TEXAS UTILITIES GENERATING CO. COMANCHE PEAK S.E.S.

ANALYSIS OF THE CLOGGING OF ECCS SUMP TRASH RACKS BY DEBRIS AND PAINT PEELS FOLLOWING AN ACCIDENT

FOR

TEXAS UTILITIES GENERATING CO.

BY
EBASCO SERVICES INC.
2 WORLD TRADE CEINTER
NEW YORK, N.Y. 10048

ERRATA
FOR EBASCO REPORTS
June 1, 1984

```
\rho}=\mathrm{ denalty of the peel
A = area of the peel
t - thickneses of the peel
CDu = drag coefficient for paint peel motion in vertical
C Cv = drag confficient for paint peel motion in horizontal
        direction
Cqu = confficient to account for the lift forces on paint
    O
    vo - pool vater velocity
    u = paint peel vertical velocity
    v = paint peel horizontal valocity
```

These equations (1) and (2) are numerically soived for paint peal horizontal and vertical terminal velocities. The resulte have been plotted on Pigure 7.

An angle of zero would result in the longest vertical travel time. The furtbsat horitontal travel occurs at the angle for which the value of the multiplicacion of the horizontal valocity and the vertical travel time is che largest, As sean froe Figure 7, the longeat eravel time occurs at a amall angle. Rovever, the equations used to model the paiat peel fall are inappropriate at angles near zero and ainety degreas aince boundary layer ciffects on drag have been ignored in the equations. Consequently, resulte at angles greater than 85° and less than 5° are ant considered te be representative of actual conditions. Despite these assumption problams, the avarage horizontal traval distance for any paint peel can be ealculated to fall between 22 and 24 feet using the infornation presented In Pigure 7.

Figure 6
Paint Peel Porce Model

The reaction at the metal eurfsce equals 1051.3×0.3, or 315.4 Ibf . Assuming a coefficient of friction of 0.1 , the frictional force equal. 31.54 lbf . The peel of area $1 \mathrm{ft}^{2}$ and thickness $0.03^{\text {¹ }}$ weighs 0.21 bf . Eence, the peel would indeed cling to the surface of the screen vertically.

Dsing Fig. 4, Consideration will be given to a vertical peel striking the vater aurface at a horizontal distance of $x \mathrm{Ft}$; from the trash rack. It will be conservatively assumed that the incident velocity equals zero. Since the drag on a vertically deacending paint peel is amall and negitgible, the time t taken by the peel to fall through a distance of 16.875° is given by $\frac{1}{2} g t^{2}=16.875$ and is found to be 1.02 secs. While the peel descends varticaly, it would be transported to the screen by the velacity of the water. The water velosity is $0.161 \mathrm{ft} / \mathrm{sec}$ at the screen and it reduces with distance. It is conservatively assumed that the weter velocity is a constant equal to $0.161 \mathrm{ft} / \mathrm{sec}$ and that the pael is eraneported without sifp. The distance x is then equal to $0.161 t$ which is about $2^{\prime \prime}$ with t equal to 1.02 secs. Thus, the paint peela incident within 2 inches of the trash rack could be expected to clog the screen vertically.

Estimation of the Average Harizantal distance treveled by the Patnt peels incident on the surface of the water at different angles:
Pigura 6 illuetrates a paint peel at an angle θ to the borizontal moving under water. The veight mg acts vertically dowawards. The peel would fall down under the influence of mg opposed by drag and aerofoil type of lift forces. The equations of motion in the vertical and borizontal directions respectively are:

$$
\begin{align*}
& =\frac{d u}{d t}=m g-\frac{C_{D u}}{2} \quad \rho_{w} A \operatorname{Cos} \theta v^{2} \tag{1}\\
& \left.\frac{d v}{d t}=\frac{c_{i u}}{2} A \operatorname{Cos} \theta v^{2}-\frac{C_{m u}}{2} \rho_{w} A S \sin \theta\left(v-v_{0}\right) f v-v_{0}\right) \tag{2}
\end{align*}
$$

Where, w mass of the peel = AtD p_{p}, and

TEXAS UTILITIES GENERATING CO. COMANCHE PEAK S.E.S

dNALYSIS OF THE CLOGGING OF ECCS
SUMP TRASH RACKS BY DEBRIS AND
PAINT PEELS FOLLOKING AN ACCIDENT
$\begin{array}{ll}\text { Prepared by: } & \text { EBASCO SERVICES INC. } \\ & 2 \text { WORLD TRADE CENTER } \\ & \text { NEW YORK, N.Y. } 10048\end{array}$

March, 1984

Clogging of the trash racks covering the ECCS sumps, by paint peels and debris following an accident has been investigated, in order to assess the resultant effect on the performance of the ECCE pumps. Debris other than paint was assumed to fill half the depth around the trash racks as per the requirements in Regulatory Guide 1.82 , Revision 0, even though application of R.G. 1.82 Rev. 1 shows that the plant possesses little or no possibility for debris transport. Factors like clogging of trash racks by paint peels sticking vertically to it, transport of paint peels to the vicinity of trash racks and the packing ratio of paint peels were investigated under accident conditions.

