Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Kairos Power Licensing Subcommittee Open Session
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Friday, February 21, 2020

Work Order No.: NRC-0804

Pages 1-63

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	KAIROS POWER LICENSING SUBCOMMITTEE
8	+ + + +
9	FRIDAY
10	FEBRUARY 21, 2020
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Subcommittee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2D10, 11545 Rockville Pike, at 8:30 a.m., David
17	Petti, Chair, presiding.
18	
19	COMMITTEE MEMBERS:
20	DAVID PETTI, Chair
21	RONALD G. BALLINGER, Member
22	DENNIS BLEY, Member
23	CHARLES H. BROWN, JR., Member
24	VESNA B. DIMITRIJEVIC, Member
25	WALTER L. KIRCHNER, Member
I	I

1	JOSE MARCH-LEUBA, Member
2	JOY L. REMPE, Member
3	PETER RICCARDELLA, Member
4	MATTHEW W. SUNSERI, Member
5	ACRS CONSULTANTS:
6	MICHAEL L. CORRADINI
7	STEPHEN SCHULTZ
8	DESIGNATED FEDERAL OFFICIAL:
9	WEIDONG WANG
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
l	

2

	3
1	C-O-N-T-E-N-T-S
2	ACRS Chairman Introductory Remarks 4
3	NRC Staff Introductory Remarks 6
4	Kairos Power Introductory Remarks
5	Overview of Kairos Power FHR and Program
6	Development
7	Overview of Scaling Methodology Topical
8	Report (KP-TR-006)
9	Overview of Reactor Coolant Topical Report
10	(KP-TR-005)
11	Public Comments
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:00 a.m.)
3	MEMBER PETTI: This is a meeting of the
4	Kairos Power Licensing Subcommittee of the Advisory
5	Committee on Reactor Safeguards.
6	I'm David Petti, chairman of today's
7	subcommittee meeting.
8	ACRS members in attendance are Vesna
9	Dimitrijevic, Walt Kirchner, Ron Ballinger, Pete
10	Riccardella, Matt Sunseri, Joy Rempe, Jose March-
11	Leuba, and we expect Dennis and Charlie Brown later.
12	We have consultants, Mike Corradini and
13	Steve Schultz, and Weidong Wang of the ACRS staff as
14	the designated federal official for this meeting.
15	During today's meeting, the subcommittee
16	will receive a presentation on the design overview of
17	the Kairos Power fluoride salt-cooled high temperature
18	reactor, a new generation for a nuclear reactor, and
19	review two Kairos topical reports on the scaling
20	methodology for the Kairos Power Testing Program, and
21	the reactor coolant for the Kairos power reactor.
22	The subcommittee will have presentations
23	by and hold discussions with the staff, the Kairos
24	power representatives, and other interested persons.
25	The rules for participation in all ACRS
	I

(202) 234-4433

	5
1	meetings, including today's, were announced in the
2	Federal Register on June 13, 2019.
3	The ACRS section of the U.S. NRC public
4	website provides our charter, our bylaws, agendas,
5	letter reports, and full transcripts of all full and
6	subcommittee meetings, including the slides that will
7	be presented today.
8	The meeting notice and agenda for this
9	meeting were posted there. We've received no written
10	statements or request to make an oral statement from
11	the public.
12	The first part of today's meeting is open
13	to public attendance.
14	The second part of the meeting will be
15	closed in order to discuss information that's
16	proprietary to the licensee and its contractors,
17	pursuant to 5 U.S.C. 552BC4.
18	Attendance at these portions of the
19	meeting that deal with such information will be
20	limited to the NRC staff, and those individuals and
21	organizations who have entered into an appropriate
22	confidentiality agreement with them.
23	Consequently, we will need to confirm that
24	we have only eligible observers and participants in
25	the room for the closed portions of the meeting.
	I

(202) 234-4433

	6
1	The subcommittee will gather information,
2	analyze the relevant issues and facts, and formulate
3	proposed positions and actions as appropriate by
4	deliberation by the full committee.
5	The rules for participation in today's
6	meeting have been announced in the Federal Register.
7	There's a transcript of the meeting being kept, and
8	again, will be made available.
9	Therefore, we request that participants in
10	the meeting use the microphones located throughout the
11	meeting room when speaking.
12	Press on it until you get the green button
13	light to go on so that the transcribe can hear.
14	Participants should first identify
15	themselves and speak with sufficient clarity and
16	volume so that they may be heard.
17	We will now proceed with the meeting, and
18	I'd like to start by calling on the NRR staff to
19	introduce our guests.
20	DR. CORRADINI: Brian, do you want to?
21	MR. SMITH: Good morning, my name is Brian
22	Smith, I'm the deputy director of the Division of
23	Advanced Reactors and Non-Power Production and
24	Utilization Facilities. It's a long title.
25	We cover a lot. Not only advanced
ļ	

(202) 234-4433

	7
1	reactors, but also for the research reactors, as well
2	as the moly-99 production facilities, so a broad
3	scope.
4	My staff and I are very pleased to be here
5	today to meet with you to talk about our review of
6	these two topical reports. We look forward to
7	whatever questions you may have, and any feedback you
8	have on our review.
9	We've been interacting with you over the
10	last several years on advanced online water reactor
11	issues, primarily guidance development, so we see this
12	meeting as a milestone of sorts. No longer talking
13	about guidance, but talking about specific topical
14	reports submitted by a reactor developer.
15	So milestones, kind of big day. I want to
16	thank Kairos in advance for the overview they're going
17	to do of their design.
18	I looked through the slides. It looks
19	like it'll be very beneficial to the ACRS, and the
20	staff, as well.
21	We want to thank the ACRS for assigning
22	Dr. Petti as the lead for this Kairos review. We look
23	forward to interacting with him and the rest of the
24	ACRS on future reviews of topical reports submitted by
25	Kairos, as well as any future applications that may
	1

(202) 234-4433

	8
1	reference the Kairos design.
2	In performing these reviews, we used staff
3	from both NRR, as well as the Office of Research, and
4	I want to thank them for their efforts in developing
5	what I thought were high quality documents.
6	Finally, I want to note that the working
7	relationship between the staff and Kairos was great,
8	and that we were able to get through these reviews
9	without having to issue any requests for additional
10	information. So that's it for me. Thank you.
11	DR. CORRADINI: So can I
12	MEMBER KIRCHNER: Yeah.
13	DR. CORRADINI: I'm sorry.
14	MEMBER KIRCHNER: Brian, I just want to
15	ask a question. As you approached this review with
16	Kairos or other potential applicants, are you now
17	using as a point of reference the advanced reactor
18	design criteria?
19	MR. SMITH: Yes.
20	MEMBER KIRCHNER: That's kind of your
21	substitute for the GDCs, in terms of having some
22	reference point to look at different aspects of the
23	design?
24	MR. SMITH: Yes. We developed the
25	obviously that document. I think we coordinated with

(202) 234-4433

	9
1	you guys on that. Recognizing that a lot of the GDC
2	may not apply to some of these new designs.
3	In fact, Kairos has submitted a topical
4	report to us that describes their proposed principle
5	design criteria.
6	DR. CORRADINI: Within that context?
7	MR. SMITH: Yes sir.
8	DR. CORRADINI: So, does that also imply
9	that the application will use the Licensing
10	Modernization Program I don't know the right name
11	for this thing, so I'm going to call it the short
12	name, the LMP, in terms of the process?
13	MR. SMITH: Yes, there's actually another
14	topical report that we have in house from Kairos that
15	lays out their approach for utilizing the LMP.
16	MEMBER BLEY: Did I hear you right? You
17	expect to not have a request for information?
18	MR. SMITH: For these two topical reports
19	that we reviewed
20	MEMBER BLEY: You had none?
21	MR. SMITH: We did not issue any.
22	MEMBER BLEY: What led to that?
23	MR. SMITH: The interactions that we had
24	with their staff directly.
25	MEMBER BLEY: Okay, so you had meetings
ļ	1

	10
1	essentially?
2	MR. SMITH: Yes, we did.
3	DR. CORRADINI: We had a couple other
4	meetings earlier this week, emphasizing that it's good
5	the staff has informal discussions ahead of time.
6	Is this part of the reason that you
7	eliminated the need for RAIs, that you guys had enough
8	up-front discussions, in terms of
9	MR. SMITH: Yes.
10	DR. CORRADINI: Okay.
11	MEMBER MARCH-LEUBA: And that's a really
12	good thing.
13	I mean, I've always been pushing for
14	audits as opposed to RAIs, where you're having
15	informal communications, and then you eventually
16	document it somewhere.
17	A lesson learned from all the reactor
18	we're reviewing now, and since you're in the process,
19	that particularly reactor has then the SER, a lot of
20	areas where all the or the existing regulations don't
21	apply to me because all the safety features I have
22	that make my reactor more safe, which is great.
23	But they tend to forget what are the
24	special characteristics of my reactor that make it
25	less safe?
ļ	I

(202) 234-4433

	11
1	And they don't really focus on that, and
2	they don't have a table on at least it says none.
3	They really didn't focus on the special
4	characteristics of the reactor.
5	And this is something I'm just giving you
6	notice, like are you start sending description or
7	anything, I want to be looking for what's missing, and
8	I'm hoping that you have, too. Okay?
9	MR. SMITH: Okay.
10	MEMBER MARCH-LEUBA: Because I mean,
11	honestly, if you look at it from that lens, you will
12	see a lot of that doesn't apply to me, that doesn't
13	apply to me, that doesn't apply to me, and nowhere
14	they say ah, but this should apply to me and you never
15	thought of it.
16	MR. SMITH: Right. For these new advanced
17	non-light water reactor designs
18	MEMBER MARCH-LEUBA: It clearly
19	MR. SMITH: There's a lot of requirements
20	in Part 50 that are specific to light water reactor
21	designs, so there will be a good number of exemptions,
22	we expect, from if not, probably all of that.
23	MEMBER MARCH-LEUBA: But I would expect
24	that just one or two requests to add requirements
25	because of the special characteristics of my reactor,
	1

