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AlWillAcr

'the work in this report was conducted in support of the issues studied by the U.S.
Nuclear Regulatory Comrnission (NRC)///u Workers Group during the period 1987-1989.f
'Ihc treior issues studied were the /-R curve extrapolation techniques for using small.
spect . . test results to predict ductile instability in larger structures where the extent of |
crack exansion from the small specimen test was not sufficient. Thl !- luded the choice of 1

parameter in characterizing the /-R curve, deformation /, or modined /, /u. "Ihese issues are
studied both by comparing small and large-specin.cn / R curves and by using /.R curves from
smaller specimens to predict the behavior of larger specimens and pressure vessel models. .

An additionalissue was raised during the course of this work by the testing of a low.
'

upper-shelf A 302 steel. 'Ihc results from these tests were not typica! of ductile fracture in
many stects and suggested that small-specimen J.R curves may not predict the behavior of
large sin.ctures in some cases. The causes of this behavior were studied as wc!! as the -

consequences of using the J.R curve results from small specimens of this kind of material.
Finally, a discussion and recommendations are given relating to the use of

extrapolated / R curves.

,
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1. INTRODUCTION

The prediction of ductile fracture behavior in large structures requires a methodology
that incorporates a fracture criterion along with the material deformation properties ne
frtcture criterion can be incorporated in a number of ways. For example, a single value of
toughness such as /c the fracture toughness of materials near the onset of stable tearing, can
be used. A second way to use toughness in a fracture methodology is in the form of a cun'e
such as the 1-R curve, which plots / vs ductile crack extension. The former criterion often
tends to be too restrictive; hence a fracture methodology based on the1-R curve may be more
desirable.

The fracture methodology based on the / R curve often uses crack extension from

small specimens to predict the stability behavior of larger structures. He small specimens
may not produce enough crack extension to develop a suflicient 1R curve for the large
structure; hence, extrapola; ion of the small. specimen J.R cuive may be necessary. Attonpts
to establish rules for allowing 1.R curve extrapolation led to some discussion between groups
involved in ductile fracture testing and applications. These groups included the Elastic plastic
Fracture Subcommittee of the American Society of Testing and Materials (ASTM E24.08)
and the American Society of Mechanical Engineers (ASME) Section XI Task Group on
Reactor Vessel Integrity Requirements. Several issues relating to the use ofJ.R curves were
raised, including the proper parameter to use in characterizing the J.R curve, / or ly; the
reasons for the limits in the ASHf test methods, which severely restrict the amount of ductile
crack cxtension allowed in al-R-curve test; and the methods for extrapolating the / R curve
when necessary.

i In order to address these issues, a Working Group (WG) was established by
! M. E. Mayfield of the U.S. Nuclear Regulatory Commission (NRC) with the goal of solving
'

many issues relating to the use of small-specimen / R curves for ductile fracture prediction
in larger structures such as reactor pressure vessels. The group was led by E. M. Ilackett of
the David Taylor Research Center (DTRC) in Annapolis, Maryland. This group, known as
the /d/u Working Group, first met in August 1987 and subscquently met regularly until
September 1989. At least eight group meetings were held during this time. He University
of Tennessee (UT) participated in this group through the support of the NRC-sponsored
IIcavy-Section Steel Technology (IISST) Program at Oak Ridge National Laboratory
(ORNL).

The work conducted at UT was focused on the issues raised by the /gl WG, namely -

y

the ones listed above. His was done by both cramining the basic character of the /-R curves
themselves and by constructing structural models through which these issues could be further

examined. In addition, new issues were raised during the course of the WG meetings, and
additional work was done to ex mine these new issues. This included work donc under the
support of the above projects ::nd unsupported work done to solve problems raised by the
WG. This report is a final sumrnary of all of the work done at UT in support of the issues
raised by the /g/u WO.

|

|
|
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2. BACKGROUND

The establishment of requirements for reactor vessel integrity requires a methodology
for ductile fracture. Many ductile fracture methods are based on the J R curve fractur:
toughness. The laboratory test method to develop the J R curve is ASTM Standard
E 1152-87 (Ref.1), which is based on an clastic unloading compliance method of crack
extension measurement. It has strict requirements for establishing a valid experimental J-R
cune, among them being a limit on the total crack extension allowed during the test.
neoretically, tests on specimens that do not meet validity requirements can be repeated with
larger specimens; the size of the specimen would be increased until validity is satisfied.
Practically, however, the tests to establish ree. tor vessel integrity are often conducted on
irradiated specimens for which the size is predetermined. Tests that fail validity carnot be
repeated.

One major issue in developing adequate J-R curves for vessel integrity is the total
crack extension in the J R curve, especially when the fracture methodology is based on ductile
instability prediction. For a large structure such as a reactor vessel, the ductile instability will .

often occur at a point on the J-R curve which has significant crack extension, something much
greater than the ciack extension that can be generated on a valid ASTM J-R curve test for
the small-size irradiated specimens. Hence, for reactor pressure vessels, udequate material
fracture toughness data often cannot be generated by the standard test method to use in a
methodology based on a ductile instability prediction.

There are several approaches to solving this problem. Orae is to use a different
methodology; the fracture point can be based on a measure of toughness before the ductile
instability point. The point of ductile fracture initiation,Ie, has been used in the past. Asf
an alternative, a fixed point on the J.R curve which presumably occurs before instability can
also be used. Rese are sometimes unsatisfactory because they do not allow a quantitative
margin of safety to be established. A fracture prediction based on an arbitrary point may
range from unconservative to overly conservative.

To use a fracture criterion based on instability, something must be done about the
restrictive validity requirements. The present requirements of ASTM E 1152 were largely
based on numerical results and did not have experimental verification. A series of tests was
conducted to determine the consequences of developing 1R curves that went beyond the
validity limit on crack extension.2 These tests were conducted on various sizes of specimens
to try to determine at what value of crack extension the smaller-specimen tests failed to
predict the behavior of larger specimens. These results showed that the E 1152 validity limits
did not represent the point where test results gave inconsistent 1 R curves. J.R curves could
be developed well beyond these limits with no apparent problem, The tests did raise a
question about the proper parameter to use in developing the J-R curve beyond the E 1152 -
limits. This method uses a measure of J called deformation 1,1. It is ik / related to the /3

3integral ot Rice and is the characteristic strength of the crack-tip singular stress and strain
5fields for nonlinear analysis.' Studies by Ernst had suggested an alternate parameter, the

modified 1, Jy, as a more appropriate parameter for characterizing 1 R curves at crack
extensions that exceed those allowed by the test standards.

!

,
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The results of Ref. 2 showed that thelo rather than theJu ppeared to correlate the !a

J.R curves of the various sizes of specimens that were tested to large crack extensions. These |
results aho suggested that the crack extension from small laboratory specimens, the type that
would be tested for a reactor vessel integrity evaluation, could be taken beyond the present
limits of ASTM E 1152. However, the longest crack extensions would net be sufficient to
develop a full ductile fracture methodology to predict instability in brge structures.
Therefore, in addition to allowing lor >ger crack extension from the J.R curve, an extrapolation
would be required to develop the full extent of the J-R curve needed.

In order to develop a reactor vessel integrity requirement based on a ductile
instability analysis method, a number of questions had to be answemi.

Can the ASTM E 1152 validity requirement on total crack extension be relaxed ta allow*

longer crack extension to be developed in the J.R curve test for all materials of interest?
If so, what is the new limit on crack extension that should be allowed?*

What parameter should be used to characterize the longer J-R curves--Jo c. Ju?*

When a1-R curve extrapolation is needed, what should the basis for extrapolation be?*

i

| The NRC Working Group on Idl., Issues organized by M. E. Mayfield and led by
| E. M. Hackett was assembled to address these issues. The initial thrust was to use existing

data to reevaluate all of these issues. Additionally, a test program was platined cn a low.
upper-shelf (LUS) A 302 steel which would be conducted on a range of specimen sizes such
that the values of crack extension in the test would exceed the E 1152 limits. His set of data
was to supply the final calibration to the answers suggested by theIdlu WG.

