U.S. NUCLEAR REGULATORY COMMISSION
 REGION III

Docket No. 50-305

Licensee:	Wisconsin Public Service Corporation
Post Office Box 1200	
	Green Bay, Wisconsin 54305

Facility Name: Kewaunee Nuclear Power Plant
Examinations At: Kewaunee Nuclear Power Plant
Examinations Conducted: April 17 and 18, 1984

Examiners:

R. Higgins

Approved By:

$$
\frac{5 / 29 / 84}{\text { Date }}
$$

$\frac{5129 / 84}{\text { Date }}$

Examination Summary

Examinations on April 17 and 18, 1984
The applicants consisted of 2 RO and $1 \$ 20$ candidates. Results: All candidates passed.

REPORT DETAILS

1. Examiners

*T. D. Reidinger
B. A. Picker
R. Higgins
*Chief Examiner
2. Examination Review Meeting

The exam review was conducted by the examiners and facility representatives as follows.

RO/SRO
*F. Stanaszak
R. Zube
J. Brown
D. Braun
*Facility Training Manager
The facility comments and resolution of those comments are as follows:

Question
1.06.a. 2 The facility pointed out that the question may also elicit Doppler Temperature Coefficient explanation. The examiner did not accept the comment. No change was needed to elicit a correct response to the question.
1.06.b The facility provided references for Cycle 9 in the Reactor Data Book. The answer key was changed to reflect the new data.
1.07. a \& b The facility indicated that parts " a " and " b " appear to be a double jeopardy question. (If the candidate committed an error on "a" then it is possible this could result in an error on " b ".) The examiner did not accept the comment. Part "a" looks at the loop flow changes due to head loss changes, while part " b " looks at back flow through the idle loop and its effect on wore flow.
1.09

The facility stated that the "withdrawal limit" and "maneuvering band" terms are not emphasized in this manner during training. The facility pointed out that the most probable answer from the candidates would include automatic rod withdrawal precautions on dropped rods or rod misalignment limitations. The examiner did not accept the comment. The question was written from those areas described in the referenced material provided by the facility as being part of the operator training.
3.07.a.3 The facility provided references to show that pressurizer
2.02. a
2.03. a
2.05.e. 1
2.05.c. 2
3.04
3. C6.b
3.07
4.05.c

The facility provided references that changed coincidences to $3 / 3$ detectors from $1 / 2$ and chainged the pressure setpoint to 23 psig from 17 psig. The examiner corrected the answer key to reflect the new data.

The facility pointed out that the reactor trip will not completely isolate feedwater. The trip will only trip Main Feedwater Valves and not the Main Feedwater Bypass Valves. The examiner amended the answer key to delete Main Feedwater Bypass Valves. Points were redistributed.

The facility pointed out that tnere is no isolation valve on component cooling to letdown heat eichanger. The examiner amended the answer key to read: "No, there is no isolation valve on CCW system side of letdown heat exchanger."

The facility provided references that showed there are no safety injection actuated valves in the component cooling system. The examiner deleted the phrase "until a phase B signal is actuated."

The facility requested that part " 5 " of answer key be deleted as this is a secondary trip input per the trip logic diagram vice a "direct" trip as the rest of the answers indicate. The examiner clarified the key to reflect that, if given, this answer will not be counted incorrect because the question asked for six (6) responses and with this deletion there are only five (5) possible. Amended the question to ask for "five (5) reactor trips..."

The facility provided references that indicated that OPAT would not be a protection signal in this casualty. The examiner deleted $O P \Delta T$.

The facility stated that steam dumps will not arm on failure of PM-485 because the arming signal comes from $P M-486$. The examiner amended the answer key. level would increase to 50% not 100% of span. The examiner amended the answer key.

The facility stated that facility procedures do not cover this occurrence and therefore it is not a valid question for the candidates. The examiner asked the facility if the candidate could use a logical approach to minimize this accident. The facility stated it is not covered in the training program. The examiner deleied this part of the question. The examiner requested the facility to address this problem in training prior co the next licensing examination. The facility agried.
4.06.a. 3
4.07.c. 1
4.08.b. 2
5.06.a.?
5.06.b
5.07. a \& b The facility indicated that parts "a" and "b" appear to be a double jeopardy question. (If the candidate makes an error on "a" then he will probably make an error on "b".) The examiner did not accept the comment. Part "a" looks at the loop flow changes due to head loss changes, while part " b " looks at back flow through the idle loop and its effect on core flow.
5.09 The facility stated that the "withdrawal limit" and "maneuvering band" terms are net emphasized in this manner during training. The facility pointed out that the most probable answer from the candidates would include automatic rod withdrawal precautions on dropped rods or rod misalignment limitations. The examiner did not accept the comment. The question was written from those areas described in the referenced material provided by the facility as being part of the operator training.
6.03 c The facility questioned that the answer should not require 700 psig auto close as an interlock since this is a protective function in their opinion. The examiner did not accept the comment. Facility systems description P34 on page 5 describes this 700 psig setpoint as an interlock.
7.01.b. 3 The facility provided references to indicate the time required for a Special RWP. The examiner accepted the definition.
7.07. a The facility provided new data, dated April 10, 1984, requesting that the temperature be changed to $350^{\circ} \mathrm{F}$ from $250^{\circ} \mathrm{F}$. This would be in compliance with the technical spec, fications. The examiner accepted the new data.
4. Exit Meeting

Facility representatives from Material Training, Simulator Training, Operations and Plant Management, the NRC Resident Inspector, and the examiners met on April 18, 1984, to summarize the results of the oral examinations. The examiners indicated those that clearly passed. No generic weaknesses noted.

Reviewed by
F. Stanazak
R. Tube
J. Brown
D. Braun
U. S. NUCLEAR REGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION

FACILITY:
REACTOR TYPE:
DATE ADMINISTERED: $84 \angle 04 \angle 1 Z$
EXAMINER:
APPLICANT:
_KEWAUNEE
E-----------------EWE \qquad

INSIRUCIIONS_IO_AEELICANI:

Use separate paper for the answers. Write answers on one side only. Staple question sheet on tor of the answer sheets. Points for each question are indicated in parentheses after the question. The fiassins spade requires at least 70% in each catesury and a final shade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts.

> FINAL GRADE ------------------

All work donnie on this examination is my own. I have neither given nor received aid.
QUESTION 1.01 (2.50)

Indicate how the following will affect UKIT efficiency at steady state power level. (Consider the affected parameter only and indicate increase, decrease, or no chanse.)
a. Absolute coridenser pressure chariges froim 1 psi to 1.25 psi.
b. Total S/G bluwdown is chansed from 35 to 40 ssm.
c. Condenser hotwell temperature chanses frow 125 F tu 130 F .
d. Stean auality chanses from 99.8% to 99.7%.
e, Current beins drawn by Reactor Coolant Funas increases slishtly due to a slisht chanse in bus voltase.

QUESTION $1.02(3.00)$

```
3. Why is the primary system fluwrate approximately 10
    times greater than secondary sustell fluwrate?
b. Why is a frimary heat balance considered less accurate than a secoridary heat balance?

QUESTION 1.03 (4.00)
a. Compare Xenon-135 and Samarium-149 fission froduct poisons by EXPLAINING the differences for the followins: (actual values are not necessary)
1. Time to reach equilibrium conditions after startup,
2. Masnitude of nesative reactivity at equilibrium conditions.
b. Explain why the followins statement IS or IS NOT true.
'Equilibrium Xenon concentration at \(50 \%\) power is NOT approximately half its conceritration at \(100 \%\) puwer \({ }^{2}\).
QUESTION 1.04 ..... （3．00）
A reactor has the fulluwins characteristics：
1．Power defect \(=1000 \mathrm{PC}\)
2．Tutal Rud Worth \(=7000 \mathrm{PCm}\)
3．Shutduwn Rod Worth \(=2000 \mathrm{Pcm}\)
4．Equilibrium Xenon \(=2800 \mathrm{pcm}\)
5．Feak Xenon \(=5200 \mathrm{Pcm}\)
The reactur has been operatins at steady－state for three weeks whena trip from \(100 \%\) power oecurs and the shutdown rods are pulled twohours later．Assume no boration by the orerator．
a．What is the shutdown marsin（SDM）immedietely followins the trip？ ..... （1．0）
b．What is the SDM eisht hours after the trip？ ..... （1．0）c．What is the SDM three days after the trip？（1．0）
QUESTION 1.05 ..... （1．20）
When a pressurizer PORU is used to depressurize the RCS（durins a S／G tube rupture recovery）you should expect to see pressurizer level（INCREASE，DECREASE，or REMAIN THE SAME）．WHY？ ..... （1．2）
QUESTION 1.0 C ..... （2．80）
a．For each of the coefficients beluw：How do they wary overcore ase and Why？1．Moderator Temperature Cuefficient．（1．0）
2．Doppler Coepficient． ..... （1．0）
b．What are the approxinate values in PCM for each coepficient in（a）above over core life（BOL to EOL \(100 \%\) pwr．）？（0．8）
```

