 2 inches of topping is specifie.

What credit was taken for this topping in the calculation of minimum expansion anchor embedment?

### 3.0 Response

To verify the adequacy of expansion anchor embedment leng with the full length of the anchor and then subtracted items:

Comanche Peak began as the plate thickness, thread length, grouting and topping. Therefore, in calculating minimum embedment length, no credit was taken for the strength of the topping.

|  |
| :---: |

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \#18
Exhibit No.: 898,899

### 1.0 CASE Question

The baseplate analysis was performed without including stiffeners alters the stiffness matrix of the baseplate and consequently the distribution of moments and tension to the bolts. Beyond this point, stiffeners remain unqualified. Has Cygna addressed this?

### 2.0 Cygna Interpretation

Did Cygna consider the bolt loading for the baseplate in the stiffened condition? Also, did Cygna qualify the stiffeners?

### 3.0 Response

It is a conservative approach to ignore the effects of stiffeners on plate or bolt design.
When stiffeners are added a redistribution of forces to the bolts does occur in the presence of stiffeners. More importantly, this redistribution of forces is favorable since it will produce higher bolt forces and therefore a more conservative design for the stiffened baseplate.

It is important to recognize that the most critical elements in the design of the baseplate are the anchor bolts. The high degree of indeterminancy of the plate portion of the baseplate combined with the significant membrane resistance (in addition to bending) which must develop prior to failure of the plate material, makes the overall failure of the baseplate by failure of the plate material very unlikely. The more likely failure mode for a baseplate results from bolt failure since the bolt system is generally less indeterminate and does not possess the alternate load carrying mechanism that membrane action provides for the plate. Recognizing this, baseplate analysts tend to make assumptions which maximize the tensile forces in the most highly stressed bolts). One such assumption is to neglect the presence of stiffeners.

Stiffeners make a flexible baseplate behave more like a rigid plate. By making the plate more rigid, the internal moment arm, created in the plate by the compressive force in the concrete and the tensile force in the bolts, becomes a maximum. Therefore, to resist a given applied external moment, the maximum bolt tension will be smaller in a rigid (stiffened) plate than in a flexible (unstiffened) plate.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Doyle \$18
Page 2

On the other hand, stiffeners have no effect on bolt shear forces. This is because the inplane stiffness of a baseplate is already very large and the addition of stiffeners do little to increase this already high stiffness. Well proportioned stiffeners (relatively thick and deep with length to depth ratio < 3) are generally not a problem in baseplate design. A simple and conservative stiffener analysis shows stresses well below allowables.

Detailed baseplate calculations for SI-1-037-005-S32A and RH-1-024-011-S22A (Attachments DI8-1 and D18-2), or the stiffened and unstiffened cases support the above observations in a general way. The tables on the next page show that the maximum bolt tensile forces and plate stresses are greater for the cases without stiffeners than they are with stiffeners.

From these tables it can also be observed that for bolts with a larger provision ratio, the bolt loading for the unstiffened condition is greater. Bolt provision ratio is defined as follows:
$B P$ ratio $=\frac{T}{T_{A}}+\frac{V}{V_{A}}$
where:
$T=$ actual tension
$T_{A}=$ allowable tension
$V^{A}=$ actual shear
$\mathrm{V}_{\mathrm{A}}=$ allowable shear

Table I-Support SI-1-037-005-S32A

| Bolt Force <br> (Ibs) |  |  |
| :---: | :---: | :---: |
| Bolt <br> ( |  |  |
| Without <br> Stiffeners |  |  |
| 1 |  |  |

Table 2 - Support RH-1-024-01 I-S22A
(Case 1)

| $\underset{\\|}{\text { Bolt }}$ | Bolt Force (lbs) |  | Provision Ratio |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Without Stiffeners | With Stiffeners | Without Stiffeners | With Stiffeners |
| 1 | 1,170 | 1,580 | 0.40 | 0.43 |
| 2 | 1,260 | 800 | 0.35 | 0.31 |
| 3 | 0 | 0 | 0.45 | 0.46 |
| 4 | 240 | 770 | 0.41 | 0.45 |
| 5 | 3,660 | 2,100 | 0.35 | 0.23 |
| 6 | 2,510 | 2,710 | 0.40 | 0.42 |

Table 3 - Support RH-1-024-011-S22A
(Case 2)


Table 4

| Maximum Plate Stress (psi)  <br> Support Number Without <br> Stiffeners | With <br> Stiffeners |  |
| :---: | :---: | :---: |
| SI-1-037-005-S32A | 9300 | 6600 |
| RH-1-024-011-S22A (Case 1) | 8500 | 3600 |
| RH-1-024-01I-S22A (Case 2) | 9800 | 3800 |

STIFFEDER AUALYSIS
Support do. SI-1-03]-005-532 A


Frose Cygur computa ont fut "Tusi plate No. 2 For AB-1-10.
Foe Bolts Lit4

$$
\bar{F}=1706^{*}+2003^{*}=3709^{*}
$$

CYGNA

$$
\begin{array}{ll}
\varepsilon F_{x}=0: & E=N \\
\Sigma F_{y}=0: & V=F \\
E M=0: & 4.25 N=8.375 \mp \\
& N=7.309
\end{array}
$$

$\qquad$
SHEET NO.

Max. Weld shear flow due to

$$
\begin{aligned}
& \text { ax. Weld shear sow due to } \\
& (2)(7309) / \frac{(2)\left(5.25^{*}\right)}{\text { TotAL WELD LENATH }}
\end{aligned}
$$

Weld shea flow for $V=F=3709^{\circ}$

$$
3109 / 2(5.25)=353 \mathrm{~F} / \mathrm{min} .
$$

Resultant wax. Shear flow

$$
\sqrt{1392^{2}+353^{2}}=1436 \text { /imps. shear low }
$$

Allowable weld shear blow $=107(5 / 16)(18,000)$

$$
\begin{gathered}
=39717 / \mathrm{in}>1436 \\
\text { ok! }
\end{gathered}
$$

Tube wall trichress $=3 / 3^{n}>5 / 16$ weld sing
$\therefore$ Punching shear ok!
But cluck any way.

$$
\begin{aligned}
\text { Whir punclumy shear stress } & =1392 \# / \mathrm{m} / 3 \mathrm{~s}^{\prime \prime} \\
& =3712 \mathrm{psi}
\end{aligned}
$$

This in less than $.4 F_{y}=(.4)(32,350)=12,940 \mathrm{psi}$ ok.....

G. Bjork ind $\qquad$
STIFFENER ANALYSIS
SUPPORT NO, RH-1-024-O11-S22A


Trow Cygra computer output
"TUSI PLATE NO, 4 FOR AB-1-71.A"
FOR BOLTS $3 \& 4$

$$
\begin{aligned}
& F=1645^{\#}+2930^{\#}=4595^{\#} \\
& \Sigma F_{x}=0: \quad R=1 \\
& \Sigma F y=0: \quad V=F \\
& \sum M=0: \quad 4.4161 N=14.44 F \\
& N=15,023^{\#}
\end{aligned}
$$

$\qquad$
dax. Welld shear flew ave to 1

$$
2(15,023) / \underbrace{2(5.5)}_{\text {culd ling } \alpha}=2732 \%
$$

Weldshear flow due to $V=F=4595^{-4}$

$$
4595 / 2(5.5)=418
$$

Resultant wax. shear flow

$$
\sqrt{2732^{2}+418^{2}}=2764 \mathrm{~m} / \mathrm{im}
$$

$$
\begin{aligned}
\text { Celicuvable weld shear Flow } & =(1.1)(3 / 8)(18,000) \\
& =4712 \% / \mathrm{m}
\end{aligned}
$$

Cluch Punching suar
Tuhe wel blichurss $=1 / 2^{4} \geq 3 / 8$ ueld sige

$$
\therefore 0 k
$$

But cluch anyway
Weax. punching shear stus $=2732 / / 1 / 1 / 7^{4}$

$$
=5464 \text { psi }
$$

Thim less thean $4 f y=, 4(32350)=12.940 \mathrm{fsi}$
_Ok

```
S. F.
```

FFIFE
HUN CATE: WIE, CT NAF 1 CとG
$14: C C: 17$
Enclosure Di8-2


FFCCFAN AAKY : hFF
VFFSTC: : $2 . C$
VEKIFICATICN STATLS: Verifier
FRCGRAN RELEASF CATE: CCT. $1 \bar{c}, 1 \varsigma \varepsilon$ ?
FRCSFAF CCASULTANT:
CYET, A COFFGHATICN
CCC PONTGCFEKY STKEET
SAA FPANGIECC, CALIF. SL111
(415) ミ97-56CC
z = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


## THELF CF COTINTS

Ficte

$$
\begin{aligned}
& \text { cecticr title }
\end{aligned}
$$

$$
\begin{aligned}
& 1
\end{aligned}
$$



$z$

6.
7.


Section $A-A$


Locations From Left wand Bottom Cover
F. $1^{\circ} X=8.375^{\prime \prime} Y=8.5^{\circ} \quad$ P. $9 . \quad X=11.125^{\prime \prime}$

Basepuate Landings a 2

Pr. : $X=13.875^{\circ} \quad Y=8.5^{\circ}$
pro to $x=11.125^{\prime \prime}$
PT. $3 \quad X=13.875^{\circ} \quad Y=12^{\circ}$
fret $x+8.375^{\prime \prime}$
Pr. $4 . X=8.375^{\circ} \quad Y=12^{*}$
ft. $12 x=0.0^{\prime \prime}$
PT. $5 x=11.125^{\circ} \quad y=8.5^{\prime \prime}$
Pr. $9 \quad y=12.0^{\prime \prime}$
pr. $6 \quad X=11.125^{\circ} \quad Y=0^{\circ}$
pr. $10 \quad y=19.5^{\circ}$
Pr. $7 \quad x=13.875^{\circ} \quad y=10.25^{\prime \prime}$
Pr. $11 \quad Y=10.25^{\prime \prime}$
PT \& $x=25.4325^{\circ} y=10.25^{\circ}$

FORCE ( 165 )

$$
\begin{array}{ll}
F_{Y B R}=816^{*} & M_{Y_{B R}}=61240^{\circ} \\
F_{X B R}=3641^{4} & M_{X_{B R}}=6822^{1 w} \\
F_{Z_{B R}}=1982 * & M_{B R}=10302^{1 N}
\end{array}
$$

Location of (2):

$$
\underbrace{x=11.125^{\prime \prime}} \quad Y=10.25^{\prime \prime})
$$

 CLIET ${ }^{\text {P }}$ TUSI
－TLSI PLRTEAC． 1 FCF RF－1－7C

PFGGKAF EPLATE VEFSIOA $2 . C$

CYGAA EAERGY SERVILES
CG CHLIFCFAIF STEEET

DATE ：TLE，CE MAR 19 と 6 11：© $\angle=1$ ¢

```
S1－1－6，37－CR5－S32A NO STIFFENERS
```


 F．E．NESI：AEL－X＝\＆ALLY＝\＆REGLLAF MESH？NO ELENENT TYFE＝FLATE


GENEFATEL ELFRENT DIFENSICNS（y－CIPECTICN）


ECLTE ：SFT $=1$ CIAF $=0$ OCCCC IN．EFFY．$=$ ．$=0.235 E$ CE FSI

 ALVETR CF BCLTS $=4$ ECLT at｜l｜en

$x$－CCCRTINATE $\quad$－CCCRDINATE
$-1.275 \quad 3.125$
． 22.14 ok ．．． 3.125
x－5がt Yーミん10

ACDE VATE NLNEER TY 11 17

$$
\begin{aligned}
& \text { CLIE'T: TUSI } \\
& \begin{array}{lll}
2 \\
4 & 22.150 \mathrm{~K} & 1.675
\end{array} \quad \begin{array}{l}
17.38 \\
\end{array} \\
& \text { ALNGER CF SECTICNE = } 1 \\
& \text { SLCTICA KEFEFENCE POINT } \\
& \text { SECTICA - }=-\cdots \text { - GEAFRATEL } \\
& \text { s.LFトE } \\
& x \text {-CCCSTIN:TE } \\
& \text {, } 11.1 \text { ? } \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\text {-CCCFU1 } \\
\vee 1 C .25
\end{array} \\
& \text { - -GFIC ECINTS- } \\
& x-G E 16 \quad Y \text {-GRID } \\
& \text { Y-CCCFOINZTE } \\
& \text { x-COCREITATE } \\
& \text { Y-CCCRDINATE } \\
& x \text {-LCCKDINATE } \\
& \text { END J } \\
& \text { - と. 5C1C } \\
& \text { 12. CC. } \\
& \text { 12.CC1 } \\
& \text { と. EC15 }
\end{aligned}
$$

