PHILADELPHIA ELECTRIC COMPANY

2301 MARKET STREET

P.O. BOX 8699

PHILADELPHIA. PA. 19101

IOHN S KEMPER VICEPRCSIDENT

MAY 311984

Mr. A. Schwencer, Chief Licensing Branch No. 2 Division of Iicensing U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Subject: Limerick Generating Station, Units 1 and 2 Structural Steel Survivability Evaluation
Reference: J. S. Kemper to A. Schwencer letter dated February 29, 1984
File: GOVT 1-1 (NRC)

Dear Mr. Schwencer,
The reference letter submitted the Structural Steel Survivability Evaluation dated February 24, 1984, which presented our program to close out SER Open Item \#14; Structural Steel Protection.

In response to comments made by personnel from Brookhaven National Laboratory, the NRC's consultant on this item, we are submitting the attachment which provides clarifying information. The attachment contains errata sheets to be inserted in the Structural Steel Survivability Evaluation dated February 24, 1984.

This letter completes our response to those items raised by Brookhaven National Laboratory. Should you have any questions, require additional information, or wish to hold an additional meeting; please do not hesitate to contact us.

Sincerely,

DMG/bls $\quad 15 / 5$
Attachment
Copy to: See Attached Service List

Limerick Generating Station Units 1 and 2 Structural Steel Survivability Evaluation Errata Pages Dated May 14, 1984

The attached errata pages are considered part of the Structural Steel Survivability Evaluation dated February 24, 1984 nd should be incorporated by following the collating instructions below:

20-2	20-2
Calc. 20 - Attachment D	Cisic. 20 - Attachment D
Cases 1, 2	rases 1, 2
25-2	25-2
34-2	34-2
Calc. 34 - Attachment C	Calc. $34-$ Attachment C
$37-1,2,3$	37-1,2,3
Calc. 37 - Attachment C Case 2	Calc. 37 - Attachment C Case 2
	$\begin{aligned} & \text { Calc. } 37 \text { - Attachment } \mathrm{Cl} \\ & \text { Cases } 1,2,3,4,5,6,7,8 \end{aligned}$
Calc. 37 - Attachment D Case 8	$\begin{aligned} & \text { Calc. } 37 \text { - Attachment D } \\ & \text { Cise } 8 \end{aligned}$

The approach taken in this analysis was to quantify the size fire in Btu/ sec necessary to reach plume temperatures at the bottom flange of the steel of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$, and $1500^{\circ} \mathrm{F}$ using Figure 3. Transient fires were quantified up to $21,100 \mathrm{~kW}(20,000 \mathrm{Btu} / \mathrm{sec})$. Since these are such large fires, it was not considered necessary to quantify any larger. For plume temperatures of $1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$, the time required to heat the steel exposed to the plume to $1100^{\circ} \mathrm{F}$ is calculated. The heat release rate and duration yield the total BTUs which can be related to the total amount of transient combustible material.

It is important to remember that the heat release rate is the driving force and not the total heat of combustion of the materials. Alpert and Ward (8) provide some data on heat release rates for various materials such as wooden pallets, flammable liquids and storage related commodities. Limited data exists on "trash" or health physics supplies. To develop some guidance for these commodities, Sandia Laboratories tests for ignition source fire characterization (12) were evaluated. The temperature profiles recorded during these tests were used to estimate maximum heat release rates for Tests 3, 4, 5 and 10. These results are contained in Table 1.

Table 1
Characterization of Transient Combustible Fires

Based on the heat release rates for solid fuel (transients) as compared to those of flammable liquids, all transients were quantified in terms of size and duration of spill fires.

VII STRUCTURAL STEEL RESPONSE

Once the area and localized exposure temperatures have been determined for the various fires that could occur in 2π area, an assessment is made of ihe effects of these temperatures on the structural steel members. An $1100^{\circ} \mathrm{F}$ cross-sectional average temperature of the steel member has been established as the temperature below which no protection of the steel beams is required and the member is capable of supporting the fire barrier. This is a conservative criteria because it neglects the added fire endurance provided by end restraints and composite construction.

The following measures are used in verifying compliance with this $1100^{\circ} \mathrm{F}$ temperature criteria:

1. If the area and localized peak temperatures are less than $1100^{\circ} \mathrm{F}$, then the unprotected structural steel member is acceptable.
2. If the area or localized peak temperature is greater than $1100^{\circ} \mathrm{F}$, the temperature of the steel will be calculated as described in the following sections.
a. If the calculated steel temperature is less than $1100^{\circ} \mathrm{F}$, then the unprotected structural member is acceptable.
b. If the calculated steel temperature is greater than $1100^{\circ} \mathrm{F}$, then either the member will be coated to provide the required fire resistance or measures will be taken to reduce the fire exposure to the beam to a level such that the member temperature will be less than $1100^{\circ} \mathrm{F}$.

A $1000^{\circ} \mathrm{F}$ cross sectional average temperature of the steel member has been established for columns with the following verification steps:

1. If the area temperatures are less than $1000^{\circ} \mathrm{F}$, then only localized heating is evaluated.
2. Columns are exposed to plume temperatures of $1500^{\circ} \mathrm{F}$ from cable trays, pool fires or transient combustibles. Exposure duration is the greater of the following: a) the duration of cable exposure, b) the duration of the pool fire, or c) 30 minutes from transient combustibies. If the columns exposed do not reach $1000^{\circ} \mathrm{F}$, the unprotected nember is acceptable.

Heating of Structural Steel Members

The temperature of the structural steel member is determined using the unsteady state heat transfer calculation outlined by Stanzak (10).

$$
T=231 \frac{U}{G}\left(T_{a}-T_{j}\right) t
$$

Where $T=$ temperature rise in steel member during interval t (${ }^{\circ} \mathrm{C}$)
$U=$ surface of steel member exposed to fire ($\mathrm{m}^{2} / \mathrm{m}$)
$G=$ weight of steel member (Kg / m)
$T_{a}=$ average fire temperature during interval $\left({ }^{\circ} \mathrm{C}\right)$
$T_{i}=$ temperature of steel member at beginning of interval
$\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{t}=\mathrm{time}$ interval in hours
Since the steel temperature rise is calculated over a time interval, a simple iterative process is set up where the steel temperature rise is added to the previous steel temperature for the next iteration. In all cases the peak fire temperatures have been used as a constant input to the steel temperature calculations.

This approach for evaluating effects of localized plumes incorporates a major conservatism in that only a portion of the beam's length would be heated rather than the entire length of the beam. Even though this is the case, no credit has been taken for conductive heat losses along the beam.
$84 / 05 / 15$
\qquad
NO. DESCRIPTION

UNIT 1 REACTOR BUILDING EL. 177' CORE SPRAY PUMP ROON 11308
UNIT 1 REACTOR BUILDING EL. 177' CORE SPRAY PUMP ROOM 114
09

UNIT 1 REACTOR BUILDING EL. 177' SUMP ROOM, ROOH 115
10 UNIT 1 REACTOR BUILDING EL. 177' CORRIDOR ROOM 118

11 UNIT 1 REACTOR BUILDING EL. 198' PIPE TUNNEL ROOH 202

12 UNIT 1 REACTOR BUILDING EL. 201. SAFEGUARD SYSTEM ACCESS AREA ROOH 20012

12

UNIT 1 REACTOR BUILDTNG EL. 201. CCOLING WATER HX AREA ROOH 207

13
2
14 UNIT 1 REACTOR BUILDING EL. 253' MATM STEAM \& FEEDWATER PIPE TURANEL

SUPMARY OF STRUCTURAL STEEL EVALUATIONS

LOCALIZED HEATING PROBLEM COMPENTS STEEL DOES NOT REQUIRE FIREPROOFING. 24 GALLONS OF TRANSIENT LUBE OIL INCLUDED IN CALCULATIONS.

STEEL DOES NOT REGUIRE FIREPROOFING.
24 GALLONS OF TRANSIENT LUBE OIL INCLUDED IN CALCULATIONS.

STEEL DOES NOT REQUIRE FIREPROOFING.
CONSERVATIVE BECAUSE CABLES WILL NOT BURN SIMULTANEOUSLY.

STEEL DOES NOT REQUIRE FIREPROOFING.

STEEL DOES NOT REQUIRE FIREPROOFING.

PREACTION SPRINKLER SYSTEH WILL BE INSTALLED BECAUSE THE AREA IS A LIKELY PATH FOR TRAASIENTS. STEEL WILL NOT BE FIREPROOFED.

CABLE TRAY
$T(S)=1100$ AT 16 MIN

PREACTION SPRINKLER SYSTEM WILL BE INSTALLED BECAUSE THE AREA IS A LIKELY PATH FOR TRANSIENTS. STEEL WILL NOT BE FIREPROOFED.

FIRE, TWO DOORS OPEN, ALL CABLES BURNING

NO EXFOSED COMBUSTIBLES
STEEL DOES NOT REQUIRE FIREPROCFING.

