Georgia Power Company 333 Piedmont Avenue Atlanta, Georgia 30308 Telephone 404 526-7726

Mailing Address: Post Office Box 4545 Atlanta, Georgia 30302

D. O. Foster Vice President and General Manager Vogtle Project

May 25, 1984

Director of Nuclear Reactor Regulation Attention: Ms. Elinor G. Adensam, Chief Licensing Branch #4 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D.C. 20555

File: X7BC35 GN-360 Log:

NRC DOCKET NUMBERS 50-424 AND 50-425 CONSTRUCTION PERMIT NUMBERS CPPR-108 AND CPPR-109 VOGTLE ELECTRIC GENERATING PLANT - UNITS 1 AND 2 REQUEST FOR ADDITIONAL INFORMATION - SUPPLEMENTAL INFORMATION TO ER-OL AMENDMENT 3

Dear Mr. Denton:

In Ms. Adensam's letter dated April 17, 1984, requests were made for supplemental information which is not part of the ER-OL. This material is being sent as enclosures to this letter. Attached is a listing of the enclosures being provided.

If you have any questions concerning the enclosed information, do not hesitate to contact us.

Yours, truly,

DOF/KWK/sw Enclosure

xc: M. A. Miller

R. A. Thomas

J. A. Bailey

O. Batum

L. T. Gucwa

G. F. Trowbridge, Esquire

G. Bockhold, Jr.

D. G. Eisenhut

ADD: EHEB 4043

PM GROWLY

DIST PER M. MILLER

SUPPLEMENTAL MATERIAL: AMENDMENT 3 TO THE ER-OL

NRC QUESTION #	_MATERIAL_	# COPIES
E290.13	"Sound level study at the Alvin W. Vogtle Nuclear Plant Site Prior to Construction" by C. E. Hickman, Southern Company Services, Inc. 1974.	6
	"Construction Sound Level Survey, Alvin W. Vogtle Nuclear Plant" by C. E. Hickman and H. A. Feariug, Southern Company Services, Inc. May 1981.	6
E290.14	"Sound Level Study, Miller Arkadelphia 500 KV Transmission Line Study" Southern Company Services.	6
E290.15	"Cooling Tower Noise" Southern Company Services.	6

GEORGIA POWER COMPANY ALVIN W. VOGTLE NUCLEAR PLANT

SOUND LEVEL STUDY AT THE ALVIN W. VOGTLE NUCLEAR PLANT SITE PRIOR TO CONSTRUCTION

Research Department SOUTHERN SERVICES, INC. Birmingham, Alabama

SOUND LEVEL STUDY AT THE ALVIN W. VOGTLE NUCLEAR PLANT SITE PRIOR TO CONSTRUCTION

INTRODUCTION

A Sound level study was performed at the Alvin W. Vogtle Nuclear Plant site on May 14-15, 1974. Results of the survey are presented in the following formats.

1. Nine pages of Noise Survey Forms

2. Chart recordings of sound level as a function of time.
Location of the measurements are noted on the Site Plot Plan, Figure 2.1-3
of the Environmental Report and on sketches on the Noise Survey Forms.

RESULTS

a. Ambient Sound Levels

The main purpose of the survey was to ascertain noise levels prior to the beginning of construction of the nuclear units. A significant number of measurements, tabulated on pages 1 and 2 of the Noise Survey Forms, were taken during the evening hours of May 14, 1974. Sound levels ranged from 22-39 dBA with most readings falling in the 25-30 dBA range. Under calm wind conditions the sound level fell to 22 dBA but increased to 34 dBA when the wind gusted to 7 mph. The large increase was due primarily to rustling leaves. The 39 dBA reading occurred at the South fence line of the combustion turbine plant and the main contributors were the transformers since no combustion turbines were operating.

Other noise sources at the observation points were a number of singing birds and other night life sounds.

As a matter of interest it was noted that passing traffic produced sound levels of 80-88 dBA at positions along the road bounding the western

and southern property lines.

Pages 2 and 3 of the Noise Survey Forms indicate that sound levels of 28-44 dBA were measured around the site during the following morning. The highest noise level of 44 dBA occurred during wind gusts of up to 10 mph. Generally, wooded areas, such as the proposed intake structure area, had higher sound levels due to the wind in the trees.

A magnetic tape recording was made at the N80+00, E81+00 location and the resulting sound levels as a function of time are plotted on Figures 1 and 2.

Figure 1 indicates that the dBA sound level, in general, varied from 25-30 dBA at the N80+00, E81+00 position. The sharp peaks on the graph are the result of bird calls such as whippoorwills. The dB linear sound levels as shown on Figure 2 range from 35-45 dB. A fuel truck at the combustion turbine plant increased the sound level to above 50 dB linear.

A comparison of Figures 1 and 2 indicates the following.

- (1) The A-weighted sound levels are approximately 10 dB lower than the dB linear sound levels.
- (2) Peaks in the A-weighted response due to high frequency bird calls are more pronounced since the low frequencies (<1000Hz) in the sound level spectrum are attenuated by the weighting network.
- (3) Truck noise has less effect on the A-weighted response since it is predominantly low frequency.

b. Transformer Sound Levels

Sound levels produced by large transformers presently at the combustion turbine site were also measured and the results are tabulated on pages 4 and 5 of the Noise Survey Forms. At 3' from the transformers the sound levels were 79-80 dBA with the predominant frequency being 125Hz. Although the effect on the dBA sound level was minimal at a position such as N80+00

where a magnetic tape recording was made, the 125Hz tone was clearly audible. This position is approximately one mile from the transformers. During the above tests none of the combustion turbines were operating.

c. Sound Levels Around Combustion Turbines

Sound level measurements were taken around combustion turbine 5E at 3' distances from major components. These data plus additional measurements associated with the combustion turbines are tabulated on pages 6-9 of the Noise Survey Forms.

The levels obtained around combustion turbine 5E ranged from 81 dBA 3' East of the turbine to 92 dBA near the generator and exciter.

Rather high noise levels were observed inside the enclosure, e.g., 105 dBA at the turbine, 114 dBA at the generator intake and 116 dBA at the bearing compartment between the turbine and generator. The sound level was 94-96 dBA on the turbine platform and 93 dBA at the exciter view window.

Midway between two operating combustion turbines (5D and 5E) the sound level was 82 dBA.

The decrease in the sound level as a function of distance from 100' to 2000' from the combustion turbines is noted on page 8 of the Noise Survey Forms. The 6 dB decrease for each doubling of distance rule for this situation is quite closely achieved.

SUMMARY

This report is the first of a number concerned with sound levels at the Alvin W. Vogtle Nuclear Plant site. The main concern of this study was the determination of sound levels prior to construction. A second study will focus on construction noise and a third will contain predictions of sound levels during operation. Finally, actual operating sound levels will be measured.

To fulfill one of the provisions of the Noise Control Act of 1972, the Environmental Protection Agency has published the document "Information on Levels of Environmental Noise Requisite To Protect Public Health and Welfare With An Adequate Margin of Safety." The recommendation for environmental noise in the above document is a day-night average Ldn=55 dB. This sound level is equivalent to 49 dBA.

As indicated in this report sound levels measured at the property lines prior to the beginning of construction of the nuclear units are below the recommended value of the Environmental Protection Agency.

P.O. Box 2625

JOB NO:	Hickm B&K 2 ER: TYPE TYPE PE OR: TYPE	an and (209 E_B&K414 B&K 16	Champi s 45s 13s	ON ER. # 4! ER. # 4! ER. # 4!	54249 56988 60875	CLIE	SOUR	sign.	ATION NOITH	ONS:	_Am	bien	t ev	enin	g.	
TIME CALI- BRA- TION	TEMP	WIND OIR.	CLIE	P. MAK NT DE ATING	SIGN	ATIO	N :									
TEST NO. TIME	75 POSI- TION		CONDI		SSE		SOUN OVER ALL LEVEL		ОСТА	VE B	AND	CENT	ER F	REQUE	NCY,	Hz.
1 18:19	2 B	NW Corr N 111+0	00. E	15+00	ty	27-30 25-30 25-34	35	28	30	26	27	30	30	20	15	10
3 18:35 4 18:45 5 18:55	D	N 60+00 At Eber N 22+00	nezer (Church	Road	22 ₂₅ 25	35	29	26	25	25	22	17	15	12	11
6 19:05 7 20:00		39 27 28														

Position B - Birds increased sound level to 38 dBA

Position C - Passing traffic produced sound levels of 80-88 dBA.


Sound level of 34 dBA produced when wind gusted to 7mph

Position F - South fence at combustion turbine plant; sound level primarily due to transformers, no combustion turbines on

RECOMMENDATIONS	

SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM ALABAMA 3520

E SLM	TYPE_	B&K 22	09	S	ER. #	154249	OPER	NT DE	G CO	ITION	ONS:	Amb	ient	_eve	-		
ANA		TYPE_	B&K 16	13 s	ER #	456988 460875		morn ee co								10:0	Oam_
S CAL	IZRATOR	TYPE	B&K 4	220 s	ER # .	57476 recorder	SECO	NDAR'	Y NO	ISE S	OURC	Ε:					
TIME	CALI- BRA- TION			имно		WIND DIR.	CLIE	NT DE	SIGN	ATIO	N:						
21:30	OK																
9:00	OK						-		-				-				
TEST NO.	TEST POSI-							SOUN		distribution of the last	-		in the same of the same		N/M		Hz.
9	20:25	I		4, 1974 00, E 8		***	28	40	-	-	-	-	-	-	-	-	-
10	9:30			5, 1974			2838	-									
11	9:35			00, E 8			38 ≅34	-			-		-	-			
12	9:45			+00, E			34										
13	9:55	1	N 105	+00, E	20+00		3444										
THE RESERVE OF THE PARTY OF THE	10:05	М	Tower	8, Riv	er Fac	ility R	34-										

NOISE SURVEY FORM SOUTHERN SERVICES INC. P.O. Box 2625

BIRMINGHAM, ALABAMA 35200

RUMENTATION O S	SER SLM TRA AMA	VERS: _ VERS: _ NSDUCE LYZER: LE: TYP	Hickma B&K_220 R: TYPE TYPE_ E	DA an and 09 : B&K 4 B&K 16	TE: _5 Champi s: 145 s 13 s	ent You /15/74 on ER # 45 ER # 46 ENGTH _ ER # 46	54249 56988 50875	CLIE OPER _SO		SIGNA G COM	MODE	(L: I: ONS:	-Amb	ient		ning		
									P. MAK									
*,,	314	GALI- BRA- TION		% R H		WIND	WIND DIR.	CLIE	NT DE!	SIGNA	TION	4: <u> </u>						
TE	ST	TIME	POSI-	,					SOUN		-		-			-		
N	0.	TIME	TION		CONDI	TIONS		SCALE	ALL			P	-				*	Account outpour services
15		10:10	N	Dr. Br	own's	cabin		35- 40-	LEVEL	31,5	63	2.5	2 50	500	1000	2000	4000	8000
16		10:25	0	Intake	struc	ture ar	ea	1 42										
17		10:35	P	N 80+0	0. E 1	17+00		3440		-11								
18		10:55		N 80+0				3540										

DIAGRAM - SHOW MEASURING LOCATIONS:

^{*}Positions are located according to "plant grid system." See site plot plan, Figure 2.1-3 of the Alvin W. Vogtle Nuclear Plant Environmental Report.

SOUTHERN SERVICES INC P.O. Box 2625 BIRMINGHAM, ALABAMA 3520

TRA'	VERS:	_Ніскп		TE:	E/14/												
SLM TRA	TYPE_				2/14/	7.4	EQUI	P. MA	KE &	MODI	ει.: _						
SLM TRA	TYPE_		an_and	Champ	on		CLIE	NT DE	SIGN	ATIO	N: _						
ANAL	ISOUCE	B&K		S				RATIN						the	com	bust	ion
23	,00000	R . TYPE	B&K	4145 si	ER.# 45	6988	1										
E CABL	LYZER:	TYPE_	9&K 16	13 s	ER. # 46	0375											
CC.	LE: TYP	E		L	ENGTH_		-			ement in		-		and the second		NAME OF THE OWNER, OWNE	- Marie C
2 CALI	SRATOR	R: TYPE	B&K42	20si	ER. # 45	7476	SECO	NDAR	Y NO	ISE S	OUR	CF.					
отн	ER:W	lindscr	een	,		,	1										
	CALLE		% RH		WIND	WIND		NT DE									
	TION		20		WPH	DIR.	1	ATINO									
									-				,				
TEST		POSI-	4.					*****	-	-	-	EVEL	-	CONTRACTOR SECURIO	-	-	-
NO.	TIME	TION		CONDI	TIONS		SCALE	OVER	-	-	-	-	-	*	-	-	
			Trans	formers			LEVEL	LEVEL	31.5	63	125	250	500	1000	2000	4000	900
19	20:45	_A1	3' W	of tran	sforme	r 3	79	92	53	69	91	82	77	71	68	63	52
20		The same of the same of		f trans			80	91-	53	66	88	88	78_	64	65	61	51
21		C1	3, M O.	f trans	former	1	79	89	56	62_	84	86	76	71	65	58_	49
22			3' 5	of tran	sforme	r 1	79	89	64	64	86	82	83	63	49	40	30
23		E1	3, E 0	f trans	former	1	78	85	63	64	80	81	82	67	57	44	35
24		F1	3' N o	ftrans	former	1	77	90	50	67	89	81	76	61	50	40	33
25				- xfor			64	80	57	51	81	63	57	49	45	38	28
26 DIAGRAM				f trans		2	79	88	62	53	84	83	81	67	51	41	32
*See d	1	for n		ng of t	Г	rmers	[4	50		5	E	T_{RI}	5 ANS F	F	Tu	48US	

SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM, ALABAMA 35201

3 O 1101	S NO	VERS:	Hickm B&K 22 R: TYPS	DA nan and 109 B&K	TE: _5 Champ s 4145 s	/14/74 ion ER.# 45	54249 56988 50875	CLIE	P. MA	KE & SIGN G CO	MODE MOITA MOITA	EL: V: ONS:	_A1	l of	the			
INSTRUM	CAL	LE: TYP	E TYPE	B&K 4	L	ENGTH _ ER. # 45	57476	SECO	NDAR									
_	1:30	OK	TEMP	% R H	имне	WIND MPH	DIR.		NT DE									
	EST NO.	TIME	POSI- TION			TIONS		A	OVER		OCTA	VE B	AND	CENT	ER F	REQUE	NCY,	Hz.
2	-	21:15		50' W		ransfor	mer 1		71	52	50	64	66	65	53	47	41	33
2:	9		К1	At fe	nce, W	. of xf	ormer 1 fmr. 3 fmr. 1	54	72 63 69	52	53 48 53	57	56	55	37 40	33	30	20
3	1					W. of x		51	-	-	50	-	-	-	-		-	15
014	GRA	M - SHOV	V MEASU	IRING L	OCATION	is:												

*See sketch on page 4

SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM, ALABAMA 35200

CL	EN	r. Geor	rgia P	ower Co	21	ant Vo	gtle	PRIM	ARY I	NOISE	sou	RCE:	Comb	usti	on I	urbi	ne	
	B NO	00	42	DA	TF: 5	/15/74			P. MA									
£		VERS:							NTOE									
	-	TYPE_	and the same and the same of the same of	THE RESIDENCE OF THE PARTY OF			54249	7	RATIN						nnin	g		
1000		VSDUCE							60 M									
EME		LYZER.																
100		LE: TYP																
		IBRATOR						SECO	NDAR	V NO	ICE C	AURO					P Service Common	
		ER:						1	P. MAI									
	V E	CALI- BRA- TION		% R H	ымна	WIND	WIND DIR.	CLIE	NT DE	SIGN	ATIO	N :	_					
9	00	OK						OPER	ATIN	G CO	VDITI	ONS:						
						-		-										
20,711			THE THREE PER				A THE RESIDENCE	LI THE REAL PROPERTY.	SOUN	IC PR	ESSU	JRE L	EVEL	, dB R	E 20	u N/M	2 rms	
	ST.	TIME	POSI-		CONDI	TIONS		A	OVER	agencie sistema	and the same of	december 19 and 19 and 19	-	-		-	-	-
			11011	Combus	tion To	urbine	5E	LEVEL	ALL	-	1	-	-	Account	-	Accessed	-	ph-
32	2	11:05	A2		th of		The real Party of the last of	86	103	1 22	97	94	88	81	76	75	79	60
33	3		B2		intake					98		90	84				68	1
34			C2		of int			85	97	95	94	83	83	77	78	81	78	
35			D2	3' Sou	th of	generat	tor	90	99	94	90	86	84	81	85			74
36			E2	3' Sou	th of	exciter	^	92	99	91	92	94	86	87			86	-
37			F2	1	t of e			73	96	88	87	81	72	70		64		51
38			G2		th of			90	101	92	98	92	88		1		81	
39			H2	3' Nor	th of	generat	tor	92	102	95	97		84	83	83	87	83	75
DIA	GRA	M - SHOV	W MEAS	URING L	OCATION	S:			L2	14								
																1	JN	
						G	2		N2] IZ	. 72						
						F2 =	×-	GEIN.	5	-	77		L 2					
						L		JEII,	0	_	,0%	co,						
							.5	C	2	7	6	32 A	2					
										c5								

SOUTHERN SERVICES INC P.O. Box 2625 BIRMINGHAM, ALABAMA35211

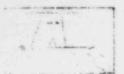

CLI	EN"	Geor	rgia Po	ower Co	P1	ant Vog	jtle	PRIM	ARY N	IOISE	sou	RCF .	Cor	nbus	tion			
	-):							P. MAI				West	ingh	ouse	60	MW	
		VERS:						1	NT DE				5E					
SEUTATION	SLM TRA ANA	M: TYPE_ INSDUCE ALYZER: BLE: TYP	B&K 2 R: TYPE	209 B&K B&K 16	s 4145 s 13 s	ER # 45 ER # 45 ER # 46	64249 66988 60875	OPE	ratino	s co	NDITI	ONS:	Uni	t 5E				
INST	CAL	BRATO	RITYPE	_B&K_4	220 s	ER. # 45			NDARY									
	4 E	CALI- BRA- TION		% RH		WINO MPH	WIND DIR.	CLIE	NT DE	SIGNA	4110	N :						
TE		TIME	POSI-		CONDI	TIONS			SOUN	-	-	-			-	-		Ma
N	0.		TION			urbine	SE	SCALE	LEVEL			-		-	-	,	-	The second second second second
40		11:25	12	3' Wes			36	1	-	99	-	88		83	-	84		-
41			J2	3' Nor	th of	turbine	9		-	-		94		82	-	82	-	
42			K2	3' Eas	t of t	urbine		81	106	102	99	94	85	74	65	64	66	56
43						en 5D 8		82	104	101	92	88	81	75	72	74	73	-
BIA		H- CHOU	LHEAD	I MILLION	COATION						-	-	Accessed to a		-	-	-	

DIAGRAM - SHOW MEASURING LOCATIONS:

^{*}See sketch on page 6

SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM, ALABAMA 3520

CLIEN"	r: Geo	orgia	Power C	O P	lant \	ogtle .	PRIM	ARY I	NOISE	SOU	RCE	Co	mbus	tion	Tur	bine	S
JOB NO):	042	DA	TE: 5	/15/74	1		P. MA									
ODSER	VERS:	Hick	nan and	Cha-p	ion	7es		NT DE									
\$ sun	to TYPE_	B&K	2209	s	ER.#	454249	-	RATIN						ion			
E TRA	NSDJCE	R: TYPE	E_B&K	4145 s	ER 75	456988		turb									
						460875							-				
E C48	LE: TYP	ε			ENGTH												
No.						457476	SECO	NDAR	Y NO	100 0	01100		E-LINESCO.		E PERSON NO.	TOTAL STATE	
	ER: Wir							P MA								-	
TIME	GALI- BRA- TION	TEMP	% RH	ммна	WIND	WIND DIR.	CLIE	NT DE	SIGN	ATIO	N :						
					_	-	OPER	ATIN	G COM	IDITI	ONS:	-	-	-			
							1		-						-	-	
							-		-		-						-
TEST		POSI-			The same of the sa			SOUN	ID PR	ESSU	JREL	EVEL	, dB R	E 20;	N/M	rms	MALE REFER
NO.	TIME	TION		CONDI	TIONS		A	OVER		ОСТА	VE 8	AND	CENT	ER F	REQUE	NCY,	Hz.
				- 1.0.			SCALE	LEVEL		-	-	-		-	Acres comments	-	granico, riciamino
44	11:40	M2	100' W	. of 5	E cent	erline	72	94	87	86	80	70	71	64	64	60	54
45		N2	200' W	. of 5	E cent	erline	66	90	82	81	74	69	63	60	58	54	46
46		02	300' W	. of 5	E cent	erline	64	90	85	82	75	67	62	51	52	48	42
47		P2	400' W	. of 5	E cent	erline	60	84	83	30	75	63	55	52	47	45	32
48		92	500' W	. of 5	E cent	erline	59	82	81	78	72	60	55	46	45	43	31
49		R2	800' W	. of 5	E cent	erline	54	78	77	74	66	55	49	39	38	37	22
50		S2	1000'	W. of	5E cen	terline	50	75	75	73	65	54	39	33	32	32	18
51		T2				terline	40	67	66	62	44	36	35	33	29	25	18
DIAGRAI	M - SHOW	MEAS	URING L	OCATION	IS:												

SOUTHERN SERVICES INC P.O. Box 2625 BIRMINGHAM, ALABAMA 3520

-	-	-						_	-	-	NAME AND ADDRESS OF	-	-	-	-	THE RESERVE	-	The same of the sa
				ower Co				1	ARY N									
				n and C					NT DE									
NOI	SLM	TYPE_	B&K 2	209 B&K	5	ER. # 45	54249	OPER	RATING	con	ITIO	ONS:	Cor	nbus				
						_		Lu	rome	5 31	1, 0	o, al	10 00	011				
ASTRUMERT				B&K 16														
HIST		BRATOR		_B&K_4					NDARY									
*:	ME	CALI- BRA-		%RH		WIND	WIND	1	P. MAK									
		TION	T S. M.P.	79 11 11	ммло	мен	DIR.	OPER	ATING	CON	DITIO	NS:						
12	2:30	OK																
										No.			november day					
TE	Si		POSI-						SOUN		-						-	
	10.	TIME	TION		CONDI	TIONS		A	OVER	(OCTA	VE B	AND (ENTE	R FF	REQUE	NCY,	Hz.
								LEVEL	LEVEL	31.5	63	125	2.50	500	1000	2000	4000	8000
5	52	12:10	U2	At tur	bine -	inside	encl.	105										
5	3		V2	Turbin	e plat	form		94-										
	4		W2	Bearin	g compa	artment	*	116										
5	55		-	Genera				114										
5	6		Y2	Excite	r view	window	1	93										
5	7		Z2	Inside	traile	er		67										

DIAGRAM - SHOW MEASURING LOCATIONS:

^{*}Bearing compartment between turbine and generator

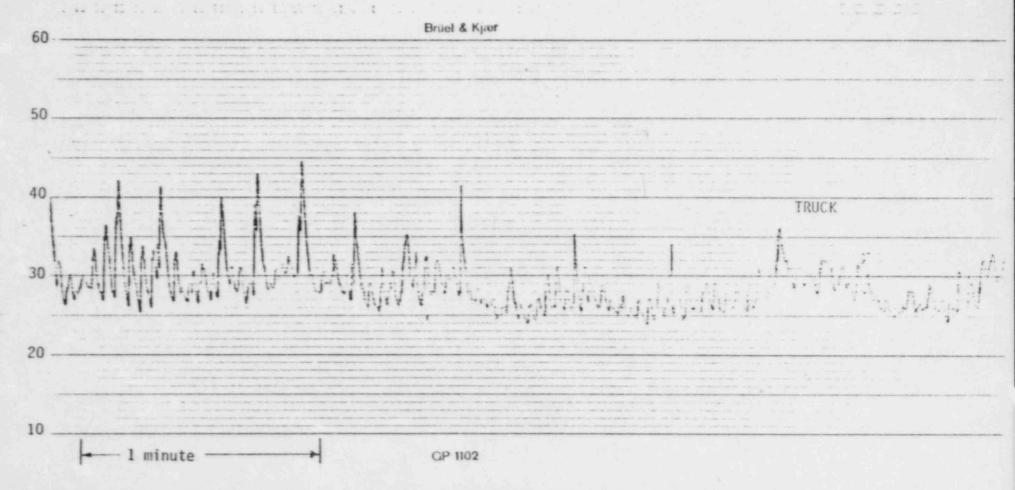


Figure 1. Sound level in dBA measured at plant grid N80+00, E81+00 on May 14, 1974 at 8:25p.m.

