EXAMINATION REPORT

Facility Licensee:

Arkansas Power & Light

P. O. Box 551

Little Rock, Arkansas 72203

Facility Docket No.:

50-368

Facility License No.:

NPF-6

Examinations administered at Arkansas Nuclear One, Unit 2, Russellville, Arkansas.

Chief Examiner:

Stephen L. McCrory

Date /

Approved by:

R. A. Cooley, Section Chief

5/2/84

Summary

Examinations on March 20 - 22, and 27 - 29, 1984.

Written and oral examinations were administered to nine ROs, eight upgrade SROs, and one instructor certification SRO. Four upgrade SROs, one instructor certification SRO, and six ROs passed these examinations. All others failed.

ANO 2 EXAM REPORT

Report Details

1. Examination Results

SRO Candidates			RO Candidates				
Total	Pass	Fail	*	Total	Pass	Fail	%
9	5	4	55	9	6	3	66

2. Examiners

- S. L. McCrory (Chief Examiner), NRC
- J. Smith, PNL
- R. Clark, PNL
- J. Boegel, PNL

This Examination Report is composed of the sections listed below.

- A. Examination Review Meeting Comment Resolution
- B. Exit Meeting Minutes
- C. Generic Comments
- D. Examination Master Copy (SRO/RO Questions and Answers)

Performance results for individual candidates are not included in this report because, as noted in the transmittal letter attached, examination reports are placed in NRC's Public Document Room as a matter of course.

ANO 2 EXAM REPORT

Examination Review Meeting Comment Resolution

In general, editorial comments or changes made during the exam, the exam review, or subsequent grading reviews are not addressed by this resolution section. This section reflects resolution of substantive comments made during the exam review. The modifications discussed below are included in the master exam key which is provided elsewhere in this report as are all other changes mentioned above but not discussed herein. The following personnel were present for the exam review:

NRC	UTILITY		
S. McCrory	J. Constantin		
	L. Taylor		
	G. Woolf		
	A Filint		

COMMENTS	
1. Q 1.9/5.9	The shape of part B of the curve is affected by Pu build up and requires knowledge of burnable poisons which do not exist in the present ANO 2 core.
Resp:	"Pu build up" was added to the answer key for partial credit. Considering the low point value and the broad generic nature of the question, the full credit answer was not modified.
2. Q 2.1.4	The correct answer could also be a "cylinder-double actuated air operated."
Resp:	REJECT: The control lines are clearly marked to indicate hydraulic operation.
3. Q 2.1.8	The symbol could also be a butterfly valve.
Resp:	REJECT: "Damper" is a correct description and is included in the matching list.
4. Q 2.1.10	The symbol could also be a pressure reducing or control valve.
Resp:	REJECT: Capillary lines are not normally used on pressure reducing valves because of the small working force transmitted.

5. Q 2.2/6.2

(a) Key shows bus voltages.

Resp:

Voltages not required in the answer.

(b) Operators are not required to memorize breaker and transformer numbers. Should delete the requirement from the key.

Pesp:

REJECT: These components are labeled on their control devices with the alpha-numeric designation and are procedurally referred to in this manner. The grading criteria was developed such that 80 percent of the question value could be obtained if the network was completely correct except for component numbers.

(c) Drawing too time consuming for a 6-hour exam.

Resp:

REJECT: Drawings are considerably quicker and easier ways of soliciting indepth and detailed system knowledge than essay responses.

b. Q 2.3/6.3

HPSI shut off head is 1450 psi.

Resp:

ACCEPT: Key modified.

7. 0 2.4/6.4.c

DG prelube is not specifically for the turbo-charger.

Resp:

ACCEPT: Key modified.

3. Q 2.4/6.4.A

Engine heating system and Jacket cooling water pressure switches are also correct.

Resp:

REJECT: These are either passive or reactive to the situation stated. The answer indicated in the key is the only active force to achieve the desired result.

9. Q 2.6

Drawing too time consuming and seismic boundaries are not considered viable objectives of the operator training program.

Resp:

See response #5 concerning drawings. The answer key was modified to lower the incremental point value assigned to seismic boundary identification. However, such knowledge is considered pertinent to an operator's understanding of system survivability to casualties of a seismic nature.

10. Q 2.11

Loss of ACW requires turbine shutdown due to loss of cooling to lube oil, starter cooling, and H₂ cooling.

Resp:

ACCEPT: Key modified.

11. Q 3.1/6.1 ESFAS actuation setpoints are different.

Resp: ACCEPT: Key modified.

12. Q 3.3 Safety channels have 3 detectors/channel. The source range

has more than two range scale indications.

Resp: ACCEPT: Key modified.

13. Q 3.5 Proportional heaters to "minimum" vice "off." Additional

symptoms will result from the conditions

Resp: ACCEPT: Key modified. Symptoms were evaluated using the

key as a basic guide. If a question existed about a particular response, plant reference material was reviewed

to confirm the response.

14. Q 3.8/6.6.A Key incorrect concerning SDBCS operation.

Resp: ACCEPT: Key modified.

15. Q 4.2/7.2.B The approved procedure states that void formation in the

RV head may be detected by observance of pressurizer anomalies such as rapid increase in pressurizer level while depressurizing or a rapid decrease in pressurizer

level while increasing pressure.

Resp: There is no plausible situation whereby void formation

would first be detected as a result of pressurizing and observing an outsurge from the pressurizer. This is a primary indication of initial void collapse or

compression. This will be graded as an incorrect response

to the problem stated on future exams.

16. Q 4.2/7.2 Procedure 2203.13 indicates that a void is collapsed as soon as the outsurge from the pressurizer stops during

repressurization.

Resp: During a rapid repressurization, this premise would be true

only if both charging and letdown are secured. However, the end point may not be achievable before reaching safety relief setpoints. Repressurization alone is insufficient to collapse a void in the RV head. Further, pressurizer level behavior as a result of repressurization only is inadequate indication or confirmation of complete void collapse. The wording of

the question was sufficiently nonspecific to allow credit for responding per the indications of Procedure 2203.13.

17. Q 4.7/7.7

Procedure revision changed the immediate actions.

Resp:

Part A became not appropriate as a result of the revision to Procedure 2202.08. The question was graded based on the responses to parts B and C only.

18. Q 4.9/7.9

Reactivity balances are only performed by the nuclear engineering department.

Resp:

The question was not testing the specific ability to perform a reactivity balance, but the ability to identify reactivity changes resulting from changes to plant conditions, which is a viable requirement of operators. Using the reactivity balance forms provides the fastest and easiest means of determining the net reactivity change which must be compensated by changing the Boron concentration. The answer key identifies two methods of addressing the problem.

19. Q 4.9/7.9

Heatup/Critical ops curves and tables were needed to answer the questions correctly.

Resp:

The information on these curves and tables (OP 2101.04) did not apply to the correct answer.

20. 0 8.1/8.11

(a) Too many assumptions needed for conditions given.

Resp:

INVALID: Of the eight question areas, only two required any sort of an assumption. Q 8.11.C required the understanding that "loss of physical control of the facility" includes the control room. Q 8.11.D requires the reasonable and conservative assumption that radiation release in the fuel building as a result of a fuel handling accident will probably be of sufficient magnitude to call an alert condition. All other questions have specific answers per Procedure 1903.10 without any assumptions needed.

(b) Procedure 1903.10 uses mostly offsite dose projections for EAL criteria. Insufficient information was given to determine offsite dose.

Resp:

INVALID: The key is based on specific criteria found in Procedure 1903.10 which do not relate directly to offsite dose projection. Several EAL criteria will result in NO offsite dose.

21. Q 8.2

Trivial question. Operators should not be required to know procedure numbering beyond the general series number.

Resp:

Candidates routinely demonstrate an inability to locate or identify procedures which address emergency situations. An operator should, by virtue of training in procedures and frequent review of emergency oriented procedures, be able to go directly to the specific procedure series which contains the one needed to address a particular problem. The key was modified to give partial credit for correct general series identification.

22. Q 8.10

Control room instruments indicate CST level in percent. Operators should not have to know tank capacities.

Resp:

It is reasonable to expect operators to know the capacities of major tanks related to safety as a part of basic system knowledge. Partial credit was given where candidates identified the Tech Spec limit as a function of percent.

23. General

Tech Specs were asked on Special Tests section requiring memorization.

Resp:

INVALID: No questions were asked about Special Tests. Question 8.8.A is the only one which may have been interpreted to relate to Special Tests and specific directions to ignore Special Tests were included in the question.

24. General

Several questions require specific procedural response. Many of these procedures have been revised.

Resp:

ACCEPT: Key updated to the latest procedure revision.

25. General

The exam was too long and required too many drawings.

Resp:

The exam was carefully reviewed as to its content and the expected completion time. Both were deemed to satisfy the requirements of 10 CFR 55. The exam process is capable of sampling only a small portion of the knowledge an operator should have. It is necessary that the exam be as comprehensive as possible within the constraints allowed. Therefore, a written exam should be challenging both in scope and length to adequately differentiate candidates of less than acceptable knowledge levels.

ANO 2 EXAM REPORT

Exit Meeting Summary

At the conclusion of each week of the exam period, examiners met with representatives of the plant staff to discuss the results of the examinations. The following personnel were present for the exit interviews:

First Week

NRC	Utility		
S. McCrory	J. Va E. Fo J. Co R. Ha L. Mo	onstantin argrove cClure	
	E. W		
	R. Ha L. Ma A. E	argrove Clure Iliot	

Mr. McCrory started the discussion by detailing the preliminary results of the first week of oral examinations administered. There were 12 candidates, six ROs, five SROs, and one Instructor Certification. All were considered as clear passes. It was noted that these results were still subject to final review by the region.

Only one general comment of a generic nature was discussed with the facility staff. There was evidence that the candidates were unfamiliar with the expected magnitude of various plant parameters as a result of casualty type transients.

There was some discussion concerning the recent change in the facility exam review procedure. The staff indicated that they had not received a copy of the Denton letter which described the changes to the review procedure. Mr. McCrory offered to send the plant a copy of this letter by separate correspondence.

Second Week

NRC	Utility
J. Boegel (PNL)	J. Levine R. Wewers J. Constantin R. Hargrove

Mr. Boegel informed utility personnel that of the five candidates given oral examinations, four were clear passes. He further indicated that he observed no generic weaknesses during the examinations.

ANO 2 EXAM REPORT

Generic Comments

During the grading of the RO and SRO exams, areas of generic weakness were identified based on the responses of the candidates to specific questions. These subject areas are discussed below.

- In question 4.9/7.9. A most of the candidates demonstrated an inability to either identify or deal with the reactivity changes resulting from the combination of rod withdrawal and simultaneous power increase to a new steady-state condition. Several candidates considered reactivity due to rods only and ignored moderator temperature and doppler reactivity effects. Others who identified the net reactivity change as positive failed to realize that negative reactivity must be added to compensate, so that the boron concentration would increase.
- 2. In question 4.9/7.9.B most of the candidates demonstrated a lack of understanding of the terms EFPD or EFPH. Several identified that 3 EFPH remained before Tech Spec limits would be exceeded but failed to realize that as long as power is less than 100 percent, it will take more than 3 hours to use up 3 EFPH. While most of the candidates knew that rod motion was restricted to 10"/15 min. and that normal power increases were limited to 10%/hr., few indicated awareness that normal power decreases are limited to 30%/hr. or that Tech Specs impose a 5%/hr. limit on power increase after operating below the short term rod insertion limits for more than 4 hours.
- In question 1.3/5.3 many candidates failed to realize that the DNBR increased because the DNB or CHF limit was increased as a result of increasing the pressure.
- 4. Several candidates missed the radiation exposure limits asked for in question 4.3/7.3.A.
- 5. In question 4.5/7.5 most candidates indicated unfamiliarity with the precautions of RPP 1622.010 for minimizing internal deposition of radioactive materials as a result of decontamination efforts.
- 6. A chronic problem observed during grading of written exams is that candidates fail to thoroughly read a question and as a result do not answer some part of it. An unnecessary number of points were given up by candidates on this exam because they overlooked an entire category of information requested by the question. An example is a question which asks the candidate to list and explain certain information. The candidate will list the items requested but not have anything written for explanation.

These areas should be regarded as potential areas for emphasis in the ANO II training program. Because of the small sample size and the specificity of the remarks this analysis does not necessarily indicate a problem with the training program as a whole.

ANO II EXAM KEY

Date administered: Mrach 20, 1984

Exam type: Reactor Operator and Senoir Reactor Operator

Comments: The questions in categories 1 and 5 are the same. Categories 4 and 7 are the same except that category 4 has one more question (4.11).

Category 6 is a composite of categories 2 and 3. Dual numbers are used to indicate category 6 questions.

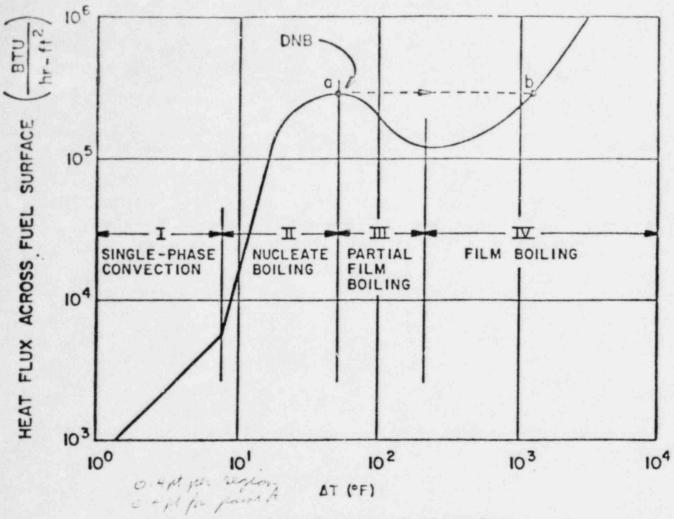
- Principles of Nuclear Power, Plant Operation, Thermodynamics, Heat Transfer, and Fluid Flow
- 1.1 A. Describe how cooldown is controlled during natural circulation. (1.0)
 - B. Describe and explain the major differences you would observe in the establishment of natural circulation in the following two (2) plant conditions: (1) reactor trip caused by tripping of four (4) reactor coolant pumps, and (2) reactor trip with reactor coolant pump running for ONE (1) hour and then tripping. The reactor coolant pumps are not available after being tripped. (2.0)

ANS:

- A. Cooldown during natural circulation is controlled by the <u>steam</u> generator feed and steam rate. As steam and feed flow is increased the rate of cooldown is increased.
- B. A reactor trip caused by 4 RCPs trip requires that natural circulation removes 5% to 7% of full power. A reactor trip followed by reactor coolant pump trip 1 hour later results in natural circulation removing 1% to 3% of full power. The higher power 5% to 7% will cause higher delta temperatures and flow rate causing faster setup of natural circulation. The lower power 1% to 3% will cause longer setup times.

REF: Basic thermodynamics CAF

Refer to Figure 1.2 for question 1.2 and 1.3


1.2 On Figure 1.2 indicate and identify the various heat transfer or boiling regime regions. Identify point A on the curve.

(2.0)

ANS: See Figure 1.2

REF: AND Nuclear Fundamentals pgs 190-194

examine how they relate to heat transfer from a fuel rod.

Departure from Nucleate Boiling Curve

Figure 92

- (1) Region I Single Phase Convection Heat transfer ability in this region is good.
- (2) Region II Nucleate Boiling Heat transfer ability in this region is greatly improved, as can be seen from the slope of the curve in this region. An incremental increase in heat flux in Region II will result in less of a ΔT increase than in Region I.
- (3) DNB Point Departure from Nucleate Boiling or Critical Heat Flux (point a on curve). This point is the threshold of the partial film boiling region. It is at this point where heat must be removed by passing through a larger steam bubble formation on the fuel red surface.

- 1.3 Point X (Figure 1.2) identifies initial plant conditions while operating at power. RCS pressure is increased such that nucleate boiling is completely suppressed.
 - A. How and why is the DNBR affected?

(1.0)

B. What happens to Fuel Clad surface temperature? Explain.

(1.5)

ANS:

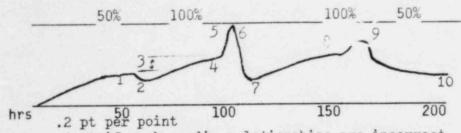
- A. DNBR increases because the CHF was increased when pressure went up. (Note: Plant conditions do not move farther from the DNB point. The point is moved farther from plant conditions)
- B. Using Q = UA (TCLAD TMODERATOR) When pressure is increased to suppress nucleate boiling:

O remains constant because it is a function of nuclear power.

A remains constant because the fuel rod does not compress significantly due to pressure increase.

T moderator remains constant because thermal power is not changed.

U decreases due to the loss of nucleate boiling agitation


Therefore:

TCLAD must increase 65 > to provide the necessary thermal head to remove the heat generated in the fuel.

REF: ANO Nuclear Fundamentals Nuclear Engineering Handbook, Etherington, 1958, Section 9 1.4 Plot Xenon (Xe) for the following reactor conditions. Assuming X free initially. (Show relative magnitude and curve shape-not absolute values) (2.0)

Power level 50% for 50 hrs.
Power level 100% for next 40 hrs.
Trip power level 0% for next 8 hrs.
Power Level 100% for next 52 hrs.
Power level 50% for next 50 hrs.