CALC	AREA
NO.	DESCRIPIION
15	UNIT 1 REACTOR BUILDING
	EL. 217. SAFEGUARD SYSTEM
	ACCESS AREA ROOM 309

17 UNIT 1 REACTOR BUILDIFIG EL. 217' GENERAL FLOOR AREA SE CORNER

18 UNIT 1 REACTOR BUILDING EL. 217' GENERAL FLOOR AREA NW CORNER

19 UNIT 1 REACTOR BUILDING EL. 253° GENERAL FLOCR AREA

20 UNIT 1 REACTOR BUILDING EL. 283' GENERAL FLOOR AREA
-
21 UNIT 1 REACTOR BUILDING
EL. $295^{\prime}-3^{\prime \prime}$ PIPE CHASE EL. $295^{\prime}-3^{\prime \prime}$ PIPE CHASE
SERVICE ROOM SERVICE ROOM

22 UNIT I REACTOR BUILDING EL. 313° LAYDOWN AREA ROOM 601

		FIRE
CASE CASE	DURATION	
NO. DESCRIPTION	(MIN)	

1 FUEL CONTROLLEE FIRE, ONE 40 DOOR OPEN, SPREADING CABLE FIRE

1 FUEL CONTROLLED FIRE, ALL 40 CABLES BURNING
MAX.

1 VENTILATION CONTROLLED FIRE, ONE DOOR OPEN, ALL FIRE, ONE DOOR
CABLES BURING SIMULTANEOUSLY

2 FUEL CONTROLLED FIRE, TWO 65 DOORS OPEN, ALL CABLES BURNING SIMULTANEOUSLY

1 FUEL CONTROLLED FIRE, SPREADING CABLE FIRE

MRATION
MIN)
120 TEMPERATUPE(F)(1)

643

FUEL CONTROLLED FIRE, SPREADING CABLE FIRE

FUEL CONTROLLED FIRE, 180 SPREADING CABLE FIRE

1 FUEL CONTROLLED FIRE, SPREADING CABLE FIRE

LOCALIZED HEATING PROBLEM

No

NOHE

AT 32 MIN

CABLE
 TRAY

$T(S)=1100$
AT 24 MIN
CABLE
TRAY
$T(S)=1100$
AT 29 MIN

TRAY
$T(S)=1100$ AT 41 MIN

CABLE
TRAY TRAY
$\mathrm{T}(\mathrm{S})=1100$ AT 13 MIN $T(S)=1100 \quad$ TAKEN.
AT 19 MIN
NO

CABLE PREACTION SPRIFRKLER SYSTEN INSTALLED FOR TRAY SAFE SHUTDOWN CONSIDERATIONS. STEEL $T(S)=700 \quad$ HILL NOT BE FIREPRODFED

W 27×94 WILL BE FIREPROOFED.
W 14×87 COLURN IS NOT REQUIRED STRUCTURALLY AND WILL NOT BE FIREPROOFED.

CABLE PREACTION SPRINKLER SYSTEM INSTALLED IN INSTALLED IN AFFECTED AREA (NW CORNER) IN LIEU OF FIREPROOFING STRUCTURZL MEMBERS.

W 14×87 COLUTN NOT REQUIRED
STRUCTURALLY AND WILL NOT BE
FIREFROOFED.
CABLE STRUCTURAL MEMBERS NOT REQUTRED. SLAB
TRAY IS SELF SUPPORTING. NO ACTION TO BE
CORMENTS
STEEL DOES NOT REQUIRE FIREPROOFING.

AFFECTED BEAMS WILL BE COATED. HE CORNER FOR SAFE SHUTOOWN CONSIDERATIONS. STEEL WILL NOT BE FIREPROOFED

STEEL DOES NOT REQUTRE FIREPROOFING.

332' STANDBY GAS TREATMENT SYSTEM FILTER COMPARTMENT ROOH 624

40 CONTROL STRUCTURE EL. 332. STANDBY GAS TREATMENT SYSTEM ACCESS AREA ROOM 625

41 CONTROL STRUCTURE EL. 200' RADWASTE PIPE TURAEL

$42 \quad$UNIT I DIESEL GENERATOR ENCLOSURE EL. 217. DIESEL - -

43 SPRAY POND PUMP STRUCTURE EL. 237' RHRSW PIPEWAY

	MAX.	
FIRE	AREA	LOCALIZED
DURATION	TEMPERA-	HEATING
(MIN)	TURE(F)(1)	PROBLEM

CABLES BURNING
SIMULTANEOUSLY
1 FUEL CONIROLLED FIRE, ONE 180 DOOR OPEN, SPREADING
CABLE FIRE

2 VENTILATION CONTROLLED 150
FIRE, ONE DOOR OPEN, ALL
CABLES BURNING
SIMULTANEOUSLY
1 VENTILATION CONTROLLED,
ALL CABLES BURHING
ALL CABLES BURHING
SIMULTANEOUSLY, ONE DOOR OPEN
2 VENTILATION CONTROLLED, 54
ALL CABLES BURNING
SIMULTANEOUSLY, TWO DOORS OPEN

3 FUEL CONTROLLED, ALL
CABLES BURNING
SIMULTANEOUSLY, THREE DOORS OPEN

NO EXPOSED COMBUSTIBLES

NO EXPOSED COMBUSTIBLES

NO EXPOSED COMBUSTIBLES

VENTILATION CONTROLLED $180 \quad 3520$
FIRE, TWO LOUVERS OPEN

NO EXPOSED COMBUSTIBLES

COMMENTS
STEEL DOES NOT REQUIRE FIREPROOFING.

STEEL DOES NOT REQUIRE FIREPROOFING.

AFFECTED BEAMS WILL BE FIREPROOFED.
TRAY
TRAY
$T(S)=1100$ AT 24 MIN

STEEL DOES NOT REGUIRE FIREPROOFING.

STEEL DOES NOT REQUIRE FIREPROJFING.

STEEL DOES NOT REQUIRE FIREFROOFING.

STEEL DOES NOT REQUIRE FIREPROOFING.

PREACTION SPRIRKLER SYSTEM IS INSTALLED.

STEEL DOES NOT REQUIRE FIREPROOFING. (MIN) TURE(F)(1) PROBLEM AREA

SPRAY POND FUMP STRUCTURE EL. 237° WET PIT

46 SPRAY POND PUMP STRUCTURE EL. 251'ESW \& RHRSW PUMP AREA

47
SPRAY POND PUMP STRUCTURE
NO EXPOSED COMBUSTIBLES
STEEL DOES NOT REQUIRE FIREPROOFING.

48
SPRAY POND PUMP STRUCTURE 1
FUEL CONTROLLED FIRE, ALL 30
729
NO
STEEL DOES MOT REQUIRE FIREPROCFING. COMPARTMENT CABLES BURNING
(1) T(S) - TEMPERATURE OF STEEL CROSS-SECTION

The ventilation controlled burning rate of 4504 kW is equivalent to the heat output from a pool fire with an area of $14 \mathrm{ft}^{2}$ (pool diameter of approximately 4 ft). In order to assess the effect of the plume of heated gases above the pool fire on the structural steel supporting the 217' elevation floor slab, Hesketad's relations will be used:

Virtual point source determination:

$$
Z_{0}=-1.02 D+.083 Q^{4}=1.09 \mathrm{~m}
$$

Plume temperature at bottom of structural steel supporting the 217^{\prime} elevation floor slab.
$T_{0}=9.1\left[\begin{array}{lll}T & /\left(g c_{p}{ }^{2}\right. & 2)\end{array}\right]^{333} Q_{c} 667\left(z-Z_{0}\right) 167$
$T_{0}=103^{\circ} \mathrm{K}$ temperature rise
$T=253^{\circ} \mathrm{F}$ temperature of fire plume

The plume temperature is below the critical temperature of the structural steel.

Case number two considered both $3^{\prime} \times 7^{\prime}$ doors open which corresponds to a ventilation controlled burning rate of 9008 kW . At this heat output the fire would consume the 144 gallons of lube oil in 44 minutes. The gas temperature at this time would be $1118^{\circ} \mathrm{F}$ which is above the critical temperature of the structural steel (see Attachment B). The W24×68 beam reaches $1094^{\circ} \mathrm{F}$ after 44 minutes. (See Attachment C).

The ventilation controlled burning rate of 9008 kW is equivalent io the heat output from a pool fire with an area of $28 \mathrm{ft}^{2}$ (pool diameter of approximately 6 ft). In order to assess the effect of the plume of heated gases above the pool fire on the structural steel supporting the 217' elevation floor slab, Hesketad's relations will be used:

Virtual point source determination:
$Z_{0}=-1.020+.083 Q^{4}=1.32 \mathrm{~m}$

Plume temperature at bottom of structural steel supporting the 217^{\prime} elevation floor slab.

$$
1-2
$$

$T_{0}=9.1\left[\begin{array}{lll}T & /\left(\mathrm{gc}_{\mathrm{p}}{ }^{2}\right. & 2)\end{array}{ }^{3} 33 Q_{C} 667\left(z-Z_{0}\right) 167\right.$
$T_{0}=169^{\circ} \mathrm{K}$ temperature rise
$T=372^{\circ} \mathrm{F}$ temperature of fire plume

The plume temperature is below the critical temperature of the structural steal.

