Calvert Cliffs Units #1 and #2 Reactor Vessel Beltline Materials

Revision 02

Prepared By:

Hardies

Materials Engineer

Reviewed By:

D. A. Wright Principal Materials Engineer

Baltimore Gas & Electric Co. MEAU Job #01-31-0071

October 24, 1991

9112190110 911213 FDR ADOCK 05000317 PDR

FORWARD

In order to comply with the requirements of 10CFR50.61 (b)(1) as advertised in the Federal Register, May 15, 1991, Baltimore Gas & Electric Company has compiled the information necessary to perform the Pressurized Thermal Shock (PTS) rule calculations for RTpTS. The PTS screening criteria will be exceeded for Unit #1 at a fluence of 2.61×10^{-9} d/cm² on axial weld 2-203. The PTS screening criteria will not be exceeded on Unit #2 at fluences less than 10^{-0} n/cm².

ILLUSTRATIONS

FIGURE

And the second se	100 - 1	10000	31.18.1.25%	175	and the second second	N. Frankerski	
2 . T	1 2.12	100 111	1 11774	KMAR	TOT	VPECRI	NA 915
4.4	- Sec. 6. 7	April 1	No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	N. P. 10. 157 P.	1.1.1.1	A Second Park	1. 1.7.5.56 307

- 2-1 Correspondence between Ni content of the weld wire and Ni content of the deposited weld metal
- 2-2 Lack of correspondence between Cu content of the weld wire and Cu content of deposited weld metal

TABLES

TABLE

- 1-1 Calvert Cliffs Unit #1 Reactor Vessel Beltline Materials
- 1-2 Calvert Cliffs Unit #2 Reactor Vessel Beltline Materials
- 4-1 Caivert Cliffs Unit #1 Reactor Vessel Beltline Material RTPTS
- 4-2 Calvert Cliffs Unit #2 Reactor Vessel Beltline Material RTPTS
- 4-3 Calvert Cliffs Reactor Vessel Beltline Material RTpTS Parameters

TABLE OF CONTENTS

1.0	Histo	ry					
2.0	Background Information on Beltline Materials						
	2.1	Chemical Composition					
	2.2	Mechanical Properties					
3.0	Dete	rmination of Chemical Composition and Mechanical Properties					
	3.1	Chemical Composition Determination					
	3.2	Mechanical Properties Determination					
4.0	Determination of RTPTS						
5.0	Refe	rences					

Appendix A Chemical Composition of Weldments in the Beltline Region of Calvert Cliffs Reactor Vessel Unit #1 and Unit #2

1.0 History

The reactor vessels for Calvert Cliffs Unit #1 and Unit #2 were fabricated by Combustion Engineering (CE) at Chattanooga Works, Tennessee for Combustion Engineering Power System Division in Windsor, Connecticut. The vessels were fabricated of formed and welded SA 533, Grade B, Class 1 plates. This was the normal fabrication technic at the Chattanooga facility. For the Calvert Cliffs vessels, CE employed a submerged arc weld g process using a Mil B-4 Modified (Mn-Mo-Ni) wire with nickel in the range of 0.6 to 1.1 wt%. The Mil B-4 Modified (Mn-Mo-Ni) welds were produced with either a Linde 1092, 0091, or 124 flux. Welding procedures included both single and tandem arc processes. A list of the reactor vessel beltline materials for Calvert Cliffs Unit #1 and Unit #2 appear in Table No. 1-1 and 1-2 respectively (Reference #7 & #8). The location of these materials in the beltline region are shown in Figure No. 1-1

CALVERT CLIFFS UNIT #1 REACTOR VESSEL BELTLINE MATERIALS TABLE NO. 1-1

WELD MATE	RIALS (Mil B-4 mod TYPE	ified Ni-Mn-Mo): WIRE(S)	FLUX TYPE	LOT NO.
2-203- A,B,C	Longitudinal Tandem Arc	20291 12008	1092	3833
3-203- A,B,C	Longitudinal Tandem Arc	21935	1092	3869
9-203	Girth Single Arc	33A277	0091	3922

PLATE MATERIALS (ASME SA 533, Grade B, Class 1): ID LOCATION

D-7206-				
123	Interm	ediate	Shell Plate	8

D-7207-1,2,3 Lower Shell Plate

CALVERT CLIFFS UNIT #2 REACTOR VESSEL BELTLINE MATERIALS TABLE NO. 1-2

WELD MATERIALS (Mil B-4 modified Ni-Mn-Mo):

ID	TYPE	WIRE(S)	FLUX TYPE	LOT NO.
2-202- A,B,C	Longitudinal Tandem Arc	8746	124	3878
3-203- A,B,C	Longitudinal Tandem Arc	33A277	0091	3922
9-203	Girth Single Arc	10137	0091	3999

PLATE MATERIALS (ASME SA 533, Grade B, Class 1):

ID	LOCATION		
D-8906- 1.2.3	Intermediate Shell Plate		
D-8907- 1,2,3	Lower Shell Plate		

CALVERT CLIFFS REACTOR PRESSURE VESSEL MAP FIGURE 1-1

2.0 Background Information On Beltline Materials

2.1 Plates

The six plate sections used to fabricate the beltline region have been well characterized with respect to chemistry and mechanical properties by Combustion Engineering (References #1 and #2).

2.2 Welds

The chemical composition and mechanical propert of the wire flux combinations used in the surveillance programs were well characterized originally (Reference #3). The composition and mechanical properties of other welds have been established by reviews of original fabrication records.

BG&E contracted CE in late 1981 to perform a search of their records at Chattanooga. These results were issued in a transmittal from Kruse (CE) to Titland ($\mathbb{R}\oplus\mathbb{K}$ E) dated January 11, 1982 (Reference #4). Included were available wire chemistries and chemical analysis of weld deposits for certain wire/flux combinations. Although this information did not provide data necessary for all the welds it was helpful in providing insight into the relationship between weld wire chemistries and weld deposit chemistries. The general conclusions that have been drawn from the available data are the following (Reference #4 and #5).

- In general, the flux Lot No. has little of no effect on the deposit analysis with respect to copper and nickel contents.
- The nickel content of the wire is very similar to that of the weld deposit (See Figure No. 2).
- The copper content of the weld deposit is not accurately reflected by the copper content of the wire (See Figure No. 3). It is generally higher in the weld deposit than in the weld wire.
- 4. A review of the data indicated that the composition of the weld deposit made with two different wires (Tandem Arc Process) can be estimated accurately by an arithmetic average of deposit chemistries of individual wires. For a more detailed explanation, see Reference #5.

During a review of the material surveillance data base MATSURV (Reference #6) EPRI discovered that some of the weld wire used in the Calvert Cliffs beltline welds was also used in the fabrication of the surveillance blocks for the Cooper Station reactor. Under EPRI Contract #RP 2180-5, the General Electric Company generated composition and mechanical property data on the Cooper weldments removed famous archival sections at GE Nuclea. Center at Vallecitos, California.

In early 1983, BG&E contracted with CE to compile and reproduce records which document the materials of the Calvert Cliffs Unit #1 and Unit #2 reactor vessels (Reference #7 and #8).

EPRI compiled a reactor vessel surveillance program data base (Reference #9). The data base contains information on irradiated material from surveillance programs. A search of this data base in January, 1986 revealed that a particular wire/flux combination used in Calvert Cliffs beltline welds was also used in the fabrication of surveillance blocks for Duke Power Company's William B. McGuire Unit #1. Since this material was used in the production of surveillance u acks, the chemical composition and mechanical properties were both well characterized (Reference #10).

CORRESPONDENCE BETWEEN NI CONTENT OF THE WELD WIRE AND NI CONTENT OF THE DEPOSITED WELD METAL (REFERENCE #5) FIGURY 2-1

3.0 Determination Of Chemical Composition and Mechanical Properties

3.1 Chemical Composition

The information compiled in Section 2.0 from various sources has been used to determine the chemical composition of materials in the Calvert Cliffs reactor vessels beltline regions. The following guidelines were used to determine the chemical composition of the welds (see Appendix A):

- Copper content for a particular wire/flux combination was determined from deposited weld metal chemical analyses using the same wire/flux combination (the flux Lot No. may vary).
- Nickel content of a weldment was determined from both weld wire chemical analyses and deposited weld metal chemical analyses.
- For Tandem arc processes the chemical composition from the single wires were averaged to determine the chemical composition of the weldment when tandem deposit chemical analyses were not available.

Chemical compositions for the welds were determined in Appendix A by averaging the data compiled in accordance with the above guidelines. Note that in Appendix A the analysis numbers with an 'R" as a prefix indicates a weld wire chemical analysis and the analysis numbers with "D" as a prefix indicates a weld deposit chemical analysis. All remaining alloy determinations (surveillance capsule, EPRI, etc.) are also from weld deposit chemical analyzes.

The con.pc. tions of the plates are well documented in References #1 and #2.

3.2 Mechanical Properties

Initial RT_{NDT} values for some of the weldments in the beltline region of Calvert Cliffs reactor vessels were determined by measurements made in the Calvert Cliffs surveillance programs for specific wire/flux combinations. Initial RT_{NDT} for wire/flux combinations in some welds at Calvert Cliffs was determined from measurements made in the William B. McGuire Unit #1 Surveillance Program. For all other wire/flux combinations used, the generic mean value was assigned in accordance with 10 CFR, Part 50.61.

The initial RTNDTs for the plates are well documented in Reference #7 and #8.

4.0 Determination of Limiting Fluence

Estimated chemistries from Appendir A were used in conjunction with the requirements of 10CFR, Part 50.61 (b.2.IV) to determine the chemistry factors for each beltline material. Tables 4-1 and 4-2 provide a summary of estimated chemistries, initial RTNDT, initial upper shelf energies and prescribed chemistry factors for Calvert Cliffs Unit #1 and Unit #2 respectively. Using the equation prescribed by 10CRF50 51 (b)(2), RTPTS = I + M + Δ RTPTS, and rearcanging to determine the naximum permissable RTPTS (270 °F for plates, forgings, and axial welds, or 30) °F for circumferential welds) the maximum change in RTPTS vas calculated for each material.

△ RTPTS (Limiting) - I - M = RTPTS max

Where I = initial RTNDT M = Margin The actual A RTrrs is calculated using the equation:

$$\triangle$$
 RTPTS = (CF) ((0.28 - 0.10 log f)

Where CF is the chamistry factor and f is the neutron fluence in units of 10^{19} n/cm². The value at which the screening criteria is exceeded can be determined by taking the ratio between the maximum RTPTS and the chemistry factor.

i.e.,
$$F \max = \Delta RTpTs \frac{max}{(CF)}$$

Where $F \max = f(0.28 \cdot 0.10 \log f)$

The values for Initial RTNDT, Margin. RTFTS, and limiting values of F are presented in Table 4-3. The lowest value of F in Unit #1 is 1.257 which corresponds to a fluence of 2.61 x 10^{19} n/cm². The lowest value of F in Unit #2 is 1.615 which corresponds to a fluence greater than 10^{20} n/cm².

ID	Cu (w/o)	Ni (w/o)	INITIAL RT _{NDT} (*F)	CHEMISTRY FACTOR	INITIAL USE (Ft - Lb)
2-203- A,B,C	0.21(a)	0.88(a)	-50.0(b)(g)	210	110.0 (b)(g)
3-203 A,B,C	0.21(a)	0.69(a)	-56.0(c)	179	NA
9-203	0.23(a)	0.23(a)	-80.0(d)	121	158.0 (d)
D-7206-1	0.11(e)(h)	0.55(e)(h)	20.0(f)(h)	74	90.0(f)(h)
D-7206-2	0.12(e)(h)	0.64(e)(h)	-30.0(f)(h)	84	81.0(f)(h)
D-7206-3	0.12(e)(h)	0.64(e)(h)	10.0(f)(h)	84	112.0(f)(h)
D-7207-1	0.13(e)(h)	0.54(e)(h)	10.0(f)(h)	90	77.0(f)(h)
D-7207-2	0.11(e)(h)	0.56(e)(h)	+10.0(f)(h)	74	90.0(f)(h)
D-7207-3	0.11(e)(h)	0.53(e)(h)	-20.0(f)(h)	74	81.0(f)(h)

CALVERT CLIFFS UNIT #1 REACTOR VESSEL BELTLINE MATERIAL

a. See chemistry data in Appendix for sources.

Davidson, J.A. and Yanicko, S.E., "Duke Power Company William B. McGuire Unit #1 Reactor Vessel Radiation Surveillance Program", WCAP-91995, November 1977

c. Generic mean value.

- d. Byrne, S.T., Biemilier, E.L., and Ragl, A., "Testing and Evaluation of Calvert Cliffs Unit #1 and Unit #2 Reactor Vessel Materials Irradiation Surveillance Program Baseline Samples", Combustion Engineering, TR-ESS-001, January 31, 1975.
- "Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation \$ veillance of Calvert Cliffs Unit #1 Reactor Vessel Materials", Combustion Engineering, CENPD-34, February 4, 1972.
- These values have been corrected for the transverse charpy direction in accordance with NRC Branch Technical position MTEB 5-2 when required.
- g. "Reactor Vessel Weld Materials for Calvert Cliffs Unit #1 Supplemental Surveillance Program", Combustion Engineering, 02987-MCC-002, November 1989.
- "Baltimore Gas & electric Unit #1 Reactor Vessel Master Index with Welding Procedures, PQR's. Weld Materials Test Reports, and Base Materials Test Reports", Combustion Engineering Contract No. 72167.

ID	Cu (w/o)	Ni (w/o)	INITIAL RT _{NDT} (*F)	CHEMISTRY FACTOR	INITIAL USE (Ft + Lb)
2-203- A.B,C	0.12(a)	1.01(a)	-56.0(b)	161	NA
3-203 A,B,C	0.23(a)	0.23(a)	-80,0(¢)	121	158.0(c)
9-203	0.22(a)	0.05(a)	-60.0(¢)	101	125.0(c)
D-8906-1	0.15(d)(f)	0.56(d)(f)	10.J(e)(f)	108	77.0(e)(f)
D-8906-2	0.11(d)(f)	0.56(d)(f)	10.0(e)(f)	74	74.0(e)(f)
D-8906-3	0.14(d)(f)	0.55(d)(f)	5.0(e)(f)	98	75.0(e)(f)
D-8907-1	0.15(d)(f)	0.60(d)(f)	-8.C(¢)(f)	110	83.0(c)(f)
D-8907-2	0.14(d)(f)	0.66(d)(f)	10.0(e)(f)	102	115.0(c)
D-8907-3	0.11(d)(f)	0.74(d)(f)	-16.0(e)/f)	77	84.5(e)(f)

CALVERT CLIFFS UNIT #2 REACTOR VESSEL BELTLINE MATERIAL

a. See chemistry data in Appendix for sources.

b. Generic mean value.

c. Byrne, S.T., Biemiller, E.L., and Ragl, A., "Testing and Evaluation of Calvert Cliffs Unit #1 and Unit #2 Reactor Vessel Materials Irradiation Surveillance Program Baseline Samples", Combustion Engineering, TR-ESS-001, January 31, 1975.

d. "Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of Calvert Cliffs Unit #2 Reactor Vessel Materials", Combustion Engineering, CENPD-48, August 15, 1972.

These values have been corrected for the transverse charpy direction in accordance with NRC Branch Technical Position MTEB 5-2, where required.

f. "Baltimore Gas & Electric Unit #2 Reactor Vessel Master Index with Welding Procedures, PQR's, Weld Materials Test Reports, and Base Materials Test Reports", Combustion Engineering Contract No. 73167. TABLE NO. 4-3:

CALVERT CLIFFS REACTOR VESSEL BELTLINE MATERIAL RTPTS PARAMETERS

ID	I (RTNDT)	M (M.LEGIN)	RTPTS (MASHWUM)	CF (CHEMISTRY FACTOR)	F Max (RTPTS/CF)
			UNIT #1		anan a san an an an
2-203- A,B,C	-50	56	264	210	1.257
3-203 A.B,C	-56	66	260	179	1.453
9-203	-80	56	324	121	2.678
D-7206-1	20	34	216	74	2.919
D-7206-2	-30	34	256	84	3.167
D-7206-3	10	34	226	84	2.69
D-7207-1	10	34	226	90	2.511
D-7207-2	-10	34	246	74	3.324
D-7207-3	-20	34	256	74	3.459
			UNIT #2		ten tan kerinta da tan
2-203- A,B,C	-56	66	260	161	1.615
3-203 A.B.C	-80	56	294	121	2.430
9-203	-60	56	304	101	3.010
D-8906-1	10	34	226	108	2.093
D-8906-2	10	34	226	74	3.054
D-8906-3	5	34	231	98	2.357
D-8907-1	-8	34	244	110	2.218
D-8907-2	10	34	226	102	2.216
D-8907-3	-16	34	252	77	3.273

5.0 <u>References</u>

- "Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of Calvert Cliffs Unit #1 Reactor Vessel Materials", Combustion Engineering, CENPD-34, February, 1972.
- "Summary Report on Manufacture of Test Specimens and Assembly of Capsules for L radiation Surveillance of Calvert Cliffs Unit #1 Reactor Vessel Materia's", Combustion Engineering, CENPD-48, August 1972.
- Byrne, S.T., Blemiller, E.L., and Ragl, A., "Testing and Evaluation of Calvert Cliffs Unit #1 and Unit #2 Reactor Vessel Materials Irradiation Surveillance Program Baseline Samples", Compustion Engineering, TR-ESS-001, January 31, 1975.
- Letter from P. Kruse (CE) to L. E. Titland (BG&E), CE Chattanooga Metallurgical Records Search, BG&E-10577-437, January, 1982.
- Chexal, B., et al., "Calvert Cliffs Unit #1 Reactor Vessel; Pressurized Thermal Shock Analysis for a Small Steam Line Break, EPRI Special Report NP-3752-St, November, 1984.
- Strosnider, J., et al., "Computerized Reactor Pressure Vessel Materials Information System", NUREG-0688, U.S. NRC, October, 1980.
- "Baltimore Gas & Electric Unit #1 Reactor Vessel Master Index with Welding Procedures, PQR's, Weld Materials Test Reports, and Base Materials Test Reports", Combustion Engineering Contract No. 72167.
- "Baltimore Gas & Electric Unit #2 Reactor Vessel Master Index with Welding Procedures, PQR's, Weld Materials Test Reports, and Base Materials Test Reports", Combustion Engineering Contract No. 73167.
- Oldfield, W. et al., Nuclear Plant Irradiated Steel Handbook, EPRI Research Projects NP-1757-36, 1757-37, and 2455-5, September, 1985.
- Davidson, J.A. and Yanicko, S.E., "Duke Power Company William B. McGuire Unit #1 Reactor Vessel Radiation Surveillance Program", WCAP-91995, November 1977.

APPENDIX A

Chemical Composition of Weldments in the Beltline Region of Calvert Cliffs Reactor Vessel Unit #1 and Unit #2

V'ELD SEAM 2-203-A,B,C CCNPP UNIT #1

WIRE(S)	F'.UX	LOT NO.	<u>Cu (w/o)</u>	Ni (w/o)	SOURCE / ANALYSIS NO.
12008		Sec.	**	1.00	(1) / R-1990
20291	**	1914	**	0.73	(1)/R-2248
20291				0.74	(1) / R-2293
12008	1092	3692	NA	1.01	(1) / D-4907
20291	1092	3833	0.21	0,74	(2,3)/NA
20291	1092	3833	0.22	0.73	(4)*/NA
12008 & 20291	1092	3854	0.21	0.88	(5,6)/24117

CHEMISTRY CALCULATION

Ni: ([(1.00 + 1.01)/2 + (0.73 + 0.74 + 0.74 + 0.73)/4]/2 + 0.68)/2 = 0.88 w/o Ni

ESTIMATED CHEMISTRY

0.21 w/o Cu based on the tandem wire deposit analysis

0.88 w/o Ni

Average of five analysis

NA Not Available

- Not applicable because Flux, Lot No. and Cu are not relevant for wire analyses, only for deposit analyses
- Letter from P. Kruse (CE) to L.E. Titland (BG&E), C-E Chattanooga Metallurgical Records Search, BG&E-10577-437, January 11, 1982.
- (2) Letter from T.U. Maston (EPRI) to L.E. Titland, Attachment II: Cooper Station Surveillance Weld Chemistry, March 16, 1982.
- (3) Strosnider, J., et al., "Computerized Reactor Pressure Vessel Materials Information System", NUREG-0688, U.S. NRC, October 1980.
- Cooper Surveillance Weld Evaluation, General Electric, EPKI Contract RP2180-6, August 1983.
- (5) Oldfield, W., et al., Nuclear Plant Irradiated Steel F ndbook, EPRI Research Projects NP-1757-36, 1757-37, and 2455-5, September 198'
- (6) Davidson, J.A. and Yanicko, S.E., "Duke Power to Jamp Indiam B. McGuire Unit #1 Reactor Vessel Radiation Surveillance Program", wCAP-91995, November 1977.

WELD SEAM 3-203-A,B,C CCNPP UNIT #1

WIRE(S)	FLUX	LOT NO.	Cu (w/o)	<u>Ni (w/c)</u>	SOURCE / ANALYSIS NO.
21935	**	- 1 m 1 m	1	0.70	(1)/R-2546
21935	**		**	0.68	(1) / R-2503
21935	**		***	0.71	(1)/R-2495
21935	1092	3869	0.20	NA	(1) / D-7279
21935	1092	3889	0.13	0.68	(1) / D-7569
21935	1092	3889	0.21	NA	(1) / D-7524

CHEMISTRY CALCULATION

Cu: $(0.20 + 0.21)/2 = 0.21 \text{ w/o Cu}^*$

Ni: (0.70 + 0.68 + 0.71 + 0.68)/4 = 0.69 w/o Ni

ESTIMATED CHEMISTRY

0.21 w/o Cu

0.69 w/o Ni

* Note that one deposit analysis reported a copper content of 0.13 w/o. This was omitted from the chemistry calculation due to the non-conservative effects on estimating the average weld metal copper content with a sample size of three.

NA Not Available

 Not applicable because Flux, Lot No. and Cu are not relevant for wire analyses, only for deposit analyses

 Letter from P. Kruse (CE) to L.E. Titland (BG&E), C-E Chattanooga Metallurgical Records Search, BG&E-10577-437, January 11, 1982.

WELD SEAM 9-203 CCNPP UNIT #1

WIRE(S)	FLUX	LOT NO.	<u>Cu (w/o)</u>	<u>Ni (w/o)</u>	SOURCE / ANALYSIS NO.
33A277	0091	3922	0.30	NA	(1) / D-7947
33A277	0091	3922	0.23	NA	(1) / D-7948
33.A277	0091	3977	0.23	NA	(1) / D-9217
33A277	0091	3922	0.24	0.18	(2) / NA
33A277	0091	3922	0,14	0.27	(3) / NA

CHEMISTRY CALCULATION

Cu: (0.30 + 0.23 + 0.23 + 0.24 + 0.14)/5 = 0.23 w/o Cu

Ni: (0.18 + 0.27)/2 = 0.23 w/o Ni

ESTIMATED CHEMISTRY

0.23 w/o Cu

0.23 w/o Ni

- "Baltimore Gas & Electric Unit #2 Reactor Vessel Master Index with Welding Procedures, PQR's, Weld Material Test Reports, and Base Material Test Reports", Combustion Engineering Contract No. 73167.
- (2) Byrne, S.T., Biemiller, E.I., and Ragl, A., "Testing and Evaluation of Calvert Cliffs, Unit #1 and Unit #2 Reactor Vessel Materials Irradiation Surveillance Program Baseline Samples", Combustion Engineering, TR-ESS-001, January 31, 1975.
- (3) Perrin, J.S., et al., "Calvert Cliffs Unit #1 Nuclear Plant Reactor Pressure Vessel Surveillance Program; Capsule 263", Final Report, Battelle Columbus Laboratories, December 15, 1980.

WELD SEAM 2-203-A,B,C CCNPP UNIT #2

WIRE(S)	FLUX	LOT NO.	<u>Cu (w/o)</u>	<u>Ni (w/o)</u>	SOURCE / ANALYSIS NO.
8746	124	3878	0.12	NA	(1) / D-7314

ESTIMATED CHEMISTRY

0.12 w/o Cu

1.01 w/o Ni*

Ni is an upperbound estimate since no data could be found for this wire.

(1) "Baltimore Gas & Electric Unit #2 Reactor Vessel Master Index with Welding Procedures, PQR's, Weld Material Test Reports, and Base Material Test Reports", Combustion Engineering Contract No. 73167.

WELD SEAM 3-203-A,B,C CCNPP UNIT #2

WIRE(S)	FLUX	1.0T NO.	<u>Cu (w/o)</u>	<u>Ni (w/o)</u>	SOURCE/ANALYSIS NO.
33A277	0091	3922	0.30	NA	(1) / D-7947
33A277	0091	3922	0.23	NA	(1) / D-7948
33A277	0091	3977	0.23	NA	(1) / D-9217
33A277	0091	3922	0.24	0.18	(2) / NA
33A277	0091	3922	0.14	0.27	(3) / NA

CHEMISTRY CALCULATION

Cu: (0.30 + 0.23 + 0.23 + 0.24 + 0.14)/5 = 0.23 w/o Cu

Ni: (0.18 + 0.27)/2 = 0.23 w/o Ni

ESTIMATED CHEMISTRY

0.23 w/o Cu

0.23 w/o Ni

- "Baltimore Gas & Electric Unit #2 Reactor Vessel Master Index with Welding Procedures. PQR's, Weld Material Test Reports, and Base Material Test Reports", Combustion Engineering Contract No. 73167.
- (2) Byrne, S.T., Biemiller, E.I., a. ⁴ Ragl, A., "Testing and Evaluation of Calvert Cliffs, Unit #1 and Unit #2 Reactor Vessel Materials Irradiation Surveillance Program Baseline Samples", Combustion Engineering, TR-ESS-001, January 31, 1975.
- (3) Ferrin, J.S., et al., "Calvert Cliffs Unit #1 Nuclear Plant Reactor Pressure Vessel Surveillance Program; Capsule 263", Final Report, Battelle Columbus Laboratories, December 15, 1980.

WELD SEAM 9-203 CCNPP UNIT #2

WIRE(S)	FLUX	LOT NO.	<u>Cu (w/o)</u>	<u>Ni (w/o)</u>	SOURCE/ANALYSIS NO.
10137	0091	3999	0.23	NA	(1) / D+10600
10137	0091	3999	0.20	0.04	(2)/NA
10137	0091	3999	0.24	0.06	(3) / NA

CHEMISTRY CALCULATION

Cu: (0.23 + 0.20 + 0.24)/3 = 0.22 w/o Cu

Ni: (0.04 + 0.06)/2 = 0.05 w/o Ni

ESTIMATED CHEMISTRY

0.22 w/o Cu

0.05 w/o Ni

 [&]quot;Baltimore Gas & Electric Unit #2 Reactor Vessel Master Index with Welding Procedures, PQR's, Weld Material Test Reports, and Base Material Test Reports", Combustion Engineering Contract No. 73167.

⁽²⁾ Byrne, S.T., Biemiller, E.L. and Ragl, A., "Testing and Evaluation of Calvert Cliffs, Unit #1 and Unit #2 Reactor Vessel Materials Irradiation Surveillance Program Baseline Samples", Combustion Engineering, TR-ESS-001, January 31, 1975.

⁽³⁾ Norris, E.B., "Reactor Vessel Material Surveillance Program for Calvert Cliffs Unit #2 Analysis of 263 * Capsule, Final Report, SwRI Project 06-7524, Southwest Research Institute, September 1985.