(202) 234-4433

	12
1	right?
2	MR. SMITH: Sure.
3	MEMBER MARCH-LEUBA: So at least a good
4	condition of why there wasn't any.
5	DR. CORRADINI: Can I just follow up? You
6	said something that maybe I should have assumed. Is
7	the applicant in a process of defining they're going
8	with a Part 50 versus a Part 52?
9	MR. HASTINGS: Yes, and we're going to
10	talk about that.
11	DR. CORRADINI: Is this an appropriate
12	later today?
13	MR. HASTINGS: Okay, fine.
14	MEMBER PETTI: All right. So, just one
15	more thing before we get started.
16	Because you guys are trying to catch a
17	flight later today many of you we were thinking
18	of making lunch just 30 minutes.
19	Go downstairs, you can bring something
20	back and eat here, but to try to compress that time to
21	make sure you guys have a margin to catch your
22	airplane. Okay.
23	DR. CORRADINI: All right. Thank you.
24	MEMBER PETTI: Yep, no problem.
25	DR. CORRADINI: Go ahead.
Į	1

(202) 234-4433

	13
1	MR. HASTINGS: Good morning. I'm Peter
2	Hastings, I'm the vice president of Regulatory Affairs
3	and Quality for Kairos Power.
4	On behalf of our entire team, thanks to
5	the subcommittee for the invitation to introduce
6	Kairos, our plans for developing, deploying the
7	fluoride salt-cooled high temperature reactor.
8	You'll see it referred to in these
9	presentations as the KP-FHR. And our first two
10	topical reports that are before you for review.
11	Joining me today are our chief technology
12	officer, Ed Blandford, our chief nuclear officer, Per
13	Peterson.
14	They're cofounders of Kairos Power, along with
15	our CEO, Mike Laufer, who was unable to join us this
16	morning.
17	Also here are Darrell Gardner, our senior
18	director of licensing, Alan Kruizenga, director of
19	salt chemistry, and Nico Zweibaum, senior manager of
20	the engineering testing, all of whom will be
21	presenting later today.
22	And we're also joined by Drew Peebles, our
23	manager of safety integration, and senior licensing
24	engineers, John Price and Margaret Ellenson.
25	Next slide.
	I

(202) 234-4433

	14
1	Kairos Power is a mission-driven company,
2	and we begin every substantive interaction that we
3	have with a reiteration of that mission, which is to
4	enable the world's transition to clean energy, with
5	the ultimate goal of dramatically improving people's
6	quality of life while protecting the environment.
7	This is very important to us.
8	To put this meeting into context of that
9	mission, NRC approval of our design is a key component
10	of meeting the mission, and the ACRS participation in
11	that process is obviously an important aspect of the
12	approval.
13	Next slide.
14	This morning's public session will consist
15	of a relatively brief overview of our design and
16	development efforts, an overview of our two topical
17	reports, scale and methodology, and reactor coolant,
18	salt.
19	This portion is scheduled for about an
20	hour.
21	We may try to accelerate that in the
22	interest of getting to the more meaty parts of the
23	presentation.
24	Then we'll go into closed session and
25	drill down the proprietary details on each of these
	1

(202) 234-4433

	15
1	topics.
2	Next slide. Our design is a hybrid that
3	borrows attributes from other designs.
4	We use remarkably robust coated particle
5	TRISO fuel it's historically used in gas reactors
6	demonstrated to withstand extreme temperatures that
7	are well beyond the threshold of current nuclear
8	fuels.
9	Unlike gas reactors, we use molten salt
10	coolant with a very high potential for absorbing and
11	retaining radionuclides.
12	Our coolant is also chemically inert and
13	not reactive with water or air.
14	We combine these attributes with a low
15	pressure primary system into a design with substantial
16	safety margins, which enables us to think differently
17	about the size of our safety footprint.
18	Because cost of new nuclear builds is one
19	of the primary barriers to deployment, the small
20	safety footprint supports aggressive cost targets that
21	allows us to think seriously about competing with
22	natural gas, which is our primary initial market in
23	the United States.
24	Cautionary tale about the design details
25	you'll see here, they're intended to provide context
	I

(202) 234-4433

	16
1	for the review of the topical reports.
2	The design is currently in the conceptual
3	phase, and so a lot will change over the course of the
4	next several months, but this is sort of a snapshot in
5	time of where we are.
6	Next slide.
7	Kairos Power is a privately funded company
8	focused on the commercialization of the FHR.
9	We were founded in 2016, emerging from a
10	UC Berkeley concept that was part of a DOE sponsored
11	integrative research project.
12	We're based in the San Francisco Bay Area,
13	and have doubled our staff in the past couple of years
14	to about 120 full-time staff currently.
15	As I mentioned, our primary market is U.S.
16	electricity, with an expectation to deploy broadly in
17	the 2030s, or sooner.
18	We're pursuing our mission by way of a
19	determined and intentional approach to designing a
20	reactor with a combination of remarkable safety
21	margins and economic performance that enables direct
22	competition with natural gas.
23	Next slide.
24	MEMBER MARCH-LEUBA: Well, you mentioned
25	that you said U.S. energy. Have you been affected
ļ	I

	17
1	at all by tariffs and export control? Do you have any
2	partners outside the U.S.?
3	MR. HASTINGS: We're not affected by that
4	at this time.
5	MEMBER MARCH-LEUBA: Okay.
6	MR. HASTINGS: We'll turn now to a very
7	high-level overview of the design and development of
8	the KP-FHR.
9	Next slide.
10	As I mentioned earlier, our primary
11	initial target is competition with natural gas.
12	Competing with gas requires that we think
13	differently, and cost of the plant is an important
14	aspect of our deployment plan.
15	We expect to take advantage of the FHR's
16	robust inherent safety resulting from large
17	temperature margins in the fuel, the large retention
18	capacity of FliBe coolant for fission products, the
19	lack of a high pressure primary system, and passive
20	decay heat removal, which eliminates the need for
21	safety-related power.
22	All combine to reduce capital cost and
23	enable broader use of conventional components,
24	conventional materials, and fabrication and
25	construction techniques, in lieu of higher cost
	I

(202) 234-4433

	18
1	nuclear-grade versions.
2	Next slide.
3	Our baseline licensing strategy for our
4	first deployment includes substantial pre-application
5	engagement, which Brian mentioned we've been very
6	active with the NRC staff in the last little over a
7	year.
8	Followed by a two-step Part 50
9	construction permit and operating license.
10	In pre-application space, we've been
11	highly engaged with the staff with submittal of
12	several topical reports, the first two of which are
13	before you today, and the balance of which are all
14	about questions you asked.
15	Our principle design criteria, a
16	regulatory gap analysis, and so forth.
17	During the pre-application phase, we also
18	plan to submit a preliminary safety information
19	document, or PSID, which is a platform that's been
20	used a handful of times in the past for substantive
21	non-topical pre-app review.
22	The PSID will look somewhat like an early
23	application, and will result in a preliminary non-
24	binding review by the staff in a preliminary safety
25	evaluation.
Į	I

(202) 234-4433

	19
1	This vehicle's intended to provide early
2	feedback on key technical issues, not dissimilar from
3	the Canadian Vendor Design Review, but with additional
4	flexibility in terms of content.
5	DR. CORRADINI: Has
6	MR. HASTINGS: Mm-hmm?
7	DR. CORRADINI: Not to slow you down much.
8	What's an example most recently the NRC has had this,
9	and has exercised this so they're aware of how to
10	respond?
11	MR. HASTINGS: It has been some time. There was
12	one for the MHTGR, there was one for PRISM, and there
13	was a third one that I always forget.
14	DR. CORRADINI: So we're talking the '80s?
15	MR. HASTINGS: Yeah.
16	PARTICIPANT: Eighties, yes.
17	DR. CORRADINI: Okay, well the only reason
18	I ask is personally, this is a very logical approach,
19	but I'm just making sure the staff is aware and ready
20	for your first blue box.
21	MR. HASTINGS: They are. We've discussed
22	it.
23	You may recall a couple of years ago,
24	there was a lot of discussion about the development of
25	a VDR-type process by the staff.
I	I

(202) 234-4433

	20
1	(Simultaneous speaking.)
2	DR. CORRADINI: I remember you were here
3	talking about it.
4	MR. HASTINGS: And the staff were off to
5	develop such a program, and we sort of collectively
6	all came to the conclusion at about the same time that
7	if we use the PSID format, it really provided
8	everything we needed with actually more flexibility
9	than the VDR process because it has a very fixed
10	format around 19 topics.
11	The PSID can sort of be whatever you want
12	it to be.
13	DR. CORRADINI: Okay.
14	MR. HASTINGS: And so, we're working with
15	the staff now to narrow down what the topics are going
16	to be
17	DR. CORRADINI: Within it?
18	MR. HASTINGS: Within the PSID.
19	MEMBER BLEY: Okay. And you said it's a
20	non-binding document?
21	MR. HASTINGS: Correct. So
22	MEMBER BLEY: But it means you get some
23	advanced review, but if what comes out next isn't the
24	same, you might be starting over?
25	MR. HASTINGS: Exactly.
I	1

```
(202) 234-4433
```

	21
1	MEMBER BLEY: Okay.
2	DR. CORRADINI: Yeah, but to follow up
3	Dennis' question, I assume the whole purpose of this
4	is to identify things that are issues early and
5	MR. HASTINGS: To address them. It's all
6	about de-risking the programmatic portion of the
7	process.
8	MEMBER REMPE: Do you have a schedule in
9	mind of how long you'll take for the pre-application
10	phase versus the construction permit application?
11	MR. HASTINGS: We do. That schedule is a
12	work in progress.
13	Our current plan is for a PSID early 2021,
14	with a CPA a couple of years after that. Those
15	numbers are moving around a bit, frankly.
16	MEMBER REMPE: Thanks.
17	DR. CORRADINI: Okay. Thank you.
18	MEMBER BROWN: Non-binding doesn't
19	necessarily mean you all might make changes, but NRC,
20	even though they provide feedback, they could change
21	their minds
22	MR. HASTINGS: It's
23	MEMBER BROWN: Based on a subsequent
24	thing, that oh, we've thought about this some more.
25	So I mean, it's a two-way street when it
	I