He University of Tennessee participated in the activities of this group with the
support of Martin Marietta Energy Systems through the HSST Program at ORNL. At the
time the group was organized, they had recently developed a new method for analyzing J R,

| curves from test-specimen load vs displacement records. This method, based on the
! normalizing properties of plastic flow, could provide more accurate J-R curves than the

conventional clastic, unloading-compliance rnethod, particularly at larger crack extension.
This would be useful in evaluating the proper parameter for characterizing the J R curve at
longer crack extensions and could provide a better basis for J.R curve extrapolation. In
addition, they were working on a ductile fracture methodology b.:. sed on the work of Ernst
and Landes' which could provide a format based on structural evaluations for assessing use
of theIdlu parameters as well as the methods for extrapolating the J.R curve,:

ne areas addressed at UT in support of the Jg/u WG included

1. Study of the Jo vs Tu issue. His work took data from the literature as well as the new
data being generated by the WG and reevaluated all1-R curve results using the method
of normalization. The J.R curves at long crack extension from small specimens were
compared with those from larger specimens using both J and Ju. /-R curves generatedo
with both parameters were used in the duccile fracture methodology to predict behasior
of other specimens and structures.

l

2. Study of 1-R curve extrapolation techniques. 1-R curve extrapolation was studied,
starting with the load vs displacement curve itself. Methods for extrapolating this curve

.-- . _ - - . - . --
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were used ta infer an extrapolation of the / R curve, his approach was unsuccessful;
so further extrapolation studies were concentrated on the / R curve itself. Extrapolation
based on simple fits were done. The range of crack extension over which extrapolation
could be made was also studied. De extrapolation techniques were further evaluated
by using structural models in a ductile fracture methodology to assess their predictive
qualities.

3. Use of V8A weldment 1 R curves for p.edicting structural behavior. Data generated by
Babcock and Wilcox (B&W) on \ 8A vessel weldment material was used to study the
predictive capabilities of the ductile fracture methodology applied to reactor vessels. A
method based on the ASTM All Committee analysis was used, along with a method for
predicting the V8A test vessel behavior, ne All Committee approach was used in a
sensitivity study to look at the effect of various input variables on the prediction of
fracture behavior.

4. Evaluation of A 302 steel LUS data, ne A 302 steel LUS data that were generated
as a final calibration of the work in support of the /dlu controversy and /-R cune
extrapolation techniques were not as successful as hoped. In addition, these test results
raised some new issues regarding the extrapolation of /-R curves from small-specimen
test data for prediction of behavior in larger structures. The method of normalization
was used to reexamine the /-R curve results for the A 302 steel. Various methods to
explain the results were attempted on the b sis of ratios of clastic to plastic deformation,
test instability, and sampling position.

5. Evaluation of results relative to NRC LUS guidelines. The results from this work were |
used to evaluate an NRC LUS position for vessel integrity. The work from the above i

tasks was presented in the following sections. His represents a final report of the work
conducted at UT in support of the /dlu WO concerns. This report combines results of
work conducted under two contracts by UT for the HSST Program and the work
conducted under no outside support. This unsupported work accounts for more than
half of the overall effort and is an integral part of the overall findings. It is included
here so that this report will have technical completeness.
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3. DilCI'ILE FRACIURE MIUllODOLOGY

A fracture methodology is an integral part of a structural integrity evaluation. For
materials like those used in nuclear reactor vessels, the range of service temperatures is such

that any potentiel fracture would be by a ductile mode at a high value of fracture toughness.
For this, a ductile fracture methodology is needed. A ductile fracture methodology based on
the / R curve and ductile mstability was originally proposed by Paris et al.' This used the
normalized R-curve slope called material tearing modulus, T, as the resistance to fractuie.
The material T taken from the R curve was compared with the applied T, the crack driving
force, to determine the condition for stability (Fig. 3.1). This approach is often used in a
format where / is plotted as a function of T in a J.T diagram.2 An intersection between the
material and applied J T curves marks instability (see Fig. 3.2).

The J-T approach, although commonly used, does not present the stability point in
terms of parameters familiar to engineers. An approach originally proposed by Ernst and
Landes was based on the / R curve but presented the stability analysis in terms of more8

familiar parameters such as load and displacement or strain. This approach was further
developed at UT in cooperation with the U.S. Navy's David Taylor Research Center to
provide an easy-to+se ductile fracture methodology." Although this approach was not
developed under the pregram,it is included briefly in this report because it is used frequently
as a tool for examining the various isuo related to choice of parameters and 1 R curve
extrapolation techniques.

He ductile fracture methodology combines two, separate pieces of inform:. tion to
determine the total response (Fig. 3.3). De first is information on the deformation character
of the material; this is often called the ca:ibration functions. It relates the various parameters
used in the analysis, usua'ly load, P, displacement, v, crack length, a, and fracture parameter,
J. He calibration functions provide two equations to relatu the four parameters. For a
complete description of the behavior, a third equation is needed. His comes from the
tracture behavior. For ductile fracture, the / R curve is a usual way to supply this
relationship. He meth(xiology is shown graphically in Fig. 3A. The first calibration equation
gives the relationships between load and displacement for a fixed crack length. This
represents a family of P-v curves, each for a fixed crack length. We second calibration
equation gives the relationships between / and load at a fixed crack length. He criterion for
changing crack length comes from the JR curve fracture toughness and provides the third
equation to describe the relationship between the four parameters. A fourth equation or
condition, namely, an instability criterion, describes the behavior of the structure being
analyzed.

| The deformation properties used in the calibration functions can be determined
cxpenmentally or numerically. Experimentally, a load vs displacement can be developed for|

! a fixed crack length by testing a blunt-notched specimen for the geometry of interest.
Numerically, the load vs displacement behavior can be developed using finite-element analysis
with the flow properties of the material as determined from a tensile test. For certain
standard geometries, these numerical solutions exist in a handbook.5 Methods for best using
these handbook solutions in a ductile fracture methodology have recently been outlined.'

!
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Fig. 3.3. Schematic of ductile fracture methodology based on combining calibration
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The fracture toughness in the /.R curve format forms the second part of the
methodology. Fracture toughness may be a function of structural size, geometry, and
thickness.' Care must be taken in determining the correct toughness for the material and
structure being analyzed. Of particular concern is having enough of an R curve to complete
the analysis of structural behavior. When a small specimen is used to develop the material
toughness property, it often does not contain sufficient crack extension to completely analyze
a larger structure.

He methodology as originally proposed by Ernst and Lande ' used the /-R cutve as
characterized by the modified /,/u (Ref. 8), rather than the standard deformation). His was
thought to take care of some of the size and geometry elTects observed, especially at the
longer crack extensions.' The work in these contracts shom that the deformation 1, /o, will
give a more conservative analysis. Also, it is cas:er to use in the methodology because
deformation / is given in the calibration ' unctions.

The steps involvul in using the nicthodology are shown in Fig. 3.5. An initial defect
length, a, is chosen. He independent variable is the plastic displacement, v . As this isg
incremented, all other parameters can Se determined by combining the calibration curves with
the1 R curve. When it is not appropriate to use displacement for a structure, a strain value
or / can be used as the independent variable An example of the predictive capabilities is
given in Figs. 3.6 and 3.7. It is worth noting that the choice of v as the independent variableg
is arbitrary. Another parameter such as crack length could be c 'mu cs the independent5

variable All other variables are determined as a func* ion of crack length

i
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Fig.3.5 Flow' diagram of steps involved in ductile fracture methodology calculations.
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4. NORMA 1 RATION ANALYSIS AND /-R CURVE TWLST

A new method for analyzing the J.R curve from an experimental load displacement
record labeled normalization analysis was developed at UT.84 His method was based on the
key curve approach.' It uses the ductile fracture methodology of Fig. 3.3 in reverse, ne

,

methodology takes the calibration functions and the / R curve to determine the structural.
load vs displacement relationships. The normalization method starts with the load vs
displacement record and separates that into a calibration curve and a / R cune. With this
method thcl R curve can be developed without the usua: e tack length monitoring equipment.
In using tha methodology of Fig. 3.3, two of the eun'es must be known to predict the third.
To use the normalizatie*1 method, the calibration curve must be developed from calibration
points in the test. The method assumes a functional form with unknown constants.3 R ese -;

constants etm be determined at points where load, displacement, and crack length are all

: known, namely, at the beginning and end of the test, where crack lengths are measurcJ on
.

'

the fracture surface.
*

Using a calibration point at the end of the test based on a physically measured crack
length forces the /-R curve to go through that point. That means that the final 1 R curve

'

point is at the corte';t crack extension as determined physically. This is an important factor
for the extrapolation of the J.R cur,c. Autorntic crack length recnitoring systems can giu
some error in crack-length : measurement. This error in crack length influences the .

5/ calculation. He total effect is a twisting ci thel R curve (see Fig. 4.1) when a given point4

has an error in crack-extension meamrement. Errors in several successive points can lead
to an incorrect trend. When the J.R curve is to be used for extrapolation, this incorrect trend
ut the end of the curve com give a large error la the extrapolated R curve (see Fig. 4.2).
E.tamples of R cw.s with incorrect end trends along with the normalization correction are

7
'

shown in the follown.g two 9gures. Figure 4.3 shows the result of incorrect comphance
measurement for an A 508 steel J.R curve, along with the corrected 1R cutve from
normalitation.- - Here, nn overestimate of the compliance crack extension resulted in a
negative J.R eurve slope. Extrapolation of this1.R curve would give a continuing negative
slope, which would be grossly overconscivative. Figure 4.4 shows a 1-R curve for a high-
strength low-alloy (HSLA) steel wi' ' the crack-extensk n estimee was too short. Here, the,

final trend is too steep and would ; to an unconservative extrapolation. Considering these
examples, it is advisable to use the urmalization analysis to reanalyze J R curves that will be
used for extrapointion.

