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NOTICE

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, or any of their
employees, makes any warranty, expressed or implied, or assumes any legal liability of re-
sponsibility for any third party's use, or the results of such use, of any information, apparatus,
product or process disclosed in this report, of represents that its use by such third party would
not eriftmge privately owned rights
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ABSTRACT

This report reviews the significant variables of flaw depth, length, location
and orientation requi' red for fracture mechanics evaluations of pressure vessel
integrity. Results of calculations are presented which emphasize pressurized
thermal shock (PTS) and the significance of flaws located at or near the
inside surface of the vessel. For PTS conditions, previous stuties have shown
that vessel . failure probability is relatively insensitive to flaw depth. In
this study the impact of flaw length is also evaluated, indicating the
importance of fully characterizing all flaw dimensions by NDE. Results of
other evaluations are presented, showing the importance of accurately locating
flaws by NDE. The influence of vessel cladding is emphasized, with the
relative significance of flaws through the clad and at various depths below
the clad being addressed.
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THE IMPACT OF N0NDESTRUCTIVE EXAMINATION UNRELIABILITY
ON PRESSURE VESSEL FRACTURE PREDICTIONS

INTRODUCTION

This report describes predictions of crack growth in pressure vessels
performed as part of a program, " Integration of NDE Reliability and Fracture
Mechanics," sponsored by the U.S. Nuclear Regulatory Commission. This work
was performed at the Pacific Northwest Laboratory, which is operated by
Battelle Memorial Institute for the U.S. Department of Energy. Data generated
in the program are intended to provide a basis to fonnulate revisions to ASME
Section XI Boiler and Pressure Vessel Code and regulatory requirements needed
to assure low failure probabilities. The primary objective has been to
determine the reliability of ultrasonic inservice inspection (ISI) as
performed on comercial, light water reactor primary systems. This report
concerns a second objective, which is to determine the impact of NDE
(nondestructive evaluation) unreliability on system safety and to determir.e
the level of inspection reliability required to assure a suitably low failure
probability.

Preservice and inservice inspections are important factors in ensuring the
safety of reactor pressure vessels. The objective of these inspections is to
detect crack-like flaws that could grow when stresses are imposed on a vessel
during reactor operation. Although flaws can occur at any location within the
wall of a vessel, the detection of near-surface defects has become the primary
focus ,e inservice inspections of reactor vessels (Taylor et al. 1983;

Pedersen et al.1982). Such defects have been termed " PTS type flaws", in
reference to the concern for the rupture of reactor vessels during pressurized
thermal shock (PTS) events. In this regard risk assessments have shown that
PTS is perhaps the main potential contribution to risk from vessel failure.
This report discusses the characteristics of PTS events and the role that
inservice inspection can play in minimizing the probability of vessel failure
from such events.

Vessel failure in a PTS scenario requires the simultaneous occurrence of all
of the following factors (Cheverton, Iskander and Whitman 1983):

tensile thermal stresses from the rapid cooling (e.g.,100*C per hour) of.

the inside surface of the vessel with prevailing internal pressures at a
significant fraction of the normal operating pressure (e.g., 10 MPa or
greater)

a significant loss of fracture toughness near the vessel inner wall due.

to irradiation damage - this loss of toughness is a result of an upward
shift in the ductile-brittle t'.*ansition temperature of the ferritic steel
of the vessel wall (e.g., RT in excess of 100*C). The current
concern for embrittlement is greNst for welds in the beltline region of
vessels, particularly for welds with high copper contents (e.g., 0.35
weight percent copper).

,
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the existence of a crack-like flaw in the highly stressed and embrittled.

region of the vessel wall.
Unless all three conditions coexist, the risk of vessel failure is minimal.

Therefore, one would like to demonstrate with a high degree of confidence by
inservice inspection that the critical regions of the vessel have no flaws.
If no flaws exist, vessel failure is unlikely, even if embrittlement and rapid
ccoling occur. Unfortunately, the requirements for nondestructive examination
(NDE) are demanding because evaluations have shown that flaws as small as 6 m
in depth can propagate through the vessel wall during the rapid cooling
conditions of PTS type events.

In evaluations of risks from PTS, the existence of flaws in given vessels has
been postulated although there is no evidence of such flaws in these vessels.
A lack of sufficient confidence in NDE reliability has been the basis for
postulating the presence of such flaws. In contrast, PTS type overcooling
events have actually occurred on a number of occasions with an estimated
frequency of one such event per 100 years of reactor operation (Dircks 1982).
In addition, the irradiation embrittlement of vessel welds has been exten-
sively studied. A comprehensive data base and methods for predicting em-
brittlement characteristics currently exist.