(202) 234-4433

	22
1	comes to non-binding? I just wanted to make sure I
2	understood that.
3	MR. HASTINGS: Right. Yeah, that's
4	correct.
5	MEMBER BROWN: Since I haven't seen one of
6	these.
7	MR. HASTINGS: Yeah. And we understand
8	that risk, but it is all about de-risking the program.
9	MEMBER BROWN: No, no objection to the
10	(Simultaneous speaking.)
11	MR. HASTINGS: So the more we can get, the
12	better, obviously then.
13	MEMBER BROWN: Okay, thank you.
14	MEMBER KIRCHNER: Could I ask a question
15	of the staff just to a little quick digression.
16	What would you do if you get a PSID?
17	Would you do what was done in the '80s and
18	do like a preliminary SER kind of document? And then
19	how would you review that?
20	MEMBER BLEY: I seem to remember they did
21	a new reg as that part was done.
22	(Simultaneous speaking.)
23	MEMBER KIRCHNER: Yeah, but I was
24	MR. MAGRUDER: Right, yeah. This is Stu
25	Magruder, I'm the lead project manager in NRR for the
ļ	

(202) 234-4433

	23
1	project.
2	And what we're planning to do is similar
3	to what we did for PRISM and MHTGR is to write what we
4	call a draft or preliminary safety evaluation report.
5	It would be published.
6	We would hope to brief you and get a
7	letter from the ACRS on that before we issued it, but
8	as Dr. Brian said, this would be all based on
9	preliminary information.
10	It's not a final answer, but it would
11	serve to kind of identify if there are any
12	showstoppers or significant issues that Kairos would
13	need to pursue in different areas.
14	MEMBER MARCH-LEUBA: But the topical
15	reports each will have a safety evaluation report with
16	it, and those are binding, right?
17	Once you issue the SER, they can use it.
18	MR. MAGRUDER: Yes. We'll talk about that
19	obviously later today, but you're absolutely right.
20	There's more regulatory certainty with topical report
21	SERs and
22	(Simultaneous speaking.)
23	MEMBER MARCH-LEUBA: It has more
24	MR. MAGRUDER: So this is all part of
25	their plan.
I	

(202) 234-4433

	24
1	MEMBER MARCH-LEUBA: It has more value in
2	a sense. I mean, it's final.
3	MR. MAGRUDER: Yes.
4	MEMBER MARCH-LEUBA: And once the position
5	
6	(Simultaneous speaking.)
7	MR. MAGRUDER: Although, there are, of
8	course, as you'll see, there are limitations and
9	conditions in our SERs
10	(Simultaneous speaking.)
11	MEMBER MARCH-LEUBA: Which are actually
12	- are also final. Right?
13	(Simultaneous speaking.)
14	MEMBER BROWN: How does that affect the
15	non-binding nature of the PSID if there's topical
16	reports that have a formal locked-in SER?
17	DR. CORRADINI: I guess it would be
18	similar to other examples, which is they've committed
19	to doing it a certain way within the limitation and
20	conditions, and that's holes, however the design moves
21	around.
22	MEMBER MARCH-LEUBA: Unless they want to
23	change
24	MEMBER BROWN: I'm saying just yeah, the
25	non-binding nature is a little bit it's not totally
I	1

(202) 234-4433

	25
1	non-binding if you have a topical report SER.
2	MR. HASTINGS: Right, so it's a continuum,
3	right? From a PSID to a topical to another
4	application.
5	(Simultaneous speaking.)
6	MEMBER BROWN: That's fine, I just wanted
7	to it's another thing that got thrown into the
8	hopper.
9	MEMBER MARCH-LEUBA: They always have the
10	possibility of issuing Revision 1 of the topical
11	report.
12	MEMBER BROWN: Yeah, I got it.
13	MEMBER BLEY: Or issue a technical report
14	that adapts that one
15	DR. SCHULTZ: And the limitations and
16	conditions will be very important for both parties.
17	MR. HASTINGS: All true. And if there's
18	a topic that rises to the level of a topical report in
19	terms of maturity and readiness to receive a formal
20	review, you wouldn't see much discussion of that in
21	the PSID, other than pointing to it.
22	MEMBER MARCH-LEUBA: Given the fact that
23	this is new technology for some of us, I mean, we are
24	too young to remember molten salt reactors
25	MR. HASTINGS: Speak for yourself.
I	

(202) 234-4433

	26
1	PARTICIPANT: No, we're not.
2	MEMBER BLEY: We have a couple people of
3	that sort.
4	MR. HASTINGS: Speak for yourself.
5	MEMBER MARCH-LEUBA: Yeah, well I was
6	making a joke.
7	The methodology of topical reports, how
8	you analyze it and what correlations, you use and
9	everything. I assume you're waiting for the results
10	from the experiments to finalize those. Is that
11	correct, or are you working already on those?
12	MR. HASTINGS: Both. So many of our
13	topicals are in two phases where the initial topical
14	is methodological or phenomenological, and the
15	revision later would be with supporting qualified
16	data.
17	MEMBER MARCH-LEUBA: So you're moving
18	ahead and doing Part A, and then just leaving the
19	appendices to be done?
20	MR. HASTINGS: In many cases, that's
21	correct.
22	MEMBER MARCH-LEUBA: That's good, because
23	for other reactors, which shall not be named, we're
24	reviewing methodology now after this here has been
25	issued. So, that's not desirable. You're doing much
I	I

(202) 234-4433

	27
1	better. Thank you.
2	MR. MAGRUDER: Let me just add one more
3	thing. Brian reminded me that I should point out that
4	with regard to issue finality or kind of staff's
5	conclusions, this is different from Part 52, where you
6	have a design certification document and the staff is
7	actually bound by what we write in our SE for that.
8	This is under Part 50 space, there's no issue finality
9	for these types of issues.
10	I mean, obviously when we issue an
11	operating license eventually, there will be, but up to
12	that point, there's no issue finality like there is in
13	Part 52.
14	MEMBER REMPE: So, your comment about
15	well, yeah, maybe there's more finality, but we've got
16	some limitations and conditions that might come into
17	play.
18	And when I was looking through your SERs,
19	there are some interesting limitations and conditions
20	regarding like, because this is new well, it's
21	not new technology, but we've not been using it for a
22	lot of years if you see something different, we may
23	have some additional changes.
24	And have you ever done that in a topical
25	report review before, or in recent years?
Į	1

(202) 234-4433

	28
1	Because I thought in some ways it's like
2	a get out of jail free card that you've put in,
3	there's a limitation and condition. Have you done
4	that before? Because I don't recall something as
5	different as that in past reviews.
6	MR. MAGRUDER: So, I'll let the technical
7	reviewers talk specifically about that, but I think
8	these topicals did present some challenges because
9	there were so many new features and so many things
10	that we're waiting on.
11	MEMBER REMPE: Right.
12	MR. MAGRUDER: And so, there was a lot of
13	good discussion among the staff about how to write it.
14	MEMBER REMPE: But you have examples where
15	you've done that in I hadn't seen that before, and
16	it's a little I mean, maybe back in the MHTGR and
17	PRISM days, they did that too, but I didn't recall it.
18	MR. MAGRUDER: I don't know of any
19	specific examples, but we can talk more later about
20	that.
21	MEMBER PETTI: Certainly in the MHTGR
22	days, there were a long list of things that drove that
23	program for the next decade.
24	MEMBER REMPE: But this one, it's just
25	like, eh, if you see some new phenomena, we answer
ļ	

(202) 234-4433

	29
1	questions.
2	I mean, they had specific items of where
3	they were looking into.
4	MEMBER PETTI: Right. Well, because the
5	technologies were a little more mature.
6	MEMBER REMPE: Right.
7	MEMBER PETTI: Right. Keep on going.
8	MR. HASTINGS: All right, next slide.
9	The goals of a licensing strategy are
10	straightforward.
11	The chairman has said in several public
12	forums that if we can't find a way to take advantage
13	of increased safety in advanced designs, we all will
14	have failed, and we certainly agree with that.
15	Kairos' intents to take advantage of the
16	significant safety margins of the FHR design, not only
17	to compete with natural gas as a way to accomplish our
18	mission of enabling the world's transition to clean
19	energy, but also to achieve the enabling goals that
20	you see here.
21	First, to get early acceptance of the FHR
22	safety case in order to retire programmatic risk as
23	early as possible, which is most of what we've been
24	talking about already this morning.
25	Second, to minimize the safety footprint,
	I

(202) 234-4433

	30
1	enabling both economic competitiveness and true focus
2	on safety significant aspects of the plan.
3	And third, to build flexibility into the
4	process invigorating the design so that every tweak in
5	the design going forward doesn't constitute another
6	significance licensing action, to the extent we can
7	achieve that.
8	So with that, I'll turn things over to Dr.
9	Ed Blandford, who will discuss Kairos' testing and
10	development overview.
11	DR. CORRADINI: Ah, there we go.
12	DR. BLANDFORD: Excellent, good morning.
13	Thank you. As Peter mentioned, my name is Ed
14	Blandford. I am the cofounder and chief technology
15	officer of Kairos Power. I'm going to provide a quick
16	overview of our testing and development program.
17	Next slide.
18	So, this slide we present in a number of
19	public forums. It pretty much encapsulates everything
20	that we do at Kairos.
21	At the top, it outlines what we would
22	consider a conventional development cycle, where we
23	have a plan, design, build, test sequence.
24	And I think many people would agree one of
25	the challenges in the civilian nuclear community is
	I