QUESTION 1.07 (3.00)

```

Assume one RCP trips at \(30 \%\) power, without a reactor protection sysice actuation or a chanse in turbine luad. Indicate whether the followins parameters will INCREASE, DECREASE, or REHAIN THE SAME.

QUESTION 1.08 (2.50)

The reactor is operatins at \(100 \%\) power and no stean generator tubes are plussed. Stean senerator pressure is 770 psis and RCS Tave is 574 F . If \(25 \%\) of the \(\mathrm{S} / \mathrm{G}\) tubes are plussed, how much chanse must take place in Tave of the RCS in order to maintain the S/G pressure at 770 psis, when the reactor power is at \(100 \%\) ? Show all Work. Use the Stean Tables.

\section*{QUESTIDN \(1.09(3.00)\)}
```

Core operating limits and procedures are clusely related to full lensth rod positionins parameters thus establishins Rod Orerational Limits. Name the THREE pusitioning parameters and BRIEFLY explain the purpose of each.
QUESTION 2.01 (3.00)
a. Provide FOUR seperate conditions that could result in a pailure of the Energency Diesel Generator to start in the autonatic mode.
b. Describe the seauence of events that must take place in order for the Diesel Generator Fire Frotection Sustem to autumatically actuate.

$$
\text { QUESTION } 2.02(3.50)
$$

a. What conditions autumatically initiate Containment Spray? Include setpoints and losic/caincidence where applicable.
b. What sequence of events uccurrs to stavt spray when a Containment Spray Actuation Sisnal is initiated? (2.0)
QUESTION 2.03 (3.00)
a. What conditions cause complete feedwater isolationt Include applicable COINCIDENCE and SETPOINTS. (1,4)
b. In addition to complete isolation of feedwater, what does a feedwater isolation sisnal directly accomplish? (1,0)
c. If uperating at 95% ruwer and one Main Feed Fump trips, what automatic action occurs? (0.6)
QUESTION 2.04 (3.00)a. What protectiun is provided that will autumatically TRIPthe Turbine-Drivers and Motor-Driven Auxiliary Fergwater Pumpsto prevent their damase?(2.0)
b. In addition tu providins minimum pump pluw, what dues the AFWP recirculation fluw accumplish for each pump? (1,0)

The Reactor is operatins in Mode 1 with all assuciated support systems in normal when a RCS leak to CCW oceurs in the Letdown Heat Exchanser and $\mathrm{R}-17$ alarms.
a. What automatic action(s) occur?
b. The CCW side of the Letdown $H x$ ruptures resultins in a loss of CCW and a LOCA.

1. How is the CCW surse tank protected durins this outsurse?
2. If CCW system pressure has dropped to 25 psis, will the staridby CCW Rump start? Explain.
c. The LOCA resulted in a Safety Injection and Containaent Isolation Phase A.
3. Is the CCW leak isolated at this time? Explain.
4. Is CCW flow still available to the RCP's? Explain.

QUESTION 2.06 (2.50)
The relief valves listed below protect the chersins and letdown portions of the Chemical and Volume Cuntrol System. Katch the relief valve with its respective tank and setpoint.

VALUE	LOCATION	SETP	OINT	RELI	EUES TO
LD-5	letdown line downstream of letdown orifices	3.	200 psis	1.	Reactor Cuolant Drain Tank
$L D-1)^{3}$	letdown line downstream of low pressure letdown valve	b.	75 psis	2.	Voluine Control Tank
CUC-40	Volume Control Tarik	c.	2735 Fsis	3.	Pressurizer Relief Tank
CUC-101A	Reciprocatins charging pump discharse	d.	150 Psis	4.	Waste Gas Tank
cuc-261	RCP sealwater return line	*.	600 psis	5.	Holdup Tank

QUESTION 2.07

$$
(3.50)
$$

a. What are the preferred and alternate fower supply paths from 4800 to Instrument Bus I.
b. What electrical system chanses are reauired if Buttery Charser BRA-108 must be remuved from service for...

1. a short time (i.e. ruutine mainteriance, etc.),
2. an extended reriod of time due to Charser failure.
```
QUESTION 2.08 (3.00)
```

There are FOUR sets of valve interlocks associated with the Safety Injection Systems. NAME and DESCRIBE 3 of the interlocks and the PURFOSE of each.

QUESTION 3.01 (3.00)

a. List the lusic networks which receive a sisnal from the turbine trip luyic network.
b. Describe the seauence of everits (Turbine oil sustem interactions) which must take Flace to result in pustringine trip from the tiae that the turbine manual trip switwh is puhadturnud in the contral room until the turbine's power output is zero.

QUESTION 3.02 (5.00)

```
The unit has been uperatins at 45% puwer with all sustews in
autumatic. For each of the following conditions, Sive the
direction of rod motion and explain why there is tod mution:
a. The steam generator power uperated relief valve fails open.
b. A feedwater heater strins becomes isulated.
c. The luwer detector of the power ranse channel N44 fails hish.

a. Briefly explain the operation of the Low Pressurizer Pressure SI block function. Include any lusic reauired.
b. What are the other TWO parmissives (by number) that allow manual blockins of Safesuards Protection?
c. What are the TWO permissives (by number) that autumatically b) ock Safesuards Protection?
```

QUESTION 3.04
(3.00)
Five
Which SMX reactor trips proctect asainst DNB viulations?
Include coincidence losic,

```(3.0)

\section*{QUESTION \(3.05 \quad(4.00)\)}
a. If a turbine trip occurred frow \(100 \%\) power what would be the differerica between Tave and Tref if:
1. SIX stean dump valves were to be TRIPFED open? (0.75)
2. TWELVE steam dump valves were to be TRIPPED orent
b. Which steam dump contraller will control the steam dumps on a turbine trip from an inital power of LESS THAN 50\%?
c. On a sudden loss of load and NO turbine turbine trip frow an initial sower GREATER THAN \(50 \%\) which steam dump controller will control the steam dump.
d. In addition to being an input to the stean dump controllers, what function does the Tave sisnal accomplish in the Stean Dump Contral System?

QUESTION 3.06 (2.50)
Your Protection System is desisned so that a turbive trip will cause a Reactor Trip above \(10 \%\) power:
a. Why is the system desisned to do this?
b. What protection sisnal(s) will provide \(R \times\) protection in the event that the Turbine Trip/Reactur Trip Protection does not punction on a turbine trip from full puwer? NO SETPOINTS REQUIRED!
c. How does the Reactor Protection Sustew sense that a turbine trip has occurred?
QUESTION 3.07 ..... (3.50)
Assume the plant is at \(75 \%\) puwer, with automatic rod contrul andthe followins instruments are selected for control, when theypail simultaniously.
- PM-485A Turbine ist stage pressure instrument fails LOW- Loop B Cold les tenperature fails HIGH
a. Describe how the followins systens will react AND briefly explain WHY.
1. Control Rods.
2. Steag Dumps.
3. Pressurizer Level Control.
b. What protective sisnal(s), if any, would trip the plant if no operator action was taken. Brieply EXPLAIK.
QUESTION 3.08 (3.00)
a. A break in the reference les in the pressurizer level indicator will cause the indicated level to be hisher than the actual level. TRUE or FALSE?
b. What would a low temperature alarm on TE-421 (surge line) indicate? Assume that the plant is at steady state and the instrument has rot failed.
c. List the lucation(s) that has/have indiciation for LT-433 Pressurizer Level -(cold calibrated).
```

QUESTION 4.01 (3.00)

```
Normally the RCP \(* 1\) Seal Bypass line shall remain closed unless
either of two alarms are epproached. The bypass line siould then
be opened if FOUR conditions are satisfied.
a. What are the TWO alarm conditions that would reauire opening
    the bypass?
b. What are the FQUR conditions that must be met prior tu openins the bypass valve?

QUESTION 4.02 (2.20)
```

Provide the Federal and Flant Administrative wuarterly radiation
exposure limits for the followins:
a. Whole body (include extension limits)
b. Skin of the Whole body
c. Hands, forearms, feet arid ankles.
d. When is an individual's dose said to be meetins the ALARA concept?

QUESTION 4.03 (3.50)
Answer the followins questions about "Natural Circulation Operation", procedure $\mathrm{N}-0-06$.
a. Provide the TWO methods of determins effective natural circulation.
b. What is the maximun cooldown rate allowed?
c. What action are you required to take if one curitrol rod indicates not fully inserted?
d. While performins a cooldown in natural carculation, whu are the RCS subcoolins reauirements much more restrictive if the Contral Rod Drive Mechanism coolins units are not in operation? (1,0)

```
QUESTION 4.04 (2.50)
```

Assume that it is 0300 Hrs . on 6/19/84 and the fiacility is presently at 45% power. Considerins the Delta-I perialty histury beluw, are you now allowed to increase fower above 50% power? If not, when may power be increased? EXPLAIN.

DATE TIME (out)
6/18/84 0300
$6 / 18 / 84 \quad 1557$
6/19/84 0138

TIME (in)	FOWER
0318	85%
1633	65%
0300	45%

QUESTION 4.05 (4.00)
a. List FOUR indications that may be used to identify a faulted Steam Generator with a tube leak/rupture.
b. How is a faulted Steam Generator isolated?