The traditional methods used in the United States for vessel inspection have
not been designed to detect near-surface flaws. Efforts to apply improved NDE
methods are now underway, particularly for those vessels that have the highest
estimated levels of irradiation embrittlement. Consequently, the possibility
of detecting defects during routine inservice inspection has increased for
those vessels subjected to these enhanced levels of NDE. As the detection
probability for near-surface flaws is increased, there is a corresponding need
to accurately measure the size, location and orientation of the flaws that may
be detected. At the inner surface of a vessel, such measurements are
difficult because of the presence of weld deposited cladding of stainless
steel (Woodridge, Allen and Denby 1982; Doctor 1983). The surface roughness
of this cladding and the ultrasonic characteristics of tM clad material
itself are important factors. Efforts to date have been to improve detection
of riaws in the ferritic vessel material just beneath the cladding. The
presence of cracks in the clad itself or the possible continuation of
underclad cracks into the clad metal is largely unevaluated with current field
practice. For this reason, fracture mechanics calculations for postulated
cracks have conservatively assumed that underclad cracks extend through the
entire thickness;of the clad to the very inner surface of the vessel.

The objective of the calculations described in this report is to apply
fracture mechanics analyses to illustrate the relative consequences of cracks
beneath and within the clad inside surface region of reactor vessels. The
results show how errors in mehsuring the size, location and orientation can
impact the subsequent fracture mecnanics evaluation of these flaws. The
results also show that conservative assumptions about flaw characteristics due
to inadequate NDE measurements can lead to severe penalties in evaluation of

2
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- the risks associated with flaws. Finally, the results of the analyses pre-
sented here are intended to encourage efforts to develop improved NDE methods ;

so that the flaws of greatest significance to vessel integrity will be ,

reliably detected and more accurately characterized.

FRACTURE MECHANICS APPROACH

All calculations presented in this report are based on the simplified methods
of linear elastic fracture mechanics. This is consistent with the methodology
used in other evaluations of PTS (Iskander, Cheverton and Ball 1981; Sauter,
Cheverton and Iskander 1983; Smith 1983). Nevertheless, consideration of
actual vessel (e.g., presence of clad) and realistic flaw
characteristics (geometryfinite length and depth) presents a challenge even to(gyail-
able liney) elastic methods. Work at Oak Ridge National Laboratory and

elsewhere has been directed toward improved solutions for crack-tip stress
intensity factors and crack growth criteria that apply to flaws that are!

relevant to PTS concerns.

The approach taken in this study is to apply available fracture mechanics
solutions whenever possible. Nevertheless, many flaw geometries of interest--
in particular for underclad cracks--have not yet been treated in published
solutions. In - these cases, the superposition of " handbook" solutions for
crack-tip stress intensity factors was used. The limitations of such approxi-
mations are recognize ., and care was taken not to extrapolate results beyond
the range where numer' cal errors would invalidate the trends and conclusions
important to the objettives of this work. This section reviews the methods4

used in calculating crack-tip stress intensity factors, but does not attempt
to fully document the methods or to evaluate their accuracy.

,

HEAT TRANSFER AND STRESS SOLUTIONS

The state of stress in the wall of an uncracked reactor vessel can be readily
and accurately calculated with any number of well-known and documented
computer codes. The first step is to calculate the temperature distribution
through the vessel wall for the assumed time-dependent temperature of the
coolant adjacent to the vessel wall. Then, a thermal stress solution is
calculated for these through-wall temperature distributions.and combined with
stresses due to internal pressure.

(a) See Sauter, Cheverton and Iskander (1983); Smith (1983); Bass et al.
(1982); and Bass and Bryson (1983).

(b) See Labtens, Pellissier-Tanon and Heliot (1976); Heliot, Labbens and
Pellissier-Tanon(1978).

