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APPENDIX F |

|

ADDITIONAL INFORMATION

Information contained in this Appendix was compiled in response 10 technical questions
ansing during the review of the original issue of the base report. The questions
contained in this Appendix were transmitted by the technical reviewer’.

'Letter, Douglas V. Pickett (NRC) to James C. Deddens (GSU), *River Bend Station,

Unit | - Request for Additional Information Concerning Topical Report EA-CA-91-0001-
| M, Revision-0, 'Steady State Core Physics Methods for BWR Design and Analysis,’
; (TAC No. M79641)" dated December 9, 1991,
|

3
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NRC Question:

| Describe the Gulf States Utilities (GSU) modifications to SIMULATE-E (e.g., the
TIP mode!) and the supporting EPRI codes.  What modifications were made (o
the ABLE code?

GSU Response:

Printed output for all of the EPRI codes has been maodified to include sufficient
mformation to allow full tracing of the software version and specific supporting
calculations used for each analysis. Most of this information is passed from one code
to another as part of the title string ident ying the output. Except as noted in this
response, the technical calculation performed by each of the EPRI-provided codes has
been retained as originally provided,

SIMULATE-E. GSU technical modifications to SIMULATE-E include modifications to
the incore instrument response module, expansion of internal arrays to larger limits,
addition of a thermal limits module, and a number of changes implemented for
operational support analysis. Some of the changes in the coding were associated with
Clearer presentation of output data and resolution of computer system specific problems
encountered while implementing the code under the IBM MVS/ESA and MVS/XA
operating systems.

Incore Instrument Response Module. The TIP model was revised to allow assignment
of instrument response factors according o lattice type rather than four-assembly
configura on type as originally coded. The original TIP model required the generation
of polynomial instrument responses for each separate four-bundle configuration
surrounding an instrument tube and did no' allow axial variation. The revised module
calculates the instrument response at eac 1 location from the adjacent bundles and
combines the contributions to calculate a | overall response. The individual bundle
response factors are extracted from the CA SMO output by AMANDA (see response to
Question 3) and converted into general da a tables similar to the SIMULATE-E cross
section tables.
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NRC Question:

S. How are the calculational uncertainties accounted for in the GSU licensing
analyses of the standby liquid control system (SLCS) cold shutdown margin, the
control rod withdrawal error (CRWE) analysis and the loss of feedwater heating
(LFWH) analysis?

GSU Response:

In the application of SIMULATE-E to off-nominal conditions such as SL.CS shutdown
margin, CRWE analysis, and LFWH analysis, allowance for calculational uncertainties
is made in the selection of conservative input conditions for the analysis. Calculational
uncertainties are accounted for in these analyses by forcing factors important to the
analyses to be in the worst configuration so that any deviations seen in actual plant
operation reduce the severity of the event. The use of a bounding analysis assures that
the results of the SIMULATE-E calculation are a conservative representation of the
anticipated conditions and the appropriate uncertainties.

SLCS Cold Shwdown Margin. The analysis for the Standby Liquid Control System is
performed at cold (68°F), xenon-free conditions with all rods out at the cycle exposure
with the highest cold excess reactivity,  Consistent with the plant Technical
Specifications, the final boron concentration attained by the cvstem is assumed to be 660
ppm, which is substantially lower than the design specification (and expected system
performance) of 825 ppm. The SIMULATE-E model is set up with a conservative value
of liquid boron cross section.

CRWE Analysis. The core configuration selected for the Control Rod Withdrawal Error
analysis rerresents a major departure from normal operation of the reactor core. The
conservative conditions for this analysis include the choice of an unrealistically
conservative control rod pattern which places a high worth bundle (i.e., one close to the
LHGR, MAPLF" X and MCPR operating limits) near a high worth control rod. Further
conservatism is introduced by ignoring the Rod Pattern Controller, which prevents the
implementation of a configuration which includes a high-worth control rod below the
Low Power Setpoint, and the Rod Withdrawal Limiter, which stops control rod

14
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original submittal in that the limiting control rod pattern was taken from fuel vendor
results rather than determined analytically. The Cycle 3 analysis demonstrated the
methodology's ability to nredict the same limiting control rod pattern as the fuel vendor
methodology.