(202) 234-4433

	31
1	really trying to break down the cycles and really
2	accelerate development.
3	But Kairos' focus is really on the bottom
4	part of that slide that shows how we go through that
5	process through an iterative development effort, and
6	so this really encapsulates a lot of the activities
7	that we're doing today.
8	Peter had talked through our licensing
9	approach.
10	That's an example of that sort of
11	iterative, putting the early topical reports in front
12	of the staff, and walking through our technology.
13	So this really encapsulates a lot of our
14	development program.
15	Next slide.
16	We recognize the importance of
17	demonstrating our technology.
18	This is a very, very big part of our DNA,
19	it's a very big part of who we are and what we're
20	focused on.
21	We recognize that this is a new
22	technology, but it's an area that we see a lot of
23	opportunities.
24	We also recognize that there's a need for
25	testing facilities to support our development program.
I	1

(202) 234-4433

	32
1	So in this slide, it shows the progression
2	of a series of test facilities that Kairos is
3	currently invested in.
4	It's already stood up, or is in the
5	process of standing up.
6	And it really starts with the first two
7	letters. It's a little bit of a QRSTU.
8	It starts with what we call our Rapid Lab,
9	which is a rapid analysis prototype and iterative
10	design lab.
11	This is located in our headquarters in
12	Alameda.
13	It's a part of our facility where we're
14	able to iterate quickly, so we use rapid prototyping
15	technologies to produce components, iterate the
16	surrogate fluids, and really inform elements of the
17	design that are important.
18	It allows us to move quickly.
19	In parallel, we understand the importance
20	of working at the high temperature and working with
21	the prototypical fluids, and so we also have what we
22	call our Salt Lab, which is a facility that we're
23	standing up in our Alameda lab.
24	We're about, I think, two weeks away from
25	actually operating our first salt experiment utilizing
I	I

(202) 234-4433

	33
1	the beryllium salts. Slide. In parallel, we also
2	have what's called our Testing Facility or our T-
3	Facility.
4	This is actually a location that we're
5	about to open up in the state of New Mexico, in
6	Albuquerque, and this is an area where we plan on
7	doing larger scale qualification testing.
8	And so, we're very hard at work trying to
9	stand up that facility and those capabilities.
10	DR. CORRADINI: If this is an appropriate
11	time to ask, where's that in New Mexico within the
12	laboratory structure?
13	DR. BLANDFORD: It's in Albuquerque.
14	DR. CORRADINI: Okay, but
15	DR. BLANDFORD: So it's a
16	private facility, so there's been a little bit of
17	press, so it's in the public domain.
18	DR. CORRADINI: Okay, fine.
19	DR. BLANDFORD: But it's at it's called
20	the Mesa Del Sol development site.
21	DR. CORRADINI: Okay, thank you.
22	DR. BLANDFORD: And then lastly, there's
23	a user facility, and this is an area where we would
24	anticipate training end users in terms of operations
25	and maintenance.
I	1

	34
1	That's the one facility that we're working
2	towards today that doesn't physically exist right now.
3	Next slide.
4	MEMBER KIRCHNER: Before you go on?
5	DR. BLANDFORD: Uh-huh?
6	MEMBER KIRCHNER: So, your slide says non-
7	nuclear.
8	DR. BLANDFORD: Correct.
9	MEMBER KIRCHNER: So, have you a shortlist
10	or development and test plan for those aspects that
11	actually have a nuclear component?
12	DR. BLANDFORD: Good question. So, we've
13	committed to both a nuclear and a non-nuclear test
14	program, and we'll get into a little bit more of the
15	details later on today.
16	It's difficult for us to go in those
17	nuclear facilities today, and so we believe a
18	combination of our nuclear testing, where we leverage
19	a lot of the DOE complex to deal with radiations and
20	do the type of work that we need to do compliments the
21	non-nuclear test program. So it's a combination of
22	both.
23	MEMBER MARCH-LEUBA: Can you speak up
24	louder? They cannot hear you.
25	DR. BLANDFORD: Oh, I'm sorry.
	I

(202) 234-4433

	35
1	MEMBER MARCH-LEUBA: Can we ask them to
2	increase the volume?
3	DR. CORRADINI: Yeah, that might be a
4	crappy microphone. Try the one next to you.
5	(Simultaneous speaking.)
6	DR. BLANDFORD: All right. Is this
7	better?
8	DR. CORRADINI: Yes.
9	DR. BLANDFORD: Okay. Sorry, apologies.
10	DR. CORRADINI: Just get closer to Peter.
11	You're colleagues. However much you feel like you
12	have to.
13	MEMBER REMPE: What about the fuel
14	fabrication capability, because it's not exactly what
15	we've seen even in our national communities.
16	There's some differences in the fuel, and
17	where will that be made?
18	DR. BLANDFORD: That's a good question.
19	I believe we're going to be submitting our fuel
20	qualification topical report.
21	I'm not sure the exact schedule for when
22	we're submitting that, but that'll be a time for us to
23	really jump into the details of that.
24	So right now, some of that information is
25	actually proprietary, so.
I	I

(202) 234-4433

	36
1	DR. SCHULTZ: Yeah, excuse me, the
2	operations and training, the user facility, how is
3	that are you going to talk about that today?
4	Conceptually, it sounds like a great idea.
5	DR. BLANDFORD: Sure.
6	DR. SCHULTZ: But, how far have you gone
7	with identifying the details of that?
8	DR. BLANDFORD: The details of it we don't
9	have fully fleshed out yet.
10	Conceptually, I can speak we're at a high
11	level.
12	So it's basically a full scale version of
13	the primary side of the plant, and it's an opportunity
14	for us to train operators with the real equipment,
15	from the whole spectrum of effectively inservice
16	inspections, component replacements, and getting
17	familiar with the technology.
18	The concept is at a high level.
19	DR. SCHULTZ: Great idea, thank you.
20	MEMBER MARCH-LEUBA: And are you thinking
21	of a single module in a remote location, or are you
22	thinking of a multi-module with a single control room
23	and 25 units?
24	DR. BLANDFORD: I think that's to be determined,
25	and it's an area that we'll check
l	I

(202) 234-4433

	37
1	(Simultaneous speaking.)
2	MEMBER MARCH-LEUBA: But you're staying
3	open that would affect a lot of the training and
4	the design of the control room obviously.
5	DR. BLANDFORD: Sure. And just to
6	clarify, the U-Facility and concept goes well beyond
7	control room, you know, training simulator.
8	This was really working on the hardware,
9	so that would be a singular module that we would be
10	looking at.
11	DR. CORRADINI: Ah, thanks. This might be
12	for the closed session.
13	So from the standpoint of using this, I'll
14	call it challenging coolant, which has its own
15	chemical safety issues, where is there experience in
16	the United States of this in the past?
17	DR. BLANDFORD: So, and this is something
18	that we can probably talk about in private session.
19	DR. CORRADINI: Okay, then we can wait.
20	Okay, fine.
21	DR. BLANDFORD: But we recognize that, and
22	it's important to have the right partnerships and work
23	with the right people that have the prior experiences.
24	DR. CORRADINI: Okay, fine.
25	MEMBER BLEY: You mentioned the training.
I	

(202) 234-4433

	38
1	Do you have people on the staff as you work in that
2	area who have actual operating experience?
3	DR. BLANDFORD: We do.
4	MEMBER BLEY: You know, engineers think
5	they're best at this, but they often get surprised.
6	PARTICIPANT: Very much so.
7	DR. BLANDFORD: I would be remiss to that.
8	So, our vice president of engineering, Mark Peres, was
9	a former operator at FFTF.
10	We do have people on staff that do have
11	operational experience, and that's very valuable for
12	us. So I'm going to go ahead and pass this off to Dr.
13	Nico Zweibaum.
14	DR. ZWEIBAUM: Good morning, everyone. Is
15	this mic better? Okay. Very good.
16	As Ed said, my name is Nico Zweibaum. I
17	am the senior manager of engineering testing at Kairos
18	Power, and I was also one of the preparers for scaling
19	methodology topical report, which I'm going to give a
20	brief overview of right now.
21	Next slide, please.
22	So, what was the purpose of that topical
23	report? We are describing the methodology we intend
24	to use to scale both integral effects tests, referred
25	to as IETs, and separate effects tests, or SETs, that
l	

(202) 234-4433

39 1 will support the KP-FHR evaluation model assessment base. 2 3 The report goes through the justification 4 for the use of surrogate fluids that enable direct and 5 comprehensive local measurements of the phenomena that are under investigation, and the use of surrogate 6 7 fluids is due to their higher compatibility for high 8 accuracy instrumentation that is readily available, 9 for instance, to measure temperature and flow 10 velocities. The intent of that 11 report was to communicate and request the NRC review and approval to 12 use our scaling methodology with surrogate fluids 13 14 described in the report, namely, heat transfer oils and water for testing, including in the assessment 15 16 base of evaluation models that support our safety 17 analysis. 18 Next. 19 So what is the scope of that report? First off, we are basing our scaling methodology on 20 the well-known hierarchy called two-tiered scaling 21 methodology, or H2TS. 22 generic scaling methodology 23 This was 24 previously developed for and approved by the NRC. We selected it for scaling of our thermal fluids, IETs 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	and SETs, and the methodology includes quantification
2	of distortions in the scaling.
3	The report addresses scaling of our
4	primary heat transport system, thermal fluids, IETs
5	for the KP-FHR plant at normal operating conditions
6	with forced flow, as well as transients that involve
7	natural circulation.
8	And it describes the use of specific
9	classes of heat transfer oils that are deemed
10	acceptable surrogate fluids for these integral effects
11	tests.
12	In addition, the report also addresses scaling
13	of specific phenomena in component level separate
14	effects tests that would also use a specific class of
15	heat transfer oil or water as acceptable surrogate
16	fluids.
17	The figure to the right is mainly provided
18	for illustration, but is from the NRC's Regulatory
19	Guide 1.203 on evaluation methods, development, and
20	assessment process.
21	And I apologize for the very small font,
22	but the element 2 of that process includes scaling
23	efforts and identification of integral effects tests
24	and separate effects tests that are supposed to
25	support our safety analysis methodology, and this is
ļ	I