3
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For surface flaws of finite length, the computer code VISA (Stevens et al.
1983) was applied for the heat transfer analyses, the stres'. calculations, and
the subsequent calculations of crack-tip stress intensity fac' ors. However,
the VISA code does not consider the effect of cladding on heet transfer and
thermal stresses. For these cases, the finite element computer program ANSYS
(Swanson Analysis Systems, Inc.1979) was applied. The cylincrical geometry
of the vessel was modeled, with separate regions defined for the differing
clad and base metal characteristics which affect the heat transfer and stress
response. Both the VISA and ANSYS codes treated the effect of the surface ,

heat- transfer coefficient between the fluid and the inside surface of the
vessel wall. |

l

!
FINITE LENGTH SURFACE FLAWS

The computer code VISA utilizes an influence function approach to calculate
stress intensity factors for "long" flaws at the ID surface of the vessel.
The actual cylindrical geometry of the vessel is treated, along with the
nonlinear variation of stress thrcugh the vessel wall. Flaws of finite length
(e.g., semi-elliptical surface flaws) are not treated. For these cases, the
solutions for the long flaws were corrected for finite length effects using an
approach similar to that given in Appendix A, Section XI of the ASME Code
(American Society of Mechanical Engineers 1983).

A compilation of solutions by Yukawa (1982) provided a basis for correction
factors corresponding to situations of a uniform stress and a linear gradient
of stress through the vessel wall. The factor for uniform 'nembrane stress was
applied to the pressure-induced stress intensity factor from VISA. The linear
gradient factor was applied to the stress intensity factor due to thermal
stresses. Results for this approximate method were compared to more exact
results for a 6:1 length-to-depth flaw based on influence functions for the
6:1 flaw. The agreement was within 10 percent, which was adequate for the
purpose of this study.

SUBSURFACE FLAWS

All subsurface flaw solutions, as well as consideration of clad effects,
assumed long flaws. Furthermore, the cylindrical geometry of the vessel was
approximated by a flat plate of equal thickness in calculations of stress
intensity factors following the approach used in Appendix A, ASME Code Section
XI. However, as previously stated, the stress analysis was based on the
actual cylindrical geometry of the vessel.

The flat plate approximation limits the approach to flaws whose depth is a
small fraction of the vessel wall. For depth fractions greater than 0.25 the
errors in the solution are probably excessive. All data presented in this
report are for flaws less than this depth. For the flaws of concern to PTS
events. this range of solution validity is more than sufficient.

4
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For consideration of clad effects and subsurface flaws, stress intensity
factor results from Tada, Paris and Irwin (1983) were systematically applied.
A computer program was written to combine their solutions and to compare
crack-tip stress intensity factors with fracture toughness values.

Fracture toughness values were calculated from the reference curves in ASME
Section XI (1983). The irradiated values of ductile brittle transition
temperatures (RT
1.99 (U.S. NRC lb)).were calculated using the equations in Regulatory GuideFor subsurface flaws, results were generated for each
of the two crack tips. One tip was at the point of maximum flaw depth and the
other tip was at a location adjacent to the inside surface of the vessel. In
all cases the tip nearest to the surface was critical, having the greater
stress intensity factor and lower fracture toughness.

Details of the stress intensity factor calculations will not be described
here. However, some of the features of the calculations were as follows:

For cases where the flaw extended through the cladding to the ID surface,.

the solution for a point load on the crack surface was used as an influ-
ence function. Thus the stress distribution on the plane of the crack
location was accurately treated. The only approximation was that of
replacing the cylindrical vessel geometry with a flat plate.

Surface proximity effects were treated for subsurface flews. The effects.

of unequal ligament dimensions were treated accurately for the mean
stress on the plane of the crack. Proximity effects were also treated
for the variation of the actual stress state from this mean stress level
using a point load solution as an influence function. However, the
ligament widths were taken to be equal at a value equal to the minimum
ligament width (distance from inside surface of vessel to innermost crack
tip).

PRESSURIZED THERMA' SHOCK TRANSIENT

Fracture mechanics analyses were performed for a. typical PTS accident and for
a level of vessel embrittlement of concern to pressurized thermal shock risk.

r The specific parameters were selected to extend the scope of calculations in
Sauter,ChevertonandIskander(1983). The PNL study substantially increases
the-range of postulated flaws over that considered by Sauter and colleagues,
with respect to greater variations in flaw dimensions, location and
orientation.