The ECCS pump performance was adjudged not affected, if the pressure drop across the trash racks were much less than the suction head of the pump. It is concluded that the performance of the ECCS pumps would not be adversely affected, if the trash racks were blocked 83% or less. Such a blocking limit could be reached if (1) debris exceeding about $4000 \mathrm{ft}^{3}$ fill the space around the trash racks, in addition to the total quantity of paint filling the same space with a packing ratio of 0.75 or, (2) if the entire quantity of paint fills the space around one trash rack with some of the paint peels clogging the screen by vertically sticking to it in addition to debris covering half its depth. Since the accumulation of all the paint inside the containment over and above the debris blocking half the depth of the trash rack is insufficient to exceed the 83% blockage, ECCS performance is adjudged not capable of being affected by trash rack clogging.

TABLE OF CONTENTS

Page1
2. ECCS Suction System Description and Inputs3.1 Initial Blocking Analysis
3.2 Supplementary Analyses 11
4. Conclusion 19
5. References 20
Partial Report of Sump Model Tests Appendix A
Paint Packing Ratio Estimation Appendix B

1. Introduction

The main purpose of the ECCS pumps is to supply the containment sprays and reactor cooling system with water from the sumps located in the containment following a LOCA. These containment sur s are covered by trash racks $6^{\prime} 3^{\prime \prime}$ in height located at an elevation of 808.0 (Figure 1). Following a LOCA, debris and paint peels could accumulate around the trash racks causing an impediment to the flow of water to the ECCS pumps. This condition has been analyzed in order to determine the amount of blockage of the trash rack by paint peels and the effect on the performance of the pumps.
2. ECCS Suction System Description and Inputs

There are two trash racks, one covering each sump at 808.0^{\prime} elevation (Ref. 1,2). Each trash rack is in the form of a partial sector in plan, subtending an angle of about 30° at the center of the containment, 8^{\prime} in width and $6^{\prime} 3^{\prime \prime}$ in height. The perimeter of each trash rack is found to be about 80^{\prime} and the area in plan is about $235.0 \mathrm{ft}^{2}$. The trash racks possess a free flow area of 70% (Ref. 3 and Appendix A). The nondimensional irreversible pressure loss coefficient for the trash rack calculated from experimental maximum pressure drop data with 95% confidence (Ref. 3 and Appendix A) was found equal to 28.0 with reference to the flow through a half clogged trash rack with 12500 gpm . As indicated in Table 1 (Ref.4), the volume of paint on concrete equals $831.25 \mathrm{ft}^{3}$. (285000 ft^{2} with an average thickness of $\left.0.035^{\prime \prime}\right)$. The volume of paint on steel equals $204.14 \mathrm{ft}^{3}$ with an average thickness of 0.01^{\prime}. Further, there are about $17000 \mathrm{ft}^{2}$ of unqualified paint (Ref. 5) with an assumed thickness of $0.01^{\prime \prime}$; the volume of this paint equals $14.2 \mathrm{ft}^{3}$. The total volume of all paints equale $1049.6 \mathrm{ft}^{3}$. The following information were not available from TUGC and were assumed: (1) The dry density of paint equals $801 \mathrm{bm} / \mathrm{ft}^{3}$; this is the lower limit paint density from EBASCO constructed plants (2). The height of flood water above 808.0^{\prime} equals 20.0^{\prime}.

FIGURE

TABLE I

PAINT DETAILS

DESCRIPTION	Painted Area $\mathrm{ft}{ }^{2}$	Average Thickness, inches	Paint Volume, $f t^{3}$
1. Concrete	285,000	0.035	831.25
2. $\begin{aligned} & \text { Steel } \\ & \text { Liner }\end{aligned}$	145000	0.01	120.83
Pipe Supports	$4520 \times 11=49720$	0.01	41.43
Cable Tray Supports	$755 \times 11=8305$	0.01	6.92
Conduit Supports	$4812 \times 8=38496$	0.01	32.08
Miscellaneous	2500	0.01	2.08
Miscellaneous	$87 \times 11=957$	0.01	0.80
3. Unqualified paint	17000	0.01	14.20