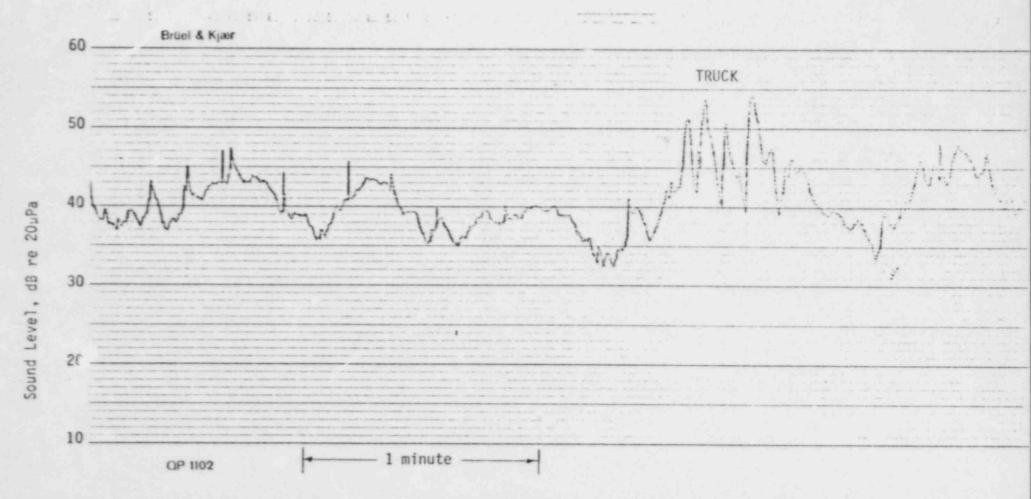
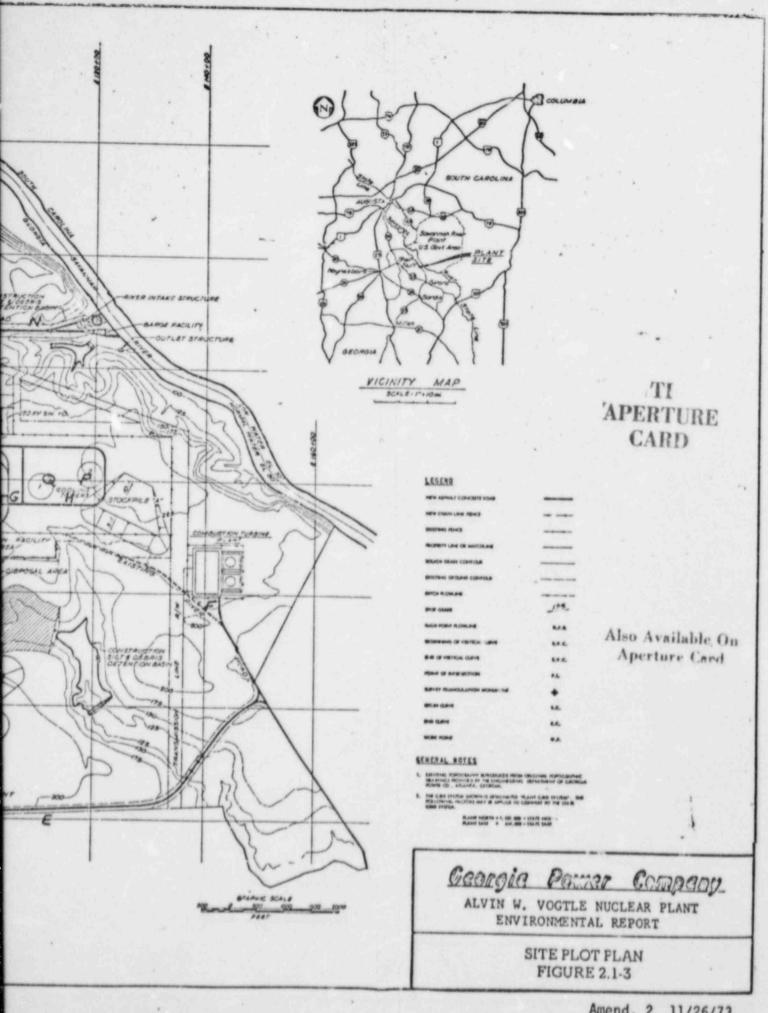



Figure 2. Sound Level in dB linear measured at plant grid N80+00, E81+00 on May 14, 1974 at 8:25 p.m.

N 140+00 N/20100 N 100+00 TRANSMISSION CINE A N N 80 FOO PLANT GRID N (148,000 STATE BAID 10000 N 40100 AROMOSED MUSLES PTOCKPILE H 40 +00 A SO TO SO A METEROPOLOGICAL TOWER W 10100 PROPERTY LINE

Amend. 2 11/26/73 8406040266-01 CONSTRUCTION SOUND LEVEL SURVEY
Alvin W. Vogtle Nuclear Plant

C. E. Hickman

H. A. Fearing

Southern Company Services, Inc.
Birmingham, Alabama
May 1981

INTRODUCTION

The following sound surveys have been conducted at the Plant Vogtle site as required for plant licensing:

- a. A pre-construction survey was performed at the site on May 14-15, 1974.
- b. A survey was conducted during plant construction on April 14-17, 1981.

MONITORING LOCATIONS

Pre-Construction Sound Survey (May 14-15, 1974)

Ambient sound levels were measured at nine accessible locations around the property line and at other representative points on the site. Readings were also taken around the combustion turbines already on the site. Sound levels were measured during the morning and evening hours. Results of the survey were transmitted in the 1974 Southern Services, Inc. report, "Sound Level Study at the Alvin W. Vogtle Nuclear Plant Site Prior to Construction."

Construction Sound Survey (April 14-17, 1981)

Readings were taken at eight of the nine 1974 locations along the site property line to facilitate comparison. Sound levels were measured at each of these locations approximately every four hours, from morning until evening. In addition, a continuous sound monitoring system was set up on three consecutive days in three representative locations near the property line. This system made and stored 15-minute averages of

sound levels all day and all night in each location. A short tape recording of the sounds was also made at each of these continuous monitoring locations and at a location near the power block.

EQUIPMENT

The equipment used in the surveys is listed below:

May 1974 Survey

Bruel	&	Kjaer	2209	Sound Level Meter	SN	454249
Bruel	&	Kjaer	4145	Condenser Microphone	SN	456988
Bruel	&	Kjaer	1613	Octave Band Analyzer	SN	460875
Bruel	å	Kjaer	4220	Pistonphone Calibrator	SN	457476
Windso	cr	een				

April 1981 Survey

Bruel & Kjaer 2215 Sound Level Analyzer	SN 691966
Bruel & Kjaer 4165 Condenser Microphone	SN 708658
Bruel & Kjaer 4230 Acoustic Calibrator	SN 725248
Metrosonics dB-602 Sound Level Analyzer	SN 1136
Metrosonics MK-601R 1/4" Microphone	
Metrosonics CL-302 Calibrator	SN 1667
Windscreens	
Nagra DJ Tape Recorder	SN D-4L73

Calibration was performed before and after each set of measurements.

MONITORING PROCEDURE

Pre-Construction Sound Survey

A-weighted sound levels were taken at each location during the survey. In addition, octave band analyses were done at several locations. The measurement locations can be seen in Figure 1.

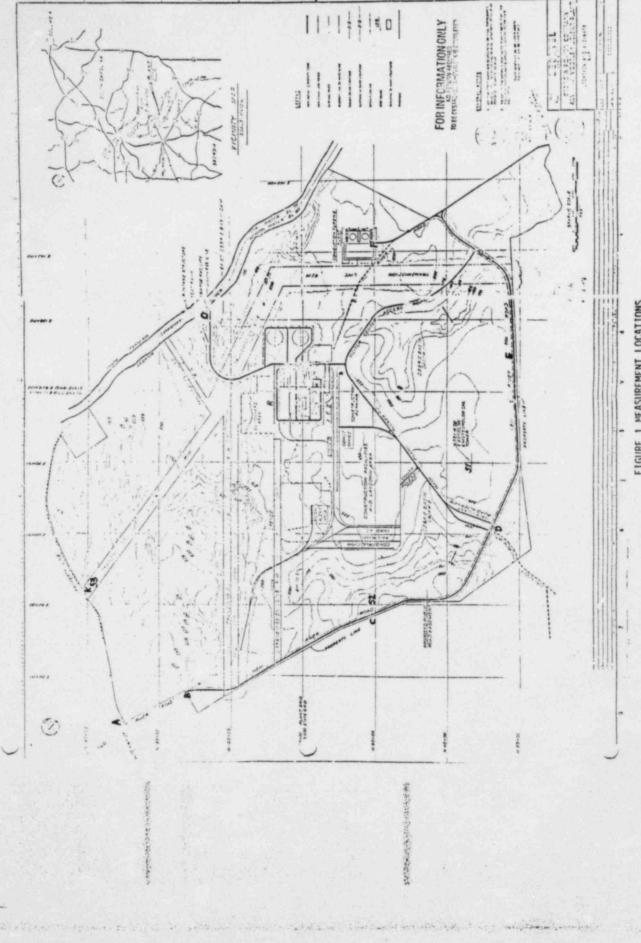


FIGURE 1 MEASUREMENT LOCATIONS

Construction Sound Survey

A-weighted and C-weighted sound levels were measured at each location along the property line. The sound levels were taken when there was little or no road noise or bird noise. In breezy conditions, readings were taken in a calm moment when possible. Timely calibration of the equipment was performed.

INTERPRETATION OF RESULTS

Pre-Construction Survey

Some of the A-weighted sound levels taken in the 1974 survey can be seen in Table 1. Sound levels ranged from 22 to 42 dBA with most readings falling in the 25-30 dBA range. Rustling leaves from wind gusts caused levels of 34 to 44 dBA. Bird calls caused levels of 35-45 dBA. Passing road traffic produced levels of 80-88 dBA at some locations. The combustion turbines were not operating at the time of the property line sound measurements. With the combustion turbines off, transformer noise was dominant at location F.

Construction Sound Survey

Sound level measurements taken along the site property line during the construction survey are compared with pre-construction levels in Table 1. For the construction survey, the range of values measured and the arithmetic average of all readings at each location are tabulated. Increases of 10-15 dB over the 1974 levels seem to have occurred at locations C and D, points relatively close to the main area of construction. Smaller increases were found at locations A, B, E, and K. Location O served as a water pumping station. Levels were generally quiet but

Table 1. Comparison of Pre-Construction Sound Levels with Levels During Construction.

Measurement	Pre-Construction Levels (May 1974),	Construction Levels (April 1981), dBA		
Location	dBA	Range	Average	
A	27-30	27-40	32	
В	25-30	27-39	33	
c	25-34	35-47	41	
D	22-25	23-47	36	
E	25	24-42	31	
F	39	46-60	51	
К	34	28-35	32	
0	40-42	34-55	39	

during pumping reached 77 dBA 100 feet from the pump. A complete set of sound level readings is contained on 11 Noise Survey Forms in the Appendix.

Construction noise was barely audible at most measurement locations. The noise typically consisted of steady vehicle and construction sounds, along with occasional loud engine noise from cranes or earth-movers. Other intermittent sounds included beeping from vehicles backing up and pounding from a pile driver. Non-construction sounds present included bird chirping, traffic sounds, and rustling of leaves during breezy conditions. Insect noise was not evident during the daytime measurements. Figures 2, 3 and 4 show how sound levels typically varied with time at monitoring points S1, S2 and S3. Note that the base levels on the charts correspond well with readings taken at these three locations, as recorded in the Noise Survey Forms.

Continuous readings were taken at locations S1, S2 and S3, chosen as representative monitoring points and as relatively safe places to leave the analyzer. Figures 5, 6 and 7 show sound levels energy-averaged at 1-hour intervals at the three locations rounded to the nearest dB. $L_{\rm eq}$ is an energy-average A-weighted sound level. L_{10} , L_{50} and L_{90} are the sound levels exceeded 10, 50 and 90 percent of the time, respectively. L_{10} is also called the "intrusive" noise level. L_{50} is the median sound level. L_{90} can be thought of as the ambient or background noise level and should correspond roughly to the sound level readings taken every four hours along the property line. The complete set of 15-minute average levels can be found in the Appendix.

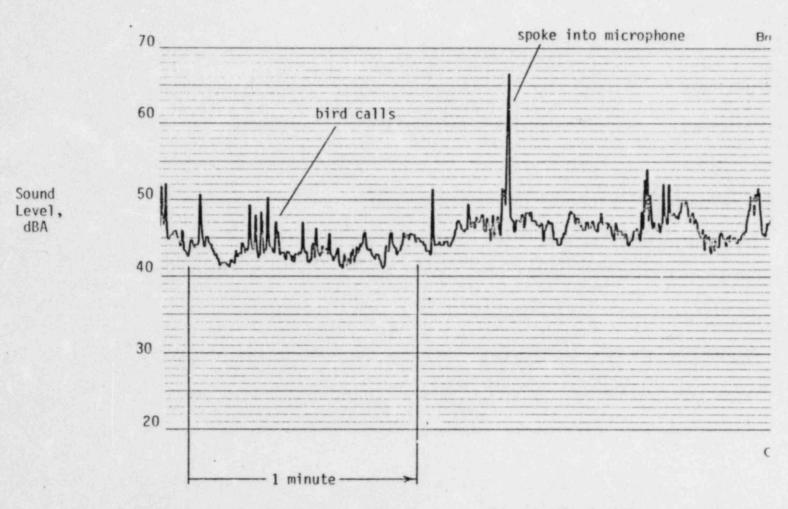
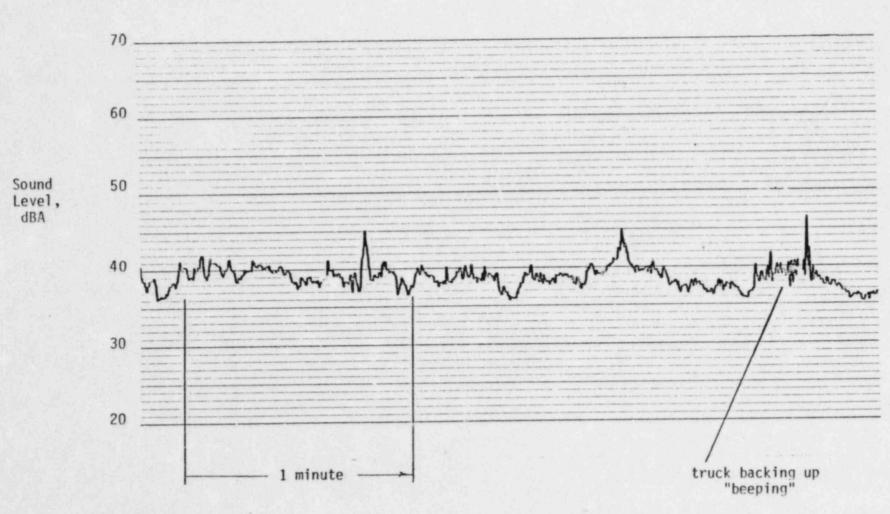
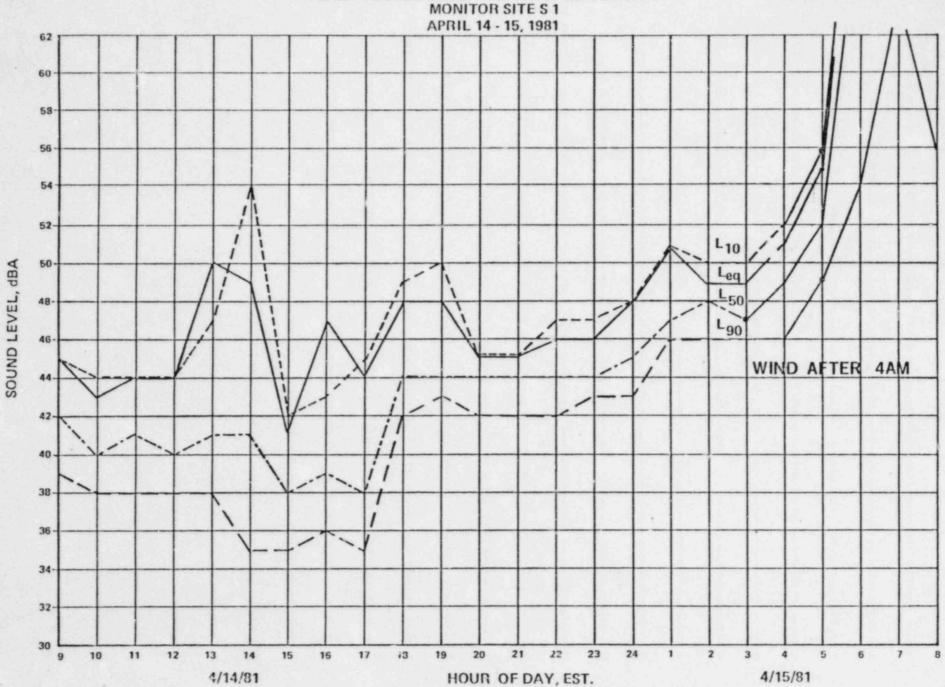


Figure 3. Sound Level in dBA measured at location S2 on April 15, 1981 at 10:35 a.m.




Figure 4. Sound Level in dBA measured at location S3 on April 15, 1981 at 12:54 p.m.

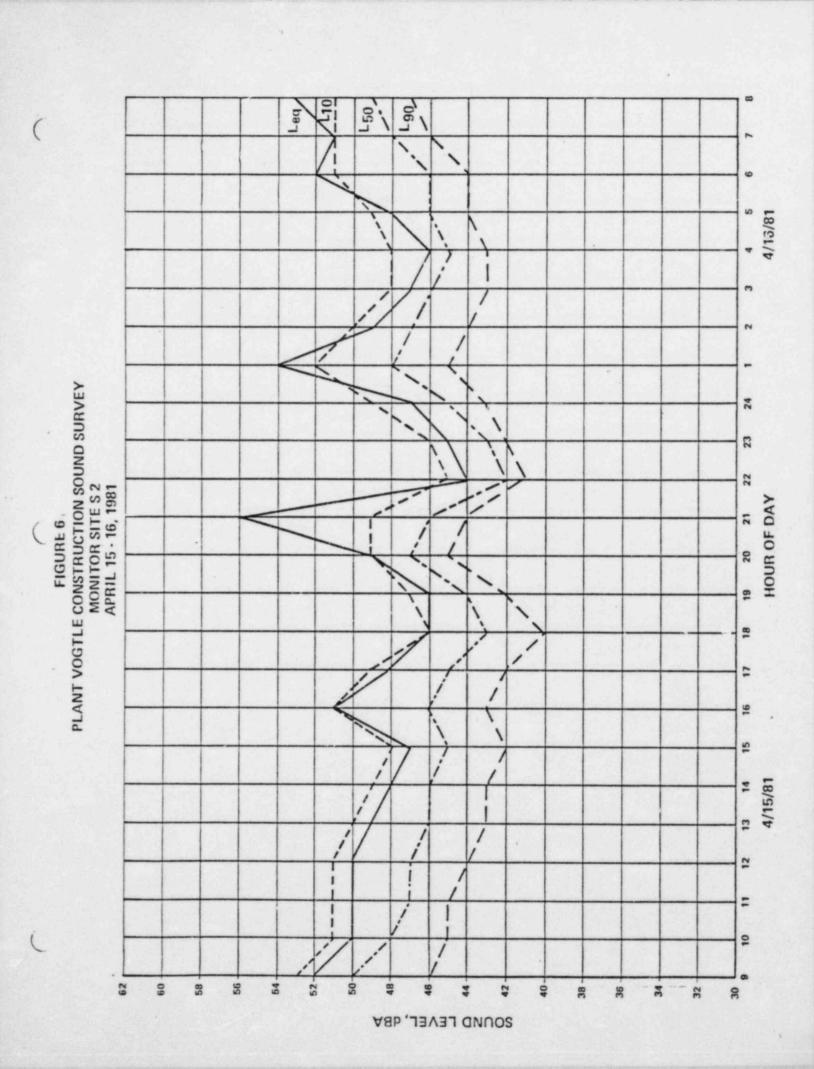

Monitor Site S1 (April 14-15) was located on a bluff overlooking a "spoiling" pit just outside the meteorological station fence. The construction site was partially visible from this location. Notable at S1 (Figure 5) is the sudden increase in levels, especially L_{50} and L_{90} , after 5 p.m. It was learned the day after monitoring that this increase was due to heavy equipment dumping spoiled fill into the pit during the second shift. Weather station records showed winds gusted up to 35 miles per hour in the early morning hours of April 15, which corresponded to higher levels recorded by the monitor. Measurements made during this time were not accurate. Ignoring the data taken during windy conditions, the average L_{eq} for the location was 46 d3.

Figure 6 shows the sound levels recorded at Monitor Site S2 (April 15-16) located about 50 yards north of the new River Road. The construction site was partially visible from this location also. Because of the monitor's proximity to the main road and the restaurant, high sound levels were measured at shift changes from 4-5 p.m. and 12:30-1:30 a.m. and at the supper period from 8-9 p.m. Construction noise, although still low, was more obvious at this location than at any other. This observation is consistent with the L₁₀ levels measured; the "background" sound level was considerably higher at location S2 than at the other two monitor sites. Gusty conditions on the morning of April 15 raised measured levels somewhat.

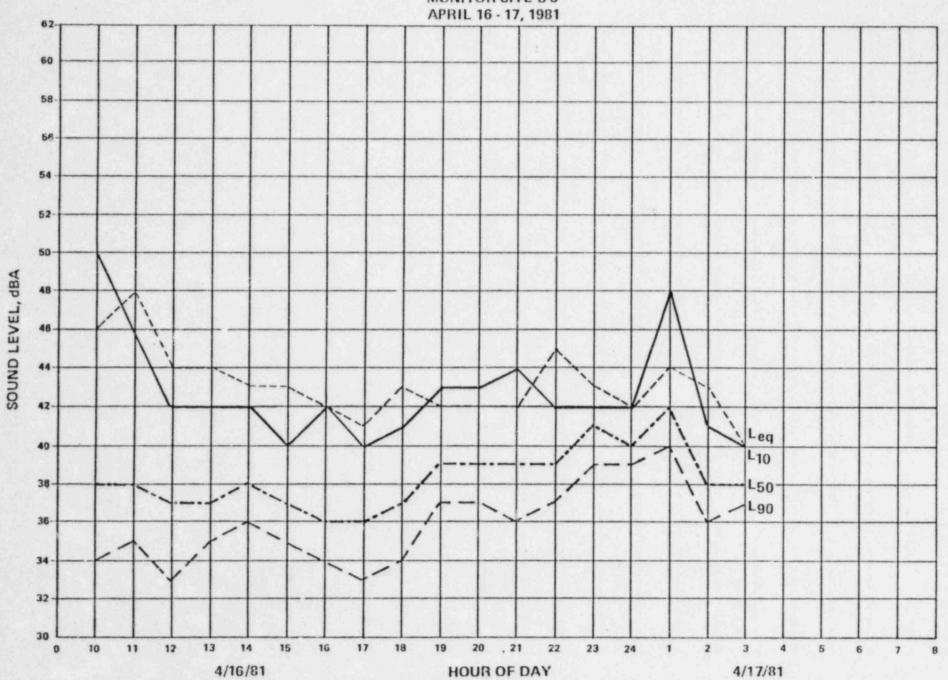

Monitor Site S3 was located about 50 yards from the dirt road northeast of the construction site in the transmission line clearing. Figure 7 shows this site to be the quietest of the three. The average $L_{\rm eq}$ for the monitoring period was 43 dB. A road grader caused high sound levels before 11 a.m. on April 16.

FIGURE 5
PLANT VOGTLE CONSTRUCTION SOUND SURVEY

PLANT VOGTLE CONSTRUCTION SOUND SURVEY MONITOR SITE S 3

The Environmental Protection Agency in its March 1974 publication
"Information on Levels of Environmental Noise Requisite to Protect

Public Health and Welfare with an Adequate Margin of Safety," recommends an environmental noise level that does not exceed the day-night average

Ldn = 55 dB. Ldn is defined as:

$$L_{dp} = 10 \log \frac{1}{24} \left[15 \times 10 \right] \left(\frac{L_d}{10} \right) + 9 \times 10 \left(\frac{L_{n+10}}{10} \right)$$

where $L_{\rm d}$ is the energy-average A-weighted sound level during the 15 "daytime" hours from 7 a.m. to 10 p.m., the $L_{\rm n}$ is the average sound level for the nine "nighttime" hours. Using the average $L_{\rm eq}$ values for the daytime and nighttime periods at locations S1, S2 and S3, $L_{\rm dn}$ values were estimated. Table 2 shows the $L_{\rm dn}$ levels are above 55 dB for locations S1 and S2 because of the difficulty in getting only construction noise data during the breezy conditions and shift changes. $L_{\rm dn}$ at location S3 is well below 55 dB with no adjustment.

CONCLUSIONS

Sound levels in some locations along the plant property line have increased since construction has begun. Construction noise at the property line is usually barely audible and is often overshadowed by sounds from traffic, birds, and windy conditions. L_{dn} levels calculated from data taken along the property line do not exceed levels deemed acceptable by the Environmental Protection Agency.

Table 2. Values of $L_{\mbox{dn}}$ Calculated Using $L_{\mbox{eq}}$ Data from Locations S1, S2, and S3.

Monitoring Location		Values (in dBA) calculated using all data.			Values (in dBA) calculated omitting data taken during windy conditions and shift changes.		
	Ld	L _n	L _{dn}	L _d	L _n	L _{dn}	
S1	46	51	57	46	49	55	
S2	50	50	56	50	48	55	
\$3	44	44	50				

Appendix

- 1. Noise Survey Forms
- 2. 15-minute average levels Monitor sites S1, S2 and S3.