ANS:

.1 pt if peak or dip relationships are incorrect

REF: Std Nuclear Theory

1.5 Figure 1.5 A-D represent the flow-head characteristics of a fluid system containing a centrifugal pump. For parts A through D below draw the new flow-head curves on Figures 1.5 A-D respectively.

(2.5)

- A. Power supply to the pump motor goes from 60 HZ to 63 HZ.
- B. A venturi type flow detector is installed in downstream piping.
- C. A second identical pump is installed in parallel with the existing pump.
- D. A second identical pump is installed in series and the system is acid cleaned.

ANS: See figure 1.5

REF: Std centrifugal pump laws

CAMERON Hydraulic Data, Ingersall - Rand 1977, Section 1

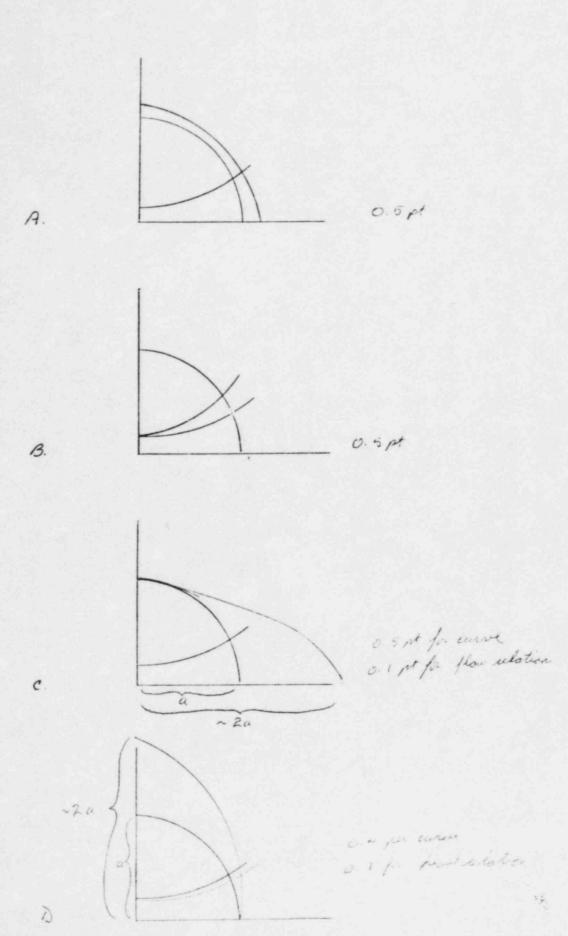


Figure 15

For questions 1.6 and 1.7 refer to Figure 1.6 and the steam tables. (1 atmosphere =29.92" Hg = 33.9' water)

1.6 The water in the condenser hotwell is ____ subcooled.

(1.0)

A. Not

B. 2°F

C. 4°F

D. 8°F

ANS: C

REF: Std Thermo and Heat Transfer

1.7 The absolute pressure (psia) at the condensate pump suction is ____. (1.0)

A. 2.3 psia

B. 11.2 psia C. 3.5 psia D. 5.4 psia

ANS: D

REF: Std Thermo and Heat Transfer

1.8 If after operating in natural circulation for two (2) hours, an operator error (oversteaming) of the S/G causes a complete loss of natural circulation flow, how will the following parameters change (INCREASE, DECREASE, OR REMAIN THE SAME)? Briefly explain your answer. (Assume no further operator action).

(2.0)

- A. Core Delta T
- B. Core thermocouple temperature
- C. Steam generator pressure
- D. Steam generator level

ANS:

- A. Increase (0.2) as boiling occurs in the core. Th (0.15) will increase while Tc (0.15) remains relatively constant.
- B. Increase (0.2) boiling in the core and a lesser means available to remove the heat (0.3).
- C. Decrease (0.2) less primary to secondary heat transfer (0.3).
- D. Increase (0.2) less steam being drawn off as the RCS cools, with constant auxiliary feed (0.3).

REF: Heat Transfer, Thermodynamics, and Fluid Flow, General Physics.

1.9 Explain briefly the basic reactivity changes responsible for the shape of the three (3) areas (A, B, and C) marked on Figure 1.9. (1.5)

ANS:

A. buildup of Samarium and other FP poisons (0.5 each)

B. depletion of burnable poisons (and Pu Build Up)

C. fuel depletion

REF: Std Rx Theory/Plant Data Book

1.10 During a reactor startup, will the actual critical position be HIGHER, LOWER, or the SAME AS the estimated critical position calculated before the following changes? EXPLAIN your choices. (Consider each change separately).

(3.0)

- A. The operator starts using main steam to warm the main turbine prior to reaching criticality.
- B. Actual boron concentration was 30 ppm higher than the value used for figuring the ECP.
- C. Startup was delayed 4 hours beyond the ECP time; a shutdown time of sixteen (16) hours was used for the ECP.
- D. The pressurizer pressure setpoints are all lowered by 50 psi prior to criticality.

ANS:

A. ACP LOWER (.25) than ECP because the lowering of temperature will insert positive reactivity resulting in criticality at a lower rod height. (.5)

(Will accept SAME if RCP heating is identified as being sufficient to over come heat loss for turbine warm-up).

- B. ACP HIGHER (.25) than ECP because the higher boron concentration inserts negative reactivity, resulting in a higher rod height. (.5)
- C. ACP LOWER (.25) than ECP because xenon concentration will be decreasing which inserts positive reactivity. (.5)
- D. ACP slightly HIGHER (.25) than ECP because negative reactivity inserted by the pressure coefficient. The moderator will be less dense and result in a higher critical rod height. (.5) (Will accept the SAME if change is considered neglible but recognized).

REF: C-E Reactor Theory

1.11 What happens to the moderator temperature coefficient as boron concentration is increased? Explain.

(1.0)

ANS: The negative temperature coefficient becomes less negative. (0.25)

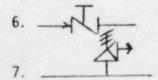
As the moderator heat increases the expansion removes boron from the core. This is a positive reactivity addition because less neutrons are absorbed. This also adds negative reactivity due to less thermalization of neutrons. (0.75)

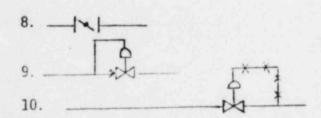
REF: Std Reactor Theory

1.12 The buildup of Samarium and Plutonium after a reactor trip can, to some extent, lead to offsetting reactivity effects. Explain or show how each is PRODUCED and the REASON the reactivity effects can be offsetting.

(1.0)

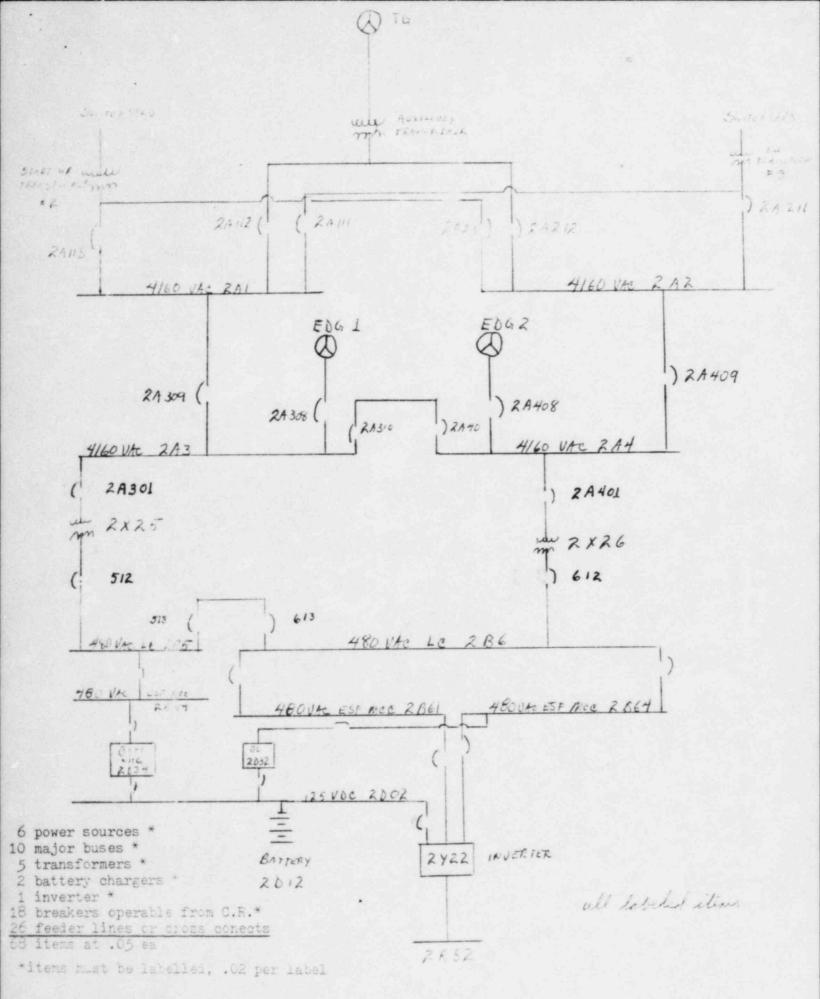
ANS: Fission produces Nd-149 which beta decays (1.7 hr.) to Pm-149 which beta decays (53 hrs.) to Sm-149 [0.35]. U-238 absorbs a neutron and beta decays (23 mins) to Np-239 which beta decays (55 hrs.) to Pu-239 [0.35]. Pu-239 adds positive reactivity (due to high thermal fission cross section) and Sm-149 adds negative reactivity [0.3\$].


REF: C-E Reactor Theory


2.1 Match the following P&ID symbols with the name or function which best identifies the symbol. (Arrows indicate normal or design fluid flow direction).

(2.0)

- A. Manually operated gate valve
- B. Air actuated valve
- C. Check valve
- D. Venturi
- E. Orifice
- F. Vacuum breaker
- G. Temperature regulator
 H. Spring loaded relief valve
- I. Back pressure regulator
- J. Pressure reducer
- K. Motor operated ball valve
- L. Damper
- M. Hydrauclically controlled valve
- N. Solenoid actuated valve
- Stop-check valve
 D/P level detector
- 5.


ANS: 1.K; 2.E; 3.E; 4.M; 5.F; 6.0; 7.H; 8.L; 9.I; 10.G;

REF: P&ID M-2200, 2201

2.2/6.2 Draw the electrical distribution showing all possible ways of energizing 120 VAC Vital Bus 2 RS 2. Include and identify by alpha - numeric designations all busses, breakers (that can be operated from the control room), transformers, inverters and ultimate sources. (For offsite power terminate at the switchyard connection). Ignore possible tie-in with Unit 1 and bus-linkage alterations. (4.0)

ANS: See attached figure

REF: AND lesson plan AA-52002-007 and Figure 7.1, .5, .6, and .7

2.3/6.3 List the system and pressure at which injection first begins for each ECCS capable of injecting water into the RCS. (1.5)

ANS: HPSI 1450 psig LPSI 150 - 180 psig SIT 600 - 624 psig

REF: OP 2104.039, .040 lesson plan AA-52002-004 (Based on minimum suction pressure and DP during surveillance tests)

2.4/6.4 For the diesel design functions in Column A select the INDIVIDUAL auxiliary system/components from Column B which MOST correctly satisfies the function. EXPLAIN your choices. (3.0)

Column A

- a. Ensures the diesel is started within 15 seconds
- Serves as a backup speed governor
- Minimizes engine wear when manually starting
- d. Provides for easier engine starting

Column B

- 1. Lube oil heaters
- 2. Pre-Lube Pump
- 3. Starting air receivers
- 4. Starting air motors
- 5. Centrifugal governor
- 6. Fuel oil day tank
- Water jacket cooling pressure switches
- 8. Electro-hydraulic governor

ANS:

- A. 3 [0.25] Insure reliability because each is capable of five diesel starts (0.5).
- B. 5 [0.25] Takes overspeed control upon loss of electrohydraulic governor (0.5).
- C. 2 [0.25] Precoats engine bearings and parts with oil to minimize friction and thus wear [0.5].
- D. 1 [0.25] Lube oil heater makes the oil easier to pump and allow better lubrication (0.5).

REF: ANO 2 lesson plan AA-52002-016

2.5/6.5 Sketch a one line diagram of the elergency feedwater system from the source(s) of water to the steam generators. Include pumps, major control valves, and interfaces with other plant systems. Indicate which valves and pumps would be actuated on an EFAS. (Valve numbers are not required) (3.0)

ANS: See drawing

REF: AND 2 P&ID N-2204

A DE Service
Water

Motor
Janer
Fund

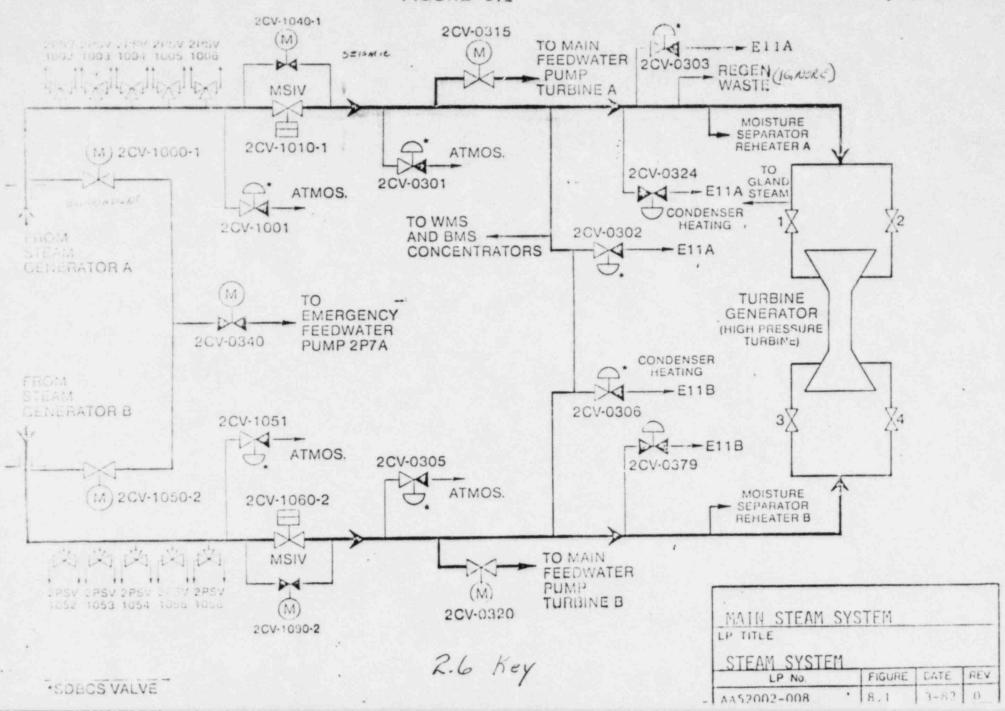
Turbine
Oriver
Fund

Fund

Service
Water

Service
Fund

Fu

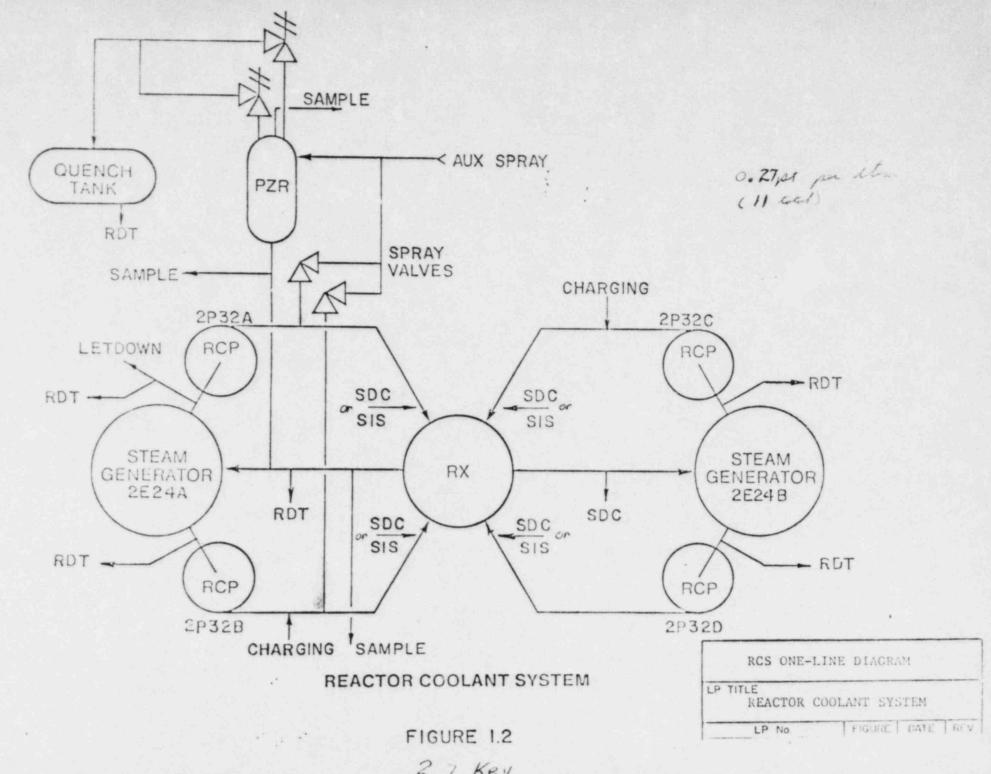

0.25 pt for sock water source 0.2 pt en pump 0.017 pt en EFAS 0.6 pt piping layout 2.6 Sketch one main steam line from the SG to the TG showing relative location of major components and steam takeoffs (e.g., MSIV and SGFP supply). Show containment and seismic boundaries.