The cable trays in this area were positioned such that they did not present a localized heating exposure to the structural steel.

A W14×730 is located at column line E17. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$ for 44 minutes, the steel temperature does not exceed $590^{\circ} \mathrm{F}$. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$ for 85 minutes, the column temperature does not exceed $900^{\circ} \mathrm{F}$.

6. EFFECT OF TRANSIENT COMBUSTIBLES

The fire examined was ventilation controlled and had a duration of 44 minutes. The temperature at this time exceeded $1100^{\circ} \mathrm{F}$, therefore, no transient materials were quantified.

The ceiling height in the area is $20^{\prime} 3^{\prime \prime}$. This distance is measured from the floor slab to the bottom of the largest structural steel memt ar in the area, which is a W 24×68.

The heat release rates from transient combustibles in the area necessary to reach plume temperature of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at the bottom flange of the beam are listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also listed.

$\frac{I\left({ }^{\circ} \mathrm{F}\right)}{1100}$	$\frac{Q(\mathrm{KW})}{12,654}$	Time to $1100^{\circ} \mathrm{F}(\mathrm{min})$
1300	16,134	21 min
1500	20,457	15 min

The ventilation controlled burning rate of 4504 kW is equivalent to the heat output from a pool fire with an area of $14 \mathrm{ft}^{2}$ (pool diameter of approximately 4 ft). In order to assess the effect of the plume of heated gases above the pool fire on the structural steel supporting the 217^{\prime} elevation floor slab, Hesketad's relations will be used:

Virtual point source determination:

$$
Z_{0}=-1.020+.083 Q^{4}=1.09 \mathrm{~m}
$$

Plume temperature at bottom of structural steel supporting the 217^{\prime} elevation floor slab.
$T_{0}=9.1\left[T /\left(g_{p_{2}}{ }^{2}{ }^{2}\right)\right]{ }^{333} Q_{C} 667\left(Z-Z_{0}\right) 167$
$\mathrm{T}_{0}=103^{\circ} \mathrm{K}$ temperature rise
$T=253^{\circ} \mathrm{F}$ temperature of fire plume

The plume temperature is below the critical temperature of the structural steel.

Case number two considered both $3^{\prime} \times 7^{\prime}$ doors open which corresponds to a ventilation controlled burning rate of 9008 kW . At this heat output the fire would consume the 144 gallons of lube oil in 44 minutes. The gas temperature at this time would be $1020^{\circ} \mathrm{F}$ which is below the critical temperature of the structural steel (see Attachment B).

The ventilation controlled burning rate of 9008 kW is equivalent to the heat output from a pool fire with an area of $28 \mathrm{ft}^{2}$ (pool diameter of approximately 6 ft). In order to assess the effect of the plume of heated gases above the pool fire on the structural steel supporting the 217^{\prime} elevation floor slab, Hesketad's relations will be used:

Virtual point source determination:

$$
Z_{0}=-1.02 D+.083 Q^{4}=1.32 \mathrm{~m}
$$

Plume temperature at bottom of structural steel supporting the 217^{\prime} elevation floor slab.
$T_{0}=9.1\left[\begin{array}{lll}T & /\left(\mathrm{gc}_{\mathrm{p}}{ }^{2}\right. & 2)\end{array}\right]^{333} Q_{c} 667\left(z-Z_{0}\right) 167$
$\mathrm{T}_{0}=169^{\circ} \mathrm{K}$ temperature rise
$T=372^{\circ} \mathrm{F}$ temperature of fire plume

The plume temperature is below the critical temperature of the structural steel.

The cable trays in this area were positioned such that they did not present a localized heating exposure to the structural steel.

A W14 $\times 730$ column is located at column line E20 in this area. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$ for 44 minutes, the steel temperature does not exceed $590^{\circ} \mathrm{F}$. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$ for 85 minutes, the column temperature coes not exceed $900^{\circ} \mathrm{F}$.
6. EFFECTS OF TRANSIENT COMBUSTIBLES

The fire examined was ventilation controlled with a duration of 44 minutes. The temperature at this time was $1020^{\circ} \mathrm{F}$. Since this temperature approaches the critical temperature of $1100^{\circ} \mathrm{F}$, no transient materials were quantified.

The ceiling height in the area is $20^{\prime} 3^{\prime \prime}$. This distance is measured from the floor slab to the bottom of the largest structural steel member in the area which is a W24X68.

The heat release rates from transient combustibles in the area necessary to reach plume temperature of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at the bottom flange of the beam are listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also listed.

$\frac{T\left({ }^{\circ} \mathrm{F}\right)}{}$	$\frac{Q(\mathrm{~kW})}{12,654}$	Time to $1100^{\circ} \mathrm{F}(\mathrm{min})$
1300	16,134	21 min
1500	20,457	15 min

The ventilation controlled burning rate of 3417 kW is equivalent to the output from a pool fire with an area of $11 \mathrm{ft}^{2}$ (pool diameter of approximately 4 ft). In order to assess the effect of the plume of heated gases above the pool fire on the structural steel located above the fire, Heskestad's relations will be used:

Virtual point source determination:

$$
Z_{0}=-1.02 D+.083 Q^{4}=1.01 \mathrm{~m}
$$

Plume temperature at bottom of steel supporting the room ceiling:

$$
\begin{aligned}
& T_{0}=9.1\left(T /\left(g c_{p}^{2} \quad 2\right)\right){ }^{333} Q_{c} 667\left(Z-Z_{0}\right) 167 \\
& \mathrm{~T}_{0}=282^{\circ} \mathrm{K} \text { temperature rise } \\
& T=576^{\circ} \mathrm{F} \text { temperature of fire plume }
\end{aligned}
$$

The plume temperature is below the critical temperature for the structural steel. It can be concluded that there is no problem due to localized heating as a result of the maximum pool fire that can be supported by the available air flow into the room through a single door. The cable tray in this area is positioned such that it does not present a localized heating exposure to structural steel. A W14 $\times 730$ column is located at column line F15.5 in the area. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the column temperature will exceed $1000^{\circ} \mathrm{F}$ after 105 minutes if the fire is permitted to burn.

6. EFFECT OF TRANSIENT COMBUSTIBLES

The fire examined was ventilation controlled and had a duration of 180 minutes. The temperature at this time exceeded $1100^{\circ} \mathrm{F}$, therefore, no transient materials were quantified.

The ceiling height in the area is $19^{\prime} 3^{\prime \prime}$. This distance is measured from the floor slab to the bottom of the largest structural steel member in the area, which is a W36×194.
time would be $1065^{\circ} \mathrm{F}$ which is below the critical temperatuie of the structural steel (see Attachment B).

Case number three considered all cables burning simultaneously with three $3^{\prime} \times 7^{\prime}$ doors open. This resulted in a fuel controlled fire with a heat output of $12,078 \mathrm{~kW}$ and a duration of $3.5 \mathrm{lbs} / \mathrm{ft}^{2} \div .1 \mathrm{lbs}=35$ minutes.

$$
\min / \mathrm{ft}^{2}
$$

The gas temperature at this time would be $1203^{\circ} \mathrm{F}$ which is above the critical temperature of the structural steel (see Attachment B).

The position of cable trays relative to structural steel members were examined throughout the area in order to assess the potential for localized heating. Cable tray ICCTA is located within 12 inches of member types W30X99, W 33×152, W 27×84, W 24×76, W 24×68, and W 27×114, and greater than 12 inches from member types $W 21 \times 44$ and $W 21 \times 55$.

Attachment C contains the results of calculations performed to determine the response of the structural steel members to localized heating. These Calculations are conservative because they assume that the entire length of the structural steel member is subjected to either $1500^{\circ} \mathrm{F}$ or $1300^{\circ} \mathrm{F}$ when, in actuality, only a small section of the steel would be subjected to localized heating. As can be seen from the results, member types W30x99, W27 $\times 84$, $W 24 \times 76$, W24X68, W 27×114, W 21×44 and $W 21 \times 55$ exceeded the localized failure temperature of $1100^{\circ} \mathrm{F}$ during the 35 minute exposure period (time required for tray to burn to completion).

Columns in the area are $W 14 \times 730$. One column at Column line F 15.5 is partially embedded in the wall. The exposed column is at column line H15.5. When exposed to plume temperatures of $1500^{\circ} \mathrm{F}$ tor 35 minutes, the steel temperature does not exceed $500^{\circ} \mathrm{F}$.