RIiFERENCES1

.

| 1. J. D. Landes, and R. Herrera. *A New look at J-R Curve Analysis" Int J. Fracture 36,
| K9-R14 (1988).*

"Available in public technical librarica.

- --':-a-e _ -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _-i w - -4 + -4- t --e=zw



_ _ - - _ _ _ _ . . _ _ _ _ _ .

(

\
,

13

:

J'
.

A da <AO p
A

' sha>dap
/,

.-

/
/

,/
, _ _ _

m . _ _ _

Fig . 4.1 Schematic showing effe/:t on J R curve ofincorrect crack length measureraent,
,

,

j; Aa too short *

.t
|

.

/ A
#/ -

"'

, ,

,; '.. . ~ .,r: ,. ,

. ,

Aa too long
.

_ _ . m

b o.
Fig, 4.2 Schematic showing cumulative effect of incorrect crack length measurements.

_ - _ _ _ _ - _ _ - - _ _ _ - - - - _ - - _ - _ _ _ _ _ - _ - - - _ - - - - _- _ - - - _ _ - _ - - - _ . - . - - -.



-- y-- e... . . . . . . . .

14 i s

es

|
i

20-

O #
, L

> b 2n
5 IS- D
.s

? O
) ;

4 r; Ti m w # 7 I hpd10 ,

o e.omeuran

W:i,

9.S d [Yh'

{||fS

eo
00 0.1 01 43

crack Estenser., in,

Fig. 4.3 J-R curve for an A 508 steel comparing compliance and nonn .tintion
measurement of Aa.

1,... -

10 -

o

w* n CO
.~ e- # o t

o* o*

s
! , =* o

,o
?
S | ob* O* O*i ,a "o O

9: c . _

," o C riphancoC W4-

,'O o Normahrstion

.:
.?''

,

"o,

ek . . ,i

00 01 02 03 04 US

o!, Crad Extenaion, in

U
Fig. 4.4. J R curve for an ilSLA st.:e1 camparing compliance and normatzatior

''
measurement of Aa.

b

E.
_.



6 9udW%- .. - -
-

t

15

?, h. He:: rwa <wd T, L Landes, * Direct / R Otuve Analysis: A Guide to the Methodology,"
>pak G in Fvenre Mahmics: Twenty-FirstSymposium, ASTM STP 1024,J.P.Gudas,
J. A: Joyce, 'M S M. m -kett, FAs., American Society for Testing and Materints,

} PMledciphis, SW
*

L Z. 2Ma et sL, Mormslinion: An &perimental Method for Developing / R Curm,"
p antd at the Second ?> r.posium on User &perience with Elastic-Plastic Fracture
Test Mettui, Lake BucQ Ota, FL, November 1989.

4. 1 A. J:rge, R 4. 2/4 4t, and P. C. Paris," Direct Evaluation of1-Resistance Curves fiom
3

Loud Dkph s yact Records,' yp 222-236 in Fracture Mechanics: Tw.stfm Ctatference,

-3: AS'N 5.TP ",'A. famrctican Sxiety for Testir g and Materials,1980.g:g
$. J. D. Lanca, and R. lierrrn University of Tennessee, ' Correcting / R Curve Mismatch

& Twist., wi.! NormeUzation Analysis," pp. 403-411 in Advances in Fracture Reseanh,
(' -Es- ?nswdwp .. . ICF 7, Ih ;amon, March 1989.

h.
) .st

,

*

|3

og

.

h

i

_ __ _______- ____- - - _ - - - -



. _ _ _ _ _ _ _ - - . _ _ _ . _ _ _ _ _ . _ _ _ - _ _ _ . .

;

16
,

R

5. MODIllHDJ
'

|

The J-R cutve approach to fracture toughness characterization was origmally based

|
on deformation J.' %csc results often showed some esidence of size and geometry effects.2 ;

A ductile fracture methodology, which uses ti.e J R cmvc ftom a laboratory specimen to
'

predkt the behavior of a structure of much larger size end different geometry, must have a
specimen / R curve that is appropriate for the structure, A modified J parameter, Ju, was
proposed by Ernst as a parameter that couhl help climinate size and geametty effects.' Size
effects were eliminated by Ju in the J.R curve for an aluminum alloy where the tests wear'

conducad on three sizes of compact specimens. Figure 5.1 shows the1 R cave for the three
specimen sizes plotted with deformation 1(simply labeled 1); these show a size dependence
at longer crack extension. Figure 12 shows the same result plotted with modified 1, Ju. The ,

size dependence is eliminated.
A series of tests sponscie6 by the Electric Power Research Insthute (EPRI) was

'

conducted at Westinghouse R&D Center in which an A 508 steel was tested using various
sizes of compact specimens (see Fig. 53)/ The results, when plotted with J, showed a size

| dependence somewhat like that of the aluminum data. At longer crack extemion, the R curve
in the smaller specimen goes below that of the larger one. Again, Ju appeared to cuminate
this size dependence (Fig. 53). Upon reexaminetion of the results,it was discovered that the :
1-R curves, c.Lluated by the standard clastic unloading compliance method, had an error 'i m

the final crack length which caused a mismatch twist.5 This twist gave a trend in the / R
curve behavior which is an artifact of the test technique and analpis method rather than a
true physical effect. The method of normalization was applied to the data, and the J.R curves

,

were reevaluated with J (Fig. 5.4) and Ju (Fig. 5.5). The reanalpis showed that thee was,

I- sorne remaining sire dependence for deformation J, although not so severe. The same data
plotted with Ju howed a size dependence in na opposite way, with the smniler specimenss

|
having a higher trend in the R curve than the larger ones.

To study this further, the normalization unalpis was applied to all available sets of
1-R curve data generated on specimens of different sir.cs. In general, there was some scatter;

,

sometimes 1 correlated the data better, and sometimes Ju was better An example for an
I HSLA steel shows a good correlation with 1, as given in Fig.16 The same set of data

plotted with Ju howed some size dependence (Fig. 5.7).s

| Results from tests conducted by IIackett and Joyce examined 1 and Ju correlations
6

| for R curve data conducted to verylong crack extensions (crack extension of about 70% of !

the initial uncracked ligament) (Fig. 5.8). He correlation with I was acceptable over thia |L

| range, but la lways gave a levere size dependence at longer crack extension. ia

L All of these results cast some doubt upon the original conclusions that Juwat better 1

than1 as a parametu that eliminated size effects. Since the goals of this program were to !

extend Amt hmits on crack extemion and to use these results for1-R cmvc extrapolation, I
'

it was important to get a parameter that would elimina,e the size effect. The J-R curve
_

testing for vessel integrity would be fowsed on small specimens; therefore, it is equdy
important that the small specimens do not give unconservative results, that is, a higher J.R

|
curve or higher toughness than actually found for a pressure vessel geometry.

t

!
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The uncertainty about whether to use / or /u was one of the major issues addiessed

by the NBC WG. That and the development of mthods for extrapolating the 1R curve
became the first set of tasks to be eddressed. In the following sections, the issue of1 R curve
extrapolation is treated as the primary one. Ilowever, this issue is examined with both / and '

/u as the characterizing parameters of the R curve so that the issue of how to extrapolate the
J R curve can be evaluated relative to the correct parameter to use.
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6. J.R CURVE EX1RAPOIATION

ne methods for J R curve extrr polation are presented in this section. In order to
present a complete picture ohne work, the unsuccessful ideas are presented along with the
successful ones, ne section focuses on the basic ideas of extrapolation. Rese include
(1) extrapolation assumptions on the load vs displacement (P-v) curve, (2) extrapolation on
the J-R curve, (3) comparisons of1 R curve extrapolation, and (4) a set of guidelines for1 R
curve extrapolation. After the guidelines were established for this program, they were used
along with the ductile fracture methodology to make predictions of structural behavior, nese
predictions were used to give confidence to the extrapolation guidelines as well as to further
examine the J-Ju issue. He work on structural predictions is presented in later sections.

6.1 P-v EXIRAPOLATION

Re first examination ofJ.R curve extrapolation was centered on the behavior of the
load vs displacement (P v) records of the test specimens. Typically, the P-v curve frorn a1 R
curve test has a characteristic shape (Fig. 6.1). The curve has an initial linear portion before
significant yielding begins and becomes nonlinear as the yielding begins to spread. Ductile
stable crack extension usually begins oa the nonlinear region somewhere before maximum
load. However, as the crac'k extension becomes significant, the load-bearing capacity of the
specimen is greetly reduced, maximum load is reached, und the load begins to drop. With
increased stable crack extension, the load continues to drop as displacement increases, ghing
a negative and often nearly straight-line slope to the P v cmve. If the test has been run to
very large amounts of crack extension relative to the initial uncracked ligament, the P-v curve
begins to show a decrease in negative P v slope. Any test cond. acted with enough crack
extension to develop an R curve has usually reached the unloading region of the curve.

