

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

NORTH ATLANTIC ENERGY SERVICE CORPORATION, ET AL*

DOCKET NO. 50-443

SEABROOK STATION, UNIT NO. 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 40 License No. NPF-86

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by North Atlantic Energy Service Corporation, et al. (the licensee), dated April 16, 1995, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

North Atlantic Energy Service Company (NAESCO) is authorized to act as agent for the: North Atlantic Energy Corporation, Canal Electric Company, The Connecticut Light and Power Company, Great Bay Power Corporation, Hudson Light and Power Department, Massachusetts Municipal Wholesale Electric Company, Montaup Electric Company, New England Power Company, New Hampshire Electric Cooperative, Inc., Taunton Municipal Light Plant, and The United Illuminating Company, and has exclusive responsibility and control over the physical construction, operation, and maintenance of the facility.

 Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. NPF-86 is hereby amended to read as follows:

(2) Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 40, and the Environmental Protection Plan contained in Appendix B are incorporated into Facility License No. NPF-86. NAESCO shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

 This license amendment is effective as of the date of its issuance, to be implemented within 60 days of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Phillip f. McKee, Director Project Directorate I-3

Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical

Specifications

Date of Issuance: August 31, 1995

FACILITY OPERATING LICENSE NO. NPF-86

DOCKET NO. 50-443

Replace the following pages of Appendix A, Technical Specifications, with the attached pages as indicated. The revised pages are identified by amendment number and contain vertical lines indicating the areas of change. Overleaf pages have been provided.

Remove	Insert
3/4 9-3*	3/4 9-3*
3/4 9-4	3/4 9-4
B 3/4 9-1	3/4 9-1
B 3/4 9-2	B 3/4 9-2
B 3/4 9-3	B 3/4 9-3

REFUELING OPERATIONS

3/4.9.3 DECAY TIME

LIMITING CONDITION FOR OPERATION

3.9.3 The reactor shall be subcritical for at least 100 hours.

APPLICABILITY: During movement of irradiated fuel in the reactor vessel.

ACTION:

With the reactor subcritical for less than 100 hours, suspend all operations involving movement of irradiated fuel in the reactor vessel.

SURVEILLANCE REQUIREMENTS

4.9.3 The reactor shall be determined to have been subcritical for at least 100 hours by verification of the date and time of subcriticality prior to movement of irradiated fuel in the reactor vessel.

REFUELING OPERATIONS

3/4.9.4 CONTAINMENT BUILDING PENETRATIONS

LIMITING CONDITION FOR OPERATION

- 3.9.4 The containment building penetrations shall be in the following status:
 - a. The equipment door closed and held in place by a minimum of four bolts,
 - b. A minimum of one door in each airlock is closed, however both doors of one personnel airlock may be open if:
 - 1) One personnel airlock door is capable of being closed, and
 - A designated individual is available outside the personnel airlock to close the door.
 - c. Each penetration providing direct access from the containment atmosphere to the outside atmosphere shall be either:
 - Closed by a manual or automatic isolation valve, blind flange, or equivalent; or
 - Be capable of being closed by an OPERABLE automatic containment purge and exhaust isolation valve; or
 - 3) Be capable of being closed by a designated individual available at the penetration.

APPLICABILITY: During CORE ALTERATIONS or movement of irradiated fuel within the containment.

ACTION:

With the requirements of the above specification not satisfied, immediately suspend all operations involving CORE ALTERATIONS or movement of irradiated fuel in the containment building.

SURVEILLANCE REQUIREMENTS

- 4.9.4 Each of the above required containment building penetrations shall be determined to be either in its required condition or capable of being closed by an OPERABLE automatic containment purge and exhaust isolation valve within 100 hours prior to the start of and at least once per 7 days during CORE ALTERATIONS or movement of irradiated fuel in the containment building by:
 - a. Verifying the penetrations are in their required condition, or
 - b. Testing the containment purge and exhaust isolation valves per the applicable portions of Specification 4.6.3.2.

1.

3/4.9.1 BORON CONCENTRATION

The limitations on reactivity conditions during REFUELING ensure that: (1) the reactor will remain subcritical during CORE ALTERATIONS and (2) a uniform boron concentration is maintained for reactivity control in the water volume having direct access to the reactor vessel. These limitations are consistent with the initial conditions assumed for the boron dilution incident in the safety analyses. The value of 0.95 or less for $k_{\rm eff}$ includes a 1% $\Delta k/k$ conservative allowance for uncertainties. Similarly, the boron concentration value of 2000 ppm or greater includes a conservative uncertainty allowance of 50 ppm boron.

3/4.9.2 INSTRUMENTATION

The OPERABILITY of the Source Range Neutron Flux Monitors ensures that redundant monitoring capability is available to detect changes in the reactivity condition of the core.

3/4.9.3 DECAY TIME

The minimum requirement for reactor subcriticality prior to movement of irradiated fuel assemblies in the reactor vessel ensures that sufficient time has elapsed to allow the radioactive decay of the short-lived fission products. This decay time is consistent with the assumptions used in the safety analyses.

3/4.9.4 CONTAINMENT BUILDING PENETRATIONS

The Limiting Condition for Operation (LCO) limits the consequences of a fuel handling accident in containment by limiting the potential escape paths for fission product radioactivity released within containment. The LCO requires any penetration providing direct access from the containment atmosphere to the outside atmosphere to be closed except for the OPERABLE containment purge and exhaust penetrations, the approved alternate closure methods and the containment personnel airlock.