LFWH Analysis. Results of GSU’s calculation of the LFWH transient for Cycle 2
conditions are summarized in Table F-6.3. As was observed for Cycle 3 conditions, the
ACPR calculated by GSU was slightly lower than the fuel vendor calculation, This
difference is due in part to a slightly different final power level calculated by the two
different computer codes. When the final power level calculated by the fuel vendor's
nodal simulator code 1s substituted for the power search calculation in SIMULATE-E,
the ACPR values agree closely between GSU and fuel vendor results. The difference is
compounded by the initial MCPR values in the analysis; higher initial MCPR values
generally result in greater ACPR values, and the fuel venu ir analysis begins with a
higher MCPR.

Comparative calculations for Cycle | were not performed because the fuel vendor used
a point kinetics transient model to analyze the event.

17
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Table F-6.2
RBS CRWE Analysis

Cycle 1 Analysis
Limiting pull 21016 1210 16
OLMCPR 1.12 118!

Cycle 2 Analysis

Limiting pull 12to 16 1210 16
OLMCPR 1.16 1.16!

Cycle 3 Analysis
Limiting pull 08 1o 12 08 to 12
OLMCPR 1.16 118

'GE methodology used GEXL, GSU uses GEXL-PLUS, improvec methodology.
*GEXL-PLUS methodology used by vendor and GSU.

19
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NRC Question:

9. What are the differences between the GSU and vendor methodologies and
assumptions for analyzing the LFWH event and the CRWE event?

GSU Response:

Analytical conditions and assumptions for both the LFWH and CRWE analyses were
based on fuel vendor methodology. The primary differences between fuel vendor and
GSU methodologies are the computer programs used in the analysis and the core
eXpOsure assumpuons,

CRWE Analysis. GSU used control rod patterns recommended by the fuel vendor to
perform controlled depletion analyses and calculate the hot excess reactivity at the end
of each burn increment. The fuel vendor calculated hot excess reactivity through the use
of a reverse Haling depletion. Because conditions were taken from the operating cycle
benchmarks, the GSU calculations were based on actual end of previous cycle conditions,
while the fuel vendor analyses were based on end of cycle exposure conditions predicted
several months before the actual end of operaiion. Design basis calculations performed
bv GSU for reload support will be based on projected end of cycle conditions.

LFWH Analysis. The representative LFWH analysis was performed on the basis of fuel
vendor methodology in effect at the time of the Cycle 2 analysis of record.

Prior to the analysis of Cycle 3, the fuel vendor met  ology kept core flow rate
constant as the feedwater temperature decreased; this method was used for GSU analysis
of RBS Cycles 2 and 3. For Cycle 3 conditions, the fuel vendor methodology allowed
core flow rate to increase as the fluid temperature decreased.

Because core conditions were taken from operating cycle benchmarks, the GSU
calculations were based on actual end of previous cycle conditions, while fuel vendor
analyses were based on end of cycle exposure conditions predicted several months before
the actual end of operation. Design basis calculations performed by GSU for reload
support would typically be based on projected end of cycle conditions.

23
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NRC Question:

11. Discuss the applicability of the vendor analyses of the fuel loading error event 1o
the present and future RBS core reloads.

GSU Response:

The accidental misloading of the reactor core may resuit in degradation of thermal
margins if low- and high-reactivity bundles are exchanged in the core arrangement and
the reactor is operated at power without correcting the misloading or revising the planned
control rod patterns to accommaodate the power redistribution. Multiple overchecks
dunng core loading and online core monitoring generally reduce the probability of such
operation 10 very low levels. Because even muitiple lines of defense occasionaily allow
a low-probability event to occur, however, GE has provided a set of generic analyses
quantifying the effects of a postulated fuel misioading event.