LCAD IAFCKNATICA（FCFCES－LES）（NONENT－IN－LES）
SEC $\quad Y$－SFEAR $\quad Y$－SNELE $\quad Z$－FCFCE $\quad X$－FCAENT Y－PCNEAT $\quad$－TCRQUE ZLIST


```
LHC Z.C (FFIME) WEL,G7 NAK 1GとG 16:UC:17 LSEK: R.C.JCFASCN FAGE
``` CLIETT：TLSI TITLE：＂TUSI＂EASEFLATE ARALYSIS
```

FFCCKAN FFLATE
CYGNA EAEFGY SEFVICFS
VERSICN 2.C
CATE＝TLE，CE＊AF Ţと 1C1 CALJFCRNIA STKEET 11： 4 4： 14

```

SAA FEANCISCC，CALIF．S4111
＊\(\quad\)－1－1－n37－r05－532t
＊＊＊＊＊＊＊＊＊＊＊．．

 MAXEGUIVALKAT STKESSFCF EASEFLATE＝C．9コCE OL FS1（ATELEPENT＝35） ALLCLAEIE EGUIVALERT STRESS FCF EASFFLATE＝C．27COF CS C．S2GEE C4
EASEPLATE FFCVISICN PATIC＝．．．．．．．．．．．\(={ }^{\circ} \mathrm{C} .3443 \mathrm{Cl}\)
C．27CCE CS


WHEFE T AAC TA ARE ACTLAL AND ALLOBAFLF TEASION FCFCES／STRESSES FRD V AFA VA ARE ACIUAL TNE ALLCHAELE SHEAR FOKCESIETKESSES

ECLT FOLCES AND STFESES

```

MYG\&AA

```
MYG&AA
=F-35\mp@code{NiY_RGJ}
=F-35\mp@code{NiY_RGJ}
::1: 3-7-84
::1: 3-7-84
                        GGse
                        GGse
    3=12-84
    3=12-84
                        84042
```

                        84042
    ```

Tusi \(\vec{R}\) do. 1 For \(A B-1-70\) SUPPORT NO. SI-1-037-005-532A (NO STIFFENERS)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64 \\
\hline 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 \\
\hline 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\
\hline 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\hline 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 \\
\hline 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\hline 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}


TUSI PL No. 1 FOR \(A B-1-10\) SUPPORT No. SI-1-037-005-532A (NO STIFFENERS)



Tusi Re No. 1 Fur \(A B-1-20\) SUPPORT No. SI-1-037-005-532 A (NO STIFFENERS)
 CLIEAT: TUSI TITLE: "TUSI" EASEFLATE ANALYSIS
7. TLSI FLATE AC. E FCF AE-1-7C

FFGGEAN EPLATE VEKSICA \(2 . C\)

CYEAA ENEFEY SERVIGES
1'1 CALIICFAIA STRLET
SAA FRAACISCO, CALIF. SLI11
* E1-1-C37-C(5-؟ミ2t WITH STIFFENERS

 \(E=C .2 S C E\) CS FSI VAU \(=\) C. TECC ALLOWAELE STFESS= C. 2 TCCE CS


GEAEFATEL ELFMENT DINENSICAS (Y-CIRECTICN:



ECLTE : SET = CIAN = ROCCC IN. EFFY.F. = C. 235 CE CESI
 ALLOKAELE NORFAL STFESSILCAT: O.13OE CS ALLOWABLE SHEAR STRESS ILCAD= O.83OE NUFEER SF ECLTS = 6 ATI VALUES NCDE MATEA NLTEF \(x-\operatorname{CCO} D \mathrm{INATE} \quad \mathrm{Y}\)-CCCLDINAIE \(\begin{array}{ll}1.875 & 3.125 \\ 22.19 \text { ok } & 3.125\end{array}\)
1
\(?\)
\(x-651 \mathrm{y} \quad 4610\) ALPEEG

\section*{11}

17
 CIIENT: TUSI
\begin{tabular}{lll}
3 & 22.15 & 17.38 \\
4 & 1.875 & 17.36
\end{tabular}

NLNPTR CF SECTIONS = 1



FIGIC
71
cs

SECTICA
ALVEED
1
LIAE SEGNENTS CF THIS SECTICN ARE LOCATEL AT -
-.......-....- SAT I
x-CCCRCINATE
- E. 3757

Y-CCCECIAATE
と.5C15
*.5C10
-13.875 \(12 . C C .1\)
\(\checkmark\) - 3.3757 12.6C4
- 11.178
\(-13.875\)
\(\wedge 11.12^{5}\)
\(\vee 8.3757\)
LCAD INFCRNATICA (FCLCES -LFS) (NCNENT - 1N-LES)
SEC X-SLEAK Y-SHEAK Z-1OFCE X-VCNTトT Y-PCNEAT Z-TCEGLE ZLIST


CLIENT: TUSI

FFCGRAF EFLATE
CYCNA ENTREY SEFVICES
LAIE = TLE, CE MAK 1 ヶと VFFSTCN 2.6

1(1 CALIFCRAIA ETKEET
SAN FFANCISCC, CALIT. C4111

. \(11-9-037-005-532 \%\)

FINIFLF \(Z-C: S F=-C .4 Z \angle E-C\) ? (NCDF \(=45\) ) FAXINUF \(Z-[I S F=\) C. 15 YE-[1 (ACDE \(=\)
WAX EGLIVALTNT STRESS FCF EASEFLATI = C. (OIE CLFSI (FTELEFENT= 33) ALLCHAFLE ECUIVALENT STFTSS FCF EASFFLATE= C. ZTCCECE
\[
\text { C., ©, } 12504
\]

EASEFLATE FRCVISICA RATIC \(=-0=C .244 G E C C\) V


WHEFE T AND TA ATE ACTUAL ANL ALLCWAFLE TENSIOA FCFCESISTRESSEE LADV VAD VA AFF ACTIUAL LHE ILLCWAELE SHEKR FOFCFSISTKESEES



TUSI Th No. 2 FOR \(A B-1-10\)
SUPPORT No. SI-1-037-005-S32A
(WITH STIFFENERS)




Tusi te do. 2 fore \(A B-1-10\)
SUPPORT JO. SI-1-037-005-S32A
(WITH STIFFENERS)



Support hoadings AT AT-arhment Loeatiou \(=\) -
Force ( 165 ) Monents (in-16s)
\[
\begin{array}{ll}
F_{x_{s}}=2620 \text { ok } & M_{x_{s}}=207336 \\
F_{y_{s}}=5326 & M_{Y_{s}}=72239 \\
F_{z_{s}}=4143 & H_{z_{s}}=129712
\end{array}
\]

Easepate Loadivas at Attachment Locntion:-
Fozee ( 1 ts ) Monests (in-1ts)
\[
\begin{array}{ll}
F_{X_{B}}=5326 & M_{X_{B R}}=72239 \\
F_{Y_{B F}}=4143 & M_{Y_{B R}}=12972 \\
F_{Z B E}=2620 & M_{Z B R}=207336
\end{array}
\]

Four Bascplatc Mooels were RuN : -
 aud Postive MYBR Londing ,
Pe (2) \(A B-1-71 A \cdot B P 2\).EP (with SmiFF.'s and Positive MygR loading)
\(\phi\) (3) AE-1.71A.BP3.EPL (WITMorT STEF'S and Negative MY YBe \(^{\text {LoadinG }}\) )
R(4) \(A B=1.71 A, B P 4 . E P L\) (WiTH STIFFis and Negative MYBR Landug)
 CIIft: TUSI
7. TLSI HLATE AG. 1 FCK AL-1-71A



 F.E. NESH: AFL-X = 15 NEL-Y = 1C REGLLAR MLSH? NG ELENENT TYFE EFLATE


GENEKATEL ELFNENT OINENSICNS (X-DIFECTICN)
\begin{tabular}{|c|c|}
\hline ELEPENT & \(x\) - \\
\hline AUNFEF & CIFEN:ICN \\
\hline 1 & 3.16 \\
\hline \% & 2.93\% \\
\hline , & ?.638 \\
\hline 4 & 2.598 \\
\hline * & i. 2 ! \({ }^{\text {c }}\) \\
\hline + & 2.2! \\
\hline 7 & 1.6! e \\
\hline \% & 2.Ct1 \\
\hline 5 & 3.75 ? \\
\hline \(1{ }^{1}\) & 2.746 \\
\hline 11 & 2.265 \\
\hline 18 & 2.t6t \\
\hline 1 ? & 2.46 \\
\hline 14 & 2.t3n \\
\hline 15 & 2.166 \\
\hline
\end{tabular}

GEAFFATET ELENENT DIFFASICAS (Y-DIPECTICN)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2.C (FRINE) BEE, CT MAF 1516 16:UO:17 USEF: K.C.JCFNSCN FAGE

 CF BCLTS = t

\section*{CI SECTICAS = 1}

\section*{A FEFERFNCE PCINT}


EGNEATS OF THIS SECTICN AKL LOCATEL AT -
CIH A
Y-CCCRDIAATE
6.25CG
e.2sct 23.E12
. 25 25C 23.112
16.156
13.756 2u.ect
13.75016 .312
\(13.756 \quad 10.312\)
11.ric
- - - - - - - - - . - EAD 」
\(16.212 \quad\) e.isc
TAICRNATICN (FCRCES -LES) (NORENT - IN
\(x \rightarrow\) LFSK)


 CLIENT: TUSI TITLE: "TUSI" EFSEFLATE ERALYSIS
```

FRCGFAN EFLATE VERSICA 2.6

```

Cream entrgy services
1R. 1 CALIFCRMJA STKEET
SAN FGAACISCC. CALIF. SL411
* * F - \({ }^{*}\) -
 FAX EGUIVALENT STR, SS FCF EASEFIATE \(=0.846 F 64 F S I\) (AT ELEFENT = Q6) ALLCHAEIE EGLIVALLIT STRFSS FCF EASEFLATE = C. ZICCE CS
C. Y4E1E OL

EASEFLATE FPCVISICA KATIC \(=\cdots=0.31: 4 \mathrm{CC} \quad \vee\)


ECLT FRCVISICA FATIC \(=-\cdots+\cdots\)
hHERE T AAC TA AHE GCTLAL ANE fLLOGAELE TEASION FCGCES/STRESSES AAD V ARD VA ARF ACTUAL ANE ALLCHAFLE SHEAR FOKCESISTRESSES

ECLT FCFCES ANO STHTSSES ALRYER T TA



FFCVISICN FATIC
C. 4 C3it CC
C. 3487E CC
C. 456 CE C
C. 411 ? E C
C. \(35 \overline{2} 2 \mathrm{r}\)
\(0.4 C 25 \mathrm{C}\)
0.


Tusi th do. 1 foe \(A B-1-71 A\)
SUPPORT No. RH-1-024-011-S22A (NO STIFFENERS)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 \\
\hline 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 \\
\hline 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 \\
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 & 101 & 102 & 103 & 104 & 105 \\
\hline 76 & 77 & 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 \\
\hline 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 \\
\hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{tabular}
\(\qquad\)
- \(\cdots\) BRSERATE ANUL.
\[
\begin{array}{r}
3-7.84 \\
838 \\
3-12-84 \\
8404=
\end{array}
\]

TUSI TR NO. 1 FOR AB-1-71A
sUPPORT do. RH-1-024-011-S22A
(No STIFFENERS)



TUS1 Te do. 1 for \(A B-1-11 A\)
SUPPORT NO. RH-1-024-011-S22A
(NO STIFFENERS)
```