For the approved alternate closure methods, the LCO requires that a designated individual must be available to close or direct the remote closure of the penetration in the event of a fuel handling accident. "Available" means stationed at the penetration or performing activities controlled by a procedure on equipment associated with the penetration.

For the personnel airlocks (containment or equipment hatch), the LCO entures that the airlock can be closed after containment evacuation in the event of a fuel handling accident. The requirement that the airlock door is capable of being closed requires that the door can be closed and is not blocked by objects that cannot be easily and quickly removed. As an example, the use of removable protective covers for the door seals and sealing surfaces is permitted. The requirement for a designated individual located outside of the airlock area available to close the door following evacuation of the containment will minimize the release of radioactive material.

3/4.9.4 CONTAINMENT BUILDING PENETRATIONS (Continued)

The fuel handling accident analysis inside containment assumes both of the personnel airlock doors are open and an additional 12" diameter penetration (or equivalent area) is open. The analysis is bounded by these assumptions since all of the available activity is released within a 2 hour period.

3/4.9.5 COMMUNICATIONS

The requirement for communications capability ensures that refueling station personnel can be promptly informed of significant changes in the facility status or core reactivity conditions during CORE ALTERATIONS.

3/4.9.6 REFUELING MACHINE

The OPERABILITY requirements for the refueling machine ensure that:
(1) refueling machine will be used for movement of drive rods and fuel assemblies, (2) each hoist has sufficient load capacity to lift a drive rod or fuel assembly, and (3) the core internals and reactor vessel are protected from excessive lifting force in the event they are inadvertently engaged during lifting operations.

3/4.9.7 CRANE TRAVEL - SPENT FUEL STORAGE AREAS

The restriction on movement of loads in excess of the nominal weight of a fuel and control rod assembly and associated handling tool over other fuel assemblies in the storage pool ensures that in the event this load is dropped: (1) the activity release will be limited to that contained in a single fuel assembly and (2) any possible distortion of fuel in the storage racks will not result in a critical array. This assumption is consistent with the activity release assumed in the safety analyses.

3/4.9.8 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION

The requirement that at least one residual heat removal (RHR) loop be in operation ensures that: (1) sufficient cooling capacity is available to remove decay heat and maintain the water in the reactor vessel below 140°F as required during the REFUELING MODE, and (2) sufficient coolant circulation is maintained through the core to minimize the effect of a boron dilution incident and prevent boron stratification.

The requirement to have two RHR loops OPERABLE when there is less than 23 feet of water above the reactor vessel flange ensures that a single failure of the operating RHR loop will not result in a complete loss of residual heat removal capability. With the reactor vessel head removed and at least 23 feet of water above the reactor pressure vessel flange, a large heat sink is available for core cooling. Thus, in the event of a failure of the operating RHR loop, adequate time is provided to initiate emergency procedures to cool the core.

3/4.9.9 CONTAINMENT PURGE AND EXHAUST ISOLATION SYSTEM

The OPERABILITY of this system ensures that the containment vent and purge penetrations will be automatically isolated upon detection of high radiation levels within the containment. The OPERABILITY of this system is required to restrict the release of radioactive material from the containment atmosphere to the environment.

3/4.9.10 and 3/4.9.11 WATER LEVEL - REACTOR VESSEL and STORAGE POOL

The restrictions on minimum water level ensure that sufficient water depth is available to remove 99% of the assumed 10% iodine gap activity released from the rupture of an irradiated fuel assembly. The minimum water depth is consistent with the assumptions of the safety analysis.

3/4.9.12 FUEL STORAGE BUILDING EMERGENCY AIR CLEANING SYSTEM

The limitations on the Fuel Storage Building Emergency Air Cleaning System ensure that all radioactive material released from an irradiated fuel assembly will be filtered through the HEPA filters and charcoal adsorber prior to discharge to the atmosphere. Operation of the system with the heaters operating for at least 10 continuous hours in a 31-day period is sufficient to reduce the buildup of moisture on the adsorbers and HEPA filters. The OPERABILITY of this system and the resulting iodine removal capacity are consistent with the assumptions of the safety analyses. ANSI N510-1980 will be used as a procedural guide for surveillance testing.

3/4.9.13 SPENT FUEL ASSEMBLY STORAGE

Restrictions on placement of fuel assemblies of certain enrichments within the Spent Fuel Pool is dictated by Figure 3.9-1. These restrictions ensure that the $K_{\rm eff}$ of the Spent Fuel Pool will always remain less than 0.95 assuming the pool to be flooded with unborated water. The restrictions delineated in Figure 3.9-1 and the action statement are consistent with the criticality safety analysis performed for the Spent Fuel Pool as documented in the FSAR.

3/4.9.14 NEW FUEL ASSEMBLY STORAGE

Restrictions on placement of fuel assemblies of certain enrichments within the New Fuel Storage Vault is dictated by Specification 3/4.9.14. These restrictions ensure that the $K_{\rm eff}$ of the New Fuel Storage Vault will always remain less than 0.95 assuming the area to be flooded with unborated water. In addition, these restrictions ensure that the $K_{\rm eff}$ of the New Fuel Storage Vault will always remain less than 0.98 when aqueous foam moderation is assumed. The restrictions delineated in Specification 3/4.9.14 and the action statement are consistent with the criticality safety analysis performed for the New Fuel Storage Vault as documented in the FSAR.