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WESTINGHOUSE IMPROVED THERMAL DESIGN PROCEDURE
INSTRUMENT UNCERTAINTY METHODOLOGY FOR CAROLINA POWER AND | 1GHT
SHEARON MARRIS NUCLEAR POWER STATION

l. INTRODUCT 10N

Four operating parameter uncertainties are used in the uncertainty
analysis of the Improved Thermal Design Procedure (1TDP), These
parameters are Pressurizer Pressure, Primary Coolant Temperature (1,,,).
Reactor Power, and Reactor Coolant System Flow. They are freguently
monitored and severa) are used for control purposes. Reactor power 1
monitored by the performance of & secondary side heat balance (power
calorimetric) once every 24 hours. RCS flow 15 monitored by the
performance of a precisfon flow calorimetric at the beginning of each
cycle. The RCS Cold Leg elbow taps are normalized against the precision
calorimetric and used for monthy surveillance (with a small increase in
uncertainty). Pressurizer pressure 1s a controlled parameter and the
uncertainty reflects the control system. 1',9 is & controlled parameter
via the temperature input to the rod control system and the uncertainty
reflects this control system.

Westinghouse has been involved with the development of several technigues
to treat instrumentation uncertainties. An early version (for D. C. Cook
2 and Trojan) used the methodology outlined in WCAP-8567 *"Improved Thermal
Design Procoduro'.("z°” which is based on the conservative assumption
that the uncertainties can be described with uniform probability
distributions. Ancther approach /for McGuire and Catawba) 1s based on the
more realistic assumption that the uncertainties can be described with
random, normal, two sided probability distributions. (&) This approach

is used to substantiate the acceptability of the protection system
setpoints for many Westinghouse plants, e.g., D. €. Cook 2(5). V. C.
Summer, Wnlf Creek, Millstone Unit 3 and others. The second approach is
now utilized for the determination of all instrumentation errors for both
ITOP parameters and protection functions.
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Steam pressure, assuming saturated nditior The Feedwater enthalpy
based on the measurement of Feedwater temperature and Feedwater
pressure The Feedwater flow | determined by n tiple mes rement ar
Lhe¢ { Owit o al 14
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where ' " Feedwater venturi flow coeff ent
"a . Feedwater venturi correction for thermal expansior
.4
Py . Feedwater density (1b/ft7)
a/1 - Feedwater venturi pressure drop (inches H

The Feedwaler venturi flow coefficient is the product of a number of
constants including as-built dimensions of the venturi and calibration
tests performed by the vendor The thermal expansion correction is based
on the coefficient of expansion of the venturi material and the
difference between Feedwater temperature and calibration temperature
Feedwater density 1s based on the measurement of Feedwater temperature
and Feedwater pressure The venturi pressure drop is obtained from the
output of the differential pressure cell connected to the ventu

RCP heat addition 1s determined by calculatior basec n the best

estimate of coolant flow, pump heac and pump hydraulic efficier




The primary system net heat losses are decermined b

v
considering the following system heat inputs and heat
Charging flow
Letdown flow
Seal injection flow
RCP therma! oarrier cooler heat remcval
Pressurizer spray flow
Pressurizor surge 1°n. “loe
Component insulation heat losse
Component support hoat losses
CRDM heat losse!

A single calculated sum for J00% K1

or heatl inputs

The Hot Leg and Cold Leg enthalpies are based on the measurement of the
Hot Leg temperature, Cold Leg temperature and the Pressurizer pressure
The Cold Leg specific volume is based on measurement of the

temperature and Pressurizer pressure

The RCS flow measurement is thus based on the following plant

|

measurements:

Stoamline pressure (P.)

| cedwater temperature

Fae” wessurc (Pg)

’

Fe ‘s erturi differential pressurs (d/p)

Hoi lﬁ':l tt".,»?!"a:ufé | ‘H‘

Cold Lea temperature (T,)

\

Pressurizer pressure (;L‘
Steam Generator blowdown (i1f not secured)

and on the following calculated values

Fiedwater venturi flow coefficients (K)
Feedwater venturi thermal expansion correct

foudwater densit: (pe)

!