ATTACHMENT B

Unit 1 Fluence Calculations

(SwRI Report Without Appendices D through G)

Baltimore Gas and Electric Company Docket Nos. 50-317 & 50-318 December 13, 1991 SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas 78284

PRESSURE-TEMPERATURE LIMITS FOR CALVERT CLIFFS NUCLEAR POWER PLANT UNIT 1

By P. K. Nair M. L. Williams (Consultant)

FINAL REPORT SwRI Project No. 06-1278-001

Prepared For Baltimore Gas & Electric Co. P. O. Box 1472 Baltimore, MD 21203

November 1988

Approved:

8911260065 68PP.

SN

Edward M. Briggs, Director Department of Structural and Mechnical Systems

TABLE OF CONTENTS

1.0.0

Sect	<u>ion</u>	ge
List	of Figures	11
List	of Tables	111
1.	Summary of Results and Conclusions	1
2.	Introduction	3
3.	Material Property Assessment	4
4.	Neutron Fluence Calculations	8
5.	Adjusted Reference Temperature Determination	27
6.	Heat-up and Cool-down Limits	30
	References	34
	APPENDIX A - Determination of Space-Dependent Source Distribution for Transport Analysis of Calvert Cliffs - 1	A-1
	APPENDIX B - Description of the 3D Flux Synthesis Method	B-1
	APFENDIX C - Power-Time History for Calvert Cliffs, Unit 1	C - 1
	APPENDIX D - Procedure for the Generation of Ailowable Pressure-Temperature Limit Curves for Nuclear Power Plant Reactor Vessels	D-1
	APPENDIX E - Pressure-Temperature Limit Tables for Calvert Cliffo Unit 1	E - 1
	APPENDIX F - Pressure-Temperature Limit Table for Varying Cooldown Rates for Calvert Cliffs Unit 1 (12 EFPY)	F - 1
	APPENDIX G - Pressure-Temperature Limit Tables for Isothermal Conditions for Calvert Cliffs Unit 1	r.=1

Sec. 4 2

SIST OF FIGURES

Figure	Page
3.1	Calvert Cliffs Unit-1, Reaction Pressure Vessel Map
4.1	Calvert Cliffs Unit-1 DOT-4 Re Model
4.2	Capsule Geometry Modeling 10
6.1	Heat-up Pressure-Temperature Limitation Curves for
6.2	Cool-down Pressure-Temperature Limitation Curves for

LIST OF TABLES

1.0

the second call

7 " no"

Table	Participante de la construcción de	age
3.1	Calvert Cliffs Unit No. 1 Reactor Vessel Beltline	6
4.1	Calculated Values for Midplane Saturated Activities at Center of 7" S.C. (Calvert Cliffs-1).	13
4.2	Calculated Values for Non-Saturated Activities	14
4.3	Non-Saturation Factors (h) Used in Dosimeters Activities	15
4.4	"Measured" Saturated Activities (A _{SAT}) for Cycles 1-3 of Calvert Cliffs-1.	16
4.5	Comparison of Unadjusted Calculated and Measured Parameters for Cycles 1-3 (12 month cycles) of Calvert Cliffs-1.	17
4.6	Relative Azimuthal Variation $^{(a)}$ In \circ (>1MeV) Incident on Vessel.	18
4.7	Determination of "Adjusted" = (>1) in S.C. for 12 Month Cycles 1-3 (Location R = 217.01 cm, e = 7°)	20
4.8	Peak & (>1) in RPV of Calvert Cliffs-1	21
4.9	Neutron Spectra at Peak OT Locations: I.D. 1/4T and 3/4T	22
e 4.10	Spectrum Averaged Cross Sections at Center of	23
4.11	Calculated & (E>1) in Surveillance Capsules and Lead Factors (LF)(2) for Calvert Cliffs-1.	24
4.12	Determination of RPV Peak Fluence for Calvert	05
4.13	Fluence in RPV after 12 EFPY for Calvert Cliffs-1	26
5.1	ART Evaluation for Beltline Materials for 12 EFPY	. 28
5.2	& RTNDT VS EFPY	. 29
5.3	Adjusted Reference Temperatures at 1/4T and 3/4T	. 29

1. SUMMARY OF RESULTS AND CONCLUSIONS

A detailed analysis was performed for developing new pressure-temperature limit curves for the Calvert Cliffs Unit 1 reactor pressure vessel. The analysis included new neutron transport calculations for 12, 18 and 24 month cycles, development of irradiated material properties based on NRC Regulatory Guide 1.99, Draft Rev. 2, and the generation of heat-up and cool-down limit curves for every 4 EFPY from 12 EFPY to end-of-life conditions.

The SwRI evaluation led to the following conclusions:

- 1. Based on a calculated neutron spectral distribution, the peak fluxes incident on the Reactor Pressure Vessel (RPV) are 5.31 x 10^{10} n/cm²-sec, 5.69 x 10^{10} n/cm²-sec and 4.17 x 10^{10} n/cm²-sec for 12 month, 18 month and 24 month cycles respectively.
- 2. Adjusting the calculated flux with respect to the first capsule dosimeter analysis the 12 month cycle peak flux on the RPV was determined to be 4.88 x 10^{10} n/cm²-sec. The value is within 4% of what was reported in the Unit 1 Capsule report^[1].
- 3. The calculated lead factors for the vessel ID based on surveillance capsule locations are given below:

Cycle Type	G=7° Lead Factor	0=14° Lead Factor	
12 month	1.26	0.93	
18 month	1.23	0.90	
24 month	1.17	0.77	

4. The accumulated peak fluence on RPV ID was calculated to be 1.62 x 10^{19} n/cm² for the first 9 cycles and 4.56 x 10^{19} n/cm² to 32 EFPY.

- 5. Displacement per Atom (dpa) for 32 EFPY were calculated to be 7.62 x 10^{-2} , 4.85 x 10^{-2} and 1.4 x 10^{-2} for RPV ID, 1/4T and 3/4T respectively.
- 6. The 12 EFPY fluence on the RPV was calculated to be 1.96 x 10^{19} m/cm². Fluence rate of 1.3138 x 10^{18} per year was used to develop fluence value for 16, 20, 24, 28, 32, 36 and 40 EFPYs.
- 7. The controlling material for RPV operations was determined to be weld 2-203 with Cu=0.21% and Ni=0.£7%. P-T limit data was developed for 12, 16, 20,24, 28, 32, 36 and 40 EFPYs. The data also reflects different heat-up and cool-down rates.
- 8. Based on the Regulatory Guide 1.99. Draft Rev. 2 approach, the 32 EFPY adjusted referency temperature for the controlling material will be 294°F at the RF ID and 256°F at the 1/47 location.
- 9. Based on this study the Calvert Cliff Unit 1 reactor vessel has adequate material toughess for continued safe operation beyond 32 EFPY irradiation conditions.

DPA Values (Displacements Per Atom Per Second) in RPV of Calvert Cliffs-1 Due to Neutrons with Energies Above 15 KeV

Radial Location	12M	18M	241
220 895	8 1138E-11	8.8356E-11	6.2720E-11
202 102	7 5060E-11	8.1737E-11	5.8022E-11
000 000	6 5401E-11	7.1219E-11	5.0556E-11
008 281	5 5903E-11	6.0876E-11	4.3213E-11
606 076	4 7506E-11	5.1732E-11	3.6722E-11
008 601	4 0243E-11	4.3822E-11	3.1108E-11
660.0V4 020 005	3 4009E-11	3.7034E-11	2.6289E-11
631 REA	2 8626E-11	3.11725-11	2.2128E-11
033 ATE	2 3950E-11	2.6080E-11	1.8513E-11
628 000	2 9844E-11	2.1609E-11	1.5339E-11
600.V82 556 557	1 61855-11	1.7625E-11	1.2511E-11
600.100 9x0 900	1 28685-11	1.4012E-11	9.9467E-12
	9.26445-12	1.0633E-11	7.5479E-12
021 KGR	6 5633E-12	7.2118E-12	5.1194E-12

2. INTRODUCTION

The long-term degradation of reactor vessel structural material properties due to irradiation is measured by the evaluation of material surveillance capsules removed periodically from the reactor vessel. Combustion Engineering, Inc. has provided the material surveillance program for the Calvert Cliffs Nuclear Power Plant Unit 1. To date, one surveillance capsule has been removed and tested. Typically, the capsules contain Charpy V-notch and tensile specimens in various combinations representing the parent material, weld metal and heat-affected zone (HAZ) material of the vessel beltline region. In addition, the capsules contain iron, nickel, titanium, sulfur, uranium and copper neutron flux monitors and temperature monitors.

The objective of the surveillance program is to correlate changes in vessel material fracture toughness properties with neutron fluence so that the reactor vessel pressure temperature limits can be determined. Recently, the concern about pressurized thermal shock has placed additional requirements to determine the irradiated condition of vessel inner surface. The applicable regulations and documents that address the continued licensibility of reactor vessels include 10 CFR Part 50, Appendices B, G and H, 10 CFR Part 50.61, NRC Standard Review Plan 5.3.2, Regulatory Guide 1.99, Draft Rev 2 and ASME Boiler and Pressure Vessel Code Section III, Appendix G.

In this report a new neutron flux analysis for the reactor vessel is presented. Based on the analysis, projected vessel fluence conditions were developed for assessing the long-term integrity of the vessel. Pressuretemperature limit conditions are presented for 12, 16, 20, 24, 28, 32, 36 and 40 effective full power years of operation.

3. MATERIAL PROPERTY ASSESSMENT

In developing the pressure-temperature limit condition: for reactor vessels, the important material property required is the Reference Temperature - Nil Ductibility Transition (RT_{NDT}) of various vessel pressure boundary materials. The locations within the pressure boundary that are of interest include nozzle area, closure head region and the beltline region. The nozzle and closure head regions are locations of high stress concentrations while the beltline region is subject to neutron embrittlement with time.

Early in the life of the reactor vessel, nozzle and closure head regions tend to control the pressure-temperature limit curves. However, with time the beltline irradiated materials become controlling. In the case of Calvert Cliffs Unit 1, the controlling material for 12 EFPYs and beyond is the beltline region material. Between the nozzle and the closure head region, the closure head region poses greater restrictions on the PT limit curves.

10 CFR 50 "Fracture Toughness Requirements for Light-Water Nuclear Power Reactor" requires the closure head region materials to have, as a minimum, RT_{NDT} + 120° for normal operations and RT_{NDT} + 90° for hydrostatic pressure and leak tests. In the case of non-availability of RT_{NDT} data or where the data is not reliable, the RT_{NDT} for the closure region is determined using the method in NRC Standard Review Plan 5.3.2 Branch Technical Position 5-2, MTEB. Based on this method, the RT_{NDT} of the closure head material was assessed to be 60°F.

To provide the submittal to NRC on the Pressurized Thermal Shock issue,^[2,5] extensive materials data information was developed by BG & E for all the beitline materials. Key information needed for these materials is the material chemistry, especial. Cu and Ni. From the data supplied by BG & E to SwRI, the Cu and Ni values for the beltline materials are presented in Table

3.1. These chemistry values are used in Section 5 of this report to develop the irradiated Adjusted Reference Temperature for the critical beltline materials. Figure 3.1 is a Calvert Cliffs Unit-1, Reactor Pressure Vessel Map with all the key welds identified.

Table 3.1	Calvert C	liffs Uni	t No. 1	Reactor	Vessel
	Beltline	Material	Propert	les	

10	<u>Cu (w/o)</u>	N1 (w/o)	Initial RTNDT ("F)
2-203 A.B.C	0.21	0.87	-50.0
3-203 A,B,C	0.21	0,69	-56.0
9-203	0.23	0.23	-80.0
D-7206-1	0.11	0.55	20.05
D-7206-2	0.12	0.64	-30.0
D-7206-3	0.12	0.64	10.0
D-7206-1	0.13	0.54	10.0
D-7207-2	0.11	0.56	-10.0
D-7207-3	0.11	0.53	-20.0

FIGURE 3.1 CALVERT CLIFFS UNIT 1, REACTOR PRESSURE VESSEL MAP

REFERENCES LOCATEON

10 21220N

4. NEUTRON FLUENCE CALCULATIONS

The first surveillance capsule (263°) was removed from Unit 1 following Cycle 3, after 2.94 E7PYs of operation. A detailed capsule testing and anulysis was conducted and reported in Reference [1]. The dosimetry and vessel fluence evaluation provided information on the vessel fracture toughness conditions for 3 cycles of 12 months cycle each. Beginning with cycle 5, the operating cycle period changed to 18 months. A low leakage core and a 24-month cycle is planned for future operations beginning with cycle 10. Full power conditions correspond to 2560 Mwth for cycle 1, and 2700 Mwth for all other cycles.

In this section a detailed neutron transport analysis for the reactor cross section is presented. A discrete ordinates calculation using the DOT-4 [3] code was performed to obtain the radial (R) and azimuthal (0) fluence-rate distribution for the genmetry is shown in Figure 4.1. As part of the reactor cross section model the details of the surveillance capsule geometry and location has to be modeled. The inclusion of the surveillance capsules in the R-o model is mandatory to account for the significant perturbation effects from the physical presence of the capsule. Figure 4.2 represents the actual capsule geometry veloce the DOT model used in the analysis. The DOT model incorporates a homoge we mixture of inconel and water to simplify the uverall model while maintaining the required accuracies for the calculation.

The spatial distribution of the core source was obtained by combining plant-specific assembly-wise power values and relative pin-wise powers for the appropriate cycles. The energy distribution was represented by a 235 U watt fission spectrum as specified in ENDF/BV. The axial variation of the flux is treated with a well known synthesis method.

The DOT-4 calculations were performed with the 47- group energy structure

FIGURE 4.1 CALVERT CLIFFS UNIT-1 DOT-" Re MODEL"

*(Surveillance Capsules at 7° and 14° are not shown)

(Scale: 1 Large Division = 11.5 inches)

FIGURE 4.2 CAPSULE GEOMETRY MODELING

for the SAILOR ^[4] cross section library. An S_B angular structure and a P₃ Lengendre cross-section expansion were used. The fine-group dosimeter cross-sections for the ⁶³Cu $(n, *)^{60}$ Co reaction were obtained from ENDF/B-V file and were collapsed to 47 groups using a fission plus 1/E weighting spectrum. The other reaction cross sections were taken from the SAILOR cross section library, which is based on ENDF/B-IV data. The DPA cross sections were obtained from MACLIB.

The results of the transport calculations for the RPV fluence analysis are presented in Tables 4.1 through 4.13. Table 4.1 presents the calculated saturated activities at the center of a 7 degree surveil'ance capsule for 12 months, 18 months and 24 months cycles of operation. In Table 4.2 the nonsaturated activities are calculated for end of cycles 3 and 8. The nonsaturation factors developed for the various dosimeters are described in Table 4.3. The measured A_{SAT} for the capsule is presented in Table 4.4. The comparison of measured and calculated parameters for the capsule 263° is presented in Table 4.5. Table 4.6 contains the relative azimuthal flux (> 1 MeV) variation incident on the vessel. Adjusted flux for the 12-month cycle with respect to the 263° capsule is presented in Table 4.7.

The adjusted flux is obtained by combining the measured dosimeter activities with the calculated spectrum-averaged cross sections using the expressions given in Appendix F. Since no measured activities are available fo the 18 and 24 month cycles, only computed activities are given for these areas. Peak flux for the various oppration cycle periods in the vessel are described in Table 4.8. Table 4.9 presents the neutron spectra at the peak at the vessel I.D.. The spectrum averaged cross sections at the center of the surveillance capsule are presented in Table 4.10. Table 4.11 presents the calculated flux in the surveillance capsules and their lead factors with

11

respect to the vessel I.D.. The accumulated RPV peak fluence levels for various cycles is summarized in Table 4.12. Table 4.13 presents the vessel fluence conditions after 12 EFPY.

Appendix A discusses the determination of space-dependent source distribution for the transport analysis performed for Calvert Cliffs Unit 1. Appendix B is a description of the 3D Flux synthesis method used in this analysis. The power-time history data is presented in Appendix C.

Table -... Calculated Values for Midplane Saturated Activities at Center of 7° S. C. (Calvert Cliffs-1)

(Units = Bq/gm)

-14

Dosimeter	A _{SAT} 12M Cycle	A _{SAT} 18M Cycle	ASAT 24M Cycle
54 _{Fe(n,p)} 54 _{Mn}	5.65E6	5.89E6	4.17E6
58 _{Ni(n,p)} 58 _{Co}	8.03E7	8.40E7	5.93E7
63 _{Cu(n,a)} 60 _{Co}	7.00E5	7.30E5	5.27E5
¹³⁸ U (n,f) ¹³⁷ Cs	4.59E6	4,8126	3.3686
46 _{Ti(n,p)} 46 _{Se}	1.57E6	1.64E6	1.1786
¢ ≥ 1 MeV	6.69E10	7.00E10	4.88E10
¢ >.111 MeV	1.23E11	1.29E11	8.95E10

13

Table -.2 Calculated Values for Non-Saturated Activities ("ATOR") (1) at Center of "° S.C. (Calvert Cliffs-1)

Units = Bq/gm

Dosimeter	(A _{TOR})3 ^(a)	(ATOR) 8 (b)
⁵⁴ Fe(n,p) ⁵⁴ Mn	3.85E6	4.6626
⁵⁸ Ni(n,p) ⁵⁸ Co	5.95E6	7.42E7
63 _{Cu(n,a)} 60 _{Co}	2.08E5	4.15E5
²³⁸ U(n,f) ^{13°} Cs	2.96E5	8.02E5
⁴⁶ Ti(n,p) ⁴⁶ Sc	1.16E6	1.45E6

(a) (A_{TOR})₃ E dosimeter activity (BQ/gm) at time of removal (EOC-3)
(A_{SAT})IIM h₁₋₃
(b) (A_{TOR})₈ E dosimeter activity at EOC-8

(A_{TOR})₃ e^{-kT} + (A_{SAT})_{18N} h₄₋₅
where (A_{SAT})₁₂, (A_{SAT})₁₈ = saturated activities for 12 and 18 month cycles
h₁₊₃, h₄₋₅ = non-saturation factors from Table 4.3
t = time (d) from EOC3 to EOC8 = 2739 days

14

Table -.3 Non-Saturation Factors(h) Used in Dosimeters Activities

Dosimeter	h _{1→3} (Cycles 1+3)	h ₄₊₈ (Cycles 4+8)
Fe54	0.683	.789
Ni58	0.*41	.884
Cu63	0.297	.463
7146	0.738	.882
U238	0.0643	.115

(a) h E non-saturation factor

 $= \frac{1}{2} P_{j} (1 - e^{-\lambda T_{j}}) e^{-\lambda (T - t_{j})},$

where factors $\boldsymbol{P}_j,\;\boldsymbol{T}_j$ and $\boldsymbol{T}\text{-}\boldsymbol{t}_j$ are given in Appendix C.

Table 4.4 "Mzasured" Saturated Activities (A_{SAT}) for Cycles 1-3 of Calvert Cliffs-1

Location

R = 217.01 cm $\theta = 7^{\circ}$

Center of S. C. (middle of compartment)		Maximum of S. C. (compartment bottom)	
ATOR ⁽¹⁾	A _{SAT} (2)	ATOR ⁽¹⁾	*.SAT (2)
3.45E6	5.05E6	3.57E6	5.23E6
S.46E*	7.3787	6.09E7	8.22E7
1.9685	6.60ES	2.13E5	7.17E5
3.17E5	4.9326	3.5625	5.54E6
1.29E6	1.7526	1.36E6	1.84E6
	Center of (middle of c ATOR ⁽¹⁾ 3.45E6 5.46E [*] 1.96E5 3.1 [*] E5 1.29E6	Center of S. C. (middle of compartment) ATOR (2) 3.45E6 5.05E6 5.46E ² 7.37E7 1.96E5 6.60E5 3.17E5 4.93E6 1.29E6 1.75E6	Center of S. C. Maximum of (compartment) (middle of compartment) (compartment) ATOR (1) ASAT ATOR 3.45E6 5.05E6 3.57E6 5.46E7 7.37E7 6.09E7 1.96E5 6.60E5 2.13E5 3.17E5 4.93E6 3.56E5 1.29E6 1.75E6 1.36E6

 $\ensuremath{^{(1)}}_{\text{ATOR}}$ values taken from Table 4A of Battelle report

Table 4.5 Comparison of Unadjusted Calculated and Measured Parameters for Cycles 1-3 (12 month cycles) of Calvert Cliffs-1

				ATOR	ATOR	
	Parame	ter		Measured ⁽¹⁾	$\underline{Calculated}(6)$	$\underline{C/E^{(5)}}$
Fe54	dosimeter	activity	(dps/gm) ⁽²⁾	3.45E6	3.85E6	1.12
N158	dosimeter	activity	(dps/gm) ⁽²⁾	5.46E7	5.95E6	1.09
Cu63	dosimeter	activity	(dps/gm) ⁽²⁾	1.96E5	2.08E5	1.06
U238	dosimeter	activity	(dps/gm) ⁽²⁾	3.17E5	2.96E5	0.93
Ti46	dosimeter	activity	$(dps/gm)^{(2)}$	1.2986	1.16E6	0.90
Peak	¢ (>1 MeV) at cente	er capsule ⁽³⁾	6.7E10	7.08E10 ⁽⁴⁾	1.06

(1) ATOR values taken from Batelle Report

(2)At center of capsule; time of removal from reactor

(3)At location of peak axial value

(4) This is a purely calculated value---no modifications are made to incorporate the experimental dosimeter results. The "adjusted flux" given in Table 4-7 reflects the incorporated measured values, and hence is believed to be more accurate.

(5) C/E = <u>calculated activity</u> experimental activity

(6) Calculated values obtained from Table 4.2

Tatie	ć Relative	Arimuthal	Variation	In c	(> 1 MeV) Incident
	on Vessel					

1		12 Month Cycle	18 Month Cycle	24 Month Cycle
1	1.25000E+00	1.000	1.000	1.000
2	3.75000E+00	.995	.991	.966
3	5.62900E+00	.973	.965	.906
4	6.37750E+00	924	.915	.848
5	6.64000E+00	.896	.886	.814
6	.00000E+00	.679	.868	.787
	7.35950E+00	.8*4	. 863	.772
R	7.62200E+00	.887	.873	.776
õ	8.37099E+00	.910	.895	.781
10	9.62500E+00	.879	.862	.734
11	1.08"50E+01	.833	.815	.680
12	1.21250E+01	781	.763	.630
13	1.100408+01		.726	.599
14	1.33775E+01	.709	.695	.572
15	1.36400E+01	.680	.667	.549
16	1.40000E+01	.654	.643	.528
1-	1.43605F+01	.640	.630	.517
18	1.46220E+01	619	.630	.517
19	1.49300F+01	.646	.63"	.522
20	1.55590E+01	.631	.623	.512
21	1.65000E+01	598	.595	.492
22	1. "50005+01	570	.570	.475
23	1.85000E+01	548	.553	.462
23	1.95000F+01	534	.543	.454
25	2.05000E+01	527	.541	.449
26	2.15000E+01	.524	.544	.446
24	2.25000E+01	.526	.551	.444
28	2.35000E+01	.530	.561	.444
29	2.45000E+01	.535	.572	.443
30	2.55000E+01	.541	.582	.443
31	2.65000E+01	.545	.590	.441
32	2.75000E+01	.546	.594	.436
33	2.84000E+01	.545	.597	.429
34	2.98118E+01	. 535	.588	.418
35	3.09600E+01	.526	.579	.413
36	3.12330E+01	.525	.578	.411
37	3.15847E+01	.524	.577	.409
38	3.20500E+01	.521	.575	.406
39	3.25500E+01	.518	.572	.402
40	3.30500E+01	.515	.569	.399

Table -. Continued

5	1	12 Month Cycle	18 Month Cycle	24 Month Cycle
43	3 30500F+01	5*1	.565	.395
4.5	3 A1067E-01	.506	.559	.392
42	3 410000-01	501	.554	. 388
4.0	2 101200-01	108	551	.387
4.4	9.471505*01	400	5 4 4	384
45	3.53.255*01	1496	224	170
46	3,607208+01	.485		1717
47	3.71220E+01	.403	.515	10/6
48	3.81720E+01	.454	.502	.305
49	3.88720E+01	,446	.492	.360
50	3.95"20E+01	.435	.484	.356
51	4.02360E+01	.433	.478	.352
50	4.0""50E+01	.430	.474	.350
53	4.12500E-01	.429	.472	.349
23	4.17500E+01	.42*	.471	.347
5.5	4 22500F+01	427	.470	.346
22	4 27500E-01	437	.470	.345
20	4 10000-01		471	345
9	H. JEZVUE*U.	. ***	4=1	345
58	4.57500E+01	1440		345
39	4.42500E+01	.428		. 242
60	4.47500E+01	.428	.472	. 345

(a) Peak value normalized to unity

Table 4.7 Determination of "Adjusted" ¢ (>1) in S.C. for 12 Month Cycles 1-3 (Location R = 217.01 cm, θ = 7°)

PEAK FLUX: (bottom compartment of S. C.)

Dosimeter	Measured ASAT	Calculated ceff (2	Adjusted ¢ (>1(3)
⁵⁴ Fe(n,p) ⁵⁴ Mn	5.2326	.135	6.19E10
⁵⁸ Ni(n,p) ⁵⁵ Co	8.22E7	.171	6.86E10
63 _{Cu(n,a)} 60 _{Co}	7.1785	.00159	6.88E10
		Average	6 65510

CENTER FLUX: (middle compartment of S. C.)

Dosimeter	Measured ASAT	Calculated Ceff	Adjusted ¢(>1)
⁵⁴ Fe(n,p) ⁵⁴ Mn	5.0526	.135	5.98E10
⁵⁸ Ni(n,p) ⁵⁸ Co	7.37E7	.171	6.15E10
63 _{Cu(n,a)} 60 _{Co}	6.60ES	.00159	6.33E10
		Average	6.15E10

(1) Measured values from Table 4.4

(2) Calculated values from Table 4.10

(3) Adjust $e(>1) \equiv \frac{[A_{SAT}] \text{ measured}}{No [oeff] calc.}$

Sable 4.8 Peak & (>1) in RPV of Calvert Cliffs-1

Radial ^(a) Location	12M Cycle, (b) 	12M Cycle, ^(c) calculated	16M Cycle, ^(c) calculated	24M Cycle, (c) calculated
IR RPV(R=221.29)	4.88E10	5.31E10	5.69E10	4.17E10
1/4T(R=225.98)	2.91E10	3.17E10	3.40E10	2.49E10
3/4T(R=234.7))	5.94E9	6.46E9	6.93E9	5.08E9

(a) RPV liner begins at 220.5
 RPV begins at 221.29
 RPV ends at 242.41

0

(b) Obtained by dividing adjusted S.C. flux (see Table 4.7) by lead factor in Table 4.11

(c)Obtained by dividing calculated S.C. flux in Table 4.1 by lead factor in Table 4.11 (Note: no experimental data is available for 18 and 24 month cycles.)

Table -.9 Neutron Spectra at Peak CT Location $(R = 219.71, \theta = 2.50, 2 = 97.2)$

	12 Month Cycle	18 Month Cycle	24 Month Cycle
380Q#	FLUX	FLUX	FLUX
	1.630895+07	1.73=++E+07	1.31134E+07
1.1	7.10135E+07	7.53924E+07	5.672936-07
7	2.891+1E+Ø8	1.07-396+06	- 30241E+08
	3.8: "99E+ØC	V. 107975+00	4.0-504E+08
44	1.03+73E+0+	1.10750F+09	R. 335715+00
	2.29010E+09	2.772 1-12+10-2	
	3.70197E+09	0.05"+.E+09	2.92251E+09
		A 848455-00	
2		- 70471E-00	D. 03438E+09
1.0	7 01005-00		3.45306E+09
	1 +0783E+09	コ ロヨットリアーヨウ	
	1 761075400		8-4072+09
		1 00	1.401936+09
	5 13072E+00	*************	3.63585E+Ø8
		E GUIDELE GA	1.73658E+Ø9
		0.47.101E+04	4.25138E+09
		2,70000E+04	4.35409E+09
*			5.79295E+09
*	1.0.0003984180	1.1/2025+10	8.53567E-29
		1,200446404	5.45967E+Ø9
	3.41004E+07	3.557705+07	1.65397E+09
	7,17550E+07	4.80801E+04	7.11397E+09
		0.30×32F+04	5,98543E+09
	1.32.70E*E*	8.43C-45+04	6.43968E+09
	7.2.2000.407	9.12917E*Ø9	6.54771E+09
		1.184_0E+10	8.55108E+09
	1.00-755+101	1.07477E+10	7.73826E+09
• '	.0~~3DE+04	7.562206+09	5.42580E+09
29	01050E+00	6.459336+09	4.535536+00
10	2.21013E+09	2.36901E+09	1.704445+00
	1.12336E+Ø9	1.311915+09	9.458145+00
	5-595E+09	2.77684E+00	1.970485+00
	1.50107E+09	1.799955+09	1.272325+00
47	3.35531E+04	1.59156E+00	2.56025E+09

Table -.10 Spectrum Averaged Cross Sections at Center of 7° S. C.