(202) 234-4433

	41
1	really what that scaling report is about, is
2	addressing those parts of element 2 of the EMDAP
3	process.
4	DR. CORRADINI: This makes perfect sense.
5	The one thing though about your two surrogates are
6	that they don't freeze and they don't get gooey.
7	So, is it your job to worry about that, or
8	the next person down the line's job to worry about
9	that?
10	DR. ZWEIBAUM: Well, so the report really
11	addresses what happens outside of that range.
12	DR. CORRADINI: Okay.
13	DR. ZWEIBAUM: It
14	DR. CORRADINI: Okay, that's fine.
15	DR. ZWEIBAUM: Yeah.
16	DR. CORRADINI: Okay.
17	MEMBER PETTI: So, I have a question just
18	to help me understand. As I understand H2TS, I mean,
19	it was really focused on the coolant, right, in the
20	light water reactor, right?
21	So I've got a heat flux with a from the
22	fuel rods that don't move that's static. Here, your
23	fuel is moving.
24	This does not really apply to the movement
25	of the fuel in the core. Is that a fair statement?
I	I

(202) 234-4433

	42
1	DR. ZWEIBAUM: So, our scaling approach
2	does.
3	It is true that H2TS doesn't touch this
4	specific topic, but the scaling that we've developed
5	includes pebble movement in the coolant, and this will
6	be one of the types of separate effects tests that we
7	will talk about today.
8	MEMBER PETTI: Not heated?
9	DR. ZWEIBAUM: That is right.
10	The movement of the fuel in the core is
11	largely decoupled from the heat transfer aspects
12	because the fuel moves at a very slow pace in the core
13	
14	(Simultaneous speaking.)
15	DR. CORRADINI: So it's basically just a
16	density it's just basically a buoyancy density?
17	MEMBER PETTI: Okay, did I misread
18	something? I read that the pebbles are really
19	cruising.
20	(Simultaneous speaking.)
21	MEMBER PETTI: Yes. We'll put that on the
22	list when we get into the closed session.
23	DR. ZWEIBAUM: Sure.
24	MEMBER PETTI: Maybe I misread it, but I
25	thought that the fluids were a lot more than, say, a
l	1

```
(202) 234-4433
```

	43
1	gas reactor pebble bed.
2	DR. ZWEIBAUM: Yeah, we can talk about
3	that in the closed session.
4	MEMBER PETTI: Okay.
5	MEMBER KIRCHNER: But for the scaling
6	purposes, you're just assuming the pebbles are static?
7	DR. ZWEIBAUM: As far as the heat transfer
8	separate effects tests, that's right.
9	MEMBER REMPE: So, what about the fact
10	that in the real reactor that there is nuclear heat
11	coming out of the pebbles, or decay heat, if you're
12	doing some sort of transient?
13	How do you simulate that, because I didn't
14	see that in the scaling report.
15	DR. ZWEIBAUM: So that would be the heat
16	source that we would have to scale, whatever the heat
17	generation levels are.
18	So, the level of either full power or
19	decay heat power would come from our neutronic
20	simulations. Is that
21	MEMBER REMPE: But you're looking at fluid
22	flow, and it seems like that would be an effect on the
23	fluid flow, and so you're separating that out?
24	DR. ZWEIBAUM: No, we are treating the
25	heat source as a well, simulated heat source,
Į	

(202) 234-4433

	44
1	obviously, in our scale tests, but scaled from the
2	heat generation that would happen from nuclear fission
3	in the core.
4	MEMBER REMPE: So I guess I didn't see how
5	you're going to heat them in the scale tests, and so
6	when you get you can wait until the closed session,
7	but I did not see how you were going to introduce that
8	into the
9	DR. ZWEIBAUM: Yeah, we can talk
10	MEMBER REMPE: Whatever you're simulating.
11	DR. ZWEIBAUM: We can talk about it more
12	in the closed session, but one thing to note is that
13	this report is really about the methodology, and not
14	necessarily about the engineering that would allow us
15	to meet that methodology.
16	But, I'd be happy to talk about it a
17	little bit more in the closed session.
18	MEMBER PETTI: Yeah, you see members
19	jumping to the details, right, because this is kind of
20	theoretical, and so.
21	DR. ZWEIBAUM: Sure. So, this is really
22	the meat of our validation testing program right now.
23	We are using those scaling methods to
24	support acceleration of our validation testing road
25	map.
ļ	I

(202) 234-4433

	45
1	And we talked about the combination of
2	separate effects tests and integral effects tests all
3	use reduced scale in terms of size, power,
4	temperature, surrogate fluids, and surrogate
5	materials.
6	Both are under development in our Rapid
7	Lab facility in Alameda that Dr. Blandford talked
8	about.
9	We already have a number of separate effects
10	tests that are up and running as of now.
11	For illustration here, you have pictures
12	of a few of our fluid dynamics tests using room
13	temperature water and 40 percent geometric scale, as
14	well as heat transfer tests that use a surrogate heat
15	transfer oil to 72 degrees Celsius matches the
16	properties of our FliBe coolant at 600 C, also at
17	reduced geometric scale.
18	And coming up towards the end of this year
19	would be our first integral effects tests facility,
20	which would be a half height roughly facility scaled
21	to our primary heat transport system.
22	MEMBER MARCH-LEUBA: I'm curious. It's
23	relatively easy to heat up a rod because you can
24	connect from the top and the bottom.
25	How do you heat up your balls?
	I

(202) 234-4433

	46
1	DR. ZWEIBAUM: I guess we can talk about
2	that in the closed session.
3	(Simultaneous speaking.)
4	MEMBER REMPE: And keep them heated, is
5	the question too.
6	DR. ZWEIBAUM: Huh?
7	MEMBER REMPE: And keep them heated. You
8	could start with them hot, but yeah.
9	MEMBER MARCH-LEUBA: Okay, we'll talk in
10	the closed session.
11	DR. ZWEIBAUM: Yes.
12	MEMBER MARCH-LEUBA: Obviously, you had
13	some patents in that? You should.
14	DR. ZWEIBAUM: And so this combination of
15	the separate effects test and integral effects test is
16	really the basis for validation of our evaluation
17	models, which would lead us to the KP-1 demonstration
18	and reactor full scale FliBe coolant, and TRISO fuel
19	pebbles.
20	Next, please. So first, about IETs.
21	At a high level, the scaling methodology
22	we use, this is the analysis for using the surrogate
23	fluid, mainly heat transfer oil, for the KP-FHR
24	primary heat transport system.
25	The classes of licensing basis events that
I	I

(202) 234-4433

	47
1	are illustrated in the topical report include steady-
2	state normal operation, which is forced circulation
3	operation, as well as transients that involve the loss
4	of force flow in a transition to natural circulation.
5	This would include pump trips, losses of
6	heat sink, station blackouts, and so on.
7	The methodology in the report is
8	illustrated using an idealized version of our primary
9	heat transport system and scaled IET.
10	You have this very simplified schematic
11	here that shows this configuration with the pebble bed
12	reactor core, primary salt pump, hot leg piping going
13	into an intermediate heat exchanger, then cold leg
14	returning to the core.
15	Although this is a simplified model that's
16	illustrated in the methodology, the methodology can be
17	extrapolated to a number of different branches in
18	several loops, as would be the case in the current KP-
19	FHR design.
20	Next.
21	Also in the report is our scaling
22	methodology for a number of separate effects tests.
23	These are used to develop closure models
24	and correlations for phenomena that happen at the
25	module or component level, and the topical report
I	

(202) 234-4433

48 1 covers generic fluid dynamics and heat transfer phenomena, as well as some KP-FHR design specific 2 3 phenomena. 4 And those six types of phenomena are examples of what's covered in the report, namely 5 forced circulation fluid dynamics, convective heat 6 7 transfer, conjugate heat transfer with solid 8 structures, twisted elliptical tube experiments, 9 pebble bed granular flow dynamics experiments, and forced median impact bed heat transfer experiments 10 that are relevant to our core. 11 MEMBER PETTI: Can I ask a question? 12 You know, there's lots of literature out there for packed 13 14 beds and correlations. I mean, do you think that they'll end up 15 working and you'll spend just a lot of time, you know, 16 17 providing some data to show that for your situation, they'll that close from the chemical 18 be one 19 engineering industry? So the existing experience 20 DR. ZWEIBAUM: with those packed bed correlations don't directly 21 apply to the ranges we're operating at. 22 Namely, the Prandtl number of our fluid is 23 24 much hiqher than what's being reported in the literature for both gas-cooled reactors, obviously, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	49
1	and also outside of the nuclear industry for other
2	experiments.
3	So this is the reason why we need to run
4	our own tests
5	(Simultaneous speaking.)
6	MEMBER PETTI: Okay, so it's for the
7	Prandtl number?
8	DR. ZWEIBAUM: To get out of that.
9	MEMBER PETTI: Great, thanks.
10	DR. CORRADINI: So, neither your first
11	bullet in forced circulation fluid dynamics, nor your
12	fifth bullet on, I'll call it pebble bed movement,
13	have historical or past literature basis?
14	Do you guys have to do it from scratch?
15	That's what I was gathering from Dave's question that
16	you can rely on past
17	(Simultaneous speaking.)
18	DR. ZWEIBAUM: So yeah, a lot of this is
19	not breaking new ground. Obviously, for circulation
20	fluid dynamics, it's a pretty well-known topic for
21	several centuries.
22	The idea was really to compile all of this
23	in our own methodology to make sure that the staff
24	agrees that this is indeed the right approach in our
25	case.