CL	IEN"	T: GPC-1	/ogtle	Nuclea	r Plan	t		PRIM	ARY I	VOISE	soul	RCE :					114	
						14/81		1	P. MA									
						g			NT DE									
NO	SLN	H: TYPE	3&K 22	15	s	ER. # 69	91966	7	RATIN									
-	TRA	NSDUCE	R: TYPE	B&K 4	165 s	ER.# 70	08658											
NSTRUMENTAT						ER. # 69												
RUM	CAB	BLE: TYP	Ε			ENGTH_												
NST	CAL	IBRATOR	R: TYPE	B&K 4	230 s	ER. # 72	25248	SECO	NDAR	Y NO	SF S	OURC	F .			54		
=	ОТН	HER: Wir	ndscree	en			he fell dep	EQUI										
TI	ME	CALI- BRA- TION	TEMP	% R H	ммнс	WIND	WIND DIR.	CLIE	NT DE	SIGNA	TION	i:	4					
8:4	10	94	75				1000	1	ALIM	,	UITIC	/NS: ,						
					64.1													
		Lange 1		diam														
-	ST		* POSI-						SOUN	D PR	ESSU	REL	EVEL	, dB R	E 20	N/M	2 rms	
1	10.	TIME	TION		CONDI	TIONS		A	OVER		OCTA	VE B	AND (CENT	ER FF	REQUE	NCY,	Hz.
		EST		Constr	uction	Noise	di la che	LEVEL	LEVEL	_		_				The second liverage of the second		
1		9:50	А	NW Cor	ner of	Proper	ty	27	50									
2	2	10:00	В	N 111	+ 00,	E 15 +	00	33	49							1.11		
3	3	10:10	С	N 60 +	00, E	37 + 0	00	41/4	5 57									
4		10:15	D	At Ebe	nezer	Church	Road		5 52,	55								
5		10:20	E	N 22 +	00, E	110 +	00	30	51				1					
6		10:25	F	N 60 +	00, E	143 +	00	53	76	76	69	66	53	51	42	42	39	29
7	,	10:35	V1	Fence-	Visito	rs' Cer	iter	55/6	0 69,	73								
8		11:15	0			ture Ar	ea ea	34/4	0 53	56								
DIA	GRA	M - SHOW	MEASI	URING L	OCATION	is:	"Dlant	Cuid	Cue	tom I	1 C	. 1	+				- 2 4 .	
	OTE		are re	cateu	accord	ing to	Fianc	drid	Sys	tem.	31	26 11	ocat	1011	anu	VICI	nity	map
-		_	Two	£ £ ; _ £	niul.	h = =				1	1		0 74	10.4				
F	osi	tion B	Bir	ds inc	reased	heavy; sound	level	to 45	dBA	pas	sin	to b	u-/4 affi	c pr	oduc	ed u	p to	
			78	dBA.														
						ise aud		rbine	Plan	nt Wi	1 501	1: 0	ombu	stio	n tu	rbin	e 10	
			ope	rating	(test) at fu	111 loa	d.										
-	051	tion U	NO	pumps	operat	ing; bi	rds ar	e dom	inan	sou	ırce							
-								2361										
HE(OMN	ENDATI	ONS:															

CLIEN	T: GPC-	Vogtle	Nuclea	ar Plan	nt		DRIM	ADV	IOICE	5011	205						
	O: 042A					1		P. MA									
	RVERS:																-
-	M: TYPE_					91966		NT DE							-		
	ANSDUCE						OPER	RATIN	e co	NDITI	ONS:						
							-										
3	ALYZER:						-									-	
TRICA	BLE: TYP	Ε	Dev A	L	ENGTH _	25240	-	-			-	-	-	-	NAME OF TAXABLE PARTY.	-	-
mm	LIBRATO			230 s	ER. #_/	25248	SECO	NDAR	Y NO	ISE S	OURC	E:					
OT	HER: Wi	T	T				EQUI	P. MAI	KE &	MODE	L:						
TIME	BRA- TION	TEMP	% RH	ммнс	WIND	WIND DIR.		NT DE									
13:43	94				Lance 1												
																100	
TEST		POSI-						SOUN	ID PR	ESSU	REL	EVEL	, dB R	E 20,	N/M	2 rms	
NO.	TIME	TION		CONDI	TIONS		A	OVER									Hz.
	EST		Constr	ruction	Noise		SCALE	LEVEL	31.5	63	125	250	500	1000	2000	4000	8000
9	13:45	А	NW Cor	ner of	Prope	rtv	1										
10	13:55				E 44 +			-	55								
11	14:20				E 15 +						1						
12	14:25				37 +												-
13	14:27				Church												
14	14:30				110 +												
					-		1	45/					-				
16	14:35				143 + ite 1					58	62	52	45	37	29	25	
	M- SHOV						B3/35	50/	po								
	sitions					"Plant	Grid	Sve	tom	" 50	0 10	cati	on a	nd i	dei.	n i +	man
NOT					9 00		0110	. 535	cem.	50	C 10	caci	OII C	ind i	11011	iicy	map.
-	ition A	Tw	effic r	noise d	ominon	+											
	ition B							ed.	- 1								
Pos	itions	C & D .	Cons	tructi	on noi:	se audi	ble.	seve	ral	bird	s in	are	a.				
Pos	ition F ition S	NO	combus	Site 1	locate	s opera	iting,	sub	stat	ion	nois	e on	1) y.	11	00	F 0/	
		0	5.00).	3,00 1	10000	ed near	me ce	0101	ogic	a i t	Ower	(14	33 7	14.	00,	E 00	, +
							100										
RECOMI	MENDATI	ONS:															
Color.																	

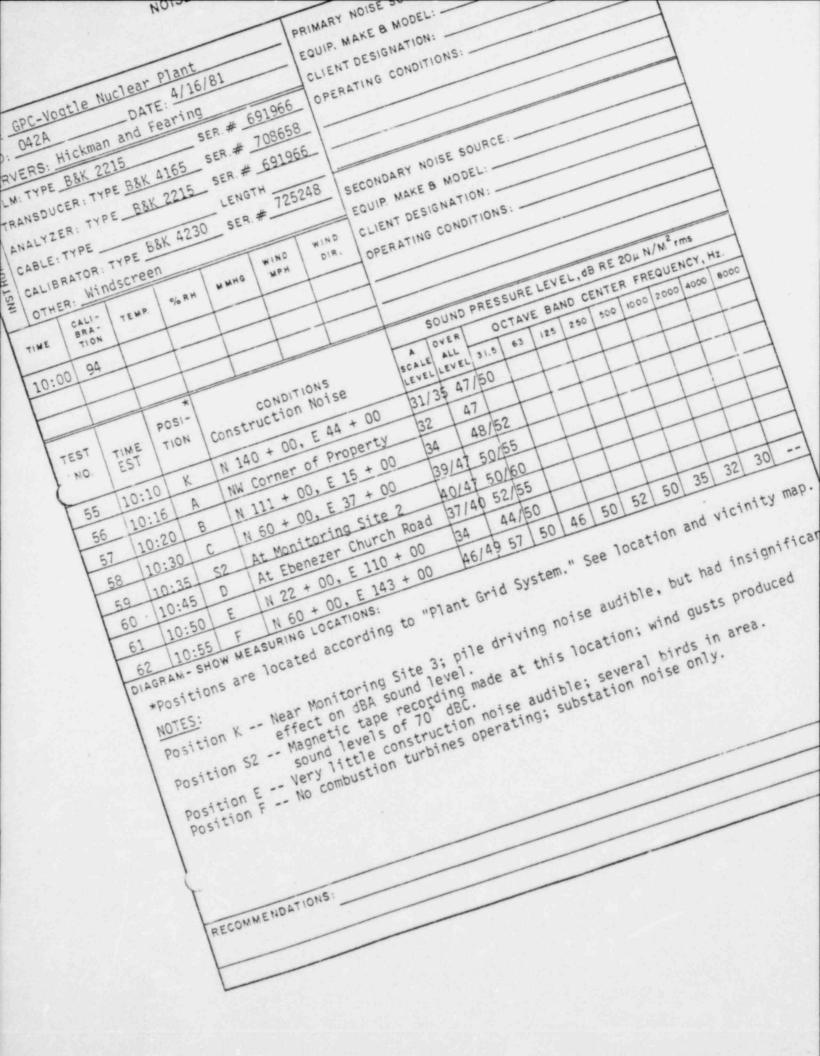
BSERVER SLM: TYP TRANSDU ANALYZI CABLE: T	DE B&K 22 JCER: TYPE ER: TYPE TYPE TOR: TYPE Windscr	DA an and 15 E B&K 4 B&K 2 B&K 4 een	TE:4 Fearin	/14/81 g ER. # 6 ER. # 6 ENGTH _ ER. # 7	91966 08658 91966 25248	CLIE OPER SECO		KE B SIGN G COM	MODE ATION NDITI	OURC	E:					
TIME BRA		% R H	MMHG	МРН	DIR.		ATING									
EST	POSI-						SOUN									
NO. TIM	E TION		uction	TIONS Noise		A SCALE LEVEL	ALL	31.5	OCTA 63	VE B	AND C	ENT	ER FF	REQUE	ENCY,	Hz.
17 15:2	0 0	Intake	Struc	ture A	rea	-	5 63	-					1000	2000	4000	8000
18 17:2	2 0	Intake	Struc	ture A	rea	35/4	0 50,	155		-						
19 17:4	3 F	N 60 +	00, E	14-3 +	00	49	65	57	53	64	48	43	37	32	28	
20 17:5	3 E	A COUNTY OF THE PARTY OF THE PA					43/								-	
and the second second		At Ebe					43/	_								
22 18:0		N 60 +				-	0 50,	-								
23 18:0	8 B	N 111	+ 00,	E 15 +	00	27	42/	50								-
AGRAM- SH Position NOTES: Position Position Position	0 A cr	cated a rane was	ccordi	ng to '	during operat	Test	17, i	no n	earb	y wo	rk d	urin				nap.

MENTATION SERVICE SERV	RVERS: M: TYPE_RANSDUCE	Hickma B&K 22 R: TYPE TYPE_	n and 1 15 B&K 4 B&K 4	s 4165 s 2215 s	ER.# ER.# ER.#	691966 708658 691966	OPER	P. MAP	SIGNA	ATION	:			17.12			
	ABLE: TYP			1230 s	ER.#	725248	1000	NDARY P. MAK									
TIME	GALI- BRA- TION	TEMP	% RH	ммнс	WIND	WIND DIR.	CLIE	NT DES	SIGNA	ATION	ı:						
18:25	93.3																
TEST NO.	TIME	POSI- TION		condi	TIONS Noise		SCALE	SOUN OVER ALL LEVEL	(OCTA	VE B	AND	CENT	ER F	REQUE	ENCY,	
24	18:17	K		-	E 44 +		28/35	-	01.0	0.5	125	250	500	1000	2000	4000	8000
25	18:21	A	NW Con	rner of	Prope	rty	28	46									
DIAGR	AM- SHOV	W MEASI	JRING L	OCATION	IS:												
*Pos	sitions	are lo	cated a	accordi	ing to												map.

CL	IEN	T: GPC	-Vogtle	Nucle	ar Pla	nt		PRIM	ARY N	IOISE	SOUF	RCE .			-564			
		0: 042/							P. MA									
		RVERS:						CLIE										
NO		M: TYPE_					91966	7	ATIN									
-	100	ANSDUCE						0, 2,	M. 1.114	0 001	VDIIIV	JIV3.					-	
N	1.73	ALYZER:														-		
UME			_		and the same of the same of										-			
NSTRUMENTAT	CAI	BLE: TYP	P. TYPE	B&K 4	230 .	ED # 72	25248						The second second	ATT OF THE OWNER, OR WHITE OWNER, OR WHITE OWNER, OR WHITE OWNER,	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner		COLUMN TOWNS	-
N.		HER: W			°			SECO								-		
-	101	CALI-					L									-		
TI	ME	BRA-	TEMP	% RH	ммнс	WIND	WIND DIR.	CLIE	NT DE	SIGNA	MOITA	:						
0.	00	-						OPER	ATING	CON	DIT:0	NS:				-		
0.	:00	93.8				-	-	-									-	
								-	-					-			_	
-	-		*	-					SOUN	0.00	50011	0516		45.5	5.00	N: /11	2	
TE	ST	TIME	POSI-		CONDI	TIONS		A	OVER						-	-	-	
٨	10.	EST	TION			Noise		SUALE	ALL		OCTA		_	_	_	_	-	_
,			V	-				LEVEL		31,5	63	125	250	500	1000	2000	4000	8000
_	26	10:15	K	-		E 44 +		33/3	-									
	27	10:22	A			Proper			50									
-	28	10:29	В			E 15 +		37/3	_	55								
2	29	10:35	С	N 60 +	00, E	37 + (00	45	55									
	-	10:45					Road	45/4	7 58/	60								
3	31	10:49	E	N 22 +	00, E	110 +	00	42	55									
3	2	10:55	F	N 60 +	00, E	143 +	00	60	74									
		M- SHOV										i, L						
		itions	are lo	cated	accord	ing to	"Plant	Grid	Syst	tem.'	' See	100	cati	on a	nd v	icin	ity	map.
1	OTE	<u>S</u> :																
A	11	Positio	ons	High w	inds p	reclude	ed soun	d lev	el me	easur	emer	its !	betw	een	8:00	-10:	00 a	.m.
				Wind n	dBA 7	n ₊ trees	s often	domi	nant	sour	ce t	rom	10:	00-1	1:00	a.m	.;	
P	osi	tion F						ting,	comp	ress	or r	unn	ing	near	CT	1F.		
0.50		MENDATI	ONE															

Southern Company Services, Inc. P. O. Box 2625 Birmingham, Alabama 35202

JOB N	T: GPC- 0: 042A RVERS: _	1	DA	TE: 4	/15/81		EQUI	P. MA	KE &	MODE	EL: _						
	ANSDUCE	R: TYPE	B&K 41	65 s	SER. # 6 SER. # 6	08658	OPE	RATIN	G CC	ITION	ONS:						
=	BLE: TYP LIBRATOR HER:		B&K	4230 s	ENGTH 7	25248		NDAR P. MAI									
TIME	CALI- BRA- TION	TEMP.	% R H	ымнс	WIND	WIND DIR.	CLIE	NT DE	SIGN	IATIO	N:						
TEST NO.	TIME	* POSI-			ITIONS		A	OVER		RESSU							Hz.
33	13:26				Noise		LEVEL	LEVEL	31.5	63	125	250	500	1000	2000	4000	8000
33	13.20	E			E 110 +		35/3	8 4//	51	-							
34	13:45	0			ump		77	80	68	67	71	78	72	76	69	65	F7
35	14:00				ump-Low					07	1	70	16	70	09	05	37
36	14:05				ump-Hig												
37	14:15	0	Pump				34										
38	14:39	K	N 140	+ 00,	E 44 +	00	29	45/4	8								
39	14:43	THE RESERVE AND ADDRESS OF THE PARTY OF THE			f Prope	rty	30	46/4	8								
*Pos NOTE Posi	<u>S</u> : tion 0	are lo	ump use	ed for	ing to water : ' measuras dimin	supply rements	to sp	orink e mad	ler e to	truc	cks v	vas d	pera	atin	o at	the	


RECOMMENDATIONS:

CLIEN	T: GPC-	Vogtle	Nucle	ar Plan	n t		T DDIN	IARY I	IOICE	6011	205	-	-		_		
	o: 042A															_	-
	RVERS:							P. MA									
	M: TYPE B		AND DESCRIPTION OF THE PERSON NAMED IN			The second second second	7	NT DE									
							OPE	RATIN	G CO	NDITI	: SNC				-		-
N AN	ANSDUCE						-							-			
2	ALYZER:						-		-								
STR	BLE: TYP		B&K 4	1230	ENGIH _	25248	-				-	-	-	ar someone	nancoline e	-	-
-	HER: _ W			5	ER. #	20240	SECO	NDAR	Y NO	ISE S	OURC	E:		-			_
101	CALI-	Indser	Cell				EQUI	P. MAH	KE 8	MODE	L:						
TIME	BRA-	TEMP	% R H	MMHG	WIND	DIR.		NT DE							-		
15 - 26	93.2						OPER	RATING	CON	NDITIO	ONS:				-		
15.50	93.2				-		-			-							
	-				-	-	-		-								-
	1	*	-				-	20114	0.00	5001	10.5.1.					2	-
TEST	TIME	POSI-		CONDI	TIONS		-				IRE LI						
NO.	EST	TION			Noise		SCALE	OVER	21.6	OCTA	VE B	AND	CENT	ER FI	REQUI	ENCY,	Hz.
40	14:47	В			15 +		B3/35		-	63	140	250	500	1000	2000	4000	8000
41	14:52		-		-	00	-	-	-	-						-	
	14:55								1		-		-	-			
	15:10					2					-					-	-
	15:15					Road									-		-
			N 22 +					45/4			-						
45	15:20	-	N 60 +	00, F	143 +	00	149	62	57	52	60	50	45	37	33	25	
46	17:26	0	Intake	Struc	ture A	rea	77	82									
DIAGRA	M- SHOW	W MEASI	JRING L	OCATION	S:	1 64	1//	02									
	sitions					"Piant	Grid	Svs	tem.	11 50	e 10	cati	on a	nd v	icir	1+11	man
NOTE	S:										- 10		011 0		1611	iicy	шар.
		2 50	ound la	vole a	+ Moni	+00100	C:+-	2 /-									
	tion S	di	e esse	ntiall	v iden	tical t	o tho	SP M	11260	rod	at D	neit	inn	ler	Park	()	
Posi	tion F	NO	combus	tion t	urbine	s opera	ting.	suh	ctat	ion	noie	0 00	14				
POST	tion 0	A	oump us	ed for	water	supply	to s	prin	kler	tru	cks,	was	ope	rati	ng a	t th	ie
		111	rer mea	sureme	nt take	en 100'	trom	the	pum	p.							
RECOMA	MENDATI	ONS:								-	-	-					

Southern Company Services, Inc. F. O. Box 2625 Birmingham, Alabama 35202

	_													Dirn	ingnar	n, Alat	pama 3	5202
		T: GPC					- Marine	PRIM	ARY I	NOISE	sou	RCE:						
JO	BNC	042/	A	DA	TE: 4/	15/81		EQUI	P. MA	KEB	MODE	EL:						
OB	SER	VERS:	Hick	man and	Feari	ng	Luni '	CLIE	NT DE	SIGN	ATION	V:						
NO	SLM	TYPE_	B&K	2215	S	ER. # 6	91966	OPE	RATIN	G CO	NDITI	ONS:						
TAT	TRA	NSDUCE	R: TYPE	B&K 41	65 s	ER.# 7	08658											
EN	ANA	LYZER:																
NSTRUMENTATION	CAB	LE: TYP	Ε	36	L	ENGTH_				-								
NST	CAL	IBRATOR	R: TYPE	B&K 42	30 s	ER. # 7	25248	SECO	NDAR	Y NO	SF S	OURC	F.					
_		ER: W	indscr	een														
TI	ME	CALI- BRA- TION	TEMP	% RH	ммнс	WIND	WIND DIR.	CLIE	NT DE	SIGN	ATIO	N:						
19:	02	94						OPER	RATING	CON	DITIO	ONS: .						
								-										
TF	ST		* POSI-						SOUN	D PR	ESSU	RE LE	EVEL,	dB R	E 20,	N/M	2 rms	-
	0.	TIME	TION		CONDI	TIONS		A	OVER		OCTA	VE B	AND C	ENT	R F	REQUE	ENCY,	Hz.
		EST		Constr	uction	Noise		LEVEL	LEVEL	31.5	63	125	250	500	1000	2000	4000	8000
4	7	17:40	F	N 60 +	00, E	143 +	00	49	64	53	50	63	53	44	36	32	22	
4	8	17:45	E	N 22 +	00, E	110 +	00	31	43/4	5								
4	9	17:50	D	At Ebe	nezer	Church	Road	35	50/5	5								
_ 5	0	17:55	С	N 60 +	00, E	37 + (00	41/4	4 51									
5	1	18:00		At Mon				41/4										
5	2	18:10		N 111				34										
5	3	18:13		NW Cor				32	48									
5	4	18:17		N 140				-	5 48									
* N P	Pos:	M-SHOW itions S: tions C tions A	are lo	S2 S 3 Co	accord	ing to evels a able tr	ire ess	entia	11v ·	iden	tica	l at	the	se t	a ow	osit		

RECOMMENDATIONS:

INSTRUMENTATION OF STATE OF ST	O: _Q42A RVERS: _ M: TYPE _ ANSDUCE ALYZER: BLE: TYP LIBRATOR HER: _W1 CALI- BRA- TION	Hickma B&K 22 R: TYPE TYPE_E R: TYPE ndscre	DA n and 15 B&K 4 B&K 2	Fearing s 165 s 215 s L 230 s	16/81 ER.#_6 ER.#_7 ER.#_6 ENGTH_	08658	SECO EQUI	P. MAI NT DE RATINO	KE & SIGNAG CON	MODE ATION NDITION SE SI MODE ATION	OURC	Ε:					
17:30	94						OPER	ATING	CON	DITIO	NS: ,						
TEST NO.	TIME	* POSI- TION		CONDI	TIONS Noise		SCALE	SOUN OVER ALL LEVEL		OCTA	VE B	AND (CENT	ER F	REQUE	ENCY,	Hz.
63	11:25	0			ture A		-	50/5	-		120	2.00	300	1000	2000	4000	8000
64	12:55	53	At Mon	nitori	ng Site	3	39/4										
66 67 68 69	17:35 17:39 17:47 17:50 17:56 M-SHOV	S3 A B	At Mor NW Cor N 111 N 60	nitorin mer of + 00,	E 15 +	3 rty 00	34	48/5 46/5 47/5	5 3								
Posi Posi Posi	tions S: tion O tion S3 tion C	Pum Moi ma Con	p not onitoring	operating Site	ng, bi	rds inconstruction S:	crease tion	ed so	und aud	leve ible	els t	to 42	2 dB	Α.			

CTHER: Windscreen	RUMENTATION O C	NT: GPC NO: 042 RVERS: M: TYPE RANSDUCE NALYZER: ABLE: TYP	Hickma B&K 22 ER: TYPE TYPE_	DA in and 215 E B&K 4 B&K 2	TE: 4/ Fearing s 165 s 215 s	16/81 g ER.#_6 ER.#_7 ER.#_6 ENGTH_	591966 708658 591966	CLIE	P. MA	KE B	MODE SOU	EL: _ N: ONS:						
TEST NO. TIME EST TION CONDITIONS CONSTRUCTION Noise Construction Nois	-	THER: Wil	ndscree	n				EQUI	P. MAI	KE &	MODE	L: _						
TEST NO. POSI- TION CONDITIONS CONSTRUCTION Noise SCALE LEVEL SILE LEVEL CONTACT SILE LEVEL SILE LEVEL CONTACT SILE SILE LEVEL CONTACT SILE SILE LEVEL CONTACT SILE SILE SILE LEVEL CONTACT SILE	TIME	BRA-	TEMP	% R H	ммнс	1		CLIE	NT DE	SIGN	ATIO	N:						
TEST NO. TIME EST TION CONDITIONS CONSTRUCTION Noise CONSTRUCTION NOIS	18:2	0 94									1 2	,,,,,					namber	
TEST NO. TIME EST TION CONDITIONS CONSTRUCTION Noise CONSTRUCTION NOIS								-				100	47					
NO. TIME EST TION CONDITIONS COnstruction Noise Con							-		SOUN	ID PE	RESSI	IRE I	EVEL	dB B	F 20	N/M	2	
EST Construction Noise LEVEL LEVEL 31.5 63 125 250 500 1000 2000 70 17:59 D At Ebenezer Church Road 32 44/47					CONDI	TIONS			OVER	-								Hz.
71 18:02 E N22 + 00, E 110 + 00 27/30 40/45 72 18:06 F N 60 + 00, E 143 + 00 48 60 55 50 58 54 46 33 30 73 18:15 S1 At Monitoring Site 1 30/35 48/52 *Positions are located accoarding to "Plant Grid System." See location and vicin NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording.		EST	7101	Const	ruction	n Noise												
72 18:06 F N 60 + 00, E 143 + 00 48 60 55 50 58 54 46 33 30 73 18:15 S1 At Monitoring Site 1 30/35 48/52 *Positions are located accoarding to "Plant Grid System." See location and vicin NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording.	70	17:59	D	At Eb	enezer	Church	Road	32	44/4	7								
73 18:15 S1 At Monitoring Site 1 30/35 48/52 DIAGRAM- SHOW MEASURING LOCATIONS: *Positions are located accoarding to "Plant Grid System." See location and vicin NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording.	71	18:02	E	N22 +	00, E	110 +	00	27/3	0 40/	45								
*Positions are located accoarding to "Plant Grid System." See location and vicin NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording.	72	18:06	F	N 60	+ 00, 8	143 +	00	48	60	55	50	58	54	46	33	30	26	
*Positions are located accoarding to "Plant Grid System." See location and vicin NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording.	73	18:15	S1_	At Mo	nitorin	ng Site	1	30/3	5 48/	52								
*Positions are located accoarding to "Plant Grid System." See location and vicin NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording.																		
*Positions are located accoarding to "Plant Grid System." See location and vicin NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording.							-											
NOTES: Position F No combustion turbines operating, substation noise only. Position S1 Monitoring Site 1 at meteorological tower; magnetic tape recording	DIAGR	AM- SHOW	MEASL	IRING L	OCATION	S:						-						
	NOTE Post	ES: ition F	No Mo	combust nitori	tion tu	rbines	opera	ting,	subs	tat	ion r	nois	e on	1 v .				map
RECOMMENDATIONS:	RECOM	MENDATI	ONS															
TOWN TOWN	LOUM	- CNUATI																

April 14-15, 1981
DESIGNED______DATE_____

JOB GPC-Vogtle Nuclear Plant CHECKED CHECKED

SUBJECT Monitor Site S1 -- Construction Noise SHEET 1 of 3

TIME	Leo	L ₁₀	L ₅₀	Lgo	Windspee
(EST)	dBA	dBA	dBA	dBA	MPH
9:00	46	47	43	40	5
	46	44	41	39	
are analysis	43	44	41	39	
	.42	43	40	38	
10:00	43	45	41	38	5
	43	45	41	39	(Gust ₁)
	42	44	39	37.	
	42	43	41	39	
11:00	41	42	39	37	5
	45	45	40	37	
	46	46	43	40	
	45	46	43	41	
12:00	46	44	40	38	5
	40	42	38	35	
	24	41	35	33	
	43	44	41	38	
13:00	41	42	39	37	7
	56	51	42	40	
	42	43	40	38	
	39	41	37	35	
14:00	40	41	38	35	8
	52	56	45	35	(Gyst)
	51	57	37	34	
	39	41	35	34	
15:00	39	41	36	34	8
	41 .	43	38	36	(Gust3)
	43	44	41	37	
	41	41	38	35	
16:00	47	40	38	36	5
	46	44	39	37	
	49	44	40	37	
	44	41	38	36	
17:00	40	42	36	34	5
	47	48	40	35	

April 14-15, 1981

CDC Vootin Numicon Diant	DESIGNED	DATE
JOB GPC-Vogtle Nuclear Plant	CHECKED	DATE
SUBJECT Monitor Site S1 Construction Noise	SHEET 2	OF 3

TIME	Leg	10	L ₅₀	L ₉₀	Windspee
(EST)	dBA	dBA	dBA	dBA	MPH
	43	46	35	33	
	49	48	36	34	
18:00	48	48	45	43	41/2
	49	50	45	43	
	47	49	44	42	
	48	50	44	43	
19:00	49	51	44	43	5
	47	49	44	42	/ - br- b
	47	48	44	43	
	45	44	44	43	
20:00	45	45	44	42	5
	44	44	43	41	(Gust 1
	45	46	44	43	
	46	46	45	44	
21:00	44	44	42	42	7.5
	44	44	43	41	(Gust 1
	46	46	44	42	
	44	45	43	42	
22:00	48	47	44	42	7.5
	47	48	44	42	(Gust 1
	45	46	44	42	
	47	48	44	42	
23:00	44	45	* 43	42	7.5
	45	46	44	43	7.5 (Gust (11.5)
	46	47	45	43	
	48 .	49	45	44	
24:00	49	50	45	43	5
	47	47	45	43	
<u> Aliaba</u>	46	47	45	43	
	47	47	45	44	
1:00	54	52	46	45	10
	52	53	50	47	(Gust 1
	49	50	47	46	
hen in	49	50	48	46	

Form No. 9-337

Form No. 9-337

April 14-15, 1981

DESIGNED DATE

CHECKED DATE

SUBJECT Monitor Site S1 -- Construction Noise SHEET 3 OF 3

April 15-16, 1981

CDC Vantin Number Direct	DESIGNED	DATE
JOB GPC-Vootle Nuclear Plant	. CHECKED	_DATE
SUBJECT Monitoring Site 2 Construction Noise	SHEET	1 05 3