Total
1049.59

3.1 Initial Blocking Analysis

As shown on Figure 2, and based on geometry considerations it was estimated (Ref. (4)) that an area of about $500 \mathrm{ft}^{2}$ was available around each trash rack for paint and debris accumulation. It was conservatively assumed that one trash rack was operational, and that a minimum of half of the depth around both trash racks would be covered with debris other than paint. The assumption of 50% blockage is consistent with reference 3 and with the requirements of Regulatory Guide 1.82 Revision $0^{(10)}$. The requirements of Regulatory Guide 1.82 Revision $1^{(6,8)}$ states that calculations show that the accumulation of debris will not result in a loss of the available NPSH exceeding " 50% of the NPSH requirements." By specifically applying the criteria of R.G. 1.82 Rev. 1, Comanche Peak is classed in criterion 3 since the flow velocity at the trash rack screens is less than $.15 \mathrm{ft} / \mathrm{sec}$ for the unobstructed flow case, and the water level is above the trash rack sump screens. Thus, Comanche Peak, under criterion 3 possesses little or no potential for debris transport for the three major types of insulation, fibrous, reflective metal or closed-cell (encapsulated). This conclusion is further supported by NUREG-0897 ${ }^{(9)}$ which states that plants having large screen areas can tolerate large quantities of transported debris and that a $0.2 \mathrm{ft} / \mathrm{sec}$ flow velocity was required to initiate the motion of indiviual shreds of insulation. Comanche Peak's large trash rack area of $500 \mathrm{ft}^{2}$ and surface velocity of about $0.08 \mathrm{ft} / \mathrm{sec}$ verifies this conclusion since pool velocities far from the trash racks, although not specifically determined, will be smaller. Thus this study, with a conservative 50% debris blockage, will concentrate on painteffects alone. All paint was also assumed to accumulate as peels. Since the zinc primer paint would most likely disintegrate as a powder, this assumption is conservative with regard to trash rack clogging since a powder could flow through the trash racks and screens. The top of the trash rack is blocked and is unavailable for flow. Various quantities of paint peels were assumed to pile on top of the debris with packing ratios of 1.0 to 0.75 with no flow area available through the paint peels. Justification for the lower packing ratio of 0.75 is discussed later in this section.

The uncovered depth of the trash rack was computed in each case and the pressure drop due to a flow of 12500 gpm through this uncovered depth was

 $-\square_{0}^{1} \frac{1}{23 n}$ $-\rightarrow=1$
$>$

Table II

calculated. The pump performance would be adjudged not affected if this pressure drop were much less than the suction head of the pump ($8^{\prime} 8^{\prime \prime}$). The results for a packing ratio of 1.0 could be found in Table II. It is seen that the ;ump performance would be affected when the screen is blocked 90% and over. It was assumed in Case 1 of Table II, that half the depth of the screen is blocked by debris other than paint, and the total quantity of paint, $1049.6 \mathrm{ft}^{3}$, was assumed to stack on top of it. In cases 2 to 4, the volume of debris other than paint, was increased beyond the value in Case 1. It is seen with these assumptions that the pump performance would be affected when debris in excess of about $4000 \mathrm{ft}^{3}$ collected and the total quantity of the paint peels fill the space around the trash racks.

Realistically water will be trapped between the paint peels with the resulting packing fraction less than 1.0 . Two least probable configurations for packing of the paint peels exist. As illustrated on Figure 3 they are: (1) All peels packed tightly together with no water space between them. (2) All peels packed in an alternate fashion to allow maximum amount of water between peels.
The first case represents a packing ratio of one where packing ratio is defined as the ratio of the volume of paint to the total water and paint volume. The second extreme represents a packing ratio of 0.5 . The distribution of paint peels in the pool of water is a random process; therefore, it is appropriate to define the average packing of the peels as equal to the mean value of the two extreme cases. Consequently, it is appropriate to use 0.75 as the average mean packing ratio for the accumulated paint in the sump. Assuming water viscous effects would not appreciably affect the paint packing ratio, a packing ratio of 0.75 has been considered to obtain the pressure drop results in Table III. For conservatism no flow was assumed possible through the spaces in the occupied region. Even with this lower value of paint packing ratio, the conclusion regarding pump performance remains unchanged. That is the pump performance would be affected only if the total quantity of paint and debris in excess of $4000 \mathrm{ft}^{3}$ accumulate around the trash racks.