FHG Z.C (FRINE) WED, (7 MAH 1G\&\& 1L:UC:97 USEK: F.G.JCHASCT. CLIENT: IUSI HATLE: "TUSI" ELSEFLATEANALYSIS

```

FAGE
4. TLSI FLATH NC. \& FCF AE-1-71A
FFCGRAN EPLATE
VERSION Z.C

CYGAF EAERGY SERVILES
1C1 CALIHCKAI' STREET
CATE : WET, CT MAR 1C\& 4 1C:4?:21
SAN FRANCISCC, CALIF. 94111 * * * * *

\author{
18FUT VALLFS
}

 FLATH \(E=C .2 S C F\) CY FSI VAU \(=\) C. PCOC ALLOWALLE STFESS = C. ZTCCE CS F.E. NESF: AEL-X = 15 AEL-Y = TC REGLLAR MLSH? NC ELENENT TYFE =FLATE FLCCF: STIFFIAREIILAIT CISF = C. \(25[\) CO PCISSCA *S RATIO = C. ZC (IVCNK = C)

 CLIENT: TUSI

TITE: "TUSI" E:SEFLATE ANALTSIS

HCLTS : SET = CIAN = C.COCCIN. EFF Y.N. = C.Z3EE CEPSI TCISF = C.OCCE IA. EILEA \(=\) 1.CCCT IA. EFF G = C. SCCE CEFSI FLCAE = C.COC
 NLYEEF CF BCLTS \(=\) \&


NURBFF CF SECTICAS = 1
SECTICA FEFEFERACE FCTITT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SECTICN & -- GE'ERATET & Vflues .-...- & --cFic & FCINTS- & & \\
\hline NLTEEP. & X-COCRDINATE & \(y\)-coticinate & \(x-6 \mathrm{FIL}\) & Y-GEID & *) \({ }^{\text {ct }}\) & TrP: \\
\hline 1 & \(20 . C 6\) & \(1 \mathrm{C} . \mathrm{CC}\) & & 6. & 1 & 95 \\
\hline
\end{tabular}

 CLTENT：TUSI

HITE：＂TUSI＂EASEFLATE ANALYSIS

 NAX EGLIVALFNT STRTSS FCF EASEFLATE＝C．ZUZF C 4 FEJ（ \(: 1\) FLENENT＝12） ALLC．AELF EQUIVALFAT STFESS FCF EASEFIATF＝U．2TCCE［E
\[
\text { r. } 3 t 16 t \Gamma 4
\]

EASFILATE FKCVISICAFATIC＝\(\cdots \cdots \cdots \cdots \cdots=\) ．


W FEEE T ANE TA AFE FCTUAL ANE ALLOLAFLE TLASION FCECESISTPESEES ARDVAAD V AFF ACIUAL RFT ALLCLAFLE SFEAR FOFCESIETFFSSES

ECLT FC：CES ATD ETHLSSES

10.157 ：1 04 1．12Crt
\(7 \quad \mathrm{C.SC4}+\mathrm{C}\) C
1．13518 C5
rs
0.2547 CH


C．？（ \(\angle 4 E\) C 4
いた
FRCVISION FATIO
\(\begin{array}{lll}\text { C．} 37 C 7 E & C 4 \\ C .3277 E & C_{4}\end{array}\)
0．）？CCE
C4
\(0.434 C E\) CC
\(\begin{array}{ll}\text { C．} 2 C 5 E E & \text { CC } \\ \text { C．} 4574 \mathrm{E} & \text { CC }\end{array}\)
CYCAF ETERGY SEKVICES
SAA FRAACISCC，CALIF．CC111

＊＊
```

C．27CCt CS
.\&゙CClCs

```
\[
[.271114 \text { 1.72[8 } 13
\]

C．1741E 04

O．₹CCE C
\begin{tabular}{l} 
O．BCE C \\
0. \\
\hline
\end{tabular}
\[
C .4543 r \quad C
\]
\(C .22515\)
\(C .41831\)


TOSI \(R\) No. 2 For \(A B-1-71 A\) SUPPORT No. RH-1-024-011-S22A (WITH STIFFENERS)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 \\
\hline 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 \\
\hline 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 \\
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 & 101 & 102 & 103 & 104 & 105 \\
\hline 76 & 77 & 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
\hline 61 & 62 & 63 & 54 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 \\
\hline 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 \\
\hline 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{tabular}

TUSI R J. 2 FOR \(A B-1-7, A\) SUPPJRT No. \(2 H-1-024-011-522 A\) (WITH STIFFENERS)



TuSI Re No. 2 for AB-1-71A
Support No. RH-1-024-011-S22A
(WITH STIFFENERS)
 CLIENT: TUSI TJTLE: "TUSI" EASEFLATE ANALYSIS
\(\therefore\) TLSI PLATF AC.? TOF AE-1-71K



 F.E. NESH: AEL-X = 1S NEL-Y = 1C PEGLLAR NESH? NC ELENFNT TYFE =FLATE FICOF : STIFF/HREA/LNIT CISF= C. CZSE CO FOISSON =S RATIO = C.IC (IKONK = C)


GEAEFLTEL ELENENT DIPENEICAS (Y-UIFECTIC:.)


FIC B.C (FRIFE) WEL, (T NAF \(1 G \varepsilon 414: U C: 17\) USEF: K.E.JCINSCN PRGE 16 CLIETI:TUSI TITLE: "TUSI" EFSEFLKTF MNAYSIS

 CLIENT：TUSI
```