(202) 234-4433

	50
1	DR. CORRADINI: All right, thank you.
2	MEMBER RICCARDELLA: So, I assume that the
3	primary purpose of these tests and scaling is the
4	qualified computer codes that you're going to use to
5	analyze it, right?
6	And then
7	DR. ZWEIBAUM: Yes, this is the purpose of
8	the EMDAP process.
9	MEMBER RICCARDELLA: And then if it works
10	on the test, then presumably it works when you apply
11	these codes to the reactor, right?
12	DR. ZWEIBAUM: That is right.
13	MEMBER MARCH-LEUBA: And have you
14	considered the fact that we have so much margin on the
15	fuel pellets that if you miss your heat risk
16	coefficient by a factor of two, who cares? You just
17	raise the temperature of the fuel and keep cranking.
18	DR. ZWEIBAUM: That is very beneficial to
19	us, obviously, and you'll see in the
20	MEMBER MARCH-LEUBA: And you probably
21	would take advantage of that?
22	DR. ZWEIBAUM: Yes, we would be in the
23	(Simultaneous speaking.)
24	MEMBER MARCH-LEUBA: Because that would be
25	a hard sell, a very logical sell, and I will support
I	I

(202) 234-4433

	51
1	you in it, but it is going to be a hard sell.
2	Pressure drop, obviously you need to know,
3	did you want to have amount of circulation, but not
4	easy to measure. The heat risk coefficient you can
5	have four or a factor of two and nothing happens.
6	DR. ZWEIBAUM: Okay.
7	MEMBER MARCH-LEUBA: Just put it in there.
8	It's going to be a hard sell.
9	DR. KRUIZENGA: I'm Alan Kruizenga. I'm
10	the director of salt chemistry at Kairos Power, and
11	I'm the primary preparer of the reactor coolant
12	topical report, and then we'll just go over just a
13	couple of slides so you have a little bit of an idea
14	of what we're looking at, and what the purpose of
15	MEMBER MARCH-LEUBA: Alan, is that
16	microphone working? Because you don't sound as good
17	as me.
18	DR. KRUIZENGA: I mean you've got a really
19	nice voice.
20	(Laughter.)
21	DR. CORRADINI: Move closer.
22	DR. KRUIZENGA: He sounds really good, so
23	I how about now, is that better?
24	DR. CORRADINI: That's much better.
25	DR. KRUIZENGA: Okay, great, excellent.
I	I

```
(202) 234-4433
```

	52
1	All right, perfect.
2	So, as has been said already this morning,
3	we're using FliBe as a coolant for our reactor.
4	There's a few reasons, and they've been
5	covered a little bit already, but really it's the fact
6	that it's a coolant that helps provide enhanced safety
7	properties, it has a high boiling point, it has high
8	thermal inertia, minimal short-term, long-term
9	activation products in the salt itself.
10	And it's been optimized over time through
11	use during the molten salt reactor experiment back in
12	Oak Ridge.
13	The high density fluid has good heat
14	capacity, again with that thermal inertia, pace, the
15	viscosity is comparable to water in a factor of 5, and
16	it's stable under radiation at high temperatures.
17	And then lastly, from a safety
18	perspective, it's a good solvent for fission products.
19	So that's one of the reasons it was viewed as favored.
20	MEMBER BLEY: How about worker safety?
21	DR. KRUIZENGA: That's a great question.
22	MEMBER BLEY: Thank you.
23	DR. KRUIZENGA: I mean I think you're more
24	referring from a chemical perspective?
25	MEMBER BLEY: Yeah.
Į	1

53 1 DR. KRUIZENGA: So certainly, we're aware 2 of that. something 3 That's ___ like, Ι have 4 personally, along with many others in the company, 5 have spent a lot of time trying to work with the right partners to develop good procedures and practices that 6 7 are compliant, and keep our workers safe, so it's extremely important. 8 9 DR. CORRADINI: Alan, where is the 10 industrial experience in the United States in terms of using beryllium compound fluids? 11 Because that's I think what Dennis is 12 getting at. 13 14 MEMBER BLEY: Yeah. 15 DR. And developing safety SCHULTZ: 16 programs --DR. CORRADINI: And developing safety 17 programs. 18 19 DR. SCHULTZ: Related to that. So, as far as chemical 20 DR. KRUIZENGA: processing -- so we could talk a little bit more in 21 the closed section, but I'll give you just kind of a 22 quick snippet. 23 24 Just even from the extraction, beryllium ore has to go through a series of aqueous processing 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	to get in a state that it can ultimately be made into
2	beryllium metal.
3	So there is some precedent, at least in
4	the chemical manufacturing industry, that beryllium is
5	in a liquid state and has to be taken precautions
6	appropriately for that.
7	I don't know if that's helpful, but there
8	is some precedence, and this isn't at a high
9	temperature, again, which is different for our
10	application.
11	MEMBER KIRCHNER: This is in the category
12	that Jose was mentioning. You know, full disclosure
13	would say up front that beryllium is a hazard.
14	DR. KRUIZENGA: Beryllium is a chemical
15	hazard.
16	MEMBER KIRCHNER: Then you're going to have
17	to take counter measures or whatever to deal with it.
18	DR. KRUIZENGA: Yes.
19	MEMBER KIRCHNER: Because the industry by
20	and large has shunned working with beryllium. I mean,
21	other than in a metal form.
22	MEMBER BLEY: Well, even in a metal form.
23	I mean
24	MEMBER KIRCHNER: Even in a metal form.
25	MEMBER BLEY: In electronics it was used
I	I

(202) 234-4433

	55
1	a lot, but there are a lot of
2	MEMBER KIRCHNER: I know one business that
3	used a lot of beryllium.
4	MEMBER BLEY: Sick and dead people around,
5	in my experience.
6	MEMBER MARCH-LEUBA: And ordinarily it is
7	actually forbidden to even mention the name.
8	MEMBER PETTI: Does the flowing activate?
9	I remember
10	DR. KRUIZENGA: It does, but it's got a
11	quite short half-life. I think it's less than a minute
12	or so.
13	MEMBER PETTI: Yeah, so it's like sort of
14	N16 in a water reactor sort of, right? Okay. So
15	DR. CORRADINI: What activates it?
16	MEMBER PETTI: Flowing 19 I think, right?
17	DR. KRUIZENGA: I think so. I think
18	that's right.
19	DR. CORRADINI: And it's about a minute
20	and a half long?
21	DR. KRUIZENGA: Yeah, about a minute.
22	MEMBER RICCARDELLA: Okay. Would you
23	briefly describe the process how it achieves a
24	negative temperature coefficient?
25	DR. KRUIZENGA: Yeah, so the density

	56
1	decreases as it goes up in temperature.
2	MEMBER MARCH-LEUBA: Yeah so, say again?
3	DR. KRUIZENGA: As you go up in
4	temperature, the change in density reduces the
5	moderation.
6	MEMBER RICCARDELLA: And it is a moderator?
7	I thought the graphite was the moderator, no?
8	DR. KRUIZENGA: The graphite is the
9	primary moderator.
10	MEMBER KIRCHNER: The graphite is the
11	primary moderator.
12	DR. KRUIZENGA: Beryllium does have some
13	moderation capability, though.
14	(Simultaneous speaking.)
15	MEMBER KIRCHNER: It becomes a second
16	order effect on reactivity transients and such.
17	MEMBER RICCARDELLA: Okay.
18	DR. CORRADINI: Go ahead.
19	MEMBER MARCH-LEUBA: You can hear from the
20	questions that everybody's going to complain about
21	beryllium, so can you give us a short 30 second answer
22	unclassified why you chose beryllium?
23	Is it for neutron efficiency, or is it for
24	chemical viscosity, transparency? Is there a
25	particular reason that you didn't use regular salt?
ļ	I

(202) 234-4433

57 1 And just put it to rest so we keep asking 2 you --3 DR. KRUIZENGA: Yeah. So I have more 4 information in the closed session, but --5 MEMBER MARCH-LEUBA: Wait. 6 DR. KRUIZENGA: Okay, great. 7 MEMBER BLEY: Well, let me ask one other. 8 DR. KRUIZENGA: Sure. 9 MEMBER BLEY: I don't know the chemistry, 10 but if you get water near the fluoride salt, can you get HF coming out? 11 DR. KRUIZENGA: You can get some trace 12 amounts of HF. 13 14 MEMBER BLEY: Only trace amounts? 15 DR. KRUIZENGA: We fully haven't quantified --16 17 (Simultaneous speaking.) MEMBER BLEY: Now you keep the water away 18 from it? 19 DR. KRUIZENGA: We do keep the water away 20 from it, and we're aware of it, and that's part of our 21 ongoing work. 22 23 MEMBER BLEY: Because that's pretty 24 dangerous stuff too. 25 MEMBER MARCH-LEUBA: What's your

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	58
1	intermediate salt?
2	DR. KRUIZENGA: It's a nitrate salt, it's
3	a solar salt.
4	(Simultaneous speaking.)
5	DR. KRUIZENGA: No.
6	MEMBER REMPE: You almost look like you're
7	going to go to the next slide, and I know you didn't
8	get to go through your bullets because we interrupted
9	you, but before you leave this slide, I was interested
10	in what data support the fission product retention
11	claims, and how much it was.
12	And then I'm thinking back about with the
13	MHTGR and NPR days, and it's not just fission products
14	one might be wanting to be concerned about, but also
15	if you have say stainless steel somewhere in your
16	system, the chromium can migrate through it and attack
17	the silicon carbide and the TRISO particles.
18	Have you considered those effects in your
19	testing program?
20	DR. KRUIZENGA: We have, and we've
21	considered it. We're aware of it.
22	MEMBER REMPE: Okay.
23	DR. KRUIZENGA: So it's come up during
24	some of our like, internal PIRT processes. So, it's
25	been identified, but we are aware of it.
ļ	

(202) 234-4433

	59
1	MEMBER REMPE: Okay, so you'll need to
2	have something to add extra protection on that.
3	MEMBER PETTI: I'd like to come back to
4	this in the closed session to talk about some numbers
5	and things.
6	MEMBER BLEY: You just caught my ear with
7	something, your internal PIRT processes. Do you have
8	an external PIRT process too?
9	Have you brought, you know, outside folks
10	in to help you
11	DR. KRUIZENGA: Well, we've
12	MEMBER BLEY: Think about key issues.
13	DR. KRUIZENGA: So, can we defer that to
14	the closed session?
15	MEMBER BLEY: Sure, absolutely.
16	DR. KRUIZENGA: We can give a lot more.
17	Then we can give some more information about it.
18	So the purpose really of this coolant
19	report is to establish a common basis specifically for
20	the chemical specification we have for the fluid, and
21	then the thermophysical properties that we're going to
22	use as part of the safety analysis.
23	So, the scope again is the thermophysical
24	properties of the fluid, the chemical specification,
25	so that we're on a common basis for understanding as
	1