The spacing between paint peels is inversely proportional to the packing ratio. The average distance between stacked paint peels

100% PAINT PACKING
Paint Peel Packing Configuration

Tai le III

Note: Percentage screen blocked $=($ depth of screen blocked $\times 100 / 6,25)$
Packing ratio for the paint $=0.75$
of thickness 0.035 inches with a packing ratio of 0.75 is 0.012 inches. Smaller packing ratio would result in larger spacing distances between paint peels. The larger spacing would permit water flow to reach the trash rack surface, thus, in effect, increasing the flow area to the trash rack screens. At a packing ratio of 0.5 , the average spacing between the peels would actually equal the paint peel thickness. Thus the actual pressure drop through the trash racks would be expected to increase with decreasing packing ratio up to a maximum value at a critical packing ratio which would offer the largest resistance to flow. Then a decrease in value wcrld occur for smaller packing ratios as more flow area became availalle between peels. Thus the pressure drop calculations in Table III for a 75% packing ratio and no flow area between peels can be considered conservative since in actuality the blocked paint height woul? contain about 25% flow area for water. An approximate method to estimate the actual packing ratio due to kinetic theory is contained in Appendix B.

It was conserva:ively assumed in Section 3.1 that all the containment paint accumulate in the area immediately around the trash racks and fill the space above the debris. Questions about the motion of the paint peels within the water and the ability of the peels to stick to the vertical trash rack surface are addressed here.

It is assumed here that only one sump is operative and half the depth around the trash rack is covered with debris other than paint. The screen presents a free flow area fraction of 0.7 , that is 70% of the face area is available for flow and 30% is covered with metal. Paint peels incident normally near the screen surface would be pressed against the screen by the hydrostatic pressure. The weight of the peel tending to pull it down would be resisted by the friction between the paint peel and the metal surface. Calculations indicate that the friction is much higher than the weight of the peel and thus the peel would indeed cling to the surface of the screen vertically. It was estimated from the dynamics of vertically descending peels, that the peels incident on an area within about $2^{\prime \prime}$ of the screen surface could be pressed against the screens. Details of this estimation are described at the end of this section. For conservatism, 25% of the paint incident on top of the trash rack was added to this category. The resulting area blocked by vertically sticking paint peels was calculated to be approximately $72 \mathrm{ft}^{2}$; this area corresponds to a depth of about 0.9^{\prime}. Since half the depth is already assumed blocked by debris, the total depth blocked is now 4.025'.

The suction to the ECCS pump will now pass through the remaining available depth of 2.225^{\prime}. The flow stream lines would be normal to the screen surface near the trash rack. Paint peels falling elsewhere in the pool at different angles of incidence, would be transported under the water velocity, gravity and drag to the screen subject to buoyancy and other effects.

They would ultimately tend to align themselves with the stream lines. It was estimated that the peels εt an average distance of 24 ft from the screen could be transported to the vicinity of the sur ace of the screen. Details of the estimation can be found at the end of this section. This distance corresponds to an area about $922 \mathrm{ft}^{2}$ surrounding one operating trash rack. If all the containment paint peels block the trash rack in addition to the already blocked depth of 4.025^{\prime} with a packing ratio of one and no flow assumed through the paint, a further height of 1.14^{\prime} would be blocked, leaving a height of 1.08^{\prime} for flow. The pressure loss would be equal to 0.09^{\prime}, corresponding to a blockage of about 83%. Thus the pump performance would not be affected. The blockage of the trash rack occurs due to two processes: (1) peels sticking vertically which will be called adhesion and (3) peels accumulating in the surrounding volume which will be called accumulation. If the entire paint blocked height due to paint peel adhesions and accumulation were made available to paint accunulation, for the 4.025^{\prime} blocked height, a packing ratio of 0.56 would result which is close to the lower limit packing ratio. Thus the conservatism of the above assumptions is justified. Additionally, calculations indicate that the flow velocity on top of the paint is insufficient to lift it due to a venturi effect.

Estimation of the distance $2^{\prime \prime}$ from the surface of the trash rack, for vertically clogging peels
Referring to Fig. 4, the trash rack has a height of 6.25^{\prime}. Half this depth, equal to 3.125^{\prime}, is assumed filled with debris. The flood water level is assumed to be 20° above the base of the trash rack or 16.875^{\prime} above the surface of the debris. The hydrostatic pressure due to this head of water equals $1051.3 \mathrm{lbf} / \mathrm{ft}^{2}$. Referring to Fig. 5, showing a peel pressed against a typical grid, a unit grid area of $1 \mathrm{ft}^{2}$ can be considered. Since the blockage factor is 0.7 , the metal area is $0.3 \mathrm{ft}^{2}$. and the balance, $0.7 \mathrm{ft}^{2}$, is flow area. The hydrostatic pressure will tend to hold the peel against the screen. The metal area would offer a reaction. The weight of the peel would tend to pull it down against the frictional force offered by the bearing surface. If the frictional force were higher than the weight, the peel would cling to the surface of the screen vertically.