Feedw: .or enthalpy (h¢)

Steam enthalpy (h,)

Moisture carryover (impacts h
Primary system net heat losses (Q
RCP heat addition (Qpé

Hot Leg enthalpy (hy)

Cold Leg enthalpy (hy)

Thesc measurements and calculations are presented schematically on Figure

|

The derivation of the measurement errors and flow uncertainties on Tabl

5 «re noted below

S M e 1 4 ( +
2000ndary 210¢
The secondary side uncertainties are in four principal areas, Feedwater

flow, Feedwater enthalpy, Steam enthalpy and RCP heat additior nese

four areas are specifically idertified on Table &

For the measurement of Feedwater flow, each Feedwater venturi 1is

calibrated t

y the vendor in a hydraulics laboratory under controlled

d4e | 144

AR conditions to an accuracy of | | i 2 The ¢alibratior

dat which substantiates this accuracy is provided to the plant by the

vendor An additiona) uncertainty fact of | Ra LA

included for installat, effect: resu ing 1n & conservative overall

flow coefficient

(K) uncertainty of ! ] T Since R'S loog
riow i1s proportional to Steam Generator thermal output which is

proportional to Feedwater flow, the flow coefficient uncertainty is

expressed as | ve It should be noted that no aillowance
is mad? for venturi fouling The venturis should be inspected, and

cleaned if necessary, prior to performance of the precision measurement
If fouling is present but not removed, it's effects must be treated as a

flow bias

Ihe uncertainty applied to the Feedwater venturi thermal expansi

correction (F,.) 1s based on the uncertainties of the measured Feedwater

temperature and the

coefficient of thermal expansion for the ventur
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quality Table 3 notes the uncertainty in Steam pressure and Table 4
provides the sensitivity For Steam quality, the Steam Tables were
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; value 1s n on Table 4
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System heat losses
Component conductior

convection losses
Pump heat adder

Net Heat input to RCS

The uncertainty on system heat losses, which 1s essen

.
charging and letdown flows, has been estimated to be
calculated value Since direct measurements are no

uncertainty on componen: conduction and convectior

to be | 1*4:C of the calculated value Reacte

hydraulics are known to a relatively hig

v

h ¢ -,'!.',‘):h n

€

system hydraulics tests performed at Prairie lsland
mcasurements from several plants, therefore, the

heat addition 1s estimated to be | 1*@+C ot the best estimate

Congsidering these parameters as one quantity, which is designated

pump heat uncertainty, the combined uncertainties

14+a,(
'

are less than

]9 of core power

The primary side uncertainties are in three principal areas, Hot

&)

enthalpy, Cold Leg enthalpy and Cold Leg specific volume. These are
specifically noted on Table 5 Three primary side parameters are

measured, Ty, T( and Pressurizer pressure Hot Leg enthalpy is
influenced by Ty, Pressurizer pressure and Hot Leg temperature st

The uncertainties for the instrumentation are noted on Table 3. t

sensitivities are provided on Table 4. The Hot Leg streaming is

L

randem and systematic components for plants witt immers)

located in RTD bypass manifolds fed by scoops in the legs, the str

uncertainty is | i ¢ 0 random and systematic component:s







rLOW CALORIMETRIC INSTRUMENTATION UNCERTAINTIE

(% SPAN) FW TEMP FW PRES FW d/p STM PRESS T, PRZ PR
(
f'\‘\1‘
¢ T
SMTE w
: SPE «
4\‘t
SD -
R/E =
RDOT =
T
i £
‘ ¥ 1 00f i Lean ] ' v e
INSTRUMEN i né
L @ | !
| d Ao [ psia } f psia
1 T SDA « LAR &N 20)(
INST SPAN = 568 1500 120 20 1 0( 10C 8
INST UNC ‘
(RANDOM) =
4 INST UNC(
(BIAS) =
{ Al b § 10EA . :
NOMINA| « 435 1064 964 620.¢ 557 .4 225(
ra,
- : 1

e Number of Hot Leg and Cold Leg RTDs used for

measurement in each lool

and the number of Pressurizer Pressure transmitters used overal
e one per loog Measuring and averaging more than one RTD per
loop will provide greater accuracy on hot and cold leg temperature

measurements
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TABLE §
CALORIMETRIC RCS FLOW MEASUREMENT UNCERTAINTIES

COMPONENT INSTRUMENT ERROR FLOW UNCERTAINTY
. FEEDWATER FLOW 1a,c

— —

VENTUR!
THERMAL EXPANSION COEFFICIENT
TEMPERATURE
MATERIAL
DENSITY
TEMPERATURE
PRESSURE
DELTA P
FEEDWATER ENTHALPY
TEMPERATURE
PRESSURE
STEAM ENTHALPY
PRESSURE
MOISTURE
NET PUMP HEAT ADDITION
HOT LEG ENTHALPY
TEMPERATURE
STREAMING, RANDOM
STREAMING, SYSTEMATIC
PRESSURE
COLD LEG ENTHALPY
TEMPERATURE
PRESSURE
COLD LEG SPECIFIC VOLUME
TEMPERATURE
PRESSURE
RTD CROSS-CAL SYSTEMATIC ALLOWANCE