TIME	Leg	L ₁₀	L ₅₀	L ₉₀	Windspee
(EST)	dBA	dBA	dBA	dBA	MPH
9:00	52	53	50	47	17.5
	51	52	49	45	Gust 27
N. Lake	50	51	48	44	
	50	51	47	45	
10:00	51	52	48	45	17.5
William I	50	51	48	46	Gust 27
	52	53	49	47	
	50	52	47	45	17.5
11:00	48	49	46	44	(Gust)
177	48	50	46	44	122.07
	50	51	47	45	
	51	53	49	46	15
12:00	51	50	45	42	15 (27.5)
	48	49	46	42	(27.07
	50	49	44	40	
	49	51	47	45	
13:00	50	51	47	44	12.5
	47	48	45	42	Gust 23
	48	49	46	43	
	47	48	45	43	
14:00	49	50	46	44	10
	48	49	45	43	(Sust)
	47	48	45	42	1 2.2
	47	48	45	43	
15:00	47	48	45	42	10
	47 .	48	45	42	Gust 21
	47	48	44	42	
	49	50	46	43	re la
16:00	51	52	46	43	10
	53	52	46	43	Gust 18
	50	51	47	45	
	49	51	46	43	
17:00	46	47	43	40	10
	44	46	41	39	(Gus+ (18.5)

April 15-16, 1981
DESIGNED______DATE____

JOB GPC-Vogtle Nuclear Plant

SUBJECT Monitoring Site 2 -- Construction Noise

DESIGNED DATE

CHECKED DATE

SHEET 2 OF 3

TIME	Lea	L ₁₀	L ₅₀	L ₉₀	Windspe
EST)	dBA	dBA	dBA	dBA	MPH
	44	45	42	40	
	46	47	43	40	
18:00	47	46	43	41	7.5
	47	47	42	40	7.5 (14.5)
	43	44	41	40	
	45	45	42	40	
19:00	47	49	45	42	6.5
	47	47	45	44	
	48	48	46	44	
	48	48	46	44	
20:00	49	50	47	46	6.5
	49	49	47	46	
	59	48	46	44	
	47	47	45	44	
21:00	58	49	46	44	6
	49	50	47	43	Gust 11
	44	. 45	43	41	
	44	45	43	42	
22:00	43	44	42	40	5
	43	44	41	40	
	44	44	42	40	Bank A A
-11-0	44	44	42	41	
23:00	45	46	44	43	4.5
	46	48	44	42	
	49	50	46	43	
4/16/81	48 .	50	46	44	
24:00	4.6	48	44	42	5
	46	47	44	42	
	49	51	46	44	
	57	51	47	45	
1:00	56	53	48	44	5
	51	52	49	45	
	50	49	46	44	
	49	50	47	45	

April 15-16, 1981 DESIGNED_____DATE__

JOB GPC-Vogtle Nuclear Plant SUBJECT Monitor Site 2 -- Construction Noise

TIME	I Las I	1 L ₁₀	I LEO I	Loa	Windspe
EST)	dBA	dBA	dBA	dBA	MPH
2:00				44	6
2:00	48	49	46		0
	49	50	47	44	
	47	48	46	44	
	47	48	46	44	
3:00	48	49	46	43	7.5
	46	47	45	42	
	47	48	46	44	
	48	49	46	44	
4:00	46	48	44	41	7.5
	43	14	42	40	
	44	46	43	41	
	49	50	47	44	
5:00	49	50	47	44	6
	49	50	47	45	
	57	55	48	45	
	47	48	46	44	
6:00	48	48	46	43	6
	47	48	45	44	
-	49	50	47	44	
	53	53	49	46	
7:00	51	51	48	46	7.5
	49	50	48	46	(Gust 15
	50	50	48	47	
-11-11	55	52	49	46	

JOB GPC-Vogtle Nuclear Plant

SUBJECT Monitor Site 3 -- Construction Noise

April 16-17, 1981

DATE CHECKED DATE

SHEET 1 OF 3

TIME	Leq	10	L ₅₀	L 90
(EST)	dBA	dBA	dBA	dBA
10:15	39	41	36	33
	53	48	39	35
	46	48	37	35
11:00	49	50	40	35
	40	41	37	35
	45	48	37	34
	40	42	37	34
12:00	44	45	37	33
	41	44	35	32
	43	46	38	33
	44	45	37	33
13:00	41	44	37	35
	43	46	38	35
	40	41	37	35
	42	43	38	35
14:00	41	42	38	35
	41	43	38	36
	43	45	38	36
	39	40	37	35
15:00	43	46	38	35
	40	42	36	34
	38	39	36	35
	40	40	36	35
16:00	43	41	36	34
	43	44	38	35
	. 42	43	35	33
	37	39	35	33
17:00	42	44	37	33
	40	42	35	33
	37	38	35	33
	40	41	35	33
18:00	43	46	38	34
	42	44	37	34
orm No. 9-337	38	39	36	34

April 16-17, 1981

DESIGNED______DATE_
CHECKED______DATE_ JOB GPC-Vogtle Nuclear Plant SUBJECT Monitor Site 3 -- Construction Noise

TIME	L _{eq}	L ₁₀	L ₅₀	L ₉₀
(EST)	dBA	dBA	dBA	dBA
	40	41	38	35
19:00	42	42	39	37
THE RES	46	43	39	37
ME ALC	41	42	39	37
	42	42	40	39
20:00	42	42	40	38
	41	42	39	37
	46	40	36	34
	38	39	36	34
21:00	49	44	38	35
	41	42	40	37
	41	42	40	37
	46	50	40	37
22:00	40	41	38	36
	40	40	38	37
	40	41	39	36
	41	42	40	38
23:00	42	43	41	39
	43	43	41	39
	43	44	42	40
/17/81	42	43	41	39
24:00	42	43	41	39
	41	42	40	38
	41	41	39	38
	50	43	40	39
1:00	. 50	44	42	40
	43	44	41	39
	45	45	43	41
	42	44	40	37
2:00	43	45	38	37
	41	41	37	35
	39	40	37	36
	39	39	37	36
3:00 prm No. 9-337	41	41	39	38

April 16-17, 1981

CDC	-Vogtle Muclear Plant	DESIGNED	DATE	_
JOB		CHECKED	DATE	
SUBJECT	Monitor Site 3 Construction Noise	SHEET	3 05 3	

TIME	Leq	L ₁₀	L ₅₀	L ₉₀	
(EST)	dBA	dBA	dBA	dBA	
3:15	40	40	39	37	
Marie Con					
	22.4				

VEGP-OLSER-Q

Question E290.16:

Provide report on noise from natural and mechanical draft cooling towers entitled "Cooling Tower Noise" prepared by Southern Company Services. Noise data on the circular mechanical-draft cooling towers are presented there.

Response:

H - One cap of the report requested is enclosed. Was provided by D.O.

Foster's letter to HR Denten dated May 15, 1984.

TABLE OF CONTENTS

- 1. Cooling Tower Noise
- 2. Calculations of Noise Associated With Cooling Towers
- 3. Articles and Data Related to Cooling Tower Noise
 - a. R. M. Ellits -

Cooling Tower Noise Generation and Radiation

- b. J. P. Carlson and A. M. Teplitzky -Environmental Noise Impact of Natural Draft Hyperbolic Cooling Towers
- c. G. Capano and W. E. Bradley Acoustical Impact of Cooling Towers
- d. J. E. Shahan -Noise Control of Power Plant Cooling Towers. A Study of the Size of Buffer Zone Required to Meet Various Noise Criteria
- e. EEI Draft Document Cooling Tower Noise Emission Characteristics
- f. Ecodyne Corporation Graph of Overall Sound Power Level Versus Total Rated Horsepower. Total Attenuation Curves
- g. Southern Services, Inc.

Sound Level Measurements Around Cooling Towers in the Southern Electric System

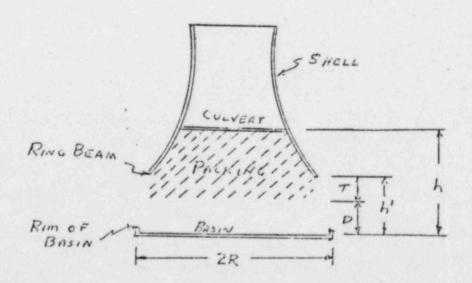
- 4. Articles on Propagation of Environmental Noise
 - a. R. H. Lyon

Propagation of Environmental Noise

b. F. M. Wiener

Sound Propagation Outdoors

INTRODUCTION


A number of investigations have been conducted on the noise generated by and radiated from cooling towers. Both natural draft and mechanical draft towers have been considered. Some of the theories and results are presented below.

SOUND LEVEL PREDICTION METHODS AND MEASUREMENTS

Some of the sound level prediction techniques are more sophisticated mathematically than others in that formulas are derived based on the configuration of the tower, whereas other prediction techniques depend upon empirical relationships developed from measured data. Brief summaries of attached documents follow.

A. R. M. Ellis Prediction Method for Natural Draft Towers

One of the first sound level prediction techniques was reported by R. M. Ellis in the Journal of Sound and Vibration (1971), Vol. 14(2), pp. 171-182. A sketch showing the dimensions required in the derived formulas is shown below.

Applicable formulas are

(a) A-weighted Acoustic Power

$$W_{ac} = Mh \left[0.95 \times 10^{-5} \left(\frac{T}{h} \right)^2 + 1.8 \times 10^{-5} \left(\frac{D}{h} \right)^2 \right]$$
 (1)

(b) A-weighted Sound Level at the Rim of the Basin

$$p_{\text{rim}}^2 = \frac{W_{\text{ac}} \times Z_0}{2\pi Rh'}$$
 (2a)

$$L_{p_{rim}} = 20 \log_{10} \frac{p_{rim}}{p_{ref}}$$
; $p_{ref} = 20 \mu Pascal$ (2b)

(c) A-weighted Sound Level at a Distance "a" From the Rim

$$p_{a}^{2} = \frac{W_{ac} \times Z_{o}}{\pi^{2}(a^{2} + 2aR)} \tan^{-1} \sqrt{\frac{a + 2R}{a}}$$
 (3a)

$$L_{p_a} = 20 \log_{10} \frac{p_a}{p_{ref}}$$
 (3b)

(d) Distances Greater Than 30 meters

For distances greater than 30 meters the sound level octave band spectrum at the rim should be used and the octave band levels should be further corrected for atmospheric absorption using the following data.

Table I

Center Frequency (Hz) 500 1000 2000 4000 8000 Atmospheric Absorption (dB/300m) 0.7 1.4 3.0 7.7 14.4

The symbols used in the above equations are defined as

M = mass flow rate of cooling water (kg/sec)

h = distance the water falls from the culvert into the basin (meters)

h' = depth of the open area below the tower shell; from basin to ring beam (meters)

T = depth of packing below ring beam (meters)

D = height from basin to base of packing (meters)

R = radius of tower (meters)

 Z_0 = characteristic impedance of air = ρ_0 C = 407 mks rayls at 22°C and barometric pressure of 0.751 mHg.

B. J. P. Carlson and A. M. Teplitzky - Consolidated Edison Company of New York

The paper "Environmental Noise Impact of Natural Draft Hyperbolic Cooling Towers" was presented at the Acoustical Society of America meeting on April 24, 1974. Based upon noise measurements and effects of water loading on noise emissions, the A-weighted sound level at 40 feet from the rim of the water basin is estimated by the following two equations:

$$L_{40} = 71 + 10 \log \left(\frac{M}{A}\right) dBA$$
 (4)

for crossflow towers and

$$L_{40} = 75.5 + 10 \log \left(\frac{M}{\Lambda}\right) dBA$$
 (5)

for counterflow towers where

 L_{AO} = A-weighted sound level at 40 feet

M = water flow rate in gallons per minute

A = active area of the tower in ft²

The active area of a cooling tower is considered the area of the water basin for counterflow towers and the mean area of the fill for crossflow towers.

The 40 foot distance was selected since it is in the near field of the tower and the sound level measured would not be altered significantly by structural elements of the tower. Divergence of sound to the far field can be calculated using the equations developed by Ellis as described above.

C. G. Capano and W. E. Bradley - Stone and Webster

The paper "Acoustical Impact of Cooling Towers" was also presented at the ASA meeting in New York on April 24, 1974. Acoustical data shown represent actual field measurements of sound levels in dBA versus distance for eight wet natural draft cooling towers with water capacities ranging from 140,000 to 500,000 GPM.

D. J. E. Shahan - Sargent and Lundy

Data presented in the report "Noise Control of Power Plant Cooling Towers. A Study of the Size of Buffer Zone Required to Meet Various Noise Criteria" are based on the following assumptions:

1. The noise levels in dBA for natural draft towers vary directly with $\begin{bmatrix} 10 & \log_{10} & (\text{GPM}) \end{bmatrix}$ and with $\begin{bmatrix} 10 & \log_{10} & (\text{HP}) \end{bmatrix}$ for mechanical draft towers where GPM = water flow to the tower and HP = total cooling tower fan horsepower.

 The measured data was extrapolated beyond 2000-3000 feet omitting additional acoustic energy loss due to atmospheric absorption, as a conservative estimate.

Several graphs illustrate the range of tower noise levels for plants of various megawatt capacities. Additional graphs show the distances from cooling towers at which various dBA noise level limits will be obtained. The "specific noise control area" which is the total area of land required for noise control is defined in ft²/megawatt for both mechanical draft and natural draft towers.

E. Draft Document for Edison Electric Institute

A draft of a document "Cooling Tower Noise Emissions" for use by the Edison Electric Institute contains data based primarily on measurements made by R. T. Laudenat of Northeast Utilities. The results indicate significantly higher noise levels from mechanical draft towers as compared to natural draft towers at distances greater than 2000' from the towers.

F. Ecodyne Mechanical Draft Towers

The Ecodyne Corporation has developed for mechanical draft towers a graph of overall sound power level $(L_{\overline{W}})$ versus total rated horsepower (HP) of tower fans. A set of curves providing total attenuations to be subtracted from the sound power level to obtain the sound pressure level at various distances from the source is also provided.

G. Southern Services, Inc. Sound Level Measurements

A number of sound level measurements have been made around both natural draft and mechanical draft towers in The Southern Company system. Noise

Survey Forms illustrate the actual sound level measurements and list some of the characteristics of the towers.

Consider a counterflow natural draft tower with the following characteristics M = 258,400 ypm = 16,300 kg/sec R = 138' = 42 m T = -2' = -0.61 m; Assume T = 0 for analysis D = h' = 30' = 9.15 m h = 37' = 11.3 m $A = \pi R^2 = 59,828$ ft

A. Use Ellis Prediction Method

1. A-weighted acoustic power

$$W_{ac} = Mh \left[0.95 \times 10^{-5} \left(\frac{T}{h} \right)^{2} + 1.8 \times 10^{-5} \left(\frac{D}{h} \right)^{2} \right]$$

$$= \left(16.3 \times 10^{3} \right) \left[0.95 \times 10^{-5} \left(\frac{O}{11.3} \right)^{2} + 1.8 \times 10^{-5} \left(\frac{9.15}{11.3} \right)^{2} \right]$$

= 2.17

2. A-weighted sound level at the rim of the basin

$$P_{r.m} = \frac{W_{ac} \times Z_{o}}{2\pi R h'}$$

$$P_{rim} = \frac{(2.17 \times 407)}{2\pi (42)(9.15)} = 0.366$$

$$P_{rim} = 0.605$$

$$L_{Prim} = \frac{20 \log 0.605}{20 \times 10^6} = \frac{20 \times 10^6}{20 \times 10^6}$$

$$\rho_a^2 = 0.094$$
 $\rho_a = 0.306$

$$L_{Pa} = 20 log \frac{0.306}{20 \times 10^{-6}}$$
 $L_{Pa} = 83.7 dBA at 40 feet$

B. Carlson - Teplitzky; Con. Ed Method

$$L_{40} = 75.5 + 10 \log \left(\frac{M}{A}\right)$$
 dBA counterflow towers
$$= 75.5 + 10 \log \left(\frac{258,400}{59,828}\right)$$

$$L_{40} = 81.9 dBA$$

C. Summary for 258,400 GPM Counterflow Tower

D-1	Ellis	0	*	Bredley	Southern .	C
Distance,	Ellis	Con.			Tower 1	Tower 2
Feet	Pred.	Meas.	Pred	Meas.	Meas.	Meas
						/
At rim	89.6	-	- a	84	85	84
40'	83.7	80	80.5	78	78	76
80'	79.8	77	75.5	74	74	73

D. Consider counterflow tower with one-half of

water supply bypassed

$$M_{rated} = 310,000 \text{ GPM}$$
 $M_{act} = 155,000 \text{ GPM} = 9770 \text{ Kg/sec}$
 $R = 158.5' = 48.4 \text{ m}$; $A = \pi R^2 = 78,924 \text{ ft}^2$
 $T = 0$
 $D = h' = 34' = 10.4 \text{ m}$
 $h = 44' = 13.4 \text{ m}$

Ellis Method

$$W_{ac} = (9770)(13.4) \left[1.8 \times 10^{-5} \left(\frac{10.4}{13.4} \right)^{2} \right]$$

$$W_{ac} = 1.42$$

$$P_{rim} = \frac{(1.42)(407)}{2\pi (48.4)(10.4)} = 0.183$$

$$P_{rim} = 0.427$$

$$P_{rim} = 20 \log_{10} \frac{0.427}{20 \times 10^{-6}}$$

$$P_{rim} = 86.6 \quad dBA$$

Sound level at 40' = 12.19 m

$$P_{a}^{2} = \frac{(1.42 \times 407)}{\pi^{2} \left[(12.19)^{2} + 2(12.19 \times 48.4) \right]} \quad tan^{-1} \sqrt{\frac{12.19}{12.19} + 2(48.4)}$$

$$P_{a}^{2} = 0.055$$

$$P_{a} = 0.235$$

$$L_{P_{a}} = 20 \log_{10} \frac{0.235}{20 \times 10^{6}} = 81.4 \quad JBA \quad at \quad 40'$$

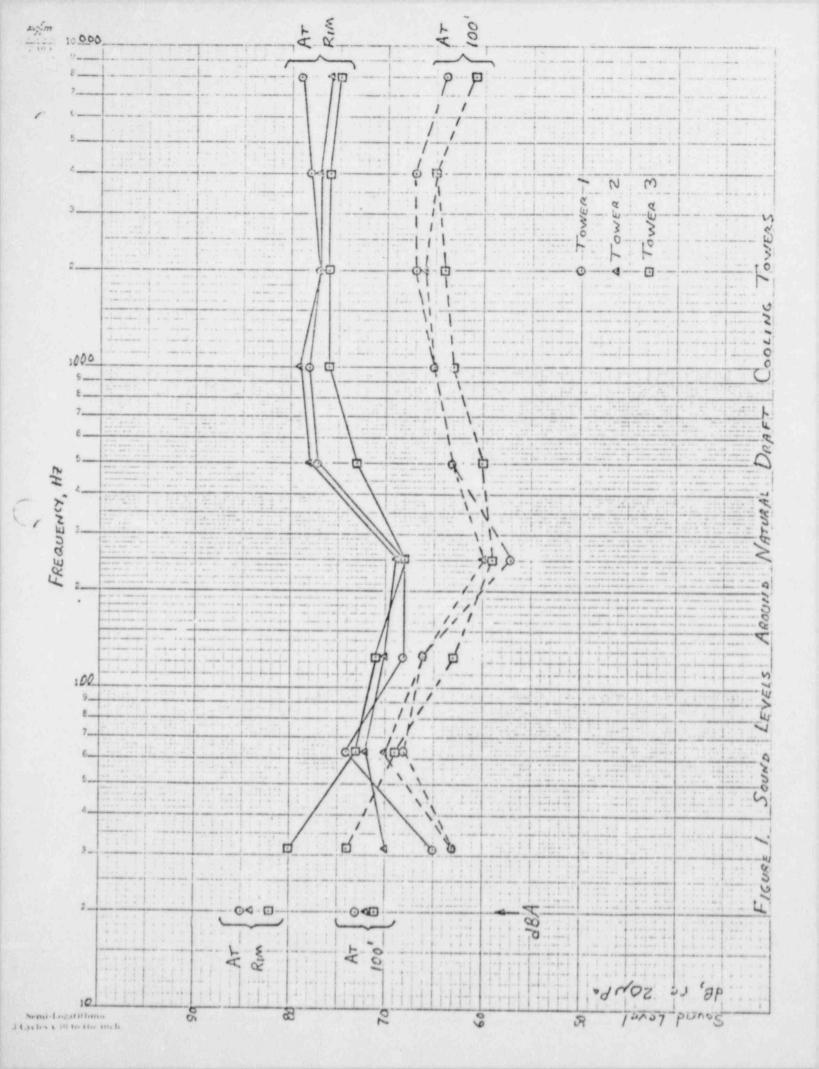
Consolidated Edison Method

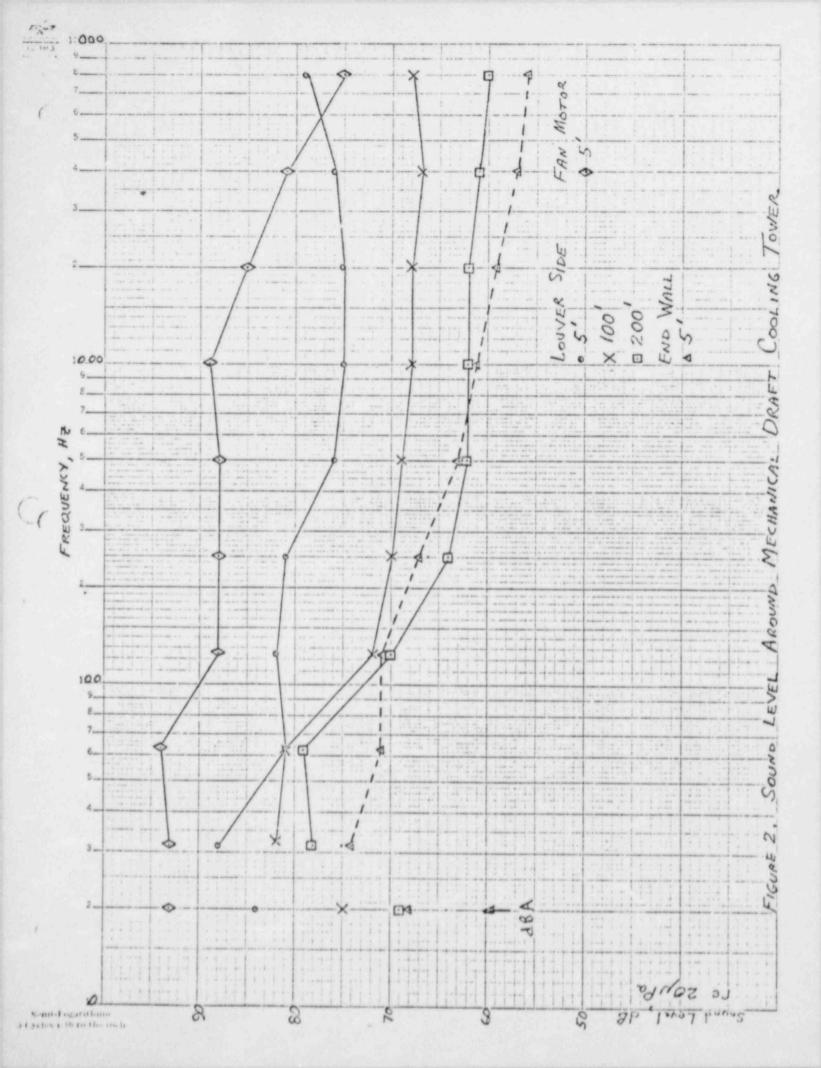
Summary

Distance,	Ellis	Con. Ed	SSZ
Feet	Pred.	Pred.	Meas.
At com	86.6	_	82
40'	81.4	78.4	75

A. Natural Dreft Towers

Measurements taken around natural draft cooling towers indicate a broadband sound level spectrum with no discrete tones. Some observers have reported hearing discrete tones but these results are not documented.


Plots of the octave band sound level data for three natural draft towers measured by Southern Services personnel are shown on Figure 1 for positions at the rim of the basin and at 100' from the rim.


B. Mechanical Draft Towers

Similarly the sound level spectrums for mechanical draft towers are broadband with no discrete tones. The spectrums at the base of the tower near the louvers and at 100' and 200' perpendicular to the louver side are plotted on Figure 2.

On the same figure appear spectrums near the base of the end wall and at a distance of 50' from the end wall.

Note the distinct directional characteristics of the tower; 84 dBA near the base along louver wall and 68 dBA near the base at the end wall.