Since this curve is so nearly reproducible from one test to another, it was thought
that the J-R curve could be extrapolated by extrapola'.ing the P v curve- His is showri
schematically in Fig. 6.2. The first idea was to do a linear extrapolation of the end of the P-v
curve (Fig. 6.3). He unloadiag portion of the P-v curve appears to be linear over a
significant region; so it was believed that a linear extrapolation of P-v would give a reasonable
extrapolation on the J.R curve. The result was not good. The method of P-v extrapolation
was important; it was, in fact, not linear. When the curve was fitted from just below
maximum load until the end, the resultant 1-R curve extrapolation was different from the one
obtained from just fitting the last 10% An extrapolation of a short amount was not bad;
however, when fmther straight-line extrapolation on P-v was made (e.g., enough to
extrapolate J.R another 50%), the trends in the J R curve were not characteristic. A typical
1-R curve as shown in Fig. 6.4 could have a number of results from P-v extrapolation. The

| points may alternately go up and down, ghing an oscillating character (Fig. 6.5), or they could
take a sharp turn up or down. He sharp turn up is shown in Fig. 6.6 as the high-rise J.R;

I curve.

Since the linear extrapolation of P-v was not successful, a second idea based on load
vs displacement manipulation was tried This was based on an idea in which P-v records for
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dilTerent specimen sizcs are compared. Larger specimens reach a higher value of the
toughness parameter bcSrc yiciding than the smaller specimens do. At ny level of plastic
deformation, the larger speci ens have a higher / value than the smaller 01cs. Since the / R
curve is only slightly size denn ,ent, the larger specimen generates inuch more / R cune for

ylvalent amount of plastic deformation than doca the smaller specimen. De idea i.

pw Stion of / R curve extrapolation from a small specimen assumed that the shape of the
l' cuive for a larger specimen could be inferred %m that of the smaller one. If a small
specimen is tested in a standard manner so that thc final io ,' 4 on the negative P v portion
well beyond the maximum load, a reasonable amount of crack extco<lon would occur. If a
specimen that is much larger were tated to the same point on the P v curve, much greater
crack growth would have occurred. Derefore,if the smaller and larger specimens have the
same P.v shape, a small specimen can be tested, the shape of the P v curve can be transferred
to a larger specimen, and the / R curve can be analyzed from the larger specimen P v curve
in the usual manner. His method (Fig. 6.7) is a way to effectively extrapolate a J.R curve
by assuming a P v curve shape for the larger specimen.

Methods to do this were attempted; these centered around a way to normalize the
P v curve from the test so that the experimental result from the small specimen could be used
to generate the larger specimen P v curve without the test. De cad, P, was generally
normalized by maximum load, P,. He displacement was normailzed by a variety of
paramciers, including a maximum displacement, P.,,, and a specimen dimension such as
unciacked ligament, b. De normalization with maximum load and plastic displacement was
reasonable (Fig. 6.8); however, this was not sulMclent to infer the large specimen P+ record
without a test. De problem came from the fact that a test was required on the larger
specimen to measure the normalizing parameter (maximum load in this case) so that the
normalized P v record could be unnormalized in order to analyze it.

De use of P v extrapolation to extrapolate the / R curve was not successful.
Although it seem:d like a reasonable idea on one hand, in the othrt hand, it appears to
violate the basic prem sc of the ductile fracture methodology-that is, that structural behavior

- under loading has two components of behavior, ne deformation behaviar (calibration
functions) relates load to the clastic and plastic d'si!acement. De fracturo uchavio; relates
the loading to the crack extension. De fracture at.d ddormation behrviors are different and
must be measured separately. Without a proper fracture toughness measurement, attempts
to infer fracture toughness from deformation behavior fail.

6.2 / R CURVH IKTRAPOLATh0N

,

ne second approach to / R cuive extrapolation worked directly w.:h the 1 R curve
itself. He choices that need to be maat v what parameter to use for characterizing the
R curve and whatfunctional form to use for e extrapolation. Two parameters were used
to look at extrapolation; deformation / (labeled /) anu ...-inco / (labeled Ju).

He extrapolation technique was formulated b getting data from materials wherei

more than one size specimen was tested. He R curve from the smaller specimens would be
extrapolated; the result would be judged by comparing this extrapolated / R curve with one
from a larger specimen of the same material. (Later structural models were used to further

.- - - . . ~ . - - . . . - - - - - - _ - - - - --- .
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evaluate the extrapolation techniques.) Initially, four steel alloys were found which would be i

suitable to use in the extrapolation analysis. ney were an A 508 steel,' an llSLA steel, a
i 5Ni steel,2 and an A 53311 steel.' nc A 508 stect had / R curves for compact specimens
i ranging from 1/2T (W = 1.0 in.) to 10T (il' = 20 in.). He / R curve from the smallest
j specimen (1/2T) had about 0.2 in. of crack extension, whereas the curve from the largest
: (10T) had more than 3 in. of crack extension. This would allow an assessment of

extrapolation over more than an order o magnitude, ne extrapolation in the other stects ;r

ranged frorr five times to two times in crack extension.
De initial work was done with the A SOS steel because it gave an opportunity for the

longest crack extension extrapolation. All of the data from the various specimens were
reanalyze <1 using the normalization procedure to get the correct final region of the /.R curve, i

Results wete plotted on log log paper to see if a power law relationship might fit the J.M
curve, ne idea is shown schematically in Fig. 6.9. The I.R curve extrapolation for three
different sizes-1/2T 1T, and 10T- are plotted in a log log format in Fig. 6.10. His was

idone again for Ju in Fig. 6.11, ne typical result is given by the plot in Fig. 6.10. A power
law relationship (straight line on a log. log plot) fits over an intermediate region of the curve.,

Here is an initial region for small crack extension which does not fit the straight line and a
final region for longer M that may not fit. The intermediate region does fit. The same was
true for /u. Not only were the / u M plots on log log axes nearly a stralpht line, thej also
agreed reasonably well between the different sizes. This was true for curves plotted by/ and
/u (Figs. 6.10 and 6.11).

Since the / R cunes were consistent between the sizes, the extrapolation procedure
was simply an-extension of the straight line on the log log plot. That is, a power law
relationship was assumed graphically for extrapolation. De extrapolated results are also

,

shawn for / in Fig. 6.10 and for /u in Fig. 6.11. nc J M cxtrapolation gave estimates from '

the small specimen that are slightly lower than those of the large specimen (conservative), and
the extrapolation of /u M gave results that showed a slightly higher or unconservative trend
at longer extrapolations of crack extension.

To make the same assessment for the other materials, log. log plots were made for
the various sizes of specimens of IISLA steel (see Fig. 6.12 for / and Fig. 6,13 for /u). The
SNi steel and A 533 Il s'.ect were analyzed, but the results are not shown here. The trends
for all of these are consistentt the extrapolated 1 M curves from small specimens ire all exact
or slightly conservative with respect to the larger specimens. The /u-M are slightly to
considerably unconservative. In each case, however, there is a region of linear / M behavior

,

on the log log plots, meaning that the power law assumption is valid over part of the / M
curve. He worst result came from the SNI steel.

Since a power law extrapolation of small specimen / M curves always matched the
/ f l iM rom arger spec r. was conservative, this was chosen as the method for / R curve --

.

extrapolation. nc /uS rapolation tended to be unconservative. In order to developi

guidelines for extrapolation, the log log plots of / M were examined to determine the
consistec.t region of power law behavior. Results from this are given in Table 6.1. His table
shows that power law behavior develops com.!-tently over a middle range of the / M curve.
The initial region does not fit the power m well A final region did not fit well in some '

cr.scs. In others, the test was terminated before the end of the power law region. In all cases '

(except for SNi steel), the region of crack extension to initial uncracked ligament M/bo

,

>
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Table 6.1. Extrapelation of si$c analpis
criteria for conscivative extrapolation

Specimen Initial Final End
Material size An/bo da/bo condition

-

A SOS 1/2T 0.10 0.45 End of data
steel

A 508 1T 0.07 0.31 End of data

A 533 1/2T u.07 0.55 End power law
IT 0.025 0.58 End power law

IISLA IT 0,03 0.41 End of data

HY130 1T 0.08 0.21 End uver law"J

I!Y130 IT (2nd St) 0.11 0.26 End power law

* Power !aw never well established-
.

|
[

l

l
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between 0.1 and 0.3 gave good power law behavior, nerefore, extrapolation of this regmn
was recommended. He guidelines for J.R curve extrapolation from this study are as follows:

1. He /-R curve should be reanalyzed ming the normalization procedure.
2. J.R curves should be plotted with deformation / for a conservative extrapolation.3

3. nc /.R curve can be plotted on a log-log plot to get the best power law fit. l

4. De power law fit should be taken over the region of crack extension to initial
uncracked ligament, aa/b, L; tween 0.1 and 0.3 as a straight.line fit on the log. log plot.