*, ®* &, ++ INDICATE SETS OF DEPENDENT PARAMETERS
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TABLE 6

COLD LEG ELBOW TAP FLOW UNCERTAINTY

INSTRUMENT UNCERTAINTIES

% d/p SPAN % FLOW

g

PMA
PEA
SCA
SPE
STE
SD =
RCA =
RMTE =
RTE «
RD =
ID =
A/D «
RDOT=
BIAS=

FLOW CALORIM, BIAS
FLOW CALORIMETRIC

INSTRUMENT SPAN B

SINGLE LOOP ELBOW TAP FLOW UNC

LOOP ELBOW TAP FLOW UNC

N LOOP RCS FLOW UNCERTAINTY
(WITHOUT BIAS VALUES)

N LOOP RCS FLOW UNCERTAINTY
(WITH BIAS VALUES)

—

+a,cC

- 2.06
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p . o - :
tion), equations 6 and 7 The measurements and calculations are

presented schematically on Figure i Table 7 provides the instrument

Jncertainties for those measurements performed Since it {s necessary

10 make this determination daily, 1t has been assumed that the plant

process computer will be used for the measuremen\ s The sensitivitie
calculated are the same as those noted for the secondary side on Tab)e
4 As noted on Table 8, Westinghouse has determined the dependent set
4 ] 1 3 . . ¢ [ 1 "
@ in the calc Jlation and the direction of interactior his 18 the sam
as that performed for the flow calorimetric, but applicable only t
DOWeY The same was performed for the bias values noted It shou D
noted that West S€ Qo¢ not include any a " e 1 reedwater
venturi fouling The effect of f¢ ing to ri t in an indicatq
power higher than actual, whict nservativi
l Using the power uncertainty value noted nn Table & the '
uncertainty (with bias values) equatior as follow
2 T
»
3ased on the number of loops ar the instrument uncertainties for the
four parameters, the power measurement uncertainty ftor the secondary
L) side power calorimetric is
¥ of loops power uncertzinty (% RT¥
*a .\
.
F
3 v, CONG L HIC TN
Lve iy L.,z,...g. :,L;.L;_)f\',:
;
> The preceding sections provide the methodoiogy to account for

instrument uncertainties for pressure, temperature, power and f)ow




The plant-specific instrumentation has been reviewed for Shearon Harris
and the uncertainty calculations are completed. These uncertainty
values or more conservative values are used in the 1TDP analysis.
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TABLE 7
. POGWER CALORIMETRIC INSTRUMENTATION UNCERTAINTIES

. (% SPAN)  FW TEMP FW PRES FW d/p STM PRESS

SCA = +a.c
SMTE=
SPE =
STE «
SO =
BlASe
RCA =
RMTE«
RTE =
RD =
1D =
AD =
CSA =

OF psia % d/p psia

INST SPAN « 430. 1200. 122. 1300.

INST UNC

(RANDOM) = +2,¢
INST UNC

(BIAS) =

NOMINAL = 435, 1064 . 964,

* Since Feedwater Pressure is calculated, this 1s an assumed,
conservative value,
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TABLE 8
SECONDARY SIDE POWER CALORIMETRIC MEASUREMENT UNCERTAINTIES

COMPONENT INSTRUMENT ERROR POWER UNCERTAINTY
+,C

FEEDWATER FLOW -
VENTUR] F
THERMAL EXPANSION COEFFICIENT
TEMPERATURE
MATERIAL
DENSITY
TEMPERATURE
PRESSURE
DELTA P
FLLOWATER ENTHALPY
TEMPERATURE
PRESSURE
STEAM ENTHALPY
PRESSURE
MO13TURE
NET PUMP HEAT ADDITION

BIAS VALUES
FEEDWATER DELTA P

FEEDWATER PRESSURE DENSITY
ENTHALPY
STEAM PRESSURE ENTHALPY

POWER BIAS TOTAL VALUE
*, ** INDICATE SETS OF DEPENDENT PARAMETERS
SINGLE LOOP UNCERTAINTY (WITHOUY BIAS VALUES)

N LOOP UNCERTAINTY (WITHOUT BIAS VALUES)
N LOOP UNCERTAINTY (WITH BIAS VALUES) [
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FIGURE 1
RCS FLOW CALORIMETRIC SCHEMATIC
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FIGURE 2
POWER CALORIMETRIC SCHEMATIC
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