ECODYNE - MECHANICAL DRAFT

- Motor Size = 150 HP

 Number of cells per tower = 14

 Total HP = 150 × 14 = 2100
- 2. Find sound power level, Lw, from the horsepower vs Lw curve $L_W = PWL = 138 \ dB \ re \ 10^{-13} \ watt$
- 3. Find the sound attenuations for 100 feet and subtract in each octave band from Lw octave Band Center Frequency, Hz

o Overall Lp = 86 dB

4. Calculate SBA at 100 feet

Octave Bund Center Frequency, Hz

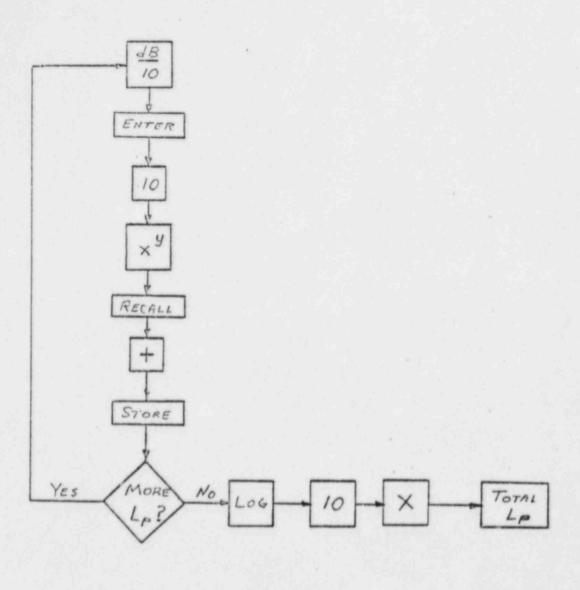
63 125 250 500 1000 2000 4000 8000

Lp @ 100 83 80 77 74 73 70 68 68

A-wty. -26 -16 -9 -3 0 +1 +1 -1

57 64 68 71 73 71 69 67

69.4 74 71.2


78.3

Lp = 78 dBA at 100'

NOTES

1. These values fall within envelop shown by Bradley for mechanical draft towers

2. Lp = 75 dBA at 100' was measured for a tower with 8 cells.

$$dB_n = 10 \log \left(\frac{P_n}{P_{ref}}\right)^2$$

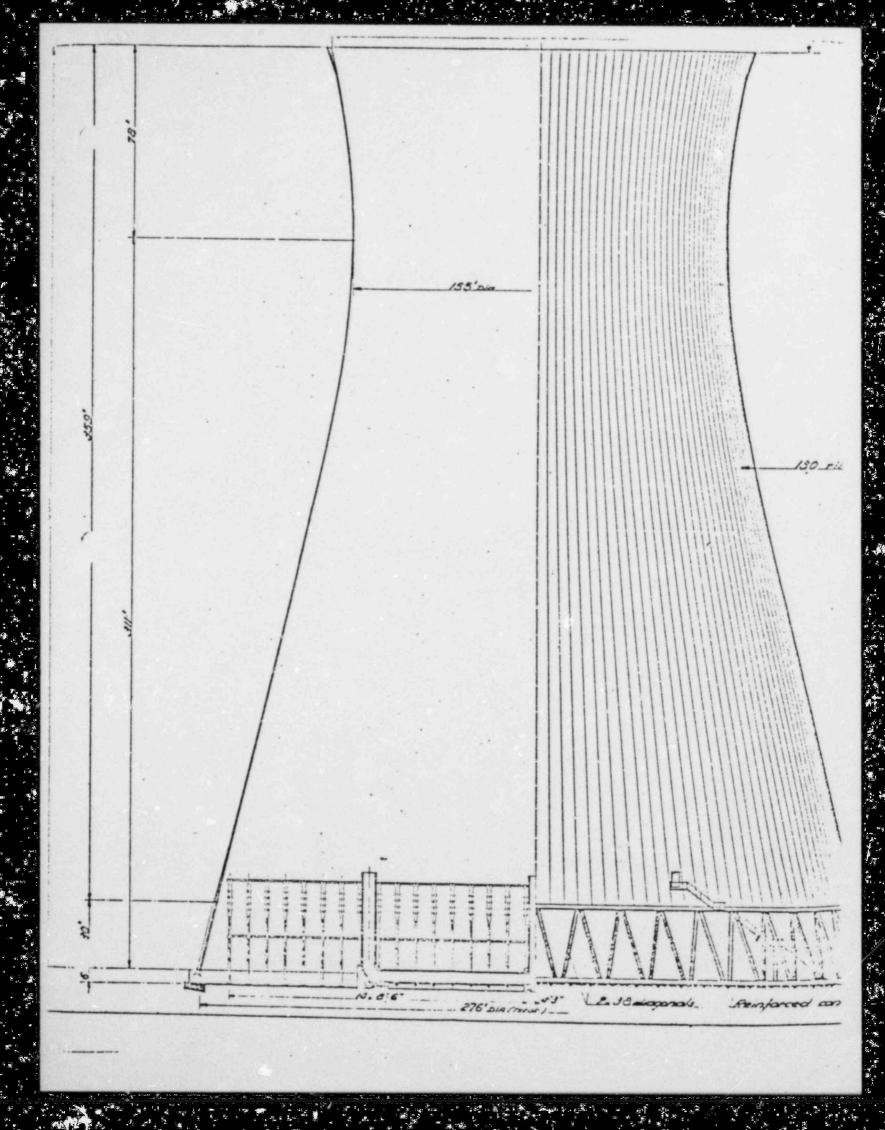
$$\left(\frac{P_n}{P_{ref}}\right)^2 = 10^{\frac{dE_n}{10}}$$

$$L_{PT} = 10 \log \left(\frac{P_{T}}{P_{ref}}\right)^{2}$$

$$= 10 \log \left[\left(\frac{P_{I}}{P_{ref}}\right)^{2} + \left(\frac{P_{Z}}{P_{ref}}\right)^{2} + \cdots + \left(\frac{P_{n}}{P_{ref}}\right)^{2}\right]$$

DESCRIPTIVE DATA AND ENGINEERING INFORMATION

The following descriptive data and engineering information are furnished in connection with this proposal.


1.	Design Water Flow - GPM (XXIX X FOX tower) Injet to-	1 258, 400
2.		120.6
3.	Temperature of Water from Tower - or	95
4.	Wet Bulb Temperature - °F	76
5.	Dry Bulb Temperature - °F	88
6.	Relative Humidity - %	58
7.	Range - °F	25.6 -
8.	Approach - °F	19
9.	Pumping Head Above Sill Level - Ft.	* 42'-8"
٥.	Mean Fill Cross Sectional Area - Ft.2	53,000
1.	Fill Wetted Surface - Ft.2	9,500,000
2.	Effective Splash Surface - Ft. ²	
3.	Effective Cooling Volume - Ft.3	1,960,000
4.	Tower Loading - GPM/Ft.2	4.86
5.	Dry Air Quantity - 1bs./hr.	
	(a) At 76°F Wet Bulb and 59% R.H.	65 x 10 ⁶
	(b) At 25°F Wet Bulb and 75% R.H.	100 × 10 ⁶
6.	Draft - inches H2O	
	(a) At 76°F Wet Bulb and 59% R.H.	0.32
	(b) At 25°F Wet Bulb and 75% R.H.	0.58
7.	Resistance of Air Inlet - Vel. Heads	0.5
8.	Resistance of Fill - Vel. Heads	17
9.	Air Inlet Area - Ft. ²	20,000
٥.	Temperature of Air/Vapor Mix at Exit at 76°F Wet Bulb and 59% R.H. °F	111

^{- 5 -}

[&]quot; Note - This is the total head required to elevate and distribute the hot water.

1. Stack exhaust velocity - fps	13.6
2. Drift Loss - Max. %	0.2
3. Diameter of Tower at Sill Level - Ft.	276'
4. Diameter of Tower at Top of Air Inlet - Ft.	259
5. Diameter of Tower at Throat - Ft.	155
5. Diameter of Tower at Exit - Ft.	169
7. Height of Tower above Sill - Ft.	389
3. Height of Throat above Sill - Ft.	311
9. Height of Air Inlet above Sill - Ft.	30
). Height of Top of Fill above sill - Ft.	37
1. Depth of Basin below Sill - Ft.	6
2. Normal Water Level below Sill - Ft.	
3. Height of Sill above Grade - Ft.	0.5
. Thickness of Shell - In. (Minimum)	2
. Thickness of Ring Girder - In.	6
. Diameter of Supporting Columns - In.	48 (avg.)
. Concrete Hix and Compression Strength Used in Design - psi	25"
(a) Shell	4.000
(b) Ring Cirder and Columns	4,000
(c) Basin	4,000 and 5,000
(d) Internal Structure	4,000
Weights	5,000
(a) Internals - Dry - Tons	
Operating - Tons	7,300
(b) Shell Structure - Tons	9,000
	16,000
(c) Water in Basin - Tons	10,000

Anthony who some

COOLING TOWER NOISE GENERATION AND RADIATION

R. M. ELLIS

Central Electricity Research Laboratories, Leatherhead, Surrey, England

(Received 23 April 1970, and in revised form 6 July 1970)

An investigation has been carried out into the generation of noise by large naturaldraught cooling towers, and the mechanism of noise radiation from them, based on measurements made at four large power stations.

An expression relating the A-weighted acoustic power of a tower to its physical characteristics has been derived. This, together with the discovery that the towers behave as area sources at low frequencies and as are sources at high frequencies, has enabled a complete prediction method to be proposed. This method was used to estimate the noise from three further cooling towers and gave excellent agreement with the levels which were subsequently measured.

1. INTRODUCTION

The noise levels around power stations are, in many cases, dominated by the noise from the cooling towers, which is almost white in character. The noise is caused by the cooling water falling into the pond which covers the whole area of the base, and also by the water falling onto the packing of the tower, which in some cases protrudes below the shell of the tower. 'ypical tower is shown diagrammatically in Figure 1.

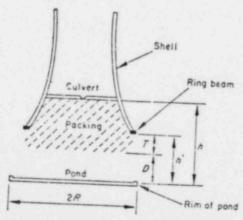


Figure 1. Typical cooling tower construction.

The satisfactory prediction of noise levels due to cooling towers will depend not only on the acoustic power generated by the towers, but also on the mechanism of the propagation of this noise away from the towers. Two possible theoretical approaches to the radiation have been investigated, and compared with measurements made at four large power stations,

An attempt has been made to relate the A-weighted acoustic power output of the four towers to their physical characteristics, so that a complete prediction method could be devised. This method was used to predict the cooling tower noise at three further power stations, and the resulting levels were then compared with the measured levels.

2. THEORETICAL SOUND RADIATION

The first approach is to consider that the noise a generated by a ring of falling water, around the edge of the pond, and that any noise generated inside this ring is prevented from escaping by reflection, refraction and absorption by the packing and falling water. The total sound pressure at any point will thus be due to the portion of the ring which would be visible to an observer at that point (Figure 2). This approach is considered relevant to the highfrequency noise and, because of the predominance of the high frequencies in the spectrum, to

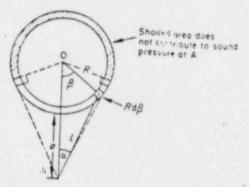


Figure 2. Sound radiation from a ring source.

The sound pressure at A due to an element of length RdB, assuming uniform hemispherical radiation, will be given by

$$(P_{r.m.s.})_{Rd\beta}^2 = \frac{W_{ac}}{2\pi R} \cdot \frac{Z_0}{2\pi l^2} \cdot R \, d\beta,$$

where W_{ac} is the acoustic power of the whole ring, Z_0 is the characteristic impedance of air, R is the radius of the rim of the pond and I is the distance from the element to point A.

The total sound pressure at A due to the visible section of the ring will be given by

$$(P_{t.m.s.})^2 = \frac{W_{ac}Z_0}{4\pi^2} \int_{\alpha+\beta-n/2}^{\alpha+\beta-n/2} \frac{d\beta}{l^2},$$

which yields the equation

$$(P_{t.m.s.})^2 = \frac{W_{ac}Z_0}{\pi^2} \cdot \frac{1}{(a^2 + 2aR)} \cdot \tan^{-1} \sqrt{\left[\frac{a + 2R}{a}\right]}.$$
 (1)

where a is the distance from the rim to point A.

$$a \lessdot R$$
, $\tan^{-1} \sqrt{\left[\frac{a+2R}{a}\right]} \to \frac{\pi}{2}$, $\frac{1}{a^2+2aR} \to \frac{1}{2aR}$

50

$$(P_{e.m.s.})^2 = \frac{W_{ac}Z_0}{4\pi a R},$$
 (2)

i.e. a fall in sound pressure level of 3 dB for every doubling of a.

$$a > 3$$
, $\tan^{-1} \sqrt{\left[\frac{a+2R}{a}\right]} \rightarrow \frac{\pi}{4}$, $\frac{1}{a^2 + 2aR} \rightarrow \frac{\pi}{4}$

10

; W. d from ic total visible : highum, to

 $(P_{r.m.s.})^2 = \frac{W_{ac}Z_0}{4\pi a^2},$ (3)

a fall in sound pressure level of 6 dB for every doubling of a.

Equations (2) and (3) intersect where a = R, whereas equation (1) is a smooth curve having the same initial and final slopes and values as (2) and (3), as shown in Figure 3.

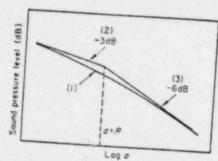


Figure 3. Sound pressure level attenuation with distance, from the ring source shown in Figure 2.

The second approach is to consider that noise is generated across the whole surface of the pond, and radiated hemispherically. This approach was considered relevant to the noise in the low-frequency bands, and possibly to the overall sound pressure level. Examination of Figure 4 shows that the acoustic power due to an element of area rd\u00e4dr will be

$$(W_{ac}/\pi R^2) r d\beta dr$$

and the total pressure at A will be given by

$$(P_{t.m.s.})^2 = \int_0^{2\pi} \int_0^R \frac{W_{uc}}{\pi R^2} \cdot \frac{Z_0}{2\pi l^2} \cdot r \, \mathrm{d}\beta \, \mathrm{d}r.$$

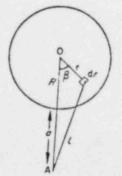


Figure 4. Sound radiation from an area source.

This yields the equation

$$(P_{r.m.s.})^2 = \frac{W_{ac}Z_0}{2\pi R^2} \log_e \left[\frac{(R+a)^2}{(R+a)^2 - R^2} \right],$$
the form

which can be expanded in the form

$$(P_{r,m,s,})^2 = \frac{W_{ac}Z_0}{2\pi R^2} \left[\frac{R^2}{(R+a)^2} + \frac{1}{2} \left\{ \frac{R^2}{(R+a)^2} \right\}^2 + \frac{1}{3} \left\{ \frac{R^2}{(R+a)^2} \right\}^3 + \cdots \right].$$

.emi-

air,

(1)

2)

When a < R,P varies slowly with a, and when a > R,P < 1/a, i.e. a 6 dB fall per doubling of a.

The variation of sound pressure level with distance from the tower will be as shown in Figure 5.

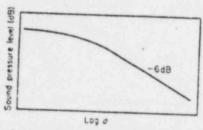


Figure 5. Sound pressure level attenuation with distance from the area source shown in Figure 4.

3. NOISE MEASUREMENTS

Measurements were made at four power stations, three with towers of 250 MW cooling capacity (A, B and C) and one with towers of 200 MW capacity (D). At each station, a radial line from the end tower of a row was chosen in the most favourable direction to avoid extraneous noise from other sources as far as possible. A Brüel and Kjær sound level meter (type 2203) with octave-band filter set and 1 in, microphone (type 4131) was used to obtain

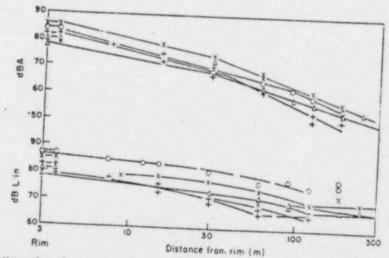


Figure 6. Attenuation of sound level A and overall sound pressure level with distance from four cooling towers. O—O, Tower A; +—+, tower B; \times —×, tower C; \triangle — \triangle , tower D.

the sound levels and octave-band sound pressure levels at the rim of the pond, and at increasing distances from the rim along the radial line. The maximum distance was 183 m for A and B, 488 m for D, and 762 m for C. However, noise from extraneous sources influenced the levels at some frequencies at distances of more than about 120 m. Measurements were made under calm or very light wind conditions, and a wind-shield was used to protect the microphone from low-frequency fluctuations due to wind, but with rather limited success because rim of the pond shown for convenience at the 3-m position, since it was observed that there was very little change in level over the first 3 m. Figure 10 is a combination of Figures 3 and 5

drawn accurately for the two relevant values of R, namely 45.7 m for towers A, B and C, and 41.2 m for tower D.

Comparison between Figure 10 and Figures 6-9 shows good agreement between the two theories developed and the attenuations measured in practice. It can be seen that the area

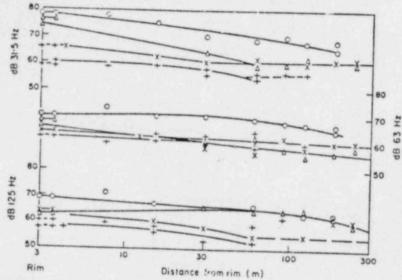


Figure 7. Attenuation of octave-band sound pressure levels with centre frequencies of 31.5, 63 and 125 Hz with distance from four cooling towers. Legend as for Figure 6.

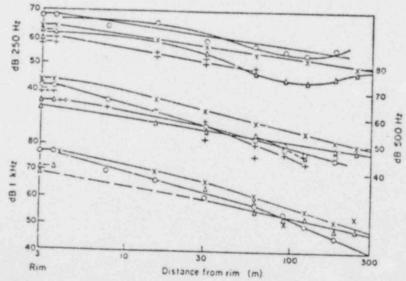


Figure 8. Attenuation of octave-band sound pressure levels with centre frequencies of 250, 500 and 1000 Hz with distance from four cooling towers. Legend as for Figure 6.

source propagation is more satisfactory for the overall sound pressure levels and octave bands up to and including that centred on 250 Hz. Above this, the arc source approach gives the more satisfactory agreement, with atmospheric absorption adding to the attenuation at $2 \, \text{kHz}$ and above. The value of R given by the change of slope of the attenuation curves was generally in the range 30-60 m.

Direction Control Control

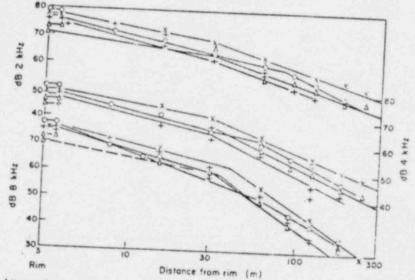


Figure 9. Attenuation of octave-band sound pressure levels with centre frequencies of 2, 4 and 8 kHz with distance from four cooling towers. Legend as for Figure 6.

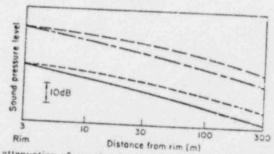


Figure 10. Theoretical attenuation of sound pressure level with distance from ring of radius 41-2 m (----) and 45-7 m (----) and 45-7 m (----).

TABLE 1

Calculated sound power of single cooling towers at various distances

Tower	Distance (m)	Overall sound pressure level (dB)	Overall sound power (w)	Sound power level (dB relative to 10 ⁻¹² w)	A-weighted sound level (dBA)	A-weighted sound power (w)
Α	15-2	84	3.9	125-9		()
	30-5	81	3-6	125-6	74	0.33
В	122	74.5	4.7	126-7	70	0.33
	15.2	74.5	0.44	116-4	60	0.27
	30·5 122	71	0.36	115-8	72	0-21
C	15.2	64	0.42	116-2	69	0.25
	30-5	80	1.55	121-9	55·5 78	0.10
	122	77.5	1.6	122	74	0.82
D	30.5	70	1.7	122-3		0-82
	122	73-75	0-52-0-82	117-2-119-1	61	0.34
	122	67-69	0.79-1.25	119-121	69-71	0.24-0.38
					56-57	0-11-0-13

A numerical check on the validity of the two equations was made by calculating the overall sound power [using equation (4)] and A-weighted sound power [using equation (1)] from the measurements at distances of 15·2, 30·5 and 122 m. The results are given in Table 1, which shows that equation (4) gives nearly constant values for the overall acoustic power of any one tower at all three distances. Equation (1) for the A-weighted power gives similar values at 15·2 and 30·5 m for any one tower but underestimates the source power if the 122-m levels are used—presumably because of atmospheric absorption since tower A with the high levels in the lower frequencies is less affected than the other towers.

4. ACOUSTIC POWER GENERATION

It seemed logical as a first assumption to consider that the acoustic power would be directly proportional to the hydraulic power dissipated in the tower, i.e.

$$W_{ac} = \eta_{ac} Mgh, \tag{5}$$

where M is the mass flow rate of cooling water (kg/sec) and h is the distance the water falls from the culvert into the pond (in metres).

The acoustic power of the four towers was also calculated from the sound level measured at the rim of the pond, using the equation

$$W_{ac} = \frac{P_{rim}^2 \times 2\pi Rh'}{Z_0},\tag{6}$$

where h' was the depth of the "open" area below the tower shell—from pond to ring beam. A-weighted sound levels were used to eliminate spurious low-frequency levels, and because, subjectively, A-weighted levels are more useful. The results are given in Table 2, together with the relevant values of M, h and h' for the four towers. The values of A-weighted power obtained by this method agree reasonably well with those calculated from equation (1) and quoted in Table 1.

TABLE 2

Comparison of hydraulic and acoustic power, and physical properties of the four towers

D 41·2 5·3
0.3
6800
5.4
6.4
0.427
80
6-1
0.16
0·37 × 10 ⁻⁶

It can be seen that there is considerable variation in the value of η_{uc} , either because the sound powers are not accurate, or because equation (5) is not valid. A second approach was therefore tried, assuming the acoustic power to be given by an equation of the form

$$W_{ac} = Mh \left[A \left(\frac{T}{h} \right)^n + B \left(\frac{D}{h} \right)^m \right], \tag{7}$$

with

where T was the depth of packing below the ring beam, and D the height from the pond to the base of the packing (see Figure 1), A and B are constants with dimensions of m/see², analogous to efficiency, and m and n are indices which were assumed to be integers. Inspection of the two terms showed that the best agreement would be given with m = n = 2, $A = 0.95 \times 10^{-5}$ and $B = 1.8 \times 10^{-5}$ m/sec. These values, when used in equation (7), gave values for A-weighted sound power of 0.25, 0.34, 0.78 and 0.34 A-watts for towers A, B, C and D, respectively.

The octave-band levels for the towers at the rim and at a distance of 30 m from the rim are shown in Figure 11. The shapes of the spectra from 0-125 to 8 kHz are very similar, peaking in the 4 kHz octave band with a value approximately 4 dB below the A-weighted sound level. Since the towers spanned the whole range of likely packing configurations and yet gave such similar spectra, it is reasonable to propose that other towers would not give significantly different spectra. The average octave-band levels relative to the A-weighted sound level at the rim and at 30 m from the rim are given in Table 3.

TABLE 3

Average octave-band levels relative to A-weighted sound level

Centre frequency (Hz) Level at rim (dB)	125 -19·4 -10·4	250 -19·8 -16·0	500 -13·0 -13·0	1000 -7·8 -8·4	2000 -6·3 -5·7	4000 -4·3 -4·3	8000 -7·2 -10·8	
Level at 30.5 m (dB)	-10.4	-10.0	-130	-04				

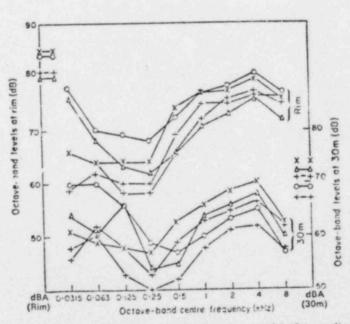


Figure 11. Octave-band spectra at the rim and at 30-5 m from the rim of the four cooling towers. Legend as for Figure 6.

5. PREDICTION METHOD

From the data presented in this paper, it is now possible to detail a complete prediction method for the noise from cooling towers whose constructional details are known.

The stages

(1) Calc

(2) The

and

(3) The

and

For distance and that th using the fo

Cent

The correct weighted so Using the packing rig The other, the ring beamethod to that were a this is a po

Tower E

Tower E

Tower E

Tower F

the bond to 3, C and D.

a the rim are lar, peaking sound level. et gave such significantly und level at

8000 -7.2 -10.8

is of m/sec2. s. Inspection $A = 0.95 \times$ e values for The stages are as follows.

(1) Calculate the A-weighted acoustic power from the equation

$$W_{ac} = Mh \left[0.95 \times 10^{-5} \left(\frac{T}{h} \right)^2 + 1.8 \times 10^{-5} \left(\frac{D}{h} \right)^2 \right].$$

(2) The A-weighted sound level at the rim of the pond can be found from

$$P_{rim}^2 = \frac{W_{ac} \times Z_0}{2\pi R/i'},$$

and the octave-band levels found from Table 3.

(3) The A-weighted sound level at a distance a from the rim can be found from

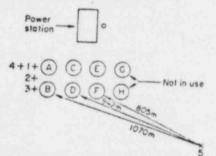
$$P_A^2 = \frac{W_{oc} \times Z_0}{\pi^2 (a^2 + 2aR)} \tan^{-1} \sqrt{\left[\frac{a+2R}{a}\right]},$$

and the octave-band levels again found from Table 3.

For distances greater than 30 m, it is suggested that the spectrum shape at the rim be used, and that the octave-band levels should be further corrected for atmospheric absorption using the following data [1].

The corrected octave-band levels so obtained can then be used to colculate the true Aweighted sound level, if desired.

Using this method, the levels were predicted for two further towers. One, tower E, had packing right down to the surface of the pond, and a nominal cooling capacity of 35 MW. The other, tower F, was of nominal capacity 120 MW, and the packing stopped 0.5 m above the ring beam (i.e. T = 0). They thus represented two extremes of design, and would put the method to a severe test. The predicted levels are shown in Table 4, together with the levels that were actually measured. The agreement is seen to be remarkably good, suggesting that this is a powerful technique for prediction.


TABLE 4 Comparison of measured and predicted levels for towers E and F

		Octave-band sound pressure levels (dB relative to $2 \times 10^{-5} \text{ N/m}^2$)								
Tower E. 15-2 m I Tower E. 30-5 m I Tower F. Rim I	1	dBA	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz	
Tower E. Rim	Predicted	81.2	61.6	61.4	68-2	73.4	74-9	76.9	74	
	Measured	81	61	58	67	73-5	74.5	76.5	75.5	
Tower E. 15-2 m	Predicted	70-4	56.5	58 52·5	67 57·4	73 62·3	74.5	76.5	75	
	Measured	70	54	49	54	61	64-4	65.5	61.4	
Tower E. 30-5 m	Predicted	71 66-1	60 55·7	49 50-1	55.5	61.5	64.5	66-5	64.5	
	Measured	66	55	48	53-1	57·7 59	60-4	61.8	55·3 58	
Tower F. Rim	Predicted Measured	66.5 84.2 85	61 64-8 64	49 64·4	50 71·2	58 76-4	59·5 77·9	62.5	59·5 77	
		0.5	04	66	74	77	77	80	78-5	

vers. Legend as

te prediction wn.

As a final check, the levels from the array of 250 MW towers shown in Figure 12 were estimated at the points shown, and compared with the measured levels. Again, agreement was excellent right out to 805 m from the nearest working tower (position 5). The detailed calculations are shown in the Appendix, together with the measured levels.

11

SO

Cr

Pro

Me

30-

A

Cer

Mic:

Mer

fron

TI

Cent Pred

Atm.

Cont

Tota

Mea

At

Figure 12. Cooling tower layout and measurement positions at a 2000 MW power station.

6. CONCLUSIONS

A method has been devised, based on measurements made on four large cooling towers, for predicting the acoustic power output from natural-draught cooling towers, and for estimating the A-weighted sound levels and octave-band sound pressure levels at considerable distances from them. The method was used to predict the levels from three further towers and gave excellent agreement with the measured values.

ACKNOWLEDGMENT

The work was carried out at the Central Electricity Research Laboratories, and the paper is published by permission of the Central Electricity Generating Board.