Figure 4

Trash Rack Elevation View

Figure 5
Paint Peel Adhesion to the Trash Rack Screens

The reaction at the metal surface equals 1051.3×0.3, or 315.41 bf . Assuming a coefficient of friction of 0.1 , the frictional force equals 31.54 Ibf . The peel of area $1 \mathrm{ft}^{2}$ and thickness $0.03^{\prime \prime}$ weighs 0.2 Ibf . Hence, the peel would indeed cling to the surface of the screen vertically.

Using Fig. 4, Consideration will be given to a vertical peel striking the water surface at a horizontal distance of x from the trash rack. It will be conservatively assumed that the incident velocity equals zero. Since the drag on a vertically descending paint peel is small and negligible, the time t taken by the peel to fall through a distance of 16.875^{\prime} is given by $\frac{1}{2} \mathrm{gt}^{2}=$ 16.875 and is found to be 1.02 sec . While the peel descends vertically, it would be transported to the screen by the velocity of the water. The water velocity is $0.161 \mathrm{ft} / \mathrm{sec}$ at the screen and it reduces with distance. It is conservatively assumed that the water velocity is a constant equal to 0.161 $\mathrm{ft} / \mathrm{sec}$ and that the peel is trasported without slip. The distance x is then equal to 0.161 t which is about $2^{\prime \prime}$ with tequal to 1.02 secs . Thus, the paint peels incident within 2 inches of the trash rack could be expected to clog the screen vertically.

Estimation of the distance of 24^{\prime} from the trash rack regarding peels

 incident on the surface of the water at different angles:Figure 6 illustrates a paint peel at an angle θ to the vertical moving under water. The weight mg acts vertically downwards. The reaction R acts normal to the surface. The peel would fall down under the influence of mg opposed by $\mathrm{R} \operatorname{Sin} \theta$; at the same time, the component $R \cos \theta$ would tend to push the peels towards the trash rack subject to drag in the horizontal direction. The equation of motion in the vertical and horizontal directions are:

$$
\begin{aligned}
m \frac{d u}{d t} & =m g-R \sin \theta \\
& =m g-C_{D} / 2 u^{2} A \cos \Leftrightarrow O_{W} \\
m \frac{d v}{d t} & =R \cos \theta-C_{D} / 2 A \sin \theta C_{W}\left(v-v_{O}\right)^{2}
\end{aligned}
$$

Where, $m=$ mass of the peel $=f_{p} A w$

Figure 6

Paint Peel Force Model

```
O
A = Area of the peel
w = Thickness of the peel
CD}=\mathrm{ drag coefficient
\mp@subsup{\rho}{W}{}}=\mathrm{ density of water
vo = pool water velocity
```

The vertical terminal velocity for any angle θ is obtained by setting $m \frac{d u}{d t}$ equal to zero. An angle of zero would result in the longest vertical travel time. This furthest horizontal tragel occurs at the angle for which the value of the multiplication of the horizontal velocity and the vertical travel time is largest. As seen from Figure 7 , the longest travel time occurs at a small angle. However, the equations used to model the paint peel fall are inaccurate at angles near zero and ninety degrees since boundary layer effects on drag have been ignored in the equations. Consequently, results at angles greater than 85° and less than 5° are not considered to be representative of actual conditions. Despite these assumption problems, the average horizontal travel distance for any paint peel can be calculated to fall betwe 222 and 24 feet using the information presented in Figure 7 .

Figure 7
4. Conclusion

It is estimated that the performance of the ECCS pump. would not be adversely affected, if the trash racks were blocked 83° or less. The pressure loss across the trash rack due to a blockage of 83° is mach less than the normal suction head of the pump. Such a blocking limit would be reached if (1) debris exceeding about $4000 \mathrm{ft}^{3}$ fill the space around the trash racks, in addition to the total quantity of paint filling the same space with a packing ratio of 0.75 or, (2) if the entire quantity of paint fills the space around one trash rack with some 0 : the paint peels clogging the screen vertically, in addition to debris covering half the trash rack depth. Since the accumulation of all the paint inside containment plus the assumption of having haif the trash racks blocked with debris is insufficient to exceed 83% blockage, ECCS performance is not considered capable of being affected by trash rack clogging.