6. EFFECT OF TRANSIENT COMBUSTIBLES

The fire examined was fuel controlled with a duration of 35 minutes. The temperature at this time exceeded $1100^{\circ} \mathrm{F}$, therefore, no transient materials were quantified.

```
    EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL
```

FIRE TEMPERATURE (deg. F): 1500
WEIGHT OF STEEL MEMBER ($1 \mathrm{bs} . / \mathrm{ft}$): 68
SURFACE OF STEEL MEMBER HEATED (sq.ft./ft): 6.06

```
TIME
    (min)
        5.00
        10.00
        572
        899
        15.00
        1 1 1 0
        20.00
        1 2 4 7
        25.00
        1336
        30.00
        1394
        35.00
        1431
```

```
CASE NUMBER: }
BUILDING: REACTOR BUILDING
ELEUATION AND AREA DESCRIPTION: 201, SAFEGUARDS
CASE DESCRIPTION: !J 24\times76
EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL
FIRE, TEMPERATURE (deg. F): }150
WEIGHT OF STEEL MEMBER (1bs./ft): }7
SURFACE OF STEEL MEMBER HEATED (sq.ft./ft): 6.05
```

TIME (min)
5.00
10.00
15.00
20.00
25.00
30.00
35.00

STEEL TEMPERATURE
(deg.f)
519
829
1040
1185
1284
1352
1399

FIRE TEMPERATURE (deg, F): 1500 WEIGHT OF STEEL MEMBER ($1 \mathrm{bs}, / \mathrm{ft}$): 84
SURFACE OF STEEL MEMBER HEATED (sq.ft./ft): 6.78

TIME
(min)
5.00
10.00
15. 00
20.00
25. 00
30.00

35, 00

STEEL TEMPERATURE (deg.F)

524
835
1047
1192
1290
1357
1403

EFFECTS OF LOCAL HEAIING ON STRUCTURAL STEEL

FITE TEMPERATURE (deg. F): 1500
WEIGHT OF STEEL MEMBER ($1 \mathrm{bs} . / \mathrm{ft}$):
114
SURFACE OF STEEL MEMBER HEATED (sq.ft./ft): 6. 39

TIME
(Min)
5.00
10.00
15.00
20.00
25. 00
30.00
35.00

STEEL TEMPCRATURE
(deg.f)
410
670
868
1019
1134
1221
1288
FIRE TEMPERATURE (deg, F): 1500
WEIGHT OF STEEL MEMBER ($1 \mathrm{bs} . / \mathrm{ft}$): 99
SURFACE OF STEEL MEMBER HEATED ($s q, f t, / f t$): 7.37
TJME STEEL TEMPERATURE (min)
5.00 489
10.00 786
15,00 996
20.00 1144
25.00 1249
30.00 1323
35.00 1375

```
    EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL
```

FIRE TEMPERATURE (deg. F): 1500
WEIGHT OF STEEL MEMBER (lbs./ft): 152
SURFACE OF STEEL MEMBER HEATED ($5 q, f t, / f t$): 8.27
TIME
(Min)
STEEL TEMPERATURE
5.00 376
10.00 617
15.00 859
25.00 1073
30.00 1165
35.00 1237

CASE NUMBER: 3

BUILDING: UNIT 1 REACTOR BUILDING
ELEUATION AND AREA DESCRIPTION: 201' COOLING WATER HX AREA ROOM 207 CASE DESCRIPTION: LOCALIZED HEATING OF MEMBER TYPE W27×84

EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL

FIRE TEMPERATURE (deg. F): 1500
WEIGHT OF STEEL MEMEER ($1 \mathrm{bs}, / f+$) ; 84 SURFACE OF STEEL MEMBER HEATED ($5 q, f t, / f t$); 6.78

TIME (min)
5. 00
10.00
15.00
20.00
25.00
30.00
35.00

STEEL TEMPERATURE
(deg.F)
524
835
1047
1191
1290
1357
1402

CASE NUMBER：

BUILDING：UNIT 1 REACTOR BUILDING
ELEUATION AND AREA DESCRIPTION：201＇COOLING WATER HX AREA ROOM 207 CASE DESCRIPTION：LOCALIZED HEATING OF MEMBER TYPE W27×102

EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL

FIRE TEMPERATURE（deg．F）： 1500
WEIGHT OF STEEL MEMEER（ $1 \mathrm{bs}, / \mathrm{ft}$ ）： 102
SURFACE OF STEEL MEMBER HEATED（ $\mathrm{sq}, \mathrm{ft}, / \mathrm{ft}$ ）： 6.85
time
（min）
5.00
10.00
15.00

STEEL TEMPERATURE
（deg．F）
20.00
25.00
30.00
35.00

プーワ
448
727
932
1083
1193
1275
1334

The position of cable trays relative to structural members were examined throughout the area in order to assess the potential for localized heating. Cable tray $10 C Q A$ is located within 12 inches of member types W27 $\times 84$, and W27 $\times 102$, and greater than 12 inches from member types W21×44 and W18×40.

Attachment C contains the results of calculations performed to determine the response of the structural steel members to localized heating. These calculations are conservazive because they assume that the entire length of the structural steel member is subjected to a temperature of either $1500^{\circ} \mathrm{F}$ or $1300^{\circ} \mathrm{F}$ when, in actuality, only a small section of the steel would be subjected to localized heating. As can be seen from the results, member types W18×40, W21X44, W27×84 and W27 $\times 102$ exceeded the single point failure temperature of $1100^{\circ} \mathrm{F}$ during the 35 minute exposure period (time required for tray to burn to completion).

Columns in this area are W14×342 at column line G21.5 and W14×550 at column line H21.5. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the steel temperature of the $W 14 \times 342$ reaches $775^{\circ} \mathrm{F}$ after 35 minutes and the steel temperature of the $W 14 \times 550$ reaches $584^{\circ} \mathrm{F}$ after 35 minutes.

6. EFFECTS OF TRANSIENT COMBUSTIBLES

The fire examined was ventilation controlled with a duration of 45 minutes. The temperature at this time was $1028^{\circ} \mathrm{F}$. Since this temperature approaches the critical temperature of $1100^{\circ} \mathrm{F}$, no transient materials were quantified.

The ceiling height in the area is 12 feet. This distance is measured from the floor slab to the bottom of the largest structural steel member in the area which is a W33×141.

The heat release rates from transient combustibles in the area necessary to reach plume temperature of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at the bottom flange of the beam are listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also listed.

$\frac{T\left({ }^{\circ} \mathrm{F}\right)}{1100}$	$\frac{Q(\mathrm{~kW})}{2,952}$	Time to $1100^{\circ} \mathrm{F}(\mathrm{min})$
1300	4,007	35 min
1500	5,062	24 min

of 8123 kW . The fire duration would be $6.5 \mathrm{lbs} / \mathrm{ft}^{2}+\frac{.1 \mathrm{lbs}}{\mathrm{min} / \mathrm{ft}^{2}}=65$ minutes.

The gas temperature at this time would be $808^{\circ} \mathrm{F}$, which is below the critical temperature of the structural steel (see Attachment B).

The location of the cable trays relative to structural steel members was examined in the area. No cable trays were positioned so as to present a localized heating exposure to structural steel.

Exposed columns in the area are W14×730 at column lines E17, E18.5 and E20. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the temperature of the exposed $W 14 \times 730$ columns reaches $757^{\circ} \mathrm{F}$ after 65 minutes.

6. EFFECTS OF TRANSIENT COMBUSTIBLES

The fire examined was fuel controlled with a duration of 65 minutes. The temperature at this time was below $1100^{\circ} \mathrm{F}$. The maximum additional heat release rate due to transient materials in the area which will result in an area temperature less than $1100^{\circ} \mathrm{F}$ is listed below.

$$
\frac{\text { Fire Duration }}{65 \mathrm{~m}^{1} \mathrm{n}} \quad \frac{Q / \mathrm{A}\left(\mathrm{~kW} / \mathrm{m}^{2}\right)}{10} \quad \frac{Q(\mathrm{~kW})}{4680}
$$

The ceiling height in the area is $18^{\prime} 6^{\prime \prime}$. This distance is measured from the floor slab to the bottom of the largest struciural steel member in the area which is a W18×50.

The heat release rates from transient combustibles in the area necessary to reach plume temperature of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at the bottom flange of the beam are listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also listed.

$\frac{T\left({ }^{\circ} \mathrm{F}\right)}{100}$	$\frac{Q(\mathrm{KW})}{10,123}$	Time to $1100^{\circ} \mathrm{F}(\mathrm{min})$
1300	13,076	19 min
1500	16,450	13 min

5. RESULTS

The fire duration was taken to be 180 minutes and the fire temperature reached after 3 hours was $650^{\circ} \mathrm{F}$ which is below the critical temperature for the structural steel (see Attachment C for results of analysis). Since the fire was assumed to occur in the area of heaviest combustible loading, the results are considered to be representative for the entire general floor area on the 217^{\prime} elevation of the Reactor Building.