Reaction	c _{eff} (b) <u>12 Month Cycle</u>	Ceff(b) 18 Month Cycle	ල _{eff} (ති) 24 Month Cycle
⁵⁴ Fe(n,p)	0.135	0.135	0.137
⁵⁸ Ni(n,p)	0.171	0.171	0.173
63 _{Cu(n,a)}	0.00159	0.00159	0.00164
²³⁸ U(n,f)	0.452	0.452	0.453
46 _{Ti(n,p)}	0.0230	0.0230	0.0236

$$e_{eff} = \frac{\int_0^\infty c(E) c(E) dE}{\int_1^\infty c(E) dE}$$

Table -.11 Calculated c (E>1) in Surveillance Capsules and Lead Factors (LT) (2) for Calvert Cliffs-1

AZIMUTHAL LOCATION: 6 = 7°

Cycle Type	(>1) ⁽¹⁾	RPV Lead	1/4T Lead Factor	3/4T Lead Factor
12M 18M	6.69E10(6.15E10 7.00E10) 1.26	2.11	10.35
24M	4.88E10	1.17	1.96	9.61

ADIMUTHAL LOCATION: 6 = 14*

Cycle Type	<u> </u>	RPV Lead Factor	1/4T Lead Factor	3/47 Lead Factor
12M 18M	4.92E10 5.12E10	0.93	1.56 1.51	7.62 7.39
44N	3.21E10	0.77	1.29	6.32

(1) Results from transport calculations are shown (results for $e = 7^{\circ}$ are shown in Table 4.1). For 12 month 7° cuse the "adjusted" flux obtained from dosimeter measurements is shown in parenthesis (Table 4.7).

 $(2)_{LF} = \frac{\Phi_{sc} (>1)}{\Phi_{pv} (>1)} , \text{ where } \phi_{sc} \text{ is the calculated flux at the center of the surveillance capsule, and } \phi_{pv} \text{ is the max of the surveillance capsule, and } \phi_{pv} \text{ is the max$ imum calculated flux incident at the indicated RPV location (Table 4.9).

Table -.12 Determination of RPV Peak Fluence for Calvert Cliffs-1

Cycles	Full Power Days	Accumulated Fluence ⁽³⁾ (neutrons/cm ²)
1-4 (12 month)	1441.3	6.08E18
5-8 (18 month)	1618.1	7.95E18
9 (18 month)	404.5 (1)	1.99E18
10-E01(24 month)	8216.1 (2)	2.96E19
TOTALS	11,680 (32 EFPY)	4.56E19

(1) Projected value based on number EFPD/cycle for cycles 5-8

(2)
Projected, based on 32 EFPY lifetime

(3) 12 month fluence rat: based on adjusted flux values in Table 4.8, 18 and 24 month values based on calculated fluxes from Table 4.8. Table -.13 Fluence in RPV after 12 EFPY for Calvert Cliffs-1

Location	Fluence neutrons
RPV IR (R*221.29)	1.93E19
3/4T (R#236.93)	2.35E18

5. ADJUSTED REFERENCE TEMPERATURE DETERMINATION

NRC Regulatory Guide 1.99, Draft Revision 2, provides the approach for computing the adjusted reference nil-ductility temperatures for beltline materials. The adjusted reference temperature (ART) is given by

$$ART = Initial RT_{NDT} + \Delta RT_{NDT} + Margin$$
(1)

where

 ΔRT_{NDT} (surface) = [CF]f(0.28 - 0.1 log f) (2)

and CF = chemistry factor specified in Reg. Guide 1.99. Rev. 2.

 $f = fluence factor = \frac{fluence}{10^{19}}$

Margin = $2\sqrt{\sigma_1^2 + \sigma_2^2}$ where σ_1 = initial standard deviations of data = 0°F

 σ_{\star} = 28°F for welds and 17°F for plate materials.

Table 5-1, presents an evaluation of the ART of beltline materials for 12 EFPY. The large margin of 56°F was used for the weld metal 2-203, since this material is not in the Unit 1 Surveillance Program. From this table it is clear that the weld 2-203 is the controlling material for the pressure vessel. The ART of weld 2-203 at various irradiation conditions are used in developing the various P-T limit curves.

The through thickness attenuation of ΔRT_{NDT} is given by Regulatory Guide 1.99, Draft Revision 2, as

 $\Delta RT_{NDT} = [\Delta RT_{NDT} surface]e^{-0.067\chi}$ (3)

The ΔRT_{NDT} values for the various depths for the controlling weld 2-203 for 12, 16, 20, 24, 28, 32, 36 and 40 EFPYs are presented in table 5-2. Table 5-3 presents ART at 1/4T and 3/4T locations for the various EFPY.

PEG/FR-1278

	Chemi	Chemistry		Initial	ARTNDT	Margin	
Material	Cu	Ni	C.F.	RT _{NDT} °F	Surface °F	۰F	ART
2-203 A, B, C	0.21	0.87	208.2	-50	246	56	252
3-203 A, B, C	0.21	0.69	178.9	-56	213	56	213
9-203	0.23	0.23	120.5.	-80	142	56	118
D-7206-1	0.11	0.55	122.8	20	145	56	221
D-7206-2	0.12	0.64	83.6	-30	99	56	125
D-7206-3	0.12	0.64	82 6	10	99	56	165
D-7207-1	0.13	0.50	89.2	10	105	56	171
D-7207-2	0.11	0.56	124.2	-10	147	56	193
D-7207-3	0.11	0.53	119.9	-20	11.2	56	178
tiña	0.18	0.19	94.2	0	1.1	56	167

Table 5-1. ART Evaluation for Beltline Materials for 12 EFPY

Table 5-2. ART_{NDT} vs EFPY

EFPY	ART _{NDT} Surface °F	ART _{NDT} (1/4 T) °F	ART _{NDT} (3/4 T) °F
12	246	213	160
16	259	225	168
20	269	233	175
24	277	240	180
28	283	245	184
34	288	250	187
36	293	254	190
40	296	256	192

Table 5-3. Adjusted Reference Temperatures at 1/4 T and 3/4 T

EFPY	.RT (1/4 T) °F	ART (3/4 T) °F
12	219	166
16	231	174
20	239	181
24	246	186
28	251	190
32	256	193
36	260	196
40	262	198

6. HEAT-UP AND COOL-DOWN LIMITS

The adjusted reference temperature (ART) for 12, 16, 20, 24, 28 and 32 EFPYs were presented in Section 5. These ART values were used to develop the pressure-temperature limit conditions for the EFPYs described above. A SwRI computer program PTLIMT was used. The generic procedures for PTLIMT are described in Appendix D.

The following pressure vessel constants were employed as input data in the Calvert Cliffs Unit 1 analysis:

Vessel Inner Radius, r _i		86.81 in.
Vessel Outer Radius, r _o	κ,	95.43 in.
Operating Pressure, P _D	*	2235 psig
Initial Temperature, T _f		550°F
Effective Coolant Flow Rate, Q		128.8 x 10 ⁶ 1bm/h
Effective FLow Area, A		39.83 ft ²
Effective Hydraulic Diameter, D	=	22.44 in.

Heat-up limits were computed for heat-up rates of 40°F/hr, 50°F/hr, 60°F/hr and 70°F/hr. Cool-down curves were computed for cool-down rates of 0°F/hr. 20°F/hr. 50°F/hr, and 100°F/hr.

Figures 6-1 and 6-2 present the heat-up and cool-down limit curves, respectively, for 12 EFPY. These figures were developed based on the NRC Standard Review Plan (5.3.2). In Figure 6-1, the lowest service temperatures, minimum bolt-up temperature (70°F) and inservice leak test curves are incorporated. In developing the heat-up and cool-down curves, instrument error margins of -60 psig for pressure measurements and +10°F for temperature monitoring have been included. These margins have been used industry wide to allow for possible errors in measuring instruments and to account for

PEG/FR-1278

30

variations between bulk temperatures and local (near beltline) temperatures.

Appendix E presents the tables containing heat-up and cool-down data for 16, 20, 24, 28, 32, 36 and 40 EFPYs.

đ.

Temperature "F

FIGURE 6.1 . Heat-Up Pressure-Temperature Limitation Curves for Calvert Cliff Unit 1 Reactor Vessel (12 EFPY)

Figure 6.2 Cool-down Pressure-Temperature Limitation Curve for Calvert Cliff Unit 1 Reactor Vessel (12 EFPY)

60

REFERENCES

- Perrin, J. S., Fromm, E. O., Farmelo, D. R., Denning, R. S., and Jung,
 R. G. "Calvert Cliffs Unit No. 1 Nuclear Plant Reactor Pressure Vessel Surveillance Program: Capsule 263", Final Report, December 15, 1980.
- 2. JAT (BG & E) letter to NRC, January 23, 1986.
- Rhoades, W. A., Childs, R. L., "An Updated Version of the DOT-4 Oneand Two-Dimensional Neutron/Photon Transport Code", ORNL-5851, Oak Ridge National Laboratory, Oak Ridge, TN, July, 1982.
- Simons, G. L. and Roussin, R., "SAILOR-A Coupled Cross Section Library for Light Water Reactors", DLC-76, RSIC.
- 5. Don Wright's (BG & E) Calculations, January 15, 1986.

APPENDIX A

DETERMINATION OF SPACE-DEPENDENT SOURCE DISTRIBUTION FOR TRANSPORT ANALYSIS OF CALVERT CLIFFS-1

1.89.20.00

and a second sec

. .

.

PEG/FR-1278

. .

Aspendix A.

Deter tion of Spree-Dependent Source Distribution f. Insport Analysis of Calvert Cliffs-1

The space-dependent source distribution used in the transport calculations was obtained by combining the assembly-wise power distribution with relative pinwise power values for the peripheral assemblies (i.e., XY Zones 9, 18, 26, 34, 42, 49 in Figure A.1). The relative assumbly-wise power distributions for the 12, 18, and 24 month cycles are shown in Figure A.1. These values were obtained by averaging BOC, MOC, and EOC distributions provided by "altimore Gas and Electric in References A+1 and A+2 as representative for the appropriate cyclec. (The 24 month cycle distribution corresponds to a projected MOC wore.) The absolute power produced for each assembly is obtained by multiplying the relative assembly power by a value of

2700 MKth = 12.44 MW assembly .

The absolute assembly power distribution for each type of cycle is given by Table A.1.

The power density is assumed flat within the interior assemblies, but is represented with a pinwise variation for the boundary assemblies, which account for virtually all of the RPV fluence. Examination of the BOC, MOC, and EOC relative pin powers provided by BGSE shows that the MOC distribution is a good approximation for the average over the cycle, and hence was used as the representative pinwise variation. The relative pin powers in the peripheral assemblies are very similar for the 12 and 18 month cycles, and therefore the 18 month pinwise distribution

A=1

is used for both (the assemblywise distributions are different, however). Tables A.2+A.3 give the relative pinwise variations for configuration in Figure A.1.

The combination of the assembly and pinwise powers results in an absolute space-dependent power density defined for the quarter core. The power density values are converted to a source density by multiplying by the factor.

7.84 x 10¹⁶ <u>neutron/s</u>

The 1/4 core XY source distribution is then may _ onto the 1/8 core R8 mesh used in DOT by utilizing an interpolating program previously developed for this purpose.

References

A=1. Letter from Stanley to P. K. Nair, dated September 10, 1986.
 A=2. Letter from Runion to P. K. Nair, dated October 10, 1986.

			the second	line .				and the second
		49	48	47	46	45	44	43
	요즘 같은 것 같아.	.74	1.03	. 78	1.22	1.12	1.14	1.27
		.86	1,10	1.05	1,21	.88	1.24	.98
	1000	.40	1.03	1,10	1.34	1.05	1.34	1.02
7	42	41	40	39	38	37	36	35
1.11	.65	.96	.78	1.20	.86	1.03	1.21	1.07
1.1	.78	1.13	1.05	1,14	.91	1.17	1.01	1.20
1	.32	1.02	1.10	1.32	.99	1.32	1.07	1.37
	34	33	32	31	30	29	28	27
1.00	.89	.81	1,22	. 84	1.22	1.10	1.02	1.23
1.	1.00	.96	1.21	.91	1,24	.89	1.27	.81
1.00	.79	.97	1.34	- 99	.79	.99	1.33	1.03
1	26	8	24	23	22	21	20	19
1	1.11	1.20	1.12	1.03	1.10	.88	1.28	1.07
	1,11	.95	.88	1.17	.89	1,10	.95	1.10
7	.84	1.29	1.05	1.32	• .99	1.30	1.02	.98
71	17	16	15	14	13	12	31	10
. 31	1.09	.83	1.14	1.21	1.02	1,28	.86	1.11
	.86	.81	1.25	1,10	1.27	.95	1,22	.80
	1.16	1.01	1.35	1.07	1.33	1.02	1,29	1.02
.8	12244							
. 95	8	7	6	5	4	3	2	1
.79	.92	.93	1.27	1.07	1.23	1.07	1.11	.79
-	7.04	.86	.98	1.20	.81	1.10	.80	.56
	.96	1.5	1.08	1.37	1.03	.98	1.08	80

\$5."

A+ 3

CONE	12 Month Cycle	18 Monch Cycle	14 Month Cycle
1(**)	2.445(**)	1.739(**)	2,485(**)
2(*)	6.912(*)	4,946(*)	6,693(*)
3(*)	6,663(*)	6.812(*)	6,108(*)
d(r)	*.658(*)	5.02*(*)	6,383(*)
3(1)	6.644(*)	7.459(*)	8,523(*)
6.1	*.926(*)	6.103(*)	6.433(*)
172 J	3.767(*)	5,238(*)	6.538(*)
8(*)	5.699(*)	6.451(*)	6.003(*)
9	10.825	11.833	0,870
10(*)	6,906(*)	4,946(*)	6.371/*1
11	10.651	15,167	16.016
12	15,964	11.82	12
13	12.641	15,814	16.300
14	15.043	13.687	13 501
14	14.155	15.201	16 785
16	10.315	10.128	12 554
14	1 2 2 4 2	10 666	1 4 5 1 1
1.	0.102	10.000	4.4.2.4
10/*	5 45 5 (*)	21621	H.E.S.
20	15 561	0+04+(*)	0.115(*)
*** **	10.004	11.040	12.700
* 4 5 5	40×264	101.00	10.223
**	101 #*	11.012	12.368
* 2	141040	14.55.	10.474
64	19.200	10.957	13.114
40 74	14.809	11.833	16.013
40 88 / 4 /	15.801	13.786	10.414
	,055(*)	5.027(*)	6.371(*)
- 0	16.001	15.814	16.474
15 C	131154	11.012	12.355
30	15.130	15.453	9.792
31	10.738	11.310	12.306
32	15.167	15.105	16.71
33	10.041	12.007	12.044
34	11.012	12.467	9.892
35(*)	6.644(*)	7.459(*)	8,492(*)
36	15.043	12.567	13.276
37	12.828	14.595	16.449
38	10.738	11.31	12.293
39	14.981	14.371	16.424
40	9.705	13.051	13.749

Table A.1. Absolute Assembly Powers (Mwith) for Calvert Cliffs+1

A=4

Table A.L.	Continued		
lone	11 Month Cycle	18 Month Cycle	24 Month Cycle
41 423(*) 4434 4444 444 444 444 4 4 4 4 50	11.95" 8.068 7.926(*) 14.135 13.985 15.167 9.705 12.7"8 9.182 0.0	14.010 9.668 6.105(*) 15.491 10.937 15.105 13.015 13.687 10.676 0.0	12.629 4.006 6.371(*) 16.685 13.089 16.698 13.736 1.853 5.027 0.0

ento

Average Assembly Power = $\frac{21^{\circ} MN}{21^{\circ} BS GENDLIES} = 12.44 \frac{MN}{BSS}$

(*)] assembly per tone

(**)] assembly per zone

Table A.2. Relative Pin Powers for 18 Month Cycle

1. Carl 10581. 1.03 .965 .95 .95 .927 .89 .956 1. .969 .82 .677 .62 .554 .477 .401 10581. .997 .93 .909 .893 .885 1.044 0. 0. .885 .659 .585 .516 .447 .387 1.42 0.00 0.00 1.32 1.04 .98 .95 .92 1.05 0.00 0.00 .82 .31 0.00 0.00 1.13 .85 .77 .69 .61 .51 1 - 1 Mg 1.22 1.28 1.03 .86 .79 .72 .63 .55 1.25 0.00 0.00 1.10 .84 .76 .68 .60 .54 07. 38. 00.0 0.00 1.33 1.04. 97. 95. 79. 40. 1.00 0.00 0.00 1.2. 1 1.00.99.92.95.94.89.89.72.57 -86. 99 8.00 8.00 .77. 55 22. 77. 00.0 0050 BP. 27. 554" .591 - 711 1.19 1.19 1.17 1.11 1.05 .99 .97 .93 .88 .84 .76 .57 .58 1.12 1.19 1.152 .99 .83 .76 .69 .61 42. 94. 89. 89. 89. 48. 48. 92. 47. 19. 99. 49. 19. 29. 79. 50. 1.03 .41. 19. 19. 19. 19. 19. 19. .93 .85 .69 .54 . 96 . 93 . 79 . 72 . 64 . 56 10581.-1.1 1.17 1.27 1.24 1.09 .92 .86 .83 .8 .85 .875 .802 .647 . 10581. 1.11 1.27 0. 0. 1.17 .91 .84 .814 .786 .90 0. 0. .692 .469 10581. 1.1 1.25 0. 0. 1.15 .896 .83 .8 .77 .878 0. 0. .668 .469 .55 . 447 . 344 105R1. 1.065 1.11 1.19 1.16 1.02 .87 .83 .8 .79 .778 .77 .72 .57 777. 418. 748. 188. .981 .91 .874 .85 .835 .98 8. 8. 855 .635 .543 .497 .432 .376 05E -. 306 514-424× EE -.848 .884 .87 .733 .6 .542 .482 .64 8. 8. 47 .925 1.02 8. 8. .855 .642 .579 .561 .527 .596 8. 8. 16. 18. 52. 36. 92. 91R1. 1.228 1.198 1.210 1.201 1.163 1.127 1.097 9181. 1.239 1.431 0.000 0.000 1.389 1.120 1.074 9181. 1.224 1.305 1.421 1.414 1.277 1.135 1.124 1.115 1.118 1.129 1.143 1.138 1.895 1.896 1.073 1.078 1.205 1.319 1.302 1.165 1.048 9181. 1.211 1.298 1.416 1.486 1.258 1.899 1.854 1.071 1.086 1.312 0.000 0.000 1.262 1.047 9181. 1.246 1.437 0.000 0.000 1.398 1.133 1.092 1.878 1.886 1.305 8.800 8.000 1.241 1.829 1.100 1.079 1.179 1.271 1.238 1.092 0.976 9181. 1.205 1.159 1.166 1.164 1.151 1.242 1.335 1.25 .98 .99 .98 .92 .B9 1.13 1.11 1.12 1.10 1.04 .99 .92 .89 1.12 1.10 1.102 1.083 1.028 .97 .912 .96 .89 .87 96 1.86 8. 8. .91 .688 .626 .607 .57 1.64 1.15 1.26 1.26.99 1.20 1.06 1.06 1.055 · 014 1.15 1.31 1.29 1.13 1.05 1.06 00.00 0.00 0.00 1.38 1.35 1.11 1.69 1.29 1.26 1.08 1.05 1.08 1,32 00.00 . 972 . 9 . 87 . 837 . 8 1.34 1.28 1.12 1.08 1.86 80.1 1.34 1.22 .13 1.21 1.17 1.16 123 . 21 .17 51. .12 .14 1.16 1.22 10581. 0581. MSRI .-0581 . 105R1. 10581. 105R1. 105R1. UNSR1. 05R1. INCOI Ø5R1. 19561. 0581. 0581 0.54

1.296 1.173 1.052 1.027 2.986 0.934 0.919

A=6

Table A.2. Continued

12. . 654 PO1 - 1 . 7.35 649. 114. .837 526-¢, ¢. 9181. 1.147 1.098 1.093 1.092 1.1 1.312 0.0 0.0 1.16 .887 1.33 9181. 1.172 1.121 1.119 1.187 1.881 1.17 1.242 1.202 1.837 .87 .888 1.277 1.408 1.391 1.24 1.082 1.047 1.012 6 1.01 1.042 91R1. 1.147 1.895 1.068 1.886 1.893 1.382 8. 0. 1.152 .882 .8 .725 9181. 1.265 1.351 1.465 1.444 1.280 1.099 1.039 1.002 .981 1.058 1.273 1.466 0.0 0.0 1.39 1.1 1.028 .992 .976 1.136 0.0 0.0 1.137 1.128 1.104 1.197 1.277 1.234 1.065 .897 1.05 1.027 1.064 * 24B é 9181. 1.284 1.272 1.371 1.348 1.197 1.84 .999 .969 .915 .956 .979 1.45 0.0 0.0 1.377 1.094 1.028 .992 .969 1.121 0. 1007 #12.4 785. 424. 485. 394. 84. 25. 56. 95. ELE" 1771 シキキ まゆま 242 242 241 242 572 . 404 . 854. 84. 1.076 9181. 1.195 1.144 1.139 1.143 1.158 1.352 0.000 1.348 0.000 0.743 0,832 1.114 0.797 1.001 147.0 0.886, 0.863 1.3.5 4 T 194 0.778 1.09.1 0.724 1.111 1.145 1.084 0.868 1.248 HE 1 - 1 1,139 0.850 01.939 541 - 1 1.026 1.125 1.156 0.833 1.01. 200-0 1.157 116.0 1.155 0.0.0 067.1 0.000 1.0966 0.941 1.113 1.423 1.425 1.361 1.2019 0000.00 0.923 9181. 1.294 1.261 1.271 1.296 1.201 4944 1.273 1.052 0.998 1.142 1.138 1.142 1.196 0.965 1.172 1.79.0 1.435 421-1 0.000 0.090 0.000 1 . 48.44 1.0009 0. 784 0.000 1.251 .63 .58 .532 142 1.022 1.176 1.274 1.011 8444 - 1 1.204 1.094 1.115 E12"1 0.000 0.000 184.1 147 147 17. 28. 9. 573. 78. 73 . 741 1.246 110-1.171 2.42.5 1.333 1.364 1.010 120-11.03.1 624-1 40 . 3 . 4 A. 4 1.26. 1.037 .858 .689 2.134 .622 141 147 .573 147 .915 .825 0000.0 .036 61.7.* .055 1.290 1.062 .614 VIH1.0 1.193 0.000 1.200 1.256 295. 1.3000 240. 1.292 1.259 141 . 693. 1.217 . 785 9181. 1.179 .674 .598 .584 142 241 241 147 . Rar. 72 596. 9181.0 5 0, 45. . 575 G. IHIQ 91R1.0 91R1.0 9181. 91R1. 91R1. . 673 +59* 9181 9181

ERC.

.812

é

9181. 1.239 1.41 8. 8. 1.314 1.835 .963 .933 .984 1.836 8.

142

A=7

.570

29U."

9181. 1.243 1.414 0. 0. 1.308 1.024 .945 .914 .89 1.027 0. 0.