The analysis of a postulated fuel misloading error consists of seiecting a core statepoint
and repetitively exchanging bundles until a maximum change in MCPR is established.
Although the 624 bundles in the RBS core define a prohibitively large number of cases,
most of these permutations can be discarded through symmetry and relative power
arguments. For the RBS Control Cell Core, the limiting mislocation event can
reasonably be expected to involve the placement of a highly reactive fuel bundle into an
active Control Cell  Typical operation in eighth-core symmetry involves seven full or
partial control cells and twenty or fewer highly reactive bundles.

In their generic reload qualification’, GE demonstrated the basic compliance of their
standard fuel designs with a representative analysis. In this generic analysis, the NSSS
supplier determined the thermal margin effects of all possible fuel bundle mislocation
errors in 16 separate BWR reloaa core designs, of which two were Control Cell Cores

'General Electric Company, "GESTAR II," NEDE-24011-P-A-10, p. 1-11 (GE
proprietary).



1o three BWR/¢

{

Aluated against

edicted by the
» % I, ) .V ()'(.Lj { L |
danaivsis

aded

itside the Limait LtNe gener

VENAor), meth y {06 analvsis

CHApOCii

bhie genen

wueneral

1 QR”




NRC Question

§ and the fuel vendo:'s results

included in the boron worth

eftecuve group DOron Cross sectuon to model the soluble
hutdowr

T'he boron cross section is obtained
| 4 T IS .
> analyses for specific fuel ioaded in the reactor., ['he effective boron

stablished conservatively by selecting its lowest value obiained over the
tor each lattice type in the core

i

'he choice of the cycle exposure
§ a4 reasonable and acc ptabie range to use 1n choosing the boron

{ bounds the ca'culation for a specific cycle

LLS shutdown ma*gin of 4.2 % (reported 1n Chapter 6) was based

nucal eigenvalue As shown in Table F-6.1 (see response to

na <rnucal €igen alue at BOC3 gave a SLCS cold shutdown
niying that the onginal reported value 15 “onservauve. In the Cycle
uel vendor conservatively assumed the borated eigenvalue to be equal to
Rods In (ARI) eigenvalue. For C

e !

r Cycles 2 and 3, the fuel vendor calculated the

5
660 ppm borated cigenvalue by subtracting 0.01 from the 600 ppm borated eigenvalue

calculations show the difference between the 660 ppm and 600 ppm borated
119 th £un . - 3:l: 2 T
nvalues to be 0.012, confirming the fuel vendor's assumption as conservative

nce GSI

U and fuel vendor conservatisms, assumptons, and methodologies are different
b 3
analyses are expected to have different results. Both methods can conservatively

that the SLCS systern can shut down the reactor under all expected core




EA-CA-91-0001-S1
Revision O

NRCO Question

wedos 01 thermal caxKage ractors)
predictions and the benchmark

'

ustments ariect the interred calculationa

" "t

measurements been deleted”? If so, please

are availadle in SIMULATI E t0o normalize calc ulated
rizontal and vertuical albedos, thermal leakage adjustment
ustment ractors, bypass voiding factors, and partial fuel

re lahla
GIC dll davallaDig

tal and vertcal albedos were caiculated in detail for all three of the

uded 1n the ben na using the modified ABLE code, however as

th

he responses to Questuons | and 2 the albed )5 were set equal to hose of
nd kept constant throughout i cycles. For the Peach Bottom benchmark,
cycle albedos were also calculated and used 1n the analysis, For the RBS
penchmarks, the same hornzontal and vertical albedo factors were
analyzed cvcles. None of the albedo tactors were adjusted to improve
between prediction and measurement, nor have any follow-on cvcles beer
tor albedos beyond the Peach Bottom analysie. Quad Cities cold calculations

conditions albedos taken from the RBS m el

Thermal Leakage Adjustmerns. The thermal leakage adjustment factors were set to values