5. His straight line can be extended to longer values of crack exte:4sion to achieve the J.R ,

curve extrapolation, j
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7. FXIRAPOIA11ID R CURVES IN !illtUCTURAL ANALYSIS

The guidelines for / R curve extrapolation were based on the comparison of small.
and large specimen R cutves. Since the ultimate goal is to use the extrapolated / R curve to
predict the behavior of a larger structure, it would be useful to use these extrapolated curves
in the ductile fracture rnethodulogy to analyze nome example structures. This was donc in
two steps. De first used the methodology to predict the behavior of various test specimens.
The advantage of the specimen prediction is that there is a large choice of reasonably good
experirnental results to use for comparing with the actual results. He second step for
modeling structural behavior was to use the pressure vessel type structures as examples. In
this case, there are not the large r; umber of experimental results for comparison, but the
.nformation is more relevant to vesselintegrity assessment.'

In the model!ng of structural behavior, the load was predicted as a function of an
independent variable related to strain or displacement. De load response could be applied
Joad, stress, or, for the case of the vessel, pressure. The independent variable was a
displaccrnent related variable that could be a displacement measured on the structure or an
alternate strain related parameter such as1. In predicting the load response,it is irnportant
to be able to first predict the maximum load accuratcly. Maximum load correspcmds to
ductile instability in a structure that is under load control or sof t. loading conditions. The
second region that should be predicted well is the unloading region after the inaximum load.
His region corresponds to the arca where ductile instability could occur in a structure under
displacement control or stilTloading conditions. The first is more appropriate for a vessel
under inter.ial pressure. De second would be appropriate to a piping system that could be
loaded, for example, by seismic displacements.

The examination of these structural models is done in two sections. %c first is the
specimen test result comparison wheie two materials, an A 508 steel and an !!SLA steel, are
used in the ductile fracture methodology. The main objective is to use th / R curves from
the smallest specimens to predict the behavior of the largest spetimens. ne second is an
analysis of vessel structures. Again, the goalis to predict 1 c behavior of the large structures5

from small test specimens. As part of this analysis, a sensithity study was done by
systematically varying important inputs in the methodology to observe the effo:t on the
predicted loading behavior.

7.1 TESTSPECIMEN PREDICI10N

To try to predict large-specimen behavior, the ductile fracture methodology as
described in Sect. 3 was used along with the/ R curves from small specimens. The calibration
functions were taken from two sources; one was from experiments, and the second was from
the clastic plastic handbook.' For the first case, the load vs displacement from a test record
was used in a format that required the load to be normalized with respect to the current crack

size. An alternative to this is to use a blunt-notch test record from the same material and
structural type which has a constant crack length during the test.

-. __ . - . . _ _ _ . _ _ _ _ _ _ . _ _ _ _ . _
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8'Ihe calibration function from the handbook has the form

g ac,ah (P/P,)* , (7.1)v 3

where a and n are a constant cocflicient and exponent from a Ramberg-Oogood fit of stress
and strain, e, = a /E, where o,is a yield stress, a is a crack length, and h is a tabulateda 3

constant. Generally, load, displacement, and crack length are related by

v = v,, 4 v (7.2)g,

where

v,, = PC(a/R) . (7.3)
.

C(a/W) is an clastic compliance.
i'Itc / is calculated by

1 - ),, + J, , (7.4)

wherc

/,, = I , (7.5)
E'

E' is effective modulus, and K is the clastic stress intensity factor.

'" Pdv (7.6)Jp= p,

where ng is a coefficient, B is thickness, and b is uncracked ligament b = W - a.i

Alternatively, a value of /g an be calculated from a handbook 3 equation.c

When the calibration functions are taken frcm exper! mental results, the same basic
equations are used except for Eq. (7.1). The load ai,d plastic displacement relationship is
given by the form

f \

P = B W ? 'L + M 'A
<

e ,
i

'W' -n (7.7)
s W,

,

W, y-
' '

r N+-dW' \ i

where L, Af, and N are fitting constants and Wis specimen width.
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As can be seen from the above equations, the calibration functions determined from
the handbook' require material property input as well as some decisions on how to handle
interpolations. %e material property inputs ate yield strength (or flow stress), o, an
equivalent yield strain, e , and the hardening exponent, n, and coefficient, a, form a llamberg.o

Osgood power. hardening law. Most tensile tests do not deterrnine e and n for a rnatcrial.
In cases where these are not available, the Bloom approximation from yield strength and
ultimate tensile strength was used.2 %c interpolations required in using the handbook'
involve crack length, hardening exponent, and planc strain vs plane stree The methods for
handling these inteipolations arc outlined elsewhere.8

The J.R cunes used fiom the small speciment did not have enough crack extension
to predict the behavior of the lucar specimens through the entire load range destied; often,
the prediction did not go as far as the inaximum load reached by the larger specimens.
The:cfore, the extrapolation procedures outlined in Sect. 6.2 were used. The small specimen
J.R curve was extrapolated far enough to cover the entire range of P v on the large specimen;
r "netimes this required an extrapolation of more than an order of magnitude on the J.R
e t. * Both J.M i.ad /vM R curves were used in the analysis to compare the results from
each.

Results from two materials were used in this study. One was the A 508 steel with a
20 to 1 diffeience in size,d and the second was an llSLA stect with a 5 to 1 difference in
cize 5 To use the methodology, a program was written whi6 incremented the plastic

For the given v and initial crack length, a , the load, P, was determined.displacement, vg g n

The salue of / was then calculated, and the correspondit.g crack extension M was added to
a,. The calculations were repeated for the initial vg and new crack length a. His procedure
was repeated until values of load, P, and crack length, a, converged to a stationary value. He
plastic disp'acement was then incremented, and load, P, and crack length, a, were determined
again. His was continued until a sufficient range of P and v were calculated. Since the J.R
cune was extrapolated, the proce.ss could have been continued until the crack grew through

the remaining ligament. To make the calculations casier, the Puvs vg/ Wand the extrapolated
1.M curves were fitted. To make certain that the computational procedures were working,
a closed loop analysis was first performed. He load vs displacement, P+, curve was predicted
for an A 5081T.Cr specimen using the data (both calibration functions and1.R curve) that
resaltea from its own test record (Fig. 7.1). This prediction was very good.

The predictions were made for a variety of cases. For example, the : 1T-CT P.e curve
was predicted from the IT-CT /.R curve (both / and Ju) and a handbook' calibration curve
in Fig. 7.2; and the same prediction was made using the 1/;T Cr J.R curve in Fig. 7.3. In
both cases, the/-based R curve gave a conservative prediction, and the /vbased R cerve gave
an unconservative prediction. To study the effect of the various inputs, the same prediction
was made using a calibration function from the handbook' and various experimental
calibration curves (Fig. 7.4). He predictions fit the experimental result very closely, he
same prediction was made with the correct calibration curve and the 10T, IT, and 1/2T/.R
curves (Fig. 7.5). The results are t milar to those in Figs. 7.2 and 7.3. His shows that thei

difference between prediction and experiment is a result of the conservatism in the J.R curve
extrapolation (Fig. 7.6). All of the A 508 cases analyzed are tabulated in Table 7.1; here, the
ratio of predicted maximm lead to experimcatal maximum load is given for the various
inputs of calibration curves and 1.R curves. All results are similar; the maximum Icad is

i
1
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Table 7.1. Surmnary of A 5(E si=:1 results

. -.

input Prediction / test result
__

Cahbration /R
Size curve curve Slic P,,,, Slope

1/2T Test / 10T 0.95 1.26
1/2T Test /u 10T 1.07 0.41

1/2T IIUK n = 7 / 10T 0.94 1.30
1/2T I!DK n = 7 /u 10T 1.04 0.45

1/2T IIDK n = 10 / iOT 0.% 1.23
1/2T IIUK n = 10 ly 1(Tr 1.03 0.53

1T Test / 10T 0.95 1.30
1T Test /u 10T 1.02 0.63

IT llBY.n = 7 / 10T 0.% 1.28
IT libK n = 7 /w 1(rt' 1.01 0.73

1GT Test /u 10T 1.07 0.48
1/2T Test /u 10T 1.07 0.60

1/2T Test /u 4T 0.% 1.02
1/2T Test lu 4T 1.02 0.44

IT Test / 4T 0.% 1.02
IT Test /u .__ 4T 0.98 0 60
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underpredhted by a J.R curve extrapolation and ovespredicted by the /u-R curve |
extrapolatlon. All of the predictions of maximum load, however, are within 10% of the

'

experirnentally rneasured niaximum load. This would correspond to a prediction of instability
under a sofeloading fituation such as a presurized vessel.1he prediction of the P+ slope |
after maximum load is also compared with the experimental result. This has mwe error. !