QUESTION 4.06
(2.80)

Assume that a Loss of Coolant Accident has vecured at the Kewaunee Power Station.
a. What are the Safety Injection termination criteria?
b. Under what conditions must Safets Injection be MANUALLY reinitiated?

QUESTION 4.07
 (4.00)

a. List FIUE of the seven immediate symptoms of the controllins pressurizer pressure channel failins hish, while at power.(1.5)
b. What automatic control actions will occur as a result of this pailure?
c. What 3 manual actions are reauired?

```
QUESTION 4.08 (3.00)
```

a. What RCS pressure and temperature limits are impused when the Residual Heat Renoval (RHR) system is placed in service?
b. The RHR system is in the normal cooldown mode throush RHR-1i (RHR to loop B Accumulator line) utilizins both RHR pumps and lettins down to the CUCS for solid plant pressure control. Provide the valve condition/position (OPEN, SHUT, MANUALLY THROTTLED, or AUTOMATIC) for the followins valves.

1. RHR-8B (RHR flow resulatins valve).
2. RHR-10 (RHR Heat Exchanser bypass valve).
3. SI-300B (RHR suction Pron RWST).
4. LD-60 (Low pressure letdown valve-CUCS)
5. CC-403B (RHR Heat Exchanser return valve-CUCS)
```
ANSWERS -- KEWAUNEE
```

ANSWER

1.01

(2.50)
a. Decrease
b. Decrease
c. Increase
d. Decrease
e. No chanse
[0.5 each]
(2.5)

REFERENCE

Westinghouse Thermal-Hydraulic Principles and Applications to PWR II Chapter 12, PP. 21-26

ANSWER $\quad 1.02 \quad(3.00)$
a. Due to the CHANGE IN PHASE on the secoridary side of the steam senerator, its enthalpy rise is roushly ten times the primary side enthalpy drop. Since the ENERGY GAINED by the feedwater MUST be EQUAL to THE ENERGY RELEASED Prom the primary systee,
(m Jh) primary $=$ (m dh) secondary
the primary mass fluw rate must be apfroximately ter times the secondary system fluw rate.
b. Due to the larse secondary enthalpy chanse [0.75], the percent error from temperature, pressure, and flow sensitivity is smaller [0.5]. Also, primary system flow instrumentis are very inaccurate $[0,25]$.

REFERENCE

Westinshouse Thermal-Hydraulic Principles and Applications to PWR I
Chapter 1, pp. 19-22
a. 1. Samarium takes much lonser to reach eavilibrium coriditions [0.5] because it is formed by decay of a precursor with a lonser half life than for Xerion [0.5].
2. Xenon has the most wurth at euuilibrius [0.5] becuuse it is more abundant [0.5] and because it has a hisher neutron absorbtion cross-section [0.5]
b. True [0.5], Eauilibrium Xenon is plux dependent and non-linear [0.5] since burnout is relatively less sisnificiant at 50% power than at 100% power (production is flux dependent but removal terms are not both flux dependent) [0.5]

REFERENCE

Kewaunee Nuclear Plant Trainins Manual (WNT0-7606) I-6.39-46

ANSWER 1.04 (3.00)
3.
Initial Rect $=0.000$
Rods $=-.070$
Power Defect $=+.010$

$$
\begin{equation*}
0.06 \text { delta-K or } 6000 \text { PCD shutdown } \tag{1,0}
\end{equation*}
$$

b.
S.D. Rods $=+0.020$ cortional - may not include due to T,S. def. of SDM)
Xenon $=-0.02 \% 4$
0.06集4delta-K or 6400 pcm shutdown
c. \quad Xenon $=+0.052^{-0.06 t} 4$

Xenon $=+0.052^{4}$

$$
\begin{equation*}
\overline{0}, \overline{01} \bar{x}_{2} \text { delta-K or } 1200 \text { pem shutdown } \tag{1,0}
\end{equation*}
$$

No penalty if 1 rod is considered stuck or if S. B, rod worth not Considered if done consistantly due to T.S. defiridtion of SDM

REFERENCE
Reactor Theory Manual, Chapter 9

```
ANSWERS -- KEWAUNEE
```

ANSWER 1.05 (1.20)

An increase is expected as liquid replaces the escaping steam. (Also accept an explanation of swell phenomenon)

REFERENCE

KNP Training Manual (WNTO-7803) II-1.4

$$
\text { ANSWER } \quad 1.06 \quad(2.80)
$$

a. 1. MTC becomes more nesative $[0.5]-$ because as born is reduced over cure life (due to fuel depletion) the positive effect of 1 F change in boron concentration is reduced (as temp, increases, density decreases thus more boron is removed from the core) [0.5],

OR
neutron leakage is increased due to the radial flux shift outward at EOL [0.5].
2. DOPPLER COEFFICIENT -- sets less nesative [0.5] due to the decrease in fuel to clad sap [0.3] (clad creep) because of increased heat transfer and reducing the effect of fuel temperature [0.2].
b.

BOL [0.2 each]

$$
16.4
$$ $\begin{array}{cc}13.5 \\ -12.5 & (+/-) \& \mathrm{PCH} / \%\end{array}$

EOL [0.2 each]
ATC
Doppler
$-37(+1-)$? PCT/ F
$-11(+/-))^{2}$ PCM/X
commented for cycle?
foul lind

REFERENCE
KNP Training Manual, 1-6.2-18

ANSWER $\quad 1.07 \quad(3.00)$
a. Increase
b. Decrease
c. Decrease
d. Increase
e. Decrease

$$
\begin{equation*}
[0.6 \text { each] } \tag{3.0}
\end{equation*}
$$

REFERENCE

Westinghouse Thermal-Hudraulic Principles and Applications to PWR II Chapter 12, PP, 15-16

```
ANSWER 1.08 (2.50)
```

```
Steam Generator Heat Transfer: Q QuA delta T [0.5]
```

Steam Generator Heat Transfer: Q QuA delta T [0.5]
where delta T = Tave - Tsat (sec)
where delta T = Tave - Tsat (sec)
Q, U, and Tsat (sec) remain constant, therefore,
Q, U, and Tsat (sec) remain constant, therefore,
Q/A = Al[Tave 1 - Tsat (sec)] = A2[Tave 2 - Tsat (sec)] [0.5]
Q/A = Al[Tave 1 - Tsat (sec)] = A2[Tave 2 - Tsat (sec)] [0.5]
From siven info. A2:=0.75 A1
From siven info. A2:=0.75 A1
From Steam Tables: Tsat (sec) = 512-516 F[0.7]
From Steam Tables: Tsat (sec) = 512-516 F[0.7]
A1 (574 - 514) = 0.75 A1 (Tave 2 - 514) Tave 2 - 594 F
A1 (574 - 514) = 0.75 A1 (Tave 2 - 514) Tave 2 - 594 F
Therefore: Tave must increase by 19-21 F [0.8]
Therefore: Tave must increase by 19-21 F [0.8]
REFERENCE
Westinshouse Thermal-Hydraulic Principles and Applications to PWR I Chapter 6
ANSWER $\quad 1.09 \quad(3.00)$
a. WITHDRAWAL LIMIT [0.5] - Imposed to help avoid dumpins staan if a decrease in power is initiated. [0.5]
b. KANEUVERING BAND $[0.5]$ - To alluw an immediate return tu pull power at anytime prom a luwer power [0.25] as well es to help maintain a fairly even axial fuel depletion [0.25] (1.0)
c. INSERTION LIMITS [0.5] - Assures the ability to shutdown at anytime, under any conditions [0.5] (1.0)
REFERENCE
KNP Trainins Manual (WNTO-7606) 1-6.30

```
ANSWER \(2.01 \quad(3.00)\)
3. -Start failure
-Ensine overspeed
-Lo lube oil pressure
-Lo jacket water pressure
[0.5 each]

\section*{REFERENCE}

KNP System Descriptions, 8, P. 8
```

ANSWER
2.02
(3.50)
a. - Hi Hi Containmerit Pressure [0.5], 2xz [0, i.5], N2 psisi [0.25]
Henuel-[0.251,-1/2-50.251e
2/2 gquation dow not elulat mmuond action
b. 1. Start of Spray Pumps.
2. Dpening of buth discharse valves.
3. Closure of control valves in Test line to RWST,
4. Dpenins of the twu Caustic addition contrul valves.(2.0)

```
REFERENCE
```KNP Trainins Manual IU-11 \% 12
```

ANSWER

$$
2.03
$$

$$
(3.00)
$$

a. 1. Hi Hi S/G level $\left[0.6,2 / 3,67 \% ~\left[0, y^{2}\right]\right.$
2. Safety injection actuation [0, N], any

```(1,4)
```

b. Trip both MFP's and Turbine trip. ..... $(1,0)$
c. Luad runback on Main Turbine.

