Wayne H. Jens Vice President Nuclear Operations

2000 Second Avenue Detroit, Michigan 48226 (313) 586-4150

May 21, 1984 EF2-67,773

Mr. James G. Keppler
Regional Administrator
Region III
U. S. Nuclear Regulatory Commission
799 Roosevelt Road
Glen Ellyn, Illinois 60137

Dear Mr. Keppler:

- Reference: (1) Fermi 2 NRC Docket No. 50-341
 - (2) NRC IE Bulletin 81-03, "Flow Blockage of Cooling Water to Safety System Components by Corbicula Sp. (Asiatic Clam) and Mytilus Sp. (Mussel)", April 10, 1981
 - (3) Letter from Detroit Edison to NRC, "Detroit Edison Response to NRC IE Bulletin 81-03", EF2-54010, July 7, 1981
 - (4) Letter from Detroit Edison to NRC, "Detroit Edison Response to NRC IE Bulletin 81-03", EF2-62078, February 8, 1983

Subject: NRC IE Bulletin 81-03

This letter provides Detroit Edison's final response to Reference 2. Interim responses were previously provided via References 3 and 4. Reference 3 provided an Edison report stating that although Corbicula has been found in the local environment (i.e., Lake Erie and Monroe (fossil) Power Plant), no evidence of clams or shell fragments were found in Fermi-2 safety-related systems (e.g., fire protection, shell side of reactor building closed cooling water) that had been opened for maintenance and construction activities.

MAY 29 1984

Mr. James G. Keppler May 21, 1984 EF2-67,773 Page 2

Both Reference 3 and 4 committed to provide a program to: 1) sample and monitor selected plant locations for the presence of Corbic ; and 2) describe the methods for Corbicula prevention 1 control. That program is currently prepared and is provided as Attachment 1.

Detroit Edison also indicated in Reference 4 that sampling would be performed on a quarterly basis. However, during the development of the current program, it was determined that less frequent sampling than quarterly is justified, based on Corbicula biology, climatic conditions, and Fermi 2 design/operation. See Attachment 1 for the sampling frequencies.

Should you have any questions contact Mr. O. Keener Earle at (313) 586-4211.

Sincerely

cc: Mr. P. M. Byron

Mr. M. D. Lynch

Mr. R. C. DeYoung

USNRC, Document Control Desk Washington, D.C. 20555

ATTACHMENT 1:

FERMI-2 PROGRAM FOR DETECTION, PREVENTION, AND CONTROL OF CORBICULA

SYSTEM	LOCATION MONITORED	FREQUENCY	CORRECTIVE ACTION IF DETECTED	ADDITIONAL INFO/ SPECIAL CONDITIONS	PLANT STATUS
General Service Water (GSW)	1. Downstream side of the traveling screens	1/year	1. Mechanical removal (dredge sediments)	Sample between (April - June)	Normal operation
	 Inlet & outlet of heat exchangers and coolers 	Scheduled outages ²	2. Mechanical (manual) removal	Inspect for Corbicula if heat exchanger performance decreases	Outage
Circulating Water (CW)	 Hot & cold water basin of cooling towers 	Twice per year	3. Mechanical (manual) removal	Sample in Spring and Fall	Normal operation or outage
	4. Upstream and down- stream of the fixed screen	Twice per year	4. Mechanical removal (Chemical treatment possible)	Sample in Spring and Fall	Normal operation or outage
	5. Inlet and outlet water boxes of the main condenser	Scheduled outage ²	5. Mechanical (manual) removal	Inspect for Corbicula if Condenser performan decreases	
	6. Thermal plume of cooling water blowdown	l/year	6. Controls present at other sampling points	Sample during Spring	Normal operation
Residual Heat Removal Service Water (RHRSW)	7. Inlet and outlet of RHR heat exchangers1	Scheduled outages ²	7. Mechanical (manual) removal	Inspect for Corbicula if heat exchanger performance decreases	Outage
	8. Bottom of RHR reservoir	Scheduled outages ²	8. Mechanical removal (diver operated pump)	Scuba divers or underwater camera required	Outage
Fire Ring Header System	9. Fire ring header discharge	1/year	9. Flushing	Use 6mm mesh screening	Normal operation
	10. Representative sampling of deluge valves or deluge valve piping in the Turbine and Reactor Building	1/year	10. Flushing	Use 6mm mesh screening	Normal operation

Notes:

Includes associated EECW & EDG heat exchangers
 Refers to major outages (i.e., refueling outages and maintenance outages lasting several months)

I, WAYNE H. JENS, do hereby affirm that the foregoing statements are based on facts and circumstances which are true and accurate to the best of my knowledge and belief.

WAYNE W. JENS
Vice President - Nuclear Operations

On this <u>2/st</u> day of <u>May</u>, 1984, before me personnally appeared Wayne H. Jens, being first duly sworn and says that he executed the foregoing as his free act and deed.

JAMES J. MORGAN Notary Public, Oakland County, MI My Commission Expires Jan. 3, 1937

acting in mourse County, nichiga