Again, / gives conservative predictions, and /u ghes unconservative predictiom.
The study for the !!SI.A steel used IT Cr /.R curves (both / and /u) to predict a

$T CT P v curve. When the handNmk' calibration functions were used, predictions from
both! and /u were unconservative, particularly for the prediction of maximum load (Fig. 7.7).
Whc.n the experimental calibration curve is based on a straight line rather than a power law, j

tb / R curve extrapola:lon was nearly exact (Fig. 7.8). For this case, the /vR curve did not
work as well. The conclusion was that the handbook' calibration curves based on power law ,

hardening will not work for sorne materiah. In fact, further woik showed tha'. all calibration
cuna, have essentitry an initial power law hardening region and a final straight line

,

hardening reglun (Fig. 7.9).' Materials that have limited plastic deformation remain in the
power law hardening region and can be predicted well with the power law. based handbook' |
solutions. Materiah that are rnore ductile get into the straight line hardening region, and the
handbook' will not predict correct calivration curves,1herefore, care should be taken on
choosing the deformation information for a structural analysh. The IISLA results are
summarized in Table 7.2. 'the errors in prediction are greater here. Ilowever, when the
experimental straight line calibration functions are used, the rnaximum load can be predicted
within a few percent.

7.2 TTRUCIURAL PREDIC1'lONS

1hc same approach used in Sect. 7.1 was applied to structures more representaiive
of reactor vessels. The two cases studied were a model suggested by the ASME Section XI

| Working Group on Flaw Evaluation and V8A pressure venel model.' To make the
predictions, calibration curves from various sources were used. Th,se will be detailed in the
following sections. The /.R curve results were taken from a set of V8A weld metal specimen
tests described in the next section.

7.2.1 VHA Weld Metal /-R Curves

The V8A weld metal /.R curves were generated by W. A. Van Der Sluys at B&W
Research Center. The I R curve results from seven IT Cr specimens were reanalyzed using
the normalization procedure. These are plotted in Fig. 7.10. These show some scatter in the
/ R curves. To look at the extrapolation of the data, these were plotted in a 'og log format
(Fig. 7.11). Three of the seven specimens were chosen, representing an upper bound, V8A 7
(high); lower bound, V8A-6 (low); and medium, V8A.3 (mid) (Fig. 7.12). Those three curves
were used in subsequcnt structural analysis and were given to the /u//n WG to use as the
standard / M R curves in future benchmark analyses. In Fig. 7.12,it can be seen that some

| of the points at longer M fall aNw the upper-bound fit. These are points that go beyond
1
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Tab. 7.2. Suaimary of IISt.A results

- - .

Input Prediction / test result

Calibration
Sire curve J.R curve Size P. Slope

.

IT IIBK n = 13 / ST 1.12 1.59

1T IIBK n = 13 /u ST 1.12 1.08

1T llBK n = 10 / ST 1.14 1.78

1T HBK n = 10 Ju ST 1.16 0.69

iT IIBK n = 7 (a = 11) 1 ST 0.95 0.99
1T IIHK n = 7 (n = 11) /u ST 0.97 0.23

ST Test power law / ST 1.07 0.63

iT Test straight line / ST 1.00 1.00 -

'

IT Test straight line /u ST 1.01 0.24
.._.

k

, , , . _ , . . , r..,, . . . _ . . _ , _ ~ ,m.,m.,, - - -
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the M/h. limit of 03 given in the extrapolation rule fit of Sect. 6 1he sarne approach was
applird in 'he /vM form it (Fig. 7.13).11ere, it is obvious that the hnger M points are not
follonine, the extrapott.ed lines. Tae data used, then, h predictive models was the J.M
R cu've. This is shown in its estrapolated form in Fig. 7.14.

712 All Model ead Sensitivity Study
<

1he resul i from the V8A wcld incial J.R curve tests were med in the model
suggested by the .%h1E Section XI Group.' It is referred to here as the Alt model. There
were not any experim t. tid results to co.npare with the predictions generated here. 'the.

predictions wmc made, first, to Jemomtrate the approach and, second, to use in a sensitivity
study of input variables.

1hc model is bric0y described telow. For pressure sc.scis, there is not a clean
meuure of dirplacement like there is on a test specimen. Therefore, the ductile 'racture
u etho'lology of Sect. 3 was revised so that / could be tl'e independent variable rather than
displac.iaent. A r.chemane representation of the ductile fracture rnethoctohgy for pressure
vessels b given in Fig. 7.15. 'the resuh of the analyr.is is pressure,p, vs /. Im.iability occuts
at the mrmmum pressuie because a pre..sure vessci couesponds to a soft loading system.

'the All calibration function equations are given in Table 7.3.1 is determined from
alibrution equations that have a similai format to those ir, the handbook ' The calibratio*,
comtant h fellows the Bk>om rnouincation for th part throu;;h the crack, and the limit load,i

P,. uses the Central Electticity 9encrating '30ard (CEGB) mmli0catio:1. TheJ.R curver u ed
were those from the V8A weld data. The three J.R curves that wmc th and extrapolated
were used; they are identif ed as high, medium, and low.

1he first analysis was made simply to develop plots of piessure,p, es1. 'thb is done
for deformation / in Fig. 7.16 and for modified / in Fig. 7.17. Since there is no expenmental
result to use for comparison, all that can be done ia to observe trends. As expected, the
pressure rises with incicasing / and then falls as crack growth ensues. The highest 1.R curve
predicts a high muimum pressuic. Thelu predicts higher mraimum pressure for a given /.R
eurve (see Fig. 7.18, where predictions based on / and lu are compared).

To use the All niodel fu;thr r, a sensitivity 4tudy wa.1 conducted in which the
significant input variables were systematically varied. These included variables from the
ctdibration functioia and variables f om the J.R curve. The variables included are listed i t
Table 7.4, aiong with the range cor.Wiered. The analysis was dr.nc by choosing a median
value for all paramereis cacept one. That one was then varied thiough the listed range. A>i
example of the piessure vs / is given in Fig. 7.19 for vanat:on of thel.R eurve cacfDeient C .3

Generally, the mmimum lord is of greatest interest because it represents the instability point.
This is plotted as maximum pressure,poo. vs C it; Fig. 7.20, where a percent sariation fremi
the p,o at median C is plotted vs C The "ariat on cf poo with 1is nearly linear.1his is3 3

not genera!!y true for the other variables. An c3 ample of thep., vs flow stress, o , in giveno

in Fig. 7.21 with actual values ofp and in Fig. 7.22 wilh percent variation from the rnedian.
The sensitivity study was conducted for c:.ch variable in Table 7.4. The results of the

sensitivity study are given in Table 7.5, whcie the variation in the input parametet i, listed
along with the maximum citor in the piediction at pm Notice that p,o does not vary
directly with the input parameter; the 1 caent verivJon in pm, h. smaller than the variat oni

- _ - _ _ _ _ _ _ - _ _ _ - _ _ _ _
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. C/ilDRATION fUNCif 0NS TRACTURE TOUGHNESS j

\
'

P = P(a, y)
" *J = J(e, v)
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.. _

Fig. 7.15. Schemat : t.f ductile t.acture methodology for prediction of pressure8

based on J r.5 the indeper. der.t variable.

Tnble 7.1 AlI rmxic!1calibratkm
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.
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Table 7.4. All sendtivity study

Parameter
d[1 = CAa j Range

C 1.0 to 1.4

C 0.2 + 0.42

E. 27,000 to 33,000 ksi

a 50 to 90 ksiy

n 5 to 10

a 1 to 4'

ao 2 to 2.5 in.
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Table 7.5. Summary of All sensitivity study

Reference Parameter Error for
Parameter value variation P.,,

(%) (%)

C 1.2 10 +2i

C 0.30 20 -12

E 30.(XX) 10 2

o,, 60 10 4

n 7 20 3

a 1.78 25 .1

1/4T 10 -5ao
_

in the input parameter, it is also interesting to note thr.t the parameters associated with the
/-R curve, C and C , do not cause as mech error in p.,, as the parameters associated withi 2

the calibration functions. ne choice of flow stress a and initial defect size has the mosto

influence on p.,,. What r not assessed in this sensitivity study is what level of variation
might be expected for c h input variable. Whereas one parameter may never vary by more
than i10% another ma, vary regularly by iS07c. De study does illustrate that not all
concern must be placed epon the variation in the1R curve. The material flow properties
that influence the calibration funcibns also play a role in the variation of predicted maximum
pressure. An important result from thi: study is that maximum pressure never varies by more
than 10% for the range of the input parameters used in this study.