The location of cable trays relative to structural steel members were examined throughout the 217^{\prime} elevation of the Reactor Building in order to assess the potential for localized heating. A stack of 4 cable trays were positioned $2^{\prime} 6^{\prime \prime}$ below a $G 7$ girder so as to present a localized heating exposure to structural steel. When exposed to the $1300^{\circ} \mathrm{F}$ plume temperature for 32 minutes the girder will be heated to $700^{\circ} \mathrm{F}$. (See Attachment D.)

Exposed columns in the area are W14X550 at column line H 21.5 , and W14×287 at column G21.5. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the steel temperatures of the columns are as follows:

$$
\begin{array}{ll}
\text { W14 } \times 550 & 548^{\circ} \mathrm{F} \text { after } 32 \text { minutes } \\
\text { W14 } \times 287 & 810^{\circ} \mathrm{F} \text { after } 32 \text { minutes }
\end{array}
$$

6. EFFECTS OF TRANSIENT COMBUSTIBLES

The fire examined was fuel controlled with a duration of 180 minutes. Thr temperature at this time was below $1100^{\circ} \mathrm{F}$. The maximum additional heat release rate due to transient materials in the area which will result in an area temperature less than $1100^{\circ} \mathrm{F}$ is listed below.
$\frac{\text { Fire Duration }}{3 \text { hours }}$

$$
\frac{Q / A\left(\mathrm{~kW} / \mathrm{m}^{2}\right)}{6.5}
$$

$$
\frac{Q(\mathrm{~kW})}{3547}
$$

The ceiling height in the area is 30 feet. This distance is ineasured from the floor slab to the bottom of the largest structural steel member in the area which is a G7 $48^{\prime \prime}$.
FIRE TEMPERATURE (deq, F): 1300
WEIGHT OF STEEL MEMBER ($1 \mathrm{bs}, / \mathrm{ft}$): 435
SURFACE OF STEEL MEMBER HEATED (sq,ft,/ft): 11.25
TIME
(min)
STEEL TEMPERATURE
(deg.F)
5.00 194
10.00 307
15.00 408
20.00 489
25.00 581
30.00 655
35.00 720

5. RESULTS

The fire duratio was taken to be 180 minutes and the gas temperature reached after 3 hours would be $550^{\circ} \mathrm{F}$ which is below the critical temperature for the structural steel (see Attachment C).

The location of cable trays relative to structural steel members were examined throughout the area in order to assess the potential for localized heating. A stack of 4 cable trays were positioned 2^{\prime} below the W27×84 beams so as to present a localized heating exposure to the structural steel. When exposed to the $1300^{\circ} \mathrm{F}$ plume temperature for 35 minutes, the W 27×34 member exceeds the failure temperature of $1100^{\circ} \mathrm{F}$. (See Attachment D.)
6. EFFECT OF TRANSIENT COMBUSTIBLES

The fire examined was fuel controlled with a duration of 180 minutes. The temperature at this time was below $1100^{\circ} \mathrm{F}$. The maximum additional heat release rate due to transient materials in the area which will result in an area temperature less than $1100^{\circ} \mathrm{F}$ is listed below.
$\frac{\text { Fire Duration }}{3 \text { hours }} \quad \frac{Q / A\left(\mathrm{~kW} / \mathrm{m}^{2}\right)}{6.5} \quad \frac{Q(\mathrm{~kW})}{2964}$

The ceiling height in the area is $32^{\prime} 3^{\prime \prime}$. This distance is measured from the floor slab to the bottom of the largest structural steel member in the area, which is a W27×84.

Plume effects from floor level transients are negligible.

TIME
(min)
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
50.00
65.00

STEEL TEMPERATURE
(deg.F)
461
728
911
1035
1119
1177
1216
1243
1261
1273
1282
1288
1292

LIMERICK GENERATING STATION

1. AREA DESCRIPTION

The area under consideration is the Northwest Corner of the General Floor Area on the 217^{\prime} elevation of the Unit 1 Reactor Building (Fire Area 44). Bounding walls are of reinforced concrete construction with an average thickness of 2 ft . The total surface area for heat transfer is $7706 \mathrm{ft}^{2}$ (see Attachment A for sketch and calculation of surface areas).
2. COMBUSTIBLE LOADING

The heaviest concentration of cabling found within this area is along the west wall in the southwest corner of the area. The average combustible loading of the cable trays in this area is $3.5 \mathrm{lbs} / \mathrm{ft}^{2}$ of cable tray surface area. There are no combustible liquids in this area.
3. VENTILATION PARAMETERS

The area under consideration is open to the remainder of the 217^{\prime} elevation of the Reactor Building.
4. CASES EXAMINED

A spreading cable fire was assumed to originate in the area of heaviest cable concentration in order to present the worst case. The fire is assumed to start at a point source and spread horizontally along the cable trays in each direction at a rate of 10 feet per hour. The fire will spread along all of the horizontal cable trays intersecting the point source for a distance of 6 feet in each direction before the original point source dies out after 35 minutes. A maximum surface area of $120 \mathrm{ft}^{2}$ of cable trays (see Attachment B for a list of trays) will be involved at any one time, which corresponds to a heat output of 2119 kW . This heat output is assumed constant throughout the fire duration. The actual heat output as the fire spreads out of the area originally involved would be less since the quantity of cabling that would be involved at any one time would be less.
5. RESULTS

The fire duration was taken to be 180 minutes and the gas temperature reached after 3 hours was $629^{\circ} \mathrm{F}$ which is below the critical temperature for
the structural steel (see Attachment C for results of analysis). Since the fire :las assumed to occur in the area of heaviest combustible loading, the results are considered to be representative for the entire area on the 217^{\prime} elevation of the Reactor Building.

The location of cable trays relative to structural steel members were examined throughout the area in order to assess the potential for localized heating. Two cable trays were positioned 2^{\prime} below a W27X94 beam so as to present a localized heating exposure to the structural steel. When exposed to the $1300^{\circ} \mathrm{F}$ plume temperature for 35 minutes, the W 27×94 beam exceeds the failure temperature of $1100^{\circ} \mathrm{F}$ (see Attachment D).

Columns in this area are W14×730 at column line H15.5, and W14×87 at column line Hgl4.8. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the steel temperatures are as follows:

```
W14\times730 494*F after 35 minutes
W14\times87 1402 }\mp@subsup{}{}{\circ}\textrm{F}\mathrm{ after }35\mathrm{ minutes
```

6. EFFECT OF TRANSIENT COMBUSTIBLES

The fire examined was fuel controlled with a duration of 180 minutes. The tempera are at this time was below $1100^{\circ} \mathrm{F}$. The maximum additional heat release rate due to transient materials in the area which would result in an area temperature less than $1100^{\circ} \mathrm{F}$ is listed below.

$$
\frac{\text { Fire Duration }}{3 \text { hours }}
$$

$$
\frac{Q / A\left(\mathrm{~kW} / \mathrm{m}^{2}\right)}{6.5}
$$

$$
\frac{Q(k W)}{2536}
$$

The ceiling height in the area is 30 feet. This distance is measured from the floor slab to the bottom of the largest structural steel member in the area, which is a G7 48".

The heat release rates from transient combustibles in the area necessary to reach plume temperature of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at the bottom flange of the beam are listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also isted.

$\frac{T\left({ }^{\circ} \mathrm{F}\right)}{1100}$	$\frac{Q(\mathrm{~kW})}{>21,089}$	Time to $1100^{\circ} \mathrm{F}(\mathrm{min})$
1300	$>21,089$	
1500	$>21,089$	

```
    EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL
```

FIRE TEMPERATURE (deg, F): 1300
WEIGHT OF STEEL MEMBER ($1 \mathrm{bs} . / \mathrm{ft}$): 94
SURFACE OF STEEL. MEMBER HEATED (sq.ft./ft): 6.78

TIME $($ min)	STEEL $(\mathrm{dEMPER} . \mathrm{F})$
5.00	
10.00	419
15.00	570
20.00	849
25.00	978
30.00	1070
35.00	1135
40.00	1182
45.00	1216
50.00	1240
55.00	1257
60.00	1269
65.00	1278
	1284

5. RESULTS

The fire duration was taken to be 180 minutes and the fire temperature reached after 3 hours was $1045^{\circ} \mathrm{F}$ which is below the critical temperature for the structural steel (see Attachment C for results of analysis). Since the fire is assumed to occur in the area of heaviest combustible loading, the results are considered to be representative for the entire general floor area on the 253^{\prime} elevation of the Reactor Building.

The positions of cable trays relative to structural steel members were examined throughout the 253^{\prime} elevation of the Reactor Building in order to assess the potential for localized heating. Cable tray lACYCO5 is located $12^{\prime \prime}$ below the bottom of a girder type G-52 (54WF366).