(202) 234-4433

	60
1	we go through some of the future licensing work, what
2	the properties are.
3	DR. CORRADINI: And as well as the
4	allowable span that you can tolerate before things
5	become unacceptable?
6	DR. KRUIZENGA: Right. Yeah, there are
7	bars, so
8	MEMBER BLEY: All of you have emphasized
9	it earlier, and in your reports, you kind of treat the
10	salt as an extra barrier against fission product
11	release.
12	Are there any nuclear chemical affects
13	that can change that ability to hang on to the fission
14	products?
15	DR. KRUIZENGA: I think this would be
16	maybe a good one to talk in the closed session, so.
17	MEMBER BLEY: Perfect.
18	MEMBER PETTI: So Alan, in terms of the
19	specification, do you see this as an initial
20	specification, and that it might evolve over time?
21	As you do some experiments, you might add
22	I mean, there were just some things that weren't in
23	there as limits that I could see, potentially in the
24	future as you do testing and you become more
25	knowledgeable, you might add more to the
	I

(202) 234-4433

	61
1	specification?
2	DR. KRUIZENGA: I think that's our basis.
3	We just need a place to start, and I think Joy kind of
4	brought it up.
5	We're learning new things, so we expect
6	that we'll manipulate as we have to.
7	MEMBER PETTI: Right.
8	DR. KRUIZENGA: That is it.
9	PARTICIPANT: Never show a slide like that.
10	(Laughter.)
11	DR. CORRADINI: Or you can just defer the
12	questions to the closed session.
13	MEMBER BLEY: I guess it'll come up in the
14	fuel qualification topical, but you're using a
15	different TRISO or some different properties in your
16	TRISO fuel than the stuff my colleague over here did
17	years of testing on.
18	Will that be the time to talk about what
19	that matters to us, and to you?
20	DR. KRUIZENGA: Yes.
21	MEMBER BLEY: Okay.
22	MEMBER PETTI: Okay. Well, I guess at
23	this point in the agenda, we're a little ahead of
24	schedule.
25	DR. CORRADINI: Weidong is checking
I	I

	62
1	MEMBER PETTI: Oh. We're a few minutes
2	ahead of schedule, but it's time for public comments.
3	Do we have anybody in the audience to make a comment?
4	DR. CORRADINI: Hold on.
5	MEMBER PETTI: And I assume the phone
6	line's on?
7	DR. CORRADINI: Weidong is checking out.
8	MEMBER PETTI: Okay, Weidong's checking
9	out.
10	DR. CORRADINI: You may want to just see
11	if anybody's out there.
12	MEMBER PETTI: Yes. Anybody on the open
13	line?
14	DR. CORRADINI: We're right on time.
15	PARTICIPANT: Yes, sir.
16	MEMBER PETTI: Any questions?
17	PARTICIPANT: Comments.
18	MEMBER PETTI: Comments? Sorry.
19	PARTICIPANT: No questions at this time.
20	Thank you.
21	MEMBER PETTI: Thank you. We can take a
22	small break. We'll be back here at 9:15. Okay?
23	Great.
24	PARTICIPANT: No.
25	MEMBER MARCH-LEUBA: Those of us that
I	1

(202) 234-4433

	63			
1	don't speak Greek fluently, what does Kairos mean? I			
2	do because I checked it out.			
3	PARTICIPANT: Dave, you don't have to go			
4	to 9:15, you can accelerate it.			
5	MEMBER PETTI: Oh okay. We'll just take			
6	five minutes, and then we'll go into closed session.			
7	DR. BLANDFORD: Do you want me to answer			
8	his			
9	MEMBER PETTI: Yes, please go ahead and			
10	answer.			
11	DR. BLANDFORD: Sure, so Kairos is an			
12	Ancient Greek term for the right or opportune moment,			
13	and so it ties into our business case about where we			
14	see the market going, so.			
15	I've heard it can be pronounced Kairos,			
16	and true Greeks will say it that way, so.			
17	DR. CORRADINI: Luckily you have no true			
18	Greeks on the group.			
19	DR. BLANDFORD: Not right now, no.			
20	PARTICIPANT: You have one at home.			
21	DR. BLANDFORD: Yeah.			
22	(Off-microphone comments.)			
23	MEMBER PETTI: Yeah, a five minute break.			
24	(Whereupon, the above-entitled matter went			
25	off the record at 8:58 a.m.)			
I	I			

OVERVIEW OF KAIROS POWER, SCALING METHODOLOGY AND REACTOR COOLANT TOPICAL REPORTS

ACRS SUBCOMMITTEE MEETING, FEBRUARY 21, 2020

Copyright © 2020 Kairos Power LLC. All Rights Reserved. No Reproduction or Distribution Without Express Written Permission of Kairos Power LLC. Kairos Power's mission is to enable the world's transition to clean energy, with the ultimate goal of dramatically improving people's quality of life while protecting the environment.

Outline

- Overview of Kairos Power and KP-FHR Design and Development
- Scaling Methodology Topical Report
- Reactor Coolant Topical Report

3

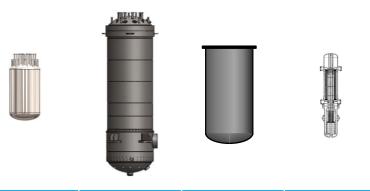
Fluoride Salt-Cooled High-Temperature Reactor (FHR) Technology Basis

Coated Particle Fuel Liquid Fluoride Salt Coolant Flibe (2LiF-BeF₂) **TRISO**

Overview of Kairos Power

- Privately funded nuclear energy engineering and design company focused on the *commercialization* of the fluoride salt-cooled high temperature reactor (FHR)
 - Founded in 2016
 - Based in San Francisco Bay Area
 - Builds on UC Berkeley Concept Development and R&D
 - ~120 full-time employees (and growing) selected from diverse industries
- Development schedule driven by US demonstration by 2030 (*or earlier*) and rapid deployment ramp in 2030s
- Leverages technology from past advanced reactor designs, coupled together to provide a competitive design

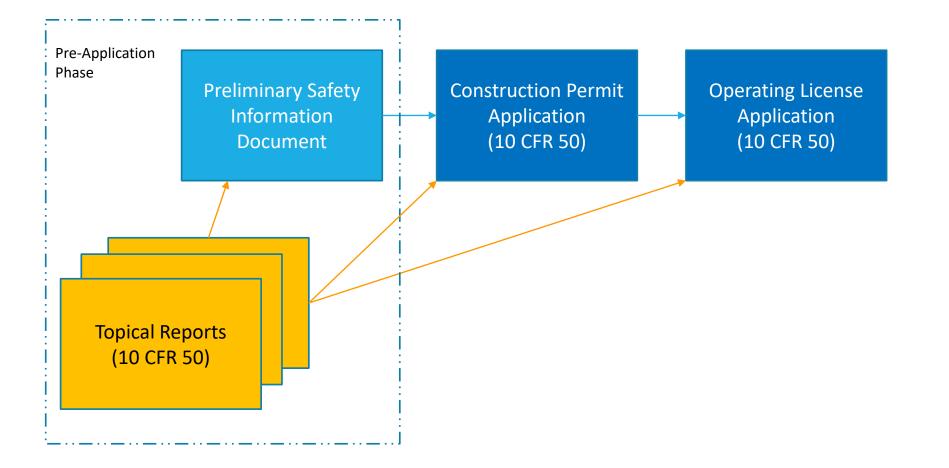
Kairos Power Headquarters Alameda, CA


Design and Development Overview

6

KP-FHR Features: Safe, Compact, Economical

- KP-FHR Inherent Safety and Economic Potential are Uniquely Aligned to Replace U.S. Natural Gas Capacity
- Robust Inherent Safety
 - Large fuel temperature margins
 - Fission products retained by fuel and primary coolant
 - Low-pressure system
 - Passive decay heat removal
- Lower Capital Costs
 - Reduced reliance on high-cost, nuclear-grade components and structures through KP-FHR intrinsic safety and plant architecture
 - Leverage conventional materials, existing industrial equipment, and conventional fabrication and construction methods
- Improved Operating Economics
 - High efficiency
 - Flexible deployment of low-cost nuclear heat



KP-1	HTR-PM	ARC-100	NuScale
Flibe	Helium	Sodium	Water
$320 \text{ MW}_{\text{th}}$	$250 \text{ MW}_{\text{th}}$	$260 \text{MW}_{\text{th}}$	$200 \text{ MW}_{\text{th}}$
140 Mw _e	100 MW_{e}	100 MW_e	60 MW _e

* Reactor vessels drawn to approximate scale.

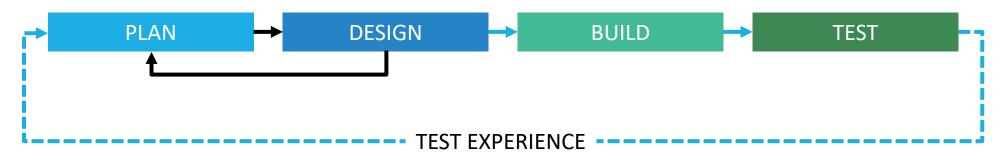
Baseline Licensing Strategy for KP-1

Copyright © 2020 Kairos Power LLC. All Rights Reserved. No Reproduction or Distribution Without Express Written Permission of Kairos Power LLC.