7.2.3 VRA Vessel Model

A V8A vessel model was used to evaluate the ductile frac;ure methodology and the
/ vs /u inue. His model corresponds to cae of the test vessel series, V8A, so that results are
available to compare with predicted results. The model vessel experiment is documented in
Ref. 6. The apptr,ach used was the one used in the All modelin that calibration functions
were developed as a function ofJ. Two different sets of calibration functions were used; both
were taken from Ref 6. One was a linar clastic model (LEFM), and the second was based
on an ORVIRT finite-element analysis of the vessel, in both cases the calibration functions
may not have predicted the vessel deformation behavior very accurately. The J.R curves used
were the three cases from the V8A weld tests. Results are presented here in terms of
maximum predicted pressure.

An example of the plot of prer.sure vs1is shown in Fig. 7.23 for the ORVIRT model
for three J.R curves. The plot of maximum pressure is given in Fig. 7.24 for the I.EFM
rnodel, where the / R curve result is compared with the /vR curve result. ne same

_ _ - _ _ ______ -
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comparison is made for the ORVIRT model in Fig. 7.25. The result from the (inite-element
calibration functions was sens;tive to the manner in which the part through the crack in the
vessel was allowed to extend. For Fig. 7.25, the crack was extended proportionally. That
means that an increment of growth in crack depth, Aa, was accompanied by twice that
increment in surface crack length, A(2c), that is, A(2c) = 2aa This did not exactly fit the
obser ed pattern of growth, which was too complicated to model for the approach used here.

The resuits can be compared in terms of the test pressure at failure on the test vessel,
which was 143 MPa at its maximum point. This value of pressure is indicated on the figures
containing the V8A prediction. However, since the calibration functions may not have been
quite accurate,it is more interesting to compare the effect ofinputs on the results. The J.R
curve analysis again appears to be slightly conscwative, whereas the Ju-R curve anahsis is
slightly unconservative. The variation in maximum predicted pressure between the upper- and
lower. bound /.R curves is about i10% for the LEFM model and iS% for the ORVIRT
model.

170
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8. A 302 STEEL ANALYSIS

As part of tne overaP, effort of the working group, a series of tesu on various sized
specimens of an LUS A 302 steel was to be conducted. These test results were to serve as
a benchmark c91ibration on all of the analyses and rules for extrapolation that were made,
liowever, when the results became available to the group, they caused confusion rather than
providing a final answer to the issues of1 R curve extrapolation and the /g/u controversy.
The results showed some size effects that were unusual. Unlike the typical conservative ,

results from small specimens, the A 302 steel small specimen results gave grossly'

unconservative /-R curves. To examine these data further, three tasks were conducted. First,

the data were reanalyzed using the method of normalization; and these results were analyzed
to determine the exact nature of the resulting/-R curves. Second, reasons for the unexpected
nature of the traults were postulated and examined. Third, structural models were analyzed
with the ductile fracture methodology to see what the consequences might be of using the
unconservative results in structural analysis.

8.1 REANALYSIS OF A 302 STEEL 1-R CURVFS

The A 302 steel test matrix contained five sizes of compact specimens with
proportional dimensions (W = 2B). They ranged from 1/2T (W = 1 in.) to 6T (W = 12 in.).
The tests were conducted at Materials Engineering Associates (MEA), Lanham, Maryland.'
These tests were conducted using the standard clastic unloading compliance method of crack
length measurement. Thesc J R curve results are given in Fig. 8.1 for all sizes tested. The
unusual and disturbing aspect of the results is that the small specimens gave relatively high
and steep 1 R curves, whereas the large specimens gave low and flat I R curves. All the
results were reanalyzed using the method of normalization. These are presented in Fig. 8.2.
They show no essential difference from the results analyzed by the compliance method. For
these materials, fu was not used because it would cause the small specimen results to show

'

even more difference from the laru-specimen results.
When selected results are plotted separately, they do show some consistency.; .

_

| Figure 8.3 shows selected 1/2T and IT results which form a reasonably close scatterband.
When these seice ;d results are plotted with the 2T and 6T sizes, they show the gradual'

reduction in the 1-R curve slope with increasing specimen size (Fig. 8.4).

8.2 A 302 STEEL J-R CURVE EXPLANATIONS

The unconseivative character of the J-A curve from the small-specimen tests is cause
for concern and should be explained if possible. Bree reasons for the behavior of the small
specimen; were proposed and studied here. They are (1) the sampling plan in the test plate,
(2) the relative clastic-to-plastic behavior, and (3) the ductile instabilities (pop-ins)
encountered during the test.

. _ _ _ _ _ _ __ _ _ _ . -__ . __ _ ,- .
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The A 302 test plate was approximately 6 in thick. De sampling plan is shown in
Fig. 8.5. The larger specimens 6T and 4T were taken from a r.cntrM 'mation so that the plate
centerline went through the middle of the specirren. TN 2T spu. meas were taken just
above and below the centerline. He IT specimens werr. taken so that they were : entered
at 0.35 and 0 65 of the thickness, and the 1/2T specimens were taken at the 0.25,0.50, and
0.75 thickness positions. Considering these locatio as, the consistent group of 1/2T and
IT specimen J R curves came from the positions not touching the centerline (Figs. 8.3 and
8.6). He two 1/2T specimens from the centerline gave higher or lower J.R curves than the
consistent group. All of the other specimens-2T,4T, and 6T-at least touch the center plate
position. Their J R curves were all lower.

He observations relating to sampling plan merely suggest that specimens taken from
the center plate position may not give results that are conristent with those taken from
positions nearer the surface. Here is no proof that the center region gives the lowest IR
curves.

The issue relating to the relative amounts of plastic and clastic deformation was
proposed to explain this behavior.2 The / value is generally calculated as a sum at an clastic
and a plastic component from the expression.

He relative amounts of clastic to-plastic contribution to / have been thought to
possibly control the J.R curve behavior. He A 508 specimen data, which gave relatively
consistent 1-R curve behavior among the various specimen sizes, were used in comparison.
Figure 8.7 shows a plot of the ratio of///g for wt'. s.cels at a fixed point of crack extension.
The a &d ger.crally has a much greater contribuen from the p!astic component ofJ. Even
for she largest s;>ecimen, the ratioJj/g s about 1 to 1. The A 302 steel, on the other hand,i

has an increasing ratio of Jj/g with increasing specimen size. For the largest specimen, the
contribution is nearly all clastic. This looks convincing enough to conclude that the large
elastic contribution could cause the low J-R curve. Howcar, when compared with a set of
SNi steel results, this conclusion is not clear. Figure R8 shows similar results for a SNi steel
that, when smooth-sided, showed no size effect but, when side-grooved, showed a lower J-R

curve with many ductile instabilities (Fig. 8.9). The1)/g ratios increased with side grooving;
however, both sidemooved and smooth-sided had lager 1//g ratios than those observed for
the A 302 steel. It appears from this that the large1/1 does not cause lower toughness.g

For the A 302 steel, it appears ratner that the low toughness cause:. the high J//g ratios.
This interpretation also follovs from Fig. 8.7 when the srdl-specimen results alone are
analyzed. The 1/2T and IT re mits from the A 302 steel have the samela to J as the A 508g
steel. From a predictive point of view, the small-specimen t :sts of A 302 steel would not
indicate that a severe size cffect would occur.

The last cause proposed to explain the A 302 size effect was the ductile instabilities
observed during the test. A plot of load vs displacement, P-v, is given in Fig. 8.10 for the
biggest specimen. Just after reaching maximum load, the load drops about _10% very
suddenly, with no increase in displacement. This is a local instability caused by lowJ-R curve
behavior. It had been obsetved v'ith other material that lowJ.R curve behavior accompanied
this type of hxal ductile instability behsr. In f5tet, the J-R curve could not be measured
in a meaningful way when these instabihs were v.a large. However, theae instabilities could
likely be a result of low toughm ss ratkr than a cause.