Attachment D contains the results of calculations performed to determine the response of the girder to localized heating. These calculations are conservative because they assume that the entire length of the girder is subjected to a temperature of $1500^{\circ} \mathrm{F}$ when in actuality only a small section of the steel would be subjected to localized heating. As can be seen from the results, the girder reaches its single point failure temperature of $1100^{\circ} \mathrm{F}$ during the 47 minute exposure period (time required for a tray to burn to completion).

Columns in the area are $W 14 \times 730$ at column lines E15.5, E17, E18.5, E21.5, F15.5, W14 X665 at column line E20, W14X370 at column lines G15.5 and F21.5, W14×550 at column line H15.5, W14X119 at column line G21.5, W14X342 at column line H21.5, and W14X87 at column line Hg14.8. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the steel temperatures of the columns are as follows:

```
W14X730 610 % after 47 minutes
W14\times665 642 % after 47 minutes
W14\times370 989 F after 47 minutes
W14\times550 714 % F after 47 minutes
W14\times119 1385 % after 47 minutes
W14\times342 926 % after 47 minutes
W14\times87 1460 % F after 47 minutes
19 - 2
```


EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL

FIRE TEMPERATURE (deg, F): 1500
WEICHT OF STEEL MEMEER ($1 \mathrm{bs} . / \mathrm{ft}$): 366
SURFACE OF STEEL MEMBER HEATED ($\mathrm{sq} . \mathrm{ft} . / \mathrm{ft}$): 13.30

TIME	
(Min)	STEEL TEMPERATURE
(deq.F)	

5. RESULTS

The fire was assumed to last 3 hours with no action taken by plant personnel to extinguish the fire. The peak gas temperature reached was $854^{\circ} \mathrm{F}$ (see Attachment C) which is below the critical temperature for the structural steel. Since the fire was assumed to occur in the area of heaviest combustible loading, the results are considered to be representative for the entire general floor area on the 283^{\prime} elevation of the Reactor Building.

The position of cable trays relative to structural steel members were examined throughout the 283^{\prime} elevation of the Reactor Building in order to assess the potential for localized heating. Cable trays were encountered within 1 foot of type 36WF230 beams in numerous locations. Cable trays 1CCRA, ICCTA, IMIAB, and IACYA were positioned 12 inches below a 18WF 45 beam located northeast of the drywell near column line 20.

Attachment D contains the results of calculations performed to determine the response of the structural members to localized heating.

These calculations are conservative because they assume that the entire length of the member is subjected to a temperature of $1500^{\circ} \mathrm{F}$ when in actuality only a small section of the steel would be subjected to localized heating. As can be seen from the results, these member types exceeded the single point failure temperature of $1100^{\circ} \mathrm{F}$ during the 40 minute exposure period (time required for a tray to burn to completion). Attachment D includes a sketch showing the location of the structural member which will fail due to localized heating effects.

Columns in the area are W14×730 at column line E15.5, E17, E18.5, and E21.5, W14 X665 at column line E20, and W14×87 at column line Hg 14.8 . When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the steel temperatures are as follows:

$$
\begin{array}{ll}
\text { W14 } \times 730 & 544^{\circ} \mathrm{F} \text { after } 40 \text { minutes } \\
\text { W14 } 6665 & 574^{\circ} \mathrm{F} \text { after } 40 \text { minutes } \\
\text { W14 } \times 87 & 1434^{\circ} \mathrm{F} \text { after } 40 \text { minutes }
\end{array}
$$

CASE NUMBER: 1
BUILDING: REACTOR BUILDING
ELEVATION AND AREA DESCRIPTION: 283' GENERAL. CASE DESCRIPTION: W 18×45

EFFECTS OF LOCAL HEATING ON STRUCTURAL. STEEL


```
CASE NJMMER: ?
```

BUTLDING: REACTOR BUILDING
ELEVATION AND AREA DESCRIPTION: 283' GENERAL
CASE DESCRIPTION: $W 36 \times 230$

```
EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL
```

FIRE TEMPERATURE (deg, F): 1500
WEIGHT OF STEEL MEMBER ($1 \mathrm{bs}, / \mathrm{ft}$): 230
SURFACE OF STEEL MEMBER HEATED ($\mathrm{sq} . \mathrm{ft} . / \mathrm{ft}$): 9.34
$\left.\begin{array}{lc}\begin{array}{l}\text { TIME } \\ \text { (min) }\end{array} & \text { STEEL TEMPERATURE } \\ (d \mathrm{deg}, F)\end{array}\right)$

Columns in the area are $W 14 \times 398$ and $W 14 \times 287$. When exposed to a plume temperature of $1500^{\circ} \mathrm{F}$, the steel temperatures are as follows:

N 14×398	$709^{\circ} \mathrm{F}$ after 35 minutes
$\mathbf{W} 14 \times 287$	$857^{\circ} \mathrm{F}$ after 35 minutes

6. EFFECT OF TRANSIENT COMBUSTIBLES

The fire examined was fuel controlled with a duration of 35 minutes. The temperature at this time was below $1100^{\circ} \mathrm{F}$. The maximum additional heat release rates due to transient materials in the area which result in an area temperature less than $1100^{\circ} \mathrm{F}$ is listed below.
$\frac{\text { Fire Duration }}{35 \mathrm{~min}} \quad \frac{Q / A\left(\mathrm{~kW} / \mathrm{m}^{2}\right)}{13} \quad \frac{Q(\mathrm{~kW})}{7752}$

The ceiling height in the area is 13 feet. This distance is measured from the floor slab to the bottom of the largest structural steel member in the ared, which is a W36×194.

The heat release rates from transient combustibles in the area necessary to reach plume temperature of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at the bottom flange of the beam are listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also listed.

$\frac{T\left({ }^{\circ} \mathrm{F}\right)}{1100}$	$\frac{Q(\mathrm{~kW})}{4,218}$	Time to $1100^{\circ} \mathrm{F}(\mathrm{min})$
1300	5,377	46 min
1500	6,854	32 min

controlled with oniy one door open, the opening of additional doors into the area will not effect the burn rate or final gas temperature.

The location of cable trays relative to structural steel members was examined in the area. Cable tray 10CNF is located within 12 inches below the bottom of a W36 $\times 300$ steel member.

Actachment C contains the results of calculations performed to determine the response of the steel member to localized heating. These calculations are conservative because they assume that the entire length of the steel member is subjected to a temperature of $1500^{\circ} \mathrm{F}$ when in actuality only a small section of the steel would be subjected to localized heating. As can be seen from the results the member does not exceed the single point failure temperature of $1100^{\circ} \mathrm{F}$ during the 20 minute exposure period (time required for tray to burn to completion).

6. EFFECTS OF TRANSIENT COMBUSTIBLES

The fire examined was fuel controlled with a duration of 20 minutes. The temperature at this time was below $1100^{\circ} \mathrm{F}$. The maximum additional heat release rate due to transient materials in the area which will result in an area temperature less than $1100^{\circ} \mathrm{F}$ is listed below.
$\frac{\text { Fire Duration }}{20 \mathrm{~min}} \quad \frac{Q / A\left(\mathrm{~kW} / \mathrm{m}^{2}\right)}{15.5} \quad \frac{Q(\mathrm{~kW})}{5116}$

The ceiling height in the area is $13^{\prime} 9^{\prime \prime}$. This distance is measured from the floor slab to the bottom of the typical structural steel member in the area which are W30×210.

The heat release rates from transient combustibles in the area necessary to reach plume temperature of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at the bottom flange of the beam are listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also listed.

$\frac{T\left({ }^{\circ} \mathrm{F}\right)}{1100}$	$\frac{Q(\mathrm{~kW})}{4,745}$	Time to $1100^{\circ} \mathrm{F}(\mathrm{min})$
1300	6,326	$>50 \mathrm{~min}$

CASE NUMBER: 1

BUILDING: CONTROL. BUILDING
ELEVATION AND AREA DESCRIPTION: 200° WEST CHILLER CASE DESCRIPTION: W36×300

EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL

FIRE TEMPERATURE (deg. F): 1500
WEIGHT OF STEEL MEMBER ($1 \mathrm{bs}, / \mathrm{ft}$): 300
SURFACE OF STEEL MEMBER HEATED (sq.ft./ft): 9.99
TIME
(min)
STEEL TEMPERATURE
(deg.F)
5.00
255
10.00
420
15. 00
562
20.00
635

LIMERICK GENERATING STATION

1. AREA DESCRIPTION

The area under consideration is the switchgear area on the 217^{\prime} elevation of the Control Structure (Fire Area 2) (see Attachment A for sketch of area). Bounding walls are of reinforced concrete construction with an average thickness of 3 ft . Total surface area for heat transfer is approximately $13,836 \mathrm{ft}^{2}\left(1285 \mathrm{~m}^{2}\right)$ (see Attachment A for calculation of areas).
2. COMBUSTIBLE LOADING

Combustible loading in this area consists of cable trays which are stacked three high along the south wall of the room. At three locations the cable trays are joined by several vertical cable trays. These three areas are located at the east side, center, and west side of the south wall and represent the areas of heaviest combustible loading. The average combustible loading of the cable trays in this area is $3.51 \mathrm{bs} / \mathrm{ft}^{2}$ of tray surface area. There are no combustible liquids in this area.