1. Texas Utilities Services Inc., C.P.S.E.S. Drawing CPD $-1402-1,3 / 5 / 81$
2. Texas Utilities Services Inc., Comanche Peak S.E.S. Drawing 2323-SI-0564, 6/12/79
3. "Model Testing of Recirculation Sump Containment", November, 1981 Western Canada Hydraulic Laboratories Ltd.
4. Memorandum from R.M. Kissinger to Lisa Bielfeldt, TUGCO QA, Dallas, $12 / 29 / 83$
5. Telex from C. Dupre of TUGC to V. Thiagarajan, Ebasco Services 2/6/84
6. Sumps for Emergency Core Cooling and Containment Spray Systems, Proposed Revision 1 to Regulatory Guide 1.82, May 1983.
7. Streeter, Wylie, Fluid Mechanics, McGraw Hill, 1975
8. USI A-43 Resolution Positions, NUREG-0869 (for Comment), April, 1983
9. Containment El argency Sump Performance, NUREG-0897, April, 1983
10. Sumps for Emergency Cooling and Containment Spray Systems, Regulatory Guide $1.82,1974$.
11. A.W. Adamson, Physical Chemistry of Surfaces, John Wiley, 1976

> Appendix A
> Partial Report of
> Western Canada Hydraulic Laboratories ITD.
> Regarding

Model Testing of the Recirculation Containment Sump

COMANCHE PEAK STEAM ELECTRIC STATION

 UNITS I AND 2MODEL TESTING OF THE RECIRCULATION CONTAINMENT SUMD

FOR
TEXAS UTILITIES SERVICES INC.

BY
WESTERN CANADA HYDRAULIC LABORATORIES LTD.
PORT COQUITLAM, B.C.

I.0 PURPOSE OF STUDY

The purpose of the hydroulic model studies was to test anc mod'ty, if necesszrv. the Recirculation Containment Sumps and intakes of the Comanche Deak Steam Eiectric Station, Units I and 2, and demanstrate that the accepted design would not be subject to vortices or other hydroulic phenomene that would degrose theit performance or protuce adverse effects on the ECCS pumps. The tests aiso messured an intoke heosioss for each intake to demonstrate that intake head losses were within the design value for the plant. and measured head losses across trash racks and screens.

2.0 INTRODUCTION

The U.S. Nuclear Regulatory Commission in Regulctory Guide 1.79 states thet " A comprehensive preoperational test program on the Emergency Core Cooling Syster and its components should be performed to provide assurance thet ECCS will occomplish its intended function when required". Furthermore, "the (preoperctionel) testing shoule include taking suction from the sump to verify vortex control and occeptable pressure drops across trash rack with screens and in valved suction lines", and "the testing should verify that the available net positive suction head is greater than that requires a : occident temperature."

A satisfoctory in-plant test of the Comanche Peok Stean. Electric Station Units and 2 was not feasible due to logistical problems of flooding the containment and the lock of access to the sump for observation to ensure proper vartex control.

The alternative, as presented in this report, was to construct and test madels of the sumps and intokes to verify vortex control and to determine the heodlosses associated with the trash rack, screens and pipe inlets.

Tests for the Comanche Peak Units I and 2 recirculating intakes were carried out on a l:l secie model of a pair of 16 inch diameter intokes and their contoinment sump ene trash rock structure of flows rates greater than moximum postulated values and et wete: depths equivalent to the minimum postulated levels. The containment geometry and all significant items in the vieinity of the trash rack were also modelled. Model tests undertaken for the Dovis Sesse, J. M. Farley, ANO-2, San Onofre, Nidand ane Paio Verde nuelear plants have demonstrated the effectiveness of a suitably-placed greting coge it, preventing the development of adverse flow conditions which could lead to degroding effects an pump performance. The effecti. eness of a similar grating cage on the Comanche Peak Units I and 2 intakes was demonstrated during these tests.

The ratianole for the test program is presented in this report together with c description of the intakes, a discussion of effects which could degrode pump performance, a description of the test focility, the testing program, test results ans conclusions.

3.0 SUMMARY AND CONCLUSIONS

3.1 The recirculation intakes for Comanche Peak Units I anc 2 were testec using c 1: scale model of a pair of intakes and their sump and trash rack. The made! was teste: under the following canditions:

Postulated For
Plant LOCA

Minimum water depth above sump floor	$8^{\prime \prime} 8^{\prime \prime}$	$8^{\prime \prime}{ }^{\prime \prime}-9{ }^{\prime \prime}$
Mex flow-one intake operating	7,200 (CS)	12,348
	5,300 (R-H2)	8,65 !
Mox flow-both intokes operating	12,500	19,582
Water temperature of	247	44-177
Intoke pipe Reymolds No.	$\begin{aligned} & 5.82 \times 10^{6}(C S) \\ & 4.28 \times 10^{6}(R-R) \end{aligned}$	From 1.05×106 to 5.25×10^{6} (Soth CS and Rーマ.)
Blockoge of screen arec, percent	50	90.