VESSEL CHARACTERISTICS

Table 1 lists the parameters describing the vessel; Table 2 gives material
properties'used in the calculations. Both cladding and base metal properties
are listed. The higher coefficient of thermal expansion for the stainless
steel cladding relative to the base metal is an important factor. During

5
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TABLE 1. Analysis Model Used for Calculations

Parameters Values_

Vessel dimensions
Outside diameter 4800 m
Inside diameter 4369 m
Cladding thick:sess 6.1 m

Copper concentration 0.35 wt%
2Heat transfer coefficient 5700 w/(m g)

Flaw type Long, axial, inner surface
Flaw depth, fraction of wall (a/w) 0.0 to 0.25
K and K
R{c la ASME Code Section XI

Regulatory Guide 1.99
Frb[uremechanicsanalysis Linear-elastic fracture mechanics

TABLE 2. Material Properties Used in Calculations

Properties Base Metal Cladding

Thermal conductivity, W/(m K) 41.5 (24) 17 (9.8)
Btu /(h ft *F)

Specific heat capacity, J/kg K) 502 (0.12) 439(0.105)
Btu /(lb'F)

Density,kg/m3(lb/ft) 7833 (489) 7929(495)
3

expansion,K{they)l 14.4 x 10-6 (8 x 10-6) 18 x 10-6 (10 x 10-6)Coefficient o
(F

3 3Elastic Modulus, GPa (ksi) 193(28x10) 193(28x10)
Poisson's ratio. 0.3 0.3

-6
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| rapid cooling of the inside surface of the vessel, the cladding contracts at a
' higher rate than the underlying base metal. This induces enhanced tensile
stresses in the cladding. These enhanced thermal stresses elevate the crack-

~ tip'. stress intensity factors for- flaws located in both the cladding and the,

. - base metal near the inside surface of the vessel.

Copper is the primary element in accelerating radiation-induced embrittlement
in vessel welds. In the example of Table 1 the copper concentration of 0.35

,

percent. was selected as an- upper bound for copper in actual vessels. In

also selected as bpredictions of Regulatory Guide 1.99 (U.S. NRC 1977) were
addition, the RT

N upper bound on the observed shift in ductile-brittle.

transition' temperature.
I9

1 The neutron fluence at the inner surface of the vessel wall was 2.0 x 10
2n/m . - Attenuation of this fluence followed the law f = f exp (-ax), where f

.is the inner surface fluence, x is the _ pth below the Surface (inches) an8
,

the constant a has the value of 0.33 in.
;

In all calculations, the vessel and cladding were assumed to be free of
,

residual stresses at the reactor operating temperature (290 C). Because the -

[ irradiated toughness of cladding materials is not well known, the toughness of
the cladding was conservatively assumed to be the same as the high copper basei

_ metal. '

,

RANCHO SECO TRANSIENT2

Figure 1 shows the pressure and temperature history for the 1978 Rancho Seco
accident. This history is typical of a severe overcooling transient that has'

actually occurred in an operating reactor. Similar transients could occur in
other pressurized water reactors in the future. In the Rancho Seco transientL

an instrumentation and control system failure led to an excessive cooldown
; rate for the vessel. The level of embrittlement in the Rancho Seco vessel was

.relatively low; thus, the overcooling presented little hazard to the vessel.
Safety and regulatory requirements must assure that an embrittled and flawed

. vessel ~ will not rupture, should it be subjected to such a cooling transient.
,

I The curves of Figure 1 describe a " smoothed" version of the actual Rancho Seco
' transient.- The cooling rate is sufficient to produce substantial- levels of

tensile tt.ermal . stress at the _inside surface of the vessel, which are additive'

to the : tensile stresses due to :the sustained internal pressure. In an em--

: brittled vessel, the ' temperature of the cooled inner surface of the vessel may
j drop into- the low toughness temperature range if the inner surface of the
| vessel is severely irradiated. Thus, detection of flaws at the inner surface

^

of the vessel is particularly important. Flaws at less severely stressed and,

embrittled portions of the vessel _(mid-wall and outside portion of the wall) i

are of much less significance.
~

,

^

. ,

i;

7
i
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FLAWS OF INTEREST

-Figure -2 depicts the types of cracks or flaws that are considered in the
. current fracture mechanics calculations. These flaws can be described as:

. -axial surface flaws - The length of the flaw as well as its depth was
considered to be a variable parameter. Most fracture mechanics evalua-
tions of PTS events have focused on axial surface flaws but have empha-'

sized very long flaws. In the PNL study, both long and short flaws were
considered. The surface flaws were taken to extend through the entire

| ~ thickness of the cladding and into the base metal.

axial subsurface flaws - These flaws were considered to have variable.