>
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The final conclusion of the analysis of cause is that no clear cause could be cited. He
issues of/s tol ratio anel local ductile instability could be a result rather than a cause of lowg

/-R curve behav;or. The sampling plan issue may be a cause, but this does not completely
solve the problem of how to predict the large size effect observed here from small specimen
test results alone. Aiso, there was some evidence oflongitudinal splitting in the larger test ;
specimens. His behavior in the past o ten raised J.R curve toughness ra her than lowermgr

it. Again, this is not a behavior that could be predi:ted from small. specimen testing. i

8.3 IMPLICATIONS TD STRUCIURAL ANALYSIS

ne implication of the size effect observed for this material is that smcil-specimen
tests cannot be used to predict the behavior of larger structures when this effect is present.
To see if this implication is correct and to what extent for the A 302 steel, the ductile fracture

methodology was used to predict behavior of specimens and pressure vessel geometries.
The first set of predictions used the small. specimen 1-R curve with the 1. based

extrapolation scheme of Sect. 6 to predict the behavior of the larger specimcns. His is donc
using the 1/2T/-R curve for prediction and both experimental and handbook-based calibration
curves to predict the behavior of other specimens. First, the 1/2T wa4 predicted from itself
(Fig. 8.11). Next, the 1/2T data were used to predict the 2T (Fig. 8.12), the 4T (Fig. 8.13),
and the 6T (Fig. 8.14). The 1/2T predicts itself exactly, as would be expected. Also, the 2T
prediction from the 1/2T1.R curve is not so bad The maximum load is predicted fairly well,
but the unloading part of the P-v cur /c is not predicted well. The other specimens do not
predic; well. The maximum load estimate from the same 1/2T is much higher than the
measured maximum load resulting in an unconservative prediction.

The second set of predictions used the models of Sect. 7 for the All prediction
(Fig. 8.15) and the V8A vessel (Fig. 8.16). For this, both the extrapolated 1/2T and the 6T
J R curves were used. The 1/2T model would give the predicted behavior from a small-
specimen 1-R curve test that was extrapolated according to the guidelines established here in
Sect. 6. The 6T/-R curve was an attempt to model actual pressure vessel behavior, assuming
that it would behave more like the biggest specimen. The analysis predicted pressure vs crack
extension so that a maximum pressure for failure could be evaluated. For the All model of
Fig. 8.15, the maximum pressure from the 1/2T/-R curve is about 25% higher than that from
the 6T/ R curve. For the V8A model, the difference is about 35%. If the assumption of the
model is correct (i.e., the vessel would behave more like the larger and thicker test specimen),
the small-srecimen predictions are not good at all.

8.4 DISCUSSION OF A 302 STEEL RESULTS

Of all of the work done on this study, the findings of this section have the most
consequence to the prediction of reactor vessJ integrity. The implications are that small
specimens cannot be used in some cases to predict the integrity of larger structures. This is,

I certainly true in the case when the severe size effect observed for the A 302 steel occurs in

.- -
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la;;;ct spec: mens, implying that this might aho happen in large structurcs. Since this size
effect does not generally occur, there is sorne hope for the development of a predictive
methodology based on small. specimen results. The exampic materials esed to study size
effects in Sect. 6 did not show the severe k ss ofJ.R curve toughness with increasing size that
the A 302 steel did. Ilowevel, having seen this one examp'le, there is cause for concern. The

'

size effect does not appear in the small-specimen results 1/2T and IT. Here is no warning
that it should occur from the causes studied and no way to guess wacn it might occur from
present knowledge. Herefore, prediction of behavior based on small specimen results could !

be grossly unconservative.
Perhaps the cause of the size effect is related to some character of the material not

yet studied, for t,xample, micrcstructure, processing or aging, or some aspect of the testing
[e.g., the relationship of test temperature to fracture appearance transition temperature
(FATT)]. It does appear to te important to detennine the cause of this behavior and the
frequency of occurrence so that it can be recognized and predicted in other steels.
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9. IDW-UPPER-SIIELF CRTI'ERIA

Near the end of the tenure of the /d/u Working Group, there was some discussion
about various criteria for LUS prediction. In particular, one pait of the discussion centered-

around the 1-R curve criteria for prediction of behavior. One point of view advocated a
liinited use c.' the / R curve so that crack extension never exceeded 0.1 in. De prediction
of failure was related to the point where the / R curve reached on = 0.1 in. This was
examined for the various models chosen in the preceding sections. He A 508 steel specimen
prediction of the large-specimen P-v behavior frore small specimens is shown in Fig. 9.1. The
point on the P-v curve where crack growth is 0.1 in. is marked, as well as the crack extension
at maximum load. The paint where da = 0.1 in. is well before maximum load Maximum
load corresponds to approximately aa = 0.4 in. This represents an extrapolation of the /-R
curves for txith 1/2T and IT specimens. He same indications of crack extension are given
for the All model (Fig. 9.2) and for the V8A ORVIRT model (Fig. 9.3). In all cases, crack
extension of 0.1 in. does not predict maximum load. He total crack extension at maximum
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load canges from 0.4 in. to 0.74 in. This ranges from the muimum extent of the V8A weld
data of Fig. 7.10 to about a two times extrapolation of the 1 R curve,

in contr * 'o the above, when the size effect of the A 302 steel is operating
(Figs._8.14 and 83), the maximum pr(ssure is already reached before crack extension is
0.01in. Using 0.1 in. as a standard could mean that the failure pressure is severely
overpredicted at a crack extension 0.1 in. For these matcrials, crack extensions are often less
than 0.01 in, at maximum load. Putting an arbitrary on crack extension limit does not assure
that conservation v,ill be maintained. Therefore, an arbitrary prediction of failure at a fixed
poir.t on the / R curve does not seem to be a good criterion. It can range from too
conservative in many cases to unconservative when there is an unexplained material size
effect. A better picture of overall behavior can be obtained from a model like the ductile
fracture methodology that predicts load or pressure as a function of an independent variab!c.
This can predict a maximum load for instability which is more realistic than one tased on an
arbitrary point on the1-R curve. It also gives more information about behavior ruch as the
unloading slope after maximum load, which relates to instability in a stif0y loaded structure,
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10. DISCLESION |
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Since this study was done on several different projects and contains results of studies
orgamzed with different objectives, it is gni to try to relate everything in a genen.1
discussion. Two of the prevailing issues throughout the studies have been the method to use
for / R curve extrapolation and which parameter /v or lu, to use for characterizing the J R
curve. For this study, the extrapolation worked well by graphically fitting the /.R cuive with
a power law by p5otting results on log-log scales, fitting a straight line, and then extrapolating
the straight line fit. *lhe use of / for the R c rve always gave exact or conservativeo

extrapolation when small- and large specimen results were compared. The use oflu for the
R curve gave unconservative extrapolation. The same trends were observed when the ductile
facture methodology was used with the pressure vessel models, All and V8A.

The results from this study did show that extrapolation of the /-R curve is best done
between the crack growth to initial remaining uncrackcd ligaracnt ratio, M/bo, of 0.1 to 03.
Since 0.1 is the present litnit of M/b, for the AST71 test method E 1152 for experimentally
determining /-R curves, it appears that this limit should be relaxed when 1-R curve
extrapolation is necessary. All of the results stmlied in this work showed that the / R curve
could be developed in a consistent manner well beyond the limit of 0.1 M/bo. Typically,
inconsistencies between the various specimen sizes either in / or /u first daeloped in the
range of 03 to 0.4 M/ba.

The ductile fracture methodology could be used to predict structural behavior
reasonably well. The work done hete showed that the choice of calibration functions, which
relate load, displacement, crack ler3th, and), can be as crhical to the prediction ofinstability
as the prrner choice of /-R curve. For the All sensitivity study, the greatest .riation in
predicted maximum pressure resulted from variations in the calibration function inputs such
as yield stress rather than from variations in the J R curve inputs. Also, the prediction of the
HSLA steel h.rge specimen was not very accurate when an incorrect (handbook power law)
calibration function was used. Therefore, in the prediction of structural behavior and

-

instability point, careful attention must be given to the deformation behamicr that goes into
the calibration curves as well as the fracture behavior resulting from the1-R curve. *

An important observation from this work came fro'm the analysis of the LUS A 302
,

steel / R curves. These results showed a size dependence that is not typically seca. The
small-specimen J R curves were much higher than the large-specimen /-R curves, nny
predictions made from these small specimen results woub' he grossly unconservative if the
structure to be analyzed had a fracture behavior like that of the large specimen. These
results suggest that when such a size effect occurs, the small-specimen 1 R curves cannot be
used to predict the cracking behavior a-d instability of the largr structures.1his observation
is important. Although this size effect is not frequently obsuwa, there appears to be no clue

- as to when it might happen. - Even the test rceults from the small specimens do not warn of
'

the impending problem encountered in the larger specimens. This is an area that requires
further study if pressure vessel integrity is to be assur 1 from small specimen / R curve
results.

A final observation is that a criterion for fracture based solely on a selected point on
thel R curve, such as M = 0.1 in., is not sufficient. Depending on how the various inputs
interact, this point could be either conservative or unconservative as a prediction ofinstability.
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A criteriori based on irsability needs to be added. This method should relate instr $ility in
- terms of design parameteis like lead, pressure, or displacement in the nme way as doca the
ductile fractme methodology presented here,
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