3.2 The results of the tests on the single sump are applicsble to all four sumps (two each in Units 1 and 2) because of their similar geametry, flow rates and depths of submer gence.

The differences between troin A and $\pi \sin E$ sumps in each unit are as follows:

1) The trash rock frame on train A sump in esch unit is of heavie: const: jetion than that on train B sump. There are internal braces on the train A sume trash racks which reduce effective screen area, and hence increase approoct flow velocities. In oddition these broces are a potential source of fiow disturbance.
2) The trash racks on train A sumps are also marginal'y smalier anc are asymmetrical. Trash racks on train B sumps are symmetrical about a radial axis through the center pair of columns of the trash rack.

The model configuration is that of the train A sump and the surrounding containment area in Unit 2. This is a mirror image of, and hence hydraulically identics to, the train A sump in Unit 1. This mode, configuration was chosen becouse:
i. the optimum arrangement within the test focility for testing and ocse-votion could be attained;
ii. the trash rack is smalier with heovier and more numerous support members. and thus more likely to generate poor hydraulic conditions within the sump.

Following the completion of tests on train A sump, the containment arec odiree-t to train B sump was modelied, retaining the more conservative train A sump trash rack. A series of sensitivity tests was carried out to establish any effects due to these changes. Further sensitivity tests were carried out by placing a superfluous 6 in . Habesm in the vicinity of the sump to delineate the effect, if any, of odditional structural members.
3.3 Severe covitation occurred at the iip of each intake when tested with the origine design, ie with the intake pipe eut zff ot 56° to the pipe exis. This egvitetion wes eliminated by adding a 20° cone to each intake. (See Section 9.2.2 and Figure 10).
3.4 The tests showed thot without the grating cage in place, oir-entraining free surface vartices as well as vartices originating from the sump walls oceurred even without trash rack blockoge. Large free-surface vortices could aiso be produced by various combinations of screen blockages. No vartices developed under any tested conditions when the intake was protected by a suitabie grating cage.
3.5 The trash rack and screen ioss was found to be less than 0.02 ift at a prototige totoi discharge of $12,500 \mathrm{gpm}$.
3.6 The maximum intake head loss caefficient measured with the grating cage in place and 50 percent blockage cortesponded to a loss of 0.52 ft for a prototype discharge of 7,200 gpm.
3.7 A separate series of tests under a variety of 50% blockage conditions, designed to establish the mean intake loss coefficient and the 95 percent confidence interval, can be summarized as:

3.8 The sensitivity tests showed that no significant effect on head losses or vortex action occurred with a substantially altered containment configuration or the inclusion of c super flucus structural member.
3.9 The effectiveness of the grating age in providing vortex control was demonstrated repeatedly.

4.0 DESCRIPTION OF CONTAIINMENT SUMPS AND INTAKES

Eoch unit of the Comanche Deak piant contains two recireulation sumps locetec or the west side of the building. The sump configuration of Unit 2 is o ivorth-5outh mirtor-imoge of thet of Unit 1. (See Figure 1).

Each sump is $5^{\prime} 5^{\prime \prime}$ in width and $6^{\prime} 0^{\prime \prime}$ deep, and subtends an angle of 14050^{\prime} to the contoinment centerline. The side walls of all four sumps are ares with resii of $5 \mathrm{~h}^{\prime} 11^{\prime \prime}$ ons $60^{\prime} 4^{\prime \prime}$, and the end wolls are rodial to these arcs.

Two intokes are locoted on the outer wall of eoch sumz, with theit gertertines 4045' eoch side of the radial exis of symmetry. One intake in each sump suoglies the CS pumps and the other supplies the RHR pumps. These intokes drow $7200 \mathrm{~g} p \mathrm{~m}$ and 5300 gpm respectively. However the intokes themselves are identical.

The trash racks are asymmetrically located with respect to the sumps, and their construction differs between the two sumps in each unit. The trash racks on train A sumps carry pipe supports and seismic restraints, and hove odilitional internal brocing. The spacing of the columns is also asymmetrical on these trash racks. Trash racks on the troin B sumps ore lighter in construction and hove columns regularly spoced at intervals of 7030.

The trash rock bars and eocrse screens are mounted in fromes mode of steel angle, and these in turn are bolted to the outer foces of the trash rock columns. The fine screens are mounted in separate fromes of steel angle and fict bars which are bolted to flanges extending from the sentral web of each column.