```(0.6)
```

REFERENCE

```KNP System Descriptions 5A, P, 17KNP Trainins Manual IU-12,22,23
```

ANSWER $2.04 \quad$ (3.00
a.

TD
MD

1. Overspeed
2. Overcurrent
3. Lu lube oil
4. Lo lube oil pressure [0.5 each]
b.

TD
MD

1. Pump lube oil coolers
2. Pump lube vil cuoler
3. Turbine drive

$$
[0.33 \text { each }]
$$

## REFERENCE

KNP System Descriptions 5B, P, 6
KNP Annunciator Resporise 47009-14, 47010-44

ANSWER $\quad 2.05 \quad(3.50)$
a. Surge tank vent shuts (CC-104) (0.5)
b. 1. Surse tank Vacuun Breaker opens.
2. Yes $[0.45]$ at ( 35 psis) operatins pump luw header pressure [0.45] (providina the standby pump control was in AUTO)


2. Yes $[0,4]$ CCW to RCP's is nut isulated until ophaeepe pe siunal is retwetede $[0.4]$

## REFERENCE

KNP System Descriptions 45, P, 6
Flow Diasrams XK100-19, 35

```
ANSWERS -- KEWAUNEE -84/04/17-PICKER, B.
```

```
ANSWER 2.06 (2.50)
 LD-5 e,3
 LD-15 a,2
 CUC-40 b,5
 cuCivia c,2
 CUC-261 J,3
[0.25 each response]

\section*{REFERENCE}
```

KNP Flow Diasrams XK100-35, 36
ANSWER 2.07 (3.50)
a. Perferred: 480 U MCC-1-52C to $A C$ inverter ( $B R A-111$ ) to Instrument bus I
Alternate: $480 \mathrm{CMCC}-1-52 \mathrm{C}$ (normal) or MCE-1-52E (alt) via an Auto transfer switch to 120 V cabinet BRA-105 to Instrument Bus I.
b. 1. Transfer DC luads to opposite DC Bus.
2. Disconnect failed charser and move spare charser into position and connect to circuits to cerry loads.

REFERENCE
KNP System Descriptions 38, pp. 20, 21
KNP Electric , Distribution Drawins E233P
ANSWER

$$
2.08
$$ ..... (3.00)

(3 of 4 reauired)

1. Interlock between Containment Sump and Test Line Valves: ..... $(0,2)$
Requirement: Test line valves must be clused to oren the sump isolation valves. ..... $(0,4)$
Purpose: Frevents inadvertent release of containmerit vapor to the RWST. ..... (0.4)
2. Accumulator Isolation Valves Interlock: ..... (0.2)
Requirement: Stem mounted limit switch trips an annunciator in the control roun if either valve is shut and RCS pressure is $>$ SI unblack fressure. ..... $(0,4)$
Purpose: To alert the operator that the Accumulaturis are isolated. ..... $(0,4)$
3. SI Fump Recirculation Valve Interluck: ..... $(0.2)$
Requirement: Interlocked with RHR pump discharse pressure instrument to prevent openins of RHR-300 A/B ..... $(0,4)$
Purpose: Prevents overfressurins SI pump suction pipins. ..... $(0,4)$
4. SI Fump Suction Valve Interlock: ..... (0.2)
Requirements: RHR-300 A or B carmot be upened unlesis SI pump suctiuns are shut. ..... $(0.4)$
Purpuse: Frevent pumpins cuntaminated sump water intu the RWST with the RHR pumps. ..... $(0,4)$

## REFERENCE

KNF System Description 33, pF 8, 9
ANSWER $3.01 \quad(3.00)$
3. Reactor trip

Steam dump cuntrol
Generator trip
Aux bus transfer
Diesel senerator auto start
b. 1. Manual trip causes the Auto Stop Dil pressure to dump.
2. Auto Stop Dil causes Enersency Trir Fluid dump.
3. Emergency Trip dump cluses - Stop valves, Reheat valves and dumps Control Emersency Trip Fluid.
4. Control Emersencs Trip Fluid cluses - Intercept and Cuntrol valves.
5. When the Stop valves are closed a sisfal is processed to trip the senerator after a 30 sec. time delas.

REFERENCE
KNP Trainins Manual IV-12,30, 31

ANSWER
3.02
(3.00)
a. Steam flow iricreases ciausins increased remuval of heat from the RCS; Tave decreases. Reactor contrul system moves the rods OUT because of the Tref-Tave deviation.
b. This causes decreased efficiency in the secondary plant cycle for the same turbine load output; Tave will decrease because of sreater heat removal. The Tref-Tave deviation causes a rod withdrawal.
c. This is input to the rod control system and will ciause the rods to insert attemptins to reduce reactor power.

## REFERENCE

KNP System Description 5
KNF Trainins Manual IU $-1,3$
ANSWER $\quad 3.03 \quad(3.00)$
a. A manual block thet is allowed when $2 / 3$ FZR pressure channels are<2000* [0.5]. The block will be cleared if $2 / 3 \mathrm{PZR}$ pressure channels indicate $>2000$ [0.5].
b. $\quad P-6, P-10$
c. $\quad \mathrm{P}-7, \mathrm{P}-8$

## REFERENCE

KNP Training Manual IU-11.14
KNP Losic Diasram XK100-143-150

ANSWER
3.04
(3.00)

```
1. PZR low pressure:
2/4 [0.5]
2. OT Delta T:
3. Loss of flow:
4. Rep bus low valts: }1/2\mathrm{ busses [0.5]
5. RCP bus low frea.: 1/2 busses [0.5]
6. RCP breaker open: 1/2 breakur [0.5]
```


## REFERENCE

KNP Trainins Manual IU-11.27

ANSWER
3.05 (4, 00)
3. 1. 15 F
(0.75)
2. 30 F
(0.75)
b. Turbine trip contraller.
(0,75)
c. Luad rejection controller,
(0.75)
d. Provides a blockins sisinal for 10 valves durins cooldown below low - low Tave setpoint (i, uncontrolled cooldown).

## REFERENCE

KNP Systen Description 6
KNP Trainifis Manual IV-9, 12
KNP Losic Diasram XK100-153
ANSWER 3.06 (2.50)

```
a. The turbine serves as the heat sink to the reactur [0.3],
 thus a Rx trip should follow a turbine trip tu mirimize the
 RCS pressure and temperature peaks [0,7].
b. Hi pressurizer pressure \([0,7]\) ampritur ue one fodtownat Hewnetries. Qp perte Th \(O T\) Delta T [0.3]
c. All turbine stop valves shut \([0,25]\) Auto Stop \(0 i 1\) pressure luw (\(<45\) psig) [0.25]

\section*{REFERENCE}

KNP Trainins Mariual IU-11,14
\[
\text { ANSWER } \quad 3.07 \quad(3.50)
\]
a. 1. The control rods would muve in at max speed due to Tave-Tref deviation [9.75].
2. The stean dume woyldnim, 1 st stase, press, transmitter
 Shut-when ef3-fave reachey-kow-bew-selpoint [1.0].
3. The prosranmed level would increase to ta0\% due to hish Tave sisinal [0.75].
 the lapse eoeldown-trom thesteam dump anderod insertigh [0.5] (1) \(\Delta x\) on rodinsertion (0.25)
REFERENCE
KNP Trainins Manual \(\mathrm{IU}-3,7,9,12\)

ANSWER
3.08
(3.00)
a. True
b. A low temperature would indicate gnsufficierit spray flow (throush the bypass valves).
c. Contral Roon [0,5]

Aux feed pump station [0.5]
Charsins pump station [0,5]

REFERENCE
KNP Annunciator Response Buok 47021-21
ANSWER \(\quad 4.01 \quad(3.00)\)
```

a. - Hish RCP Bearins Water Temperature
-41 seal leakoff temperature hish
b. - Seal injection flow between 8 and 13 Spm [0,4]

- *1 seal leakoff fluw less than 1 sfm [0.4]
- RCS Fressure < 1000 psis [0.4]
- Plus either of the alarms abuve $[0.4]$ (2.0)

```

REFERENCE
KNF Operatins Frocedures; \(N-R C-36 A, P\). 5

ANSWER
\[
4.02
\]
\[
(2,20)
\]

FEDERAL PLANT
a. 1.25 REM or 1.25 REM
3.0 REM if ace, Jose not (0.75)
\[
\text { b. } 7.5 \mathrm{REM} \quad 7.5 \mathrm{REH} \quad(0.5)
\]
\[
\text { c. } 18.75 \mathrm{REM} \quad 18.75 \mathrm{REM} \quad \text { (0.5) }
\]
d. When throush HIS uwn actions he has been successful in eliminatins all unrecessary radietion expusure.
```

REFERENCE
KNP Radition Protection Trainiris Manual; Gerieric III-21, 27, 28
Plant Specific I-1

```
ANSWER
 4.03
 (3.50)
 a. - Stean release from 1 S/6 [0,5]
 - Averase readinss of core T/C is cunstent (or decreasins)
 and is substantually beluw Tisat. [0.5]
b. 25 F fer hour(0.5)
c. Besin Emersency Boration. (1.0)
d. This minimizes the possibility of head voidins. \((1,0)\)

\section*{REFERENCE}

KNF Oreratins Procedures; \(\mathrm{N}-\mathrm{O}-06\)
ANSWER \(\quad 4.04 \quad(2.50)\)

No \([0.5]\), accumulated penalty over the fast 24 hours is 95 minutes [1.0]. Assumins no further oferation outside the Delta-I band, the penalty will be reduced to 60 minutes at 1614 Hrs . on 6/19/84 and then power may be increased [1,0].