~ ~ . I 11 1 v ~ ™o ™t - "B 4 'a) | 1IN ) 1 ™ L 21] .
lermined in preliminary perturbation analysis and from SIMULATE-E calculations

performed by others. The adjustment factors were kept constant throughovt all the
nenchmark analyses

Cornsrol Rod Strength Adjustmerns. A representative set of control rod strength adjustment
E .
developed as part of the initial core modeling effort for RBS. These factors

s

)Y power shapes ooserved dunng the fnrst three cvcies of operation




A-CAYI-U]-S]
Revision O

irements and SIMULATE-E predictions
acceptable will out requinng further manipulation of
a systemaltic \‘('l";\»,f‘gth\’ ) yredictive accuracy in the vicinity of

De Observed, however, thest factors would be adjusted consistent
Use of the control rod strength adjustment factors to account

the Quad Cities analysis was descnbed in the text. Control rod

tors were not used 1n the Peach Bottom benchmark

section 5.2, SIMULATE-E bypass voiding was required

of Peach Bottom 2. Correlation factors within the bypass

ze the calculated results with measurements. Because the

ifficient bypass flow to avoid boiling in the bypass
used in RBS analysis

I'hese factors are included in the SIMULATE-E cod ng prnimanly
PWR analysis ['hey are not used in RBS calculations

luded Benchmarks. As noted in the text, a number of statepoint predictions have

1 ’ v

cluded from the determination of uncertainties for application of the SIMULAT!

del to RBS design basis analyses. In the Quad Cities gamma scan benchmarks, the

peripherally loaded mixed oxide fuel bundlie was excluded from the local power

v

on benchmark evaluation because its location induced azimuthal power gradients
were beyond the capability of CASMO to predict. In both the Quad Cities and
['TP benchmarks, the difference in plant configuration and power density

it all predictions from the determination of RBS TIP uncertainty
the RBS eigenvalue uncertainty analysis, a number of statepoints were excluded from
he evaiuaton because of neutrenic effects which were not within the capability of the
SIMULATE-E modeling. RBS benchmarks were taken from the core follow analysis
Wr.Zh in some instances modeled an exposure increment with a representative core
iguration t0 avoid frequent data changes T'hese approximations were most
2icurate at beginning of life becauc~ most of the exposure before 1000 MWd/T was
accumulated in small increments not explicitly modeled in the analysis. Early in the first
several predicted statepoints were excluded because of extensive power

g, these changes brought about core vanations which induced

LAY
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fission product transients that did not equilibrate to predictable levels until approximately
600 MWA/T cycle exposure. Further adjustments to the RBE cold critical eigenvalue
database are described in the response to Question 4.
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NRC Question:

14, What is causing the systematic increase in the RBS Cycles 2 and 3 hot and cold
critical eigenvalues with exposure?

GSU Response:

The behavior of cold critical eigenvalue predictions over the first three RBS operating
cycles is discussed in the response to Question 4. In that response, cycle exposure
effects were not addressed because the valid reload benchmark statepoints occur at
beginning of cycle conditions. The rmainder of this reponse addresses the exposure-
dependent increase in the hot critical eigenvalue; exposure-dependent cold eigenvalue
effects are similar to those discussed below,

The GSU calculated eigenvalues exhibit a steady increase as core exposurs is
accumulated.  This increass is mild and predictable, and its origins are generally
attributed to the treatment of burnable absorber material in the lattice physics analysis.