FGCGFAF EFLATE
VERSICN 2.C

```

CyGAA ENERGY SERVICES
TCI CALJFCKAIA STKEET
SAN FFANCICCC，CALIF．C4111
```

                                DATE: bEC, CT MAF 1G%L
    ```
                                DATE: bEC, CT MAF 1G%L
                                    1%:(z:91
                                    1%:(z:91
FFCGFAF EFLATE
```

EASERLATE FFCVISION FATIC＝．．．．．．．．．．．．．．．$=$ C．ZGZらE［C


ECLT FFCVISICI．FATIC $=\frac{1}{T A}+\frac{1}{\cdots}$
WHEFE T ANC TA AFE ACTLAL AND ALLCLAFLE TENSIOA FCFCFS／STRESSES ANE VAPD VA AFFACTLAI FNE ALLCIAEIF SHEんR FOFCESISTKESEES

EOLT FCFCESARD ETFTSS？S

NUNRFE T TH

| 1 | C．C．CCCF | C | C． 12 CrE |
| :---: | :---: | :---: | :---: |
| 2 | C．55sct | $C^{*}$ | C．1？CCE |
| 3 | （．1614 | C4 | C． 13 CLE |
| 4 | C．312rt | $\mathrm{O}_{4}$ | r．1？CCF |
| 5 | C．3C49！ | n 2 | C． 13 CCE |
| 6 | C．24Est | C3 | （．13CCE |


| $\downarrow$ |  | Vit |
| :---: | :---: | :---: |
| 「．25¢ヶE | 1． 4 | 0.83 Ct： |
| C． 21 と\＆E | $\mathrm{C}_{4}$ | C．） 3 ［ 5 |
| C．3773E | C．4 | C．\％？CEE |
| C．3ct1E | ［4 | 0．） 3 Cした |
| C． 5 ¢ 5 6E | 13 | C．＊ |
| C．17フ8E | 1.4 | 0．）？C |

PFCVISION KATEC
「．2131ト CC
C．ists［
C．5788t C
C． $\boldsymbol{C}^{2} 4^{2}$ E CC
C．2rser C
C．くてとsf CL


TUSI th No. 3 For $A B-1-71 A$
SUPPORT NO. RH-1-024-O11-S22A
(NO STIFFENERS)

| 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | $13!$ |
| 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 121 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | $10!$ |
| 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
| -46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |



TuSh th do. 3 for AB-1-71A
SUPBRET do. EH-1-024-011-S22A (No STIFFENERS)



TUSI te No. 3 FOR $A B-1-7 i A$ SUPPoRT do. RH-1-024-011-S22A
(NO STIFFENERS)
 CLIENT：TUSI TITLE：＂TLSI＂EFSEFLATE ANALYSIS

1．TLSI PLATEAC． 4 FCF AG－1－71A
FKCGF：N EPLATE
VERSICA B．C

CYGAR ENTKGY SERVILES
DAIt ：WEL，CTMAR 19とL
1く1 CんLIFCKAle SThLET

$$
12: ? 6: 29
$$

1AFLTEY： CHECREC PY：

TATE $=3: 2 \cdot 84$
CATE $=32.84$
FLATE：$\quad X-C I N=2 E .2 E L C$ IA．$Y$－CIF $=2 U . O C O C 1 A$ ．THICKNESS＝T．SCOL $1 \%$ ．
 F．E．RESH：AEL－X＝ $\mathcal{E}$ S NEL－Y＝Y CREGILAF YLSH？AC ELENLNT TYFE＝FLATE


 CLJEH: THSJ TITLE: "TU'ゝ" EFSEFLATE ANALYSIS


NLFREK CT SECTICPS= $=1$


FICIC
1

TYF
S5

LIAE SFGNEPTS CF THIS SECTICA AFE LCCATEC AT -


LCER TAFCトFZTJCT, (FCFIES-LFS) (FCFFNT-JA-LIS)

 1usI


 AELE ECTIIVALTMT ETKFSS FCF EASFFLAIE＝C． 2 ICOE CS C．3フども r 亿



FFCVISIGA FtT：


T ANC TA AFE ACTLAL ANE ALLCbAFLE TENSICN FCFCESISTKESSES AAO WF AKE ACTIAL AAC MLLCLAELE SFFAR FCFCESISTFESSES


MTUS:
BBSEPLATE NUNL

$$
\begin{array}{r}
3 \cdot \frac{R Q}{84} \\
3-6 S B \\
3-12-E 4 \\
8404=
\end{array}
$$

TUSI $A$ No. 4 FoR $A B-1-71 A$ SUPPORT No. 2H-1-024-011-S22A (WITH STIFFENEES)

| 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 121 | 122 | 123 | 124 | 125 | 125 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 |
| 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 |
| 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| $3!$ | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |



TOS1 th No. 4 For AB-1-71A SUPPORT No. RH-1-024-011-S22A (WITH STIFFENERS)



TUSI $T E=$ No. 4 For $A B-1-21 A$ SUPPORT NO. RH-1-024-011-522A (WITH STIFFENER)

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh I/I
Exhibit No.: None

### 1.0 CASE Question

Appendix E of Cygna Report. Section DC-2.2.4. What was the yield point used for A500, Grade B tube steel?

### 2.0 Cygna Interpretation

During the course of the pipe support design effort at Comanche Peak, an ASME Code Case was issued ( $\mathrm{N}-71-10$ ) which reduced the allowable yield stress from that stated im the Code Case being employed in the design (N-71-9). What code case was used in the design?

### 3.0 Response

Comanche Peak typically used a yield strength equal to 42 ksi as required by ASME Code Case N-71-9. The value for yield strength based on ASME Code Case N-71-10 is 36 ksin . Cygna's original audit accepted calculations based on ASME Code Case N-71-9. Cygnaa later checked the calculations within the review scope to verify that the tube steel design stresses did not exceed 36 ksi set forth in Code Cose $\mathrm{N}-71-10$. In each case, the existing design met the 36 ksi allowable. (See Attachment WI-I for list of supportts checked.)

The ASME has since provided a response to Texas Utilities' inquiry into the need to adoprt the lower yield strength values. A copy of this letter is provided in Attachment WI-2 Part of the response states that "...the provisions of later revisions to Code Cases aree neither mandatory or retroactive." Further, based on the ASME review and notificationes, and as stated in the letter, the change from 42 ksi to 36 ksi is not considered a safety concern.

# ATTACHMENT WI-I (Page 1 of 1 ) 

List of Supports Reviewed for Tube Steel Allowable

> SI-1-075-002-S22K
> RH-1 -064-008-S22K
> RH-1 $-010-004-522 \mathrm{~S}$
> RH-1-010-002-S22K
> RH-1 -064-010-S22R
> SI-1-075-001-S22R
> RH-I -064-007-S22R
> S1-1-075-003-S22R
> RH-1-064-011-S22R
> SI-1-325-001-S32R
> SI-1-042-002-S22K
> SI-1-073-700-S32R
> RH-1 -008-007-S22R
> RH-1-064-001-S22R
> RH-1-010-001-S22R
> RH-1-064-009-S22R
> SI-1-325-002-S32R
> SI-I-037-005-S32A
> S1-1-070-007-S22A
> RH-I-024-01I-S22A


ATTACHMENT W1-2
(Page 1 of 2 ) .983 NOY 231983
Texàs Iltilities Services, Inc.
CPSES CO- 5 . Office
Texas Utilities Services Inc.
PO Box 1002
Glen Rose, IX
76043
Attn: M. R. McBay
Subject: Section III, Division 1 Code Case N-71-9 \& N-71-10 ASTM A-500 Tubular Shapes

Reference: Your letter of October 25, 1983 ASME File \# NI 83-101

Gentlemen:
Our understanding of the questions in your inquiry, and our replies are as follows:
Question 1: An Owner has contracted for construction of component supports under the provisions of Case $\mathrm{N}-71-9$. Must component supports constructed from ASTM A-500 tubular shapes under the provisions of Case $N-71-9$ be redesigned or re-analyzed using the lower yield strength values published in a later revision of the Case (e.g., N-71-10) for the same material?
Reply 1: No, the provisions of later revisions to Code Cases are neither mandatory or retroactive.
Question 2: Why were the yield strength values for $A-500$ tubular shapes published in Case 1644-3 through N-71-9 reduced in $\mathrm{N}-71-10$ ?
Reply 2: The Committee recognized that the yield strength of $A-500$ in the cold wrought condition may be slightly reduced in the heat affected zone of weldments. The revised values, given in $N-71-10$, for $A-500$ were those used for A-501 and A-36 material which were selected as conservative values for A-500 tubular shapes in the welded condition. The revised values may be changed at such time when material data for the welded condition, as required by the code, is presented to the committee for consideration. The higher available which the inquirer believes might affect the interpretation. Further, persons agg oreword of the interpretation may appeal to the cognizant ASME committee or subcommittee. As stated in the code documents, ASME does not "Approve," "certity, devica or activity.

NI 83-101
Texas Utilities Services Inc.
PO BOX 1002
Glen Rose, TX 76043 ATtaChment wl-2
(Cont.) (Page 2 of 2 )
Attn: M. R. McBay
Page 2 of 2
yield strength values published in $N-71-9$ are adequate because of the many safety factors and desicn constraints applied to the yield strength in the design of piping supports.

Question 3: If a component support is ordered under a Design Specification which required compliance with an Edition and Addenda of the code which was issued prior to final approval of Case $N-71-10$, and the contract date for the support is after the date of Council approval of Case $N-71-10$, does the visions of Case $\mathrm{N}-71-9$ ?
Reply 3: Yes, in accordance with NA/NCA-1140.

We note that when, in the opinion of the Committee, a review of current Code provisions indicate a potential safety concern there are established means of notifying orrganizations and individuals who may be affected. These means include notification through Mechanical Engineering magazine and letters to holders of Certificates of Authorization and jurisdictional and regulatory authorities. These measures were determined not to be necessary in the case of the yield strength values for A-500 tubular shapes in Case 1644-3 through N-71-9.

BPVC Assistant Secretary
(212) 705-7643

KE/dp

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#2
Exhibit No.: None

### 1.0 CASE Question

Observation Record PS-02-01. The applicant did not consider shear cone interaction of adjacent bolts.

### 2.0 Cygna Interpretation

Cygna Observation PS-02-0l was written to evaluate an apparent discrepancy between drawing information and calculations, as related to anchor bolt embedment lengths. Was shear cone interaction also addressed?

### 3.0 Response

Yes. Observation PS-02-01 identifies a concern with the calculation of bolt embedment lengths. Investigation revealed that the embedment was provided to the constructor as a function of total bolt length which is specifies on the drawing. In addition, the greater of the two embedments derived from either the construction specification or the drawing governs.

Although not related to this concern, Cygna did check both the analyses and construction to ensure that bolt spacing requirements vere met. Minimum bolt spacing criteria are necessary to assure $f \cdot l l$ development of bolt capacity as specified by the manufacturer. Maximum bolt capacity is realized when the cancrete shear cone is fully developed without interferences. Interaction or overlapping between adjacent bolt shear cones will reduce bolt capacity as a function of bolt diometers. The applicant properly cunsidered these effects as stated in the Hilti Manufacturers catalog (see Attachment W2-1).

ATTACHMENT W2-1 (Page 1 of

## 1. Anchor Spacing

The minimum anchor spacing and edge distance for $100 \%$ effective anchor performance according to EAMI (Expansion Anchor Manufacturers Institute) are as follows:
Minimum Anchor Spacing $=10$ hole diameters
Minimum Edge Distance $=5$ hole diameters
According to EAMI, anchor efficiency is reduced on a straight-line basis down to $50 \%$ at 5 diameters center-to-center anchor spacing.

## 2. Minimum Embedment

The minimum embedment for satisfactory anchor performance is $41 / 2$ bolt diameters ( $61 / 2$ bolt bolt diameters for the Super Kwik-Bolt). Deeper embedments will yield higher tension and shear capacity as indicated in the TR-111: "Kwik-Bolt Testing Program." Embedment depths indicated in all test reports are before setting (tightening).

## 3. Maximum Working Loads

The maximum working loads should not exceed $1 / 4$ of the average ultimate values for a specific anchor size. Actual factor of safety to be used depends on the application and should be selected by the designer on this basis.
4. Combined Loading

Combined loading should calculated on a straight lifie interaction diagram of pure shear ( S ) and pure tension ( T ).

$$
\frac{S \text { applied }}{\text { S allowable }}+\frac{T \text { applied }}{T \text { allowable }} \leq 1
$$

## 5. Standard Kwik-Bolt Materials

a. Stud (bolt material is AISI 11 L41 for bolt diameters $1 / 4^{\prime \prime}-1 / 2^{\prime \prime}$ and AISI 1144 for diameters $\$ / 6$ " $11 / 4^{\prime \prime}$, meeting the chemical requirements for ASTM specification \& 108.
b. The two independent expansion wedges are made from AlSt 1050 spring steel.
c. Nuts are of commercial manufacture, meeting ASTM A 307, Grade A (e.g., AISI series 10XX).
d. Washers are fabricated from SAE standard material in accordance with ASA standard \#B27.2-1949.
e. Kwik-Bolts are plated in accordance with the raquirements of Federal Specification QQ-Z325 C . Type II, Class 3. (clear chromate treatment).
f. The Kwik-Bolt meets the dimensional requirements of Federal Specification FF-S-325, Group II, Type 4, Class 1.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#3
Exhibit No.: None

### 1.0 CASE Question

Pl-01-10. There has been no detailed computer analysis performed to consider the concentrated loads (valves, etc.) and their effect on dead weight and seismic. Also, the seismic analysis will not be linearly proportional.

### 2.0 Cygno Interpretation

## Observation PI-01-01 states:

"The wall thickness used for the computer analysis piping segments 16 " -S 1 -$074-151 R-2$ and $16^{\prime \prime}-$ SI-073-15IR-2 was 0.5 inches. The correct value is 0.375 inches."

To evaluate the impact of this error in wall thickness, Cygna increased the pipe stresses by the linear proportion $0.5 / 0.375$. Please address the following:
a. The effect on thermal, pressure and deadweight stresses as the pipe wall thickness decreases.
b. The effect on seismic stresses, which are not linearly proportional to the change in wall thickness.

### 3.0 Response

a. Figure W3-1 can be used to illustrate the effect on thermal stresses due to o local decrease in pipe wall thickness.

Pipe A


Assume that the thickness of $P$ ipe $A$ reduces from $0.5^{\prime \prime}\left(t_{0}\right)$ to $0.375^{\prime \prime}\left(t_{1}\right)$. As shown 3
below, the axial thermal stresses developed within Pipe $A$ are unchanged as the wall thickness decreases:

$$
\begin{equation*}
\sigma_{\uparrow}=\text { thermal stress }=E \alpha T \tag{1}
\end{equation*}
$$

where
$\mathrm{E}=$ modulus of elasticity $\alpha=$ coefficient of thermal expansion
$\Delta T=$ temperature change
The axial thermal force in Pipe A actually decreases cas the wall thickness तecreases, since

$$
\begin{equation*}
F_{t}=\text { thermal force }=\sigma_{t} A \tag{2}
\end{equation*}
$$

where