; depth, and to be located at various depths within the vessel wall. In
8 . some cases the flaw was entirely in the base metal, while in other cases
| the flaw was partly or entirely in the cladding. Many of the subsurface
L flaws depicted in Figure 2 were close to the vessel inner surface. These

flaws would have been evaluated as surface flaws if the rules of ASME
| Section XI had been followed in the current calculations. However, for
| this study the surface proximity effects were treated in a realistic
j manner rather than by the conservative procedures of the ASME Code.
| flaws parallel to vessel surface - In this case the plane of the flaw was.

parallel, rather than normal, to the vessel surface. Thus, the flaw was
not aligned with the high tensile hoop stresses in the vessel wall. This
type of flaw has received little attention in evaluations of vessel
integrity. However, such flaws might be detected during inservice
inspection. Results of this study quantify the relative lack of signifi-

! cance of flaws that are parallel to the vessel surface.
|

l RESULTS 07 CALCULATIONS
!
|

|- Calculated ' stress intensity factors are- presented in this section. All
results are presented in the format of applied crack-tip stress intensity
factor (K ) as a fraction of the corresponding value of fracture toughness for

7initiation of crack growth (K ). For surface flaws both K and K are
| presented for the point of maY1 mum flaw depth rather than fok the poYht at

which the flaw intersects the inside surface of the vessel. The fracture
toughness values' include the fact that the toughness increases with depth into
the wall of the vessel. This increase occurs because the metal temperature:

increases with depth. In addition, the vessel material becomes less embrittl-

ed with increasing depth due t,o attenuation of neutron fluence.

The actual values of the ratio K /K presented in this section are not
particularly significant. . Rather, dttd6 tion should be directed to the rela- '

tive impact of different flaw characteristics on this ratio. A ratio of
K'K = 1.0 implies that flaw growth occurs and that catastrophic vessel
rdtdfewilloccur.If.thegrowingcrackisnotarrested. However, the current

8
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FIGURE 1. Temperature and Pressure Transients for
RanchoSecoAccident(1978)

.

calculations have assumed a combination of worst-case conditions such as high'

copper content, upper bound shift in RT and a severe, but low probability,
PTS transient. Thus, the relatively hh, values of K /K imply a relatively
low safety margin against vessel failure and relativdly high probability ofgC

vessel failure for the given transient.

The usual emphasis in fracture mechanics evaluations has been on flaw depth
and how it impacts inspection requirements. The results ' presented here
reinforce the importance of flaw depth as a measure of flaw significance.
However, the other flaw parameters (e.g., length, location and orientation)
are also shown to be of great importance in determining the significance of a
.given flaw. In each case, the impact of uncertainties, errors and conserva-
tisms in measuring these other parameters is related to equivalent errors in
measuring the more familiar parameter of flaw depth.
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EFFECT OF FLAW SHAPE

Figure 3 shows the variation of the ratio K for surface flaws as a
length.y/Kg

iunction of both flaw depth and flaw Ehth curve corresponds to a
gi en ratio of flaw imgth to flaw depth. All flaws have a semi-elliptical
chape and extend through the cladding to the inside surface of the vessel. In
these calculations the stress due to the different thermal expansion coeffic-
ient of the clad relative to the base metal was neglected. Also, the initia-
t;on of flaw growth was taken to be governed solely by conditions at the point
of maximum flaw depth. It was assumed that the clad toughness was sufficient-
.y high to prevent the initiation of lengthwise flaw growth at the vessel '

inside surface. However, the lengthwise flaw growth following initiation was
assumed to be sufficient to maintain the aspect ratio of the flaw.

The range of variation of K /K with flaw length is about the same as the
range of variation with flad dbhth. This clearly shows the importance of
characterizing flaw length. There arc also benefits to be gained with NDE
methods that have an increased deteccion capability for longer flaws.
Furthermore, the treatment of all flaws as long in fracture mechanics
evaluations may be overly conservative if NDE methods can accurately measure
flaw length.

-

The impact of flaw length is dramatic if one ampares the critical depth for a
2:1 (short) flaw with a 30:1 (long) flaw. A long flaw exceeds the critical '

K /X limit for a depth of less than 6 mm. In contrast, a very short flaw
cdn f>610 times as deep or 25 percent of the wall and still not be as severe
as a long flaw of only 6 mm depth.