REFERENCE
KN: Technical Specifications; 3.10
\[
\text { ANSWER } \quad 4.05 \quad(4.00)
\]
a. 1. Unexpected S/G level rise.
2. Hish radiation on \(S / G\) blowdown.
3. Hish radiation by chemistry sample.
4. Hish steam line radiation. [any 3, 0.4 each]
b. 1. Stop all feed.
2. Shut MSIV and Bypass.
3. Verify PORV's shut.
4. Shut steam valye to TDAFWF. [0.4 each] (1.6)
c. 1. Shut the MSIV on the unaffected \(S / G\)
2. Cooldown using the POkV's on the uaffected S/G
-- (CAF)
NOTE: Utility is to provide reference materidal for credit.

\section*{REFERENCE}

KNP Operatins Frocedures; E-0-09, pp 2-4

ANSWER
\[
4.06
\]
\[
(2,80)
\]
a. 1. RCS subcooling \(>50\) des. AND
2. Pzr level > 50\% AND
3. AFW How 350 level in at 1 east 1 S/G in RR AND 4. RCS pressure \(>2000\) [0.4 each]
b. 1. RCS pressure decreases beluw 1815 peis OR
2. Pzr level drops below 20\% OR
3. RCS subcooliris < 50 des.
```

ANSWERS -- KEWAUNEE
-84/04/17-PICKER, B.

```
```

REFERENCE
KNF Operatins Frocedures; E-0-10, P. 2

```

ANSWER
\[
4.07
\]
\[
(4.00)
\]

\section*{a. (5 of 7 reauired)}
1. Pressure ifidications on failed chennel read hish.
2. Pressurizer pressure hish alarm.
3. Fressurizer heaters off.
4. Buth spray valves open.
5. Fressurizer hish pressure deviatiun alarm.
6. Pressurizer pressure hish reector trip alarm.
7. Autual pressure iridication decreasins [0.3 each]
b. 1. Buth sfray valves upen.
2. Fressurizer heaters off.
c. 1. Close both pressurizev spras valves motredery offer
2. Check pressurizer pressure indications.
3. Position selector switch to remove failed channel from control.

\section*{REFERENCE}

KNF Annunciator Response Book; 47021-33, 42, 43

ANSWER \(4.08 \quad(3.00)\)
a. Less than \(350 \mathrm{~F}[0.5]\) and \(425 \mathrm{psis}[0.5](1.0)\)
b. 1. Throttled
2. Throttled (auto)/r closed
3. Closed
4. Ofen
5. Open

\section*{REFERENCE}

KNF Operatins Frocedures; \(\mathrm{N}-\mathrm{O}-05\)
N-RHR-34
KNP Fluw Diasrams; XK100-18, 19

\title{
U. S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMIKATION
}

Reviewed by
F. Stanazak
R. Iube
J. Brown
D. Brawn

FACILITY: -KEWAUNEE-------------------
REACTOR TYPE:
_EWE \(\qquad\)
DATE ADHINISTERED:_8ALQALIZ.------------------
EXAMINER:
APPLICANT:

MASTERCOPY

\section*{INSIEUCIIQNS_ID_AEELICANI:}

U'se separate parer for the answers. Write answers on one side only. Staple auestion sheet on top of the answer sheets. Foints for each auestion are indicated in parentheses after the auestion. The passins srade reauires at least \(70 \%\) in each eatesury and a final srade of at least \(80 \%\). Examination papers will be picked up six (6) hours after the examination starts.

100.00 _- 100.00 \(\qquad\) TOTALS

FINAL GRADE \(\%\)