$\mathrm{A}=$ pipe area $=\pi \mathrm{Dt}$
$D$ = pipe diameter
$\dagger=$ wall thickness
Any reduction in the axial force within Pipe $A$ will alscs reduce the moments induced at the connection to Pipes B and C. So, the thermal nent in Pipe A will decrease as the wall thickness decreases. Since the bendin. -ength of Pipe $A$ is also decreasing along with the wall thickness, the net effe on thermal bending stresses depends upon the piping configuration and is not prec .ctable. However, the upper bound change in thermal bending stresses is $t_{0} / t_{1}$, the walue used by Cygna.

Pressure stresses in the piping are also a linear function of wall thickness:

$$
\begin{array}{ll}
\sigma_{1}=\text { circumferential (hoop) stress } & =\pi \mathrm{pD} / \mathrm{L} \uparrow \\
\sigma_{2}=\text { longitudinal stress } & =\pi \mathrm{pD} / 2 \dagger \tag{5}
\end{array}
$$

where $\quad P=$ internal pressure
Dead weight stresses due to the pipe itself are unaffecterd as its wall thickness decreases. This is shown below for a simple beam:

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#3
Page 3


Figure W3-2
The maximum deadweight bending stress ( $\sigma_{\mathrm{D}}$ ) in Figure W3-2 is:

$$
\begin{equation*}
\sigma_{D}=\frac{W L^{2} D}{81} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
W & =A V=\pi D t V  \tag{8}\\
V & =\text { volume weight of steel } \\
I & =\text { moment of inertia }=\pi D^{3}+164 \tag{9}
\end{align*}
$$

Inserting equations (3) and (9), shows that the wall thickness drops out of equation (7):

$$
\begin{equation*}
\sigma_{D}=\frac{(\pi D+\gamma) L^{2} D}{8 \pi D^{3}+/ 64}=\frac{8 v L^{2}}{D} \tag{10}
\end{equation*}
$$

Equation (7) shows that deadweight stresses due to other dead loads, such as insulation, would increase as the wall thickness decreases. This is because only the moment of inertio would changes.

In summary, pipe stresses induced by thermal, pressure and dead weight loadings are related as follows to a decrease in pipe wall thickness.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#3
Page 4

0

0

0

Thermal
Thermal stresses developed within the thinmer pipe section are unchanged. Stresses induced by the thermal growwth of attached piping will increase stresses by an amount linearly proportional to the pipe wall thickness:

$$
\begin{equation*}
\sigma_{(\text {temp })} \alpha \frac{1}{t} \tag{11}
\end{equation*}
$$

Pressure
Pressure induced stresses will increase as the wall thickness decreases. The increase is linearly proportional:

$$
\begin{equation*}
\sigma_{\text {(pressure) }} \alpha \frac{1}{\dagger} \tag{12}
\end{equation*}
$$

Deadweight
Pipe stresses induced by pipe deadweight are unuchanged by a change in wall thickness.

$$
\begin{align*}
& \sigma_{\text {(pipe deadweight) }}-\text { unchanged }  \tag{।3}\\
& \sigma_{\text {(other deadweight) }} \alpha \frac{1}{t} \tag{14}
\end{align*}
$$

Deadweight stresses due to loads other than the tpipe itself will increase as the pipe wall thickness decreases.

Based on the above, the simplified procedure employed v Cygna to evaluate thermal, pressure and deadweight effects related to O : ervation $\mathrm{Pl}-01-01$ is reasonable and in fact conservative.
b. Figure W3-2 will also be used of illustrate the effect of a decrease in pipe wall thickness on seismic induced stresses.

For a simply supported pipe loaded by a uniform weight ${ }_{n}$ the fundamental pipe frequency is:
acm


## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Walsh \#3
Page 5

$$
\begin{equation*}
f=\frac{\pi}{2 L^{2}} \sqrt{\frac{E I g}{W}} \tag{15}
\end{equation*}
$$

where
$f=$ fundamental frequency
$\mathrm{L}=$ span length
$\mathrm{E}=$ modulus of elasticity
$1=$ moment of inertia (Equation (9))
$\mathrm{g}=$ gravity
$\mathrm{W}=$ weight per unit length
Only two terms, W and I, depend upon the wall thickness, therefore the frequency change due to a thickness change can be expressed as follows:

$$
\begin{equation*}
\Delta f=\left(f_{0}-f_{1}\right)=\frac{\pi \sqrt{E_{g}}}{2 L^{2}}\left(\sqrt{\frac{I_{0}}{W_{s}+W_{0}}}-\sqrt{\frac{I_{1}}{W_{s}+W_{1}}}\right) \tag{16}
\end{equation*}
$$

where
$\Delta f=$ frequency change
$\mathrm{f}_{0}=$ frequency associated with thickness $t_{0}$
$f_{1}=$ frequency associated with thickness $\dagger_{1}$
$\mathrm{W}_{\mathrm{s}}=$ total weight - unloaded weight
$W_{0}^{s}=$ unloaded weight for $t_{0}$
$W_{1}=$ unloaded weight for $t_{1}$
$I_{0}=$ moment of inertia for $t_{0}$ 。
$I_{1}=$ moment of inertia for $t_{1}$
Substituting the equations for W and I, Equation (16) becomes:

$$
\begin{equation*}
\Delta f=\frac{\pi \sqrt{E_{q}}}{2 L^{2}}\left(\sqrt{\frac{\left(\pi D^{3} t_{0}\right) / 64}{W_{s}+\left(\pi D t_{o} \gamma\right)}}-\sqrt{\frac{\left(\pi D^{3} t_{1}\right) / 64}{W_{s}+\left(\pi D t_{1} \gamma\right)}}\right) \tag{17}
\end{equation*}
$$

## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Walsh \#3
Page 6

The following conciusions can be reached from Equation (17):

- When "other" loads $\left(W_{s}\right)$ are zero, Equation (17) reduces to:

$$
\begin{equation*}
\Delta f=\text { constant } \times\left(\sqrt{\frac{t_{0}}{t_{0}}}-\sqrt{\frac{t_{1}}{t_{1}}}\right)=0 \tag{18}
\end{equation*}
$$

Therefore, the acceleration and stresses will be unchanged (see Equation (13)).

- When $W_{s}$ is greater than zero, its influence is small. Per Brown \& Root drawing, BRHL-SI-1-RB-061, Rev. 0, pipe segment SI-1-073 has the following properties:

$$
\begin{aligned}
& D=16 \mathrm{in} . \\
& L=14.5 \mathrm{ft} .=147 \mathrm{in} .(1)
\end{aligned}
$$

Using these properties, Equation (17) reduces tc:

$$
\begin{equation*}
\Delta f=109\left(\sqrt{\frac{0.5}{W_{s}+7}}-\sqrt{\frac{0.375}{W_{s}+5}}\right) \tag{19}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } \\
\begin{aligned}
\mathrm{E} & =29,000,000 \mathrm{psi} \\
\mathrm{~g} & =386 \mathrm{in} / \mathrm{sec}^{2} \\
\gamma & =(490 / 1728) \mathrm{lbs} / \mathrm{cu} . \mathrm{in} . \\
\dagger_{0} & =0.5 \mathrm{in} . \\
\dagger_{I} & =0.375 \mathrm{in} .
\end{aligned} .
\end{aligned}
$$

Note: (1) The distance from the containment flued head to support SI-1-073-700S32R is $14^{\prime}-63 / 8^{\prime \prime}$.

Comanche Peak ASLB Hearings Response to CASE Questions Question No.: Walsh \#3
Page 7

Table W3-1 lists the results of a sensitivity analysis performed using Equation (19). It shows that the maximum frequency change inthe simple model of line SI-1-073 is one hertz for all values of $\mathrm{W}_{\mathbf{s}}$. For the sake of comparison, the weight of water in a 16 -inch diameter pipe is $7.3 \mathrm{lbs} / \mathrm{in}$.

Table W3-I

| $f$, hertz | W $_{s}$, lbs $/$ in |
| :---: | :---: |
| 0.46 | 2 |
| 0.99 | 4 |
| 1.25 | 6 |
| 1.39 | 8 |
| 1.46 | 10 |
| 1.49 | 12 |
| 1.51 | 14 |
| 1.51 | 16 |
| 1.50 | 18 |
| 1.48 | 20 |
| 0.94 | 100 |
| 0.32 | 1,000 |
| 0.10 | 10,000 |

The small changes in frequency shown above have negligible effect on pipe stresses.

Therefore, the simplified procedure employed by Cygna to evaluate dynamic stress effects related to Observation $\mathrm{PI}-01-01$ is conservative. The actual effect on pipe stresses will be less than the ratio $\dagger_{0} / \dagger_{1}$.
$\therefore$
$\ldots$

# Comanche Peak ASLB Hearings <br> Response to CASE Questions <br> Question No.: Walsh $\$ 4$ <br> Exhibit No.: None 

### 1.0 CASE Question

P1-02. Is there an error in the table shown?

### 2.0 Cygna interpretation

Referring to Observation PI-02-03, Attachment A, is there an error in the calculated table?

### 3.0 Response

There is a typographical error in the calculated table. The allowable for restraint RH-1-064-007-S22R should be "44000", rather than " 4400 ".

As shown on the attached Table, Attachment W4-1, this correction puts the allowable for the aforementioned restraint into line with the other restraints tabulated.

ATTACHMENT W4-1
(Page 1 of 1 )

# Observation Record Review Attachment $\mathbf{A}$ 

| Checklist No. PI -02 | Revision No. | 0 |  |
| :--- | :--- | :--- | :--- |
| Observation No. PI $-02-03$ | sheet 1 | of | 1 |


|  | Yes | No |
| :--- | :---: | :---: |
| Valid Observation | $X$ | $X$ |
| Closed |  |  |

### 1.0 Root Cause

Possible misunderstanding of the Gibbs and $\mathrm{H} l l l$ procedure

### 2.0 Resolution

Using the range for the 3 rigid restraints. Cygna calculated the following:

| Support | Load <br> Range | CYLNCZ <br> Stress | General <br> Stress | Total | Allow |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SI -1-032-003-S32R | 2700 | 103626763 | 17125 | 45000 |  |
| RH-1-064-007-S22R | 1300 | 5172 | 5128 | 10300 | C400 |
| RH -1-016-001-S32R | 8615 | 11225 | 9328 | 20555 | 44000 |

The remaining 4 restraints are springs or snubbers and have no thermal load. Thus, there is no increase in stress above allowables.

Cygna also noted that the correct method was used for the welded attachments in anchors of Problem 1-70 and in all supports in Problem 1-69. Based on this, Cygna considers the error isolated. In addition, the RHR system will probably show the largest percentage difference (between maximum :ad and range), since it has many modes of operation. Thus, Cygna expects the error would have the most impact on this system. As the new calculations show, the impact on design is negligible and the observation is closed.

## - Approvals



Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#5
Exhibit No.: 889

### 1.0 CASE Question

CTS-00-03. $\mathrm{F}_{\mathrm{bx}}=$ should be 21.2 , not 23.2 or 22 . The length is $6^{\prime}$ not $5.5^{\prime}$.

- Why was only 1/2 SSE considered?
- Why was $4 \%$ damping used; not consistent with FSAR?
- Assumed cable tray was rigid when lumping the mass; this resulted in not combining the dynamic effects of the cable tray itself to the support; did not include effect on welds.
- The validity that the cable trays have the capacity to transfer a load around a corner when one run of cable tray has no axial restraint, as shown on drawing 2323 EI-0601-01.
- What documentation did Cygna see that justified the hangers' receiving a lateral load around corners that resist the axial load from the tray segment that contains no axial restraints.


### 2.0 Cygna Interpretation

In Observation CTS-00-03, Cygna discusses several apparent deficiencies in the modeling assumptions associated with the frame analyses for cable trays. As related to CASE Exhibits 889,890 and 902 , please address the following:

## Exhibit 889

Why was an allowable bending stress $\left(F_{b x}\right)=22$ ksi used?

## Exhibit 890

a. Why was only 1/2 SSE considered?
b. Why was $4 \%$ damping used?
c. How were the dynamic effects of the trays included in the analysis?
d. On Drawing 2323-E1-0601-01, there appears to be no means for transferring load around the cable tray bend. Please discuss this.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#/5
Page 2
e. What documentation formed the basis for accepting the condition mentioned in item (d)?

Exhibit 902
How was baseplate flexibility considered?

### 3.0 Response

## Exhibit 889

The Gibbs \& Hill calculation to determine the allowable bending stress for the channel section was performed in accordance with the guidelines set forth in the AISC Manual, Equation 1.5-7. This equation provides a method for calculating $F_{b x}$ and also states that $F_{b x}$ shall not exceed $0.6 \mathrm{~F}_{y}$. The designer first calculated $\mathrm{F}_{\mathrm{bx}}$ per Equation $1.5-7$ to be 23.2 ksi , compared that value to $0.6 \mathrm{~F}_{y}$, and then selected the lesser value. Section 1.5.1.3.4 of the AISC Manual specifies that $F_{b x}$ for 36 ksi steel equals 22 ksi .

A direct calculation of $0.6 \mathrm{Fy}_{\mathrm{y}}$ for 36 ksi material would of course produce a value for $\mathrm{F}_{\mathrm{bx}}$ equal to 21.6 ksi , rather than 22 ksi . As illustrated in AISC Section 1.5.1.3.4, this $1.8 \%$ difference is not considered significant. 22 ksi was used in the design.

If $6^{\prime}-0^{\prime \prime}$ is used in equation 1.5-7 rather than $5^{\prime}-6^{\prime \prime}$, as properly chosen by the designer, $\mathrm{F}_{\mathrm{bx}}$ would equal 21.2 ksi . $5^{\prime}-6^{\prime \prime}$ is correct based on the definitions provided in the AISC code where:
$\ell$ " = distance between cross-sections braced against twist or lateral displacements of the compression flange."

As shown on Attachment W5-1, this dimension is the clear span. Resistance to twist or lateral displacement is supplied by the welded connection to the vertical members.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh i/5
Page 3

## Exhibit 890

a. Gibbs \& Hill calculation SCS-101c, set 5, derives the applicable load combinations and shows that, for seismic loadings, the $1 / 2$ SSE (OBE) condition controls. Attachment W5-2 summarizes how that conclusion was reached. Since the supports were designed to OBE loads, the members were checked against the normal allowables with no increase for seismic loads. Inherent in this normalization is the fact that normal strength allowables may be increased for SSE loadings. Since anchor bolt allowables remain constant (i.e., no increase) for SSE loadings, unlike structural members, Cygna questioned the acceptability of this design approach. The attached calculation (W5-3) was performed by Cygna to evaluate this situation. Gibbs \& Hill had also evaluated this concern in 1979 and arrived at a similar conclusion.
b. USNRC Regulatory Guide 1.61 specifies that bolted structures, such as this, should be evaluated using $4 \%$ of critical damping. Although some connections in the cable tray support system are welded, Cygna concurs with the designer's selection of $4 \%$ damping, rather than the $2 \%$ damping value specified in R.G. 1.61 for welded structures. The designer's selection is appropriate for the following reasons:

- The lower damping value for all welded structures recognizes that such a structure will dissipate less energy than structures with mechanical connections. In the case of the cable trays, there are many significant mechanisms for dissipating energy, e.g., the cables are loosely connected to the trays, the trays are connected mechanically to the structural frames, and the frames are bolted to the concrete.
- Various papers on cable tray behavior illustrate that cable tray systems exhibit damping values greater than $4 \%$. Attachment W5-4 is one such paper (see page 181).
c. Gibbs \& Hill designed the cable tray system for peak spectral occelerations. Since 100\% of the tray weight was included and peak accelerations were employed, any influences due to tray flexibility have been conservatively incorporated.



## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Walsh \#/5
Page 4
d. As shown in Attachment W5-5, the tray system in question is adequately supported. An axial restraint is provided near each bend. The schematic in Attachment W5-5 is taken directly from Drawing 2323-EI-0601-1 (CASE Exhibit 957).
e. Gibbs \& Hill calculation SCS-113c, set 3, addresses the langitudinal restraints discussed in item (d).

## Exhibit 902

The calculation in question concerns the analysis of the two-bolt baseplate of a Detail "E" which was installed on a riser and is utilized as a three-way restraint.


14
Comanche Peak ASLB Hearings Response to CASE Questions
Question No.: Waish \#15
Page 5

Gibbs \& Hill's analysis considered a rigid baseplate which was analyzed to resist rotations about the $Y$ and $Z$ axis. Gibbs \& Hill's analysis showed that compression against the concrete provides sufficient resistance in conjunction with the tension in the anchor bolts.

A subsequent analyses by Cygna, using the baseplate II program of CDC, verified the Gibbs \& Hill results.

Gibbs \& Hill Reanalysis Calculation:
SCS-146C, Set 8, Sheets 65-69 (also Tech. File II.2.1.50, Sheets I5/81-19/81)

Cygna Baseplate Analysis:
Calculation Binder 83090/1-F, Section A
Computer Binder 83090/1.1-F, Sections A, B and C

Interaction Ratios:
Gibbs \& Hill Revised Calculation $=.584$
Cygna Baseplate Analysis $=.464$


$$
\therefore
$$

## ATTACHMENT W5-2

(Page 1 of 1 )
The loading combinations are:
(1) Operating Condition:
$S=D+L+F_{E U O}$
(2) Safe Shutdown Condition:
$1.6 S=D+L+F_{E Q S}$

The earthquake loads are:
EQUIVALENT STATIC LOADINGS (G's)
Earthquake Intensity

| Seismic |  |  |
| :---: | :---: | :---: |
| Direction | SSE | $1 / 2$ SSE* |
| Horz. | 4.0 G | 2.67 G |
| Vert. | 2.5 G | 1.67 G |

*Numerically equal to $2 / 3$ SSE values
And the sign convention for vertical loads is:
Positive: in the gravitational direction (down)
Negative: opposite gravitational direction (up)
Now, by substituting in equation (1) above the Operating Condition may be calculated as follows:

$$
\begin{aligned}
& (\text { Horz })(a) S=2.67(D+L) \\
& (\text { Vert })(b) S=(D+L) \pm 1.67(D+L)=\begin{array}{r}
2.67(D+L) \\
-0.67(D+L)
\end{array}
\end{aligned}
$$

And by substituting in equation (2) above, the Safe Shutdown Condition may be calculated as follows:

$$
\begin{aligned}
& \left(\text { Horz }(c) S=\frac{4.0}{1.6}(D+L)=2.5(D+L)\right. \\
& (\text { Vert })(d) S=\frac{(D+L)}{1.6} \pm \frac{2.5}{1.6}(D+L)=\begin{array}{rr}
2.19(D+L) \\
& =0.94(D+L)
\end{array}
\end{aligned}
$$

Then by comparison, the governing load cases are:

$$
\begin{array}{ll}
\text { (Horz) } & \text { Equation (a) } S=2.67(D+L) \\
\text { (Vert) } & \text { Equation (b) } S=2.67(D+L) 1 \\
& \text { Equation }(d) S D=-0.94(D+L) \approx 1.0(D+L)
\end{array}
$$

Gibbs \& Hill considered two loadiny cases in the design of their cable tray systems:

Normal + Severe (called "OBE"): $S=D+L+$ OBE Normal + Extreme (called "SSE): $1.6 \mathrm{~S}=\mathrm{D}+\mathrm{L}+$ SSE
where,
D $=$ Dead Load
L $\quad=$ Live Load
OBE, SSE = Loads due to that Earthquake
By normalizing the equations with regard to $S$, the governing load case was determined to be "OBE" for which the members were checked against the normal allowables with no increase for seismic loads. Pages 3 through 6 show clearly that the ratio of "SSE" to "OBE" is always less than 1.6 , so all members and welds are acceptable.

For anchor bolts, Gibbs \& Hill checked "OBE" loads against Hilti bolt allowable loads based on a minimum factor of safety of 4 . As the loads increased to SSE levels, the bolt allowables, using IEB 79-02 as a guide, remain constant at a safety factor of 4 . Therefore, the Hilti bolts may not meet a safety factor of 4 under "SSE" loading.

In response to Cygna's question, Gibbs \& Hill stated that the factor of safety will not fall below 3 and quoted NRC Document MS 129-4 on the acceptability of a safety factor of 3 .

## Cygna's Approach

To accept this, Cygna must show that the increase in loads does not reduce the safety factor for "SSE" below 3.

## Load Increases

The attached tables show the effective "OBE" and "SSE" G-levels for all buildings. The G-levels are determined from ARS peak values and combined in the fashion on Gibbs \& Hill's position calculation.

## ATTACHMENT W5-3 (continued)

(Page 2 of 6 )

## Effective G Values

Elevation OBE (G)* SSE (G)* SSE/OBE

Reactor Internal Structure

| 905.75 | 5.447 | 6.799 | 1.25 |
| :--- | :--- | :--- | :--- |
| 885.50 | 4.704 | 5.882 | 1.25 |
| 860.00 | 3.790 | 4.772 | 1.26 |
| 832.50 | 2.864 | 3.681 | 1.29 |
| 808.00 | 2.372 | 3.108 | 1.31 |
| 783.58 | 2.251 | 2.932 | 1.30 |

Safeguards Building

| 896.5 | 4.560 |
| :--- | :--- |
| 873.5 | 4.365 |
| 852.5 | 3.698 |
| 831.5 | 3.072 |
| 810.5 | 2.603 |
| 790.5 | 2.212 |
| 785.5 | 2.158 |
| 773.5 | 2.056 |

5.948
1.30
5.790
1.33
4.956
1.34
4.158
1.35
3.698
1.42
3.056
1.38
2.967
1.37
773.5
2.056
2.790
1.36

Electrical Building
873.33
854.33
380.00
807.00
778.00
3.855
4.944
1.28
4.606
1.29
3.893
1.30
3.638
3.385
1.39
1.38

Auxiliary Building

| 899.50 |  | 5.132 |
| :--- | :--- | :--- |
| 886.50 |  | 4.664 |
| 873.50 |  | 4.255 |
| 852.50 |  | 3.864 |
| 831.50 |  | 3.339 |
| 810.50 | 2.788 |  |
| 790.50 | $\therefore$ | 2.535 |

6.446
5.948
5.501
5.003
4.451
3.731
3.560
1.26
5.13
886.50
4.255
852.50
831.50
3.339
790.50
2.535
3.560
1.28
1.29
1.29
1.33
1.33
1.34
1.40

ATTACHMENT W5-3 (continued)
(Page 3 of 6 )
Effective $G$ Values (continued)
Elevation $\operatorname{OBE}(G) * \quad$ SSE (G)* SSE/OBE

Fuel Building

| 918.00 | 4.397 | 6.058 | 1.38 |
| :--- | :--- | :--- | :--- |
| 899.50 | 4.033 | 5.695 | 1.41 |
| 860.00 | 2.866 | 3.980 | 1.39 |
| 841.00 | 2.630 | 3.646 | 1.39 |
| 825.00 | 2.455 | 3.367 | 1.37 |
| 810.50 | 2.271 | 3.099 | 1.36 |

## Interaction Diagram



Definitions:
$X=$ Tensile Load
$y=$ Shear Load
$T_{A}=T / F S$, where $T=$ Tensile Ultimate and FS = Factor of Safety
$V_{A}=V / F S$, where $V=$ Shear Ultimate
$x_{0}=$ "OBE" tensile load
$Y_{0}=$ "08E" shea. load
$\Delta=$ Load Increase Factor ( $\frac{\text { SSE" }}{\text { "OBE" }}$ )
The exponential curve is based on the plots of shear tension loadings found in the Teledyne response to IEB $79-02$. The document MS 129-4 is only a guide and does state that "OBE" safety factor should be 5 . We can, however, argue that a safety factor of 4 for the bolts is adequate based on IEB 79-02.

## I. Using Equation (1) - Linear Relationship:

To use this relationship to reach a factor of safety $=3$, we must determine what the allowable load increase is above "OBE" loads.
a. Assume pure tension, with the "OBE" load just meeting the criteria

$$
\begin{array}{ll}
\frac{\Delta \cdot x_{0}}{\frac{T}{3}}=1.0 & x_{0}=\frac{T}{4} \\
\frac{\Delta \cdot \frac{T}{4}}{\frac{T}{4}}=1.0
\end{array}
$$

$$
\therefore \Delta=4 / 3=1.33
$$

The same result will be true for pure shear.
b. For intermediate values of tension and shear ratios assume that the increase in the tensile and shear loads (in going from "OBE" to "SSE") are equal.

Assume

$$
\begin{aligned}
& x_{0}=.75 \frac{T}{4} \\
& y_{0}=.25 \frac{T}{4}
\end{aligned}
$$

$\frac{(\Delta) .75 \frac{T}{4}}{\frac{T}{3}}+\frac{(\Delta) .25 \frac{x}{4}}{\frac{x}{3}}=1$
$\Delta .75(3 / 4)+\Delta .25(3 / 4)=1$
$\Delta=4 / 3$
$\therefore$ A load increase of 1.33 is allowed for the linear interaction equation over the range of values for $x_{0}$ and $Y_{0}{ }^{*}$. As can be seen from "Effective G Value Tables," some, but not all. areas of the plant would meet this criteria.

## ATTACHMENT W5-3 (cont inued)

(Page 5 of 6 )

## II. Equation (2) - Exponential Relationship

Using the relationship from the Teledyne paper, calculate the allowable load increase, $\Delta$.
a. At the endpoints, the allowable load increase is 1.33 because the linear and exponential curves are coincident here.
b. At an intermediate value an

$$
\begin{aligned}
& x_{0}=.75 \frac{T}{4} \\
& Y_{0}=.25 \frac{V}{4} \\
& \frac{\Delta .75 \frac{T}{4}}{\frac{T}{3}} 5 / 3+\frac{\Delta .25 \frac{V}{4}}{\frac{V}{3}} 5 / 3=1 \\
& (\Delta(3 / 4)(.75))^{5 / 3}+(\Delta(.25)(3 / 4))^{5 / 3}=1 \\
& .44 \Delta^{5 / 3}=1 \\
& \Delta^{5 / 3}=2.25 \\
& \Delta
\end{aligned} \begin{aligned}
& =(2.25) .6=1.63>1.42,
\end{aligned}
$$

so there are values of $X_{0}$ and $Y_{0}$ which will give a safety factor of 4 in "OBE" and 3 in "SSE".
$\therefore$ We must determine for what values of the tensile and shear ratio that $\Delta=1.42$. For tensile and shear ratios between these values, the safety factor of 3 will be met for "SSE" loads.
c. Assume a linear "OBE" relationship such that

$$
1=R_{T}+R_{V}
$$

where $R_{T}=$ percent tension allowable
using a safety factor equal to 4

$$
R_{V}=\text { percent shear allowable }
$$

$$
R_{V}=1-R_{T}
$$

ATTACHMENT W5-3 (continued)
(Page 6 of 6 )
Substituting into the exponential relationship above:

$$
\begin{aligned}
& \left(\frac{1.42 R_{T} \frac{T}{4}}{\frac{T}{3}}\right)^{5 / 3}+\left(\frac{1.42\left(1-R_{T}\right) \frac{V}{4}}{\frac{V}{3}}\right)^{5 / 3}=1.01 \\
& {\left[(.75)(1.42) R_{T}\right]^{5 / 3}+\left[(.75)(1.42)\left(1-R_{T}\right)\right]^{5 / 3}=1.0} \\
& R_{T}{ }^{5 / 3}+\left(1-R_{T}\right)^{5 / 3}=1 /(1.07)^{5 / 3}=.900 \\
& R_{T}{ }^{5 / 3}+\left(1-R_{T}\right)^{5 / 3}-.900=0
\end{aligned}
$$

Solving numerically on an HP-150:
or

$$
\begin{array}{ll}
R_{T}=.93 & R_{T}=.07 \\
R_{V}=.07 & R_{V}=.93
\end{array}
$$

Therefore, for "OBE" loads within the above range of ratios the safety factor of 4 is mat using a linear relationship and, for the maximum increase of 1.42 to "SSE" loads, the safety factor of 3 is met using the Teledyne interaction method.

Based on Cygna's review of 43\% of the cable trays, all shear/tension ratios fall within the above range, so there is no safety impact.

RGF: Procéadings, $48^{\circ}$ HNUNAL CONNONJIM, Ti.
SAONE, CORANADO, CALIFONIA, OUT. $4-6,1979$. ATTACHMENT W5-4 (Page 1 of 11 )

SEISMIC TESTING OF ELECTRIC CABLE SUPPORT SYSTEMS
by

Paul Kos<br>Bechtel Power Corporation<br>Los Angeles Power Division a

## INTRODUCTION

Over the past two decades, many earthquakes have occurred within the United States. Of these, several were of sufficient magnitude to cause structural damage to industrial facilities. Following such strong earthquakes, inspection of power generation and distribution facilities has offered valuable informaction as to the overall performance of engineered structures. The 1971 San Fernando earthquake has been of particular interest in this regard. It was one of the most severe earthquakes Southern California has experienced in recent history. A survey of structural damage to the Sylmar Converter Station, located within a few miles of the epicenter, provided data relative to the behavior of electrical distribution equipment and electrical raceway sym -ems when excited by strong ground motion. Of special interest was the fact chat simple unbraced raceway hanger systems were able to survive the earthqualike without major structural failures. Another finding was that even at locations where a minor amount of structural distressing occurred, the cables within the tray systems did not lose their functional integrity. The fact that the converter station's unbraced support system survived the San Fernando earthquake generated interest regarding the practicality of using similar systems in nuclear power plants.

In the years following the San Fernando earthquake, an increasing emphasis has been put into the design of earthquake resistant structures. This has been particularly true of structural systems in nuclear power plants. As early as 1971, design standards were developed in the industry that outlined methodologies for the seismic design of raceway supports. In addition, USNRC regulatory guides and standard review plans were also being developed during the same period of time. Designs based upon these criteria have tended to require substantial amounts of bracing. By contrast, the Sylmar Station support systems were essentially unbraced. Consequently, it appeared that either the design methods or the design criteria, or possibly both, were unnecessarily conservative.

In order to bridge the gap between design procedures and observed behavior of these systems, a plan vas initiated to test electrical raceway systems. The goal of the testing was to establish the best possible approach to create an economical, yet adequate, support system for electrical cabling within nuclear plants. By the first part of 1977, a clearly defined program that outlined the types and sizes of raceway systems that would be tested was established. This Cable Tray and Conduit Raceway Test Program was initiated and managed by the Los Angeles Power Division of Bechtel Power Corporation. The testing was conducted, and related consulting services were provided by ANCO Engineering, Inc., Santa Monica, California. In the last months of 1977 testing began. Full scale installation e of both cable tray and conduit raceway systems were tested. By the end of 1978, over 2062 individual dynamic tests had been performed, generating over 50 volumes of raw data.