3. VENTILATION PARAMETERS

Three sets of double doors serve this area. Each set has 2 leaves. The door leaves located in the east and west walls each measure 4^{\prime} wide by 10^{\prime} high. The door leaves in the north wall measure 5^{\prime} wide by 11^{\prime} high.
4. CASES EXAMINED

Two cases were examined each with a different ventilation parameter and a different quantity of cable assumed to be burning.

Case number 1 assumed a spreading cable fire in the center area of cable trays along the south wall, with all doors in the room closed. The fire is assumed to start at a point source and spread horizontally along the cable trays in each direction at a rate of 10 feet per hour. The fire will spread east and west along the south wall, a distance of 6 feet in each direction along the cable trays before the original point source dies out after 35 minutes. A maximum surface area of 96
ft^{2} of cable trays (see Attachment B for a list of cable trays) will be involved at any one time, which corresponds to a heat output of 1700 kW. This heat output is assumed constant throughout the fire duration. The actual heat output as the fire spreads out of the area originally involved at any one time would be less since the quantity of cabling that would be involved at any one time would be less.

Case number 2 assumed a ventilation controlled fire with one 4^{\prime} wide by 10^{\prime} high door open. The heat output of this fire would be $10,254 \mathrm{~kW}$ and would last for approximately 150 minutes (until all combustibles are consumed).
5. RESULTS

Case number 1 resulted in a fire temperature of $395^{\circ} \mathrm{F}$ when the fire duration was taken to 180 minutes. This temperature is below the critical temperature for the structural steel (see Attachiment C for results of analysis). This fire was fuel controlled, therefore having additional door leaves open would not change the results.

Since the fire evaluated in Case 1 was assumed to occur in the area of heaviest combustible loading, the results are considered to be representative for the entire switchgear area on the 217 ' elevation of the Control Structure.

Case number 2 resulted in a fire temperature of $1188^{\circ} \mathrm{F}$ at 150 minutes. This temperature is above the critical temperature for the structural steel (see Attachment C for results of analysis).

The position of cable trays relative to structural steel member, were examined throughout the 217^{\prime} elevation of the Control Structure to assess the potential for localized heating. Cabie trays 21CQA and 11CQA are located 12 inches below the bottom of structural steel member G1 ($W 42 \times 316$), and greater than 12 inches below member types $W 36: 230$, W 36×245, W 36×260, W 36×300, W 33×118, W30×99, and W 27×84.

Attachment Γ contains the results of the calculations performed to determine we response of the structural steel to localized heating. The exposure time was taken to be 35 minutes which is the time required for the tray to burn to completion. These calculations are conservative because they assume that the entire length of the member is subjected to a temperature of $1500^{\circ} \mathrm{F}$ (for G1) or $1300^{\circ} \mathrm{F}$ when in actuality only a small section of the steel would be subjected to localized heating. As can be seen from the results, the member types G1 (W42×316), W36×230, W36X245, W 36×260, and W 36×300 will not reach their critical temperature during the 35 minute exposure period. Member types W33×118, W30x99, and W27X84 will exceed the single point failure temperature of $1100^{\circ} \mathrm{F}$ within the exposure period. Attachinent D includes a sketch of the structural members which will fail due to localized heating.

6. EFFECTS OF TRANSIENT COMBUSTIBLES

Since case 2 is a ventilation controlled fire, no transient combustibles were quantified for area effects.

The ceiling height in the area is $17^{\prime} 10-1 / 2^{\prime \prime}$. This distance is measured from the floor slab to the bottom of a typical W36 beam. The heat release rates from transient combustibles in the area necessary to reach plume temperatures of $1100^{\circ} \mathrm{F}, 1300^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ at $17^{\prime} 10-1 / 2^{\prime \prime}$ above the floor area listed in the table below. For temperatures greater than $1100^{\circ} \mathrm{F}$, the time required to heat the steel to $1100^{\circ} \mathrm{F}$ are also listed.


```
CASE NUMBER: 2
BUILDING: CONTROL STRUCTIRE
ELEVATION AND AREA DESCRIPTION: 217' SWITCHGEAR AREA
CASE DESCRIPTION: ONE DOOR LEAF OPEN 4'\times10'
```


CEILING/WALL	CEILING/ WALL	Ao	Ho	Aw	Q
THICKNESS MATERIAL					
(f t)		(ft2)	(ft)	$(f+2)$	(kW)
**					
3.0	CONCRETE	40.0	10.0	13836	0254

FIRE IS UENTILATION CONTRDLLED

FIRE DURATIDN	GAS TEMPERATURE
$($ min)	
(deq.F)	
5	715
10	735
15	754
20	772
25	790
30	808
35	826
40	843
45	861
50	878
55	895
60	912
65	928
70	945
75	961
80	977
85	993
90	1009
95	1025
100	1041
105	1056
110	1071
115	1086
130	1101
125	1116
130	1130
135	1145
140	1159
145	1173
150	1198
5	

CASE NO. : 1
BUILDING: CONTROL STRUCTURE
ELEUATION AND AREA DESCRIPTION: 217' SWITCHOEAR AREA
CASE DESCRIPTION: GENERRLIZED HEATING OF MEMBER TYPE W27XE4

CEILING/WALL THICKNESS CEILING/WALL MATERIAL AO HO AW Q (FT.) SQ. FT. FT. SQ. FT. KW

3 CONCRETE $40 \quad 10 \quad 1385610254.4$

GENERALIZED HEATING OF STRUCTURAL STEEL CALCULATION

WEIGHT OF STEEL MEMBER (LBS./FT.) : 84
SURFACE AREA OF STEEL HEATED (S0. FT./F'.): 6.78

FIRE DURATION
(MIN.)

5

10
15
20
25
30
35
40
45
50
55
68
65
70
75
ED
85
90
95
100
105
110
115
120
125
130
135
140
145
150

GAS TEMPERATURE (DEQ. F)

$$
715.294
$$

$$
735.200
$$

$$
754.012
$$

$$
772.352
$$

790.409
808. 256
825. 922
843.419
860. 751
877.919
894. 922
911.761
928.433
944.939
961.279
977.454
993.464
1009. 31
1024.39
1040.52
1055.89
1071.10
1095. 15
1101.08
1115.84
1130.46
1144. 94
1.159. 28
1173.48
1157. 55

STEEL TEMPERATLIRE (DEG. F)
171.274
348. 044
474.585

56E. 675
635.186
587. 565
728.895
752.647
791. 196
816. 123
838.555
859.225
878.651
897. 169
915. 『20
932.361
949. 304
965.324
982. 271
998. 392
1014.28
1029.98
1045.51
1060.86
1075.05
1091.05
1105.95
1120.68
1135.26
1149.70

CASE NO. : 2
BUILDING: CONTROL STRUCTIRE
ELEVATION AND AREA DES'RIPTION: 21/' SWITCHGEGR AREA CASE DESCRIPTION: GENERALIZED HEATING OF MEMEER TYPE W30X99

3
CONCRETE
40
10 13日36 10254.4

GENERALIZED HEATING OF STRUCTURAL STEEL CALCULATION

WEIGHT OF STEEL MEMBER (LBS./FT.): 99
SURFACE AREA OF STEEL HEATED (SQ. FT./F'.): 7.37

FIRE DURATION
(MIN.)
5
10
15
20
25
30
35
40
45
50
55
60
55
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150

GAS TEMPERATURE (DEG. F)
715.294
735.200
754.012
772.352
790.409

80®. 256
825.922
845.475
860. 731
877.919
894.522
$911.7 E 1$
928.433
944.939
961.279
977.454
993.464
1009.31
1024.99
1040.52
1055.89
1071.10

108E. 1E
1101.06
1115.84
1130.45
1144.34
1159.25
1173. 48
1187.55

STEEL TEMPERATURE (DEG. F)
163. 251
328.651
451.870
542.927
613. 106

E67. 914
711.817
747.974
778. 614
805.314
829. 184
851.009
971.342
890.573
908.976
926. 751
944.029
560.910
977.463
993. 737
1009. 76
10.25 .58
1041.19
1056.62
1071.28
1095.97
1101.90

111E. 68
1131.30
1145. 79

CASE NO.: 3
BUILDING: CONTROL STRUCTURE
ELEVATION AND AREA DESCRIPTION: 217' SWITCHGEAR AREA CASE DESCRIPTION: GENERALIZED HEATING OF MEMEER TYPE W33×118

GENERALIZED HEATING OF STRUCTURAL STEEL CALCULATION

WEIGHT OF STEEL MEMRER (LBS./FT,): 118 SURFACE KPELA OF STEEL HEATED (SO. FT./FT,): 8. 15

FIRE DURATION (MIN.)