154. * 775 x 1.169 1.167 1.14 1.077 1.013 0.951 0.915 0.879 0.043 0.805 0.777 20 0.636 0.37 1.002 0.94 0.913 0.89 0.876 1.028 0.0 0.0 0.0 0.877 0.72 0.977 0.51 0.444 1.248 1.338 1.384 1.139 8.954 8.899 8.855 8.83 8.986 8.986 8.97 1.2.9 8.715 8.00. 8.447 8.015 8.933 8.9 8.8 8.7 1 8.993 8.929 8.982 8.87 8.87 8.83 8.991 8.91 8.92 8.873 8.752 8.613 8.557 8.494 1.222 1.29 1.387 1.355 1.186 1.885 .937 .984 .874 .932 .947 .891 1.324 0.0 0.0 1.704 0.934 0.87 0.834 0.797 0.907 0.0 0.0 0.694 6 8.94. 3.94 8.971 8.989 1.869 8.8 8.8 8.8 8.99 8.669 8.594 8.525 1.150. 180. 400. 800. 280. 200.1 400.1 801.1 1.173 1.254 1.218 1.065 0.911 0.869 0.833 0.774 0.802 0.617 1.011 0.994 0.967 0.978 0.991 1.041 0.996 0.842 0.694 9181. 1.232 1.100 1.105 1.348 0.0 0.0 142 147 .722 .564 . 662 . 577 5 G. IAIQ 9181.0 91R1.0 G.IRIQ B. IRIQ. 0.429 0.5.9 9.1819 0.649 8.567 9181. 91HI. 0.451 0.431 0.376 1.2384 1.117 641-1 1.166 1.069 1.024 0.673 1.184 0.594 564 0 PIRI. 0.399 91RI. 0.516 0.34 241 242 142 241 242 741 292 241 147 564× 241

A+0

Table A.2. Continued

53. 69-272 -12.41. 5.50 59-. 34R . 56 6.5.4 36 . 96 . 06. 46. 121 104.7 .60 0.703 0.678 0.626 0.641 0.642 196.4 0.499 0.511 . 89 - 62 s - 51 44 0.47 .64 .58 10.10 1.05 1.12 1.07 1.1. 0.00 0.00 \$2. 20. 0.00.57 14nr. 00.00 AE . . 70 55. 55. BE . 1.03.1.01.1.00.1 -337 0.19 0.564 0.534 0.603 0.0 . 1351 24* .9. .70 .64 .82 .59 .67 0.00 0.00 .92 1.07 0.00 .93 .80 .76 .97 .96 .94 1.08 0.00 0.00 .95 .74 .68 .62 13. 57. SE . BE . 170 0.643 0.617 0.502 0.555 0. 86. 428" EB3" 0.513 8.473 0.00 . 98 . 75 . 70 . 69 . 64 . 53 0.00 15. .82 .69 .64 .59 36 . 68 . 86 . 86 . 22. 15. 21 " 14. Set. * 10-. 99 . 98 1.13 8.68 8.68 .97 £5.ª 1.12 1.07 1.05 1.04 1.01 1.05 1.13 1.07 .74 .69 44. 74. 15. 52. 52. 14. 44. ゆわすべ 1.09 1.05 56." 14. 10.1 56" 66" -31 0.533 224" 1.011 56 86. . 62 . 58 . 55 11. 18. 1.064 1.017 0.887 0.747 0.878 0.987 0.853 0.716 0.585 15.9 " 1.24 1.07 0.00 1.35 1.06 1.31 1.04 1.31 1.16 1.001 2.1.2 44. 1.22.1.17 675 515. 0.78%. 1.05 1.11 1.07 .94 .89 .76 68° 26° 10 4 . 2 8.88 0.00 0,00 0,000 3.2.6 0 0 0 6:9-1.29 1.25 1.25 24-1 51. 5965 1.07 1.02 1.00 00.00 HO 56. M6. * 142 .83 .74 .69 ś 1.32 988. EIT. LIH. 1.12 54-1 1.40 1.05 44 13. 66. 14. 26. .97 1.07 O.IRIC 0.1919 O. IAIP 1.082 0. G. IHIV 1.016 0. 793 8. 258 0.363 0.286 1.22 1.02 1.23 1.17 1.33 1.05 1.03 1.01 86. 242 5 7. 7. W. S. 241 0.997 0.879 142 8.464 6.98 0.369 -82 三十五 77H1. 7781. 7783. 7781. 7781. 7781. 77R1 . 77R1. 77R1. 77R1. た内村 7781 77R1 2783 77R1 782 282 282 282 282 282 282 282 285 287 ZHL. 282 287

A-9

Title A.3. Relative Pin Fouers for 26 Bonch Cycle

•

100

14-141.0 1.065 1.057 1.057 1.057 0.756 0.857 0.849

10341.0 1.071 1.076 1.174 1.146 0.49. 0.903 0.843 0.748 0.748 0.748 0.746 0.7. 0.563 0.463

10731.0 1.087 1.200 0.880 0.3000 1.076 0.379 0.793 0.756 0.832 0.000 0.660 0.540 0.474

100-41.4 1.00-01.1944 0.0000 0.0000 1.0002 0.030 0.793 0.763 0.826 0.0000 0.0000 0.514 0.471

10581.0 1.075 1.057 1.149 1.115 0.950 E.991 0.845 0.802 0.757 0.729 C.759 0.694 0.947 0.436

0.907 0.768 0.700 0.046 0.994 0.955 0.919 0.199 0.954

10381.0 1.035 0.990 0.947 0.921 0.901 0.937 0.000 0.000 0.848 0.689 0.620 0.557 0.492 0.426

10341.0 1.016 0.967 0.935 0.948 0.890 0.972 0.960 0.000 0.833 0.675 0.606 0.544 0.480 0.416

10581.0 1.009 0.972 0.950 0.919 0.882 0.862 0.913

0.866 0.729 0.661 0.607 0.547 0.479 0.411 10581.0 1.017 1.005 1.086 1.051 6.899 0.830 0.784

0.739 0.693 0.663 0.686 0.625 0.493 0.410

0581.0 1.025 1.121 0.000 0.000 0.495 0.816 0.751 0.705 0.673 0.723 0.000 0.000 0.548 0.407

10581.0 1.013 1.110 0.000 0.000 0.977 0.796 0.727

0.680 0.651 0.703 0.000 0.000 0.534 0.396 (0541.0 0.989 0.982 1.050 1.015 0.853 0.768 0.707

0.660 0.626 0.609 0.637 0.582 0.458 0.376

10581.0 0.976 0.951 0.925 0.878 0.812 0.747 0.692 0.645 0.607 0.575 0.541 0.494 0.430 0.361

05R1.0 .711 .685 .646 .603 .552 .521 .482

.444 .487 .372 .338 .384 .267 .224

05R1.0 .697 .000 .661 .615 .547 .586 .465

.427 .391 .356 .336 .304 .000 .217 0581.0 .670 .672 .000 .000 .550 .486 .444

486 .371 .351 .008 .008 .254 .285

0581.0 .640 .637 .000 .000 .530 .465 .423 .386 .353 .335 .000 .000 .238 .192

10581.0 .612 .581 .573 .541 .000 .442 .399 .365 .336 .000 .288 .256 .214 .189

A+10
Continued Table A.3. .386 .553 .520 .468 .453 .412 .389 .316 .289 .268 .238 .288 .167 10581.0 . 337

. 0000 004. 1.4. 724. 194. 326. 565. .000 .308 .270 .242 .213 .185 .156 10581.0

16. 1.14 1.11 1.09 1.06 1.62 .97 .90 .86 .84 .80 .76 .72 .67 91R1.0

1000 . 376. 379 . 429 . 379 . 376 . 000

141. 071. 391. 223 .196. 170 .143. . 000

10. 1.13 1.12 1.17 1.14 1.02 .95 9.1AI9

516 . 477 . 441 . 409 . 378 . 344 . 325 .87 .84 .83 .85 .80 .71 .64

.233 .207 .182 .158 .132 .259 . 296

1.14 1.20 0.00 0.00 1.09 .93 .89 91R1.0

45 . 83 . 86 8.88 8.98 8.74 .64

492 . 454 . 437 . 486 . 888 . 328 . 294 .267

9181.0 -1.13 1.18 0.00 0.00 1.07 .93 241. 241. 271. 891. 000. 142.

. 88 .84 .81 .84 0.00 0.00 .72 .63

449 .000 .000 .353 .308 .275 . 467 142-

.87 1.10 1.08 1.13 1.09 .97 .92 211. 041. 000. 000. 202. 123. .83 .80 .77 .78 .74 .65 .60 O.IHIC

442 .427 .000 .000 .327 .284 .254

1.08 1.04 1.01 .98 .94 .91 .92 201. 021. 000. 000. 781. 202. . 226 91R1.0

.88 .79 .74 .70 .65 .61 .57

. 2.303 414 .000 .363 .329 .286 .257

1.06 1.02 .98 .95 .92 .95 0.00 .182 .162 .150 .133 .000 .093 . 205 91R1.0

25. 0.00 .82 .72 .67 .62 .57

200 . 223 742. 573. 308. 333. 247

918. 878. 981. 421. 841. 851. 871. 84. 8 1. 86. 1. 81. 97. 79. 19. 198. 19. 919

8.88 .81 .71 .65 .6N .35 .49

1.06 1.91 .98 .94 .90 .87 .68 142 9181.6

.84 .74 .69 .64 .59 .53 .46

142 9181.0 1.07 1.03 1.07 1.03 .91 .95 24. 52. 53. 89. .77 .72 .69

PT. 28. 89. 0.00 0.00 1.11 0.181 0.181 . 17 .75 .71 .72 0.00 0.00 .56 .44

Table A.J. Continued

1.10 0.00 0.00 0.00 .77 0.60 .55 .44 1.86 .74 .70 .71 0.00 8-1416 7+1

1.82 1.05 1.01 .01 .03 .03 1.05 141 9181.0

.73 . 69 . 66 . 66 . 68 . 58 . 42

142 9181.0 1.04 1.00 .97 .93 .87 .92

.73 .68 .64 .68 .55 .49 .41

147 9181.0 1.137 1.102 1.083 1.048 0.998 0.93 0.878 0.833 0.794 0.761 0.723 0.666 0.589 0.586

9/9. 1.1.28 1.1.3 1.209 1.171 1.002 0.919 0.879 0.814 0.781 0.766 0.808 0.745 0.594 0.497

142 91R1.0 1.127 1.230 0.000 0.000 1.113 0.920 0.052 0.807 0.780 0.849 0.600 0.000 0.661 0.495

147 9181.0 1.106 1.211 0.000 0.000 1.102 0.914 0.851 0.806 6.776 0.848 0.000 0.000 0.648 0.482

142 9181.0 1.0066 1.0098 1.155 1.124 0.969 0.903 0.961 0.817 0.770 0.741 0.711 0.703 0.556 0.457

142 9181.0 1.027 0.996 0.980 0.936 0.925 0.914 0.981 0.935 0.786 0.711 0.653 0.590 0.514 0.433

142 9181.0 1.001 0.962 0.938 0.917 0.907 1.008 0.000 0.871 0.699 0.625 0.560 0.491 0.417

42 91R1.0 0.986 0.947 0.922 0.901 0.891 0.998 0.000 0.000 0.854 9.684 0.610 0.546 0.479 0.408

A+12

142 9181.0 0.983 0.950 0.931 0.906 0.876 0.956 0.930 0.884 0.739 0.664 0.607 0.547 0.477 0.404

142 9181.0 0.991 0.979 1.063 1.030 0.885 0.823 0.783 0.740 0.693 0.661 0.633 0.621 0.489 0.404

142 91R1.0 1.000 1.089 8.000 0.000 8.973 0.801 0.741

8.697 8.666 8.716 8.830 8.888 8.542 8.401

142 7181.0 0.990 1.075 0.000 0.000 0.949 0.775 0.711 0.667 0.640 0.692 0.000 0.000 0.525 0.389

742 0.686 142 9181.0 0.964 0.943 1.016 0.974 0.822 0.

142 9181.0 0.945 0.986 0.880 0.840 0.782 0.723 0.672 8.642 8.618 8.574 8.622 8.568 8.446 8.367

0.629 0.592 9.561 0.527 0.479 0.417 0.351

144. 794. 453. 570. 534. 497. 461 9.1419 147

.652 .618 .688 .572 .514 .476 .439

102. 735 .315 .283 .239 .231

.632 .622 8.8 8.6 .513

91R1.0

243

. 382

9.1A19

241

348 .328 8.9 8.8 .235 .198

.612 .600 8.8 8.6 .498 .432 .395

. 455 . 417

E@4 .

142

91R1.0

. 425

.356 .355 .322 .288 .253 .212

Continued Table A.J.

.313 8.9 (.0 .22. .178 . 329 361

E15. 804. 344. 592. 953. 539. 592. G. 1919 142

.366 482 - 914 - 824 - 194. .311 .283 .245 .717 .199 .167 1.5. . 565 91R1.0 241 341

240 .213 .185 .155 .294 .267 333

.376 0.0 .501 .454 .429 .394 145 -91R1.0 142

.333 0.0 .477 . 4404 . 4075 . 372 .198 .171 .144 . 224 512. 122. 882. 9181.0 242 0.0

.183.1581.133 - 20B .270 .234 0.0

- 30M 1325 142. 188. 714. 564. 5.64 -91R1.0 142

.242 .216 .191 .169 .146 .123 812.

468 .429 .410 .376 .331 .302 .274 9.1819 241

.222 .197 .182 .161 .135 .113 248

. 441 . 420 8.8 8.8 8.8 .323 .291 .253 9181.0 142

.203 .187 0.0 0.0 .129 .:04 122

.392 8.8 8.6 . . 99 . 259 . . 31 91R1.0 .412 242

.184 .178 0.0 0.0 118 .094 102.

.378 .344 .326 .298 .398 .237 .237 9.1419 .185 243

91R1.0 .338 .301 .272 .249 .225 .203 .192 .165 .147 .136 .121 .101 .094 241

A-13

.162 .145 .129 .114 .100 .087 .072

142

7781.8.841.771.752.175.673.631.92 .400 .367 .322 .554 .517 .482 .446

282 7781.0 .815 .772 .767 .725 .650 .604 .562

.524 .488 .454 .436 .480 .345 .296

.532 281 7781.8 .793 .784 .388 .008 .653 .577 .000 .336 .275 000 . 544. . 694 . 459

- 502. 545. 282 77R1.0 .767 .754 .000 .000 .621

いたすい 512. H22. 085. 179. - 000 . 000 . 313 . 255 282 7781.0 .734 .685 .415 . 465 . 431

87. PTRL. 0. 697 . 643 . 667 . 548 . 5181. 0 . 1877 282 182-822. 222. 232. 373. 324. 434. 454.

ならなー -218 .426 .378 .348 .318 .287 .254

3000° 466 . 0000 991. SEZ. EA... 382 7781.0 .658 .604 .550 .521 £67* .323 892. 849.

の時間で、 .452 .436 281. 112. 842. 242. 892. 282 7781.0 .618 .568 .526 .468 . 800 . 342

281 77R1.8 .582 .537 .497 .468 .425 .392 .376

.346 .303 .273 .245 .219 .193 .165

Table A.3. Continued

A+16

1.13 M

287 7781.0 .549 .508 .491 .453 .399 .365 .334 .305 .276 .248 .231 .207 .176 .150 287 7781.0 .516 .498 .000 .000 .307 .338 .306 .277 .250 .233 .000 .000 .166 .135 282 7781.0 .479 .462 .000 .000 .357 .309 .277 .250 .225 .210 .000 .000 .150 .121 287 7781.0 .437 .401 .385 .353 .306 .275 .247 .222 .200 .180 .169 .151 .127 .107 297 7781.0 .309 .347 .317 .299 .243 .230 .14 .193 .173 .155 .139 .124 .108 .091 292 APPENDIX B

DESCRIPTION OF THE 3D FLUX SYNTHESIS METHOD

PEG/FR-1278

.

Appendix B. Description of the 3D Flux Synthesis Method

A 3D (R*C) flux distribution is synthesized using the following well established approximation:

 $\phi_{R, \theta}(R, \theta, z) = \phi_{R\theta}(R, \theta) \frac{\phi_{Rz}(R, z)}{\phi_{R}(R)} = \phi_{R\theta} A(R, z)$ 8.1

where $\boldsymbol{z}_{R,\theta}$ is the flux obtained from the R0 DOT calculation; and

$$A(R,2) \equiv \frac{2R_{\pi}^{2}}{\sigma_{R}} * \text{ axial distribution function obtained} \\ by representing the RZ flux * (ϕ_{RZ})
 distribution and dividing it by the integral over Z of the RZ flux,
 i.e.,$$

 $\phi_R \equiv \int_Z \phi_{RZ} dZ$.

In previous studies the RZ flux distribution was represented by
the results obtained from a DOT RZ calculation, while the radial flux
$$\sigma_R$$
 was obtained from a one-dimension calculation. However, it has been
discovered that a simplier approximation gives similar results (within
a few percent) as the results of these transport calculations for loca-
tions not outside of the RPV and near the reactor midplane. In this
approach we represent

$$A(R,Z) \equiv \frac{\phi_{RZ}(R,Z)}{\phi_{R}} \equiv \frac{P_{(Z)}}{\int_{T} P(Z) dZ} = B.$$

where P(2) is the average axial distribution of power in the core. The function P(2) has been represented by discrete nodal values obtained by averaging BCC, MQC and EOC relative axial powers provided by Baltimore Gas and Electric for the peripheral assemblies. The relative axial power values were provided at 51 points for the 12 and 18 month cycles. and at 24 points for the 24 month cycle. Therefore employing the expression eq. B.2 for axial point k, we find

$$A(R,2) = A(2) = A_{R} = \frac{P_{R}}{(P(2)d2)}$$
; k=1, * of exial points

There are 51 points used for the 12 and 18 month cycles, in the axial dimension. The 51 points define 50 nodes (i.e., intervals). The active core height was assumed to be 136.7 inches, so that the height of each axial interval will be:

$$12_1 = \frac{(136.7)(2.34)}{50} = 6.94$$
 cm

To calculate the integrated axial power we use the expression

$$P(z) dz = \sum_{k=1}^{50} \overline{P}_k \Delta z_k$$
 B.3

where \overline{P}_k is the average power (relative) in the kth axial node. This value is approximated by $\overline{P}_k = \frac{P_k + P_{k+1}}{2}$, where P_k and P_{k+1} are the point powers taken from the axial power data provided by BG&E. Substituting this expression for \overline{P}_k into eq. (8.3) gives

$$\int_{0}^{H} P(z) dz = \begin{bmatrix} 51 \\ \sum_{k=1}^{51} P_{k} - (\frac{P_{1} + P_{51}}{2}) \end{bmatrix} \Delta z_{1} \qquad B.4$$

Eq. B.4 was used to approximate the denominator of eq. B.2, for the 12 and 18 month cycles.

The axial distribution provided by BG&E for the 24 month cycle only has 24 intervals instead of 51 as for the 12 and 18 month cycles. A similar development for this gives

$$\int_{0}^{H} P(2) d2 + \frac{1}{2} \int_{k=1}^{k^{2}} P_{k} + (\frac{1+k P 24}{2}) \frac{1}{2} - 22 \frac{1}{2} = B, S$$

where $220 = \frac{(136.7)(2.54)}{23} = 15.1 \text{ cm}$

Eq. B-3 was used to approximate the denominator of eq. B.2 for the 12 ξ (& month cycle.

The final axial synthesis factors for the 12 and 18 month cycles are given in Table B.1, and for the 24 month cycle in Table B.2.

In order to compute the 3D flux or activity at some axial location (corresponding to a height 2 in Table B.1 and B.2), for some R8 location one must

- (a) find the flux or activity at the appropriate (R $_{\rm I},~\theta_{\rm J})$ location in the DOT R8 run
- (b) find the axial flux factor at the appropriate node K
- (c) compute the 3D value using expression

 $\phi(\mathsf{R}_{1}, \theta_{J}, \Xi_{K}) = \phi_{\mathsf{R}\theta}(\mathsf{R}_{1}, \theta_{J}) * \mathsf{A}_{K}$

(*)For example, in the 12 month cycle the peak power corresponds approximately to $\mathbb{Z} = 9^{+}.2$. From Table B.1 it can be seen that the axial flux factor for this location is equal to 3.26×10^{-3} . Therefore all activities and fluxes in the DOT R6 output should be multiplied by this factor in order to obtain the corresponding peak values.

References

- B-1. R. E. Marker, B. L. Broodhead, M. L. Williams, "Recent Progress and Developments in LWR-PV Calculational Methodology," <u>Reactor Dosimetry</u>, D. Reidel Publishing, Dordrecht, Holland, 1985.
- B-2. M. L. Williams, P. Chowdhary, "DOTSYN: A Module for Synthesizing Three-Dimensional Fluxes in the LEPRICON Computer Code System," Electric Power Research Institute.
- B-3. W. Tsoulfanidis, "Calculation of Neutron Energy Spectra in the Core and Cavity of a PWR (ANO-1)," EPRI NP-3776, Electric Power Research Institute, 1984.
- B-4. Ltr. from Stanley to Nair, dated September 10, 1986.

Table B.1.	Axial Di	stribution	Factors	for F1	ux Syn	thesis:	12 and
	18 Month	Cycles					

	<u> </u>	Ak, 12 Month	Ak, 18 Month
(TOP)	347.2	1.61E-3	1.558+3
	340.3	1.825-3	1.77E-3
	333.3	2.08E+3	1.98E-3
	326.4	2.21E-3	2.16E-3
	319.4	2.51E-3	2.33E-3
	312.5	2.52E-3	2,49E-3
	305.6	2.65E+3	2.628-3
	298.6	2.77E+3	2.47E-3
	291.7	2.87E+3	2,848-3
	204.7	2,96E+3	2.92F-3
	277.8	3.028-3	2.985-3
	2*0.8	3,06F-3	3.04F-3
	263.9	3.09F-3	3.085-3
	256.0	3,125-3	3 115-3
	250.0	3 145.3	3 195-3
	243 1	1 945-1	0,16E+0 3,13E-3
	526 1	5 745 - 3	31102-3
	5 0 0 1 1 5 5 5	0.645-0 1.145-1	3.135-3
	8.8216 8.86 8	0,145+0 1 1 1 1 1	3.122-3
	****	5.13E+3	3.11E=3
	410.0	3.122+3	3.10E=3
	208.3	3.10E-3	3.10E-3
	201.4	3.09E+3	3.09E-3
	194.4	3.09E + 3	3.08E+3
	187.5	3.08E-3	3.08E+3
	180.6	3.08E+3	3.08E-3
MIDCLE)	173.6	3.08E+3	3.09E-3
	166.7	3.07E-3	3.07E-3
	159.7	3.08E-3	3.09E - 3
	152.8	3.1 E-3	3.11E-3
	145.8	3.12E-3	3.14E-3
	138.9	3.15.5+3	3.17E-3
	131.9	3.17E-3	3.20E-3
	125.0	3.19E-3	3.23E-3
	118.1	3.21E-3	3.26E-3
	111.1	3.23E-3	3.28E-3
	104.2	3.25E-3	3.30E-3
(P*:K)	97.2	3.26E+3	3.31E-3
	90.3	3.25E-3	3.31E-3
	83.3	3.24E-1	3.30E-3
	76.4	3.216-3	3.27E-3
	69.4	3.175-3	3.235-3
	62.5	3.185-3	3.18F-3
	3.5.6	3 305-3	1.001.1

Table S.1. Continued

.

	12 Month	18 Month
48.6 41.7 34.7 27.8 20.8 13.9 6.9 6.9	2.94E-3 2.82E-3 2.77E-3 2.57E-3 2.57E-3 2.57E-3 2.46E-3 2.46E-3 2.95E 2.954E-3 1.954E-3 1.**	2.99E-3 2.87E-3 2.57E-3 2.57E-3 2.38E-3 2.38E-3 1.96E-3 1.77E-3

e.

.

8-5

Table 5.2. Axial Distribution Factors for Flux Synthesis: 24 Month Cycle

and the second	Ak, 24 Month
(TOP) 34".2	1.35E+3
332.1	1.92E-3
317.2	2.40E-3
301.9	2.70E+3
286.8	2.93E-3
2*1.*	3.09E+3
256.6	3.16E-3
241.8	3.18E-3
226.4	3.18E+3
211.4	3.17E-3
196.1	3.175-3
MITDLE: 181.2	3.18E-3
1 441 A 1441	3.18F-3
141.0	3,10F.3
155.0	1, 215, 1
156 8	1 255.1
4.6 ¥ + 0 1.5 E	2 938.3
VEFAUL DO A	0,602-0
(FEAN) 90.0	3.432-3
2 × 2	0.182-0
69.4	3.032-3
4848	2.825+3
30.3	2.53E-3
15.1	2.06E-3
(BOTTOM) 0.0	1.51E+3

APPENDIX C

POWER-TIME HISTORY FOR CALVERT CLIFFS, UNIT 1

5

PEG/FR-1278

Appendix C. Power-Time History for Calvert Cliffs, Unit 1

Table C.1 gives the power time history for Cycles 1-3, which correspond to the 12 month cycles that the first surveillance capsule was in the reactor.

Table C.2 gives the power time history for Cycles 4-8. Cycle 4 is a 12 month cycle, while the remainder are 18 month cycles.

	Fraction of			and the second of the	
Time Ster	-perating Period	Reference Power (Pi)	Time (T4)	Time (T-t.)	
and the second second second	and a second	and and the Conference of Conference	and the second second second second	second and the second second second first	
1	1-15	0.169	31	1549	
2	2.75	0.305	28	1521	
3	3 - * 5	0.429	31	1490	
4	4 - " 5	0.413	30	1460	
\$	5. **5	0.553	31	1429	
6	6+"5	0.679	30	1399	
	· . • .	0.801	31	1368	
4	8.75	0,402	31	1337	
0	9. *5	0.636	30	1307	
10	10. "5	0.929	31	1276	
11	1115	0.861	30	1246	
16	17.**	0.906	31	1215	
12	1.**	0.878	31	1184	
1.4	2.76	0.902	28	1156	
10	1.*6	0.921	31	1125	
16	A.**	0 500	30	1095	
20	6. 76	0.001	21	1064	
10	6.76	0.803	20	1034	
10	0 * 70	0.020	21	1003	
17	0 74	0.020	21	075	
20	0.70	0.534	20	042	
**	3. 0	0.830	21	011	
	10*.0	0.90	21	911	
4.5	11+/0	0.785	30	001	
44	14+70	0.014	21	810	
25	1*77	0.0	27	019	
20	- 2+27	0.0	48	191	
	3-77	0.0	31	760	
28	4+77	0.687	30	730	
29	5 = 7.7	0.745	31	033	
30	6+77	0.871	30	003	
31	7 + 77	0.915	31	638	
32	8 - 77	0.928	31	607	
33	9=77	0.954	30	577	
34	10 - 77	0.848	31	546	
33	11+77	0.961	30	\$16	
36	12-77	0.872	31	485	
37	1 - 78	0.563	31	454	
38	2 = 78	0.0	28	426	
39	3 = 78	0.0	31	395	
40	4-**8	0.387	30	365	

Table C.1. Power Time History for Calvert Cliffs Unit-1; Cycles 1-3 (12 month cycles)

C=2

Table C.1. Continues

Time Step	Operatin <u>i</u> Period	Fraction of Reference Power (Pj)	Irradiation $\underline{\text{Time } (T_j)}$	Decay Time (T-tj)
41	5."8	0.627	31	334
42	6=78	0.905	30	304
43	7.78	0.876	31	273
44	8.**	0.901	31	242
45	9.78	0.912	30	212
46	10-78	0.916	31	181
4*	11-78	0.897	- 30	151
3.4	12.78	0,482	31 31 31 31	120
4.9	1."9	0.344	31	8.9
10	5.*0	0,943	28	61
2.5	1. *0	0.943	-31	30
52	4-19	0.652	30	Q

Effective Full Power Days = 1073.2

Table C.2. Power Time History for Calvert Cliffs Unit 1: Cycles 4+8 (1)

Time Step	Operating Period	Fraction of Reference Power (Pj) (2)	Irradiation Time (T_1)	Decay <u>Time (T-tj</u>)
1	5-79	0.00	31	2708
2	6-*9	0.00	30	2678
3	79	0.373	31	2647
4	8.19	0.881	31	2616
5	9.79	C.953	30	2586
6	10-*9	0.904	31	2555
	11-*9	0.612	30	2825
8	12-79	0.561	31	2494
9	1-70	0.463	31	2463
10	2 - 80	0.431	28	2435
11	3 - 80	0.949	31	2404
12	4+80	0. 6	30	2374
13	5-80	0.821	51	2343
14	6 - 80	0.943	30	2313
15	7+80	0.955	31	2282
16	8-80	0.946	31	2251
1"	9+80	0.956	30	2221
18	10~80	0.460	31	2190
19	11-80	0.00	30	3160
20	12-80	0.00	31	2129
21	1 - 81	0.539	31	2098
22	2 - 81	0.979	28	2070
23	3-81	0.960	31	2039
24	4 ~ 81	0.782	30	2009
25	5 - 81	0.895	31	1978
26	6-81	0.811	30	1948
27	7+81	0.430	31	1917
28	8+81	0.909	31	1880
29	9-81	0.944	30	1850
30	10+81	0.728	31	18-5
31	11-81	0.878	30	1795
32	12-81	0.983	31	1764
33	1 - 82	0.982	31	1733
34	2 - 8 2	0.982	28	1705
35	3-82	0.980	31	1074
36	4 = 8 2	0.526	30	1044
3 "	5+82	0.00	31	1013
38	6+82	0.00	30	1583
39	8+82	0.725	31	1002
40	8-32	0.747	31	1521
41	0-82	0,672	30	1491
42	10-82	0,995	31	1400
43	11-82	0,960	20	1430

C+4

		그 사람이 다 유럽 가격하는 것		
44	12-82	0.940	31	1399
45	1+83	0.942	31	1368
46	1+83	0.891	28	1340
47	3 + 8 3	0.980	31	1309
4.8	4 - 83	0.809	30	1279
49	5+83	0.989	31	1248
50	6-83	0,910	30	1218
51	7+83	.988	31	1187
52	8+83	.932	31	1156
\$3	9-83	.896	30	1126
5.4	10-83	0.0	31	1095
53	11-83	0.0	30	1065
36	12-83	.531	31	1034
5*	1-84	.932	31	1003
58	1-84	.9"6	28	975
59	3-84	,807	31	944
60	4-84	.994	30	914
61	5+84	.176	31	883
62	6+84	.981	30	853
63	**84	.996	31	822
64	8-84	.882	31	791
63	9-84	.992	30	761
66	10-84	.965	31	730
67	11-84	.785	30	700
6.8	12-84	.501	31	669
60	1-85	.885	31	638
70	2-85	.967	2.8	610
- 1	1.85	070	11 11	579
	4+85	.151	30	549
	5-85	0.0	31	518
*4	6.85	0.0	30	488
	1.85	0.0	31	457
76	8-85	226	31	426
	0-85	028	10	396
- 9	10.85	776	31	365
70	11-85	200	30	335
80	12-85	604	11	304
81	1-86	012	31	273
80	2-86	.997	28	245
83	3=86	.772.	31	214
84	4-86	.991	30	184
63	5-60	.980	31	153
04	0-00	104	31	- 92
8.8	8-86	.977	31	61
8.0	9-86	.995	31	31
90	10+86	.717	31	C

Effective Full Power Days * 1986.2 (1) Cycle 4 is a 12-month cycle; all others, 18 month. (2) Reference Power * 2700 Mwth.