## DEVELOPMENT OF THE TEST FACILITY

A typical raceway system consists of cable trays and conduits which are supported from overhead by threaded rod or strut. These supports take the form of a from overhead suspended trapeze and may support aeveral trays in vertical tiers. The various suspended trapeze and may supporty classified as ladder or trough (see figure l).


Figure L. Trough and Ladder Tray

Typically these suspended systems may extend vertically in excess of 10 feet, may be very long and may weigh up to 250 pounds per foot of length (multi-tier systems). In view of these unusual characteristics, it was decided to design and construct a special test tabie capable of input to long suspended systems. ANCO engineers undertook the design and construction of a shake table capable of random and steady state input to raceway systems.

The shake table was designed as an open steel frame, consisting of two parallel trusses interconnected by cross trusses and diagonal diaphragm bracing at the top (see figure 2). The bracing was sized to prevent resonance below 20 Hz . The frame is supported by five linkages which form an inverted pendulum. The angle of the linkage determines the relative amounts of vertical and horizontal table motion. The table can develop input either parallel or perpendicular to its length. The vertical component will act simultaneously and be a scalar of the horizontal, depending upon the angle of the linkages. In addition, the table can be rigidly fixed so that forces or displacements may be applied directly to the test specimen.

The table was designed to accoumodate a test setup of $40^{\circ}-0^{\prime \prime}$ in length with five vertical tiers. This required a clear height of $14^{\prime}-0^{\prime \prime}$. The total estimated weight of the heaviest test setup was $10,000 \mathrm{lbs}$. This veight was used to design a servo actuacor system capable of achieving a maximum input to the fully loaded five tier system of 1.1 g .

The servo actuators are driven by high pressure hydraulic fluid stored in an accumulator and released through control valves whose setting can be variled in proportion to any arbitrary time varying electronic signal. Output from the test was recorded in the form of time histories on strip charts or tape, spectral plots from a real time analyzer and as response spectra from a digital computer.

## TEST PROGRAM SCOPE

The first step in defining the scope of the testing program was the idencification of possible significant variables in raceway system design. The following are the potentially significant variables that vere identified in planning the test program scope:

- Tray and conduit types
- Tray and conduit loading
- Hanger types
- Hanger length
- Connection details
- Number of trays
- Number of conduits
- Conduit sizes
- Conduit clamps


In order to evalusce the effects of these various parameters, more than 200 test setups vere tested. These fell into three categories: (1) cable tray systems, (i) conduit systems, and (3) combined tray and conduit systems. Wichin ench of chese three categories of testing, iest setups were developed to evaluate damping, frequency, and other aignificant characteristics for varying support types, connection details, and bracing.

In addition to dynamic testing with the shake table, a series of cyclic fatigue tests were performed on connection details. The purpose of these tests was to determine the resilience oi these connections and establiah a fatigue criterion for use in design.

## TEST SEQUENCE AND SEISMIC INPUT

A typical test sequence consieted of up to ten individual tests. Initially a test setup would be subjected to snapback tests (with the table fixed rigidly). These tests were used to determine resonant frequencies and mode shapes. Next, a series of increasing amplitude sinusoidal tests vere performed to establish a reference relationship between damping and amplification ratio at various output points. Finally, a series of simulated earthquake inputs vere applied. These tests were used to determine how seismic input amplitude affects frequency and damping.

The earthquake time history used to formulate the majority of shake table input motions was a synthet.-. time history. This record was selected due to its conformance with USNR: Regulatory Guide 1.60. In addition, a group of four historical earthquake records was used during a 1 imited group of tests. Bicuever, the actual input motion to the shake table was not the input motion corresponding to any one of the recolds mentioned. Rather, a modification to each record was made to accourt for effects of building amplification for che purpose of creating a "worst case" shake table input moticn.

In addition to the synthetic time history, historical recordings of actaal earthquakes vere used to drive the systems. The following four earthquakes vere used:

1. San Fernando 2/9/71, Hollywood Storage P.E. Lot, Comp N90E.
2. San Francisco 6/22/57, Golden Gate Park, Comp N1OE.
3. Kern County 7/21/52, Taft Iincoln Schoo. Turnel, Coup V2IF.,
4. El Centro 6/18/40, Imperial Valley Irrigation Distriet, Comp SOOE.

The process for selecting earthquakes was based upon the inspection of approximately ten historical recordines. Typically, each earciquake had chree recorded components: two horizontal and one vertical. The goal of the selection process was to pick a nominal number of recordings that displayed different characteristics.

The ayntheti, earthquake was selected because of its conioroance with Regulatory Guide 1.60 . The response spectra shape was created to agree with USNRC guidelines.

The San Fernando earthquake is one of the belt documented selsmic events ever recorded and was selected primarily because of its significance.

The San Francisco earthquake, one of the shortest, was selected because of its duration characteristics and its frequency content. Most of the activity was over within the first two or three seconds of the shaking. The response apectra, depicting acceleration, shows two very distinct peaks at 4.0 and 7.0 hertz. Of the earthquakes available, none exhibited similar characteristics.
The Kern County (Taft) earthquake was selected based upon its frequency characteristics. There exists a broad barthquake has a predominant spike hertz. In addition, the Kern County earthquake has a predoan around 3.0 hertz.
The El Centro earthquake was selected based upon its historical significance in the field of earthquake engineering.

## TEST RESULTS

In general, rod supported raceway systems did not perform satisfactorily at input levels in excess of 0.5 g . Overall collapse occurred at input levels

The strut supported systems that vere tested survived all testing without loss of function. The type of damage that was observed in a few cases consisted mostly of fracturing of strut type angle fittings. Thastic defor was due to low cycle fatigue resulting from significant ductile-pin the four angle chat occurs at connections during large amplitude loading. of che (i.e angle fittings that were used to attach the hanger to the overhead steel never two fittings per vertical element, two vertical elementan one specific large more than one fitting of the four fracture tested at input levels corresponding amplitude test. Most of the systems were These input levels vere dewonstrated to 1.0 to 3.0 g 's maximum acceleration. to be equivalent to ground motion levels 2000 dynamic tests did a cotal acceleration. Never in the course of some racevay occur. Nor was there any structural collapse of a strut-supported racts that were monitored. Specific loss of function in the electrical in the follouing paragraphs.

## Damping

During the cable tray test program, two distinct nonlinearities associated with tray syatem dynamics were observed. These were: (1) to cable vity of joints and (2) amplitude dependent frictional losses due to cable vibration. Despite these nonifnearities, observed responses over a wide range of amplitudes indicated distinct vibrational modes whose frequencies degraded only with substantial changes in amplitude and a significant number of eycles of loading. Consequently, frictional losses due to cable vibration can be accounted for by selecting an appropriate amplitude dependeat viscous damping. The damping of cable tray raceway systema ion cables within greater than bolted steel structures due to to be amplitude dependent. the trays. This phenomena was also observed to be amplitudeppen in excess of 0.75 g . results of the tests are described in the folloulng paragraphe

That 1s, the greater the input level the more pronounced were these losses. Equating these losses to $a($ equivalent viscous dampios by measurement viscous damping of up to 50 z in some cases. results is shown in figure 3 . After and cable tray systems (see figure 4 ), hundred earthquake type vibratione representing equivalent viscous damping as a conservative lover bound curve $2 P A$ was plotted as shown in figure 5 . a function of input floor spectrum apa devistions below the mean value at This curve was plotted at two otandard deviations below the man each amplitude.


Figure 3. Typient rest Results from Conduit and tray Tcste


Figure 4. Damping vs. Input Level for Braced Hanger Systems


Figure 5. Recomended Damping for the Design of Racevay Systems -181-

It should be noted that system damping varies from the above values when cable trays are lightly loaded. Specifically an unloaded tray will have an associated lower bound damping value of about 7\%, which is more or less consistent with recommended values for bolted structures (see USNRC Reg. Guide 1.61). For a 24 -inch tray, the damping will be in accordance with figure 5 ( $50 \%$ to fully loaded) as long as the tray has more than $20 \mathrm{lb} / \mathrm{ft}$ of cable.

The level of damping observed in supports that carry only conduit remains was generally about one half that observed in equivalent tray systems (see figure 3). Damping for such systems should be assumed at 72 of critical for input amplitudes in excess of 0.2 g .

The overall behavior of combined systems does generally trace the behavior of its components; however, not all the specific characteristics of conduit carry through to the combination. The damping ratio of the segregatedconduit system is on the order of $7 \%$ of critical. When this same conduit is added to the combined system, the overall system damping is equivalent to the damping of the cable tray system (i.e., $20 \%$ of critical).

## Frequency

The testing of trapeze supports that are made from strut, and use predominantly strut type bolted fittings, demonstrated that these systems have fundamental frequencies falling between 2 and 5 hertz. The addition of heavy bracing, or the substitution of structural shapes in lieu of strut, or the attaching of supporis directly to walls or columns, or the use of many welded connection details, will increase the frequencies somewhat. However, it is highly unlikely that the fundamental frequency of a raceway supported in any combination of the above methods would ever be above 10 hertz.

The dependency noted in the rate of increase of damping with respect to input has also been observed in cable tray system frequency characteristics. Generally speaking, resonant frequencies were found to be dependent upon the level of tray response. Typically, the frequency might be expected to decrease by 30 percent as input levels increase from 0.05 g to 0.50 g .

Connections stiffness is a major factor in deternining the stiffness of a hanger system. The connections are efther located where the hanger is attached to overhead supporting members or at the various joints within the hamger itself. Strut type connections do not act as a pure pin, nor do they maintain infinite rigidity. For partially braced or totally unbraced hanger systems, the moment-carrying capabilities of strut connections creates a mechanism through which initial loads may be distributed to flexible supports. The modeling of strut connections with rotational springs is a prerequisite to correct prediction of frequency characteristics, stress distribution* and deflection.

The quantity and size distribution of electrical cables that fill cable trays vary from tray to tray aithin a power plant. These variables were seadied to assess their effects upon tray frequency. The testing demonstrated that type of size of cables do not influence overall system stiffness. The mass of the cable is the only factor that need be considered in computing cable tray system dynamic responses.

Fatigue Strength of Connections
In addition to the dynamic testing of support systems on the shake table, connection details vere subjected to cyclic fatigue and strength testa. The purpose of these tests was to determine the extent to which nonlinear behavior of standard hot rolled clip angles could be utillzed ya che design of support systems. The primary interest was to establish lor cycle fatigue information. In general, for less than 250 stress reversals, these connectors were capable of displacements of three to four times the elastic limit, which was defined by a static strength test. A the elastic lif test result is shown in figure 6. The correlation between the elastic limit of the static strength test and the horizontal limit of the fatigue curve was generally quite good. These results indicated that a reasonable ductility ratio for earthquake loadings was three to four.