(2.0)

ANS: See drawing

REF: AND 2 lesson plan AA-52002-008, Figure 8.1

FIGURE 8.1


2.7 Using the simplified RCS drawing provided (Figure 2.7), sketch the location of the primary system connections to the systems below. (Use abbreviations provided or define, show relative location on each leg, use each as many times as appropriate).

(3.0)

Charging (CHG)
Letdown (LTDN)
Safety Injection/Shutdown Cooling Injection (SIS)
Shutdown Cooling Suction (SDC)
Pressurizer Surge Line (PZR)
Pressurizer Spray Line (SPRAY)

ANS: Key attached

REF: ANO 2 lesson plan AA-52002-001, Figure 1.2

27 Key

2.8 Choose from the list below the automatic protective trip or lockout of the emergency diesel generators which is bypassed by an SIAS. (0.

(0.5)

A. Engine Overspeed

B. Generator Anti-Motoring

C. Engine Lube Oil Pressure Low

D. Generator Differential Current

ANS: B

REF: ANO 2 lesson plan AA-52002-016 pg 9

- 2.9 A. What interlocks must be satisfied before normal starting of a RCF? (1.0)
 - B. Why must RCS temperature be $>500^{\circ}F$ before starting the fourth ACP? (1.0)

ANS:

- A. HP lift pump discharge pressure >400 PSI and CCW flow to the RCP >240 gpm.
- B. To prevent lifting the core assembly as a result of hydraulic force imported by the coolant. (Density below 500°F is sufficient to lift core assembly w/four pumps running).

REF: RCS OP 2103.06 SAR 2.10/6.8 The radiation monitoring system provided for ANO 2 consists of two (2) subsystems. Name them and describe their primary objectives. (2.0)

ANS: Area Rad Monitoring Sys: alert local and CR personnel to abnormal rad levels in order to control exposure and release potential. Area monitors provided to supplement personnel and area radiation monitoring provisions of plant health physics program.

Process Rad Mon Sys: Processing monitoring provides means for monitoring containment atmosphere, ventilations exhause from spaces containing components for recirc. of hypothetical LOCA flushes and all other gaseous and liquid effluent paths where radionuclides could be released to environment.

REF: ANO lesson plan AA-52002-018 Pg 1.

2.11 True or False: Continuous full power operation is unaffected by the operational status of the auxillary cooling water system. Justify your answer.

(1.0)

ANS: False. The ACWS cools the TG stator cooling subsystem. Therefore the TG will eventually exceed temp limits which will require shutdown or a power reduction. (accept also: lube oil cooling or H2 cooling systems)

REF: EOP 2202.13 pg 2 P&ID M-2211 3. Instruments and Controls

. X.

3.1/6.1 List five (5) actuation signals generated by the Engineered Safety Feature Actuation System. For each, indicate the parameter(s) and setpoint value(s) which initiate the signal.

(4.0)

ANS: Any five, see attached sheet

REF: AND 2 lesson plan AA-52002-013 Table 13.2

TABLE 3.3-4

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES

FUN	CTIONAL UNIT	TRIP SETPOINT	ALLOWABLE VALUES
1.	SAFETY INJECTION (SIAS) a. Manual (Trip Buttons)	Not Applicable	Not Applicable
	b. Containment Pressure - High	≤ 18.4 psia	≤ 19.024 psia
	c. Pressurizer Pressure - Low	≥ 1766 psia (1)	≥ 1712.757 psia (1)
2.	CONTAINMENT SPRAY (CSAS) a. Manual (Trip Buttons)	Not Applicable	Not Applicable
	b. Containment Pressure High-High	< 23.3 psta	< 23.624 psia
3.	CONTAINMENT ISOLATION (CIAS) a. Manual (Trip Buttons)	Not Applicable	Not Applicable
	b. Containment Pressure - High	< 18.4 psia	≤ 19.024 psia

. 33 per activation signal.
. 33 signal source
. 33 set point

Where more than one source or setpoint apply distribute incremental points evenly ingrove mond tips

3.1/6.1 Key

00011313453

TABLE 3.3-4 (Continued)

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES

ARI

FUNCTIO	FUNCTIONAL UNIT	TRIP VALUE	VALUES
4. NO	MAIN STEAM AND FEEDWATER ISOLATION (MSIS) a. Manual (Trip Buttons)	Not Applicable	Not Applicable
q	b. Steam Generator Pressure - Low	> 751 psia (2)	> 729.613 psia (2)
5. g	CONTAINMENT COOLING (CCAS) a. Manual (Trip Buttons)	Not Applicable	Not Applicable
2	b. Containment Pressure - High	< 18.4 psia	< 19.024 psia
0	c. Pressurizer Pressure - Low	> 1766 psia (1)	> 1712.757 psia (1)
6. R	RECIRCULATION (RAS) a. Manual (Trip Buttons)	Not Applicable	Not Applicable
2	b. Refueling Water Tank - Low	54,400 + 2,370 gallons (equivalent to 6.0 + 0.5% indicated level)	between 51,050 and 58,600 gallons (equivalent to between 5.111% and 6.889% indicated level)
7. 1	LOSS OF POWER a. 4.16 kv Emergency Bus Undervoltage (Loss of Voltage)	3120 volts (4)	3120 volts (4)
	b. 460 volt Emergency Bus Undervoltage (Degraded Voltage)	423 + 2.0 volts with an 8.0 + 0.5 second time delay	423 + 4.0 volts with an 8.0 + 0.8 second time delay

3.1/6.1 hey

03

TABLE 3.3-4 (Continued)

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION TRIP VALUES ALLOWABLE

	VALUES
TRIP VALUE	
Not Applicable 2 46.7% (3) 2 90 psi 90 psi 2 751 psia (2)	Not Applicable > 45.811% (3) < 99.344 psi < 99.344 psi > 729.613 psia (2)
	46.7% (3) 90 psi

- (1) Value may be decreased manually, to a minimum of > 100 psia, during a planned reduction in pressurizer pressure, provided the margin between the pressurizer pressure and this value is maintained at < 200 psi; the setpoint shall be increased automatically as pressurizer pressure is increased until the trip setpoint is reached. Trip may be manually bypassed below 400 psia; bypass shall be automatically removed
 - Value may be decreased manually during a planned reduction in steam generator pressure, provided the margin between the steam generator pressure and this value is maintained at < 200 psi; the setpoint shall be increased automatically as steam generator pressure is increased until the trip setpoint is
 - (3) χ of the distance between steam generator upper and lower level instrument nozzles.
 - (4) Inverse time relay set value, not a trip value. The zero voltage trip will occur in 0.75 ± 0.075 seconds.

3.1/6.1 Key

3.2 What are four (4) of five (5) core operating limits monitored by COLSS? (2.0)

ANS: any four (4)

1. Peak Linear Heat Rate (LPD)

2. Margin to DNB (DNBR Margin)

3. Total Core power

4. Azimuthal tilt

5. Axial Shape Index

REF: ANO 2 I&C OP 2105.13 pg 2

Tech Specs 3.2.1, 3.2.3, 3.2.4, 3.2.7

(0.5 each)

(4.5)

ANS:

Name	Startup (0.3)	Control (0.3)	Safety (0.3)
#Detectors	2/ch 4 total (0.3)	1/ch 2 total (0.3)	3/ch 12 total (0.3)
Туре	Fission (0.3)	Fission (0.3)	Fission (0.3)
Range	0.1 + 10 CPS or 0 + 200% or 10 200% (0.3)	1% → 125% or 0% (0.3)	log 2×10 ^{-8%} → 200% or linear 1% → 200% (0.3)
Purpose	SUR/power level below C/S range (0.3)	input for Rx Reg SYS (0.3)	power input to PPS (0.3)

REF: ANO 2 lesson plan AA-52002-014

(2.5)

ANS: and ten

1) Overspeed (110% of rated speed)

2) Backup overspeed trip (112% of rated speed).

3) Low vacuum (<7.5 psia)

4) Excessive thrust bearing wear (<13 psig)

5) Reactor trip

6) Generator lockout trip

7) Manual trip from Control Room 8) Excessive vibration (>14 mls.)

9) Manual trip at turbine

10) High exhaust hood temperature (>225°F)

11) MSR high level

12) Loss of stator coolant

13) Low hydraulic fluid pressure (<1100 psi)

14) Loss of both speed signals.

15) Low bearings oil pressure (<13 psi)

16) Shaft pump discharge pressure low (<105 psi)

17) Loss of DC to EH controller

18) 500 KV breaker 5130/5134 failure

19) Computer trip of turbine

REF: ANO 2 lesson plan AA-52002-009 pgs 13-14

3.5 Assume the pressure channel input on survice to the pressurizer control system (PPCS) failed high. Describe controlled component response to this failure and five alarms or indications in the control room, symptomatic of this failure.

(2.0)

ANS: Component Response: Spray valves full open (0.33

Proportional htrs. to minimum (0.33) B/U htrs. de-energized (0.33)

Symptoms: Pzr. Press. Hi-Lo alarm (5/7 @ 0.2 ea)

Spray valves full open

Proportional heaters to minimum B/U htrs off w/press >2220 psi

Pzr Press Lo Pretrip alarm

SIAS received

Rx trip on low pressure

REF: ANO 2 RCS OP 2103.05

- 3.6 Choose from the list below the main control room indication most appropriate to confirm rod insertion after an automatic reactor trip. (0.5)
 - A. CET Rod Bottom lights illuminated lower electrical limit
 - B. Firstrip path actuated alarm
 - C. Reactor trip breaker TCB 1 switchgear trip alarm
 - D. CEA group indications reading zero

ANS: A

REF: ANO 2 EP 2202.04

- 3.7 A. With the CEA control system in automatic sequential (AS), how can power be reduced from 100% to 80% without producing CEA motion? (0.5)
 - B. What inputs and calculations does the Reactor Regulating System (RRS) use to produce a CEA motion demand signal? (1.5)

ANS:

- A. Reduce reactor power by decreasing steam demand [0.25] and at the same time reduce Tavg by borating [0.25].
- B. T.G. 1st stage press, is used to calculate Tref and T.G. power. The and Tc are used to calculate Tavg. A rate of power change error is calculated from T.G. power and reactor power. A temperature error is calculated from Tref and Tavg. The errors are combined to produce CEA motion demand. (.3 per sentence.)

REF: ANO 2 lesson plan AA-52002-034

- 3.8/6.6 A. How would the Steam Dump and Bypass Control System (SDBCS) valves respond to a turbine trip (without a reactor trip) while at 100% power? Rod Control in Auto (1.0)
 - B. What signals determine this response?
 - C. How would the SDBCS respond differently if: (1.5)

(1.0)

- 1. A reactor trip caused the turbine trip?
- Circ water were lost at the time of the turbine trip?
 (Discuss only initial system response within first minute).

ANS:

- A. The steam dump and bypass valves would Quick Open to establish no load temperature and pressure in the RCS and SGs.
- B. Low steam flow (rapid large drop in flow) (.5) or high pressure (rapid large rise) generate the Q.O. signal. (.5)
- A reactor trip blocks the Q.O. signal to 2 up stream and 1 downsteam dump valves.
 - All valves receive Q.O. initially. As condenser vacuum decreases the bypass valves will shut leaving only the dump valves open.

REF: ANO 2 lesson plan AA-52002-011

- 3.9 With the unit at 80% power, a steam generator tube leak develops which rapidly escalates to 110 gpm in less than five (5) minutes.
 - A. Explain what available instrumentation will enable the operator to confirm the emergency is a tube failure rather than a primary leak to the containment.

(1.0)

B. Explain the instrument response which enables the operator to determine the affected steam generator.

(1.0)

ANS:

A. S/G Tube Rupture
Sample Monitor
Vacuum Pump DISCH Monitor
Steam Line Monitor
(Steam/Feed Mismatch too small)

Leak to Containment Containment Monitors Containment Press Sump Level Containment Temp Containment Humidity

B. Steam Line Monitor or Blowdown line EFW feed demand signal

REF: EP 2202.06, 2202.23

3.10/6.7 How would the following indications be affected (INCREASE, DECREASE OR NO CHANGE) by the associated condition change listed below? Consider each indication separately and EXPLAIN your answer. (3.0)

INDICATION

CONDITION CHANGE

A. Nuclear Wide Range Instrument Cold leg temperature increases 50 degrees F at constant true nuclear power.

B. Pressurizer level

Differential pressure transmitter reference leg temperature increases 10 degrees F. (No change in actual steam flow)

C. Steam Generator level

Control steam flow signal increases (No change in acutal steam flow)

ANS:

- A. Increase [0.5] Increased neutron leakage to detector [0.5]
- B. Increase [0.5] reduced density of water in reference leg decreases differential pressure signal resulting in an apparent increase in level [0.5]
- C. Increase [0.5] feed flow would increase to attempt to match the steam flow until the level error signal overrides the mismatch and reduces flow. (Final level is slightly higher than initial)

(accept NO CHANGE if answer says level control only looks at feed flow-steam flow mismatch rate which rapidly decays away on a step change followed by a constant mismatch).

REF: A&B Standard Reactor Theory and Fluid Mechanics C ANO 2 lesson plan AA-52002-015 4. Procedures - Normal, Abnormal, Emergency, and Radiological Control Refer to Figure 4.1 for this question. 4.1/7.1 What are the required immediate actions if the Ho/O, analyzer reading for the Waste Gas Surge Tank is at point[] ' (1.0)What further immediate actions are required if the situation (1.0)degrades to the indication at point 2 ? (1.0)Why is the mixture at point 3 impossible? ANS: Change H₂/O₂ analyzer lineup to monitor the waste gas decay (.33 A. 1. ea) tank in Service. Have Radchem Dept perform H₂/O₂ samples on all affected 2. components. Take action to reduce concentrations to be within Region A 3. within 24 hours. (.25 Secure all vent, purge and vacuum degas operations. B. 1. ea) Place Waste Gas Compressors in "Pull to Lock". 2. Continue H_2/O_2 sampling by Radchem. 3. Take action to reduce concentrations 4. The mixutre is impossible because the only 0_2 source for the systems monitored by the $\rm H_2/0_2$ analyzer is air which is 79% $\rm N_2$. Therefore, a mixtrue of 80% $\rm H_2^2$ will have about 4% $\rm 0_2$ and 16% $\rm N_2$.

REF: AOP 2203.10 pg 1&6

- 4.2/7.2 A. How is the reactor vessel head cooled during natural circulation?

 Briefly describe the actions necessary to achieve the most effective cool down method for the RV head. (1.0)

 B. What are the principle indications of void formation in the RCS when
 - B. What are the principle indications of void formation in the RCS when in natural circulation? (1.0)
 - C. Generally describe what is done to collapse void in the RCS when in natural circulation. What are the indications of void collapse.

 (Do not consider use of the vessel head vent system). (1.5)

ANS:

- A. The vessel head is cooled by ambient loss and conduction from the head and flange to the nozzle belt region. A large ^T (~350) is created between the vessel head and Th by rapid cooldown using the SGs.
- B. 1. An otherwise unaccountable increase in pressurizer level. or
 - 2. Inability to reduce pressure with spray. or
 - 3. Rapid increase while depressuring.
- C. 1. Stop depressurizing (secure spray). (.2)
 - 2. Energize pzr heaters to increase press (.2)
 - Increase press (pzr level drop indicates void compression/partial collapse.) (.2)
 - 4. Over pressurize 50psi to ensure pzr press control. (.2)
 - 5. Soal to allow RCS structure to cooldown before continuing depressurization. (Ensures complete void collapse) (.2)

Complete void collapse is indicated by observing normal pressurizer level and pressure response to charging and spray after a soak period following repressurization. (.5)

REF: AOP 2203.13 pgs 1-3

- 4.3/7.3 A. State the AND weekly, quarterly, and annual exposure limits for personnel with complete exposure records. (1.0)
 - B. What is the highest weekly exposure allowed without the General Manager's approval? (0.5)

ANS:

- A. 300 MREM/wk 2500 MREM/qtr 5000 MREM/yr (all subject to ≦5(N-18) REM accumulated)
- B. Up to 1000 MREM/wk (HP superintendent approved)

REF: RPP 1622.011 pg 3

4 4/7.4 List five (5) symptoms or indications of uncontrolled/inadvertent moderator dilution.

(2.0)

ANS:

- 1. Power level and/or Tavg increase w/CEDMCS Manual
- 2. Decrease in Boron concen on meter or by sample
- 3. Increase in VCT press or level
- 4. Bororometer high/lo alaim
- 5. Boron dilution monitor alarm

REF: EP 2202.07 pg 1

If answer power level increases (only) must qualify by indicating power less than 1% otherwise, deduct 0.1 pt.

- 4.5/7.5 Upon exiting a contaminated area, you find that your hands and shirt sleeves appear to be contaminated. Describe in moderate detail the survey and decontamination procedures you expect HP personnel to perform on you. Additionally, give three (3) specific precautions to minimize the potential for internal deposition of radioactive material due to decontamination efforts. (2.5)
 - ANS: 1. Detailed whole body frisk
 - 2. Check for skin cuts, abraisons, etc.