All work done on this examination is my own. I have neither siven nor received aid.
QUESTION 5.01 (2.50)
Redistribution is a term associated with the coolant density decrease,as heat is carried away from the fuel rods, by the coolant passageupward throush the core.
a. How does Redistribution effect plux distribution over core height \(t\) full power? (1.0)
b. What two effects further accentuate Redistribution at End ofLife, power canditiuns?(1.5)
QUESTION 5.02 (3.00)
a. Why is the primary system fluwrate approximately 10times sreater than secondary systeli fluwrate?(1.5)
b. Why is a primary heat baiance considered less accuratethan a secondary heat balance?(1.5)
QUESTION 5.03 (4.00)
a. Compare Xenon-135 and Samarium-149 fission product poisons by EXfLAINING the differences for the folluwins: (actudl values are not necessary)1. Time to reach eauilibriun cunditions after startup.(1.0)
2. Masnitude of nesative reactivity at eauilibrium conditions. (1.5)b. Explain why the folluwins statemerit is or IS NOT true.'Eauilibrium Xenon concent, ation at \(50 \%\) puwer is NOTapproximately halp its concentration at \(100 \%\) power.(1.5)
```

QUESTION 5.04 (3.00)
A reactor has the followins characteristics:
1. Puwer Jefect = 1000 pCm
2. Tutal Rud Warth = 7000 PCm
3. Shutduwn Rod Worth =2000 PCm
4. Euuilibrium Xenon = 2800 PCm
5. Peak Xenon =5200 Pcm
The reactor has been operating at steady-state for three weeks when
a trip from 100% power occurs and the shutdown rods are pulled two
hours later. Assume no boration bs the operator.
a. What is the shutdown margin (SDM) immediately followins the
trip?
b. What is the SDM eisht hours after the trip?
c. What is the SDM three days after the trip?
QUESTION 5.05 (1.20)
When a pressurizer PORV is used to defressurize the RCS (durins a $S / G$ tube rupture recovery) you should expect to see pressurizer level (INCREASE, DECREASE, OF REMAIN THE SAME), WHY?
QUESTION 5.06 (2.80)
a. Fur each of the coefficients beluw: How do they vary over core ase and Why?

1. Muderator Temperature Cuefficient.
2. Duppler Coefficient.
b. What are the approximate values in PCM for each cuefficient in (a) above over core life (BOL to EOL $100 \%$ pwr, )?
QUESTION 5.07 ..... (3.00)
Assume one RCP trips at $30 \%$ power, withuut a reactor protectionsystem actuation or a chanse in turbine luad. Indicate whetherthe followina parameters will INCREASE, DECREASE, or REMAIN THESAME.
a. Fluw in the operatins reactor coulant loops. ..... (0.6)
b. The ratio of core fluw compared to the total loop flow.(Core Fluw/Total Loop Fluw)(0.6)
c. Reactor Vessel delta $P$. ..... (0.6)
d. Core delta T.(0.6)
e. Operatins luop steam serieratur temperature. ..... (0.6)
QUESTION 5.08 ..... (2.50)The reactor is uperating at $100 \%$ puwer and no steam generatur tubesare plussed. Steam senerator pressure is 770 psis and RCS Tave is574 F . If $25 \%$ of the $\mathrm{S} / \mathrm{G}$ tubes are plussed, how much chanse musttake place if Tave of the RCS in order to maintain the S/G pressureat 770 psis, when the reactor power is at $100 \%$ ? Show all Work.Use the Stean Tables.
QUESTION 5.09 ..... (3.00)
Core uperatins limits and procedures are clusely related to full lensth rod positionirs parameters thus establishins Rod Orerational Limits. Name the THREE pusitionifis ferameters and BRIEFLY explain the purpose of each. ..... (3.0)
QUESTION 6.01 ..... (3.00)
a. List FOUR of the six conditions when Steali Generator Blowdownis automatically isoleted, AND the reason(s) isulation isdesiced for each condition selected.(2.0)
b. Fill in the blanks for the followiris statements concernins "special uperation" of the blowdown system.
3. The condensate coulins return from the $S G B$ Heat Exchansers can be diverted to the _--- if the heater drain tank becomes unavailable.
4. Bluwdown flow can be diverted to the -.-- should condensate become unavailable for coulins the SGB Heat Exchansers.
QUESTION $6.02(3.50)$
a. What are ALL the parameter infuts for each of the followins contrals, AND indicate which iriputs have selectable channel capability?
5. Main Feed Resulatins Valve (MFRV),
6. Feedwater Resulatiris Bypass Valve,
b. What are the THREE MFRV automatic elusure sishals AND the reasuribasis for each clusure sisnal? Setpoints not reauired.
QUESTION $6.03 \quad(3.00$ :
Describe the intarlocks associated with the folluwind valves. (Include setpoints)
a. RHR pUmp discharse to SI pumps.
b. RHR suctions from Sump B.
c. Hut les supplies to RHR.
QUESTION 6.04 ..... (3.00)
The reactor is operating at $100 \%$ power with all syistems in normal. For the folluwing failures, what reactor protective sishal will cause the reactor to trip? Assume no uperetor action and consider each failure independently. BREIFLY EXPLAIN YOUR AINSWER.
a. CUCS charging flowrate drups to the minimum value ,
b. A (controllins) cold les temperature detectur fails hish.
QUESTION 6.05 (3.50)
a. Describe how the Spent Fuel Fuol (SFF) leak collectiun system desisi provides for leak detection and location.
b. What desisin features of the SFP mitisate/prevent siphonins the pool from a leak/rupture in SFP pump suction AND return pipins?
c. Other than thermal caracity considerations, how has the storase capacity of the SFP been increased?
QUESTION $6.06(2.00)$
a. What is the rurpuse of the Reactor Vessel Head Veritins System (RUHUS)?
b. State the purpose(s) of the orifice installed in the RUHUS vent lines.
QUESTION 6.07 ..... (3.00)
a. Describe the respunse (seauence of events) of a 4160 Volt Safesuards Bus tu maintain/resture electrical power when an undervaltase condition on a safesuards bus COINCIDENT with a Safety Injection Sisnal exists.
b. State ALL the conditions that must be met to alluw the EDG output breaker to automatically shut.
c. Whe ane the two 4160 U peeder breakers for Feedwater and RCP's tripped in addition to the twu bus power supply breakers when a pault condition exists on bus $1-1$ ?$(0,5)$
d. If the Emersency Diesel Generatur is uperatins, huw is its continued operation affected bu a cardox fire protection actuation sisnal?
QUESTION 6.08 (2.00)
a. How is RBU fan-coil unit operation affected by a Safety Injectiun Sisnal?
b. Explain how normal fan-coil unit operation automatically chanses when orie of the units in pair is stopped.
QUESTION $6.09 \quad(2.00)$
a. What input sisnals are sent to the computer for use in calculatins rod insertion limits?
b. What are the three desisn bases for the rod insertion limits?

## QUESTION 7.01 (3.00)

a. Who, by title or pusition, must sisn an 'Autharization for Increased Radiation Exposure* to increase an individual's dose limit above 1250 mREM/Q and WHY is each sisnature reauired? (1.5)
b. What are the THREE tures of RWP's used uther than for emersencies AND for what time period is each valid?

QUESTION 7.02 (3.50)
Assume that your plant has undersone a Loss of Secondary Coulant Accident and your operators have reached a condition where the SI system can be storped under EITHER of 2 sets of conditions.
a. What is the difference betwey the 2 cunditiuns?
b. When would SI be reaudise to be manually reinitiated?

QUESTION 7.03 (3.50)
a. Under Postaceident Condi ions whose approval, bu titie, is reauired priur to orerataing the sustems lasted in the procudure *Postaccident Sustems Oreration*, E-E-12T
b. Under what TWO cunditiuns shuuld the Head Vent system NOT be used per the procedure Precautions and Limitations?
QUESTION 7.04 ..... (3.50)
Answer the folluwins uuestions abuut "Natural Circulation Oreration*,procedure $\mathrm{N}-0-06$.
a. Provide the TWO methods of determins effective natural cireulation. ..... (1,0)
b. What is the maximum coulduwn rate alluwed and the basis forthis rate?
c. What action are wou reauired to take if one control rodindicates not fully inserted?(0.5)d. While performins a cuoldown in natural circulation, whe are theRCS subcoolins reuuirenerits much more restrictive if theContral Rod Drive Mechanism coulins units are not in operation? ( 1,0 )
QUESTION 7.05 ..... (4.00)
a. List FIVE of the seven imewdiete sumptums of the controliins pressurizer pressure charnel failins hish, while at puwer.
b. What autumatic control actions will vecur ats a result of thisfailure?(1.5)
c. What 3 manual actions are ruauired? ..... (1,5)
QUESTION 7.06 ..... (3.00)
a. What are FOUR respunsibilities of the Shift Supervisordurins an emersency accordins to EP-AD-1, "Plant EmersencyOrsanization*?(2.0)
b. Durins an emersency WHO, by title, is the primary relief forthe Shift Surervisur as Emersency Directur and How is the reliefdocumented?(1.0)
QUESTION 7.07 ..... (2,10)
Complete the followins precautions and limitetions from procedure$\mathrm{N}-\mathrm{O}-05$ *Plant Cooldown rrum Hot Shutdown to Culd ShutdownCondition ${ }^{\circ}$.
3. One steam senerator shall be operable whenever the averase reactur cuolant temperature is above -.-- F.
b. At least ... Fressurizer sufety valve shall be operable whenever the reactor head is on the reactor fressure vessel.
c. Pressurizer cooldown rate shall not exceed ... F per hour.
d. The secondary side of the steam serierator must not be pressurized above -.- psid if the temperature of the steam senerator is beluw -- F.
e. Durins cooldown temperature differerice between the pressurizer and the reactor coulant shall be sreater than -.- Fexcept when filling the pressurizer.
P. Maintain the temperature difference between the lours at less than -- F durins cooldowri.
QUESTION $7.08 \quad(2.40)$
a. What are FOUR conditions that MUST be met durins the release of saseous waste?
b. Who must the shift Supervisor notify frior to and at the completion of a saseous waste discharse?

## QUESTION 8.01 (3.70)

a. Is it permissible by Tasuut Control Frocedure ACD 4,3 to re-use a danser tas? EXPLAIN.
b. List the FOUR conditions in ACD 4.3, which allow for excertion of a reauired physical independent verification on the restaration of cards.
c. Who by position/title çan authorize removal of hold ciards when the person that ordered then placed is nut on site and cannot be reached?
d. How is an independent verifictation documented?

QUESTION 8.02 (3.50)
a. List FIVE different examples of a reportable incident as defined in ACD 2.16.
b. What specific responsibility remains for the shift Supervisor after the incident has been recusnized arid an incident report has been initiated?

QUESTION $8.03(2,40)$
What THREE coriditions must be met in order for the Shift Supervisor to authorize/approve a restart prom an unscheduled reactor shutdown?

```(2.4)
```

QUESTION $8.04 \quad(3.00)$
a. What are the approval requirements for implementins a Temporary Operatins Procedure?
b. What is the maximum time period a Temporars Oreratins Procedure is valid?
c. When is the Temporary Operating Procedure control sheet and form NOT reauired to document a chanse?

What is the Standins Order pulicy/practice which allows electrical penetration openinss to remain open jurins non-workins hours?
QUESTION 8.06 (2.00)

When the automatic trip of the RCF on a SI was removed the commitment for two licensed operators in the "Control Roum" was re-implemented. What are the "Control Ruom" boundaries as defined bu this Staridins Nisht Order?

QUESTION 8.07 (3.00)
a. Fur each of the folluwins leak lucatiors, give the maximum alluwable rate of leakaye of reactor coulant as specified in the Technical Specifications.

1. Unknown location.
2. RHR valve packins leak with leakoff line.
3. Throush a wall crack in the line between the pressurizer code seftey valve and the pressurizer.
4. Steam sefierator tubes.
b. What is the basis for the Technical Specification linit on maximum reactor coulant activits? Include operator action assumptions arde in the basis.

QUESTION 8.0日 (2.50)
a. Shutdown marsin (SDM) must meet Technical Srecificetions pigure (3.10-1) reauirements while in hot shutdown conditions. What specific aceident is this fisure desisned to provide protection for?
b. While maintainins $50 \%$ turbine load, with control rods in autumatic, a 50 ppm boron dilution takes plece. What effect does this have on SDM?
c. List the parameters used for calculation of SDM when at power. (1.0)