CYCLES TO CONNECTION FAILURE
Figure 6. Typical Fatigue Curve for Hot Rolled A36 Clip Angle Connectors

## CONCLUSION

The cable tray and raceway test program developed a substantial amount of data from over 2000 individual dynamic tests. This in turn resulted in some specific recomendations regarding design practice. Among these was the equivalent viscous damping in excess of $20 \%$ and the significant resilience of hot rolled clip angles under low cycle fatigue. Of particular significance is the general conclusion that lightly braced raceway systems cam be expected to survive severe earthquakes (in excess of 0.5 g ) with no loss of function in the circuits they support.

## ACKNOWLEDGEMENTS

The Cable Tray and Conduit Raceway Test Program has been supported financially by contributions from the Arizona Nuclear Power Project participants. Bechtel Fower Corporation, Boston Edison Co., Georgis Power Co., Mississippi. Power and Light Co., Pennsylvania Power and Light Co., Philadelphia Electric Co.. Public Service Electrica and Gas Co., Puget Sound Power and Light Company, Standardized Nuclear Unit Power Plant System (SNUPPS) participants, Southern California Edison Co., and the Tennessee Valley Authority.

## REFERENCES

(1) Cable Tray and Conduit Raceway Test Program Test Report, ANCO Engineers and Bechtel Power Corporation, December 1978.
(2) USNRC Regulatory Guide No. 1.61, "Damping Values for Seismic Analysis for Nuclear Power Plants."

ATTACHMENT W5-5
(Page 1 of 1 )


## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Walsh \#6
Exhibit No.: 907

### 1.0 CASE Question

CTS-00-05. In the description, it discusses a channel bent about its weak axis. The resolution does not consider this problem nor does the document CASE requested on discovery; see CA.SE Exhibit 907. On CMC 88306, are the originator and approver the same person?

### 2.0 Cygna Interpretation

Please discuss the following:
a. How did the resolution to Observation CTS-00-05 address the channel bent about its weak axis?
b. Are the signatures on CMC 88306 satisfactory?

### 3.0 Response

a. The purpose of Observation CTS -00-05 was to investigate the baseplate. This is illustrated by the following reprint from the Observation:

## "1.0 Description

The anchor bolts, baseplate/angle and channel of cantilever support Detail "E" were originally designed as two-way restraints to resist axial loads on the channel and moments about its major axis. In order to use Detail "E" on a cable tray riser, where it must act as a three-way restraint, the channel section was modified to resist moments about its weak axis. The ability of this configuration to function as intended, i.e., to also resist moments about the weak axis, could not be guaranteed since the anchor bolts and the baseplate/angle were not evaluated for such a load."

The channel was correctly analyzed by Gibbs \& Hill in Calculation SCS-146C, sets 4 and 8.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#6
Page 2
b. CMC-88306, Rev. 4, was originated and approved by the same person. This is acceptable for the following reasons:

- There is a controlled list of people authorized to approve CMC's for construction prior to design review. In the case of CMC 88306, the approver was on that authorized list.
- Project procedures do not prohibit someone on the authorized approval list from also being an originator.
- The subject CMC is an interim release for construction purposes. Each CMC receives a subsequent design review by the original design organization in accordance with Gibbs \& Hill Procedure DC-7.

Comanche Peak ASLB Hearings
Reszonse to CASE Questions
Ques inn No.: Walsh \#7
Ex'iil rino.: None

### 1.0 CASE Question

CTS-00-006 What is the "significant design margin" as shown in the resolution?

### 2.0 Cygna Interpretatior.

Observation CTS-00-06 states that "... further analyses by Gibbs \& Hill (see Cygno Technical File II.2.1.50, pp. 31-69), incorporating Cygna's comments, revealed that sufficient design margin existed to compensate for the increased stress levels." The "increased stress levels" refer to the potential increase in stress levels due to the items noted in the observation.

Please quantify the design margins.

### 3.0 Response

To demonstrate the adequacy of a judgement made in their qualification of standard - details A, B, C, and D by similarity to standard detail $D_{i}$, Gibbs \& Hill performed an analysis using the NASTRAN code. For the purposes of this analysis, the $C 6 \times 8.2$ section was oriented to match details A, B, C, and D. The results of this analysis are contained in calculation SCS-104C, Set \#1, where it is shown that the member interaction ratio for the $C 6 \times 8.2$ section is 0.94 (maximum). This ratio is based on an analysis using tray weights of $35 \mathrm{lb} / \mathrm{ft}^{2}$ and which included tray support self-weight excitation. The "significant margins" are due to the fact that the interaction alone was $6 \%$ below allowable and the tray loads were assumed to be $22 \%$ larger than the actual loads.



Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#8
Exhibit No.: None

### 1.0 CASE Question

CTS-00-07. The analysis that included the beam element did not consider prying action and the flexibility of the baseplate to determine the center of compression.

### 2.0 Cygna Interpretation

N/A.

### 3.0 Response

Gibbs \& Hill performed a refined analysis of the frame and baseplate to resolve Observation CTS $-00-07$. Cygna reviewed the results of this analysis and judged the frame, baseplate and anchor bolt design to be adequate.

In order to quantify the adequacy of that engineering judgement, relative to the anchor bolt design, Cygna performed an analysis of the frame/baseplate system using fixed boundaries at the hanger-to-baseplate connections. The fixed-end loads developed at these boundary points were then applied to a baseplate model. Cygna's program PSDS (Pipe Support Design System) was utilized for the analysis and design check. PSDS includes a standard baseplate/anchor bolt routine that considers mechanisms, such as prying action and baseplate flexibility.

The results of this analysis show the following design margins:

| Bolt No. | Tensile Lood <br> (lbs) | Shear Load <br> (lbs) | Design Interaction <br> Ratio* |
| :---: | :---: | :---: | :---: |
| 1 | 500 | 1540 | .10 |
| 2 | $4-.10$ | 1830 | .75 |
| 3 | 3040 | 1890 | .45 |
| 4 | 2970 | 1820 | .45 |
| 5 | 4210 | 1530 | .65 |

*Design Interaction Ratio $=(\text { tensile load/allow. })^{5 / 3}+(\text { shear load/allow. })^{5 / 3}<1.0$

Comanche Peak ASL 3 Hearings
Response to CASE Questions
Question No.: Walsh \#8
Page 2

The design interaction ratio equation, using an exponent of $5 / 3$, was originally contained in Revision 0 to Cygna's review criteria for Comanche Feak. In Revision 1 of the Comanche Peak review criteria, the exponent was reduced to 1.0 to be consistent with the equation actually used by Gibbs \& Hill.

Further justification for the $5 / 3$ exponent is provided in the response to Walsha Question \#5. It is also important to note that these results contain the following conservatisms: lumped tray masses, enveloped response spectra, higher than actual tray weights ( 35 psf vs. 28 psf ).


 hA-1kj-: $\frac{11}{1}$

 IUMA I Si-A-6T-(iiiT.1T:/R

Apalp Caphe-3twe- $1+1+40$ stors

cievenlalixn
Mn Natim By Gbilslifind




## $\frac{-\sqrt{x} v_{1}^{-1}}{4}$

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh $\# 110$
Exhibit No.: N/A

### 1.0 CASE Question

WD-07-02 What document did Cygna see that showed the temperature indicator would be installed at a later date?

### 2.0 Cygna Interpretation

What was the basis for closing Cygna Observation WD-07-02? What documentation was reviewed?

### 3.0 Response

Based on a conversation with Texas Utilities personnel, Cygna learned that temperature elements are normally installed after all other work in an area is completed. This is done in order to avoid damage to the instrument during construction. When Cygna performed the Spent Fuel Pool Cooling System walkdown, painting activities were still underway.

Further review also showed that local indicators, such as this one, are not safety-related devices.

The key documents reviewed by Cygna relevant to closing Observation WD-07-02 are discussed below:

1. Instrument Installation Checklist (Form No. 2-81)

Form 2-81 is required to be completed by Comanche Peak procedure 35-1195ICP4. In this case, it indicated that the device was not installed and that the "discrepancy" was "turned over to Brown \& Root completion and TUGCO".
2. The $Q$-list was checked to ensure that the device was non-safety.

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#11
Exhibit No.: None

### 1.0 CASE Question

Pipe stress checklist, note 3 , item a:

1) What is the basis for considering that the effects were negligible?
2) What pipe stress run did Cygna look at, since the inclined load was used in the design of support RH-1-010-003-S22R?

### 2.0 Cygno Interpretation

Pipe stress checklist (PI-02), note 3 , states the following:
3. The following supports were modeled along the coordinate axiss rather than inclined. The impact is negligible.
a. $\quad$ RH-I-010-003-S22R at data point 1253 ( 8.6 degrees)
b. SI-1-042-001-S22R at data point 793 (7.5 degrees)
a. What was the basis for concluding that support $\mathrm{RH}-1-010-003-\mathrm{S} 22 \mathrm{R}$ was adequate?
b. What pipe stress run was evaluated?

### 3.0 Response

a. Support RH-1-010-003-S22R is a simple restraint, inclined 8.6 degrees from a line drawn perpendicular to the pipe. Cygna judged that this small incline ed angle would not significantly affect the support design or the piping analysis. An important element of this judgement is that the 8.6 degree, as-built alignment is only 3.6 degrees beyond the construction tolerance of 5.0 degrees.

In order to verify the adequacy of this judgement, Cygna requested i that Gibbs \& Hill reanalyze piping segment $A B-1-70$. For this reanalysis, the piping model was revised to include the following:

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#|I
Exhibit No.: None
Page 2

- Supports RH-1-010-003-S22R and SI-1-042-001-S22R were modeled with skew angles of 8.6 and 7.5 degrees, respectively.
- Support RH-1-010-003-S22R was modeled as two trunnions with snubbers located 7 inches from the pipe centerline.
- Support RH-1-064-010-S22R was modeled I' 4 " west of the elbow.

The results of this reanalysis are contained in Attachment DII-1 (Gibbs \& Hill Calculation), DII-2 (computer output without modifications), and DII-3 (Computer output with modifications). These results are summarized below:

Maximum System Stress (psi)

| ASME Equation | Old | New | Allowable |
| :--- | ---: | ---: | :---: |
| 8 | 9,039 | 9,039 | $18,480^{(1)}$ |
| 9 (upset) | 21,094 | 21,103 | $22,180^{(2)}$ |
| 9 (emergency) | 24,451 | 24,463 | $33,260^{(3)}$ |
| 10 | 22,883 | 22,883 | $27,600^{(4)}$ |
| 11 | 27,881 | 27,881 | $46,080^{(5)}$ |

Notes:
(1) 1.0 $\mathrm{S}_{\mathrm{h}}$, per ASME B\&PV Code, Section III, Paragraph NC-3652.1
(2) $1.2 \mathrm{~S}_{\mathrm{h}}$, per ASME B\&PV Code, Section III, Paragraph NC-3652.2
(3) $1.8 \mathrm{~S}_{\mathrm{h}}$, per ASME B\&PV Code, Section III, Paragraph NC-36II.3c
(4) $S_{o}=f\left(1.25 S_{c}+0.25 S_{h}\right)$ where $f=1.0$, for no more than 7,000 thermal cycles, per ASME B\&PV Code, Section III, Paragraph 3652.3a.
(5) $\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{h}}$, per ASME B\&PV Code, Section III, Paragraph 3652.3b.
where $S_{h}=18480$ for material SA-312, TP 304 at $280^{\circ} \mathrm{F}$
$\mathrm{S}_{\mathrm{c}}=18800 \mathrm{psi}$
Per ASME B\&PV Code, Section III, Appendix I

$$
24
$$

Comanche Peak ASLB Hearings
Response to CASE Questions
Question No.: Walsh \#11।
Exhibit No.: None
Poge 3

## Support Loads (lbs)

|  | Normal |  | Upset |  | Emergency |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
|  | Old | New | Old | New | Old | New | Allow.* |
| RH-1-010-003-S22R | 1705 | 1459 | 3534 | 4519 | 3967 | 5189 | 15700 |
|  | 105 | 164 | -1724 | -2894 | -2756 | -3565 | -15700 |

*Per NPSI Load Data Capocity Sheet, dated 6/81, for an SRS No. 14. strut.

Regarding the following line excerpted from Attachments DII-2 ano DII-3, the allowable Equation (9) stress for emergency conditions is $1.8 \mathrm{~S}_{\mathrm{h}}$ pper ASME B\&PV Code, Section III, Paragraph NC-3611.3c. The comparison to $1.2 \mathrm{~S}_{\mathrm{h}}$ in ADLPIPE is a built-in precaution, not a pass/fail test.

## Stress Summary (Equation 9 Emergency and Foulted Conditions)

| SEC | MEM | SEQ | POS | EQN 9 | Additional Infformation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 52 | 896 | BEG | 13016 |  |
| 20 | 5 | 897 | END | 24451 | Equation 9 exceeeds $1.2 \mathrm{~S}_{\mathrm{h}}$ |

## Nozzle Loads (Ibs)

|  | Old | Ner |
| :--- | ---: | :--- |
| Load | 3084 | $254!$ |
| Allowable | 3120 | 3120 |
| Ratio | 0.98 | 0.81 |

In summary, the reanalysis showed no change in the pipe stresses, a decrease in nozzle loads, and support loads well below the allowable. This verifies the original engineering judgement.

## Comanche Peak ASLB Hearings

Response to CASE Questions
Question No.: Walsh ||11
Exhibit No.: None
Poge 4
b. Gibbs \& Hill pipe stress run AB-1-70, Rev. 0, was evaluated by Cygna as noted on several Observations, including PI-00-01.