ATTACHMENT C

Unit 2 Fluence Calculations

(SwRi Report Without Appendices E through G)

Baltimore Gas and Electric Company Docket Nos. 50-317 & 50-318 December 13, 1991 SOUTHWEST RESEARCH INSTITUTE Post Office Drawer 28510, 6220 Culebra Road San Antonio, Texas 78284

PRESSURE-TEMPERATURE LIMITS FOR CALVERT CLIFFS NUCLEAR POWER PLANT UNIT 2

By P. K. Nair M. L. Williams M. Asgari

FINAL REPORT SwRI Project No. 06-1278-002

Prepared For Baltimore Gas & Electric Co. P. O. Box 1472 Baltimore, MD 21203

December 1988

Approved:

-8911060070 78p.

ig V

Edward M. Briggs, Director Department of Structural and Mechnical Systems

TABLE OF CONTENTS

	List of Figures	11
	List of Tables	111
١.	Summary of Results and Conclusions	1
2.	*mtro jetion	3
3.	Material Property Assessment	4
4.	Neutron Fluence Calculations	6
5.	Adjusted Reference Temperature Determination	32
ó.	Heat-up and Cool-down Limits	36
	References	39
	APPENDIX A - Determination of Space-Dependent Source Distribution for Transport Analysis of Calvert Cliffs = 2	A - 1
	AFPENDIX B - Description of the 3D Flux Synthesis Method	B+1
	APPENDIX C - Energy Group Structure and Dosimeter Activation Cross Sections Used in Transport Calculations	C-1
	APPENDIX D - Definition of "Measured Saturated Activity" Used in Calvert Cliffs Unit 2 Capsule Analysis	D = 1
	APPENDIX E - Pressure-Temperature Limit Tables for Calvert Cliffs Unit 2	E = 1
	APPENDIX F - Pressure-Temperature Limit Table for	F = 1
	APPENDIX G - Pressure-Temperature Limit Tables for Isothermal conditions for Calvert Cliffs Unit 2	G-1

1

Page

List of Figures

Page	
Calvert Cliffs Unit 2, Reactor Pressure 6 Vessel Map	
Calvert Cliffs Unit+2 DOT+4 RO MODEL* 8	
Capsule Geometry Modeling	
Heat-Up Pressure-Temperature Limitation 38 Curves for Calvert Cliff Unit 2 Reactor Vessel (12 EFPY)	
Cool-down Pressure-Temperature Limitation 39 Curve for Calvert Cliff Unit 2 Reactor Vessel (12 EFPY)	
	PageCalvert Cliffs Unit 2, Reactor Pressure

List of Tables

Table		Page
3.1	Calvert Cliffs Unit No. 2 Reactor Vessel Beltline Material Properties	. 5
4.1	Spectrum Averaged Cross Sections at Center of S.C.	, 10
4.2-a	Absolute Calculated Neutron Fluence Rate Spectra (i.e., group flux) at the Center of 7° Surveillance Capsules (SC) for Calvert Cliffs Unit+2	. 11
4.2-6	Absolute Calculated Neutron Fluence Rate Spectra (i.e., group flux) at the Center of 14° Surveillance Capsules (SC) for Calvert Cliffs Unit 2	. 12
4.3-a	Calculated Saturated Midplane Activities in Calvert Cliffs Unit-2 Surveillance Capsules (12 M Cycle)	13
4.3-6	Calculated Saturated Midplane Activities in Calvert Cliffs Unit-2 Surveillance Capsules (18 M Cycle)	14
4.3-0	Calculated Saturated Midplane Activities in Calvert Cliffs Unit-2 Surveillance Capsules (24 M Cycle)	15
4,4	Non-Saturation Factors (h) Used in Dosimeter Activities	16
4.5	Comparison of Unadjusted Calculated and Measured Parameters of Calvert Cliffs-2 Dosimeters Removed Following Cycle 4	17
4.6	"Measured" Saturated Activities (${\rm A}_{\rm SAT}$) for . 12 and 18 Month Cycles, Based on Cycles 1-4 Losimetry (2)	18
4.7-8	Determination of "Adjusted" $ \phi(>1) $ in S.C. for 32 Month Sycles	. 19
4.7-b	Determination of "Adjusted" $\phi(>1)$ in S.C. for 18 Month Cycles	20
4.8	Relative Azimuthal Variation (a) In (>1 MeV) Incident on Vessel	21

iii

List of Tables (Continued)

Calculated $\phi(E>1)$ in Surveillance Capsules . 23 and Lead Factors (1) for Calvert Cliffs 4.9 Unit 2 Peak ø(>1) in RPV of Calvert Cliffs+2 24 4,10 4.11 DPA Values in RPV of Calvert Cliffs-2 25 Due to Neutrons with Energies Above 15 KeV 4.12-a Calculated Fluence Multigroup-Spectra in 26 Reactor Pressure Vessel at Peak Axial and .zimuthal Location (6 = 0°) for Calvert Cliffs Unit-2 (12M Cycle) 4.12-5 Calculated Neutron Fluence Multigroup Spectra 27 in Reactor Pressure Vessel at Peak Axial and Azimuthal Location (0 = 0°) for Calvert Cliffs Unit-2 (18M Cycle) Calculated Neutron Fluence Rate Multigroup .. 28 4.12-0 Spectra in Reactor Pressure Vessel and Azimuthal Location ($e = 0^\circ$) for Calvert Cliffs Unit-2 (24M Cycle) Radial Gradient of Fast Fluence Rate 29 4.13 $[\phi (E > 1)]$ through RPV, at Peak Azimuthal and Axial Locations in Calvert Cliffs-2 4.14 Calvert Cliffs-2 4.15 Determination of RPV Peak Fluence for 31 Calvert Cliffs-2 5.1+a ART Evaluation for Beltline Materials 33 for 12 EFPY 5.1-0 ART Evaluation for Beltline Materials 33 for 32 EFPY ARTNOT VS EFPY for Controlling 34 5.2 Weld 2-203 5.3 Adjusted Reference Temperatures (ART) 35 at 1/4T and 3/4T for Controlling Weld 2-203

Page

1. SUMMARY OF RESULTS AND CONCLUSIONS

A detailed analysis was performed for developing new pressure-temperature limit curves for the Calvert Cliffs Unit 2 reactor pressure vessel. The analysis included new neutron transport calculations for 12, 18 and 24 month cycles, development of irradiated material properties based on NRC Regulatory Guide 1.99, Rev. 2, and the generation of heat up and cool down limit curves for every 4 EFPY from 12 EFPY to 40 EFPY conditions.

The SwRI evaluation led to the following conclusions:

- 1. Based on a calculated neutron spectral distribution, the peak fluxes incident on the Reactor Pressure Vessel (RPV) are 5.04×10^{10} n/cm^2 -sec, 4.89×10^{10} n/cm^2 -sec and 4.10×10^{10} n/cm^2 -sec for ¹² month, 18 month and 24 month cycles respectively.
- 2. Adjusting the calculated flux with respect to the first capsule dosimeter analysis the 12 month and 18 month cycle peak fluxes on the RPV was determined to be 4.72×10^{10} n/cm²-sec and 4.59×10^{10} n/cm²-sec respectively.
- 3. The calculated lead factors for the vessel ID based on surveiliance capsule capsule locations are given below:

Cycle Type	0=7° Lead Factor	O=14° Lead Factor	
12 month 18 month	1.26	0.94	

PEG/CALVERT

- 4. The accumulated peak fluence on RPV ID was calculated to be 1.17 x 10^{19} n/cm² for the first 7 cycles and 4.28 x 10^{19} n/cm² to end-of-life conditions.
- 5. Displacement per Atom (dpa) for 12 EFPY were calculated to be 2.632 x 10^{-2} , 1.747 x 10^{-2} and 0.5206 x 10^{-2} for RPV ID, 1/4T and 3/4T respectively. For 32 EFPY dpa are 6.498 x 10^{-2} , 4.302 x 10^{-2} , 1.275 x 10^{-2} for RPVID, 1/4T and 3/4T respectively.
- 6. The 12 EFPY fluence on the RPV was calculated to be 1.69 x 10^{19} n/cm². Fluence rate of 1.2933 x 10^{18} (n/cm²) per year was used to develop fluence value for 16, 20, 24, 28, 32, 36 and 40 EFPYs.
- 7. The controlling material for RPV operations was determined to be weld 2-203 with Cu = 0.12% and Ni = 1.01%. P-T limit data was developed for 12, 16, 20, 24, 28, 32, 36 and 40 EFPYs. The data also reflects different heat-up and cool down rates.
- 8. Based on the Reg Guide 1.99, Rev. 2 approach, the end of the life adjusted reference temperature for the controlling material will be 222°F at the RFV ID and 201°F at the 1/4T location.
- 9. Based on this study the Calvert Cliff Unit 2 reactor vessel has adequate material toughness for continued safe operated to end-oflife irradiation conditions.

2. INTRODUCTION

The long-term degradation of reactor vessel structural material properties due to irradiation is measured by the evaluation of material surveillance capsules removed periodically from the reactor vessel. Combustion Engineering, Inc. has provided the material surveillance program for the Calvert Cliff's Nuclear Power Plant Unit 2. To date, one surveillance capsule has been removed and tested (Reference 1). Typically, the capsules contain Charpy V-notch and tensile specimens in various combinations representing the present materials, welo metal and heat-affected zone (HAZ) material of the vessel beltline region. In addition, the capsules contain iron, nickel, titanium, sulfur, uranium and copper neutron flux monitors and temperature monitors.

The objective of the surveillance program is to correlate changes in vessel material fracture toughness properties with neutron fluence so that the reactor vessel pressure temperature limits can be determined. Recently, the concern about pressurized thermal shock has placed additional requirements to determine the irradiated condition of vessel inner surface. The applicable regulations and documents that address the continued licensibility of reactor vessels include 10 CFR Part 50, Appendices, B, G and H, 10 CFR Part 50.61, NRC Standard Review Plan 5.3.2, Regulatory Guide 1.99, Rev 2 and ASME Boiler and Pressure Vessel Code Section III, Appendix G.

In this report a new neutron flux analysis for the reactor vessel is presented. Based on the analysis, projected vessel fluence conditions were developed for assessing the long term integrity of the vessel. Pressuretemperature limit conditions are presented for 12, 16, 20, 24, 28, 32, 36 and 40 effective full power years of operation.

PEG/CALVERT

3. MATERIAL PROPERTY ASSESSMENT

In developing the pressure-temperature limit conditions for reactor vessels, the important material property required is the Reference Temperature - Nil Ductibility Transition (RTNDT) of various vessel pressure boundary materials. The locations within the pressure boundary that are of interest include nozzle area, closure head region and the beltline region. The mozzle and closure head regions are locations of high stress concentrations while the beltline region is subject to neutron embrittlement with time.

Early in the life of the reactor vessel, nozzle and closure head regions tend to control the pressure-temperature limit curves. However, with time the beltline irradiated materials become controlling. In the case of Calvert Cliffs Unit 2, the controlling material for '2 EF/Ys and beyond is the beltline region material. Between the nozzle and the closure head region, the closure head region poses greater restrictions on the PT limit curves.

10 CFR 50 "Fracture Toughness Requirements for Light-Water Nuclear Power Reactor" requires the closure head region materials to have, as a minimum, RT_{NDT} * 120° for normal operations and RT_{NTT} + 90° for hydrostatic pressure and leak tests. In the case of non-availability of RT_{NDT} data or where the data is not reliable, the RT_{NDT} for closure region is determined using the method in NRC Standard Review Plan 5.3.2, Branch Technical Position 5-2, MTEB. Based on this method, the RT_{NDT} of the closure head material was assessed to be 60°F.

To provide the submittal to NRC on the Pressurized Thermal Shock issue, Reference 2 extensive materials data information was developed for all the beltline materials (Reference 2). A key information needed is the material chemistry, especially Cu and Ni. The Cu and Ni values for the beltline

PEG/CALVERT

- 1

materials are presented in Table 3.1. These chemistry values are used in Section 5 of this report to develop the irradiated Adjusted Reference Temperature for the critical beltline materials. Figure 3.1 presents the Calvert Cliffs Unit-2 Reactor Pressure Vessel map with all the key beltine welds identified.

ID	<u>Cu (w/o)</u>	<u>Ni (w/o)</u>	Initial RTNDT(°F)
2-203 ⁽¹⁾ A,B,C	0,12	1.01	-56.0
3-203 A,B,C	0.23	0.23	-80.0
9-203	0.22	0.05	-60.0
0-8906-1	0.15	0.56	10.0
D-8906-2	0.11	0.56	10.0
D-8906-3	0.14	0.55	5.0
D-8907-1	0.15	0.60	-8.0
D-8907-2	0.14	0.66	20.0
D-8907-3	0.11	0.74	-16.0

Table 3.1. Calvert Cliffs Unit No. 2 Reactor Vessel Beltline Material Properties

(1) The value used for Ni is an upper bound due to the lack of available data. The generic initial $RT_{NDT} = -56$ °F, is used for this weld.

5

PEG/CALVERT

ATIMUTHRE LOCATION . DEGREES

CTL

4. NEUTRON FLUENCE CALCULATIONS

In this section a detailed neutron transport analysis for the Calvert Cliffs-2 is discussed. A discrete ordinates calculation using the DOT-4 [3] code was performed to obtain the radial (R) and azimuthal (0) fluence-rate distribution for the geometry is shown in Figure 4.1. As part of the reactor cross section model the details of the surveillance capsule geometry and location has to be modeled. The inclusion of the surveillance capsules in the R-0 model is mandatory to account for the significant perturbation effects from the physical presence of the capsule. Figure 4.2 represents the actual capsule geometry versus the DOT model used in the analysis. The DOT model incorporates a homogenized mixture of inconel and water to simplify the overall model while maintaining the required accuracies for the calculation.

The DOT-4 calculations were performed with the first 33 groups of the 47 group energy structure for the SAILOR [4] cross section library. The 47 group structure is given in Table C.1 of Appendix C. An S8 angular structure and a P_3 Legendre cross-section expansion were used. The fine-group dosimeter cross-sections for the 63 Cu (n, a) 60 Co reaction were obtained from ENDF/B-V file and were collapsed to 47 groups using a fission plus 1/E weighting spectrum. The other reaction cross sections were taken from the SAILOR cross section library. The dosimeter activation cross sections are given in Table C.2 of Appendix C. The DPA cross sections were obtained from MACLIB.

The results of the transport calculations for the RPV fluence analysis are presented in Tables 4.1 through 4.15. Appendix A discusses the determination of space-dependent source distribution for the transport analysis performed for Calvert Cliffs Unit 2. Appendix B is a description of the 3D Flux synthesis method used in this analysis. Appendix C gives the

PEG/CALVERT

PEC/CALVERT

00

154

Figure 4.1 Calvert cliffs Unit-2 DOT-4 RO MODEL*

*(Surveillance Capsules at 7 and 14° are not shown)
(Scale: 1 Large Division = 11.5 inches)

.

PEC/CALVERT

group structure and the dosimeter cross sections used in the calculations. Appendix D discusses the expressions used in obtaining the measured saturated activities; and Appendix E gives the power time history for cycles 1-8.

The first surveillance capsule (263°) was removed from Unit 2 following cycle 4 after 4.58 EFPIs of operation. A detailed capsule testing and analysis was conducted and reported in Reference (2). The dosimetry and vessel fluence evaluation provided information on the vessel fracture toughn as conditions for 3 cycles of 12 months each and one 18 month cycle. Since the removal of the 263° capsule, 18 month cycles have been used for cycles 5-7; and beginning with cycle 8, a 24 month is being employed. A 24 month cycle is planned for future operations.

In order to verify the accuracy of the present calculations, computed results have been compared on an absolute basis with experimental results from the earlier capsule analysis. The average C/E value obtained for the Fe56, Ni58, Cu63, U238, Ti46 and Np237 activities was 1.07. The worst C/E obtained Was 1.12 for U238. This good agreement indicates that the transport calculation methodology is accurate and that projected fluences should be reliable. In addition the experimental results can be used to adjust the calculated values to obtain even better agreement for the 12 and 18 month cycles (no experimental data is presently available for 24 month cycles). The adjusted fluence rates, which differs from the original calculated values by only about 10%, were used to obtain the projected RPV fluence.

The transport calculations indicate the maximum fast fluence (E>1 MeV) at the O-T location of the Calvert Cliffs Unit-2 RFV will be (a) 1.38×10^{19} n/cm² at the end of the present cycle (cycle 8), and (b) 4.28×10^{19} n/cm² at the end of 32 EFPY, assuming all future cycles to be the 24 month loading configuration.

PEG/CALVERT

Reaction	ceff(t) 12 Month Cycle	ceff(b) <u>18 Month Cycle</u>	ceff(b) 24 Month Cycle
54 Fe(6,p)	0.135	0.135	0.137
58Ni(n,p)	0.171	0.172	0.174
^{CO} Cu(n,a)	0.00160	0.00160	0.00165
45°U(n,f)	0.452	0.452	0.454
"Ti(n,p)	0.0231	0.0231	0.0236

Table 4.1 Spectrum Averaged Cross Sections at Center of S.C.

 $\operatorname{ceff} = \frac{\int_0^{\mathbf{x}} \sigma(\mathbf{E}) \ \phi(\mathbf{E}) \ d\mathbf{E}}{\int_1^{\mathbf{x}} \phi(\mathbf{E}) \ d\mathbf{E}}$

PEG/CALVERT

Table 4.2-a Absolute Calculated Neutron Fluence Rate Spectra (i.e., group flux) at the Center of 7° Surveillance Capsules (SC) for Calvert Cliffs Unit-2

Group	Upper Energy	¢ n-cm ⁻² •s ⁻¹		
	(MeV)	12 M	18 M	24 M
1	1.733E+01	1.59292E+07	1.52822E+07	1.27832E+07
2	1.419E+01	6.93740E+07	6.65497E+07	5.56482E+07
3	1.\$21E+01	2.88874E+08	2.76866E+08	2,29367E+08
4	1.000E+01	5.90160E+08	5.65460E+08	4.66652E+08
5	8.607E+00	1.06918E+09	1.02397E+09	8.40528E+08
6	7.408E+00	2.68699E+09	2.57274E+09	2.10562E+09
7	6.065E+00	3.87362E+09	3.70630E+09	3.01119E+09
8	4.966E+00	6.86589E+09	6.56254E+09	5.26914E+09
9	3.679E-00	4.85415E+09	4.63744E+09	3.70105E+09
10	3.012E+00	3.56590E+09	3.40593E+09	2.71246E+09
11	2.725E+00	4.02853E+09	3.84738E+09	3.06022E+09
12	2.466E+00	1.98716E+09	1.89776E+09	1.50951E+09
13	2.365E+00	5.24276E+08	5.00711E+08	3.98751E+08
14	2.346E+00	2.48412E+09	2.37234E+09	1.88732E+09
15	2.231E+00	5.92853E+09	5.66162E+09	4.50071E+09
16	1.920E+00	6.01068E+09	5.73971E+09	4.55897E+09
17	1.653E+00	7.83818E+09	7.48456E+09	5.94153E+09
18	1.353E+00	1.07824E+10	1.02965E+10	8.17687E+09
19	1.003E+00	6.61976E+09	6.32146E+09	5.02059E+09
20	8.208E-01	3.41830E+09	3.26402E+09	2.58966E+09
21	7.427E-01	7.39563E+09	7.06203E+09	5.60636E+09
22	6.081E-01	6.29429E+09	6.01018E+09	4.77007E+09
23	4.979E-01	6.70364E+09	6.40121E+09	5.08137E+09
24	3.688E-01	6.70364E+09	5.40516E+09	4.29365E+09
25	2.972E-01	S.26295E+09	8.84492E+09	7.02081E+09
26	1.832E-01	7.82055E+09	1.46754E+09	5.92668E+09
27	1.111E-01	5.97356E+09	5.70375E+05	4.52540E+09
28	6.738E-02	5.51274E+09	5.26369E+09	4.17532E+09
29	4.097E-02	2.16627E+09	2.06833E+09	1.64014E+09
30	3.183E-02	9.61249E+09	9.17733E+08	7.27404E-08
31	2.606E-02	1.65836E+09	1.58337E+09	1.25580E+09
32	2.418E-02	1.03785E+09	9.90926E+09	7.86043E+08
33	2.188E-02	2.77008E+09	2.64510E+09	2.09854E+09

PEG/CALVERT
Table 4.2-b Absolute Calculated Neutron Fluence Rate Spectra (i.e., group flux) at the Center of 14° Surveillance Capsules (SC) for Calvert Cliffs Unit-2

	Upper Energy		¢ n-cm ⁻² .s ⁻	1
Group	(MeV)	12 N	18 M	24 M
1	1.733E+01	1.36555E+07	1.28002E+07	1.93138E+07
2	1.419E+01	5.90405E+07	5.53381E+07	4.44927E+07
3	1.221E+01	2.39561E+08	2.24094E+08	1.77171E+08
4	1.000E+01	4.82710E+08	4.51223E+08	3.54086E+08
5	8.607E+00	8.59415E+08	8.02627E+08	6.23235E+08
6	7.408E+00	2.13034E+09	1.98863E+09	1.53439E+09
7	6.065E+00	3.00697E+09	2.80412E+09	2.13254E+09
8	4.966E+00	5.19617E+09	4.83870E+09	3.59520E+09
9	3.679E+00	3.62438E+09	3.37305E+09	2.47393E+09
10	3.012E+00	2.64975E+09	2.46516E+09	1.79860E+09
11	2.725E+00	2.98304E+09	2.77488E+09	2.01863E+09
12	2.466E+00	1.46982E+09	1.36719E+09	9.94068E+08
13	2.365E+00	3.88458E+08	3.61376E+08	2.63181E+08
-14	2.346E+00	1.83812E+09	1.70987E+09	1.24329E+09
15	2.231E+00	4.38728E+09	4.08118E+09	2.96463E+09
16	1.920E+00	4.44645E+09	4.13607E+09	2.99903E+09
17	1.653E+00	5.79570E+09	5.39088E+09	3.90357E+09
18	1.353E+00	7.99680E+09	7.43919E+09	5.39179E+09
19	1.003E+00	4.91889E+09	4.57636E+09	3.31787E+09
20	8.208E-01	2.53234E+09	2.35556E+09	1.70335E+09
21	7.427E-01	5.50761E+09	5.12462E+09	3.71182E+09
22	6.081E-01	4.68683E+09	4.36098E+09	3.15694E+09
23	4.979E-01	4.98422E+09	4.63761E+09	3.35877E+09
24	3.688E-01	4.23105E+09	3.93799E+09	2.85763E+09
25	2.972E-01	6.89253E+09	6.41386E+09	4.64476E+09
26	1.832E-01	5.82004E+09	5.41600E+09	3.92080E+09
27	1.111E-01	4.44033E+09	4.13191E+09	2.98901E+09
28	6.738E-02	4.09527E+09	3.81070E+09	2.75518E+09
29	4.097E-02	1.60846E+09	1.49660E+09	1.08127E+09
30	3.183E-02	7.13853E+08	6.64133E+08	4.79399E+08
31	2.606E-02	1.23418E+09	1.14840E+09	8.30116E+08
32	2.418E-02	7.72632E+08	7.19027E+08	5.20131E+08
33	2.188E-02	2.06304E+09	1.91978E+09	1.38761E+09

PEG/CALVERT

13

	Seturated Activities for 7° Surveillance Capsule, Bg/g			Saturated Activities for 14° Surveillance Capsule, Bq/g		
Dosimeter or Flux	R ≈ 216.379cm	R = 217.014cm	R = 217.649cm	R = 216.379cm	R = 217.014cm	R = <u>217.649c</u> m
54 _{Fe(n,p)} 54 _{Mn}	5.9586	5.36E6	4.76E6	4.58E6	4.13E6	3.70E6
⁵⁸ Ni(n,p) ⁵⁸ Co	8.45E7	7.62E7	6.81E7	6.48E7	5.86E7	3.25E7
63Cu(n,a)60Co	7.40E5	6.66E5	5.98E5	5.95E5	5.36E5	4.82E5
237 _{Np(n,f)} 137 _C	8 2.25E7	2.11E7	1.92E7	1.68E7	1.58E7	1.44E7
238 _{U(n,f)} 137 _{C6}	4.75E6	4.35E6	3.91E6	3.58E6	3.29E6	2.96E6
46 _{Ti(n,p)} 46 _{Sc}	1.66E6	1.49E6	1.33E6	1.31E6	1.18E6	1.05E6
\$ (E>1.0 MeV)	6 84E10	6.35E10	5.73E10	5.11E10	4.76E10	4.31E10
¢(€>0.1 MeV)	1.22E11	1.17E11	1.08E11	9.11E10	8.71E10	8.10E10

Table 4.3-a Calculated Saturated Midplane Activities in Calvert Cliffs Unit-1 Surveillance Capsules (12 M Cycle)

	Saturated Activities for 7° Surveillance Capsule, Bq/g			Saturated Activities for 14° Surveillance Capsule, Bq/g		
Dosimeter or Flux	R = 216.379cm	R = 217.014cm	K = 217.649cm	R = 216.379cm	R = 217.014cm	R = 217.649cm
54Fe(n,p)54Mn	5.69E6	5.12E6	4.57E6	4.27E6	3.84E6	3.44E6
58; (n,p) ⁵⁸ Co	8.08E7	7.29E7	6.51E7	6.03E7	5.46E7	4.88E7
63Cu(n,a)60Co	7.08E5	6.38E5	5.73E5	5.55E5	5.00E5	4.50E5
237 _{Np(n,f)} 137 _C	s 2.15E7	2.01E7	1.84E7	1.56E7	1.47E7	1.34E7
235 _{U(n,f)} ¹³⁷ Cs	4.5426	4.16E6	3.74E6	3.33E6	3.06E6	2.76E6
46 _{Ti(n,p)} 46 _{Sc}	1.59E6	1.43E6	1.28E6	1.22E6	1.10E6	9.84E5
\$\$\phi(E>1.0 MeV)\$\$	6.53E10	6.06E10	5.48E10	4.76E10	4.43E10	4.01E10
¢(E>0.1 MeV)	1.17E11	1.11E11	1.03E11	8.48E10	8.11E10	7.54E10

Table 4.3-b Calculated Saturated Midplane Activities in Calvert Cliffs Unit-2 Surveillance Capsules (18 M Cycle)

a

-

i,

1

6

-

.

.

ł,

6

. 18

	Soturated Activities for 7° Surveillance Capeule, Bg/g_			Saturated Activities for 14 Surveillance Capsule, Bq/g		
Dosimeter or Flux 2	R = 16.379cr	R = 217.014cm	R = 217.619cm	R = 216.379cm	R = 217.014cm	R = 217.649cm
54 Fe(n n) 54 Mp	4.60E6	4.14E6	3.70E6	3.22E6	2.91E6	2.61E6
58 NI (D D) 58 CO	6.5217	5.8007	5.26E7	4.54E7	4.11E7	3.68E7
63 (D) (D (C)	5 82E5	5.2485	4.71E5	4.32E5	3.89E5	3.51E5
237 No(5 1) 137 Cs	1 71E7	1.6127	1.47E7	1.14E7	1.08E7	9.87E6
238 11 137 00	3 64E6	3.34E6	3.00E6	2.47E6	2.2708	2.04E6
46mi/n n)46sc	1 3016	1.16E6	1.04E6	9.3615	8.42E5	7.56E5
4(5) 0 ¥(V)	5 92510	4.84E10	4.38E10	3 43F10	3.25E10	2.95E10
d(E>0 1 MeV)	9.31210	8.87E10	8.24E10	6.18E10	5.92E10	5.51E10

Table 4.3-c Calculated Saturated Midplane Activities in Calvert Cliffs Unit-2 Surveillance Capsulos (24 M Cycle)

Dosimeter	h ₁₋₃ (Cycles 1-3)	h ₄ (Cycle 4)
Fe54	0.7007	0.6110
N158	0.5159	0.7394
Cu63	0.3211	0.1642
Ti46	0.5560	0.7542
U238	0.0699	0.0313

Table 4.4 Non-Saturation Factors(h) Used in Dosimeters Activities

1

3

 $(a)_{h}$ = non-saturation factor

 $= \sum_{j} P_{j}(1-e^{-\lambda} T_{j}) e^{-\lambda(T-t_{j})},$

where factors \mathbf{P}_j , \mathbf{T}_j and $\mathbf{T}-\mathbf{t}_j$ are given in Appendix C.