EFFECT OF FLAW LOCATION
-

It has been customary in fracturc chanics evaluations to treat PTS type
flaws as extending through the clc ng to the insioe surface of the vessel.
In the calculatiot.s shown in Figure 4, the flaws have been treated as truly
subsurface flaws that may or may not extend partly into the clad. The surface -

of the vessel was realistically taken at the actual inner surface of the
cladding, rather than at the clad to base metal interface as is the practice -

in ASME code evaluations. Although in these calculations the flaws have been
treated as long cracks, the effect of flaw location for finite length flaws '

should be similar to that seen in Figure 4. [
z

Each curve in Figure 4 corresponds to a flaw with a given depthwise dimension,
with each curve indicating how the ratio K /K decreases as the flaw isy ylccated at increasing depths within the wall of khe vessel. A striking treM

~is the rapid increase in K /K as the flaws approach the inner surface of tne
vessel and begin to penetbath the cladding. This effect is due to the high '_tensile thermal stresses in the cladding relative to the corresponding thermal "

stresses in the base metal. In these calculations the cladding toughness was --

|
I

taken as equal to the base metal toughness. Therefore, the curves of Figure 4
indicate that cracks will grow further into the cladding more readily thanI they will grow deeper into the base metal.

11
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2Figure 4 also shows the relative severity of truly underclad cracks as a
function of their location within the vessel wall. A crack just under the

_

cladding is seen to be two or more times as severe (as measured by K /XIc} "S -'y

the same size of crack at the quarter wall location.

Figure 4 also indicates requirements for flaw sizing. For flaws at the $
quarter wall location one can tolerate nearly four times the uncertainty in *

flaw sizing than that which is required for flaws near the cladding / base metal _

-

interface. However, flaws at this depth (exceeding 25 to 50 nm below the
inside surface) are not likely to be detected by the UT methods currently

-

applied in the U.S. for near-surface examination (Pade 1983). Methods used u

elsewhere (e.g., German practice) are capable of detecting flaws at such
^

_

depths. g
+

The results shown in Figure 4 suggest that the scope of improved inservice $
inspection should be expanded to examine depths up to and beyond the quarter
wall location. Flaws at these depths, if of sufficient size, can impact
vessel integrity under PTS conditions. Nevertheless, priority should continue -

to be given to detecting the near-surface flaws. These near-surface flaws _-
have smaller critical sizes and thus are much more likely to occur in prac- -

tice. Flaw size distributions indicate that the critical size of near-surface __

flaws is about ten times more likely to exis' in practice than the larger size L
of critical flaws for the quarter wall location (Stevens et al.1983). -

,

FLAW EXTENSION INT 0 CLADDING

Figure 5 addresses the issue of underclad cracks extending into the cladding .

material. Current NDE methods as practiced in the field are not suited to -

detect or measure cracking in cladding. In particular, cracks solely in the ,

cladding that do not extend through the cladding to the inside surface of the
vessel are unlikely to be detected during inservice inspection by ultrasonic --

methods. Eddy current methods would be more suited to detecting cracks in
cladding (Pigeon 1983). The results presented in Figure 5 emphasize two
significant points:

1. Improved NDE methods could justify the elimination of conservati " ..

/

assumptions in fracture mechanics analyses. Reliable NDE measuremeng
-

-

would be needed to show that detected cracks do not extend into the :

cladding.

2. Data that demonstrates a high level of the fracture toughness properties g
for weld deposited cladding would show that relatively deep underclad -

cracks can be tolerated (say 10 to 20 percent of the vessel wall). In "

effect, a very tough cladding material will prevent crack growth into the ,--

cladding and will reduce stress intensity factors for flaws within the
vessel wall. -

_=

-
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FIGURE 3. Effect of Surface Length on Fracture Evaluation
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FIGURE 4. Effect of Subsurface Flaw Location and Orientation
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Figure 5 shows three cases that correspond to different assumptions regarding
penetration and cropagation of cracks into cladding. Cases 1 through 3
represent an increasing level of cladding effectiveness in preventing the
initiation and growth of flaws.

Case 1

This most pessimistic situation assumes that any cracks detected under the
cladding also extend through the entire cladding '.o the inside surface of the
vessel. Clearly, this case gives the highest values of K /K in Figure 5.

For the severe vessel embrittlement and the severe coolind tfEnsient for the
PNL analyses, the calculations actually predict that any crack entirely
through the cladding will be of critical depth, even if it does not initially
extend into the base metal.