3. Remove clothing

Second frisk after clothing removed

- 5. Dress in clean anti-c or surgical greens and procede to decon area
- 6. Wash affected areas with soap and water

(Look to see that most of these are covered in a common sense manor.)

precautions (any 3) (.5 ea)

- Cover skin cuts or abraisions not contaminated with water proof dressing
- 2. Do not use stiff brushes or other items which may abrade skin
- Use anti-cs and respirators as needed to reduce contamination spread

4. Water should be about body temp.

 Do not use industrial or waterless hand cleansers. (Give 1/2 credit for "good sense" actions which do not fit there.)

REF: RPP 1622.010 pgs 3-5

4.6/7.6 List the immediate actions for a steam generator tube rupture which exceeds charging pump capacity but is within HPS1 pump capacity. Include all actions required by section I1 of EOPs 2202.06 and 2202.23. (3.0)

ANS: See attached a eets

REF: EOP 2202.23 pg 3, 2202.06 pg 8

EMERGINCY OPERATING - STIAM GENERATO: THEE EMPTONE

ARKANSAS NUCLEAR ONE

PAGE	3 of 4	
REVISION	4 DATE	12/4/81
CHANGE	DATE	The same of the sa

Page 1 of 2

SECTION 11: TUBE LEAKAGE GREATER THAN CHARGING CAPACITY

1.0 SYMPTOMS

- 1.1 Symptoms of a loss of coolant accident (i.e., pressurizer levels decreasing with no coincident TAVE drop, and with maximum charging & minimum letdown) in conjunction with . . .
 - 1.1.1 Steam generator sample radiation monitor alarm.
 - 1.1.2 Condenser vacuum pump suction radiation monitor alarm.
 - 1.1.3 High radiation indication from Main Steam Radiation Monitors 2RI-1007 for 2SG 2E24A or 2RI-1057 for SG 2E24B as read on Panel 2C336-2 in the Control Room.

2.0 IMMEDIATE ACTIONS

- 0.4, 2.1 Trip the reactor; verify reactor-turbine trip.
- 0.15 2.2 Verify the valve permissive switches for the atmospheric dumps are in the "OFF" position.
 - 2.3 Initiate OP 2202.06, Section II (LOCA, small break) in conjunction with this procedure.
- 015, 2.4 Monitor steam generator levels, pressures, & F.W. flows; Secure both normal & emergency F.W. to the steam generator with the highest level & pressure, and the lowest F.W. flow.
- 0.4, 2.5 Commence an immediate cooldown to 475°F T_{AVE} via turbine bypasses; depressurize RCS to ≤ 1000 psia.

CAUTION

MSIS actuation setpoints must be periodically reset during cooldown to prevent isolation of the "operable" steam generator.

4.6 Key (2.6)

....

ARKANSAS NUCLEAR ONE

REVISION 10 DATE 12/00/03 CHANGE DATE

SECTION IN . BREAK WITHIN HOSE FUNE CAPACITY

- 1.6.4 Combination of RCS temperatures and pressurizer pressures falling into the "Restricted Region" of Figure 1 (Saturation Curve).
- 1.6.5 Incore instrument temperatures >T for existing pressurizer
 pressure
- 1.6.6 Oscillations in excore power channels due to steam formation
- 1.6.7 T_H increasing (>570°F) and diverging from T_C and T_H T_C >50°F if on natural circulation

2.0 INMEDIATE ACTIONS

2.1 Verify reactor and turbine tripped.

CAUTION

- . DO NOT DELAY SIAS ACTUATION BY DEPRESSING THE PRESSURIZER .
- · PRESSURE SETPOINT RESET PUSHBUTTONS.
- *2.2 Verify proper ESFAS actuation, as follows:
 - 15 *2.2.1 Indicating lamps on ESFAS actuated components correspond to the color of the switch nameplates.
 - A. Red Valve open or equipment running.
 - B. Green Valve closed or equipment stopped.
 - .f: *2.2.2 Verify HFSI injection flow when RCS pressure <1450 psia.
- . Z 2.3 Manually actuate ESFAS at limits below if automatic actuation does not occur.
 - *2.3.1 SIAS and CCAS containment pressure >18.4 psia or RCS pressure <1766 psia
 - *2.3.2 CIAS containment pressure >18.4 psia
 - +2.3.3 CSAS containment pressure ≥23.3 psia
 - *2.3.4 MSIS steam generator pressure <751 psia
 - *2.3.5 RAS RWT <5.5%

46/26 he

I loss of Fileron Cociano

FAGE 10 52 28
REVISION 10 DATE 12/US/ES
CHANGE DATE

ARKANSAS NUCLEAR ONE

SECTION II - BREAK WITHIN HEGI EUNG CAFACITY

2.4 Trip all RCP's after the reactor has been tripped for five seconds.

A * 13 * * * * 1.1

. LIMIT FEED-RATE TO PRECLUDE EXCEEDING COOLDOWN

. LIMIT OF 100°F/hr.

- .15 2.5 Verify emergency feedwater actuated and restoring S/G levels.
- .15 2.6 Verify diverse containment isolation. And an
- .4 2.7 Isolate letdown by closing letdown isolation valve (2CV-4620-2).
- .4 2.8 Isolate SG blowdown.
- 3.0 FOLLOWUP ACTIONS
 - 3.1 Notify the Duty Emergency Coordinator.

HOTE

Reverify asterisked parameters in immediate actions using available instrumentation, preferably those POST-LOCA qualified.

NOTE

Abnormally high containment building temperatures will affect pressurizer and steam generator level indication due to changes in the density of water in the reference legs. Refer to Attachments 1 and 2 for steam generator and pressurizer level indication correction factors and reactor building temperature computer points (T5601-1, T5672-2, T5603-3, T5604-4, T5605-5, and T5606-6).

NOTE

| If <20°F margin to saturation is maintained for ≥5 minutes, | I^{13T} ≥1 mci/gm, or plant transient occurs which causes an ECCS | actuation, refer to 1903.10 for determination of emergency | action level.

3.2 Monitor pressurizer pressure, RCS temperatures and margin to saturation; maintain at least 50°F margin to saturation by holding RCS pressure near the maximum allowable pressure within the cooldown pressure temperature curve (Figure 2) if possible.

CAUTION

. DO NOT RESET SIAS AFTER BONA-FIDE ACTUATION UNTIL PLANT IS

. COOLED DOWN AND DEFRESSURIZED: PREMATURE RESETTING COULD

. FIGULT IN LOSS OF ALL PREVIOUSLY ACTUATED COMPONENTS IN THE

. EVENT OF LOSS OF FOWER UNTIL REACTUATED AND START TIME DELAYS .

· HAVE ELAPSED.

44/76 K

- 4.7/7.7 SIAS and RAS occur simultaneously while at power. Excluding response to the reactor trip:
 - A. What is the immediate action for this situation?
 (Deleted as result of recent procedure change)
 - B. Describe how the SIAS is validated for one of the four (4). emergency conditions which initiate SIAS. (1.5)
 - C. If the SIAS is determined to be invalid, what immediate recovery actions are required? (1.5)

ANS: See attached sheets

REF: EOP 2202.08 pgs 2&3

ARKANSAS N

ARKANSAS NUCLEAR ONE

FAGE 2 01 3 REVISION 8 DATE 12/09/83 CHANGE DATE

1.0 SYMPIONS

- 1.1 EFS/ESF pretrip/trip alarm(s)
- 1.2 Safety Injection System actuation alarm(s)
- 1.3 Fossible annunciator alarms associated with reactor trips:
 - 1.3.1 RPS/ESF pretrip/trip channel alarm(s)
 - 1.3.2 RPS actuation channel alarm(s)
 - 1.3.3 PPS channel trip alarm(s)
 - 1.3.4 Reactor trip breaker switchgear trip alarm(s)
- 1.4 Pretrip/trip indication on PPS insert on 2C03
- 1.5 SIAS lamps on PPS de-energized
- 1.6 SIAS actuated pumps, valves and/or components in their SIAS position
- 2.0 IMMEDIATE ACTIONS
 - 2.1 If the reactor has tripped, carry out the "Reactor Turbine Trip" procedure.
 - 2.2 Determine validity of SIAS signal as follows:
 - 2.2.1 Pressurizer pressure and level decreasing

S/G pressure approximately normal

ony one

Containment Building pressure, temperature, humidity and sump levels increasing

SIAS is valid: follow Loss of Reactor Coolant"

2.2.2 Pressurizer pressure and level decreasing

S/G pressure abnormally low

Containment Building pressure, temperature, humidity and sump levels increasing

RCS Temperature abnormally low

SIAS is valid: follow "Steam Supply System Rupture" (steam rupture inside containment building)

4-1/37 100

ARKANSAS NUCLEAR ONE

FAGE	3 0	3 3		-
REVISION	- 5	DATE	12/09	783
CHANGE		DATE		

2.2.3 Pressurizer pressure and level decreasing

5/G pressure abnormally low

any one

Containment Eucliding pressure, temperature, humidity and sump levels constant

RCS Temperature abnormally low

SIAS is valid: follow "Steam Supply System Rupture"

2.2.4 Pressurizer pressure and levels decreasing

Radiation Monitors associated with Primary to Secondary leak increasing

57%5 is valid: carry out "S/G Tube Rupture"

2.3 If SIAS is determined invalid; verify >50°F margin to saturation and secondary decay heat removal and secure inadvertent SIAS by:

25 per port

- 2.3.1 Place HPSI pump(s) handswitches in "Pull to Lock".
- 2.3.2 Place LPSI pump(s) handswitches in "Pull to Lock".
- 2.3.3 Place Boric Acid pump(s) handswitches in "Pull to Lock".
- 2.3.4 Place standby charging pump(s) handswitches in "Stop".

3.0 FOLLOWUP ACTIONS

CAUTION

- . IF EQUIPMENT CANNOT BE RETURNED TO NORMAL CONFIGURATION
- · CAPABLE OF AUTOMATIC ACTUATION WITHIN ONE HOUR, IMMEDIATELY
- . INITIATE A COOLDOWN TO COLD SHUTDOWN AT THE MAXIMUM ALLOWABLE .

· RATE.

3.1 Determine and correct cause of inadvertent actuation, reset t

- 3.1 Determine and correct cause of inadvertent actuation, reset the affected systems and return all handswitches to normal.
- 3.2 If RAS actuated inadvertently, return to RWT suction as follows:
 - 3.2.1 Reset the RAS actuation.
 - 3.2.2 Close a set of containment sump suction valves (2CV-5649 and 2CV-5650 or 2CV-5647 and 2CV-5648).
 - 3.2.3 Open RWT suction valves (2CV-5630 and 2CV-5631).

4.7/2/ Ken

- 4.8/7.8 Fer AND Procedure 1622.003 what radiation levels and conditions require posting as:
 - A. Radiation Area
 - B. High Radiation Area

(List all possible conditions)

(1.5)

ANS:

- A. ≥2.5 mR/hr inside controlled access area (and Rad waste storage buildings) ≥0.8 mR/hr outside the above areas
- B. Any area where (accessible whole body) dose rate is ≥100 mR/hr.

REF: G-RWP 1622.003

- 4.9//.9 The reactor has been operating at the conditions of point 1 on Figure 4.9.1 for six (6) hours.
 - Using the data on Table 4.9.1 what will be the final boron concentration if the plant condition is changed to point 2 of Figure 4.9.1. Show all calculations (Figures 4.9.2 through 4.9.9 and reactivity balance work sheets are provided to assist calculations).
 - B. If the total accumulated operating time to the right of line A on Figure 4.9.1 is 4.875 EFPO for the month, which of points 2, 3, or 4 can be attained without violating tech specs? The OP 2102.04 procedural guidelines and requirements for rod motion and rate of change of power apply. For each point describe the method you would use to get there and the time it would take. Explain how you comply with tech specs (if at all) for changing to the condition for each point.

ANS:

- A. 450 ppm (see reactivity forms)
- B. Point 2 yes ~8-10.5 hr
 By boration and rod withdrawal, rd ht. can be raised above the limit
 (long term) in 2.5 hr while holding power constant. This will only
 burn up 1.5 EFPH of the 3 remaining. Then power assention to 100%
 in limited to less than 5%/hr so that just over 8 hours are
 required to get to 100% power.

Point 3 - yes ~3.5 hr
Use same method as for point 2 but do not increase power. Rod motion is limited to 10 in/15 min through out the withdrawal. The long term limit is achieved in the same time as for point 2 with the same EFPH burn up.

Point 4 - yes 1.5 hr
By increasing boron by about 70 ppm power can be reduced below 20% as fast as the turbine can be unloaded while maintaining Tavg = Tref. Admin. limits for power reduction are 30%/hr

REF: OP 2103.15, 2102.04 Tech Spec 3.1

- for A: portial credit evaluation shoulld be based on
 - If reactivity balance forms are used: end point valves should be entered for HFP, ARO, XeFree & Eq SM.

p fuel =
$$\rho$$
 Boron, all other ρ = 0
4.5% $^{\wedge}$ K $_{/K}$ = 4.02 % $^{\wedge}$ K $_{/K}$ (uncorrected) X 1.12 (correction factor)
4.02 $^{\wedge}$ K $_{/K}$ Boron => 450 ppm from graph

or 2. A (Boron = - [+ (rods - | M1C - | doppler] = - [.65 - .17 - .28] $= - .2 \% K/K \qquad \text{if 100 ppm B=-1}\% K/K$ then - .2 x 100 ppm/-1 = 20 ppm INCREASE

REARIEM TWO SECTIONS

PROCEDUREWORK PLANTITLE

LEACITYITY BALANCE CALCULATION

NO.

2103.15

ARKANSAS NUCLEAR ONE

FAGE	32 01	98	
REVISION	11	DATE	11/16/83
CHANGE		DATE	

Clare of final constitue in HFF, ALO GO ST I was the bear to enable to 6 with and their waterprised of a test concentration up its. ARKANSAS POWER & LIGHT COMPANY Arkansas Nuclear One FORM NO. TITLE: MORK SHEFT A-1 REV. # 11 PC # Page 1 of 2 Work Sheet A-1 Reactivity Balance During Critical Operations to Analyze for Reactivity Anomolies Reference Conditions: 100%FP, 583°F, 2250 psia, no Xenon, no Boron, HFP equilibrium Samarium Data Needed for Calculation: Cycle Burnup 300 EFPD ; RCS Boron Conc. 2 (450 °F *RCS Tave 580 ; Heat Balance Power Level 100 TFP *NOTE: Use average of CPC Channel A From: SEL | |, Other PID 160 & PID 162 for Tays (or an equivalent indication) CEA Grp. 1 150 in wd., CEA Grp. 2 150 in wd., CEA Grp. 3 150 in wd CEA Grp. 4 /50 in wd., CEA Grp. 5 /50 in wd., CEA Grp. 6 /50 in wd PLCEA Grp 150 in.wd. 1. From Attachment A-1: p(Fuel) = 4.5 % Ak/k From Attachment A-2: ρ(Boron) =
 Δk/k From Attachment A-3: Boron Worth Burnup Correction = p(Boron)* = p(Boron) x Burnup Correction x Temperature Correction
p(Boron)* = U (4.5) 11 k/k x 1.12 p(Boron) = 4 (4.02) p(Foron) == = 580°F ± 2°F, neglect temperature correction, p(Temp) = 0, 3. If Tave = 580°F ± 2°F, neglect trep otherwise, from Attachment A-5: atemp(Tavg) = _ atemp(580°F)= atemp(Tavg) + atemp(580°F)
2 x (Tavg - 580°F) x 100% x 10-4 Ak KoF X p(Temp) =

- 4. From Attachment A-6 (Interpolate between parametric burnup curves):
 - a) For present controlling CEA group position ρ(CEAs) = _____ 25k/k

NO.

2103.15

ARKANSAS NUCLEAR ONE

PAGE 30 01 98 PREVISION 11 DATE 11/16/63 CHANGE DATE

1	ARKANSAS POWER & LIGHT COMPAN Arkansas Nuclear One				
		TITLE WORK SHEET A	(-1	FORM NO. 2103 154	
	b)	From Attachment Additional worth	A-7: due to PLCEAs = Ø	Page 2 of 2	
	c)	Sum of 4a and 4b	$\rho(CEAs) + \rho(PLCEAs) =$	Ø % Δk/k	
	d)	From Attachment	A-8:		
	e)	Temperature p(CEAs net) = [p	Correction Factor (TCF) = (CEAs) + p(PLCEAs)] x TCF		
		p(CEAs ne	t) = % AH	/k	
5.	From	Attachment A-9 (Interpolate between paramet	ric Burnup Curves)	
,		p(Power)	= Ø \$5k)	<u> </u>	
6.	From	SAXON2 I	, Other	(Indicate Method)	
			$\rho(Xenon) = \underline{\qquad \qquad}$	∑ _ % ∆x/x	
7.	If s p(Sa	samarium is at HFF amarium) = 0	equilibrium, neglect addi		
	Othe	erwise, From: SAM	2 , Other	(Indicate Method)	
			p(Samarium) =	2 % Δk/k	
8.	Sum	the following:			
	p(Ne	et) = p(Fuel) - p(± p(Samarium))	Euron)* ± p(Temp) - p(CEAs	net) + ρ(Power) - ρ(Xenon)	
			$\rho(Net) = +4.5$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			0.5%Ak/k refer to Section 4	.O, Limits and Precautions.	
		formed Bye	Time		
	Res	ieved By	Nuclear Engineer or Nuclear		

4.10/7.10 What are the immediate actions for a Waste Gas Discharge Line High Radiation alarm?