Table 4.5 Comparison of Unadjusted Calculated and Measured Parameters of Calvert Cliffs-2 Dosimeters Removed Following Cycle 4

	Paramet	ter		Nessured ⁽¹⁾	Calculated ⁽³⁾	$\underline{C/E}$
			(dos/gm)(2)	3.761E6	4.17E6	1.11
Fe54	dosimeter	Recivity	(des (m) (2)	5 079E7	5.40E7	1.06
N158	dosimeter	activity	(dps/gm/(2)	O FROFS	2.79E5	1.04
Cu63	dosimeter	activity	(dps/gm) (2)	2.05020	4.2355	1.12
U238	dosimeter	activity	(dps/gm)	3.7500	1 0956	1 01
T146	dosimeter	activity	(dps/gm)	1.0786	1.0000	

(1) ATOR values taken from Reference 1.

(2) At center of capsule; time of removal from reactor.

(3) (ATOR) 4 = dosimeter activity at EOC-4

= (ATOR) 3 e + (ASAT) 18H h4

where (ATOR) 3 = (ASAT) 12Mh 1+3

and (ASAT) 12M, (ASAT) 18M = saturated activites for 12 and 18 month cycle respectively, and $h_{1\rightarrow3}$, h_{4} = non-seturation factors from Table 3; τ = time (d) from EOC3 to EOC4 = 579 days.

Table 4.6 "Measured" Saturated Activities (A_{SAT}) for 12 and 18 Month Cycles, Based on Cycles 1-4 Dosimetry⁽²⁾

	Center of S.C. (12 M Cycle)		Center of S.C. (18 M Cycle	
Dosimeter	A _{TOR} ⁽¹⁾	A(2)	A _{TOR} ⁽¹⁾	(2) SAT
545- () 5440	3.76E6	4.84E6	3.76E6	4.62E6
58 Ni(n. p) 58 Co	5.10E7	7.19E7	5.10E7	6.88E7
63 (n g) 60 Co	2.68E5	5.41E5	2.68E5	6.14E5
238 ₁₁ (p. f.) ¹³⁷ Cs	3.78E5	3.88E6	3.78E5	3.71E6
46Ti(n,p)46Sc	1.07E6	1.47E6	1.07E6	1.41E6

(1) ATOR values taken from Reference 1.

(2) See Appendix D for definition of measured saturated activities

Table 4.7-8	Determination of	"Adjusted"	\$ (>1)	in S.C.	for
	12 Month	Cycles			

CENTER FLUX:

Dosimeter	Messured A _{SAT}	Calculated o _{eff}	Adjusted ϕ (>1)(1)
54 Fe(n, p) 54 Mm	4.84E6	0.135	5.73E10
58 _{Ni(n,p)} 58 _{Co}	7.19E7	0.171	6.00E10
63 _{Cu(n,a)} ⁶⁰ Co	6.41E5	0.0016	6.11E10
238 _{U(n.f)} 137 _{Cs}	3.88E6	0.452	5.65E10
46 _{Ti(n,p)} 46 _{Sc}	1.47E6	0.0231	6.25E10
		Average	\$.95E10
Production of the second s	(A) measured		

(1) Adjust ϕ (>1) = $\frac{(A_{SAT})}{No} \frac{(\sigma_{eff})}{(\sigma_{eff})} \frac{(\sigma_{eff})}{(\sigma_{eff})}$

Table 4.7-b	Determination of	"Adjusted"	\$ (>1)	in S.C.	for
	18 Month	n Cycles			

153

CENTER FLUX :

Dosimeter	Measured ASAT	Calculated o _{eff}	Adjusted ϕ (>1) (1)
54Fe(n,p) ⁵⁴ Mn	4.62E6	0.135	5.47E10
58 _{Ni(n,p)} 58 _{Co}	6.88E7	0.172	5.71E10
63 _{Cu(n,a)} 60 _{Co}	6.14E5	0.00'6	5.85E10
238 _{U(n,f)} 137 _{Cs}	3.71E6	0.452	5.41E10
46 _{Ti(n,p)} 46 _{Sc}	1.4186	0.0231	6.00E10
		Average	5.69E10
	(An.m) messured		

(1) Adjust ϕ (>1) = $\frac{(A_{SAT})}{No} \frac{(\sigma_{eff})}{calc}$.

J	Bernard Bernard Bernard Bernard	12 M Cycle	18 M Cycle	24 M Cycle
1	1.25000E+00	1.000	1.000	1.000
2	3.75000E+00	0.992	0.987	0.965
3	5.62900E+00	0.963	0.953	0.901
4	6 37750E+00	0.918	0.906	0.847
5	6 64000E+00	0.891	0.879	0.814
6	7 00000E+00	0.870	0.856	0.785
7	7 359505+00	0.870	0.854	0.774
8	7 62200E+00	0.882	0.864	0.777
õ	8 37(29E+00	0 901	0 880	0 780
10	0 625005+00	0.872	0.853	0 740
11	1 08750E+01	0.834	0.808	0.690
10	1 91950E+01	0 764	0 756	0 640
10	1 200405-01	0.748	0.717	808.0
10	1.000405+01	0.100	0.600	0.000
14	1.337780+01	0.600	0.000	0.000
10	1.304000-401	0.090	0.000	0.503
10	1.400002+01	0.004	0.001	0.041
17	1.435052+01	0.003	0.626	0.000
18	1,462206+01	0.054	0.020	0.033
19	1.49300F+01	0.658	0.629	0.030
20	1.555908+01	0.649	0.620	0.579
21	1.65000E+01	0.624	0.595	0.514
22	1,75000E+01	0.602	0.573	0.501
23	1.85000E+01	0.586	0.557	0.491
24	1.95000E+01	0.577	0.549	0.485
25	2.C5000E+01	0.575	0.546	0.483
26	2.15000E+01	0.579	0.549	0.483
27	2.25000E+01	0.586	0.556	0.485
\$8	2.35000E+01	0.596	0.565	0.488
29	2.45000E+01	0.607	0.576	0.490
30	2.55000E+01	0.617	0.585	0.492
31	2.65000E+01	0.624	0.592	0.491
3.2	2.7500CE+01	.628	0.896	0.487
33	2.84000E+01	0.629	0.597	0.481
34	2.98118E+01	0.620	0.588	0.468
35	3.09600E+01	0.612	0.881	0.461
36	3.12330E+01	0.611	0.580	0.459
37	3.158478+01	0.609	0.578	0.456
38	3.205008+01	0.607	0.876	0.451
30	3 25500F+01	0 604	0.573	0.447
40	3.30500E+01	0.600	0.870	0.442
41	3 355005+01	0.595	0.856	0.437
40	3 419695-01	0 519	0 660	0 431
42	3 470005-01	0 .84	0 555	0 428
44	3 491805-01	0 1 41	0.663	0 426
45	2 827525.01	0 \$70	D KAR	0 420
40	3.007200+01	0.013	0.634	0 419
40	0.00720E+01	0.001	0.004	0 405
100				3.7 . 50 3.7

Table 4.8 Relative Azimuthal Variation (a) In ϕ (> 1 MeV) Incident on Vessel

PEG/CALVERT

22

-

		a second second second		0 000
48	3.81720E+01	0.527	0.503	0.385
40	3 88720E+01	0.517	0.494	0.385
75	5 53500E 01	0 600	0 486	0 380
1 B. 1	3.957208+01	0.000	0.400	0.000
	4.02360E+01	0.501	0.480	0.375
1.2	4.07750E+01	0.498	0.477	0.373
-3	4.12500E+01	0.495	0.475	0.370
54	4 17500E+01	0.493	0.474	0.368
55	4.22500E+01	0.492	0.473	0.366
KE	4 27500E-01	0.492	0.473	0.364
5.1	4 32500E+01	0.492	0.473	0.363
8.8	4 37500E+01	0.493	0.474	0.363
00	4.0100000101	0 404	0 475	0 963
59	4,425002+01	0.424	0.410	0.000
60	4.47500E+01	0.494	0.475	0.363

(a) Feak value normalized to unity

Table 4.9 Calculated \$\$\phi\$ (E>1) in Surveillance Capsules and Lead Factors (1) for Calvert Cliffs Unit 2

AZIMUTHAL LOCATION: $\theta = 7^{\circ}$

Cyrle Type	RPV Lead Factor	1/4T Lead Factor	Factor	
12 M	1.26	2.11	10.35	
18 M	1.24	2.09	10.23	
24 M	1.18	1.97	9.74	

AZIMUTHAL LOCATION: $\theta = 14^{\circ}$

Ovele Type	RPV Lead	1/4T Lead	3/4T Lead
	Factor	Factor	Factor
12 N	0.94	1.58	7.76
18 M	0.91	1.53	7.48
24 M	0.79	1.32	6.54

$$(1)_{LF} = \frac{\phi_{sc}}{\phi_{sv}} (>1)$$

where ϕ_{ac} is the calculated flux at the center of the surveillance capsule, and ϕ_{pv} is the maximum calculated flux incident a the indicated RPV location.

Table 4.10 Peak \$\$\$\$ (>1) in RPV of Calvert Cliffs-2

	Rad	lial ^(a)	12	W Cycle ^(b) adjusted	12M Cycle ^(c) calculated	18M Cycle ^(c) calculated	18 Wonth ^(b) adjusted	24M Cycle ^(c) calculated
18	RPV	(R=22)	.29)	4.72E10	5.04510	4.89E10	4.59E10	4.10E10
1/	4 T	(R=225	.98)	2.82E10	3.01E10	2.90E10	2.72E10	2.46E10
3/	4 T	(R=236	,93)	5.75E9	6.13E9	5.92E9	5.5629	4.97E10

(a) RPV liner begins at 220.5
 RPV begins at 221.29
 RPV ends at 242.41

- (b) Obtained by dividing adjusted S.C. flux (see Table 4.7) by lead factor for 7° capsule in Table 0.9.
- (c) Obtained by dividing calculated S.C. flux in Table 4.3 by lead factor in Table 4.9. (Note: no experimental data is available for 24 month cycles.)

Table 4.11 IPA Values (Displacements Per Atom Per Second) in RPV of

Calvert Cliffs-2 Due to Neutrons with Energies Above 15 KeV

Added Location	121	1 BM	24 M	6.
220.895 222.102 223.727 225.351 226.976 228.601 230.225 231.850 231.850 231.850 231.850 235.099 236.724 238.348 239.973 241.598	7.70120E-11 7.12429E-11 6.20802E-11 5.30644E-11 4.50996E-11 3.82092E-11 3.22920E-11 2.71842E-11 2.27459E-11 1.88462E-11 1.5372*E-11 1.22209E-11 9.27444E-12 6.21949E-12	7.44758E-11 6.88783E-11 5.99981E-11 5.12647E-11 4.35527E-11 3.68842E-11 3.11603E-11 2.62221E-11 2.19337E-11 1.81679E-11 1.48154E-11 1.17754E-11 8.93477E-12 5.99104E-12	6.28325E-11 5.80282E-11 5.04510E-11 4.30195E-1 3.64720E-1 3.08251E-1 2.59904E-1 2.18313E-1 1.82302E-1 1.50774E-1 1.22790E-1 9.74867E-1 7.39050E-1 4.95297E-1	11111112222

Table 4.12-s Calculated Fluence Multigroup-Spectra in Reactor Pressure Vessel at Peak Axial and Azimuthal Location ($\Theta = 0^\circ$) for Calvert Cliffs Unit-2 (12M Cycle)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>3</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-08
5 8.607£+00 0.23627E+10 0.95554E+09 0.11839E 6 7.408E+00 0.30616E+10 0.13013E+10 0.14864E 7 6.065E+00 0.52688E+10 0.22331E+10 0.25428E 8 4.966E+00 0.36265E+10 0.16645E+10 0.21901E 9 3.579E+00 0.36265E+10 0.16645E+10 0.21901E 10 3.012E+00 0.26524E+10 0.13040E+10 0.18234E 11 2.725E+00 0.29983E+10 0.15343E+10 0.22442E 12 2.466E+00 0.14882E+10 0.76602E+09 0.11316E 13 2.365E+00 0.38856E+09 0.22000E+09 0.35853E 14 2.346E+00 0.18615E+10 0.10640E+10 0.18309E 14 2.346E+00 0.45795E+10 0.26909E+10 0.46962E 15 2.231E+00 0.47468E+10 0.31886E+10 0.68395E	-08
6 7.405E+00 0.30616E+10 0.13013E+10 0.14864E 7 6.065E+00 0.52688E+10 0.22331E+10 0.25428E 8 4.966E+00 0.36265E+10 0.16645E+10 0.21901E 9 3.579E+00 0.36265E+10 0.16645E+10 0.21901E 10 3.012E+00 0.26524E+10 0.13040E+10 0.18234E 11 2.725E+00 0.29983E+10 0.15343E+10 0.22442E 12 2.466E+00 0.14882E+10 0.76602E+09 0.11316E 13 2.365E+00 0.38856E+09 0.22000E+09 0.36853E 14 2.346E+00 0.18615E+10 0.10640E+10 0.18309E 14 2.346E+00 0.45795E+10 0.26909E+10 0.46962E 15 2.231E+00 0.47468E+10 0.31886E+10 0.68395E	+09
7 6.065E+00 0.52688E+10 0.22331E+10 0.25428E 8 4.966E+00 0.36265E+10 0.16645E+10 0.21901E 9 3.579E+00 0.26524E+10 0.16645E+10 0.18234E 10 3.012E+00 0.26524E+10 0.13040E+10 0.18234E 11 2.725E+00 0.29983E+10 0.15343E+10 0.22442E 12 2.466E+00 0.14882E+10 0.76602E+09 0.11316E 13 2.365E+00 0.38856E+09 0.22000E+09 0.36853E 14 2.346E+00 0.18615E+10 0.10640E+10 0.46962E 15 2.231E+00 0.45795E+10 0.26909E+10 0.46962E 16 1.920E+00 0.47468E+10 0.31886E+10 0.68395E	+09
8 4.966E+00 0.36265E+10 0.16645E+10 0.21901E 9 3.879E+00 0.36265E+10 0.16645E+10 0.18234E 10 3.012E+00 0.26524E+10 0.13040E+10 0.18234E 11 2.725E+00 0.29983E+10 0.15343E+10 0.22442E 12 2.466E+00 0.14882E+10 0.76602E+09 0.11316E 13 2.365E+00 0.38856E+09 0.22000E+09 0.36853E 14 2.346E+00 0.18615E+10 0.10640E+10 0.18309E 14 2.346E+00 0.45795E+10 0.26909E+10 0.46962E 15 2.231E+00 0.47468E+10 0.31886E+10 0.68395E	+09
9 3.579E+00 0.26524E+10 0.13040E+10 0.18234E 10 3.012E+00 0.29983E+10 0.15343E+10 0.22442E 11 2.725E+00 0.29983E+10 0.15343E+10 0.22442E 12 2.466E+00 0.14882E+10 0.76602E+09 0.11316E 13 2.365E+00 0.38856E+09 0.22000E+09 0.36853E 14 2.346E+00 0.18615E+10 0.10640E+10 0.18309E 14 2.346E+00 0.45795E+10 0.26909E+10 0.46962E 15 2.231E+00 0.47468E+10 0.31886E+10 0.68395E	+09
10 3.012E+00 0.29983E+10 0.15343E+10 0.22442E 11 2.725E+00 0.19983E+10 0.76602E+09 0.11316E 12 2.466E+00 0.14882E+10 0.76602E+09 0.35853E 13 2.365E+00 0.38856E+09 0.22000E+09 0.35853E 14 2.346E+00 0.18615E+10 0.10640E+10 0.18309E 14 2.346E+00 0.45795E+10 0.26909E+10 0.46962E 15 2.231E+00 0.47468E+10 0.31886E+10 0.68395E	+09
11 2.725E+00 0.14882E+10 0.76602E+09 0.113161 12 2.466E+00 0.38856E+09 0.22000E+09 0.358531 13 2.365E+00 0.38856E+09 0.22000E+09 0.358531 14 2.346E+00 0.18615E+10 0.10640E+10 0.183091 14 2.346E+00 0.45795E+10 0.26909E+10 0.469621 15 2.231E+00 0.47468E+10 0.31886E+10 0.683951	+09
12 2.466E+00 0.38856E+09 0.22000E+09 0.368531 13 2.365E+00 0.18615E+10 0.10640E+10 0.183091 14 2.346E+00 0.18615E+10 0.10640E+10 0.469621 15 2.231E+00 0.45795E+10 0.26909E+10 0.469621 16 1.920E+00 0.47468E+10 0.31886E+10 0.683951	+09
13 2.365E+00 0.18615E+10 0.10640E+10 0.183091 14 2.346E+00 0.45795E+10 0.26909E+10 0.469621 15 2.231E+00 0.47468E+10 0.31886E+10 0.683951 16 1.920E+00 0.47468E+10 0.31886E+10 0.683951	+08
14 2.346E+00 0.45795E+10 0.26909E+10 0.46962 15 2.231E+00 0.45795E+10 0.31886E+10 0.68395 16 1.920E+00 0.47468E+10 0.31886E+10 0.68395	+09
16 1 920E+00 0.47468E+10 0.31886E+10 0.68395	409
	6409
0.63:81E+10 0.44750E+10 0.10201	E+10
17 1.653E+00 0.95161E+10 0.78817E+10 0.23706	E+10
18 1.303E+00 0.61356E+10 0.55743E+10 0.21153	E+10
19 1.003E+00 0.29275E+10 0.23763E+10 0.81196	E+09
20 8.208E-01 0.82006E+10 0.89881E+10 0.42637	E+10
21 1.427E-01 0.68423E+10 0.73336E+10 0.36954	E+10
22 0.001E-01 0.73867E+10 0.82570E+10 0.41833	E+10
23 4.979E-01 0.76526E+10 0.97683E+10 0.58506	E+10
24 3.5555-01 0.96759E+10 0.10321E+11 0.5499!	E+10
25 2.972E-01 0.88561E+10 0.10286E+11 0.5950	/E+10
26 1.832E-01 0.60800E+10 0.63931E+10 0.3551	SE+10
27 1.111E-01 0.51275E+10 0.49135E+10 0.2565	3E+10
28 0.7385-02 0.17987E+10 0.13050E+10 0.6440	3E+09
20 2 182E-02 0.90129E+09 0.40188E+09 0.1974	1E+09
0 0.103E-02 0.23025E+10 0.27542E+10 0.1734	7E+10
20 2 418E-02 0.14558E+10 0.16674E+10 0.1133	4E+10
22 2 188E-02 0.27861E+10 0.25650E+10 0.1495	3E+10

27

Table 4.12-b Calculated Neutron Fluence Multigroup Spectra in Reactor Pressure Vessel at Peak Axial and Azimuthal Location ($\Theta = 0$) for Calvert Cliffs Unit-2 (18M Cycle)

		¢	n+cm ⁻² +s ⁻¹	
Group	Upper Energy (MeV)	0-T R=221.29	1/4-T R=225.98	3/4-T <u>R=236.93</u>
1	1 733E+01	0.13469E+08	0.64234E+07	0.10976E+07
	1 4195+01	0.58343E+08	0.28108E+08	0.47986E+07
â	1 221E+01	0,2355) \$+09	0.10963E+09	0.17062E+08
4	1 000E+01	0.472681+09	0.21917E+09	0.32348E+08
	8 607E+00	0.8.981 . 09	0.38166E+09	0.52098E+08
6	1 AORE+00	0.103435+ 1	0 2521E+09	0.11452E+09
	6 065E+00	0.19.386+15	1 12597E+10	0.14373E+09
	4 966E+00	0.5.0852010	0.21604E-10	0.24572E+09
0	3 679E+00	0.350-12	0.16097E+10	0.21155E+09
10	3 0125+00	0.2565%E+17	0.12610E+10	0.17F 0E+09
11	0 795E+00	6. 22502E- 10	0.14836E+10	0.21072E+09
10	2 4665+00	0 14395E+10	0.74066E+09	0.10927E+09
10	2 3655-00	0.37586E+09	0.21270E+09	0.35580E+08
10	2,3000+00	0.18005E+10	0.10287E-10	0.17675E+09
15	2 231E+00	0 44294E+10	0.26014E+10	0.45340E+09
16	1 9205+00	0.45904E+10	0.30817E+10	0.66008E+09
19	1 6535+00	0.61384E+10	0.43244E+10	0.98444E+09
16	1 3535+00	0.91989E+10	0.76132E+10	0.22864E+10
10	1.003E+00	0.59284E+10	0.53813E+10	0.20388E+10
12	P 208E-01	0 28293E+10	0.22945E+10	0.78276E+09
20	7 4078-01	0 79182E+10	0.86704E+10	0.41066E+10
21	C 0015-01	0 66054E+10	0.70723E+10	0.35552E+10
22	0.0010-01	0 71318E+10	0.79628E+10	0.40280E+10
23	9.9790-01	0 73814E+10	0.94122E+10	0.56296E+10
24	3.000E-01	0 933825-10	0.99482E+10	0.52924E+10
25	2.9720-01	0.65427E+10	0.99081E+10	0.57241E+10
20	1.8220-01	0 666518-10	0.61583E+10	0.34158E+10
	1.1112-01	0 404785+10	0 473338+10	0.24680E+10
28	0.738E-02	0.4947664F+10	0 12573E+10	0.61938E+09
29	4.097E-02	0.070438+00	0 387228+09	0.18986E+09
30	3.1836-02	0.001985-10	0 26+98E+10	0.16663E+10
31	2.6066-02	0.140095-10	0 16024E+10	0.10876E+10
32	2.4182-02	0.140080+10	0 24671E+10	0.143495+10
33	2.188E-02	0.205446410	0.040110410	

Table 4.12-c Calculated Neutron Fluence Rate Multigroup Spectra in Reactor Pressure Vessel and Azimuthal Location ($\Theta = 0^\circ$)

for Calvert Cliffs Unit-2 (24M Cycle)

			\$ n+cm ⁻² +s ⁻¹	and a survey was an extent of the
	Upper	0-T	1/4-T	3/4-T
Group	Energy (MeV)	R=221.29	R=225.98	<u>R=236.93</u>
1	1 7338+01	0.11591E+08	0.55590E+07	0.94675E+06
2	1.419E+01	0.50126E+08	0.24272E+08	0.41304E+07
3	1.221E+01	0.20170E+09	0.94309E+08	0.14620E+08
4	1. 100E+01	0.40426E+09	0.18826E+09	0.27671E+08
5	8.807E+00	0.71675E+09	0.32716E+09	0.44461E+08
6	7.408E+00	0.17856E+10	0.79253E+09	0.97652E+08
7	6.065E+00	0.25196E+10	0.10759E+10	0.12216E+09
8	4.966E+00	0.43157E+10	0.18363E+10	0.20776E+09
9	3.679E+00	C.29651E+10	0.13650E+10	0.17838E+09
10	3.012E+00	0.21668E+10	0.10684E+10	0.14832E+09
11	2.725E+00	0.24476E+10	0.125COE+10	0.18237E+09
12	2.466E+00	0.12148E+10	0.62695E+09	0.91920E+08
13	2.365E+00	0.31728E+09	0.17998E+09	0.29906E+08
14	2.346E+00	0.15190E+10	0.87010E+09	0.148515+09
15	2.231E+00	0.37360E+10	0.22003E+10	0.38106E+09
16	1.920E+00	0.38682E+10	0.26024E+10	0.55363E+09
17	1.653E+00	0.51700E+10	0.36495E+10	0.82514E+09
18	1.353E+00	0.77353E+10	0.64101E+10	0.19110E+10
19	1.003E+00	0.49740E+10	0.45179E+10	0.16982E+10
20	8.208E-01	0.23761E+10	0.19283E+10	0.65267E+09
21	7.427E-01	0.66195E+10	0.72511E+10	0.34081E+10
22	6.081E-01	0.55162E+10	0.59050E+10	0.29483E+10
23	4.979E-01	0.59595E+10	0.66488E+10	0.33378E+10
24	3.688E-01	0.61390E+10	0.78256E+10	0.46495E+10
25	2.972E-01	0.77868E+10	0.82842E+10	0.43738E+10
26	1.832E-01	0.71057E+10	0.82270E+10	0.47195E+10
27	1.111E-01	0.48838E+10	0.51122E+10	0.28142E+10
28	6.738E-02	0.41218E+10	0.39300E+10	0.20325E+10
29	4.097E-02	0.14498E+10	0.10448E+10	0.51013E+09
30	3.183E-02	0.72818E+09	0.32185E+09	0.15640E+09
31	2.606E-02	0.18316E+10	0.21863E+10	0.13643E+10
32	2.418E-02	0.11519E+10	0.13152E+10	0.88646E+09
33	2.188E-02	0.22205E+10	0.20290E+10	0.11692E+10

Table 4.13 Radial Gradient of Fast Fluence Rate [ϕ (E > 1)] Through RPV, at Peak Azimuthal and Axial Locations in Calvert Cliffs-?

11/ State In the Inter-

	¢ (E > 1 MeV) -2 -1					
<u>R</u> (1) <u>R</u> (en)	120	18.	24M			
220.895	5.19E10	6.02E10	4.24E10			
222.102	4.72810	4.57E10	3.86E10			
223,727	3.98E10	3.84E10	3.24E10			
225.351	3.25E10	3.14E10	2.64E10			
22. 5 16	2.62E10	2.53E10	2.13E10			
228.001	2.10E10	2.03E10	1.70E10			
230.225	1.67E10	1.61E10	1.35E10			
231.850	1.32E10	1.28E10	1.07E10			
233.475	1.04E10	1.01E10	8.42E9			
235,099	8.16E9	7.87E9	6.58E9			
236.724	6.33E9	6.10E9	5.10E9			
238.348	4.83E9	4.66E9	3.89E9			
239.973	3.58E9	3.45E9	2.88E9			
241.598	2.43E9	2.34E9	1.95E9			

· (1

1

Table 4.14 Fluence in PPV after '2 EFPX for Calvert Cliffs-2

Location RPV IR (R=221.29)

1/4T (R=225.98) 3/4T (R=236.93)

Fluence neutrons.cm⁻² 1.69E19 1.01E19 2.05E18

PEG/CALVERT

Cycles Full Power Days neul	trons.cm*2
1-3 (12 month) 1165.94	4.76E18
4 (18 month) 508.53	2.02E18
5-7 (18 month) 1242.92	4.93E18
8 (24 month) ⁽¹⁾ 586.17	2.08E18
9-EOL (24 month) ⁽²⁾ 8184.44	2.90E19
Totals 11688.00	4.28E19

Table 4.15 Determination of RPV Peak Fluence for Calvert Cliffs-2

(1) Projected value based on estimated EFPD/cycle for cycle 8

(2) Projected, based on 32 EFPY lifetime

(3) 12 month and 18 month cycle fluence rate based on adjusted flux values in Table 6; 24 month values based on calculated fluxes from Table 4.10.