Case 2

In Case 2, the crack does not initial]y extend into the cladding, bu't the
cladding is assumed to be no tougher than the embrittled base metal. Figure 5
indicates a marked difference in severity of the subsurface Case 2 crack
compared to the Case 1 through cladding crack. Reliable NDE for cracks in the
cladding would justify a fracture mechanics analysis based on the Case 2
rather than the Case 1 assumptions. However, the state-of-the-art in NDE
technology would probably require assuming that any detected underclad cracks
extend through the clad. Figure 5 indicates that the penalty of this assump-
tion is very severe.

Case 3

In this case, the fracture mechanics model assumes that cracks will not grow
into the cladding because the cladding material is assumed to be very tough.
For crack depths up to about 6 mm the value of K /K i

Howehr,s about the same atIthe two (inner and outer) tips of the crack. if the flaw depth
exceeds 10 percent of the vessel wall thickness, the value of K /K at the
cladding / base metal interface is substantially higher than the kalb at the
crack-tip deeper into the vessel wall. Currently data on the toughness of
irradiated cladding materials are insufficient to justify use of the Case 3
assun.ptions for fracture mechanics evaluations. Nevertheless, the trends of
the Case 3 curve indicate a potential conservatism in current evaluations of
pressure vessel failure due to PTS events.

EFFECT OF FLAW ORIENTATION

Fracture mechanics evaluations of flaws in vessels generally assume that the
plane of the flaw is normal to the surface of the vessel. This is a
worst-case assumption. Flaws oriented parallel to the surface of the vessel
are generally excluded from concern. However, it is likely that many such
flaws exist and could be detected during inservice inspection. Conclusive NDE
measurements will have a major and favorable impact on the conclusies of'
fracture mechanics evaluations if the NDE data clearly show that a detected
flaw has an orientation parallel to the vessel surface.

15
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Figure 4 shows fracture niechanics results for flaws that are parallel to the
vessel surface. The lower set of curves for the parallel orientation are in
sharp contrast to the upper set of curves, which apply to flaws with orien-
tations normal to the vessel surface. The predicted values of crack-tip

'
stress intensity factors are not only significantly lower for the flaws with
the parallel orientation, t,u t the calculated stress intensity factors are
actually negative. This means that stresses during the PTS accident will tend
to close such cracks and that there is no possibility that these cracks will
grow in size. Notable in Figure 4 is the substantial closing action (i.e.,

0) for flaws located within a clad thickness f rom the vessel insideK;/KIc

surface. The effect is particularly large when the distance between the flaw
j and inside surface becomes small compared to the flaw size (d/a < 1 in Figure
1 4). For these flaws, the compressive radial stress from internal pressure

acting on the inside surface of the vessel tends to close the cracks. The
tensile radial stresses from thermal stress effects are relatively insignifi-
cant to this pressure-induced stress.

..

CONCLUSIONS

Fracture mechanics calculations can be applied to evaluate the impact of
errors in measuring the size, location and orientation of flaws. Such evalua-
tions can also guide the development of improved NDE methods that can be
designed to detect the flaws of greatest significance to pressure vessel
integrity. The calculations presented in this report support the following
conclusions:

1. The importance of flaw depth measurements, as emphasized in current NDE
practice, is reinforced by the results of fracture mechanics analyses.

2. It is also important to measure the length and location of flaws because
these parameters can be as critical as depth in estimates of flaw sever-
i ty .

3. Cracks with orientations parallel to the surface of the vessel are
benign. It is thus important that NDE measurements provide a rel ia ble
characterization of flaw orientation so that the significance of detected
flaws can be correctly evaluated. -

--

4. Cladding has a significant effect on crack propagation. Flaws solely or
partially in vessel cladding may be more significant than underclad
cracks in the case metal of a vessel. It is important that NDE measure-
ments reliably detect and size cracks in claading to assure that fracture I

mechanics evaluations are based on realistic assumptions and inputs.

5. The most critical subsurface flaws are those near the clad / base metal
interface. Priority should continue to be given to detecting and sizing
such flaws.

4
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6. Flaws located up to a quarter wall thickness from the vessel inside
surface can also impact the integrity of vessels under thermal shock -

conditions. Such deeper flaws should not be neglected during inservice
inspection. Improvements are required in existing practice to assure the
detection and sizing of such deeper fl aws . Further analyses should be
performed to better define the region of examination and required detec- f
tion capability. These analyses should consider a broader range of
vessel embrittlement conditions and thermal shock transients.
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