(1.0)

ANS: 1. Secure any vent operations in progress

2. Verify 2 CV-2428(2C-14) waste gas discharge trip valve closed.

REF: AOP 2203.006

4.11 A. List the plant operator's immediate actions/duties when control room evacuation and remote shutdown are required. (1.5)

B. During remote shutdown what is required to prevent inadvertent initiation of SIAS, MSIS, or CCAS? (1.0)

ANS: See attached sheets

REF: EOF 2202.33 pgs 187

- Administrative Procedures, Conditions and Limitations
- What are the four (4) Emergency Action Levels (EAL) specified in the (1.0)EAL response procedure?

The subcooled condition of the RCS can degrade to the point that an EAL may be entered. Identify the degraded subcooled condition which satisfies the classification criteria for entry into the lowest EAL. Continue to degrade this condition and indicate the criteria (3.0)which escalate the emergency to each subsequent EAL.

ANS:

- A. Unusual Event (.25 ea) Alert Site Emergency General Emergency
- Margin to saturation <20°F for >5 min unusual event (1 ea) B.
 - Margin <20°F for >10 min (w/o indication of immediate recovery) 2. alert
 - At saturation Site Emergency no higher level

REF: EPP 1903.10 pgs 3, 4, 5, 14 & 26

- 8.2 What series numbers apply to the following procedural area (example: Training Admin Procedure 1063)
 - A. Radiation Protection Procedure
 - B. Abnormal Operating Procedure (Unit 2)
 - C. Emergency Operating Procedure (Unit 2)
 - D. Emergency Plan Implementing Procedure
 - E. Offsite Dose Projection Procedure

ANS:

A. 1622 series

-.4 if either of first 2 number wrong -.2 if either of last 2 number wrong

B. 2203

C. 2202

D. 1903

E. 1904

REF: EP 1903.01 pg 1

(2.0)

List five (5) categories or types of temporary modifications which are governed by the Jumper and Lifted Lead Control Procedure (OPA 1000.28)

(2.5)

What temporary modifications are exempt from this procedure?

(1.0)

ANS:

Install/remove electrical jungers 1. A.

Lifting electric leads 2.

Install/remove mechanical bypasses, spool pieces 3.

Alter mechanical configuration 4.

Install/remove blind or blank flanges 5.

Rotate spectacle flanges 6.

- Temporary modifications covered by approved procedures or work B. 1. plans
 - Install/remove hand held jumpers 2.

REF: OPA 1000.28

8.4 When should HOLD cards be issued in the name of the Maintenance Supervisor?

(1.5)

- ANS: 1. Jobs extending beyond one shift which will require multiple crews.
 - 2. When assignment of lead individual is expected to change during the course of the job.

REF: OPAP 1000.27 pg 6

8.5 True or false. It is permissible to intentionally enter technical specification action statements for routine maintenance if the Maintenance Superintendent's permission is obtained.

(0.5)

ANS: False - permission rust come from the Operations Superindentent or Operations Manager.

REF: OPAP 1000.27 pg 10

8.6 Give five (5) examples of <u>serious injury</u> which by definition envole the Personnel Emergency Procedure EP1903.23.

(2.5)

ANS: any five (5)

- Loss of consciousness (more than momentary)
- 2. Fracture (actual or suspected)

Head injury

4. Injury that may have damaged internal organs

5. Serious burn

6. Hemorrhaging (bleeding)

7. Large dose of radiation (>50R)

REF: EP 1903.23 pg 2

- 8.7 What three (3) symtoms are sufficient to order a plant evacuation?
 - ANS: 1. Unevaluated general area radiation levels exceeding 2.5 mRem/hr outside of the controlled access areas which are not attributed to any cause other than a possible radiological incident.
 - 2. Unevaluated airborne radioactivity in excess of 1×10^{-9} uCi/cc measured outside of the controlled access areas.
 - An uncontrolled toxic gas leak where the hazard is not confined to a local area and the conditions continue to increase in severity.

REF: EPP 1903.30 pg 3

8.8 A. What is the minimum lavg allowed by lech Specs while critical?

(Exclude special tests) (0.5)

B. What action(s), including time limits, is/are required if Tavg goes below the limit while critical?

(1.0)

ANS: A. 525°F
B. be above 525°F in 15 min. (.5) or be in HOT STANDBY in next
15 min. (.5)

REF: T.S. 3.1.1.5 pg 3/4 1-6

8.9 Which of the following items are addressed by Technical Specifications? Answer YES if the item is, and $\underline{\text{NO}}$ if the item is not addressed in the Technical Specifications.

		ANS:
Α.	Primary containment humidity	yes 3.6.1.4
B	Offsite power feeds	yes 3.8.1.1
C.	Plant computer	no
	Service water pumps	yes 3.7.3.1
E	CCr pumps	no
F.	Ex core nuclear instrumentation	yes 3.3.1.1
G.	CVCS volume control tank	no
Н.	Secondary chemistry (125 For yes-Activity or	
	Rad. Chem)	no
I.	Lake Dardanelle Level	yes 3.7.5.1
J.	Spent fuel pool building crane	yes 3.9.7

REF: ANO Unit 2 TS

8.10 List the affected system and state whether it would be considered operable or inoperable per Technical Specifications (i.e., outside an LCO-entered action statement) for each of the following conditions (unless otherwise specified, plant is at 100% power and all other conditions normal):

(4.0)

A. Level instrumentation for one safety injection tank failed.

B. Condensate storage tank inventory of 150,000 gal. total

C. During normal refueling, one airlock door seal damaged so as to prevent proper sealing.

D. During low power physics testing, average reactor coolant temperature is 400°F and reactor critical.

E. Control room air temperature reaches 130°F while Hi radiation alarm exists.

F. Only one heat and two smoke detectors are found operable in EDG room 2093

G. The last two monthly surveillance tests of a diesel generator have each been performed 6 days late

H. The bulk temperature of the spent fuel pool is 135°F.

ANS:

A. ECCS/SI INOP (0.5 each)

B. EFW (CST) INOP (3.7.1.3) .25 sys, .25 OP/INOP

C. Airlock/Containment OP (3.6.1.3)

D. Reactor Core OP (3.10.5)

E. Control Room Emergency Ventilation INOP (3.7.6.1)

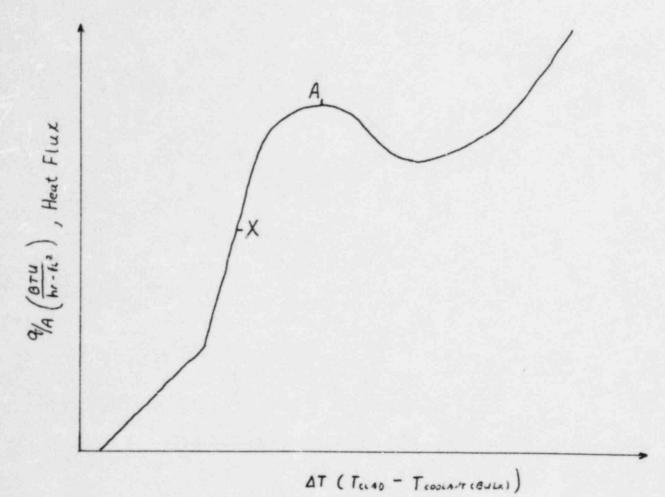
F. Fire Detection Inst OP 3.3.3.8

G. DG INOP 4.0.2, 4.8.1.1.2

H. SFPC/Fuel Storage OP (3.9 Series)

REF: FCS TS

for B If answer says that 80% is the limit but does not state whether 150,000 gal is equal to less than or greater than 80% deduct .125


- 8.11 Classify each of the following conditions to the appropriate emergency action level in accordance with Emergency Plan Implementing Procedure Emergency Action Level Response (1903.10)
- (3.0)
- A. Reactor coolant activity greater than Technical Specification limits.
- B. Loss of all annunciators.
- Security threat resulting in loss of physical control of the facility.
- D. Fuel handling accident with radiation released to fuel building
- E. Multiple steam generator tube failure beyond make up capacity coincident with high primary system activity.
- F. Loss of all offsite power.

ANS:

A. Unusual event D. Alert (0.5 each)
B. Alert E. Alert -.25 for 1 too hi
C. General Emergency F. Unusual Event -.4 for 2 too hi
-.5 all other

REF: EPP 1903.10 pgs 5, 15, 26, 38

TABLES AND FIGURES

Typical Departure from Nucleate Boiling
Curve

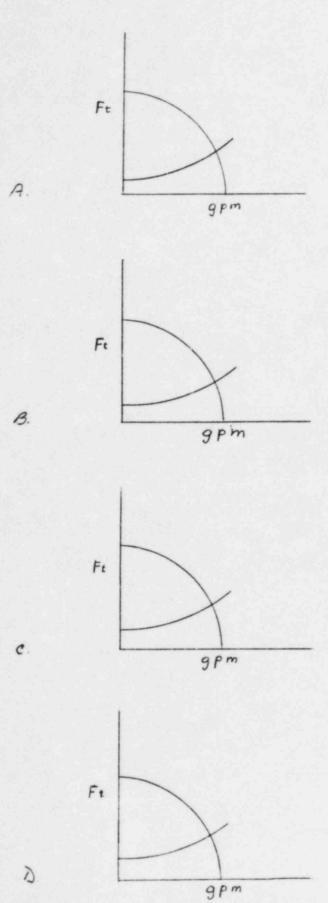


Figure 15

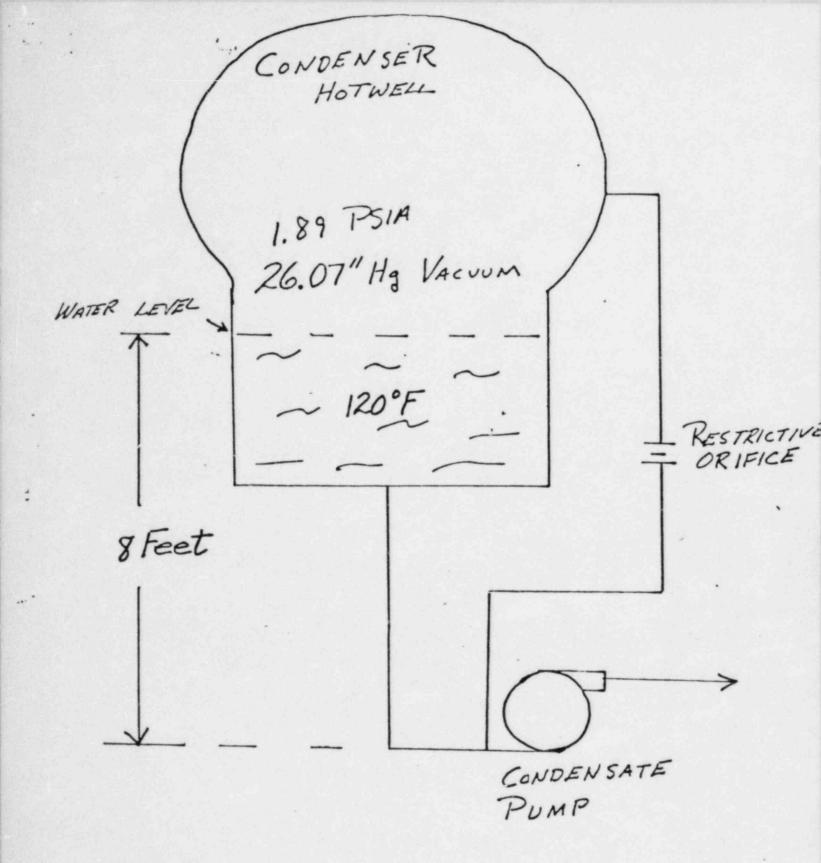


Fig 1.6

			Table	2: Satur	ated Stea	m: Pres	sure Tabl	•			
Abs Press. Lb/Sq In	Temp Fahr t	Sat. Liquid	fic Volume Evap	Sat Vapor	Sat. Liquid	evap his	Sat Vapor h g	Sat Liquid	Entropy Evap Sig	Sat Vapor S g	Abs Press Lb/Sq In
8.01845 8.25 8.50 1.8 5.6 18.8 14.598	32 01 8 59 323 79 586 101 74 162 24 193 21 212 00 213 03	0 016022 0 016032 0 016071 0 016136 0 016407 0 016592 0 016719 0 016726	3302 4 1235 5 641 5 333 59 73 515 38 404 26 782 26 274	3302 4 1235 5 641 5 333 60 73 532 38 420 26 799 26 290	27 382 47 623 69 73	1075 5 1060 1 1048 6 1036 1 1000 9 982 1 970 3 969 7	1075 5 1087 4 1096 3 1105 8 1131 1 1143 3 1150 5 1150 9	0 0000 0 0542 0 0925 0 1326 0 2349 0 2836 0 2121 0 3137	2 1872 2 0425 1 9446 1 8455 1 6094 1 5043 1 4447 1 4415	2 1872 2 0967 2 0370 1 9781 1 8443 1 7879 1 7568 1 7552	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
78.8 78.8 46.9 56.8 66.0 78.8 98.9	227 96 250 34 267 25 281 02 292 71 302 93 312 04 320 28	0.016834 0.017009 0.017151 0.017274 0.017383 0.017482 0.017573 0.017659	20 070 13 7266 10 4794 8 4967 7.1562 6 1875 5 4536 4 8779	20 087 13 7436 10 4965 8 5140 7 1736 6 2050 5 4711 4 8953	196.27 218.9 236.1 250.2 262.2 272.7 282.1 290.7	960 1 945 2 933 6 923 9 915 4 907 8 900 9 894 6	1156 3 1164 1 1169 8 1174 1 1177 6 1180 6 1183 1 1185 3	0 3358 0 3682 0 3921 0 4112 0 4273 0 4411 0 4534 0 4643	1 3962 1 3213 1 2844 1 2474 1 2167 1 1905 1 1675 1 1470	1 7320 1 6995 1 6765 1 6586 1 6440 1 6316 1 6208 1 6113	76.6 30.6 40.6 50.8 60.8 70.8 80.9 90.9
100.5 110.2 128.9 138.8 140.9 158.9 178.8	327 82 334 79 341.27 347.33 353.04 358.43 363.55 368.42 373.08	0 017740 0 01782 0 01789 0 01796 0 01803 0 01809 0 01815 0 01821 0 01827 0 01833	4 4133 4 0306 3 7097 3 4364 3 2010 2 9958 2 8155 2 6556 2 5129 2 3847	4 4310 4 0484 3 7275 3 4544 3 2190 3 0139 2 8336 2 6738 2 5312 2 4030	298 5 305 8 312 6 319 0 325 0 330 6 336 1 341 2 346 2 350 9	888 6 883 1 877 8 872 8 868 0 863 4 859 0 854 8 850 7 846 7	1187 2 1188 9 1190 4 1191 7 1193 0 1194 1 1195 0 1196 9 1197 6	0 4743 0 4834 0 4919 0 4998 0 5071 0 5141 0 5206 0 5269 0 5328 0 5384	1 1284 1 1115 1 0960 1 0815 1 0681 1 0554 1 0435 1 0322 1 0215 1 0113	1 6027 1 5950 1 5879 1 5813 1 5752 1 5695 1 5641 1 5591 1 5543	110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0
196.8 216.8 216.8 226.8 238.8 246.8 258.8 268.9 210.8 286.9	377.53 381.80 385.91 389.88 393.70 397.39 400.97 404.44 407.80 411.07 414.25	0 01839 0 01844 0 01850 0 01855 0 01860 0 01875 0 01875 0 01880 0 01885	2 2689 2 16373 2 06779 1 97991 1 89909 1 82452 1 75548 1 69137 1 63169	2 2873 2 18217 2 08629 1 99846 1 91769 1 84317 1 77418 1 71013 1 65049 1 59482	355.5 359.9 364.2 368.3 372.3 376.1 379.9 383.6 387.1 390.6	842 8 839 1 835 4 831 8 828 4 825 0 821 6 818 3 815 1 812 0	1198 3 1199 0 1199 6 1200 1 1200 6 1201 1 1201 5 1201 9 1202 3 1202 6	0 5438 0 5490 0 5540 0 5588 0 5634 0 5679 0 5722 0 5764 0 5805 0 5844	1 0016 0 9923 0 9834 0 9748 0 9665 0 9585 0 9508 0 9433 0 9361 0 9291	1 5454 1 5413 1 5374 1 5336 1 5299 1 5264 1 5230 1 5197 1 5166 1 5135	200.8 210.8 220.8 230.8 240.9 250.6 270.9 280.9 290.9
298.8 258.8 -158.8 -408.9	417 35 431 73 444 60	0 01889 0 01912 0 01934	1 52384 1 30642 1 14162	1.54274 1.32554 1.16095	394 0 409 8 424 2	808 9 794 2 780 4	1202 9 1204 0 1204 6	0.5882 0.6059 0.6217	0 9223 0 8909 0 8630	1 5105 1 4968 1 4847	350.0 408.8
	1	• _		1.03179	4373	767.5	1204 8	0 6360	0.8378	1 4738	450 9 500 8
450.8 500.8 550.0 600.9 650.8	456.28 467.01 476.94 486.20 494.89	0 01954 0 01975 0 01994 0 02013 0 02032 0 02050	1 01224 0 90787 0 82183 0 74962 0 68811 0 63505	0.92762 0.84177 0.76975 0.70843 0.65556	449 5 460 9 471 7 481 9 491 6	755.1 743.3 732.0 720.9 710.2	1204 7 1204 3 1203 7 1202 8 1201 8	0 6490 0 6611 0 6723 0 6828 0 6928	0.8148 0.7936 0.7738 0.7552 0.7377	1 454	- 550 8 600 8 658 8 700 8
708.8 758.8 808.9 858.8 908.8 950.9 1006.8 1158.8	503 08 510 84 518 21 525 24 531 39 544 58 550 53 556 23	0.02069 0.02087 0.02105 0.02132 0.02141 0.02157 0.02191 0.02214	0.58880 0.54809 0.51197 0.47968 0.450436 0.42436 0.42436 0.42436 0.40047 0.37863	0 42224 0 40058 0 38073	500.9 509.8 518.4 526.7 534.7 542.6 550.1 557.5 564.8 571.9	699.8 689.6 679.5 660.0 650.4 640.9 631.5 622.2 613.0	1200.7 1199.4 1198.4 1194.7 1192.9 1191.0 1189.1 1187.0 1184.8	0 7022 0 7111 0 7197 0 7279 0 7358 0 7434 0 7507 0 7578 0 7647	0 7210 0 7051 0 6899 0 6753 0 6612 0 6476 0 6344 0 6216 0 6091 0 5969	1 4232 1 4163 1 4096 1 4032 1 3970 1 3910 1 3851 1 1794 1 3738 3 683	758 8 800 8 850 8 900 6 950 8 1000 8 1050 8 1150 8
1200 8 1250 8 1300 8 1350 8 1450 8 1500 8 1500 8 1600 8	567 19 572 38 577 42 582 32 587 07 591 70 596 20 500 487 509 05	0 0225 0 0226 0 0238 0 0232 0 0234 0 0236 0 0236 0 0236	0 0.32306 9 0.30727 8 0.29250 77 0.2658 16 0.2537 16 0.2423	0 34556 0 32991 0 31537 0 30178 0 28911 0 27719 0 26601 0 25545	578 8 585 6 592 3 598 8 605 3 611 7 624 2 630 6	603 8 594 6 585 4 576 5 567 4 558 4 540 3 531 3 522 2	1170 1 1167 4 1164 5 1161 6 1158 6	0.7780 0.7843 0.7906 0.7966 0.8085 0.8142 0.8199 0.8254 0.8309	0 4971	. 2 0	1250 # 1300 # 1350 # 1400 # 1450 # 1550 # 1650 # 1700
1758 8 1808 9 1858 8 1908 8 1958 8 2009 9 21'08 8 2 30 8 2 30 8	513 102 55 15 15 15 15 15 15 15 15 15 15 15 15	0024 0024 0025 0025 0026 0026 0026		3 0 22713 0 0 22861 8 0 21052 1 0 20278 19 0 19540 0 18831 15 0 17501 16 0 1513	5.5.5.4.7	466 466 426 406	156	0 8363 0 8450 0 8850 0 8850 0 8850 0 8850 0 8850 0 8850 0 8900	5 3430	0.00	1850 1950 2000 1100 2700 2300 2406
2408 9 2508 9 2508 9 2508 9 2508 9 2508 9 3108 9 3108 9 3108 9	562 : 563 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000000000000000000000000000000000000000	159 0102 138 0091 129 1081	09 3:3068 3:3:0 63 0::94 0::0305	73. 	# C C C C C C C C C C C C C C C C C C C	09310 08300 0658 0658 0658 0658 0658	9171	8 7 146		2108 2800 2900 1000