5. ADJUSTED REFERENCE TEMPERATURE DETERMINATION

NRC Regulatory Guide 1.99. Revision 2. provides the approach for computing the adjusted reference nil-ductility temperatures for beltline materials. The adjusted reference temperature (ART) is given by

ART = Initial RTNDT *
$$\Delta^{\text{RT}}$$
NDT * Margin (1)
where
 $\Delta \text{RT}_{\text{NDT}} = [CF]f(0.28 = 0.1 \log f)$ (2)
and
CF = chemistry factor specified in Reg. Guide
1.99, Rev. 2.
f = fluence (10¹⁹ n/cm², E > 1 MeV)
Margin = $2\sqrt{\sigma_1^2 + \sigma_2^2}$
where σ_1 = initial standard deviation of data = 0°F
 σ_1 = 28°F for welds and 17°F for plate materials

Table 5.1a and b presents an evaluation of the ART of beltline materials for 12 EFPY and 32 EFFY respectively. From this table it is clear that the weld 2-203 is the controlling material for the pressure vessel. The ART of weld 2-203 at various irradiation conditions are used in developing the various P-T limit curves.

Fluence at various depths is given by,

$$f = f$$
 surface $(e^{*0.24X})$ (3)

The through thickness attenuation of ΔRT_{NDT} is calculated by using equation (2).

The ΔRT_{NDT} values for the various depths for the controlling weld 2-203 for 12, 16, 20, 24, 28, 32, 36 and 40 EFPYs are presented in table 5.2. Table 5.3 presents ART at 1/4T and 3/4T locations for the various EFPY.

PEG/CALVERT

33

	Chem	istry		Initial	ARTNDT	Margin	
Material	Cu	N 1	C.F.	RT _{NDT} *F	Surface °F	۰F	ART
Weld 2+203 3+203 9+203	0.12 0.23 0.22	1.01 0.23 0.05	161 120 101	-56 -20 -60	184 137 116	56 56	184 113 112
Plate D-8906-1 D-8906-3 D-8907-1 D-8907-2	0.15	0.55	107 98 110 102	10 5 +8 20	122 112 126 117	A F F F F	166 141 152 171

Table 5.1(a). ART Evaluation for Beltline Materials for 12 EFPY

NOTE: D8906-2 and D8907-3 are not included because they are bounded by the chemistry and initial $\rm RT_{\rm NDT}$ by D8906-1 and D8907-2, respectively.

	Chem	istry		Initial	ARTNDT	Margin	
Material	Cu	Ni	C.F.	RT _{NDT} °F	Surface °F	• F	ART
Weld 2-203 3-203 9-203	0.12 0.23 0.22	1.01 0.23 0.05	161 120 101	-56 -80 -60	222 165 139	56 56 56	222 189 135
Plate D=8906=1 D=8906=3 D=8907=1 D=8907=2	0,15	0.56 0.55 0.66	107 98 110 102	10 5 -8 20	147 135 151 140	34 333 34 34	191 174 177 194

Table 5.1(b). ART Evaluation for Beltline Materials for 32 EFPY

EFPY	Surface	ART _{NDT} (1/4 T) *F	687 _{NDT} (3/3 T) *F	
12	184	161	115	
16	196	173	127	
20	204	183	136	
24	211	190	144	
28	216	19£	151	
32	222	201	157	
36	224	206	162	
40	228	210	166	

Table 5.2. $\Delta \text{RT}_{\text{NCT}}$ vs EFP/ for Controlling Weld 2-203

EFFY	ART (1/4 T) *F	ART (3/4 T) °F
12	161	115
16	173	127
20	183	136
24	190	144
28	196	151
32	201	157
36	206	162
40	210	166

Table 5.3. Adjusted Reference Temperatures (ART) at 1/4 T and 3/4 T for Controlling Weld 2-203

.

36

1. 1.

6. HEAT-UP AND COOL-DOWN LIMITS

The adjusted reference temperature (ART) for 12, 16, 20, 24, 28, 32, 36 and 40 EFFYs were presented in Section 5. These ART values were used to develop the pressure-temperature limit conditions for the EFFYs described above. An inhouse computer program PTLIMI was used. The generic procedures for PTLIMT are described in Appendix D.

The following pressure vessel constants were employed as input data in the Calvert Cliffs Unit 2 analysis:

Vessel Inner Radius, ri	= 60.61 in.
Vessel Outer Radius, ro	: 95.43 in.
Operating Pressure, Po	= 2235 psig
Initial Temperature, Tr	# 550°F
Effective Coolant Flow Rate, Q	= 128.8 x 10 ⁶ 1bm/hr
Effective Flow Area, A	= 39.83 ft ²
Effective Hydraulic Diameter, D	: 22.44 in.

Heat-up limits were computed for heat-up rates of 40°F/hr, 50°F/hr, 60°F/hr and 70°F/hr. Cool-down curves were computed for cool-down rates of 0°F/hr, 20°F/hr. 50°F/hr, and 100°F/hr.

Figures 6.1 and 6.2 presents the heat up and cool down limit curves respectively for 12 EFPY. These figures were developed based on the NRC Standard Review Plan (5.3.2). In Figure 6.1, the lowest service temperatures, minimum bolt-up temperature (70°F) and inservice leak test curves are incorporated. In developing the heat-up and cool down curves, instrument error margins of +60 psig for pressure measurements and +10°F for temperature monitoring have been included. These margins have been used industry-wide to

PEG/CALVERT

37

Figure 6.1 Heat-Up Pressure-Temperature Limitation Curves for Calvert Cliff Unit 2 Reactor Vessel (12 EFPY)

533 (72)

allow for possible errors in measuring instruments and account for variations between bulk temperatures and local (near beltline) temperatures.

Appendix E presents the tables containing heat-up and cool-down data for 16, 20, 24, 28, 32, 36 and 40 EFPYs. Appendix F contains the P-T limit tables for varying cooldown rates for 12 EFPY. Appendix G presents the P-T limit tables for isothermal conditions.

References

- Norris, E. B., "Reactor Vessel Materia: Surveillance Program for Calvert Cliffs Unit 2 Analysis of 263* Capsule," Final Report, SwRI Project 06+ 7524, September 1985.
- 2. JAT (BG&E) letter to NRC, January 23, 1986 and Don Wright's (BG&E) Calculations, January 15, 1986.
- Rhoades. W. A., Childs. R. L., "An Updated Version of the DOT-4 One- and Two-Dimensional Neutron/Photon Transport Code", ORNL-5851, Oak Ridge National Laboratory, Cak Ridge, TN, July, 1982.
- 4. Simons, G. L. and Roussin, R., "SAILOR+A Coupled Cross Section Library for Light Water Reactors", DLC-76, RSIC.

APPENDIX A

Determination of Space-Dependent Source Distribution for Transport Analysis of Calvert Cliffs-2

PEG/CALVERT

Appendix A. Determination of Space-Dependent Source Distribution for Transport Analysis of Calvert Cliffs-2

The space-dependent source distribution used in the transport calculations was obtained by combining the assembly-wise power distribution with relative pinwise 50 ver values for the peripheral assemblies (i.e., XY Zones 9, 18, 26, 34, 47, 43, 55, figure 1). The relative assembly-wise power distributions for the 10, 56, and 24 month cycles are shown in Figure A.1. These values were considered by averaging BOC, MOC, and EOC absolute assembly powers provided by Baltinona Cas and Electric as representative for the appropriate cycles and then dividing the average assembly power. (The 24 month cycle distribution morresponds to a projected MOC core.) Note that all interior assemblies are approximated as having a unity relative power (i.e., producing the average power). Since the interior elements contribute a negligible amount to the RPV fluence, this approximation is very adequate. The absolute assembly power distributions provided by BG&E for each type of cycle is given by Table A.1.⁽¹⁾

The power density is asoumed flat within the interior assemblies, but is represented with a pinwise variation for the boundary assemblies, which account for virtually all of the RPV fluence. Baltimore Gas and Electric has confirmed that the relative pin-power variation within the peripheral assemblies is similar for Calvert Cliffs Units 1 and 2:⁽²⁾ therefore the same relative pin-power values obtained for the previous Un 1 analysis⁽³⁾ were also used in the present Unit 2 calculations. Examination of the BOC, MOC, and EOC relative pin powers provided by BG&E shows that the MOC distribution is a good approximation for the average over the cycle, and hence was used

A*1

as the representative pinwise variation. The relative pin pomer in the peripheral assemblies are very similar for the 12 and 18 month cycles, and therefore the 18 month is used for both (the assembly-wise distributions are different, however). Tables A.3-A.4 give the relative pinwise variations for configuration in Figure A.1 (given in "FIDO FORMAT").

The combination of the assembly and pinwise powers results in an absolute space-dependent power density defined for the quarter core. The power density values are converted to a source density by multiplying by the factor,

The 1/4 core XY source distribution is then mapped onto the 1/8 core R Θ mesh used in DOT by utilizing an interpolating program previously developed for this purpose.

REFERENCES

- J. B. Couch, letter to M. L. Williams from Baltimore Gas and Electric dated January 7, 1988.
- (2) J. B. Couch, personal communication to M. L. Williams, January 6, 1988.
- (3) P. Nair, M. L. Williams, "Pressure-Temperature Limits for Calvert Cliffs Nuclear Power Plant Unit 1", Southwest Research Institute, Final Report.

					~ /	5*	L	
43	44 1.0	45 1.0	46 1.0	1.0	88 1.0	49 .82 .75 .42		
35	1.0 36	1.0 37	1.0 38	1.0 39	1.0 h0	41 1.16 1.00 1.07	42 .75 .68 .40]
.0 27	28 1.0	1.0 29	1.0	1.0 31	1.0 32	33 1.08 1.06 1.09	34 .98 .91 .87	
.0	1.0	1.0 21	1.0 22	1.0 23	1.0 ²⁴	25 1.00 1.14 1.26	26 1.10 .91 .85	.71
10 .0	1.0	1.0	13	1.0	1.0	16 .85 1.08 1.07	17 1.06 .98 1.	.65 .36
.0	1.0 2	1.0 3	1.0	1.0 5	1.0	7 1.15 .96 1.29	8 .85 1.07 .90	.84 .80

Zone

12H 18N 24M

Figure A.1 Relative Power Distributions (Assembly-wise) for 12, 18, and 24 Month Cycles for Calvert Cliffs Unit 2

2.0

Table A.1. Absolute Assembly Powers (MW_{th}) for Calvert Cliffs-2

4.00	12 Month Cycle	18 Month Cycle	24 Month Cycle
CCTTR Annihilation	called a second a single design of a second set of the second set	9.11	3.11
** 1	3.11	6 22	6.22
* 2	6.22	6 00	6.22
* 3	6.22	£ 00	6.22
* 4	6.22	£ 00	6.22
* 5	6.22	0.66	6.22
* 6	6.22	0.22	8 02
* 7	7.16	0.90	5.58
* 8	5.26	0.00	10.00
9	10.60	10.41	6.22
* 10	6.22	10.44	12.44
11	12.44	12.99	12.44
12	12.44	12.99	12.44
13	12.44	10 44	12.44
14	12.44	10.44	12.44
15	12.44	12.99	13.27
16	10.60	13.43	14 10
17	13.16	12.17	4 45
18	8.82	8.02	6 99
* 19	6.22	6.22	12 44
20	12.44	12.44	12 44
21	12.44	12.44	12 44
22	12.44	12.44	10 44
23	12.44	12.44	12 44
24	12.44	12.44	15 62
25	12.44	14.12	10.53
26	13.72	11.30	6 22
* 27	6.22	0.22	12 44
28	12.44	12.44	12 44
29	12.44	12.44	12 44
30	12.44	12.44	12 44
31	12.44	12.44	12 44
32	12.44	12.44	19 59
33	13.41	13.15	10.26
34	12.16	11.36	6 00
* 35	6.22	6.22	12 44
36	12.44	12.44	10 44
37	12.44	12.44	10 44
38	12.44	12.44	10 44
39	12.44	12.44	12 44
40	12.44	12.44	10 06
41	14.45	12.48	10.40
42	9.35	8.48	6.02
* 43	6.22	6.22	10 44
44	12.44	12.44	10.44
45	12.44	12.44	10.44
46	12.44	12,44	12.44
47	12.44	12.44	16.99
48	12.44	12.44	16.99

A+4

49 10.15 50 0.0	9.36	5.21 0.0
Allow a support of the second second second second second second		

(*) indicates 1/2-assembly zone
(**) indicates 1/4-assembly zone

Table A.2. Relative Pin Powers for 18 Month Cycle

14. 8.88 8.88 1.13 .85 .77 .69 .61 .13 1.25 8.00 0.00 1.10 .84 .76 .68 .60 .54 1.12 1.17 1.152 .99 .83 .76 .69 .61 .54 1.22 1.20 1.03 .86 .79 .72 .63 . 5 .42 0.00 0.00 1.32 1.84 .99 .95 .92 1.05 0.00 0.88 .82 .56 1.23 1.43 0.0 0.00 1.33 1.04 .97 .95 .92 1.05 0.00 0.00 .82 .59 1.00.99.92.96.99.89.72.51 .86. 99 8.66 8.66 8.68 .85 .99 8.88 8.88 .77 .55 10581. 1.1 1.77 1.27 1.24 1.09 .92 .85 .83 .8 .85 .875 .802 .647 .501 10581. 1.11 1.27 0. 0. 1.17 .91 .84 .814 .785 .90 0. 0. .692 .480 1.16 1.162 1.083 1.028 .77 .912 .881 .847 .814 .777 .711 1.22 1.19 1.19 1.17 1.11 1.05 .99 .97 .93 .88 .84 .76 .67 .58 1.2 1.30 1.41 1.38 1.21 1.03 .97 .93 .91 .96 .99 .91 .74 .58 24° 58° 58° 54° . 93 . 85 . 69 . 54 .86 .83 .79 .72 .64 .56 1.1 1.25 8. 8. 1.15 .896 .83 .8 .77 .878 9. 8. .668 .469 .84 .89 16 18 26 96 65 1.25 .99 .92 .89 0.00 0.00 1.25 .99 .90 .98 1.13 1.11 1.12 1.10 1.04 .98 .92 .89 78. 99. 97. 1.26 1.04 1.15 1.05 1.04 1.20 1.06 1.96 1.15 1.31 1.29 1.13 1.06 1.32 1.29 0.00 0.00 1.35 1.11 1.07 1.08 1.06 1.85 1.85 1.3H 84.1 80.1 - 86 86.1 . 28 .12 1.34 1.21 1-22 1.34 21.12 1.12 5.5. 2 1.13 1.16 1.16 1.13 1.21 1.17 1.14 1.17 85H1 .-OSRI. ISSRI. 0581. OCR1. 0581. 05R1. 05R1. 105R1. 105R1. 0581. 105R1. 105R1. INSR1. 05R1. 05R1 3.34

18581. 1.83 .965 .93 .927 .89 .956 1. .969 .82 .677 .62 .554 .477 .481 18581. .997 .93 .989 .893 .885 1.844 8. 8. .885 .659 .585 .516 .447 .387 024-1.865 1.11 1.19 1.16 1.02 .87 .83 .8 .75 .778 .77 .72 .57 91R1. 1.228 1.198 1.218 1.281 1.163 1.127 1.897 18581.

A=6

1.113 1.118 1.129 1.143 1.138 1.895 1.886

. 376 .635 .563 .697 .432 981 .91 .874 .85 .835 .98 8. 6. .855

9181. 1.211 1.298 1.416 1.486 1.258 1.899 1.854

1.073 1.078 1.205 1.319 1.302 1.165 1.048

.415 . 359 .972 .9 .87 .837 .9 .848 .984 .97 .733 .6 .542 .492

9181. 1.239 1.431 0.000 0.000 1.389 1.120 1.074

1.671 1.086 1.312 0.080 0.080 1.252 1.047

.855 .722 .679 .66 .61 .626 .625 989. 58.1 99. 830.

.56 . 647

日日町、 9181. 1.246 1.437 0.000 0.000 1.399 1.133 1.092

.91 .688 .626 .687 .57 .64 8. 8. 47 96 1.66 0. 0.

90C. 074.

.923 1.82 8. 8. .855 .642 .579 .561 .527 .396 8. 8.

91R1. 1.205 1.159 1.166 1.164 1.151 1.242 1.335

1.296 1.173 1.052 1.027 0.986 0.934 0.919

9181. 1.224 1.305 1.421 1.414 1.277 1.135 1.124

1.100 1.079 1.179 1.271 1.238 1.092 0.976

1.078 1.086 1.305 0.806 0.000 1.241 1.029
Table A.2. Continued

9181. 1.265 1.351 1.465 1.444 1.288 1.899 1.839 1.882 .981 1.858 1.189 91R1. 1.147 1.898 1.893 1.892 1.1 1.312 9.8 8.6 1.16 .887 .805 .73 .654 9181. 1.294 1.261 1.271 1.256 1.291 1.145 1.994 1.05 1.027 1.984 .977 .923 108. ¢. 1.297 1.408 1.391 1.24 1.482 1.087 1.812 6 1.81 1.842 9181. 1.273 1.466 0.0 0.0 1.39 1.1 1.028 .992 .976 1.136 0.0 0.0 1.134 1.137 1.128 1.104 1.197 1.277 1.234 1.065 .897 9181. 1.259 1.45 8.8 8.8 1.377 1.894 1.828 .492 .969 1.121 8. 8. .286.248 +274 1357 . 873 . 9 . 89 . 71 . 58 . 53 . 52 . 48 . 495 . 584 . 454 . 357 .333 142 1975 242 243 三切る えゆま 147 .63 .58 .532 .494 .48 .438 .438 .372 91H1. 1.195 1.144 1.139 1.143 1.158 1.352 0.888 1.157 1.348 0.000 1.118 5.77 "0 1.088 0.984 0.923 0.833 8.747 1.325 0.757 1940.1 1.879 3.724 1.112 0.000 1.273 1.052 0.998 0.941 0.896 0.863 9.832 1 744 B 0.771 1.092 0.868 1.0122 1.138 0. 939 1.240 0.850 541-1 1.026 6E1"I 123 1.156 0.905 0.917 867 * 3 \$51.1 87.6° B 1.113 0.000 1000-1 1.2099 0.000 1.423 524-1 1.301 1.142 1.138 1.142 1.156 3-274 1.246 1.022 0.965 1.176 1.172 6.973 1.436 030 . 0 0.000 6.003 1.464 0.000 1.274 1.261 242 1.894 1.448 211.15 1.204 18% 1 1.011 0.000 約10~1 0.000 242 245 141 2.42.5 1.262 171.1 1.333 · 484 120-1.018 1.031 180. 424-1.364 140. 1.037 .858 .689 .622 141 .915 .825 612.1 1.299 805 .72 .674 591.1 8.1HIP 5.690 3.236 . 036 1.862 9141.0 1.20 1. 3000 1-292 1.295 180. .055 240 . 1.237 281. 589. 91R1. 1.179 .674 . 398 -39 142 241 243 0.1919 9181.0 G. INTO 9-1HE6 91R1.0 9181. . 654 -673-

6+7

9181. 1.172 1.121 1.119 1.187 1.881 1.17 1.242 1.282 1.837 .87 .888 .735 142 547 . 373 384 142

9181. 1.147 1.893 1.888 1.886 1.893 1.382 8. J. 152 .882 .8 .725 .649

9181. 1.204 1.272 1.371 1.348 1.197 1.04 .999 .969 .915 .956 .979 .9 .73 28C. 9181. 1.239 1.41 0. 0. 1.314 1.035 .763 .933 .904 1.036 0. 0. .812 141 . 375

Table A.2. Continued

0,964 0.94 0.921 0.909 1.869 0.0 0.0 0.0 0.899 0.669 0.594 0.523 .457 1.002 0.94 0.913 0.89 0.876 1.028 5.8 0.0 0.877 0.652 5.577 8.51 8.444 1.269 1.311 3.994 2.967 2.928 2.991 1.241 3.996 2.842 3.842 3.694 2.636 3.57 1.173 1.254 1.218 1.865 8.911 6.869 8.833 8.774 8.882 8.817 8.74 8,993 8.929 8.992 8.87 8.83 8.883 8.921 8.893 8.752 8.613 8.537 8.496 1.286 1.169 1.167 1.14 1.077 1.013 0.951 0.915 0.879 0.843 0.885 0.737 9181. 1.732 1,108 1,105 1,158 1,004 1,004 1,007 ,955 ,928 ,804 ,841 ,823 ,754 572 1.348 0.0 0.1 1.278 0.955 0.982 0.982 0.947 0.015 0.931 0.0 0.0 0.723 8.813 9181. 1.222 1.29 1.387 1.355 1.186 1.985 .937 .984 .874 .932 .967 .891 1.324 8.8 8.8 1.284 8.434 8.434 8.87 8.834 8.797 8.987 8.867 8.8 8.8 8.494 1.243 1.514 9. 8. 1.368 1.824 .945 .914 .89 2.827 6. 8. 387 1,179 1,268 1,338 1,384 1,139 8,964 8,899 8,865 8,83 8,88 8,984 .66: .577 142 WIR1.0 9181.0 0.429 0.431 8.376 0.649 0.567 0.675 8.529 0.461 1.024 1.117 8.493 1 4 4 2 1.156 452.0 1.184 6.399 0.39 0.516 272 564. 142 242 142 UIRI. 142

A = 0

Continued Table A.2.

0. 626 0. 641 0. 642 0. 58 1.004 1.019 8.883 0.747 0.703 0.6 0.987 1.016 0.353 W. 41.4

9.1419

0.49 .348 0.924 0.706 0.643 0.617 0.582 0.655 0. 9. 0. 9181.5 1.082 0. 142 86.98 245

1.034 0.0 0.0 0.044 0.653 0.59 0.564 0.534 0.605 0.0 0.0 0.455 844.0

9181.0 322

0.878 0.907 0.853 0.716 0.585 0.535 0.513 0.478 0.499 0.511 0.46 0.286 6.8.9 242 61 366

9.1819 243

155. 274. 509. 454. 274. 144. 922. 274. 337 ,713 .669 EIH.

0.293 0.258 347

1.29 1.25 1.25 1.22 1.17 1.12 1.00 1.05 1.03 1.01 1.00 .96 .90 .03 EL . 7781. 287

1.25 1.32 1.43 1.40 1.24 1.07 1.03 1.99 .97 1.05 1.12 1.07 .90 7781. . 69 *16* 1.25 1.43 0.00 0.00 1.31 1.06 1.01 .97 .95 1.12 0.00 0.00 1.81. 13.

. 65 1.22 1.40 0.00 0.00 1.31 1.04 .99 .95 .92 1.07 0.00 0.00 .89 7781. 282

A-9

. 60 1.17 1.24 1.33 1.31 1.16 1 01 .99 .94 .99 .94 .99 .92 .75 282

7781.

1.12 1.07 1.06 1.04 1.01 1.06 1.13 1.07 .93 .80 .76 .79 .62 .56 77R1. 282

.52 1.07 1.02 1.00 .99 .98 1.13 0.00 0.00 .97 .77 .79 .64 .53 282

7781.

15. 282

1.05 . 79 . 97 . 94 1.08 0.00 0.08 . 95 . 74 . 69 . 62 . 55 77R1.

282

147 -1.03 .97 .95 .92 .99 .94 .98 .95 .82 .69 .54 .59 .52

44 -.55 282

7781.

1. 25 1.11 1.07 .94 .81 .77 .74 .69 .72 .73 .67 1.02 7781.

1.01 1.12 0.00 0.00 .99 .75 .70 .68 .64 .53 0.00 0.90 .57 77R1. 282

24.

HE .

. 30

28-

77141 .

40.

. 53

.98 .94 .89 .76 .62 .58 .55 .52 .55 .57 .53 .42 96.

.83 .74 .69 .66 .61 .56 .52 .51 .47 .44 .42 .38 .39

78.-

7781.

7781.

28-

202

. 97 1. W7 W. WW W. WW . 92 . 7W . 64 . 62 . 59 . 67 W. W8 W. WW

Tille A.3. Relative Pin Powers for 24 Month Cycle

10.111.18 1.063 1.047 1.039 1.009 0.956 8.899 0.849 0.805 8.766 0.731 8.691 0.632 0.551 0.458

0.805 0.766 0.711 0.691 0.691 0.65.0 179 1.146 0.982 0.980 0.843

0. 798 0. 764 0. 748 0. 785 0. 7.2 0. 569 0. 463 10581.0 1.087 1. 200 0. 000 0. 000 1. 096 0. 906 0. 839

0.793 0.766 0.832 0.000 0.000 0.540 0.474 0541.0 1.090 1.196 0.000 0.000 1.089 0.902 0.038 0.793 0.763 0.826 0.000 0.000 0.634 0.471

0.793 0.763 0.816 0.000 0.000 0.001 0.960 0.891 0.846

0.802 0.757 0.729 0.759 0.694 0.549 0.456 10581.0 1.053 1.006 0.984 0.955 0.919 0.899 0.954

10581.0 1.053 1.006 0.794 0.703 0.439 0.907 0.768 0.700 0.646 0.584 0.512 0.439

10581.0 1.035 0.988 0.947 0.921 0.903 0.987 0.000 0.000 0.846 0.689 0.620 0.557 0.492 0.426

10581.0 1.016 0.967 0.935 0.988 0.890 0.972 0.000 0.000 0.833 0.675 0.606 0.544 0.488 0.416

105R1.0 1.009 0.972 0.950 0.919 0.852 0.852 0.913

0.866 0.729 0.661 0.607 0.547 0.479 0.411 10581.0 1.017 1.005 1.088 1.351 0.899 0.830 0.784

0.739 0.693 0.663 0.686 0.625 0.493 0.410 10581.0 1.025 1.121 0.000 0.600 0.995 0.916 0.751

0.705 0.673 0.723 0.000 0.000 0.549 0.407 10541.0 1.013 1.110 0.000 0.000 0.977 0.796 0.727

0.680 0.651 0.703 0.000 0.000 0.534 0.396 00041.0 0.589 0.982 1.060 1.615 0.853 0.768 0.707

0.660 0.626 0.609 (.637 0.582 0.458 0.376 0581.0 0.976 0.951 0.925 0.878 0.812 0.747 0.692

0.645 0.607 0.575 0.541 0.494 0.430 0.361

0581.0 .711 .685 .646 .603 .562 .521 .482 .444 .407 .372 .338 .304 .267 .224

10581.0 .697.000 .661.615 .547 .506 .465 .427 .391 .356 .336 .304 .000 .217

10581.0 .670 .672 .000 .000 .550 .486 .444

406 .371 .351 .000 .000 .254 .205 0581.0 .643 .637 .000 .000 .530 .465 .423

.386 .353 .335 .000 .000 .238 .192

10581.0 .612 .581 .573 .541 .000 .442 .399

.365 .336 .000 .288 .256 .214 .180

A-10

Table A.J. Continued

1.07 1.11 0.00 0.00 .99 .85 .79 1.07 1.03 1.07 1.03 .91 .04 .01 286. 553. 520. 484. 453. 412. 389. . 2000 1.06 1.01 . 99 . 94 . 98 . 97 . 98 16. . 88 16. . 89 .83 004. 124. 124. 194. 422. 563. . 91 . 92 1.06 1.02 .99 .95 .92 .95 0.00 1.14 1 ** 1.09 1.56 1.02 .97 1.13 1.12 1.17 1.14 1.02 .96 1.13 1.18 0.00 0.00 1.07 .93 1.14 1.20 8.00 0.00 1.09 .95 9181.6 1.86 1.61 .97 .94 .91 .94 8.00 .316 .289 .260 .230 .200 .167 .000 .308 .270 .242 .213 .185 .156 288 . 258 . 223 . 196 . 178 . 143 261. 921. 281. 702. 233. 207. 192. 132 .241 .000 .198 .175 .145 .122 NON. 375. 295. 924. 544. 002. 955. .516 .477 .441 .409 .378 .345 .3.5 492 . 454 . 437 . 405 . 000 . 3.9 . 294 .221 .205 .000 .000 .140 .113 1.10 1.08 1.13 1.09 .97 .92 . 103 era. .276 +52 × 922. 260. .366 .331 .388 .273 .247 .223 .288 .85 .83 .86 0.00 0.00 .74 .64 .84 .81 .84 0.00 0.00 .72 .63 .467 .449 .000 .000 .353 .308 .442 .427 .000 .000 .327 .284 .202.187.000.000.129 0000 -1.08 1.04 1.01 .98 .94 .178 .158 .140 .124 .109 .095 414 .000 .363 .329 .286 .257 0.00.81.71.65.60.55.49 0.00 .82 .72 .67 .62 .57 .53 .83 .80 .77 .78 .74 .69 .88 .77 .74 .70 .65 .61 .57 .84 .74 .69 .64 .59 .53 .46 79. 35. 34. 80. 75. 72. 67. . 05. 17. 69. 69. 83. 95. 79. 79. .77 .72 .69 .68 .63 .53 .45 .182 .162 .150 .133 147 91R1.0 0.1419 241 91R1.0 105H1.0 105R1.0 91H1.0 OIRI.@ 91H1.0 .357 5000 91R1.0 192. -247 91H1.0 .226 91R1.0 . 205. 91H1.8 142

.73 .71 .72 0.00 0.00 .56 .44

A-11

Table A.J. Continued

1.006 1.10 0.20 0.00 .97 .84 .78 . 74 . 70 . 71 0.00 0.00 . 55 . 44 9181.0 142

1.02 1.05 1.01 .90 .03 .78 142 91R1.0 1.05

12. 24. 52. 56. 56. 55. 53. 42.