```
QUESTION 8.09
(2.50)
```

a. What are the steady state AND transient Technicel Specificetion limits for the RCS chenistry parameters listed below?

1. Dissolved $0 x y s e n(>250$ F)
2. Chloride
3. Floride
(1.5)
b. Why are the above transient limits different than the steady state limits?

## IHEEMODYNAMICS

ANSWERS -- KEWAUNEE -84/04/17-PICKER, B.

ANSWER 5.01 (2.50)
3. The flux distribution is skewed towards the buttum of the core (due to MTC effects)
b. 1. Core depletion with Burk D Fartially inserted [0.75] 2. Moderator Temperature Coefficient becomes more nestative with core depletion (because of removal of boron from the coulent to compensate for burnup) [0.75].

## REFERENCE

KNF Trainins Manual; 1-6.31
ANSWER $\quad 5.02 \quad(3.00)$
a. Due to the CHANGE IN PHASE on the secondary side of the steam senerator, its enthalpy rise is roushly ten times the primary side enthalpy drop. Since the ENERGY GAINED by the feedwater MUST be EQUAL to THE ENERGY RELEASED from the primary sustem,
(m dh) primary = (m dh) secondary
the primary mass flow rate must be approximistely ten times the secondary system fluw rate.
b. Due to the large secondary enthalpy chanse [0.75], the percent error from temperature, pressure, and fluw sensitivity is smaller $[0.5]$. Also, frimury system flow instruments are very inaccurate [0.25].

## REFERENCE

Westinghouse Thermal-Hydraulic Principles and Appliciations to PWR I
Chapter 1, pp. 19-22

$$
\text { ANSWER } \quad 5.03 \quad(4.00)
$$

a. 1. Samarium takes much lonser to reach eauilibrium conditions [0.5] because it is formed by decay of a precursor with a lonser half life than for Xerion [0.5].
2. Xerion has the must worth at eauilibriun [0.5] because it is more abundant $[0.5]$ and because it hes a hisher feutron absorbtion eross-section [0.5]
b. True [0.5], Equilibrium Xenon is flux dependent and non-linear [0.5] since burnuut is relatively less sisnificant at $50 \%$ power than at $100 \%$ fower (production is flux dependent but removal terms are not both flux dependerit) [0.5]

## REFERENCE

Kewaunee Nuclear Plant Trainins Manuel (WNTO-7606) I-6.39-46

ANSWER 5.04 (3.00)
a. Initial Rect $=0.000$

$$
\text { Rods }=-.070
$$

Power Defect $=+.010$

$$
0.06 \text { delta-k or } 6000 \text { pem shutdown }
$$

b.
 def. of SDM)
Xenon $=-0.024$

$$
0.064 \text { delta-K or } 6400 \text { fom shutdown }
$$

c.

$$
\text { Xenan }=\begin{aligned}
& -0.064 \\
& +0.052
\end{aligned}
$$

$$
\overline{0.012} \text { delta-k or } 1200 \mathrm{Fem} \text { shutduwn (1.0) }
$$

No penalty if 1 rod is considered stuck or if S.D. rod warth not Considered if done consistantly due to T.S. definition of SIM

REFERENCE
Reactor Theory Manual, Chapter 9

## REFERENCE

KNP Training Manual (WNTO-7803) II -1.4

$$
\text { ANSWER } \quad 5.06 \quad(2.80)
$$

a. 1. MTC becomes more nestative [0.5] -- because as born is reduced over core life (due to fuel depletion) the positive effect of 1 F change in boron concentration is reduced (as temp, increases, density decreases thus more boron is removed from the core) [0.5], OR
neutron leakage is increased due to the radial flux shift outward at EOL [0.5].
2. DOPFLER COEFFICIENT -- Sets less nesative [0.5] due to the decrease in fuel to clad sap [0.3] (clad creep) because of increased heat transfer and reducing the effect of fuel temperature $[0.2]$.
b.

$$
\mathrm{BOL}[0.2 \text { each }]
$$

EUL. [0.2 each]
ATC

$$
\begin{equation*}
-16.4(+1-) \text { \& }^{2} \text { PCB/ F } \tag{0,8}
\end{equation*}
$$

Doppler -12.5 ( $+/-$ ) \& F CM/\%

## REFERENCE

KNF Training Manual, I-6.2-18

ANSWER

$$
5.07
$$

$$
(3.00)
$$

a. Increase
b. Decrease
c. Decrease
d. Increase
e. Decrease
[0.6 each]

[^0]```
ANSWERS -- KEWAUNEE -84/04/17-FICKER, B.
```

```
ANSWER 5.08 (2,50)
Steam Generator Heat Transfer: Q =UA delta T [0.5]
where delta T = Tave - Tsat (sec)
Q, U, and Tsat (sec) remain constant, therefore,
Q/A = A1[Tave 1 - Tsat (sec)] = A2[Tave 2 - Tset (sec)] [0.5]
From Siven info. A2=0.75 A1
From Steam Tables: Tset (sec) = 512-516 F [0.7]
A1 (574 - 514) = 0.75 A1 (Tave 2 - 514) Tave 2 = 594 F
Therefore: Tave must increase by 19-21 F [0.8]
REFERENCE
Westinshouse Thermal-Hydraulic Frinciples and Arplications to FWR I Chapter 6
ANSWER \(\quad 5.09 \quad(3.00)\)
a. WITHDRAWAL LIMIT [0.5] - Imposed to help avoid dunpins steam if a decrease in puwer is initiated. [0.5]
b. MANEUVERING BAND [0.5] - Tu alluw an iminediate return to full power at anytime from d lower power [0.25] as well as to help miantain a fairly even axial fuel depletion [0.25] (1.0)
c. INSERTION LIMITS [0.5] - Assures the ability to shutdown at anytime, under ans conditions [0.5]
REFERENCE
KNF Trainins Manual (WNTO-7606) 1-6.30
```

```
ANSWER 6.01 (3.00)
    a. 1. RMS R-15, S/G tube rupture and radiation releases
    2. RMS R-19, S/G tube rupture and radiation releases
    3. AFW pump start, (loss of micin feed) maximize AFW flow
        (~200 Spm AFW- *80 gem BD)
    4. Containment isolation, accident conditions- radiation release
    5. BII tark hish pressure, tank overpressure protection
    6. BD Heat Exchanser hish tempereture, protect the iun exchanser
                    [0.5 each, 4 reauired]
    b. 1. Condenser hot well
    2. S/G Blowdown tarik
                            [0.5 each]
REFERENCE
KNF System Description Vol I, Chapter 7.
ANSWER
6.02
(3.50)
a. 1. P -impulse
S/G level
S/G pressure
Feedwater flow *
Steam Plow*
2. S/G level
\[
\text { [0.3 each, } 0.1 \text { selectable (\%)] }
\]
b. 1. Hi-Hi S/G level--qrotect turbine prow water carryover.
2. Rx trip \& Low Tave--prevent excessive couldawn of RCS.
3. SI--reduce couldown of RCS to reduce the consequences of accident.
\[
[0.5 \text { each }]
\]

\section*{REFERENCE}

KNP Syster Description Vol I, Chepter 5.
ANSWER \(\quad 6.03 \quad(3.00)\)
a. Cannot be opened unless RHR discharse pressure is <210 psis and SI pump suction valves are closed.
b. Cannot be opened unless orie of two SI recirc test line valves is closed.
c. Cannot be opened uriless RCS pressure is \(\langle 450\) psis ARD auto close if RCS pressure reaches 700 psis.
\[
\begin{equation*}
[1.0 \text { each }] \tag{3.0}
\end{equation*}
\]

\section*{REFERENCE}

KNF System lescription Vol II, Chapter 34.

ANSWER \(\quad 6.04 \quad(3.00)\)
a. Hish FZR level [0.5] Letdown is sreater than makeup, therefore Pzr level decreases and letdown isolates. Then makeup is sreater than letdown and Fzr level increases to the Hish Level Trip [1.0]
b. Low PZR pressure [0.5] Rods insert, Tavs decreases, PZR level and pressure decreases to the Low Pressure Trip. [1,0].

REFERENCE
KNP Trainins Manual Section IU- 3,7,11,12.

ANSWER 6.05 (3.50)
a. The leak collection system consists of channels behind the SFP seall welds and is divided into several zones. Should ans zone develop a leak, a dye solution can be used to ploud the affected zone detectins the leakase source by visual observation of the dye fassins into the poul.
b. Check valves on the return lines afid the penetration heisht of the suction lines.
c. Addins boron carbide to the racks and reducins the space between storase assemblies.
```

ANSWERS -- KEWAUNEE
-84/04/17-FICKER, B.

```

\section*{REFERENCE}

KNP System Description 21, PP 5-6

ANSWER \(\quad 6.06 \quad(2.00)\)
a. To remove non-condensible sases or steam from the reactor vessel head.
b. To limit the plow (in the event of an inadvertant openins or rupture of vent valves/lines) ou within the comaciture



REFERENCE
KNP Operatins Procedures; E-D-12, N-RC-36D
KNP Flow Diasrams XK100-10
ANSWER \(\quad 6.07 \quad(3.00)\)
a. The safety injection sisnel blucks the shutduwn secuencer and sheds the rion-safety loads [0.2]. The undervoltase sisnal blacks the LOCA sequencer and sheds ALL of the loads [0.2]. The EDG automatically starts and when the diesel is up to speed and and voltase the output breaker shuts [0.2]. Then the LOCA seauencer is actuated arid the reauired luads are sequenced on [0.2]. CAF ( 1.0 )
\(\qquad\)

b. 1. ROTH Peeder breakers to the associated ESF bus are open
2. Diesel generator master transfer switeh is in auto
3. Generator is up to voltase
4. Generator is up to speed
5. No lockout relays enersized for that ESF bus
6. Bus De-enersized (UV)

c. To initiate a reactor tris sisfal as fast as rosisible on loss of supply to the RCP.
d. Automatically triffed.

REFERENCE
KNF System llescriftion Vol I, Chafter 10 pf10-12, Vol II, Chapter 42, p. 13 ,

Chapter 39, p. 6
KNF Surveillance Frocedure 33-110.

ANSWER \(\quad 6.08 \quad(2.00)\)
a. All four units automatically start \([0.5]\) and service water bypasses modulatins valves throush hish ecaracity two-fosition valves [0.5].
b. Duct damper interlock directs air flow to orils pump vaults.
```

REFERENCE
KNP System Description Vol II, 18, pp 2, 13

```
```

ANSWERS -- KEWAUNEE
ANSWER $\quad 6.09 \quad(2.00)$
a. Fower input-- delta T [0.5]

Rod heisht-- DEMAND bank position [0.5] (Tave-factor set to zero-not reauired for full credit)
b. Insure adequate shutdown marsin

Minimize severity of ejected rod accident
Provide acceptable nuclear peakins factors (FdeltaH)

REFERENCE
KNF Treining Manual, Section IU-6.