Table 1. Saturated Steam: Temperature Table—Continued

			citic Volu	urated Ste		Enthalpy			Entropy	Sat	Temp
Temp Fant	Abs Press Lb per So in	Sat Liquid	Evap	Sat	Sat	Evap	Sat Vapor he	Sat Liquid	Evap	Vapor	fanr 1
1 54.8 64.8 162.9	466 87 485 56 504 83 574 67	0 01961 0 01969 0 01976 0 01984	0 97463 0 93588 0 89885 0 86345 0 82958	0.99424 0.95557 0.91862 0.86329 0.84950	4415 4461 4507 4552 4599	763.2 758.6 754.0 749.3 744.5	1204 8 1204 7 1204 6 1204 5 1204 3	0 6405 0 6454 0 6502 0 6551 0 6599	0 8299 0 8213 0 8127 0 8042 0 7956	1 4704 1 4667 1 4629 1 4592 1 4595	468 8 464 8 468 8 472 8 478 8
76.8 86.9 84.9 192.9	545 11 566 15 587 81 610 10 633 03 656 61	0 01992 0 02000 0 02009 0 02017 0 02026 0 02034	0.79716 0.76613 0.73641 0.70794 0.68065	0 81717 0 78622 0 75658 0 72820 0 70100	464 5 469 1 473 8 478 5 483 2	739 6 734 7 729 7 724 6 719 5	1204 1 1203 8 1203 5 1203 1 1202 7	0 6648 0 6696 0 6745 0 6793 0 6842	0.7871 0.7785 0.7700 0.7614 0.7528	1 4518 1 4481 1 4444 1 4407 1 4370	480 9 484 8 488 6 482 9 496 8
505 8 504 8 508 8 577.8	680 86 705 78 731 40 757 72 784 76	0 02043 0 02053 0 02062 0 02072 0 02081	0 65448 0 62938 0 60530 0 58218 0 55997	0.67492 0.64991 0.62592 0.60289 0.58079	487 9 492 7 497 5 502 3 507 1	7143 7090 7037 6982 6927	1202 2 1201 7 1201 1 1200 5 1199 8	0 6890 0 6939 0 6987 0 7036 0 7085	0 7443 0 7357 0 7271 0 7185 0 7099	1 4333 1 4296 1 4258 1 4221 1 4183	504 0 504 0 508 0 512 0 516.8
578.8 528.8 528.8 528.8 532.8	812 53 841 04 870 31 900 34 931 17	0 62091 0 02102 0 02112 0 02123 0 02134	0.53854 0.51814 0.49843 0.47947 0.46123	0 55956 0 53916 0 51955 0 50070 0 48257	512.0 516.9 521.8 526.8 531.7	687 0 681.3 675 5 669 6 663 6	1199 0 1198 2 1197 3 1196 4 1195 4	0 7133 0 7182 0 7231 0 7280 0 7329	0 7013 0 6926 0 6839 0 6752 0 6665	1.4146 1.4108 1.4070 1.4032 1.3993	528.8 524.8 528.8 532.8 536.8
538.8 548.8 548.8 552.8	962 79 995 22 1028 49 1062 59 1097 55	0 02146 0 02157 0 02169 0 02182 0 02194	0 44367 0 42677 0 41048 0 39479 0 37966	0 46513 0 44834 0 43217 0 41660 0 40160	536 8 541 8 546 9 552 0 557.2	657 5 651 3 645 0 638 5 632 0	1194 3 1193 1 1191 9 1190 6 1189 2	0.7378 0.7427 0.7476 0.7525 0.7575	0 6577 0 6489 0 6400 0 6311 0 6222	1 3954 1 3915 1 3876 1 3837 1 3797	548.8 548.8 552.8 556.8
556.8 564.8 564.8 572.8	1133 38 1170 10 1207 72 1246 26 1285 74	0 02207 0 02221 0 02235 0 02249 0 02264	0 36507 0 35099 0 33741 0 32429 0 31162	0.38714 0.37320 0.35975 0.34678 0.33426	562 4 567 6 572.9 578.3 583.7	625 3 618.5 611.5 604 5 597.2	1187 7 1186 1 1184 5 1182 7 1180 9	0 7625 0 7674 0 7725 0 7775 0 7825	0.6132 0.6041 0.5950 0.5859 0.5766	1.3757 1.3716 1.3675 1.3634 1.3592	564 6 568 0 572 6 578 8
578.8 584.8 588.8 582.8	1326.17 1367.7 1410.0 1453.3 1497.8	0.02279 0.02295 0.02311 0.02378 0.02345	0 29937 0.28753 0.27608 0.26499 0.25425	0.32216 0.31048 0.29919 0.28827 0.27770	589.1 594.6 600.1 605.7 611.4	589 9 582 4 574 7 566 8 558 8	1179 0 1176 9 1174 8 1172 6 1170 2	0.7876 0.7927 0.7978 0.8030 0.8082	0 5673 0 5580 0 5485 0 5390 0 5293	1 3550 1 3507 1 3464 1 3420 1 3375	584.6 584.6 582.6 592.6 596.8
596.8											
600.8 604.8 602.8 612.8	1543.2 1589.7 1637.3 1685.1	0 02364 0 02382 0 02402 0 02422	0.24384 0.23374 0.22394 0.21442 0.20516	0.26747 0.25757 0.24796 0.23865 0.22960	617 1 622 9 628 8 634 8 640 8	550 6 542 2 533 6 524 7 515 6	1167.7 1165.1 1162.4 1159.5 1156.4	0.8134 0.8187 0.8240 0.8294 0.8348	0.5196 0.5097 0.4997 0.4896 0.4794	1.3330 1.3284 1.3238 1.3190 1.3141	600.8 604.8 608.8 612.8 616.8
678.8 628.8 624.8 628.9 632.0	1735.9 1786.9 1833.9 1892.4 1947.0 2002.8	0.02444 0.02466 0.02489 0.02514 0.02539 0.02566	0.19615 0.18737 0.17880 0.17044 0.16226	0.22081 0.21226 0.20394 0.19583 0.18792	646.9 653.1 659.5 665.9 672.4	506.3 496.6 486.7 476.4 465.7	1153.2 1149.8 1146.1 1142.2 1138.1	0 8403 0 8458 0 8514 0 8571 0 8628	0 4689 0 4583 0 4474 0 4364 0 4251	1.3092 1.3041 1.2988 1.2934 1.2879	620.0 624.0 628.0 632.0 636.0
544.8 544.8 545.6 557.8	2059 9 2118.3 2178.1 2239.2 2301.7	0.02595 0.02625 0.02657 0.02691 0.02728	0.15427 0.14644 0.13876 0.13124 0.12387	0.18021 0.17269 0.16534 0.15816 0.15115	679 1 685.9 692.9 700.0 707.4	454 6 443 1 431 1 418.7 405.7	1133 7 1129 0 1124 0 1118 7 1113 1	0 8686 0 8746 0 8806 0 8868 0 8931	0 4134 0 4015 0 3893 0 3767 0 3637	1 2821 1 2761 1 2699 1 2634 1 2567	644.8 644.8 652.8 656.8
658.8 664.8 664.8 672.8	2365 7 2431 1 2498 1 2566 6 2636 8	0.02768 0.02811 0.02858 0.02911 0.02970	0 11663 0 10947 0 10229 0 09514 0 08799	0.14431 0.13757 0.13087 0.12424 0.11769	7149 7229 731.5 740.2 749.2	392 1 377 7 362 1 345 7 328 5	1107 0 1100 6 1093 5 1085 9 1077 6	0 8995 0 9064 0 9137 0 9212 0 9287	0 3502 0 3361 0 3210 0 3054 0 2892	1 2498 1 2425 1 2347 1 2266 1 2179	660.8 664.8 672.8 676.8
676.8 686.8 684.8 682.8	2708 6 2782 1 2857 4 2934 5 3013 4	0.03037 0.03114 0.03204 0.03313 0.03455	0 08080 0 07349 0 06595 0 05797		758.5 768.2 778.8 790.5 804.4	310 1 290 2 268 2 243 1 212 8	1068 5 1058 4 1047 0 1033 6 1017 2	0 9365 0 9447 0 9535 0 9634 0 9749	0 1841	2086 1984 1872 1744 1591	684 1 684 1 692 1 696 1
706.8 702.8 704.6 705.6 705.4	3094 3 3135 5 3137 2 3198 3 3208 2	0.03662 0.03824 0.04108 0.0442 0.05071	0 03857 0 03173 0 02192 7 3 01304	0 06997 0 06300 0 05730	822 4 835 0 854 2 873 0 906 0	172 7 144 7 102 0 61 4 0 0	234 4	0 9901 1 0006 1 0329 1 0612	0.0876	1252 1046 0856 0612	700 702 704 705 705

Table 1. Saturated Steam: Temperature Table—Continued

				ed Steam:		nthaipy			Entropy		
Temp Fanr t	Abs Press Lb per Sq in	Sat. Liquid	Evap	Sat Vapor Va	Sat Liquid	Evap	Sat Vapor hg	Sat Liquid Si	Evap	Sat Vapor Sg	Temp fahr t
182.9 182.9 184.9 186.9	7.5110 7.850 8.203 8.568 8.947	0 016510 0 016522 0 016534 0 016547 0 016559	50.21 48.172 46.232 44.383 42.621	50 22 18 189 46 249 44 400 42 638	148 00 150 01 152 01 154 02 156 03	990 2 989 0 987 8 986 5 985 3	1138 2 1139 0 1139 8 1140.5 1141.3	0.2631 0.2662 0.2694 0.2725 0.2756	15413	1 8111 1 8075 1 8040 1 8004 1 7969	150 8 187 8 184 8 185 8 185 8
194.9 197.9 194.6 196.0	9 340 9 747 10 168 10 605 11 058	0.016572 0.016585 0.016598 0.016611 0.016624	40 941 39 337 37 808 36 348 34 954	40 957 39 354 37 824 36 364 34 970	158 64 160 05 162 05 164 06 166 08	984 1 982 8 981 6 980 4 979 1	1142 1 1142 9 1143 7 1144 4 1145 2	0.2787 0.2818 0.2848 0.2879 0.2910	1.5148 1.5082 1.5017 1.4952 1.4888	1.7934 1.7900 1.7865 1.7831 1.7798	192.8 192.8 194.8 196.0 198.0
294.8 294.8 294.8 212.0 216.8	11 526 12 512 13 568 14 696 15 901	0.016637 0.016664 0.016691 0.016719	33 622 31 135 28 862 26 782 24 878	33 639 31 151 28 878 26 799 24 894	168 09 172 11 176 14 180 17 184 20	977 9 975 4 972 8 970 3 967 8	1146 0 1147 5 1149 0 1150 5 1152 0	0 2940 0 3001 0 3061 0 3121 0 3181	1 4824 1 4697 1 4571 1 4447 1 4323	1 7764 1 7698 1 7632 1 7568 1 7505	200 8 254 8 208 8 212.9 216.8
278.8 224.8 278.8 232.8 732.8	17.186 18.556 20.015 21.567 23.216	0.016775 0.016805 0.016834 0.016864 0.016895	23 131 21 529 20 056 18 701 17 454	23 148 21 545 20 073 18 718 17 471	188.23 192.27 196.31 200.35 204.40	965.2 962.6 960.0 957.4 954.8	1153 4 1154 9 1156 3 1157 8 1159 2	0.3241 0.3300 0.3359 0.3417 0.3476	1 4201 1 4081 1 3961 1 3842 1 3725	17442 17380 17320 17260 17201	228 8 224 8 228 8 232 8 236 8
248.8 248.8 248.8 252.8 252.8	24 968 26 826 28 796 30 883 33 091	0 016926 0 016958 0 016990 0 017022 0.017055	16 304 15 243 14 264 13 358 12 520	16 321 15 260 14 281 13 375 12 538	208 45 212 50 216 56 220 62 224 69	952.1 949.5 946.8 944.1 941.4	1160 6 1162 0 1163 4 1164 7 1166 1	0 3533 0 3591 0 3649 0 3706 0 3763	1 3609 1 3494 1 3379 1 3266 1 3154	1.7142 1.7085 1.7028 1.6972 1.6917	248.8 248.8 252.8 258.8
764.8 264.8 264.8 272.8 272.8	35 427 37 894 40 500 43 249 46 147	0.017089 0.017123 0.017157 0.017193 0.017228	11.745 11.025 10.358 9.738 9.162	11.762 11.042 10.375 9.755 9.180	228 76 232 83 236 91 240 99 245 08	938 6 935 9 933 1 • 930 3 927 5	1167 4 1168 7 1170 0 1171 3 1172 5	0.3819 0.3876 0.3932 0.3987 0.4043	1.3043 1.2933 1.2823 1.2715 1.2607	1 6862 1 6808 1 6755 1 6702 1 6650	250 8 254 8 258 0 272 8 276 0
798.8 294.8 288.8 292.8 296.8	49.200 52.414 55.795 59.350 63.084	0.017264 0.01730 0.01734 0.01738 0.01741	8 627 8 1280 7 6634 7 2301 6 8259	8 644 8 1453 7 6807 7 2475 6 8433	249 17 253 3 257 4 261 5 265 6	924 6 921 7 918 8 915 9 913 0	1173 8 1175 0 1176 2 1177 4 1178 6	0 4098 0 4154 0 4208 0 4263 0 4317	1 2501 1 2395 1 2290 1 2186 1 2082	1 6599 1 6548 1 6498 1 6449 1 6400	280.0 284.0 286.0 292.0 296.0
											:
298.8 286.8 286.8 272.8	67 005 71 119 75 433 79 953	0 01745 0 01749 0 01753 0 01757 0 01761	6.4483 6.0955 5.7655 5.4566 5.1673	6.4658 6.1130 5.7830 5.4742 5.1849	269 7 273 8 278 0 282 1 286 3	910.0 907.0 904.0 901.0 897.9	1179.7 1180.9 1182.0 1183.1 1184.1	0.4372 0.4426 0.4479 0.4533 0.4586	1.1979 1.1877 1.1776 1.1676 1.1576	1 6351 1 6303 1 6256 1 6209 1 6162	304.6 304.6 308.6 312.6 318.8
174.5 174.5 174.5 174.5	84 688 89 643 94 826 100 745 105 907 111 820	0.01766 0.01770 0.01774 0.01779 0.01783	4 8961 4 6418 4 4030 4 1788 3 9681	4 9138 4 6595 4 4208 4 1966 3 9859	290 4 294 6 298 7 302 9 307 1	894 8 891 6 888 5 885 3 882 1	1185.2 1186.2 1187.2 1188.2 1189.1	0 4640 0 4692 0 4745 0 4798 0 4850	1.1477 1.1378 1.1280 1.1183 1.1086	1 6116 1 6071 1 6025 1 5981 1 5936	328.8 324.8 328.8 332.8 332.8
344.8 344.8 344.8 332.8	117 992 124 430 131 142 138 138 145 424	0.01787 0.01792 0.01797 0.01801 0.01806	3.7699 3.5834 3.4078 3.2423 3.0863	3 7878 3 6013 3 4258 3 2603 3 1044	311.3 315.5 319.7 323.9 328.1	878 8 875.5 872.2 868 9 865.5	1190 1 1191 0 1191 1 1192 7 1193 6	0 4902 0 4954 0 5006 0 5058 0 5110	1 0990 1 0894 1 0799 1 0705 1 0611	1 5892 1 5849 1 5806 1 5763 1 5721	344 8 344 8 348 8 352 8 356 8
358.8 354.8 364.8 372.8	153 010 160 903 169 113 177 648	0 01811 0 01816 0 01821 0 01826 0 01831	2 9392 2 8002 2 6691 2 5451 2 4279	2 9573 2 8184 2 6873 2 5633 2 4462	332 3 336 5 340 8 345 0 349 3	862 1 858 6 855 1 851 6 848 1	1194 4 1195 2 1195 9 1196 7 1197 4	0 5161 0 5212 0 5263 0 5314 0 5365	1 0517 1 0424 1 0332 1 0240 1 0148	1.5678 1.5637 1.5595 1.5554 1.5513	360.8 364.8 368.0 372.8 376.0
376.8 384.6 384.6 384.6 382.0	186.517 195.729 205.294 215.220 225.516	0.01836 0.01842 0.01847 0.01853 0.01858	2 31 70 2 2120 2 1126 2 0184 1 9291	2 3353 2 2304 2 1311 2 0369 1 9477	353 6 357 9 362 2 366 5 370 8	844 5 840 8 837 2 833 4 829 7	1198 0 1198 7 1199 3 1199 9 1200 4	0 5416 0 5466 0 5516 0 5567 0 5617	1 0057 0 9966 0 9876 0 9786 0 9696	1 5473 1 5432 1 5392 1 5352 1 5313	384 8 384 8 388 0 392 8 296 0
296.8 496.9 494.9 412.9 416.9	736 193 247 259 258 725 270 600 282 894 295 617	0 01864 0 01870 0 01875 0 01881 0 01887	1 8444 1 7640 1 6877 1 6152 1 5463	8630 7827 7064 6340 5651	375 1 379 4 383 8 388 1 392 5	825 9 822 0 818 2 814 2 810 2	201.9	0 5667 0 5717 0 5766 0 5816 0 5866	0 9607 0 9518 0 9429 0 9341 0 9253	5274 5234 5195 5157 5118	400 f 404 f 408 f 412 f 416 f
478.8 424.0 428.8 432.0 436.8	308 780 322 391 336 463 351 00 366 03	0 01894 0 01900 0 01906 0 01913 0 01919	1 30266	1 4997 1 4374 1 3782 1 32179 1 26806	296 9 401 3 405 7 410 1 414 6	806 2 802 2 198 0 193 9 189 7	203 5 203 7 204 0 204 2	0 5915 0 5964 0 6014 0 6063 0 6112	0 9165 0 9077 0 8990 0 8903 0 8816	5080 5042 5004 4966 4978	428 428 432 436
	381 54 397 56 114 09 431 14 448 73	0 01926 0 01933 0 01940 0 01947	1 14874 1 10212 1 05764	21687 115806 12152 107711 103472	419 0 428 0 432 5 437 0	785 4 772 767 1	204 8	0 6161 0 6210 0 6259 0 6356	0.8543 0.8557 0.8471	4890 4853 4815 4718 4741	148 452 456