.87 .82 147 9181.0 1.04 1.00 .97 .93

13 . 64 . 65 . 99 . 44 . 89 . 73

142 91R1.0 1.137 1.102 1.083 1.048 0.990 0.93 0.878 0.833 0.794 0.761 0.723 0.466 0.589 0.506

142 91R1.8 1.128 1.113 1.209 1.171 1.002 0.918 0.859

142 9181.0 1.127 1.230 0.000 0.000 1.113 0.9.0 0.852 B.814 B.781 B. 766 D. 808 B. 745 B. 594 B. 497 0.807 0.700 0.849 0.000 0.000 0.661 0.495

147 9181.0 1.106 1.211 0.000 0.000 1.102 0.914 0.851

0.961 142 9181.3 1.066 1.058 1.155 1.124 0.969 0.903 0.817 0.770 0.741 0.771 4. " 35 0.556 0.457 0.806 0.776 0.840 0.060 0.000 0.648 0.482

0.981 142 9181.6 1.027 0.996 0.980 0.956 0.925 0.914 0.935 0.786 0.711 0.653 0.590 0.514 0.433

142 91R1.6 1.001 0.962 0.938 0.917 0.907 1.008 0.000 0.000 0.871 0.699 0.625 0.560 0.491 0.417

141 9181.0 0.986 0.947 0.922 0.901 0.891 0.990 0.000

A=12

142 9181.0 0.963 0.950 0.931 0.906 0.876 0.866 0.930 3.000 0.854 0.684 0.610 0.546 0.479 0.408 0.884 0.739 0.664 3.607 0.547 0.477 0.404

142 9181.0 6.991 0.979 1.063 1.030 0.885 0.823 0.783

142 7181.00 1.0000 1.089 0.0900 0.073 0.801 0.741 0.740 0.693 0.661 0.663 0.621 0.489 0.404

0.711 142 91R1.0 0.990 1.075 0.000 0.000 0.949 0.775 0.697 0.565 0.716 0.0000 0.000 0.542 0.401

8.667 8.648 8.692 8.008 8.888 8.525 8.389

147 9181.0 0.964 0.943 1.016 0.974 0.822 0.742 0.586 0.642 0.610 0.594 0.622 0.568 0.446 0.367

142 91R1.0 0.945 0.906 0.880 0.840 0.782 0.723 0.672

0.629 0.592 0.561 0.527 0.479 0.417 0.351

.676 .640 .605 .570 .534 .497 .461 9181.0 242

.398 .356 .322 .288 .253 .212

+30 .476 91R1.0 .652 .618 .608 .572 .514 425

248

102. 925. 285. 215. 215. 945 403

.632 .622 0.0 0.8 .513 .455 .417 G.IRI? 142

.612 .600 0.0 0.0 .450 .432 .395 .348 .328 8.8 8.8 8.235 .198 91R1.0 382

Cortinued Table A.3.

446 408 373 205. 953. 533. 992. .329 .310 8.9 9.9 .221 .179 01H1.3 .361 242

.311 .283 .265 .237 .199 .167

.565 .527 .491 .455 .419 .384 .366 9.1819 141. 242

240 .213 .195 .135 -244 .26T 335

9181.0 .541 .501 .464 .429 .394 .376 0.0 243

224 .198 .171 . 144 152. 992. 0.0

. 477 . 4440 . 405 . 372 . 355 0.0 115. 91R1.0 142

495. 125. 135. 383. 714. 124. 194. .208 .183 .158 .133 .270 .234 0.0

.216 .191 .169 .146 .123 9181.0 142

468 .429 .410 .376 .331 .302 .274 242 * .278

.222 .197 .181 .151 . 131 . 133 9181.0 248

.441 .420 0.0 0.0 5.33 .281 .253 248

.203 .187 0.0 0.0 .129 .104 0.1H19 142

.392 8.8 8.9. 8.99 .239 .231 122.

91R1.0 .412 142

91H1.0 .378 .344 .326 .298 .259 .232 .20B .184 .170 0.0 0.0 0.11 .094 281

242

A-13

.338 .301 .272 .248 .225 .203 .182 .165 .147 .136 .121 .101 .094 .185

9181.0 142

77R1.8 .841 .791 .752 .714 .673 .631 .592 .408 .367 .322 .102 .145 .129 .114 .100 .087 .072 241

282 7781.0 .815 .772 .767 .725 .650 .694 .562 644° . .554 .517 .482

282 7781.0 .793 .784 .000 .600 .655 .577 .532 .524 .488 .454 .436 .400 .345 .296

282 7781.8 .767 .754 .000 .000 .623 .546 .502 272, 235, 3309, 8009, 844, 454, 444,

.472 .000 .000 .313 .256 214. 154. 244.

282 7781.0 .734 .685 .673 .630 .558 .512 762. 975. 325. 357. 313. 357. 325. 278. 434. 434.

202 7741.0 .697 .643 .600 .540 .518 .478 .460

282 77R1.0 .658 .604 .560 .521 .483 .466 .000 426 .378 .348 .318 .287 .254 .218

. 000 282 7791, 0 .618 .568 .526 .480 .452 .436 .000 .368 .323 .293 .263 .232 .199

282 7781.0 .582 .537 .497 .460 .425 .392 .376 .342 .298 .269 .248 .211 .182 . 000.

246 .303 .273 .245 .215 .861 . 915 .

Table A.J. Continued

282 7741.0 .549 .508 .491 .453 .399 .355 .334 .305 .276 .249 .231 .207 .176 .150 282 7781. 0 .516 . 000 . 000 . 000 . 330 .330 .306

211. 256 . 233 . 0000 . 000 . 155 . 135

11 ... 782 7781.0 .479 .442 .000 .000 .357 .307

142. 212. 200. 353. 353. 300. 104. 1781. 0.171. 202 151. 021. 000. 000. 012. 222. 022.

701. 721. 151. 750. 100. 107.

202 7781.0 .309 .347 .317 .209 .261 .238 .244

APPENDIX B

Description of the 3D Flux Synthesis Method

PEG/CALVERT

Appendix B. Description of the 3D Flux Synthesis Method

A 3D (ROZ) flux distribution is synthesized using the following well established approximation:

$$\phi(\mathbf{R}, \Theta, \mathbb{Z}) = \phi_{\mathbf{R}\Theta}(\mathbf{R}, \Theta) \frac{\phi_{\mathbf{R}\mathbb{Z}}(\mathbf{R}, \mathbb{Z})}{\phi_{\mathbf{R}}(\mathbf{R})} = \phi_{\mathbf{R}\Theta} A(\mathbf{R}, \mathbb{Z}) \qquad \mathbf{B}.$$

where $\phi_{\rm R\Theta}$ is the flux obtained from the RO DOT calculation; and

$$A(R,Z) = \frac{\varphi_{RZ}}{\varphi_{R}} = \text{axial distribution function obtained by} \\ representing the RZ flux = (\phi_{RZ}) \text{ distribution} \\ \text{ and dividing it by the integral over Z of the } \\ RZ flux, i.e.,$$

 $\phi_{\rm R} = \int_Z \phi_{\rm RZ} \, dZ$

In some previous studies the RZ flux distribution was represented by the results obtained from a DOT RZ calculation, while the radial flux ϕ_R was obtained from a one-dimensional calculation. However, it has been discovered that a simplier approximation gives similar results (within a few percent) as the results of these transport calculations for locations not outside of the RPV and near the reactor widplane. In this approach we represent

$$A(R,Z) = \frac{\phi_{RZ}(RZ)}{\phi_R} \approx \frac{P_{(Z)}}{J_{Z}P(Z)dZ} B.2$$

where P(Z) is the average axial distribution of power in the core. The function P(Z) has been represented by discrete nodel values corresponding to the core-average axial power distribution at MOC, which was provided by Baltimore Gas and Electric. The relative axial power values were provided at 51 points for the 12 and 18 month cycles, and at 24 points for the 24 month

Appendix B Description of the 3D Fl. Synthesis Method

A 3D (R02) flux distribution is synthesized using the following well established approximation:

$$\phi(\mathbf{R}, \Theta, \mathbf{Z}) = \phi_{\mathbf{R}\Theta}(\mathbf{R}, \Theta) \frac{\phi_{\mathbf{R}Z}(\mathbf{R}, \mathbf{Z})}{\phi_{\mathbf{R}}(\mathbf{R})} = \phi_{\mathbf{R}\Theta} \mathbf{A}(\mathbf{R}, \mathbf{Z}) \qquad \mathbf{B}.1$$

where $\phi_{R\Theta}$ is the flux obtained from the RO DOT calculation; and

$$A(R,Z) = \frac{\phi_{RZ}}{\phi_R} = \text{axial distribution function obtained by} \\ \text{representing the R2 flux} = (\phi_{RZ}) \text{ distribution} \\ \text{and dividing it by the integral over Z of the} \\ RZ flux, i.e.,$$

$$\phi_{\rm R} = \int_{Z} \phi_{\rm RZ} \, dZ$$

In some previous studies the RZ flux distribution was represented by the results obtained from a DOT RZ calculation, while the radial flux ϕ_R was obtained from a one-dimensional calculation. However, it has been discovered that a simplier approximation gives similar results (within a few percent) as the results of these transport calculations for locations not outside of the RPV and near the reactor midplane. In this approach we represent

$$A(R,Z) = \frac{\phi_{RZ}(RZ)}{\phi_R} \approx \frac{P_{(Z)}}{\int_Z P(Z) dZ} B.2$$

where P(Z) is the average axial distribution of power in the core. The function P(Z) has been represented by discrete nodal values corresponding to the core-average axial power distribution at MOC, which was provided by Baltimore Gas and Electric for the peripheral assemblies. The relative axial power values were provided at 51 points for the 12 and 18 month cycles, and at 24 points for the 24 month cycle. Therefore employing the expression eq. B.2 for axial point k, we

find

$$A(R,Z) \approx A(Z) \Rightarrow A_k = \frac{P_k}{\int P(Z) dZ}$$
; k=1, # of axial points

There are 51 points used for the 12 and 18 month cycles, in the axial dimension. The 51 points define 50 nodes (i.e., intervals). To calculate the integrated axial power we use the expression

$$\int_{0}^{H} P(Z) dZ = \sum_{k=1}^{50} \overline{P}_{k} \Delta Z_{k} \qquad B.3$$

where \widetilde{P}_k is the average power (relative) in the kth axial node. This value

is approximated by $\overline{P}_k = \frac{P_k + P_{k+1}}{2}$, where P_k and $P_{k=1}$ are the point powers taken from the axial power data provided by BG&E.

Equation B.3 was used to approximate the denominator of eq. B.2, for the 12 and 18 month cycles.

The axial distribution provided by BG&E for the 24 month cycle only has 24 intervals instead of 51 as for the 12 and 18 month cycles. A similar development for this gives

$$\int_{0}^{H} P(Z) dZ = \sum_{k=1}^{24} \overline{P}_{k} \Delta Z_{k} \qquad B.4$$

Equation B.4 was used to approximate the denominator of eq. B.2 for the 24 month cycle.

The final axial synthesis factors for the 12 and 18 month cycles are given in Table B.1, and for the 24 month cycle in Table B.2.

In order to compute the 3D flux or activity at some axial location

(corresponding to a height Z in Table B.1 and B.2), for some RO location one must

- (a) find the flux or activity at the appropriate $(\textbf{R}_{I},~\boldsymbol{\Theta}_{J})$ location in the DOT run
- (b) find the axial flux factor at the appropriate node K
- (c) compute the 3D value using expression

$$\phi(\mathbf{R}_{1}, \boldsymbol{\Theta}_{J}, \boldsymbol{Z}_{K}) = \phi_{R\Theta}(\mathbf{R}_{1}, \boldsymbol{\Theta}_{J})^{*} \boldsymbol{A}_{K}.$$

(*) For example, in the 18 month cycle the peak power corresponds ap, eximately to Z = 3.20 feet the bottom of the core. From Table B.1 it can be seen that the axial to the location is equal to 3.17 x 10^{-3} . Therefore all activities be DOT R0 output should be multiplied by this factor in order

Table B.1 Calvert Cliffs Unit 2 Axial Distribution Factors for Flux Synthesis: 12 and 18 Month Cycles

Height (feet)	A _k , 12 Month	A _k , 18 Month
11,4300	1.84446E-03	1.74971E-03
11,2000	2.02698E-03	1.94625E-03
10.9700	2.19258E-03	2.12788E-03
10.7400	2.34726E-03	2.29373E-03
10.5100	2.48415E-03	2.44322E-03
10.2800	2.60497E-03	2.57607E-03
10.0500	2.70972E-03	2.69199E-03
9.8300	2.79898E-03	2.79155E-03
9.6800	2.87331E-03	2.87734E-03
9.3700	2.93329E-03	2.94277E-03
9.1400	2.97978E-03	2.99642E-03
8.9100	3.01393E-03	3.03659E-03
8.6800	3.03718E-03	3.06471E-03
8.4500	3.05095E-03	3.00221E-03
8.2300	3.05640E-03	3.09053E-03
8.0000	3.05554E-03	3.09139E-03
7.7700	3.04952E-03	3.08652E-03
7.5400	3.03976E-03	3.07734E-03
7.3100	3.02739E-03	3.06528E-03
7.0800	3.01565E-03	3.05208E-03
6.8500	3.00388E-03	3.03889E-03
6.6300	2.99355E-03	3.02569E-03
6.4000	2.98500E-03	3.01737E-03
6.1700	2.98150E-03	3.01077E-03
5.9400	2.98093E-03	3.00761E-03
5.7100	2.98437E-03	3.00886E-03
5.4800	2.99097E-03	3.00388E-0?
5.2600	3.00274E-03	3.03688E-03
5.0300	3.01823E-03	3.02856E-03
4.8000	3.03689E-03	3.04663E-03
4.5700	3.05784E-03	3.06959E-03
4.3400	3.07994E-03	3.08967E-03
4.1100	3.12499E-03	3.112342-03
3.8800	3.12270E-03	3.13357E-03
3.6600	3.14049E-03	3.15194E-03
3.4300	3.15628E-03	3.16571E-03
3.2000	3.16144E-03	3.17317E-03
2.9700	3.16144E-03	3.17231E-03
2.7400	3.152262-03	3.16169E-03
2.5100	3.13246E-03	3.13960E-03
2.2800	3.10031E-03	3.10431E-03
2.0600	3.05497E-03	3.05467E-03
1.8300	2.99499E-03	2.989252-03
1.6000	2.91923E-03	2.90690E-03
1.3700	2.82739E-03	2.80733E-03
1.1400	2.71891E-03	2.68940E-C3
0 9100	2 59321E-03	2.55369E-03

0.6900	2.45029E-03	2.39960E-03
0.4600	2.29072E-03	2.22773E-03
0.2300	2.11480E-03	2.06160E-03
0.0	1.92367E-03	1.83349E-03

Table B.2 Calvert Cliffs Unit 2 Axial Distribution Factors for Flux Synthesis: 24 Month Cycles

.

-

Height (feet)	Ak. 24 Month
11.2500	1.48084E-03
10.9600	2.02411E-03
10.6600	2.43010E-03
10.3700	2,68129E-03
10.0800	2.87990E-03
9.6200	3.02594E-03
8.9700	3.08728E-03
8.3100	3.10188E-03
7.8300	3.10188E-03
7.3500	3.10188E-03
6.6900	3.09896E-03
6.0300	3.10188E-03
5.5500	3.10773E-03
5.0700	3.11649E-03
4.4100	3.13109E-03
3.7600	3.14278E-03
3.2700	3.15446E-03
2.7900	3.15738E-03
2,1300	3.11941E-03
1.4800	3.01134E-03
1.0220	2.84485E-03
0.7300	2.61703E-03
0.4360	2.23149E-03
0 1460	1 699905-03

APPENDIX C

Energy Group Structure and Dosimeter Activation Cross Sections Used in Transport Calculations

PEG/CALVERT

Energy Group Structure and Dosimeter Activation Cross Sections Used in Transport Calculations are presented in Tables C.1 and C.2.

PEG/CALVERT

Group	Lover energy (MeV)	Group	Lower energy (MeV)
1	14.19*	25	0.183
2	12.21	26	0.111
3	10.00	27	0.0674
4	8.61	28	0.0409
5	7.41	29	0.0318
6	6.07	30	0.0261
7	4.97	31	0.0242
8	3.68	32	0.0219
9	3.01	33	0.0150
10	2.73	34	7.10 x 10 ⁻³
11	2.47	35	3.36 x 10-3
12	2.37	36	1.59 x 10 ⁻³
13	2.35	37	4.54 x 10-4
14	2.23	38	2.14 x 10 ⁻⁴
15	1.92	39	1.01 x 10 ⁻⁴
16	1.65	40	3.73 × 10-5
17	1.35	41	1.07 × 10 ⁻⁵
18	1.00	42	5.04 × 10-6
19	0.821	43	1.86 x 10 ⁻⁶
20	0.743	44	8.76 x 10 ⁻⁷
21	0.608	45	4.14 x 10 ⁻⁷
22	0.498	46	1.00 x 10 ⁻⁷
23	0.369	47	1.00 x 10-11
24	0.298		

Table C.1 SAILOR 47-Group Library Energy Structure

*The upper energy of Group 1 is 17.33 MeV.

Table C.2 Reaction Cross Sections (Barns) Used in Celculations

for Calvert Cliffs Unit 2

Group	Energy	U-238	Np=237	Fe-54	Ni - 58	Cu-63
	(MeV)	(n,1)	(n,t)	(n,p)	(n,p)	(1,3)
	1.7335+01	1.275E+00	2.535E+00	2.686E+01	2.962E-01	3.6828-02
	1.4195+01	1.0865+00	2.320E+00	4.137E-01	4.416E-01	4.540E-02
1	1,221 E+01	9.844E-01	2.334E+00	5.276E-01	6.103E-01	5.357E-02
ž	1.000E+01	9.864E-01	2.3298+00	5.781E-01	6.588E-01	3.811E-02
5	8.607E+00	9.891E-01	2.248E+00	5.888E-01	6.553E-01	1.9062-02
6	7. 08E+00	8.574E-01	1.965E+00	5.590E-01	6.285E-01	9.277E-03
7	6.065E+00	5.849E-01	1.520E+00	4.697E-01	5.365E-01	2.9158-03
8	4.966E+00	5.615E-01	1.538E+00	3.199E-01	3.917E-01	4.437E-04
õ	3.679E+00	5.475E-01	1.638E+00	1.762E-01	2.287E-01	3.568E-05
10	3.012E+00	5.463E-01	1.6802+00	1.155E-01	1.658E-01	5.831E-06
11	2.7258+00	5.527E-01	1.697E+00	7.7558-02	1.131E-01	1.707E-06
12	2.466 .+00	5.5218-01	1.695E+00	5.111E-02	9.3082-02	6.834E-07
13	2.3655+00	5.512E-01	1.694E+00	4.756E-02	9.232E-02	4.637E-07
14	3.346 \$+00	5.504E-01	1.6935+00	4.484E-02	8.614E-02	3.430E-07
15	2,2315+00	5.390E-01	1.677E+00	2.008E-02	4.661E-02	1.150E-07
16	1 9208+00	4.685F-01	1.645E+00	4.771E-03	2.660E-03	1.536E-08
17	1.6535+00	2.7068-01	1.604E+00	6.335E-04	1.337E-02	0
10	1 3538+00	4 502E-02	1.543E+00	1.311E-05	4.438E-03	0
10	1.0038+00	1 1025-02	1.3895+00	0	5.023E-04	0
20	8 2085-01	2 8815-03	1,2055+00	0	1.729E-04	0
20	7 4978-01	1 3075-03	9 845F-01	0	4.914E-05	0
44	6 0815-01	5 3785-04	6 4375-01	õ	7.673E-06	0
44	0.0016-01	1 5025-04	2 6425-01	õ	8.903E-07	0
22	4.9/02-01	8 3338-05	8 8005-02	0	4.070E-08	0
24	3,0002-01	6.3335-05 6.1685-05	3 5598-03	õ	1.832E-15	0
40	1 8006-01	0.1000-05	2.0/38-02	0	0	0
20	1.0326-01	4.0000-00	1 6/25-02	õ	0	õ
21	1.1112-01	4.0126-05	1.0425-02	0	0	0
28	6.738E-02	4.0002-05	1,2205-02	0	0	0
29	4.08/E-02	5.1/6E=US	1.0002-02	0	0	0
30	3.183E-02	. 8.6102-05	1.0238-02	0	0	0
31	2.6061-02	8.7002-05	1.0028-02	0	0	0
32	2.4188-02	8.7002-05	9.9002-03	0	Ň	0
33	2.1882-02	8.700E-05	9.7232-03	0	0	č
34	1.5032-02	5.650E-05	1.0042-02	0	0	õ
35	7.102E-03	4.860E-11	0.0000-00	0	0	0
36	3.355E-03	7.4398-10	0.710E-03	0	0	0
37	1.5852-03	4.1998-04	2.3032-02	0		Ő
38	4.340E-04	1.4048-00	3.701E-02	0	0	0
39	2.144E-04	1.0448-08	D.1296-02	0	0	0
40	1.0138-04	1.2432-08	9.0278-02	0	0	0
41	3.7278-05	1.9558-08	2.2966-02	0	0	0
62	1.0688-05	3.086E-08	1.0142-02		0	0
43	5.0438-06	4.7702-08	4.011E=03	0	0	0
1040	30-3000	5 067E 00	9.3502-03	0	0	0
65	0.704E-07	5.00/2-08	1.40/E-02	0	0	0
40	4.140E=07	1.0015-08	4.3282-03	0	0	0
47	1.000E-07	1.182E-09	8.332E-02	0	0	Ŷ

C+3

APPENDIX D

Definition of "Measured Saturated Activity" Used in Calvert Cliffs-2 Capsule Analysis

PEG/CALVERT

Appendix D. Definition of "Measured Saturated Acitivity" Used in Calvert Cliffs-2 Capsule Analysis"

The term "measured saturated activity" is a somewhat ambiguous term which is extensively used, but often misunderstood. In this appendix we will discuss the definition of saturated activity and derive the expressions used in the present analysis.

In the Calvert Cliffs-2 263° capsule analysis following cycle 4, most dosimeters did not remain in the core long enough to reach "saturation conditions" (i.e., the activity at which the rate of decay is equal to the rate of production). This is often the case for dosimeters removed relatively early in the life of a plant. Thus the "time-of-removal" activity (A_{TOR}) which is physically measured does not actually correspond to a saturated activity. However it is common to define a "measured saturated activity" (A_{SAT}) by the relation:

- (1) $A_{\text{TOR}} = h A_{\text{SAT}}$
- (2) $A_{SAT} = A_{TOR/h}$

where h is the non-saturation factor given by

(3)
$$h = \sum_{j} P_{j} (1-e^{-\lambda T_{j}}) e^{-\lambda (T-t_{j})}$$

In reality the saturated activity is not measured at all --- only the TOR activity is measured, and a "measured saturated activity" is then calculated using eq.(1).

As shown in reference (1), eq. (1)-(3) are rigorous only if the core power distribution does not change with time. If the distribution is time-dependent, then the idea of a saturated activity is ambiguous, since the different power distributions may cause the dosimeters to saturate at different activities. We encounter this difficulty in analyzing the surveillance capsule from Unit 2, which was exposed to cycles 1-3 having a power distribution representative of a 12 month cycle, and to cycle 4 having an 18 month cycle distribution. Which cycle type should be used in defining the saturated activity? Obviously the simplistic expression in eq.(1) breaks down whenever several different power distributions are involved; and it is no longer clear how to define a "measured saturated activity" in terms of A_{TOR} . In the following development we derive an alternate expression to

eq.(2) for defining a "measured saturated activity" in terms of A_{TOR} for the Calvert Cliffs-2 analysis. (This derivation is easily generalized.)

We assume that a single power distribution can be used to represent all 12 month cycles; and another to represent 18 month cycles. If the dosimeter were exposed to either of these distributions for a long enough period of time, it would obtain a saturated activity equal to A_{SAT}^{12} and A_{SAT}^{18} , respectively. Note that in general

$$A_{SAT}^{12} \neq A_{SAT}^{18}$$
;

and that the ATOR value should represent some combined effect of the two power distributions.

The value for $A_{\rm TOR}$ at the end of cycle 4 will be given by

D-2

(4)
$$A_{\text{TOR}} = h_{1 \rightarrow 3} A_{\text{SAT}}^{12} e^{-\lambda T_{3 \rightarrow 4}} + h_4 A_{\text{SAT}}^{18}$$

where $h_{1\rightarrow 3} = \text{non-saturation factor from beginning of cycle 1 to end of cycle 3.}$ $h_{1} = \text{non-saturation factor from beginning of cycle 4 to end of factor from beginning of cycle 4 to end of factor from beginning of cycle 4 to end of factor from beginning of cycle 4 to end of factor from beginning of cycle 4 to end of factor from beginning of cycle 4 to end of factor from beginning of cycle 4 to end of factor from beginning of cycle 4 to end of factor from beginning factor factor from beginning factor factor from beginning factor facto$

cycle 4.

 $T_{3\rightarrow4}$ = time from the end of cycle 3 to the end of cycle 4.

 A_{SAT}^{12} and A_{SAT}^{18} = saturated activity associated with the power

distribution for the 12 and 18 month cycles, respectively. λ = dosimeter decay

Equation (4) can be written as

(5)
$$A_{\text{TOR}} = [h_{1 \rightarrow 3} e^{-\lambda T_{3 \rightarrow 4}} + h_4 (\frac{A_{\text{SAT}}^{18}}{A_{\text{SAT}}^{12}}] \cdot A_{\text{SAT}}^{12}$$

From this relation we define the "measured saturated activity" for the 12 month cycle to be

(6)
$$(A_{SAT}^{12})_{meas.} = \frac{A_{(TOR)meas.}}{\begin{bmatrix} h_{1\rightarrow3}e^{-\lambda T} \\ 3\rightarrow 4 \\ -\lambda T_{3\rightarrow 4} \\ + \\ SAT \\ CALC. \end{bmatrix}$$

Note that eq.(6) allows us to obtain a "measured" saturated activity by utilizing the A_{TOR} measurements; however it also requires knowing the ratio

 $\frac{A_{SAT}^{18}}{A_{SAT}^{12}}$ which must be obtained from the transport calculations. A_SAT

In a similar way we obtain the measured saturated activity for the 18 month cycle:

The results called measured saturated activities in Tables 6a and 6b were obtained using eqs.(6) and (7) respectively.

REFERENCES

R. E. Maerker, M. L. Williams, B. L. Broadhead, "Accounting for Changing Source Distributions in Light Water Reactor Surveillance Dosimetry Analysis," Nucl. Science Engr. 94, 291-308 (1986).