8

Licensing Overview

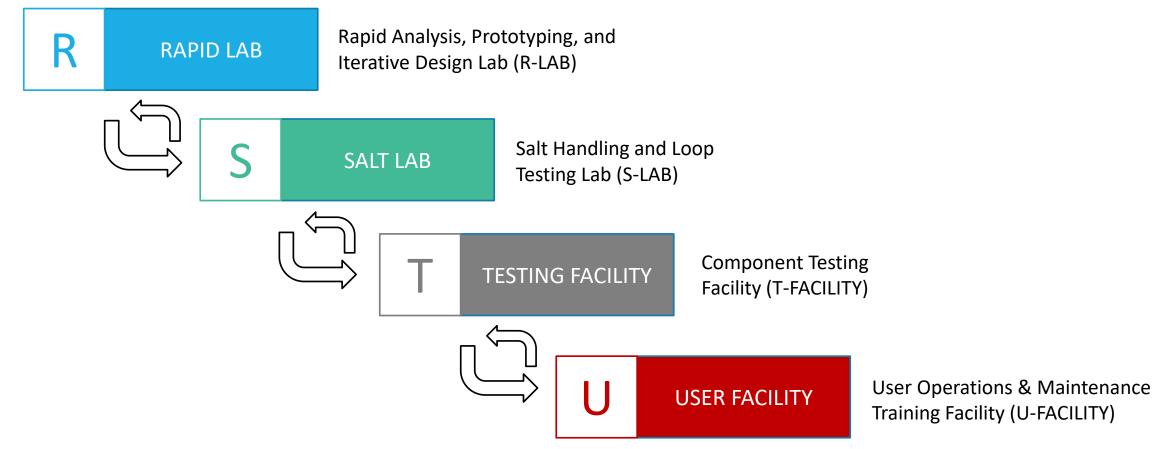
- Kairos Power intends to leverage the intrinsic safety characteristics of the KP-FHR fuel and coolant that provides uniquely large safety margins under accident conditions to achieve three high level goals:
 - Goal 1: Achieve Early Acceptance from NRC of Fundamental KP-FHR Safety Case
 - Goal 2: Minimize Unique Safety-Related Design Requirements for the KP-FHR
 - Goal 3: Retain Flexibility for Design Modifications for Future KP-FHR Iterations



Testing and Development Overview

Kairos Power Nuclear Development Paradigm Shift

Conventional Nuclear Development Cycle

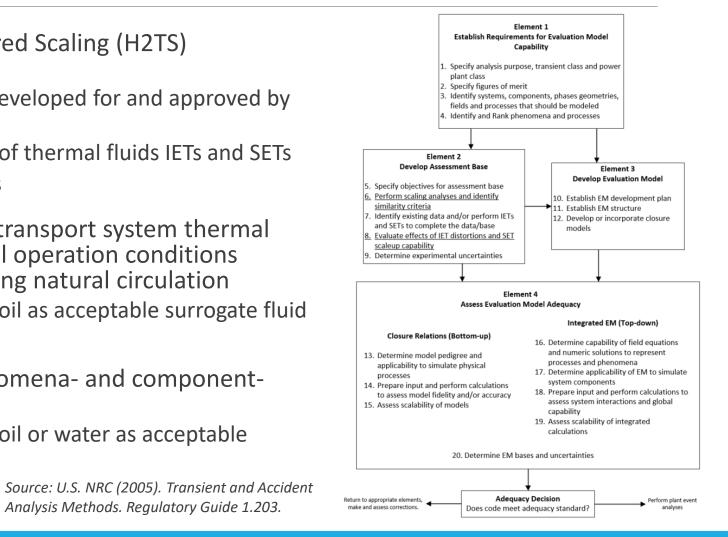

Kairos Power Accelerated Test Cycles for Innovation and Optimization

Kairos Power Testing Program - Facilities

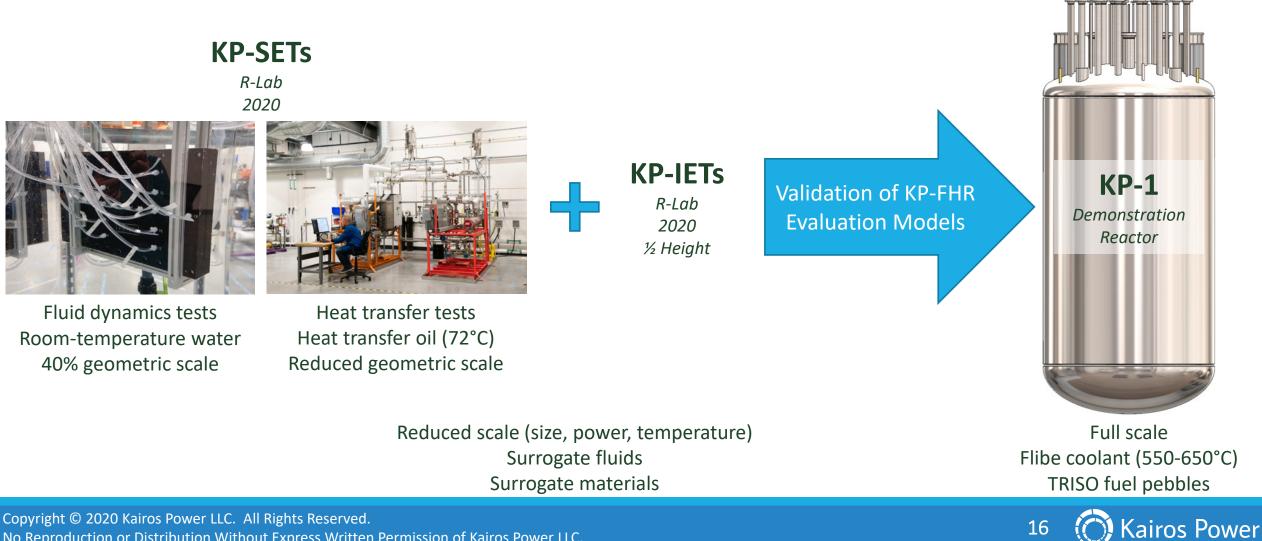
Rapid Technology Demonstration Requires Non-Nuclear Development and Qualification Facilities

Scaling Methodology Topical Report

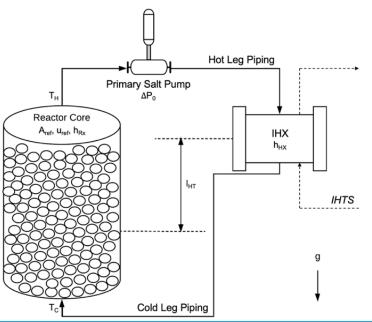
Purpose of the Scaling Methodology Topical Report


- The methodology is used to scale integral effects tests (IETs) and separate effects tests (SETs) supporting the KP-FHR evaluation model assessment base
- Surrogate fluids enable direct and comprehensive, local measurements of the phenomena under investigation due to higher compatibility of high-accuracy instrumentation (e.g., temperature and flow velocity)
- Kairos Power is requesting NRC review and approval to:
 - Use the scaling methodology with surrogate fluids described in the report (heat transfer oil and water) for testing included in the assessment base of evaluation models supporting KP-FHR safety analysis

Scope of the Scaling Methodology Topical Report


Analysis Methods. Regulatory Guide 1.203.

- Based on the Hierarchical Two-Tiered Scaling (H2TS) methodology
 - Generic scaling method previously developed for and approved by the NRC
 - Selected by Kairos Power for scaling of thermal fluids IETs and SETs
 - Includes quantification of distortions
- Addresses scaling of primary heat transport system thermal fluids IETs for the KP-FHR at normal operation conditions (forced flow) and transients involving natural circulation
 - Use of specific class of heat transfer oil as acceptable surrogate fluid for IETs
- Addressed scaling of specific phenomena- and componentlevel SFTs
 - Use of specific class of heat transfer oil or water as acceptable surrogate fluids for SETs


Scaling Methods Support Acceleration of Kairos Power's Validation Testing Roadmap

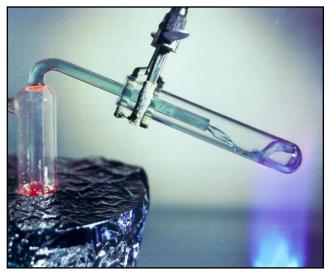
No Reproduction or Distribution Without Express Written Permission of Kairos Power LLC.

IET Scaling Methodology

- Scaling analysis for a surrogate fluid (heat transfer oil) IET of the KP-FHR primary heat transport system
- Classes of licensing basis events illustrated in the topical report:
 - Steady-state, normal forced-circulation operations
 - Transients involving loss of forced flow and transition to natural circulation (e.g., pump trip, loss of heat sink)
- Illustrated using an idealized model of the KP-FHR primary heat transport system and scaled IET:

SET Scaling Methodology

- SETs are used to develop closure models and correlations for module/component-level phenomena
- Topical report covers generic fluid dynamics and heat transfer phenomena, and KP-FHR design specific phenomena:
 - Forced circulation fluid dynamics
 - Convective heat transfer
 - Conjugate heat transfer with solid structures
 - Twisted elliptical tube experiments
 - Pebble bed granular flow dynamics experiments
 - Porous media and packed bed heat transfer experiments



Reactor Coolant Topical Report

KP-FHR uses Flibe (2LiF:BeF₂) as a coolant

- Flibe coolant provides enhanced safety features relative to LWR designs.
 - Large thermal inertia minimizes rapid temperature transients
 - Negative temperature coefficient of reactivity supports reactivity control
 - Minimal short-term and long-term activation
- Flibe is an optimization for nuclear reactor operation
 - High density and heat capacity (i.e. thermal inertia)
 - Viscosity comparable to water
 - Stable under radiation and at high temperatures
- Flibe supports safety basis as a barrier to fission product release.
 - Absorbs fission products that escape the TRISO protective layer, providing additional functional containment protection.

*LiF-BeF*₂ *mixture* (*Flibe*)

Reactor Coolant Topical Report

Purpose:

- Establish a common basis for safety related analysis between the NRC and Kairos Power
- Kairos Power requested NRC review and approval of Flibe specifications and thermophysical properties.

Scope and Use:

- Thermophysical properties of Flibe
- Chemical Specification used in KP-FHR
 - Methods and assumptions for setting specification limits
- Specifications and properties for future safety analyses in license applications.