5
10
15
20
25
30
35
40
45
50
55
50
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150

GAS TEMPERATURE (DEG. F)
715. 294
735.200
754.012
772. 352
790.409
808.256
025.922
843.419
860.751
877.919
894. 922
911.751
929.433
944.939
961.279
977.454
993.464
1009.31
1024.99
1040.52
1055.89
1071.18
1086. 16
1101.08
1115.34
1130.46
1144.94
1159.28
1173.48
1.197 .55

STEEL TEMPERATURE (DEG. F)

15F. 372
311. 704
429.909
520.910
592.032
649.636

- 594.632
732.870
765.422

793. 795
794. 097
795. 893
796. 392
797. 405
902.439
902.713
798. 392
799. 593
972.4日?
800. 993
1005.08
1021.03
1036.76
1052.29
801. 52
802. 78
1097.76
1117.61
1127.29
1164.83

CAEE NO, 4
BUTLDTAMS: EONTROL STRUCTURE
ELEVATION AND AREA DESCRIPTIJN: 217, SWIICHGEAR AREA CASE DESCRIPTION: GENERALIZED MEATING OF MEMBER TYPE G1

CEILING. WALL THICKNESS CEILING/WALL MATERIAL AO HO AW Q
(FT.) SQ. FT. FT. SQ. FT. KW

3 CONCRETE $\quad 40 \quad 10 \quad 1303610254.4$

GENERALIZED HEATING OF STRUCTURAL STEEL CALCULATION

WEIGHT OF STEEL MEMBER (LBS./FT.): 316
SURFACE AREA OF STEEL HEATED (SQ. FT. T.) : 10.91

FIRE DURATION
(MIN.)
5
10
15
20
25
30
35
40
45
50
55
50
55
70
75
80
85
90
55
100
105
110
115
120
125
130
135
140
145
150

GAS TEMPERATURE (DEG. F)
715.294
735.200
754. 012
772.352
790.409
808. 256
825.922
843.419
860. 751
977.919
394. 922
911.761
928.433
944.939
961. 279
977.454
993. 464
1009.31
1024.99
1040.52
1055.89
1071.10
1086.16
1101.08
1115.84
1130.4 E
1144.94
1159. 28
1173.48
1187.55

STEEL TEMPERRTURE (DEG. F)
112.175
195.854
270. 754
337.967
398. 489
453. 201
502.869
548. 157
589. 641
627.817
663. 114
695.903
726. 504
755. 192
782. 206
807.752
832. 007
855. 126
877.242
899.4E9
918.907
938.642
957. 751
976. 296
394.336
1011.91
1029.08
1045.87
1062.32
1078.45

CASE NO.: 5
BUILDING: CONTROL STRUCTURE
ELEVATION AND AREA DESCRIPTION: 217' SWITCHGEAR AREA CASE DESCRIPTION: GENERALIZED HEATING OF MEMBER TYPE WЗEX SDQ

3	CONCRETE	40	10	13836	10254.4

GENERALIZED HEATING OF STRUCTURAL STEEL CALCULATION

WEIGHT DF STEEL MEMEER (LBS./FT.): 30Q
SURFACE AREA OF STEEL HEATED (SQ. FT./FT.): 9.99

FIRE DURATION (MIN.)

5
10
15
20
25
30
35
40
45
50
55
50
ES
70
75
80
85
90
95
100
105
1120
115
1.20

125
130
135
1.40

145
150

GAS TEMPERATURE
(DEG. F)
715. 294
735.200
754.012
772.352
790.409
808.256
825.922
843.419
860. 751
877.919
894.922
911.761
928.433
944.939
961.279
977.454
993. 454
1009.31
1024.99
1040.52
1055.89
1071.10
1086. 16
1101.08
1115.84
1130.45
1144.94
1159. 28
1173.48
1187.55

STEEL TEMPERATURE (DEG. F)
110.507
191.523
264. 335
330. 207
389.430
443. 392
492.589
537.623
579. 021

E17.240
652.677
685. 677
716.538
745.520
772.848
799. 719
823. 303
846. 748
869. 181
890. 716
911.449
931. $46 E$
950.841
969. 538
987.914
1005.71
1023.09
1040.07
1056.70
1073.00

CASE NO.: E
BUILDING: CONTROL STRUCTURE
ELEVATION AND AREA DESCRIPTION: 217' SWITCHGEAR AREA
CASE DESCRIPTION: GENERALIZED HEATING OF MEMBEQ TYPE W3EX230

GENERALIZED HEATINO OF STRUCTURAL STEEI CALCULATION

WEIGHT OF STEEL MEMBER (LBS./FT.): 230
SURFACE AREA OF STEEL HEATED (SQ. FT./FT.) 9.84

```
FIRE DURATION
    (MIN.)
GAS TEMPERATURE (DEG. F)
STEEL TEMPERATURE (DEG. F)
```

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 1.20
 125
 130
 135
 140
 145
 150
 715.294
735.200
754. 『12
772.352
790. 409
808. 25E
825.922
843.419
860. 751
877.919
894.922
911.7E1
928.433
944.939
951.279
977.454
993.454
1009.31
1024.99
1040.52
1055.89
1071.10

108E. 1E
1101.08
1115.84
$1: 30.46$
1144.94
1159.28
1173.48
1187.55
122.740
224. 646
312. 590
388.801
455.201
513. 4D5
564.770
610.420
551. 294
688. 172
721.703
752.425
780.784
807.153
831.839
855.10®
877. 149
898. 162
918.289
957. 649
956. 348
974.471
992.089
1009.26
1026.04
1042.46
1058.57
1074.39
1089.95
1105.27

CASE NO.: 7
BUILDING: CONTROL STRUCTURE
ELEVATION AND AREA DESCRIPTION: 21.7' SWITCHGEAR AREA CASE DESCRIPTION: GENERALIZED HEATING OF MEMBER TYPE WSEX 245

CEILING/WALL THICKNESS CEILING/WALL MATERIAL AO HO AW Q
(FT.) SQ. FT. FT. SQ. FT. KW

3 CONCRETE $3010 \quad 1383610254.4$

GENERALIZED HEATING OF STRUCTURAL STEEL CALCULATION

WEIGHT OF STEEL MEMEER (LBS./FT.): 245 SURFACE AREA OF STEEL HEATED (SQ. FT./FT.) : 9.87

```
FIRE DURATION
    (MIN.)
```

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 50
 55
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 GAS TEMPERATURE (DEG. F)

STEEL TEMPERATURE (DEG. F)
715.294
735.200
754. 012
772.352
790.409
809.256
825.922
843.419
860.751
877. 919
894.922
911.7E1
928.433
944.939
961.279
977.454
993.454
1009.31
1024.99
1040.52
1255.89
1071.10

108E. 16
1101. 08
1115.84
1130.46
1144.94
1159.78
1173.48
1137.55
119.545
216. 012

उわ0. 199
373. 936
438.828
496. 243
547. 343
593. 104
634. 351
671. 775
705.961
737.397

76E. 494
793. 600
819.004
842.952
865.648
867. 267
907.953
927.830
947. 002
965. 556
983. 5E6
1001.09
1018. 19
1034.91
1051.26
1057.34

1083,11
1098,62

CASE NO. : 8
BUILDING: CON ${ }^{\text {CROL }}$ STRUCTURE
ELEVATION AND AREA DESCRIPTION: 217' SWITCHGEAR AREA CASE DESCRIPTIDN: GENERALIZED HERTING OF MEMEER TYPE W3EX2EQ

 T CONCRETE $40 \quad 10 \quad 138 ア 519254.4$

GENERALIZED HEATING OF STRUCTURAL STEEL CALCULATION

WEIGHT OF STEEL MEMBER (LBS./FT.) : $2 E \varnothing$
SURFACE AREA OF STEEL HEATED (SO. FT. /FT.) : 9.9

FIRE DURATION (MIN.)

5
10
15
20
25
30
35
40
45
50
55
60
ES
70
75

90

85
90
55
100
105
110
115
120
125
130
135
140
145
150

GAS TEMPERATURE
(DEG. F)
715.294
735.200
754. 1812
772.352
790.409
808. 255
825. 922
843.419
860. 751
577.919
894.922
911.7E1
928.433
544. 939
961.279
977. 454
993. 454
1009.31
1024.39
1040.52
1055. 89
1071.10
1085. 16
1101.08
1115.84

11 170. 45
$1144.94 \quad 1043.78$
1159.281060 .08
1173.48 1075.08
1187.55 1091.30

```
EFFECTS OF LDCAL HEATING ON STRUCTURAL STEEL
```

FIRE TEMPERATURE (deg. F): 1500 WETGHT OF STEEL MEMBER ($1 \mathrm{bs} . / \mathrm{ft}$): 316 SURFACE OF STEEL MEMBER HEATED (sq.ft./ft): 10.91

TIME
(min)
5.00
10.00
15.00
20.00
25.00
30.00
35.00

STEEL TEMPERATURE
(deg.f)
263
432
578
703
812
906
987