REFERENCE

 A.R.P. 866 1964 Standard values for atmospheric absorption as a function of temperature and humidity for use in evaluating aircraft flyover noise. Society of Automotive Engineers.

APPENDIX

Calculations of the A-weighted sound power of the cooling towers shown in Figure 12. and the A-weighted sound level and octave-band sound pressure levels at the rim of the tower and at the five points shown.

CALCULATION OF A-WEIGHTED SOUND POWER

Each tower had a water flow rate of 112.500 gal/min from a culvert 38 ft above the level of the pond. The packing was 27 ft thick and extended right down to the pond. The open height was 26 ft and the radius of the tower 155 ft (47.2 m)

In addition 20,000 gal/min of warm water was used for de-icing and was sprayed from a pipe which ran around the perimeter of the tower 3 ft below the ring beam, directly downwards into the pond which was 24 ft below.

Thus the data in metric units [which must be used for the values of A and B of equation (7)] are as follows.

Tower Water

$$h = 38 \text{ ft} = 11.6 \text{ m}, h' = 26 \text{ ft} = 7.92 \text{ m}, T = 27 \text{ ft} = 8.22 \text{ m}, D = 0 \text{ ft}.$$

igut 2 were in, agreement . The detailed

station.

ooling towers, wers, and for at considerable further towers

and paper

emperature and neers.

in Figure 12, im of the tower

above the level ond. The open

prayed from a tly downwards

of equation (7)

 $w'_{ee} = 8500 \times 11.6 \times 0.95 \times 10^{-5} \left(\frac{8.2}{11.6}\right)^2 = 0.473 \text{ A-watts.}$

De-icing Water

M = 20,000 gal/min = 1510 kg/sec,

h = D = 24 ft = 7.32 m,

 $W_{ac} = 1510 \times 7.32 \times 1.8 \times 10^{-5} \times 1^2 = 0.199 \text{ A-watts,}$ total acoustic power of each tower = 0.672 A-watts.

SOUND LEVELS AND OCTAVE-BAND SOUND PRESSURE LEVELS

At rim of pond

$$P_A^2 = \frac{W_{ac} \times Z_0}{2\pi Rh} = \frac{0.672 \times 407}{2\pi \times 47.2 \times 7.92} = 0.1165 \, (\text{N/m}^2)^2,$$

:.
$$P_A = 0.341 \text{ N/m}^2 = 84.7 \text{ dBA}$$
.

From Table 3 we obtain the following octave-band levels.

Centre frequency (kHz) 0.125 0.250 0.500 dBA Predicted levels (dB) 65.3 64.9 71.7 76.9 79.4 80.4 77-5 84.7 Measured levels (dB) 65 63 72 77.5 78.5 80.5 79.5 85

30-5 m from rim of pond-positions 1 and 3.

$$\begin{split} P_A^2 &= \frac{W_{ac} \times Z_0}{\pi^2 (a^2 + 2aR)} \tan^{-1} \sqrt{\left[\frac{a+2R}{a}\right]} \\ &= \frac{0.672 + 407}{\pi^2 (930 + 2880)} \tan^{-1} \sqrt{4 \cdot 1} = 0.00808 \, (\text{N/m}^2)^2, \end{split}$$

$$P_A = 0.09 \text{ N/m}^2 = 73.1 \text{ dBA}.$$

Again from Table 3, we obtain the following:

Centre frequency (kHz)	0.125	0.250	0.500	1	2	4	8	dBA
Predicted levels (dB)	62.7	57-1	60-1	64-7	67-4	68.8	62.3	73-1
Measured at position 1	64	58	59	63.5	65	68	64.5	72
Measured at position 3	64	52	58	64	65.5	69	65-5	72

At position 2, 64 m (210 ft) from towers A and B. (The contributions to the sound levels from the rest of the towers will be negligible.)

$$P_A^2 = \frac{0.672 \times 407}{\pi^2 (4100 + 6080)} \tan^{-1} \sqrt{2.47} = 0.00273 \text{ (N/m}^2)^2 \qquad (P_A = 0.052 \text{ N/m}^2)$$
$$= 68.4 \text{ dB}.$$

The octave-band levels will be

The state of the s						
Centre frequency (kHz)	0.500	1	2	4	8	dBA
Predicted levels from tower A	55.4	60-6	62-1	64-1	61.2	(68.4)
Atmospheric absorption	-0.1	-0.3	-0.6	-1.6	-3.0	
Contribution from tower B	3	3.	3	3	3	
Total predicted levels at position 2	58.3	63-3	64.5	65.5	61.2	69.6
Measured at position 2	53	62.5	64.5	65	59	69

At position 4, 122 m from tower A and 183 m from tower B, using the same procedure as above, the predicted octave-band levels are given below.

Same the same there are

1.

182	R. M.	ELLIS				
Centre frequency (kHz)	0.500	1	2	4	8	dBA
Predicted levels from tower A	50-6	55-5	56-4	56.5	50.7	MADA
Predicted levels from tower B	47.5	52-3	52.8	52.0	45.1	
Total predicted levels at position 4	52.3	57-2	58-0	57.8	51.7	63-3
Measured levels at position 4	50	56-5	58	58	47	63

At position 5, it is assumed that the total noise levels will be due to contributions from towers B, D and F and that towers A, C and E will be masked.

Centre frequency (kHz)	0-500	1	2	4	Q
Predicted levels from tower F	34-1	37.5	34.4	24.8	0
Predicted levels from tower D	32-4	35.5	32.0	19.5	
Predicted levels from tower B	31-1	33.9	29.8	15.3	
Total predicted levels at position 5	37.5	40.7	37.5	26.0	
Measured levels at position 5	39	40	37	24	_

N.B. All levels quoted are in dB relative to 2×10^{-5} N/m².

The ligh incidence involved and behind and Tomoc thece general and the control of the control of

2.1.
Si reac nor.
L pori capi

revi

ENVIRONMENTAL NOISE IMPACT OF
NATURAL DRAFT HYPERBOLIC COOLING TOWERS

BY

JOHN P. CARLSON, EMISSIONS CONTROL BUREAU ALLAN M. TEPLITZKY, OFFICE OF ENVIRONMENTAL AFFAIRS

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC.
NEW YORK, N.Y. 10003

PRESENTED AT

87th MEETING OF THE ACOUSTICAL SOCIETY OF AMERICA
APRIL 24, 1974
NEW YORK, NEW YORK

Protection of the natural environment may necessitate

consideration of alternate cooling systems for some electric

power generating stations to reduce the temperature and amount

of cooling water discharged. The impact of the sound emitted by

cooling towers on the surrounding community is one of the elements

considered in the benefit-cost analysis of alternate cooling

systems. This paper (1) summarizes the results of field

measurements used to quantify the sound emission from natural

draft hyperbolic cooling towers (2) develops a simplified cooling

tower noise emission prediction scheme, and (3) evaluates the impact

of the noise emission on the surrounding community. The study has been

limited, however, to the range of cooling towers considered for

electric utility applications.

A. Cooling Tower Description

Two types of natural draft hyperbolic cooling towers were considered in this study - crossflow and counterflow. In the crossflow tower, Figure 1, the hot water from the power plant, which is to be cooled, is delivered to the top of a cylindrical annulus external to the base of the tower. This hot water is distributed around the tower and falls through multiple tiers of fill creating droplets of water. The impingement of these water droplets on the fill material and on the water in the basin below are the primary noise generating mechanisms. Draft cooling air passes by the droplets at an angle of about 90 degrees, hence, the crossflow designation. The cooled water is then collected in the basin at the base of the tower and returned to the plant. In the counterflow tower, Figure 2, the hot water is pumped to a a distribution system above the fill, and runs through the fill. The water then falls from the fill to the collecting basin in the form of droplets. These droplets impacting the water in the basin is the primary source of noise generation. Draft cooling air enters the tower between the water collecting basin and tower shell, and passes through the water droplets in a direction counter to their flow (180°). The cooled water is collected in the basin at the base of the tower and then returned to the plant.

B. Noise Measurement and Analysis

Techniques for estimating sound emissions from natural draft towers have been previously published by Ellis. In order to validate this prediction scheme, noise measurements of the sound emitted by both counterflow and crossflow cooling towers were made at several electric generating stations in the eastern half of the country.

An A-weighted sound level analysis was deemed sufficient for development of a sound emission prediction scheme and for evaluating subjective community response, since the sound generated by water falling in both types of towers is continuous, and the frequency spectra is broad-band and generally without tones. A summary of the natural draft hyperbolic cooling tower noise measurements made at power plants is shown in Table I, and the typical range of octave band spectra is shown in Figure 3. For the cooling towers that were evaluated, the Ellis prediction scheme appears to be conservative, i.e., this scheme estimates sound levels to within 3 dB(A) of the measured sound levels at 40 feet and 80 feet

Sound levels measured in the near field of the cooling towers were normalized to a common water flow rate, by adding or subtracting ten times the logarithm of the difference between the rated and common water flow rates from the sound levels measured at similar distances from the tower basin rim. Results therefore indicate, that for similar water flow rates, the A-weighted sound level for counterflow towers was about 1 dB(A) higher than crossflow towers.

Since the noise generation mechanisms and emission levels of the two types of cooling towers differ, two equations for estimating near field sound emississ at a distance of 40 feet from the basin rim were developed. The 40 foot distance was selected since it is in the near field of the tower, and the sound level measured would not be simificantly altered by structural elements of the tower. Ecund levels measured at 40 feet were normalized to the tower s water loading, by subtracting from the measured sound levels, ter times the logarithm of the water loading. Water loading is determined when the cooling water flow rate (M), in G.P.M., is divided to the active (or working) tower area (A), in square feet, receiving the water droplets. The results of normalizing the measure: -alues shown on Figure 4, indicate the parametric dependency of sound emissions upon water loading. For the range in size of cooling towers investigated, our studies indicate that water losing is the significant parameter which determines sound emissize. For practical purposes, the active area of a cooling tower is considered the area of the water basin for counterflow towers and the mean area of the fill for crossflow towers. Based upon the trise measurements and the effect of water loading on noise emissims, the A-weighted sound level at 40 feet from the rim of the water casin can be simply estimated by the following two equations: Figure 5)

 $L_{40} = 71 + 10 \log - A)$, db(A) for crossflow towers (Eqn. 1) and,

 $L_{40} = 75.5 + 10 log ^{4}/\Lambda)$, dB(A) for counterflow towers (Eqn. 2)

where: L40 - A-weighted sound level at 40 feet

M - . water flow rate in G.P.M.

A - active area of the tower in Ft²

Divergence of sound to the far field was calculated using the two equations presented in Reference 1 for typical power plant natura draft hyperbolic cooling towers. Sound attenuation as a function of distance from the cooling tower is shown on Figure 6. Excess air attenuation for a typical situation was additionally estimated using the cooling tower sound spectrum and was added to divergence as shown again on Figure 6. As expected, cooling tower sound attenuated at the rate of 3 dB for doubling distance in the near field, and 6 dB for doubling distance in the far field.

estimated by the method developed herein. Estimated sound levels at 40 feet and 80 feet, and in the far field, are within the equivalent accuracy found using the Ellis method for the range in size of towers studied. For the type of cooling towers studied, and others in operation or planned for future operation, variance in air inlet height, fill, and basin diameter would introduce about a maximum 1 dB(A) variance in noise emissions. In summary, water loading has been found by our study to be the significant parameter determining noise emissions from natural draft hyperbolic cooling towers.

Cooling towers are generally set-back considerable distances from the plant property line or nearest residential neighbor. Excess attenuation due to factors such as changes in atmospheric sound absorption, natural barriers, meteorology, vegetation, etc. may be factors in calculating the expected community noise intrusion, and have not been included in the discussion since they are unique to each site. Therefore, daily cooling tower community noise intrusion can at best be represented by an expected range of levels due to variations in multiple factors that contribute to excess attenuation.

C. Community Noise Evaluation

In order to evaluate the environmental impact of sound emitted by a natural draft cooling tower on surrounding residential communities, two alternate schemes were used — one was to calculate the Day-Night averaged A-weighted sound level, L_{dn}, as proposed by the Federal Environmental Protection Agency, and the second was to calculate the Noise Pollution Level in dB(A), L_{NP}, as proposed by Robinson.

Electric utilities, unlike other industries, are required to provide continuous uninterupted service, twenty-four hours per day. Therefore, cooling towers, by necessity, operate continually.

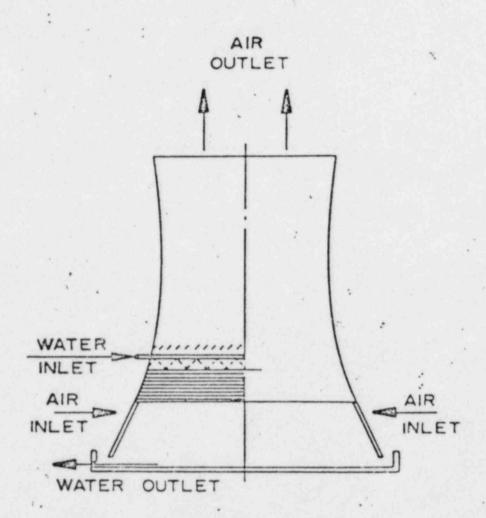
Based upon the E.P.A.'s residential community noise criteria of $L_{dn} = 55$ dB, cooling tower noise emitted into a community, would be limited to about 49 dB(A) exclusive of the presence of background noise, since the calculated L_{dn} for a continuous noise source is 6.4 dB higher than its continuous measured A-weighted sound level.

However, when the cooling tower noise emissions are superimposed on the background noise level measured in a typical surburban New York community, the results are shown in Table III. It can be observed from Table III, for the two communities studied, that near to the cooling tower, the noise emitted by the tower would control the sound heard by the community. At distances farther away from the tower and well into the community, the community background noise becomes the significant sound contributor. A typical example of siting a natrual draft cooling tower servicing a power plant is illustrated on Figure 7. Based upon this example, an acoustical buffer zone of 5,000 feet is required to achieve an L = 55dB with consideration of the community's background noise. In some cases, the cumulative effect of noise emissions from both the power plant and the cooling tower may necessitate a larger buffer zone, since the noise emissions of the power plant may be the same order of magnitude as the noise emissions from the cooling tower.

An alternate method of estimating environmental impact is to compute the Noise Pollution Level, as proposed by Robinson for traffic oriented noise intrusion:

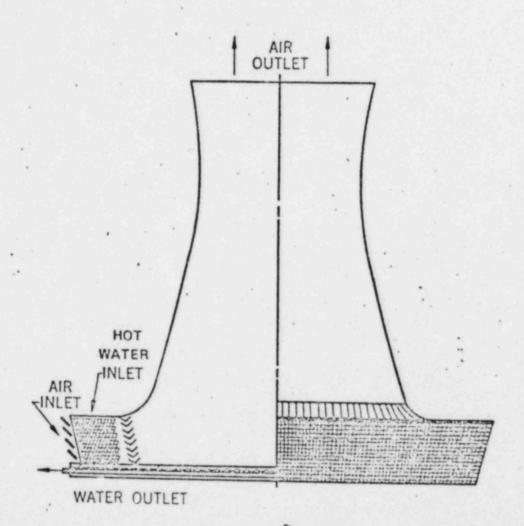
 $L_{NP} = L_{50} + \frac{1}{56} \left(L_{10} - L_{90} \right)^2 + 1.55 \left(L_{10} - L_{90} \right), \, \mathrm{dB(A)} \, \, \mathrm{Eqn.} \, \, (3)$ Computation of the L_{NP} for the quiet suburban residential community is shown on Table IV. The results suggest that, for the community investigated, the introduction of a continuous steady sound level

can reduce the community's Noise Pollution Level because of the reduction in the variation between the residual and intrusive noise levels (those levels exceeded for 90% and 10% of the time respectively), as the mean noise level (noise exceeded 50% of the time) increases. As the steady sound introduced increases beyond the ambient intrusive (L_{10}) level, the L_{NP} also starts to increase. Thus, for each community there may be an optimal sound intrusion level that minimizes L_{NP} . For the quiet community studied, a continuous intrusion of 45 dB(A) appears to be optimal. From a practical viewpoint, the introduction of broadband continuous sound from a source such as natural draft cooling towers may be beneficial by providing acoustical masking for the continuous tones generated by that station's power transformers, or the intermittent sounds such as steam venting.


D. Conclusion

In conclusion, our studies have shown that noise
emitted by the type of natural draft hyperbolic cooling towers
commonly used for power plant application can be predicted at
distances of 40 feet or more from the basin rim, using the
simplified method which was developed from measured data and
published results. Cooling tower noise emissions appear to be most
directly related to water loading. However, noise levels
predicted in the far field, possibly impacting the community, are
influenced by those environmental factors controlling excess attenuation

The study further suggests that significant amounts of noise control cannot be achieved by modifying the physical parameters of natural draft cooling towers, as presently designed. Finally, the environmental impact of natural draft cooling tower sound emissions can be minimized if sufficient distance is provided between the cooling tower and the neighboring community to attenuate the cooling tower noise.


REFERENCES

- "Cooling Tower Noise Generation and Radiation,"
 R.M. Ellis, Journal of Sound and Vibration (1971) 14 (2),
 pp. 171-182.
- Ostergaard Associates Report 1111 A-7 (draft), prepared for Con Edison, February 15, 1974.
- 3. "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with Adequate Margin of Safety," Environmental Protection Agency, March 1974.
- 4. "Towards a Unified System of Noise Assessment," D. W. Robinson, Journal of Sound and Vibration (1971) 14 (3) pp. 274-298.

NATURAL - DRAFT WET COOLING TOWER (COUNTER - FLOW)

Figure 1

NATURAL - DRAFT WET COOLING TOWER (CROSS - FLOW)

Figure 2

COMPARISON OF MEASURED AND PREDICTED SOUND LEVELS
FOR NATURAL DRAFT COOLING TOWERS
Sound Level in dB(A)

Distanc	e from Tower	(feet)	40)'	8	30'	3	20'	. 6	40'
Tower No.	Flow Rate (GPM)	Type	Measured	Ellis	Measured	Elliq	Measured	Ellis	Measured	Elli
1	1.39×10 ⁵	Counterflow	79	81	75	76	*	65½	*	
2	1.40×10 ⁵	Counterflow	80½	791/2	761/2	75	*	643	*	
3	2.50x10 ⁵	Counterflow	80	83岁	77	78½	*	685	*	
4	2.64x10 ⁵	Crossflow	81	83	. 76	78	66	68½	60	611
5	2.31x10 ⁵	Crossflow	80	81½	75	77	63	66½	54	60

^{*} Plant Noise Emissions or Topographical Conditions Prevented Accurate Measurements.

¹ With Air Absorption 50°F & 55% RH.

TABLE II

COMPARISON OF MEASURED AND PREDICTED SOUND LEVELS FOR NATURAL DRAFT COOLING TOWERS

Sound Level in dB(A)

Distance	from Tower	(feet)	40)'	8	0'	3	20'	• 64	0'
Tower No.	Flow Rate (GPM)	Type	Measured	Pred.	Measured	Pred.	Measured	Pred.	Measured	Pred.
							E ALL			
1	1.39x10	Counterflow	79	79	75	76	*	66	*	59
2	1.40×10 ⁵	Counterflow	801/2	80	76½	77		67		60
3	2.50x10 ⁵	Counterflow	80	803	77	753	*	65½	*	583
4	2.64×10 ⁵	Crossflow	81	81	76	78	66	68	60	61
5	2.31x10 ⁵	Crossflow	80 .	80 !	75	77	63	67	54	60
				.						

^{*} Plant Noise Emissions or Topographical Conditions Prevented Accurate Measurements

Computed Ldn

Community Sound Level plus steady sound intrusion	Community near highway	Quiet Community
Community Ambient Sound Level	50 30(3)	FO 10/11
Sound Level	58 dB(A)	52 dB(A)
Ambient + 40 dB(A)		
intrusion	58	53
Ambient (45 dp/a)		
Ambient + 45 dB(A) intrusion	59.5	54.5
		34.3
Ambient + 50 dB(A)		
intrusion	61	57.5
Ambient + 55 dB(A)		
intrusion	63.5	61.5
Ambient + 60 dB(A)		
intrusion	. 67	66.5

Community Sound Level	A-Weighted Sound Level Exceed for % of time			L _{NP}
	90%	50%	10%	
Ambient	36	40	44	53.5 dB(A)
Ambient + 40dB(A) intrusion Ambient + 45dB(A)	41	43	46	51
intrusion Ambient + 50dB(A)	45	46	47.5	50
intrusion Ambient + 55dB(A)	50	50	51 .	52
intrusion	55 .	55	55	55

Acoustical Impact of Cooling Towers

Greg Capano
Wayne E. Bradley
Stone & Webster Engineering Corporation
Boston, Massachusetts 02107

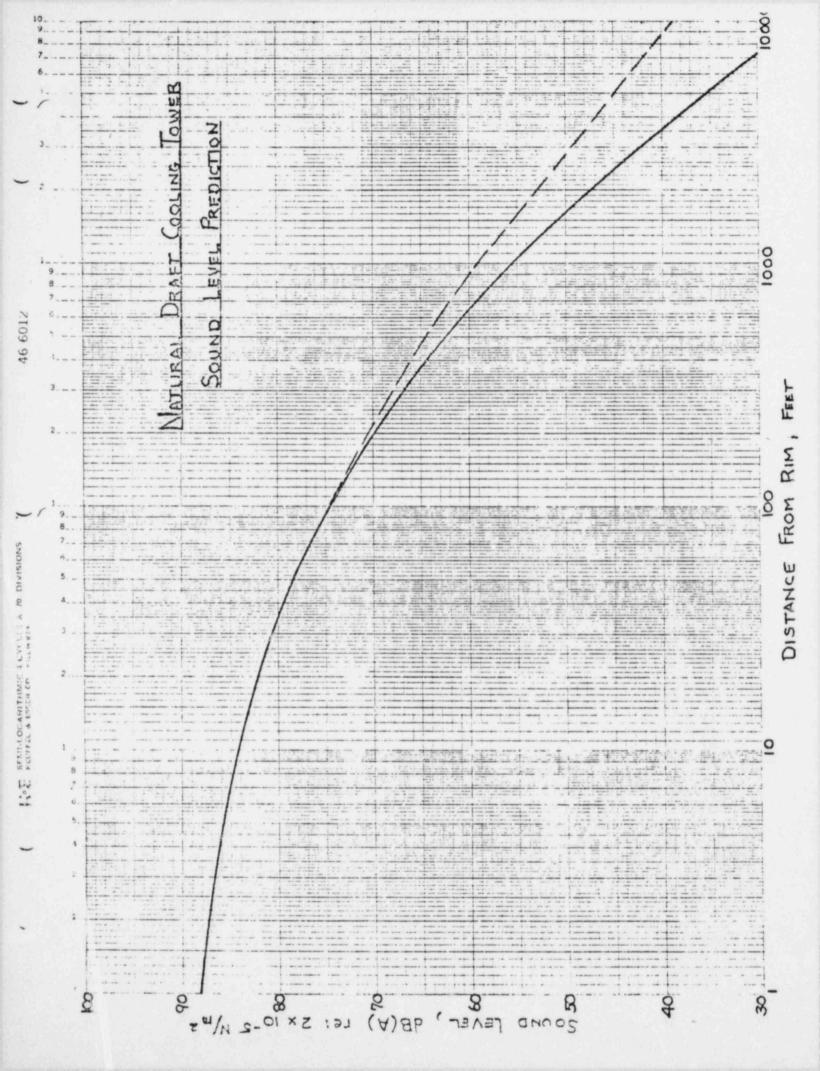
Stone & Webster

PRESENTED AT THE 87TH MEETING OF THE ACOUSTICAL SOCIETY OF AMERICA APRIL 23-26, 1974
NEW YORK, N.Y.

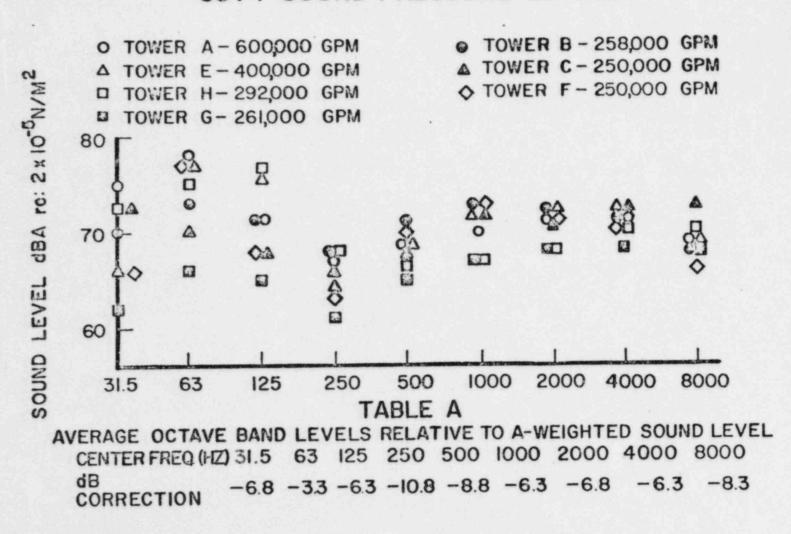
PREDICTION OF "A" WEIGHTED AND OCTAVE BAND SOUND PRESSURE LEVELS FOR WET NATURAL DRAFT COOLING TOWERS

The data shown in the Sound Level Prediction Figure represents the upper limit of actual field measurements of Sound Levels in dB(A) versus Distance for eight wet-natural draft cooling towers with water capacity ranging from 140,000 to 600,000 gallons per minute. The measured sound levels did not vary directly with increase in water capacity but fell randomly on or slightly below the solid line curve in the Sound Level Prediction Figure for distances up to 1000 feet. Beyond 1000 feet, the data has been extrapolated using hemispherical radiation (6dB/double distance) and atmospheric absorption for standard conditions of 59°F and 70% relative humidity.