Industry experience with MICBURN is characterized by a general underprediction of the
depletion of gadolinia burnable absorber with increasing exposure. For any given nodal
exposure, a gadolinia-loaded fuel bundle will contain more gadolinia than the
MICBURN-defined model. The GSU modeling allowed for this MICBURN shortcoming
by increasing the dimensions of the burnable absorber fuel rod water region. This
agjustment, which increased the neutron thermalization and the burnable absorber
deplenon raie, performed well for the initial cycle but resulted in an overprediction of
gadolinia depletion for subsequent cycles Since the existing methods result in mild and
predictable errors, changes in methodology are unnecessary,

The relative worth of burnable absorber in the RBS core is shown in Figure F-14.1. The
parameter ploited against the y-axis is the total reactivity contained in unburned gadolinia
in the core as calculated by SIMULATE-E from CASMO estimates of exposure-
dependent burnable absorber worth for each lattice type. Because of its lower gadolinia
loading, the Cycle 1 curve is shallower than the subsequent cycles. The figure shows
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Figure F-14 .1
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Figure F-14.2

Critical Eigenvalue vs Gadolinia Worth
RBS Cycles 1-3

® ¢ o
L

‘‘‘‘
50 &

"
® % 9 s
* o 0 d
.
® %3
* %0 4

Critical Eiginvalue

0.04

oslts X.-eff



NRi QJuestion

R"'-‘N“l\‘

d ( iead

PL-NF-87-001-A, Pennsy







K0S
) OO 8
.

)
Q0108

0129

LU0 20
VARX LSS

,.00101

)
WIS
1Y




SRO Question

(51 R-wpunu

chamoers the
the chamber
as the reactor internals accut
wrr at the time of recor:
nent travels Under




EA-CA91-0001-§1
Revision 0

Axial positoning within the instrument tube is determined by the travel measurement of
the TIP machine As the sensor wire unwinds, the axial positon is determined by a
revolution counter on the wire spool. Nonuniform stacking of the instrument wire on the
spool can change the relationship between revolutions and axial deflection, and the
me<hanical revolution counter may undergo performance degradation. This effect has
a small impact on TIP asymmetry, which is based on axially integrated instrument
readings, but it may increase the apparent errors in individual readings by inducing axial
positioning error in the measurements,
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NRC Question:

17. Discuss the applicability of the Quad Cities-1, Peach Bottom-2 and RBS Cycles
|-3 benchmark data in determining the SIMULATE-E calculational uncertainties
for the RBS reload cores.

GSU Response:

This technical report demonstrates the capabilities of the GSU engineering staff 1o
formulate and execute design analyses for BWR plants. The primary purpose of the
benchmarks presented in Appendices A-C is to demonstrate these capabilities and 1o
quantify the accuracy of the methodologies used in the analysis.

As demonstration of the intended application, the RBS analyses are the most appropriate
modeling benchmarks. Depletion analysis through three operating cycles with consistent
accuracy in predicting incore instrument responses shows the adequacy of the methods
and models and demonstrates staff capabilities -» modeling the full spectrum of normal
operating conditions,

Although the reactor 1s physically different from the RBS application, the Quad Cities
benchmarks provide a quantitative assessment of the analytical models 1 predicting
smaller scale phenomena than are available in the RBS data. The Quad Cities dats were
chosen because of the gamma scan data for both once- and twice-irradiatvd fue. . which
are not readily available for platfor.ns more similar to RBS.

The Peach Bottom analyses were undertaken in support of RETRAN benchmarking of
the turbine trip tests performed at the end of Cycle 2. The TIP benchmarks provided a
direct indication of the adequacy of the model in predicting power distribution within the
core and allowed an immediate measure of the validity of the data passed 10 RETRAN,
Both the Quad Cities and Peach Bottom TIP benchmark data, however, exhibited
asymmetry errors substantially greater than the RBS TIP benchmark data. These high
asymmetry errors indicate confidence in the measured Quad Cities and Peach Bottom TIP
data for benchmarking purposes is much lower than for RBS data. Only RBS TIP data
were used in determining the RBS TIP uncertainty.

4]
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NRC Question:

18, Are the RBS moveable detectors - TIPs? If so, discuss the use of the Quad
Ciues-1 and Peach Bottom-2 benchmark data in determining the SIMULATE-E
calculational uncertainties for the RBS reload cores.