The trash rack bars are 5/16" diameter, at 4-5/16" O.C. Due to manufacturing and supply problems, a number of shonges were mode to screen specificctions during construction of both model and prototype. These are reflected in the following toble:

Specified

By Client

Trash rack Supplier

Test Model

COARSE SCREEN

.500 in . Sa. Openings
.105 in. Dia. Wire 68.39 Open Areo

2 Mesh
 14 GA. Wire .420 in . Wide Openings 70\% Open Arec

.500 in. Sc. Openings .105 in . Dic. Wire 68.3\% Open Arez

FINE SCREEN

$$
\begin{aligned}
& 7 \text { Mesh } \\
& .020 \mathrm{in} \text {. Dic. Wire } \\
& 122 \text { in. Nide Operings } \\
& 74.1 \text { to Open Arec }
\end{aligned}
$$

$$
7 \text { Mesh }
$$

$$
.02 \varepsilon \text { in. Dic. Wire }
$$

$$
.115 \text { in. Wice Operings }
$$

$$
64.6 \% \text { Open Arec }
$$

7 Mesh
.028 in. Dic. Nire
.115 in . Nice Openings 64.6% Open Areo

Since most of the screen head losses occur across the fine screen, the slight difference in coarse screen size is not expected to be significant. In any case, this difference on the model will tend towards more conservative estimates of screen losses.

WCHL constructed its trash racks with the horizontal bars laid over the top of the vertical bars. On the prototype trash racks, the supplier interwove these bars. This difference is not significant in terms of the validity of test results.

Appendix B

Paint Packing Ratio Estimation

Estimation of the Packing Ratio Under Static Conditions

By considering the accumulation of an ideal uniform stack of paint peels with a packing ratio of one without separation and an average thickness $t=0.03^{\prime \prime}, 400$ peels would exist in a one foot depth. In reality however, molecular forces will result in producing a separation between the peels, varying with the depth of water and weight of peels above the point of consideration. If the number of peels from the surface of the water to a particular depth is defined as n, the downward force (F) on the water at the considered depth could be computed as the difference between the weight of the peels and the buoyancy on the peels.

The area of a peel of width b and depth d is, $A=b d$. Therefore, the resultant force is:

$$
\begin{aligned}
F & =n A t O_{P} \quad-n A t O_{W} \\
& =n A t\left(O_{P}-O_{W}\right)
\end{aligned}
$$

The pressure due to this force is computed by $F / A=n t\left(O_{p}-\rho_{w}\right)$. Since the fluid is assumed static, the pressure is the same in all directions. The resultant force in the horizontal direction is equal to $\mathrm{nt}\left(\rho_{p}-\rho_{w}\right) \mathrm{r} d$ for a small separation (r).

This force is balanced by the molecular surface forces between the water and the peel which decrease with increasing separation r. These forces act on the two bounding paint surfaces. These surface forces are expressed in units of force per unit length σ. In FPS units, σ will have the dimensions of $\mathrm{lbf} / \mathrm{ft}$.

This force is balanced by the total hydrostatic force. Therefore,

$$
\begin{aligned}
& n t\left(D_{p}-P_{w}\right) r d=2 b d \\
& r=\frac{2 \frac{b}{d}}{n t\left(D_{p}-P_{w}\right)}
\end{aligned}
$$

In the above equation b, d and t are in dimensions of length, σ has units of force per length, n is the number of peels, O_{p} and o_{w} are the weight densities of the paint peel and water with the dimension of Force/(Length). ${ }^{3}$ When square peels are considered,

$$
r=\frac{2 \sigma}{n t\left(\rho_{P}-\rho_{W}\right)}
$$

The surface-fluid interface constant σ for water and paint peels is not known precisely. However, σ for air interface is $0,005 \mathrm{lbf} / \mathrm{ft}$. (Ref. 7). Adamson (Ref. 11) reports values of 72 dynes $/ \mathrm{cm}((0.0049 \mathrm{lbf} / \mathrm{ft}$.) for water air interface; he also reports values as 10 w as 20 dynes $/ \mathrm{cm}(0.00137 \mathrm{lbf} / \mathrm{ft})$ for interfaces between water and certain surfaces. The packing ratio may be defined as the ratio of the height of vertically stacked paint peels without separation and the height with separation. The packing ratios were found to be 0.31 and 0.39 with σ 's equal to 0.0049 and $0.00137 \mathrm{lbf} / \mathrm{ft}$. respectively. The separations calculated for the first 10 peels were found to be high, thus the assumptions made in the derivation of the separation distance calculated by this method may not be valid. Hence, the packing ratios were also calculated omitting the first 10 peels. The packing ratios were found to be 0.39 and 0.76 with $\sigma=0.0049$ and $0.00137 \mathrm{lbf} / \mathrm{ft}$. respectively. Thus the packing ratios could be expected to range up to 0,76 .