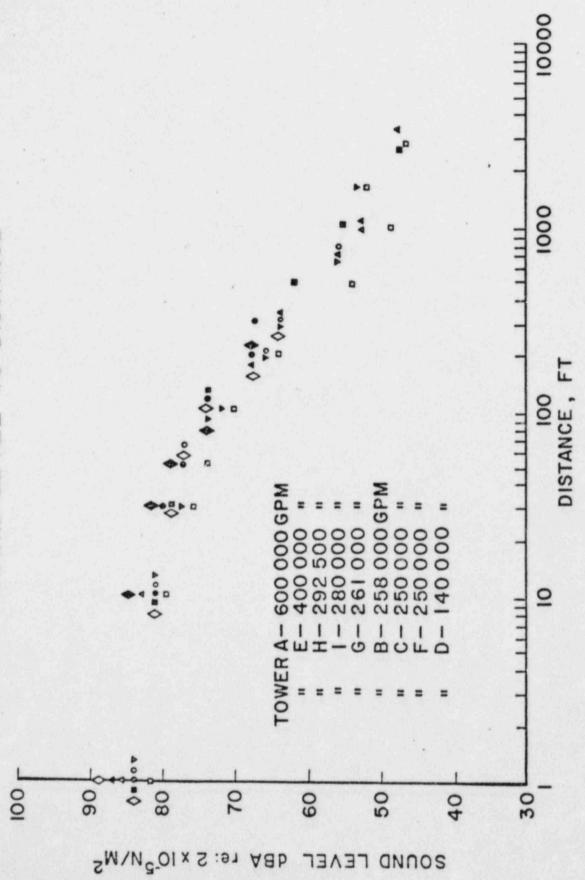
The "A" weighted sound level for a specific distance from the rim of a cooling tower is obtained directly from the solid line curve in the Sound Level Prediction Figure. The octave band sound pressure levels are obtained by using the following procedure:

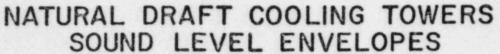

- A. <u>FOR DISTANCE UP TO 100 FEET</u> Read directly from solid curve the "A" weighted sound level. The octave band sound pressure levels are obtained by subtracting from the "A" weighted value the average correction factors shown in Table A.
- B. FOR DISTANCES BEYOND 100 FEET Read directly from the dashed line curve, the sound level without atmospheric absorption. The octave

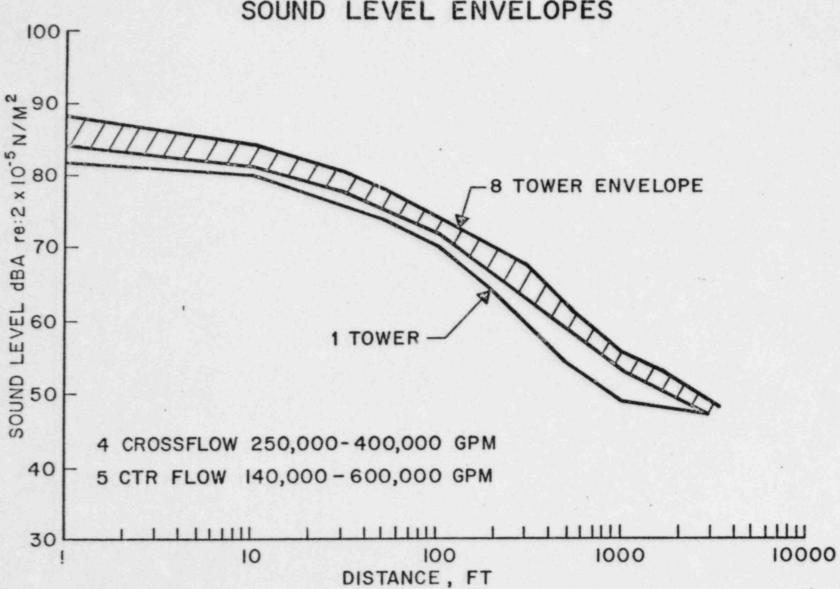
band sound pressure levels are obtained by subtracting the average correction factors shown in Table A and by further correcting for atmospheric absorption using the following data. (Reference 4)

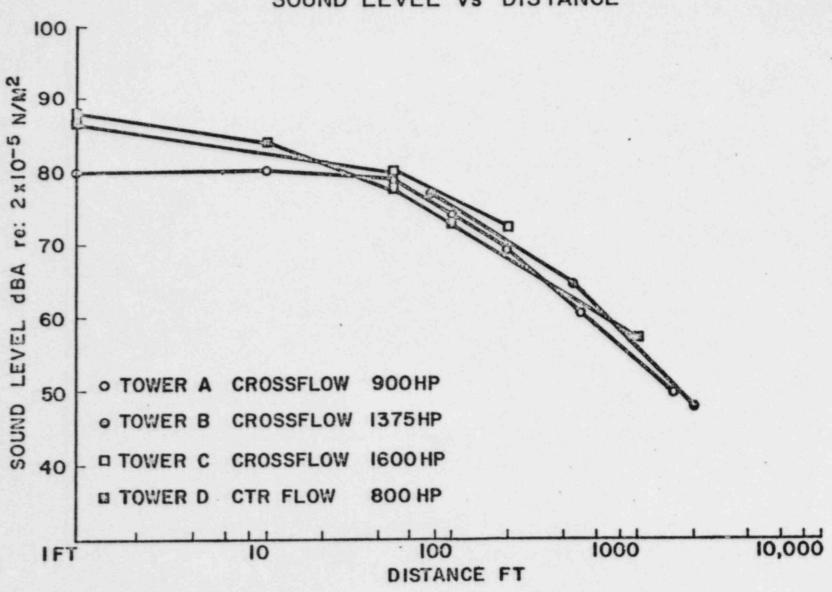

Center Frequency Hz 500 1K 2K 4K 8K

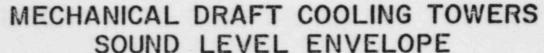
Atmospheric Absorption (dB/1000 feet) 0.7 1.4 3.0 7.7 14.4

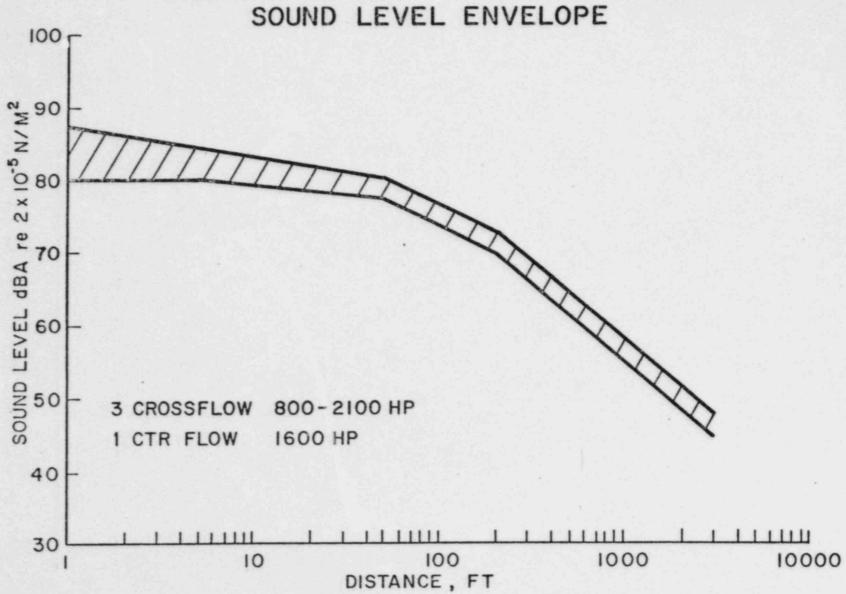

The resulting octave band sound pressure levels when "A" weighted will equal the values shown by the solid line curve which represents the true "A" weighted level at that distance.

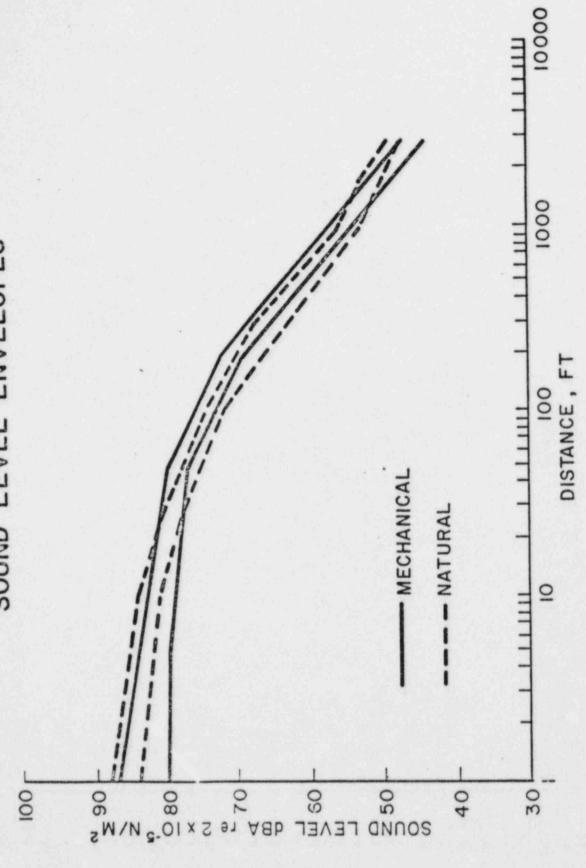


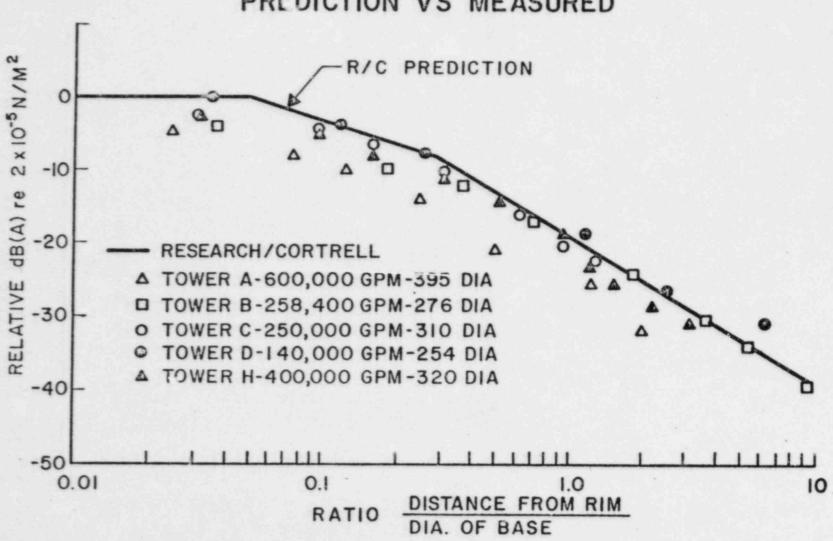

NATURAL DRAFT COOLING TOWERS 50 FT SOUND PRESSURE LEVELS

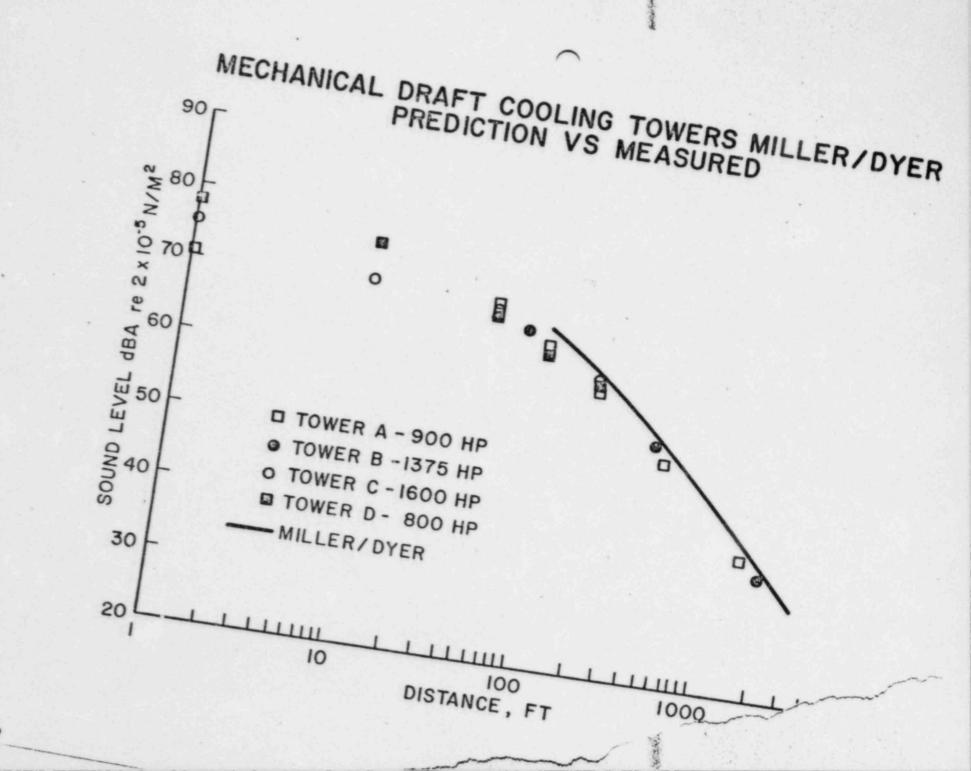

NATURAL DRAFT COOLING TOWERS SOUND LEVEL VS DISTANCE






MECHANICAL DRAFT COOLING TOWERS SOUND LEVEL vs DISTANCE




NATURAL & MECHANICAL DRAFT COOLING TOWERS SOUND LEVEL ENVELOPES

10000 NATURAL DRAFT COOLING TOWERS ELLIS PREDICTION VS MEASURED 0001 ELLIS DISTANCE, FT 00 GPM GPM GPM GPM GPM GPM GPM GPM O TOWER A - 600,000 GPM △ TOWER C- 250,000 ▼ TOWER F- 250,000 口 TOWER I -280,000 Ф TOWER H-292,000 ◆ TOWER E -400,000 TOWER B - 258,000 B TOWER D- 140,000 9 O ELLIS × -20 AB -30 9-PELATIVE \$ -50 10-2N/WS S 91

NATURAL DRAFT COOLING TOWERS PREDICTION VS MEASURED

REFERENCES

- Ellis, R. M. "Cooling Tower Noise Generation and Radiation," Journal of Sound and Vibration, Vol. 14 (2), pp 171-182, 1971.
- Dyer, I., and Miller, L.N. "Cooling Tower Noise," Noise Control, pp 180-183, May, 1959
- 3. Research-Cottrell, "Estimation of Noise from Natural Draft
 Cooling Towers, Counterflow with Film.
 Packing, undated.
 Research-Cottrell, Hamon Cooling Tower Division
 Box 750, Bound Brook, New Jersey
- 4. Aerospace Recommended Practice, ARP866,

 "Standard Values of Atmospheric Absorption as
 a Function of Temperature and Humidity for Use
 in Evaluating Aircraft Flyover Noise."

 Aug. 31, 1964, Society of Automotive Engineers,
 485 Lexington Ave., New York, N. Y.

Noise Control of Power Plant Cooling Towers. A Study of the Size of Buffer Zone Required to Meet Various Noise Criteria.

James E. Shahan Sargent & Lundy Engineers Environmental Division Project No. 4896-00

117/11

INTRODUCTION AND SUMMARY

The purpose of this study was to investigate the size of buffer zone required around power plant cooling towers to meet various noise criteria. Measured field noise data was used as the basis of the analyses and, using certain assumptions, these data were applied to correlate the capacity of the power plant with the area of land necessary to meet various noise criteria for both mechanical (standard) draft and natural draft cooling towers. This correlation is derived in terms of the "specific noise control area" (i.e., the required land area per unit plant capacity, sq. ft. per megawatt). It was found that the specific noise control area was very nearly independent of the plant capacity for both mechanical and natural draft towers, depending only on the A-weighted noise level (dBA) criteria required to be met.

The most important assumptions made in the analyses are as follows:

- (1) The noise levels in dBA for natural draft towers vary

 directly with [10 log10 (GPM)] and with [10 log10 (HP)]

 for mechanical draft towers. GPM=water flow to the tower

 and HP=total cooling tower fan horsepower.
- (2) The measured data was extrapolated beyond 2000-3000 feet omitting additional acoustic energy loss due to atmospheric absorption, as a conservative estimate.

Using these assumptions, Figure 11 illustrates the relationship between the noise criteria to be met and the specific noise control area as required around either a mechanical or natural draft tower in ft²/megawatt. This relationship is independent of the megawatt rating of the plant. The range of values indicated in the

figure takes into account the fact that the size of tower would vary depending upon, among other things, the ambient design conditions. Since the A-weighted (dBA) noise level is assumed to depend only upon the water flow quantity for a natural draft tower and on the fan horsepower for a mechanical tower, the same megawatt-rated plant could have towers with different noise levels. The range shown in Figure 11 (and in other pertinent figures in this report) covers the appropriate ranges expected for plants throughout the United States.

EXISTING AND PROPOSED NOISE REGULATIONS AND RECOMMENDATIONS

In order to relate cooling tower noise to the size of buffer zone required for noise control, it is necessary to compare the expected tower noise levels with an objective noise criteria. Table 1 illustrates a (non-exhaustive) list of the noise/limits either existing or in the proposal stage throughout the United States. It is felt that the most significant limits in the table are those established by the Federal Environmental Protection Agency. This is an official Agency recommendation (not a regulation) which suggests limiting environmental noise levels to an equivalent A-weighted value of 49 dBA for constant noise sources, as power plant cooling towers would be expected to be. This recommendation is intended to be a guideline for states, counties, municipalities, etc. in establishing enforceable noise limits. It should be anticipated in power plant design that these recommendations will be followed closely in future noise limit regulations.

From Table 1, it is apparent that there is a very wide spread of dBA noise criteria which could be applicable to power plants depending on their specific location. For those limits indicated in the table, this ranges from 40 dBA-65 dBA. This wide range would result in a correspondingly wide range for the size of buffer zone required for noise control of cooling towers. This report, for completeness, includes results covering the entire dBA noise level limit range given in Table 1.

EXPECTED POWER PLANT COOLING TOWER NOISE LEVELS (dBA)

Figures 1 and 2 show, respectively, dBA noise levels measured as a function of distance for mechanical and natural draft cooling towers. (1) The assumption was made in the analyses of this report that the noise levels of mechanical draft towers depended only on the fan horsepower according to [10 log₁₀ (HP)] and noise levels of natural draft towers depended only on the cooling water flow to the tower according to [10 log₁₀ (GFM)]. This means, for example, that doubling the horsepower HP (mechanical) or the water flow GPM (natural) would cause the tower noise to increase by 3dBA. This assumption has been suitably verified for mechanical towers but there is some question as to the validity for natural draft towers. It is felt that the assumption of this noise level variation with tower size is desirable for an estimate of the problem at hand (size of buffer zone).

⁽¹⁾ These data were obtained by Consolidated Edison of New York and by Stone & Webster of Boston--the information was presented at the 87th Meeting of the Acoustical Society of America in New York City, April 1974.

Using the above assumption, the solid curves in Figures 1 and 2 show, respectively, the predicted dBA noise levels as a function of distance from a 1600 horsepower mechanical draft tower (HP = 1600) and a 600,000 GPM natural draft tower based on the available measured data. Note that in Figure 2, for natural draft towers, there does not appear to be an apparent consistent variation with cooling water flow quantity to the tower. However, if the assumed variation does indeed occur in the real sense, the flow range covered, from about 140,000 GPM to 600,000 GPM, would represent a 10 log₁₀ (600000/140000) = 6 dBA difference in noise level from the "quietest" to the "noisiest" tower. It is felt that the small number of towers measured, along with the relatively small spread of expected noise levels, does not conclusively determine whether the noise level variation with water flow does or does not occur in the real sense. However, as mentioned above, the assumption is made in this report that this variation does occur.

From the solid curves in Figures 1 and 2, it is then possible to predict the noise level versus distance for any power plant cooling tower by using these "baseline" curves and raising or lowering them the number of decibels (A-weighted) corresponding to [10 log10(HP/1600)] for a mechanical draft tower and by [10 log10 (GPM/600,000)] for a natural draft tower;

-4-

where HP is the total fan horsepower for the mechanical tower of interest and GPM is the cooling water flow to the natural draft tower of interest.

RANGES OF TOWER NOISE LEVELS EXPECTED THROUGHOUT THE U.S.A.

The ultimate goal here is predict the size of buffer zone required for power plant noise control of cooling towers on the basis of a "specific noise control area"; i.e., the amount of land needed per megawatt of plant capacity. We have, from above, the capability of prediction for noise levels based on either the horsepower (mechanical) or the cooling water flow (natural) related to the cooling tower. However, depending on specific design conditions, the same megawatt capacity plant may have different fan horsepowers or cooling water flow rates. The variation in these quantities is discussed in this section.

Pigures 3 and 4 show, respectively, the relationship between plant capacity and tower horsepower (mechanical) and cooling water flow rates (natural) for several existing power plant installations throughout the U.S.A. It is seen from the figures that the horsepower could vary between HP = 3.8 (Mw) and HP = 9.2 (Mw) for mechanical draft towers and the cooling water flow rates could vary between GPM = 300.0 (Mw) and GPM = 588.2 (Mw) for natural draft towers for these several plants. Using the assumed variation in noise levels discussed in the above section, the range of tower noise levels expected could then vary from the

"baseline" curves in Figures 1 and 2 by [10 log₁₀(3.8Mw/1600)]
-to- [10 log₁₀(9.2Mw/1600)] for mechanical draft towers and from
[(10 log₁₀(300.0Mw/600,000)] -to- [(10 log₁₀(588.2Mw/600,000)] for natural draft towers.

17 11

REQUIRED DISTANCE FROM COOLING TOWERS TO MEET VARIOUS NOISE CRITERIA

Pigures 1 and 2 provide the information to predict the noise levels from both mechanical draft towers (with fan horsepowers of HP=1600) and natural draft towers (with cooling water flow rates of GPM=600,000) and Figures 3 and 4 provide the information to predict the ranges of tower noise levels possible throughout the country for plants of various megawatt capacities. It is then possible to estimate the distance required from the towers in order to meet a specific dBA noise level limit. Figures 5 and 6 illustrate such results for noise levels from 40 dBA to 65 dBA For mechanical and natural draft cooling towers, respectively. The ranges shown for each noise level limit corresponds to the variation in horsepower or water flow possible depending upon the specific design conditions for each plant given its megawatt capacity.

"SPECIFIC NOISE CONTROL AREA" FOR COOLING TOWER NOISE

We now have the capability, from Figures 5 and 6, to estimate the distance from cooling towers at which various noise level limits (dBA) will be achieved. Of primary interest is the area of land per unit plant capacity. This area will, of course, depend not only upon the distance from the tower but also on the

area required by the tower itself. Having the size of tower and the distance from it to meet a noise level limit, it is possible to calculate the total area of land required for noise control.

Figures 7 and 8 show, respectively, the <u>length</u> of mechanical towers and the <u>diameter</u> of natural draft towers for several plants of various megawatt capacities. The solid lines in the figures illustrate the assumed variation in tower size as a function of the plant capacity. The spread in the data for natural draft towers in Figure 8 is quite wide--however, since in most cases the total area of land required to meet a noise level limit will be controlled by the distance from the tower this wide spread in data should not result in large relative errors in estimating the total area.

The "specific noise control area" required for mechanical draft towers is assumed to be given by

$$A_g = \frac{(L + 2D) (W + 2D)}{MW}$$
, ft²/megawatt

and for natural draft towers by

$$A_s = \frac{\pi(R + D)^2}{MW}$$
, ft²/megawatt

where As = specific noise control area required, ft2/megawatt

L = length of mechanical draft tower (assumed all cells are in-line), ft.

D = distance from nearest surface of the tower, ft.

W = width of mehcanical draft tower cell, assumed 40 ft.

R = radius of round natural draft tower, ft.

7/19

Mw = megawatt capacity of power plant where tower is
installed.

Based on the above analysis and the distance values from
Figures 7 and 8, the "specific noise control area" As is shown
plotted in Figures 9 and 10 for mechanical and natural draft
towers, respectively, for various noise level limits and for
plant having different capacities. The analysis indicates, as
seen from Figures 9 and 10, that the value of As is nearly
independent of the plant capacity and depends only on the
noise level limit to be achieved. As was pointed out earlier,
the recommended limit of 50 dBA (approximately) by the Federal
Environmental Protection Agency is felt to be the most significant
noise criteria in that future legislation is anticipated to be
consistent with this recommendation.

Figure 11 summarizes the ultimate results of this study giving the specific noise control area A_s as a function of the dBA noise level limit to be achieved. The figure was derived from Figures 9 and 10, where the dependence on the plant capacity has been removed; i.e., A_s is nearly independent of the plant capacity in megawatts. From Figure 11, for the 50 dBA noise level limit to be achieved for cooling tower noise, without any other form of noise control being implemented, would require between 14,000-27,000 ft²/megawatt (or 0.322-0.621 acres/megawatt) for natural draft towers and between 35,000-90,000 ft²/megawatt (or 0.805-2.07 acres/megawatt) for mechanical draft towers.