GSU Response:

As was the case with the EPRI-published benchmark data, the TIP instruments within the
RBS core are fission chambers. They provide the same general response and have some
of the same uncertainty factors as the instruments in the older plants. Evolving BWR
system design has provided the RBS instruments with greater reliability, as is evidenced
by the lower TIP prediction errors for the RBS analyses than for either the Peach Bottom
or the Quad Cities analyses,

The primary design difference between the RBS detector system and the one in use at
Peach Rottom and Quad Cities is the geometry of the instrument tubes. Configured for
the narrow-narrow gap in a D-lattice arrangement, the older instrument tube design held
the TIP tube physically closer to one of the surrounding bundles than to the other three.
In the RBS configuration, the TIP tube is located at the center of the instrument tube,
equidistant from the four adjacent bundles. This arrangement facilitates the arithmetic
combination of contributions from these four bundles and reduces the uncertainty
associated with azimuthal position within the gap.

The benchmark TIP predictions from Quad Cities and Peach Bottom were not used in
determining the RBS TIP uncertainty. As noted in Chapter 6, the level of uncertainty
in plant operating conditions leading up to TIP dataset collection made these applications
substantially less reliable than the RBS data for determination of TIP error.
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NRC Question:

21, Discuss the assumption that the observed TIP asymmetry is a measurement error
rather than a real physical power tilt. If the TIP asymmetry is considered to be
the result of an actual power asymmetry, how will this affect the inferred RBS
TIP uncertainty?

GSU Response:

Asymmetry in the RBS TIP measurements is not likely to be the result of actual power
tlts. The tabulated individual asymmetry factors show both positive and negative values,
indicating tha! neither half of the core was consistently higher than the other in its
measured TIPs. Actual power differences would also be evident in imbalances in the
LPRM readings.

As noted in the response to Question 16, the measurement of TIP uncertainties at the
beginniag of each operating cycle has shown a close agreement between measured
uncertainty and the uncertainty inferred from asymmetry in the TIP integrals.

If the observed TIP asymmetry is a result of azimuthal power gradients rather than

measurement error within the instrumentation, then no reduction in the TIP error can be

inferred from the asymmetry. Under these conditions, the TIP prediction error is equal

10 the raw error value reported in Chapter 6, or 7.6% over three cycles. In the

determination of overall RBS TIP prediction error, the use of (IP asymmetry as an
n of measurement error reduces the TIP prediction error by 0.5%.

v more serious impact of the assumption that TIP asymmetry is an indication of actual
power Lilts is the concurrent observation that the SIMULATE-E model predicts perfect
symmetry ‘1 all of these conditions. In the RBS analysis, where all of the depletion steps
were execu. in quart  and eighth-core symmetry, the analytical symmetry is imposed
by the configuration assumed in the analysis. Actual power tilts in the XBS core would
degrade the accuracy of the symmetrical core model and would require the use of full-
core calculations for core follow and core design analysis.

45
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o

;Z(VI-V!)*
\

N-1

where ¢ is the standard deviation and V., V, «¢n' N (re

as defined above.
6.1 RADIAL POWER UNCERTAINTY

Predictions of RBS TIP data were \¢xl %0 ca culate
the uncer< ...ty in the radial power distribution. 17T .e
individual TIP readings were integrated nver eich active
string to provide an indication »f the radial )ove.
distribution, The predicted and measured radial TIP
distributions were normalized over the core. The
normalized predictions wvere compared 4 .ith normal.zed
measurements #2nd a radial power uncertainty “a.to was
determined. This unce.tainty factor repiresencs a four-
bundle radial power ‘listiributisn because of the incore
instrument configuration; comparison of this result with
the radial »ower result of the Quad Cities gamma scan
benchmarx provides an overall radial power uncertainty

factor.
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Figure 7.6
Determination of Most Reactive Exposure Pownt
For RBS Cycle 3 SLCS Effectiveness Analysis
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