Table 1. Saturated Steam: Temperature Table

		Tai	ble 1.	Saturate	d Sleam:	Tempe	rature las	314			
Temp Fahr	Abs Press Lö per Sq in	Speci Sat Liquid	Evap	Sat. Vapor	Sat Liquid h,	Enthalpy Evap	Sat. Vapor hg	Sat Liquid S ₁	Entropy Evap Sig	Sat Vapor	Temp Fahr t
328° 348 368 318	0 08859 0 09600 0 10395 0 11249	0 016022 0 016021 0 016020 0 016019	3304 7 3061 9 2839 0 2634 1	3304 7 3061 9 2839 0 2634 2	-00179 1996 4008 6018	1075 5 1074 4 1073 2 1072 1	1075 5 1076 4 1077 2 1078 1	0 0000 0 0041 0 0081 0 0122	2 1873 2 1762 2 1651 2 1541	2 1873 2 1802 2 1732 2 1663	34 8 36 8 38 8
411	0 12163 0 13143 0 14192 0 15314 0 16514	0 016019 0 016019 0 016019 0 016020 0 016021	2445 8 2272 4 2112 8 1965 7 1830 0	2445 8 2272 4 2112 8 1965 7 1830 0	8 027 10 035 12 041 14 047 16 051	1071 0 1069 8 1068 7 1067 6 1066 4	1079 0 1079 9 1080 7 1081 6 1082 5	0 0162 0 0202 0 0242 0 0282 0 0321	2 1432 2 1325 2 1217 2 1111 2 1006	2 1594 2 1527 2 1459 2 1393 2 1327	42.8 42.8 44.8 44.0 44.0
50.0 52.0 54.0 56.0 58.0	0 17796 0 19165 0 20625 0 22183 0 23843	0 016023 0 016024 0 016026 0 016028 0 016031	1704 8 1589 2 1482 4 1383 6 1292 2	1704 8 1589 2 1482 4 1383 6 1292 2	18 054 20 057 22 058 24 059 26 060	1065.3 1064.2 1063.1 1061.9 1060.8	1083 4 1084 2 1085 1 1086 0 1086 9	0 0361 0 0400 0 0439 0 0478 0 0516	2 0901 2 0798 2 0695 2 0593 2 0491	2 1262 2 1197 2 1134 2 1070 2 1008	50 8 52 8 54 0 56 8 58 8
60 8 62 0 64 0 66 0 68 0	0 25611 0 27494 0 29497 0 31626 0 33889	0 016033 0 016036 0 016039 0 016043 0 016046	1207 6 1129 2 1056 5 989 0 926 5	1207 6 1129 2 1056 5 989 1 926 5	28 060 30 059 32 058 34 056 36 054	1059 7 1058 5 1057 4 1056 3 1055 2	1087 7 1088 6 1089 5 1090 4 1091 2	0 0555 0 0593 0 0632 0 0670 0 0708	2 0391 2 0291 2 0192 2 0094 1 9996	2 0946 2 0885 2 0824 2 0764 2 0704	62 8 62 8 64 8 66 8 68 8
78.8 72.9 74.0 76.8 78.8	0 36292 0 38844 0 41550 0 44420 0 47461	0 016050 0 016054 0 016058 0 016063 0 016067	868 3 814 3 764 1 717 4 673 8	868 4 814 3 764 1 717 4 673 9	38 052 40 049 42 046 44 043 46 040	1054 0 1052 9 1051 8 1050 7 1049 5	1092 1 1093 0 1093 8 1094 7 1095 6	0.0745 0.0783 0.0821 0.0858 0.0895	1 9900 1 9804 1 9708 1 9614 1 9520	2 0645 2 0587 2 0529 2 0472 2 0415	76.6 72.8 74.6 76.6 76.6
10.0 12.0 14.0 14.0 14.0	0 50683 0 54093 0 57702 0 61518 0 65551	0.016072 0.016077 0.016082 0.016087 0.016093	633 3 595.5 560 3 227 5 496.8	633 3 595 5 560 3 527 5 496 8	48 037 50 033 52 029 54 026 56 022	1048 4 1047 3 1046 1 1045 0 1043 9	1096.4 1097.3 1098.2 1099.0 1099.5	0 0932 0 0969 0 1006 0 1043 0 1079	1 9426 1 9334 1 9242 1 9151 1 9060	2 0359 2 0303 2 0248 2 0193 2 0139	80.8 82.9 84.0 86.6 88.0
98 8 92 8 94 8 96 8 98 8	0 69813 0 74313 0 79062 0 84072 0 89356	0.016099 0.016105 0.016111 0.016117 0.016123	468 1 441 3 416 3 392 8 370.9	468.1 441.3 416.3 392.9 370.9	58 018 60 014 62 010 64 006 66 003	1042 7 1041 6 1040 5 1039 3 1038 2	1100.8 1101.6 1102.5 1103.3 1104.2	0 1115 0 1152 0 1188 0 1224 0 1260	1 8970 1 8881 1 8792 1 8704 1 8617	2 0086 2 0033 1.9980 1 9928 1 9876	90 0 97.8 94 0 96.0 98.0
100.0 162.5 104.5 106.0 108.0	0 94924 1 00789 1 06965 1 1347 1 2030	0016130 0016137 0016144 0016158	350 4 331.1 313.1 296.16 280.28	350 4 331 1 313 1 296 18 280 30	67 999 69 995 71 992 73 99 75 98	1037 1 1035 9 1034 8 1033 6 1032 5	1105.1 1105.9 1106.8 1107.6 1108.5	0.1295 0.1331 0.1366 0.1402 0.1437	1 8530 1 8444 1 8358 1 8273 1 8188	1 9825 1 9775 1 9725 1 9675 1 9626	109.0 102.0 104.0 106.0 108.0
118.6 112.6 114.6 116.6	1 2750 1 3505 1 4299 1 5133 1 6009	0 016165 0 016173 0 016180 0 016188 0 016196	265 37 251 37 238 21 225 84 214 20	265 39 251 38 238 22 225 85 214 21	77 98 79 98 81 97 83 97 85 97	1031 4 1030 2 1029 1 1027 9 1026 8	1109 3 1110 2 1111 0 1111 9 1112 7	0 1472 0 1507 0 1542 0 1577 0 1611	1 8105 1 8021 1 7938 1 7856 1 7774	1 9577 1 9528 1 9480 1 9433 1 9386	112.6 114.6 116.8 118.6
128.8 122.8 124.6 126.8 126.8	1 6927 1 7891 1 8901 1 9959 2 1068	0 016204 0 016213 0 016221 0 016229 0 016238	203 25 192 94 183 23 174 08 165 45	203 26 192 95 183 24 174 09 165 47	87 97 89 96 91 96 93 96 95 96	1025 6 1024 5 1023 3 1022 2 1021 0	1113.6 1114.4 1115.3 1116.1 1117.0	0 1646 0 1680 0 1715 0 1749 0 1783	1 7693 1 7613 1 7533 1 7453 1 7374	1 9339 1 9293 1 9247 1 9202 1 9157	178.8 122.9 124.8 126.8 128.8
138.6 132.5 134.6 136.0 138.0	2 2230 2 3445 2 4717 2 5047 2 7438	0.016247 0.016256 0.016265 0.016274 0.016284	157 32 149 64 142 40 135 55 129 09	157 33 149 66 142 41 135 57 129 11	97 96 99 95 101 95 103 95 105 95	1019 8 1018 7 1017 5 1016 4 1015 2	1117 8 1118 6 1119 5 1120 3 1121 1	0 1817 0 1851 0 1884 0 1918 0 1951	1 7217 1 7140 1 7063	1 9112 1 9068 1 9024 1 8980 1 8937	132.8 132.8 134.6 135.0 128.8
148 6 142 8 144 6 146 0 148 0	2 8892 2 0411 3 1997 3 3653 3 5381	0 016293 0 016303 0 016312 0 016322 0 016332	122 98 117 21 111 74 106 58 101 68	123.00 117.22 111.76 106.59 101.70	107 95 109 95 111 95 113 95 115 95	1010.5	1122 0 1122 8 1123 6 1124 5 1125 3	0 1985 0 2018 0 2051 0 2084 0 211	1 6534 1 6759 1 6684 1 6610	1 8810 1 8769 1 8727	142.8 142.8 144.8 146.8 148.8
158.8 152.0 154.0 156.0 158.0	2 7184 2 9065 4 1025 4 3068 4 5197	0016343 0016353 0016363 0016374 0016384	97 05 92 56 88 50 84 56 80 82	97 07 92 68 88 52 84 57 80 83	17 95 19 95 121 95 123 95 125 96	1005 8	1127 7	0 2150 0 218 0 2210 0 224 0 228	6463 6390 6391 6318	1 8646 1 8606 1 8566 1 8526	150 B 152 B 154 B 156 B 158 B
160 8 167 0 164 0 166 0 168 0	2 7214 2 9722 2 7224 2 7623 3 7223	0 016395 0 016406 0 016417 0 016428 0 016440	70 70 67 67	57 68 67 68	127 96 129 96 121 96 133 97	999 8 998 6	1131 0 1131 8 1132 5	0 234 0 234 0 237 0 240 0 244	5 15103 7 16032 9 15961 1 15892	1 8448 1 8409 1 8371 1 8333	162 8 162 8 164 8 166 8 168 8
170 6 172 0 174 8 176 0 178 0	1 9976 6 2736 6 5656 6 8690 1 840	2016451	54.59	59.45 56.97 54.61	37 9 29 98 41 98 43 99 45 9	8 9950 8 9938 9 9925	1135 8 1135 8	0 247 0 250 0 250 0 256 0 256	3 19821 5 1575 7 1568 8 1561 0 1554	8258 8221 8184	176 8 172 8 174 9 176 8 178 8

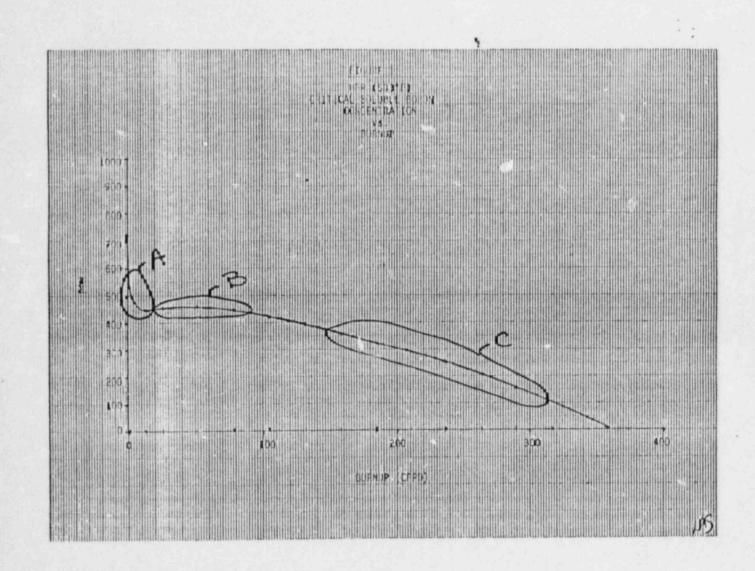


FIGURE 1.9

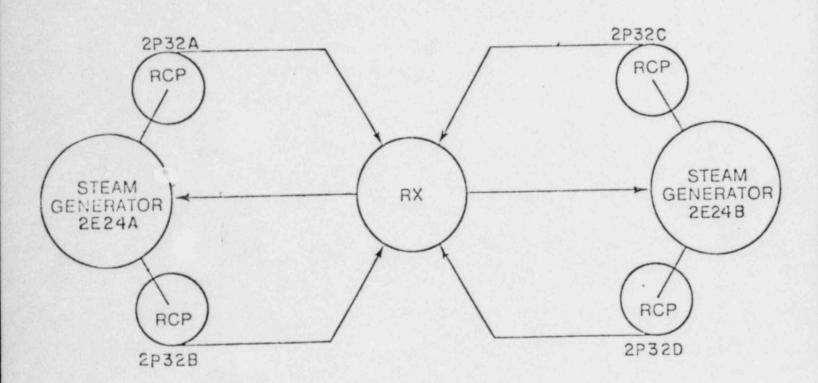


Figure 2.7

-1----

OXACEA

1-1-1-1-1-1

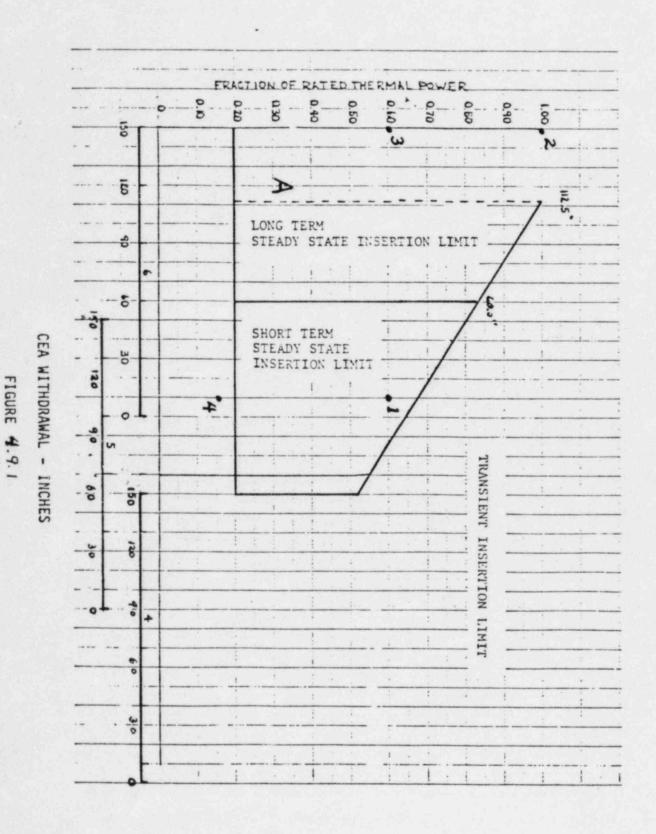

Eigure 4.1

Table 4.9.1

Core Burnup	300 EFPD
PLCEA ht	150 in.
Boron concentration	430 ppm
Tave	566
Pzr Level	52%
VCT level	40%
BAST concentration	12,000 ppm

(For ease of calculations only assume Xe free and 100% eq Sm)

CEA Insertion Limits vs THERMAL POWER

ARKANSAS - UNIT 2 3/4 1-27 Amendment No. 37,

REANT MANUAL SERTION: SYSTEM OPERATING

CORE EXCESS REACTIVITY VERSUS BURNUP

PROCEDUREWORK PLAN TITLE:

REACTIVITY BALANCE CALCULATION

NO.