ANSWER $\quad 7.01 \quad(3.00)$
a. 1. Radiation Frotection Supervisor [0.3]: Insures that all data is correct and recured properly [0.2].
2. Authorized Rep, of the Individual's employer [0.3]: To ensure the employer is aware of the exposure their employees are receivins [0.2].
3. The Individual [0.3]: To insure that he is aware that his administrative exfosure limit is being increased [0,2].
b. 1. REGULAR -- Not to exceed one month [0.5]
2. Extended -- Not to exceed one month [0.5]
3. Special -- .-duration of Task ... TEAE] [0.5]

REFERENCE
KNP Radiation Frotection Traifins Manual; Flant Specific I-3, II-1

ANSWER
7.02 (3.50)
a. DIFFERENCES: One hot les above 350 F US, Both above 350 F Press. >700 psis and stable or increesins US. Fress. >2000 psis stable or increasins PZR level > 20% and $V S$. FZR level $>20 \%$ increasins
b. 1. PZR press. decreases more than 200 psi $O R$
2. PZR level drops below 20% OR
3. Reactor coolant subcoolins is < 50 F OR
4. Containment pressure, radiation, sump levels show abnormally hish or increasins readins.

REFERENCE

KNP Operatins Frocedures; E-0-08, P. 3

Z__-EROCEDURES_=_NORUAL_-ABNORYAL _ - EUEEGENCY_AND

```
ANSWERS -- KEWAUNEE -84/04/17-PICKER, B.
```

ANSWER 7.03 (3.50)
a. With the CONCURRENT approval of the Shift Supervisur AND Event Qperations Director.
b. 1. If as a result of a controlled natural circulation couldown a void in the reactor vessel upfer head is expected [1.0].
2. If the Safety Injection Fumps are operatina [1.0]

REFERENCE
KNP Operatins Procedures; E-0-12, P. :

ANSWER

7.04
$(3,50)$
a. - Stean release from 1 S/G [0.5]

- Averase readinss of core T / C is constant (or decreasins) and is substaritually below Tsat. [0.5]
b. 25 F per hour [0.5], to avoid upper head void forination [0.5]
c. Besin Emersency Boratiun.
d. This minimizes the possibility of head voidins.

REFERENCE

KNP Bperatins Procedures; $\mathrm{N}-\mathrm{O}-06$

ANSWERS -- KEWAUNEE
ANSWER $\quad 7.05 \quad(4.00)$
a. (5 of 7 required)

1. Pressure indications on failed channel read high.
2. Pressurizer pressure hist alarm.
3. Pressurizer heaters off.
4. Both spray valves open.
5. Pressurizer hist pressure deviation alarm.
6. Pressurizer pressure hish reactor trip alarm.
7. Actual pressure indication decreasing [0.2 each]
b. 1. Both spray valves open.
8. Pressurizer heaters off.
9. Possible SI (or trip from low pressurizer pressure)
c. 1. Close both pressurizer spray valves borers of
10. Check pressurizer pressure indications.
11. Position selector switch to remove filled channel from control.

REFERENCE

KNP Annunciator Response Book; 47021-33, 42, 43

ANSWER
a. (4 of 5 required)

1. Evaluate plant conditions and determine if an emergency condition exits [0.5].
2. Direct and coordinate the initial response to the emergency, to control and limit its effects [0.5].
3. Initiating required notifications as to the nature and classification of the emergency [0.5].
4. Performing any other initial functions of the Elaersency Director (ED) uritil relieved by a desisriated ED [0.5].
5. Provide info, arid make recommendations to the EOD or ED and obtaining their concurrence before making changes in plant operations [0.5].
b. Plant Manager [0.5]; relief is documented in the Shift
```
Z&_-EROCEDURES_=_NOEGAL__自BNDEUAL._-EUERGENCI_AUD
    BADIOLOGICAL_CONIROL
ANSWERS -- KEWAUNEE -84/04/17-PICKER, B.
```


REFERENCE

```
KNP Emersency Plan Implimentins Procedures; EP-AD-1, P, 1
                            EP-AD-5, P. 1
ANSWER 7.07 (2.10)
3. }\mp@subsup{}{250}{350}\textrm{F},\mp@code{latar reivion of proceduce Apri/10,1984
c. 200 F
d. 200 psis, 70 F
e. }100\textrm{F
f. 25 F [0.3 each]

\section*{REFERENCE}
```

KNP Operatins Procedures; $\mathrm{N}-\mathrm{O}-05$, pr $1-2$
ANSWER $\quad 7.08 \quad(2.40)$
a. 1. The sross activity munitur shall be operable. (Iodirie and particulate samplers)
2. Automatic isolation device shall be orerable.
3. The sross halosen and particuliate activity of all gaseous waste released shall be munitured and recured.
4. Fur effluents without continous monitorins the release activity and volume shall be monitored and recurded.
(0.5)
b. Radiation Protection Group

REFERENCE

```
KNP Dperatins Procedures; \(N-G W P-32 B\), P. 1
KNP Adminstrative Cuntrol Directive; \(A C D\) 6.6, P, 1
```

ANSWER
8.01
(3.70)

```
a. Yes [0.5], with Shift Supervisur approval [0.25] to alluw for
    temporary enersizing of equifmerit for testins/operation [0.25]. (1,0)
b. 1. Indirect indication (status lisht, ammunciator, etc.).
    2. Sisnificant radiation exposure (>1000 mR/hr).
    3. Post work furictional testins (prove correct alisnment).
    4. System checklist cumpleted prior to operability veauirement
        for outase related work. [0.3 each]
c. Plant Mariaser or Actins Flant Manaser
d. A checkmark ( \(\boldsymbol{V}\) ) of the orisinal tasout control sheet.

\section*{REFERENCE}

KNP ACD 4.3, PP 3,7,8.
\[
\text { ANSWER } \quad 8.02 \quad(3.50)
\]
a. 1. Theft/loss of licensed material.2. Over exposure aridfor excessive levels and concentration.3. Defect or non-compliance.4. Exceedins a TS LCO or seftey unit.
5. Immediate notification.6. Reportable event.7. Security event.
\([5\) resuired, 0.5 each](2.5)
b. Determine if event reauires NRC nutification.(10CFR30.72,73.71) ..... (1.0)
REFERENCE
KNP ACD 2.16
ANSWER8.03(2,40)
1. All problems resolved, and
2. Euuipment malpunctions resolved, and3. Cause of trip positively determined. [0.8 each](2.4)
4. Afso ceceupt complation of checklist \(N\)-ESF -55
REFERENCE
KNP ACD 4.1, N-ESF-55, E-0-04.
ANSWER

\[
8.04
\]

\[
(3.00)
\]
a. Approval sisnatures of two members of flant Supervisory Staff [0.75], one of which must be a licensed SRO [0,75] ..... (1.5)

b. Six weeks.

c. Not reauired for checklist charises.

\section*{REFERENCE}
```

KNP ACD 4.2.

```
ANSWER \(\quad 8.05 \quad(2.40)\)
1. Openinss kept as smell as pussible.
2. Opering is overstuffed with cerafiber (to provide a fire barrier)
3. Establish a fire watch pel TS.

\section*{REFERENCE}

KNF Standins Nisht Orders.

ANSWER \(8.06 \quad(2.00)\)
```

Control room-includins kitchenette [0.5], lavatory [0.5], SS office [0.5], and relay room [0.5].

REFERENCE
KNF Standins Nisht Orders.
ANSWER $8.07 \quad$ (3.00)
3. 1. 1 gem
2. 10 spm
3. 0 gpm
4. 500 sed throush ans one S/G. [0.3 each] (1.2)
b. The potential release of activits to the atmosphere is below limits to protect the public [0.6] in the event of a sworst credible) S / B tube rupture [0.6] if the faulty S / G is isulated within $1 / 2 \mathrm{hr}$ after the event [0.6].

```
ANSWERS -- KEWAUNEE
```

REFERENCE
KNF TS pp 3.1-9 and 3.1-11.

ANSWER $\quad 8.08 \quad(2.50)$
a. Steamlirie break $[0.4]$ at EOL [0.1]. (0.5)
b. SDM is reduced.
c. 1. Rod Fosition
2. Rx Fower
3. RCS Temperature
4. Xenon and Samarium cuncentretiuns. TCAFP (1.0)

NOFE1 Utilitu is to provide rermere liaterid for fet for acedice

REFERENCE

KNP TS 3.10 and basis.

ANSWER $\quad 8.09 \quad(2.50)$
a.

STEADY STATE
TRANSIENT

| 1. Oxysen | 0.1 pPm | 1.0 pPm | | |
| :--- | :--- | :--- | :--- | :--- |
| 2. Chloride | 0.15 pPm | 1.5 pPm | | |
| 3. Floride | 0.15 pPm | 1.5 ppin | $[0.25$ each] | (1.5) |

b. Sirice (stress) corrosion is time AND temperature dependent, time (24 hrs)) is allowed to restore chemistry farameters prior to takins action.

REFERENCE
KNP TS 3.1e.

[^0]: REFERENCE
 Westinghouse Thermal-Hydraulic Principles and Applications to PWR II Chapter 12, pp. 15-16