2103.15

ARKANSAS ŅUCLEAR ONE

PAGE 52 OF 98
REVISION 11 DATE 11/16/83

CHANGE DATE

Burnup (EFPDs) 10

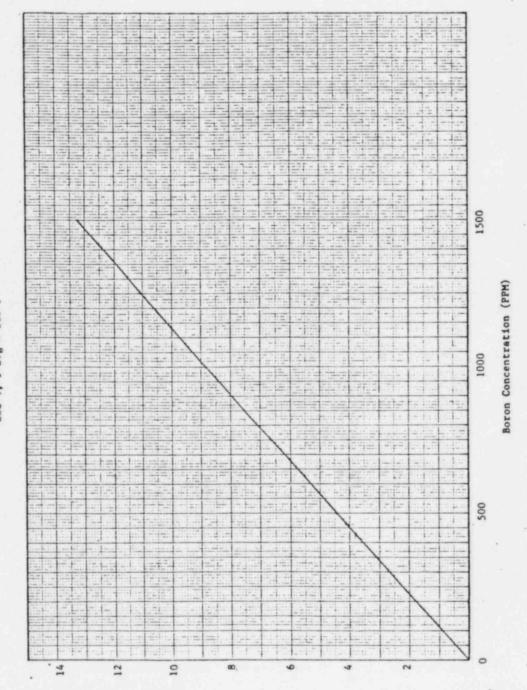
Excess Reactivity (2 Ap)

REACTION WOLSESTION:

PROCEDUREWORK PLAN TITLE:

EACTIVITY BALANCE CALCULATION

NO:


2103.15

ARKANSAS ŅUCLEAR ONE

PAGE 53 01 98

REVISION 11 DATE 11/16/83 CHANGE DATE

Figure A-2
Figure A-2
BORON REACTIVITY WORTH VERSUS BORON CONCENTRATION
BOC 4, T ave = \$80°F

Boron Reactivity Worth (Z Ap)

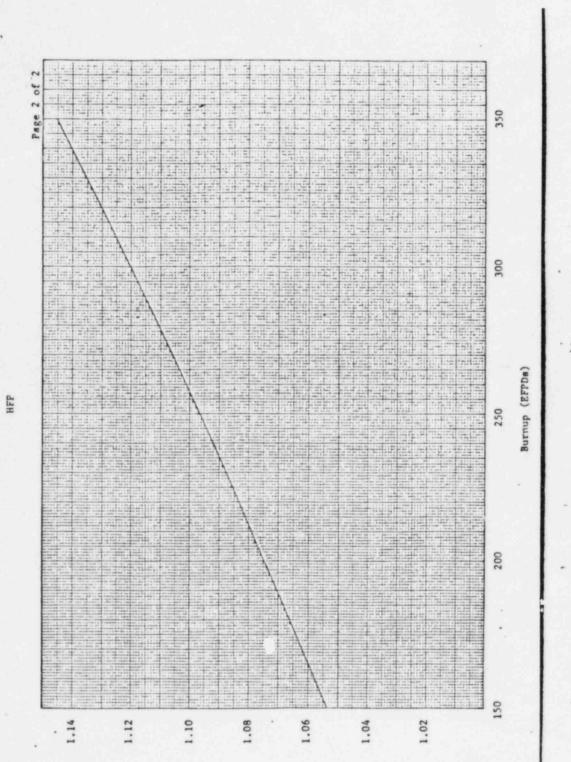
NORMALIZED BORON WORTH VERSUS BURNUP

REACTION TOUR SESTION:

PROCEDUREWORK PLAN TITLE:

EACTIVITY BALANCE CALCULATION

NO:


2103.15

ARKANSAS NUCLEAR ONE

PAGE 55 OF 96

REVISION 11 DATE 11/16/83

CHANGE DATE

Normalized Boron Worth

REACTOR WOOLSESTION:

NORMALIZED BORON WORTH VERSUS MODERATOR TEMPERATURE

ANO-2 Cycle 4 Figure A-4.8 PROCEDUREWORK PLAN TITLE:

REACTIVITY BALANCE CALCULATION

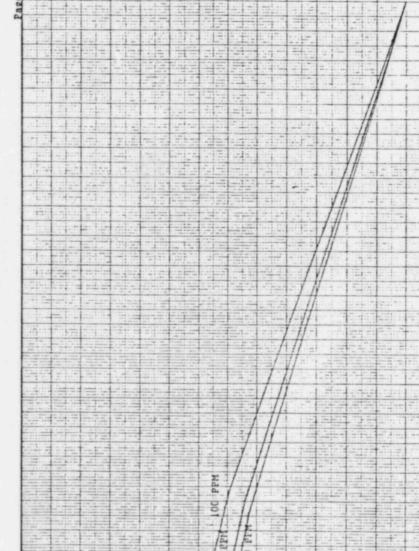
NO:

580

575

570

565


260

Moderator Temperature ('F)

2103.15

ARKANSAS ŅUCLEAR ONE

PAGE 59 OF 98
REVISION 11 DATE 11/16/83
CHANGE DATE

Mormalized Boron Worth

1.03

1.02

1.04

FEATINA WOLSEFTION: SYSTEM OPERATING PROCEDUREWORK PLAN TITLE:

REACTIVITY BALANCE CALCULATION

NO:

2103.15

ARKANSAS NUCLEAR ONE

PAGE 65 01 98

REVISION 11 DATE 11/16/83

CHANGE DATE

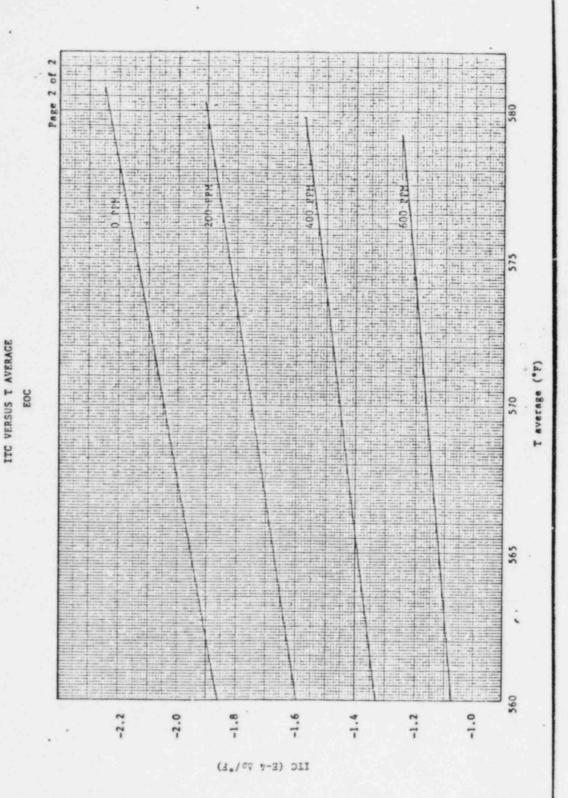


Figure 4.9.6

PLANT MANUAL SECTION. REACTOR COOLANT SYSTEM OPERATING

PROCEDUREWORK PLAN TITLE:

REACTIVITY BALANCE CALCULATION

NO:

2103.15

ARKANSAS NUCLEAR ONE

PAGE 66 of 98

REVISION DATE 11/16/83 CHANGE

DATE

ANO-2 Cycle 4 Figure A-6

REGULATING CEA WORTH VERSUS WITHDRAWAL HFP

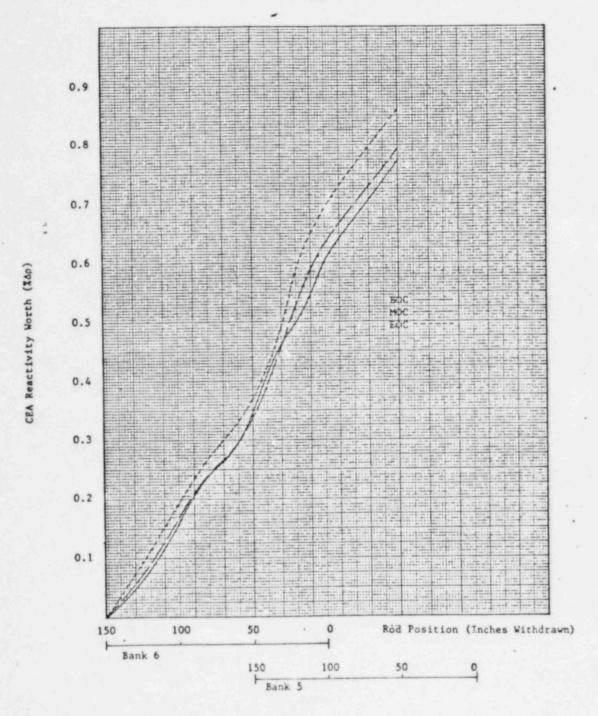


Figure 4.9.7

PLANT MANUAL SECTION: REACTOR COOLANT SYSTEM OPERATING

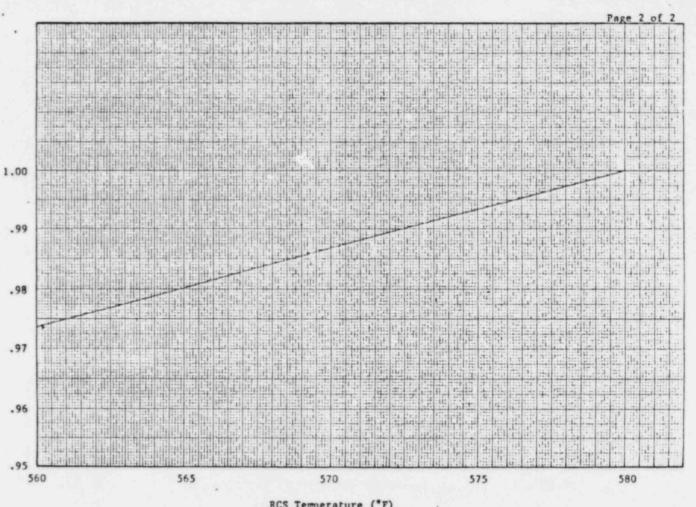
EACTIVITY BALANCE

PROCEDUREWORK PLAN TITLE

CALCULATION CHANGE PAGE

69 of DATE DATE

11/16/83


2103.15

ARKANSAS m AR

ONE

ANO-2 Cycle 4 Figure A-8

CEA Temperature Correction Factor Versus Mod. Temperature Referenced to 580°F

RCS Temperature (°F)

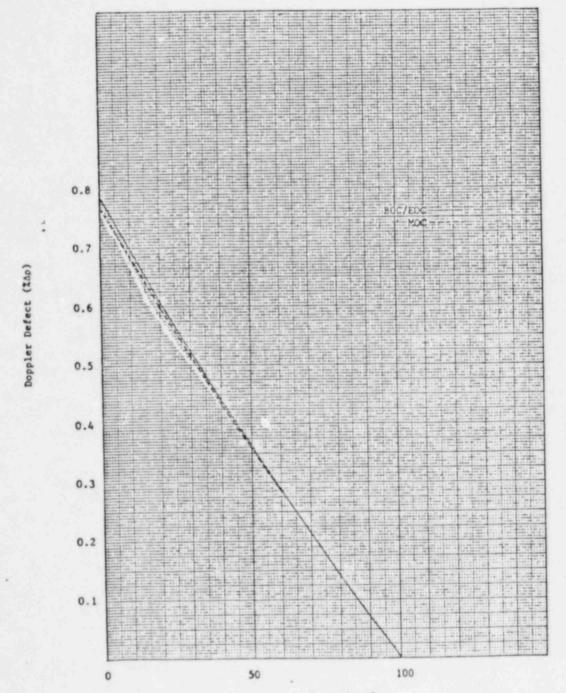
PLANT MANUAL SECTION: REACTOR COOLANT SYSTEM OPERATING

PROCEDUREWORK PLAN TITLE:

NO:

2103.15

ARKANSAS NUCLEAR ONE


PAGE 70 of 98 REVISION

DATE 11/16/83 CHANGE

DATE

ANO-2 Cycle 4 Figure A-9

DOPPLER DEFECT VERSUS POWER LEVEL

Reactor Power Level

REACT OF YOUR SECTION: SYSTEM OPERATING

PROCEDURE/WORK PLAN TITLE:

REACTIVITY BALANCE CALCULATION

NO:

2103.15

ARKANSAS NUCLEAR ONE

32 of 98 PAGE

REVISION II CHANGE

11/16/83 DATE

DATE

	ARKANSAS POWER & LIGHT Arkansas Nuclear O	ne
	TITLE: WORK SHEFT A-1	FORM NO. 2103 154
		REV. # 11 PC #
		Page 1 of
	A-1 Reactivity Balance During Critical Operations	to Analyze for
Referenc	ty Anomolies e Conditions: 100%FP, 583°F, 2250 psia, no Xenon, n ium Samarium	o Boron, MFP
	ded for Calculation:	200
tycle Bu	rnup FFPD ; RCS Boron Conc °F ; Heat Balance Power Lev	al WED
*NOTE:	Use average of CPC Channel A PID 160 & PID 162 for T (or an equivalent indication)	
	1in wd., CFA Grp. 2in wd., CEA Grp.	3 in wd
	4in wd., CEA Grp. 5in wd., CEA Grp.	
	p in.wd.	
	p(Fuel) = % Δk/k	
	m Attachment A-2: ρ(Boron) = % Δk/k	
Fro	m Attachment A-3: Boron Worth Burnup Correction = _	
o(E	m Attachment A-4: Boron Worth Temp. Correction = oron)* = ρ(Boron) x Burnup Correction x Temperature oron)* =	Correction
	ρ(Boron)* =	% Δk/k
3. If oth	T = 580°F ± 2°F, neglect temperature correction, erwise, from Attachment A-5:	
	ctemp(Tavg) = x 10	4 koF
	αtemp(580°F)= x 10°	4 KoF
	ottemp(Tave) + ottemp(580°F)	
p(*	'emp) = 2 x (Tavg - 580°F) x	100%
	$= \frac{\Delta k}{10^{-4}} \times 10^{-4}$	
	= 2 x 10 ⁻⁴ k°F X	of x 100%
	ρ(Temp) = %Δk/k	
	,	
4 Tr	om Attachment A-6 (Interpolate between parametric bur	nup curves):

REANT MANUSCRIPTION: SYSTEM OPERATING

PROCEDUREWORK PLAN TITLE:

REACTIVITY BALANCE CALCULATION

NO:

2103.15

ARKANSAS ŅUCLEAR ONE

PAGE	33 0	98		
REVISION	11	DATE	11/	16/83
CHANGE		DATE	-	

		nsas Nuclear C	EODH NO	03 154
	TITLE WORK SHEET A-1		21	PC #
				ge 2 of
b)	From Attachment A-7: Additional worth due to PLCE			
c)	Sum of 4a and 4b: p(CEAs) +	p(PLCEAs) =	% Δk/k	
d)	From Attachment A-8:			
e)	Temperature Correction p(CEAs net) = [p(CEAs) + p(Factor (TCF) = PLCEAs)] x TCF		
	ρ(CEAs net) =	% Δk/k		
5. Fr	om Attachment A-9 (Interpolate	between parametric Bu	rnup Curves)	
	p(Power) =	%∆k/k		
6. Fr	om: SAXON2 , Other _		(Indicate	Method)
	p(Xer	non) =	% Δk/k	
7. If	samarium is at HFP equilibriu Samarium) = 0	um, neglect additional	samarium wor	th,
	herwise, From: SAM2	Other	(Indicate	Method)
		marium) =	% Δk/k	
8. S	um the following:			
0	$(Net) = \rho(Fuel) - \rho(Boron) \pm \frac{1}{2}$ $[\pm \rho(Samarium)]$	ρ(Temp) - ρ(CEAs net)	+ ρ(Power) -	p(Xenon
	. ρ(Ne	t) =	% ∆k/k	
1	f p(Net) exceeds ± 0.5% \Dk/k re	fer to Section 4.0, L	imits and Pre	cautions
	erformed By			
F	and the same of th			