TABLE 1

LIST OF VARIOUS (EXISTING OR PROPOSED) NOISE REGULATIONS IN TERMS OF THEIR A-WEIGHTED (dba) EQUIVALENT PERMITTED AT RESIDENTIAL BOUNDARY LINES

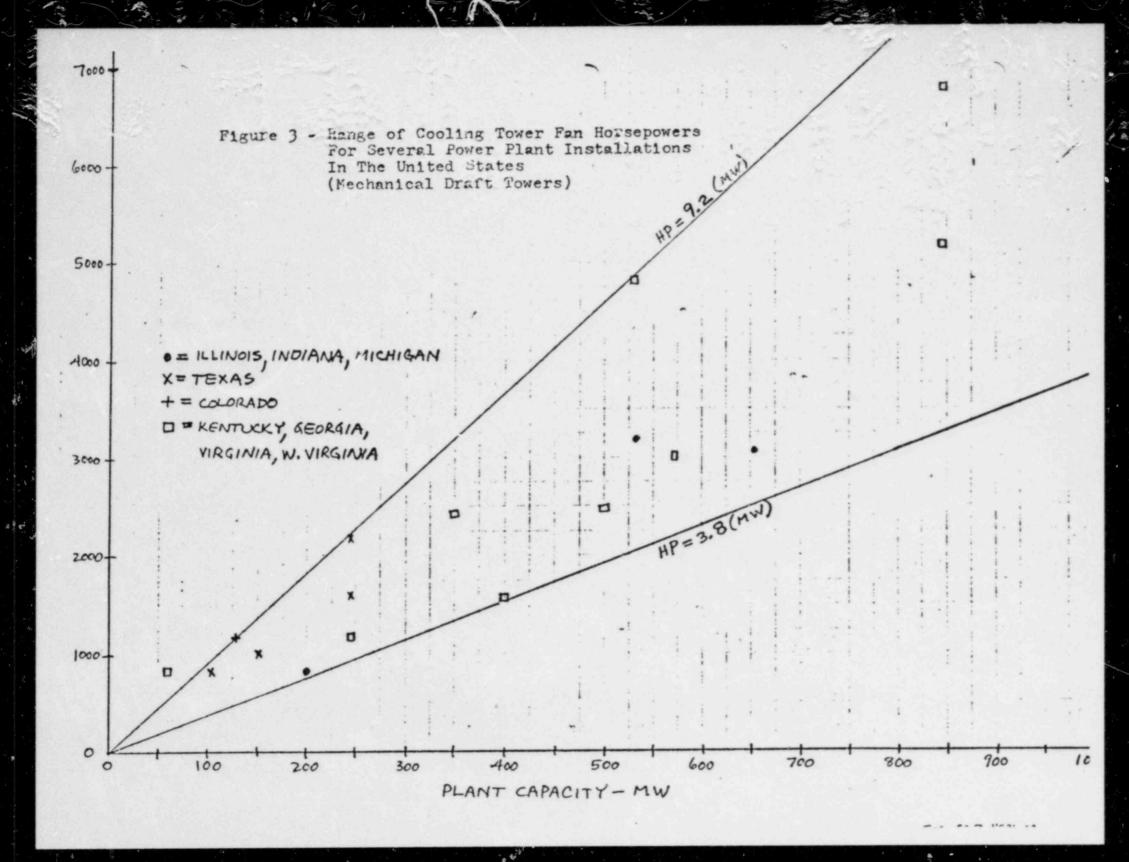
Source of Regulation or Recommended Limits	Equivalen Daytime	t dBA Level Nighttime
Illinois Pollution Control Board	61	51(1)
Federal Environmental Protection Agency(2)	49	49
Oregon Department of Environmental Quality	60	55
New York City Zoning Regulations	60	60
New York City Noise Control Code	55(3)	55(3)
New York State Dept. of Environmental Conservation	65	45(4)
Dept. of Housing and Urban Development (HUD)	55(5)	55(5)
New Jersey Dept. of Environmental Protection	65	50(6)
Washington, D. C.	55	50(7)
St. Louis County (Missouri)	55	50
Montgomery, Alabama	55	55
North Carolina	60	55
San Diego, Calif. Noise Ordinance	45	40
Lakewood, Colorado	55	50
Boston, Mass.	60	50
Baltimore, Maryland	58	53
Dallas, Texas	56	49
Miami, Florida	55	52
Los Angeles, California	55	45
San Francisco, California	55	50
Dayton, Ohio	56	56

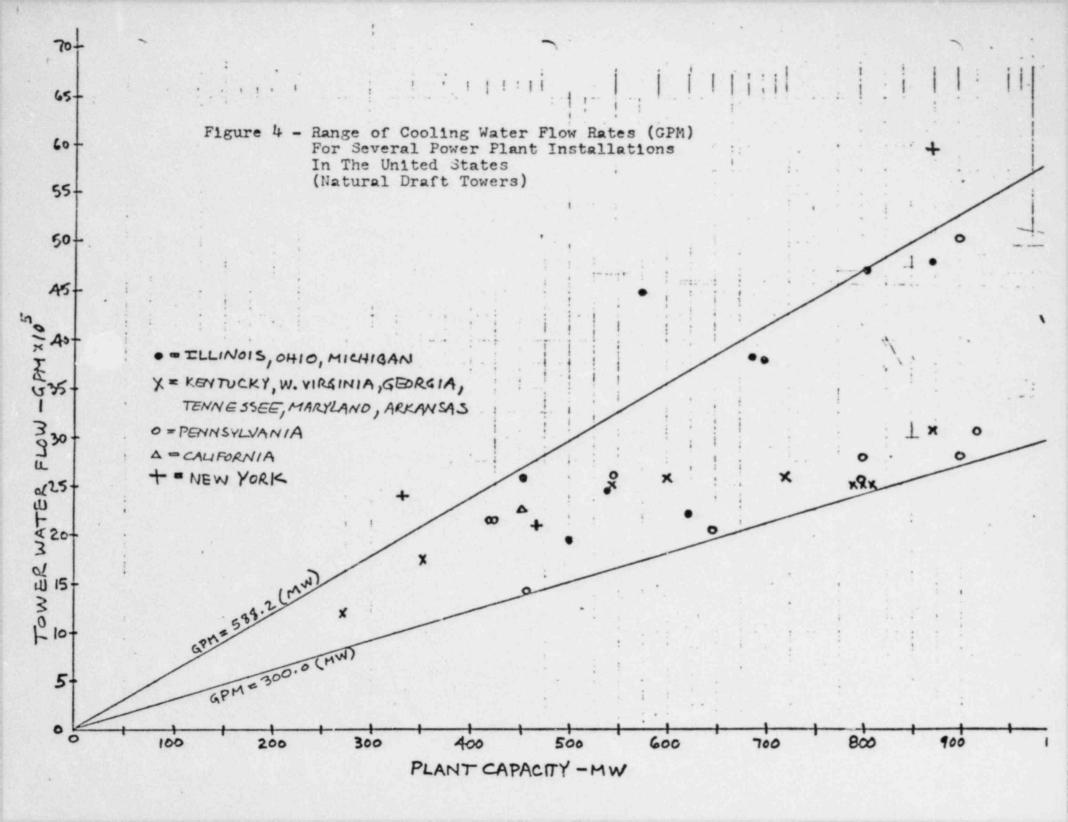
TABLE 1 (Continued)

	Equivalent dBA Level	
Source of Regulation or Recommended Limits	Daytime	Nighttime
Chicago, Illinois	55	55
Columbus, Ohio	52	52
-Beverly Hills, California	40	40
-Hemet, California	50	50
Fairlawn, New Jersey	55	
Peoria, Illinois		
Annaheim, California	60	60
Minneapolis, Minnesota	55	55
Tucson, Arizona	55	55

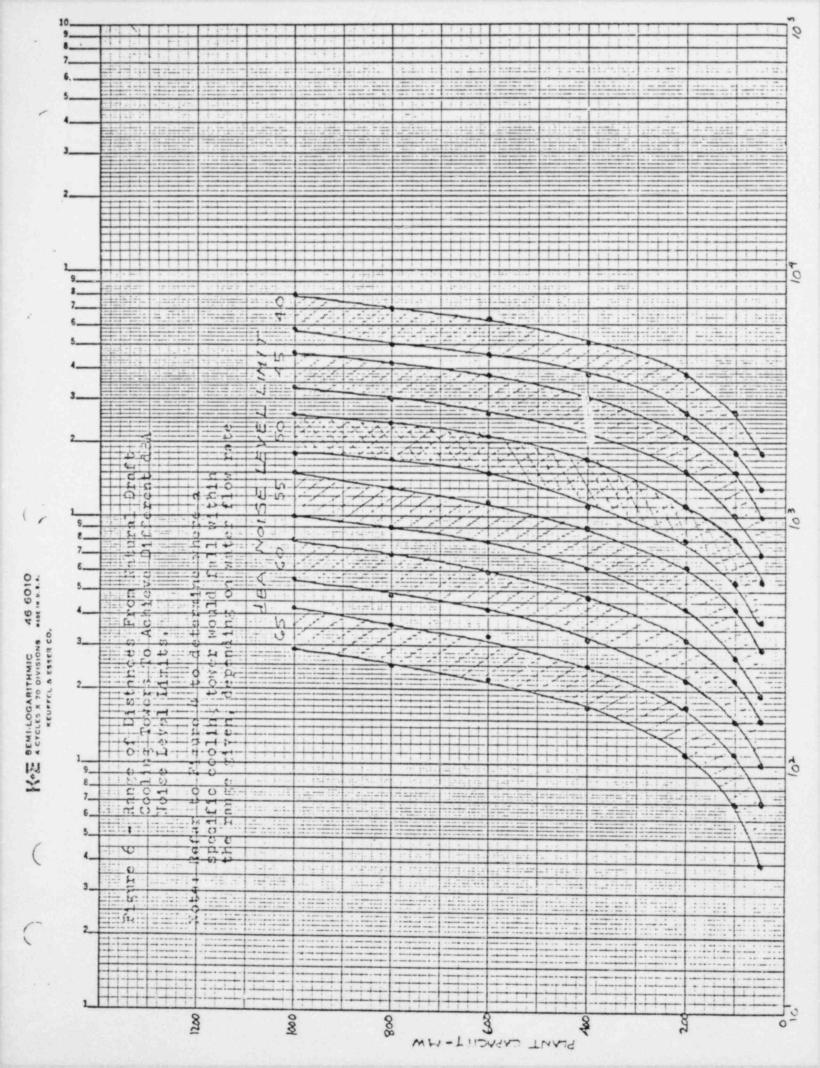
⁽¹⁾ Does not apply to "existing" sources -- if legislation forces C.T. installation, would not be considered a "new" source and this number would not apply.

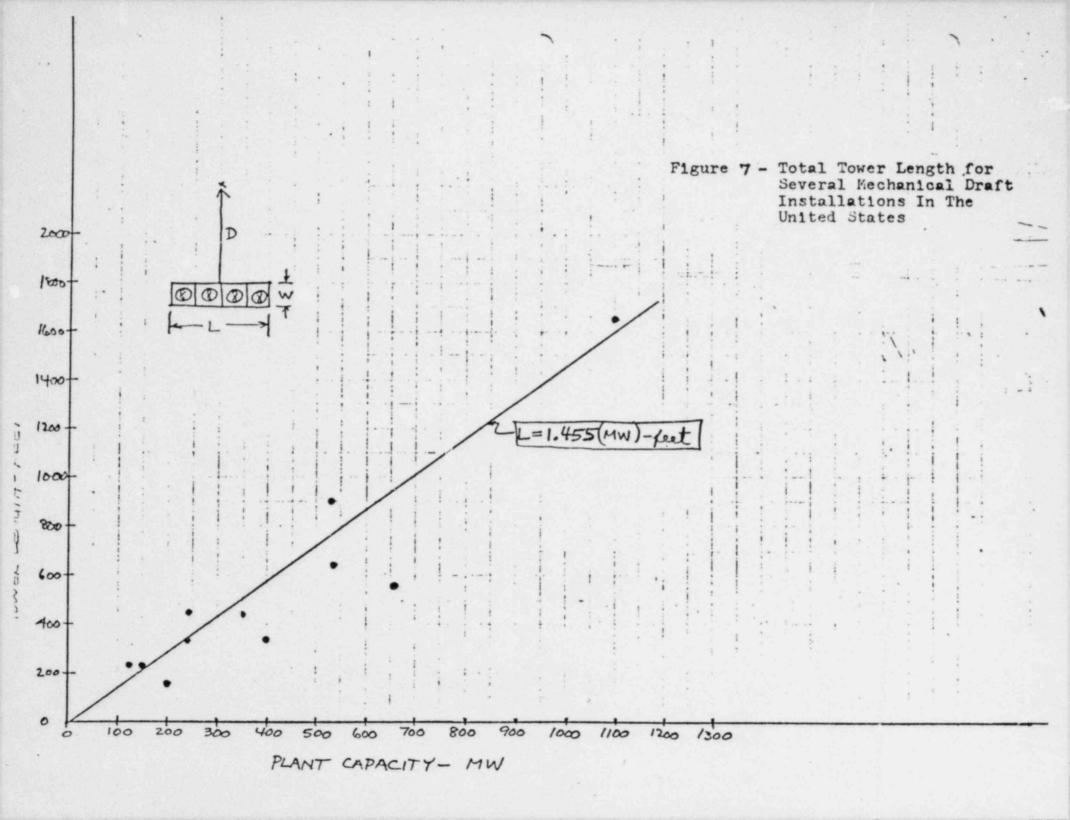
⁽²⁾ Recommended limit value is $L_{dn} = 55$ dBA; the relationship between L_{dn} and a constant dBA noise level L is $L_{dn} = L + 6$ dBA.

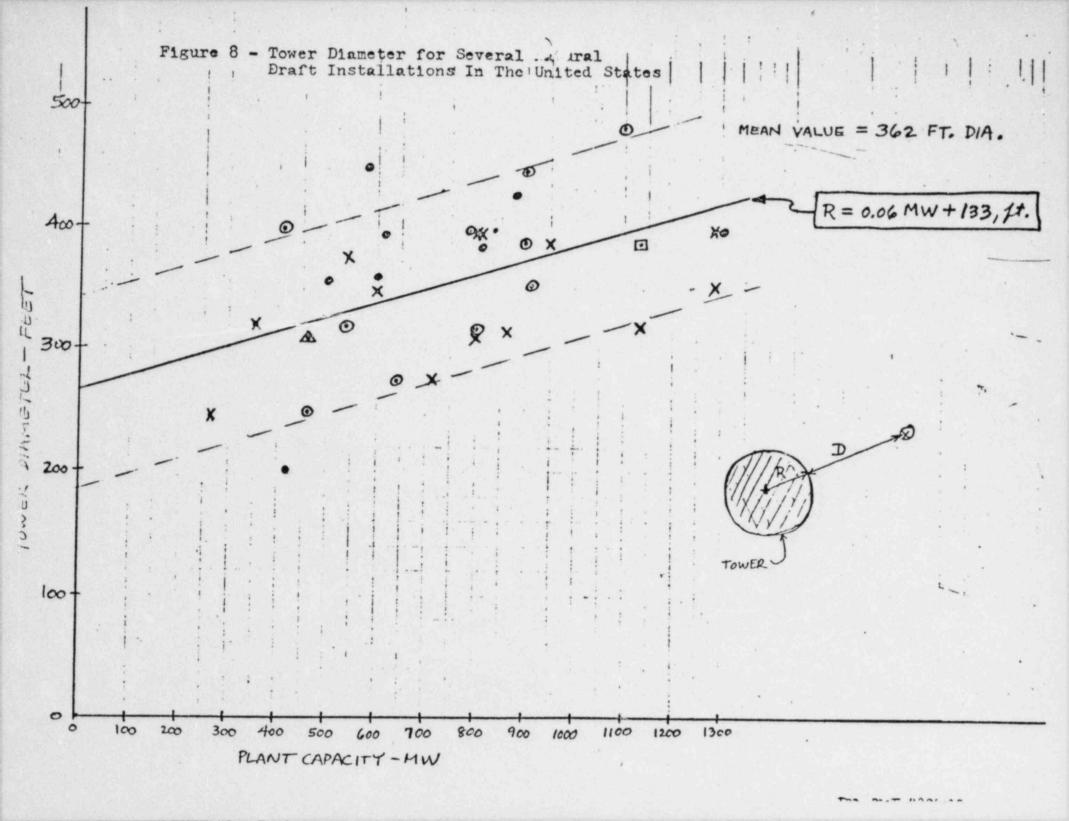

⁽³⁾ Code limits interior noise level to 45 dBA; a 10 dBA noise reduction for open windows is assumed.

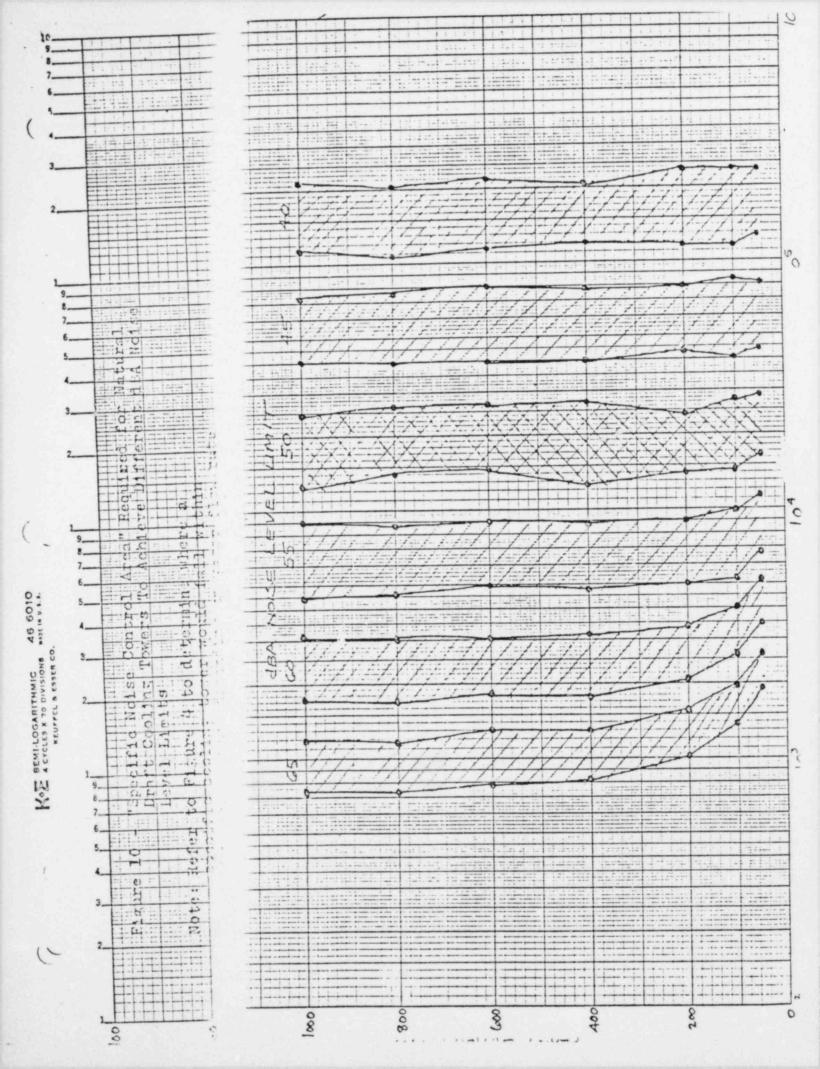

⁽⁴⁾ Does not apply to "existing" sources (installation initiated prior to July 1, 1974) or to site modifications made prior to January 1, 1975.

⁽⁵⁾ This is taken in the mid-range of the 45-65 dBA "normally acceptable" HUD values.


⁽⁶⁾ This value will be applicable after January 1, 1976 -- the value of 55 dBA will apply until then.


⁽⁷⁾ The limits are specified in dBC values -- the table values are the approximate corresponding dBA values.





VE From Mechanical Draft within horsepowe 015 Cooling tower would fall 51ven, degenving on fall stances F rs To Ac Kor 4 CYCLES X 70 DIVISIONS . KUNTEL & ESSER CO. Renge of Dista Specific 1----Figure E 400 CHANCII T- MW INUM

Not Se W --0,0 E H MT rent trent trent trent trent JES PROT, 4896-00 -5 tower tower n the oreepo TOWER LICECT 0 d for Cooling Fow to Accieve Diffe K 8 and the 4.0 Specific Regulfied Voite Lev 0 × 0 0 H 3 14 E. 52119 KOE SCYCLES X TO DIVISIONS MARIN K 062 0 03/25 0

SO. FT /MEKALIA "SPECIETA MAKE CANTEDAI APEA"

COOLING TOWER NOISE EMISSION CONSIDERATIONS

A. Discussion

The environmental impact of noise emissions from cooling towers can best be determined by (1) determining the sound level that the cooling tower in association with a particular plant will cause at a neighboring property line, and (2) comparing that sound level with the most restrictive noise standard permitted by law.

Cooling tower noise emissions will vary from installation to installation depending upon such factors as type (mechanical or natural draft), size, water flow rate, horsepower, orientation, topography and meteorology. For a 600 to 800 MW power plant we have compared, figure 1, a typical range of cooling tower sound emissions with distance from the tower.

The federal Noise Control Act of 1972, which is administered by EPA, provides for the states or local political subdivisions to control and enforce environmental noise standards. Figure 2 illustrates typical current permissible boundary noise levels.

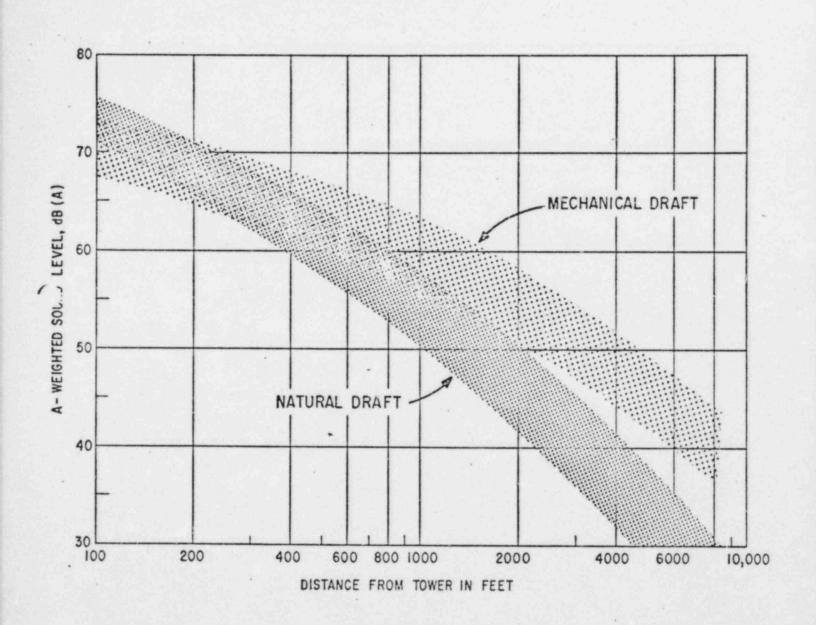
In general, the more restrictive nightime community noise regulations will limit utility operation; since equipment must operate continually. This statement considers the impact of cooling tower noise emissions at night, and assumes that permissible property line noise levels will be less than 50 dB(A), see figure 2.

With these limiting conditions established, Table I was constructed to illustrate the physical distance required from the cooling tower to residential areas at which the sound level would be reduced to below 50 dB(A). Since a cooling tower is only part of a larger generating station complex, Table I illustrates several different practical conditions. The size of the acoustical buffer zone required to attenuate cooling tower noise emissions is a severe restriction in planning and siting new power plants. (condition II of Table I), and may be prohibitive when considering retrofit requirements of existing power plants (condition III a and III b of Table I). A discussion of the reasons behind the calculations to construct Table I is presented as an enclosure.

The estimate of the size of the acoustical buffer zone supposes that the cooling tower and the generating facility noise emissions would impose an increase in the community noise level that would be acceptable to the community. Regulations to further decrease sound emissions to below those considered in this statement would necessitate increasing the amount of real estate beyond that shown in Table I to further attenuate the sound.

B. Conclusions

New Facilities: New facilities can be planned to have a in radius sufficiently large buffer zone, 1/2 to 1 mile/in order to attenuate plant and cooling tower noise.


Existing Facilities: At existing facilities, acoustical in radius buffer zones of 0.6 to 2 miles/may be required to comply with local regulations.

c. Recommendations

It is recommended, as in the case of "Drift", that EPA consider granting exemptions from the Thermal Effluent Limitations when a utility does not own sufficient real estate to provide an

acoustical buffer zone to attenuate cooling tower sound emissions when
to an acceptable level and/no other practical method exists for
attenuating the sound. This recommendation obviously involves
considerations of acquisition of additional real estate and hence
of additional costs. Effluent limitation guidelines which do not
consider the real estate implications (and the costs of alternatives)
required for abatement of environmental noise emissions from cooling
towers would not be complete or workable.

TYPICAL RANGE OF COOLING TOWER NOISE
EMISSIONS FOR 600/800 MW PLANT
WITHOUT EFFECTS OF TOPOGRAPHY OR METEOROLOGY

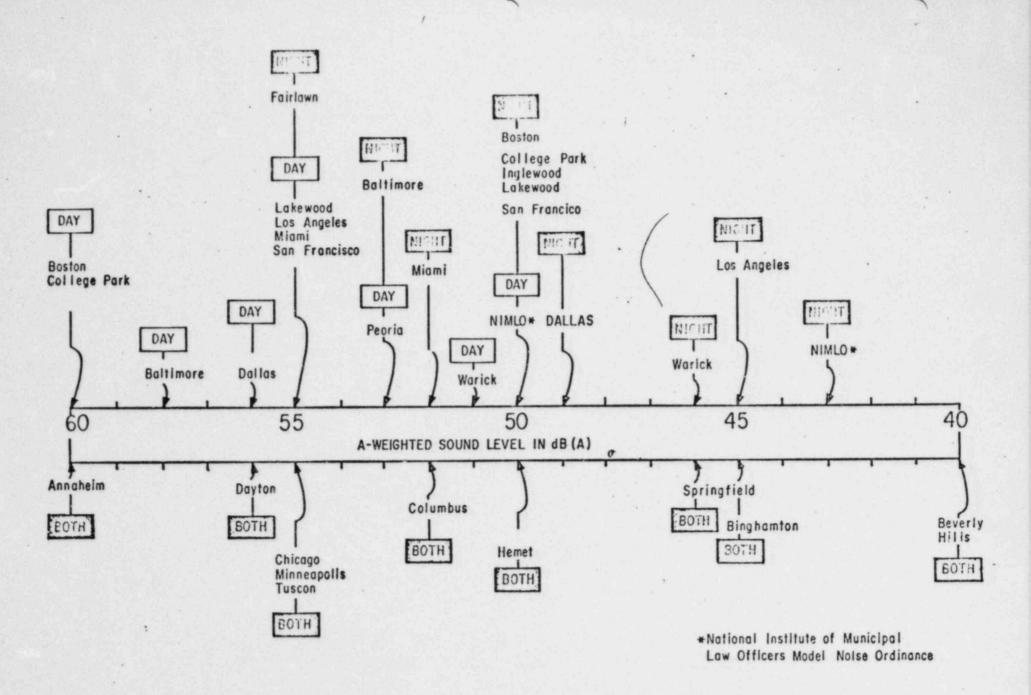


FIGURE 2. FIXED SOURCE NOISE LEVELS ALLOWABLE AT RESIDENTIAL BOUNDARIES SOURCE : ENVIRONMENTAL NOISE DRKSHOP, REGION II, E.P.A., JUNE 1973

Estimated Acoustical Buffer Zones for Cooling Tower Installations for 600 to 800 MW Generating Plant

	Type of Installation	Nominal Distance to less than 50 dB(A) S	Residential Area to Achieve ound Level
		Natural Draft	Induced Draft
I	Cooling Tower	1,800 feet	4,000 feet
II	Cooling Tower plus New Generating Station	2,400 feet	5,000 feet
III a	Cooling Tower Retrofitted to Existing Station with 1 dB(A) increase in Community Sound Level	3,000 feet	8,000 feet
шь	Cooling Tower Retrofitted to Existing Station with no increase in Community Sound Level	3,500 feet	10,000 feet

^{*} distances will vary depending upon cooling tower water flow rate, horsepower, physical size, topography and meteorology.

ATTACHMENT

evaluated in terms of the A-weighted sound level for

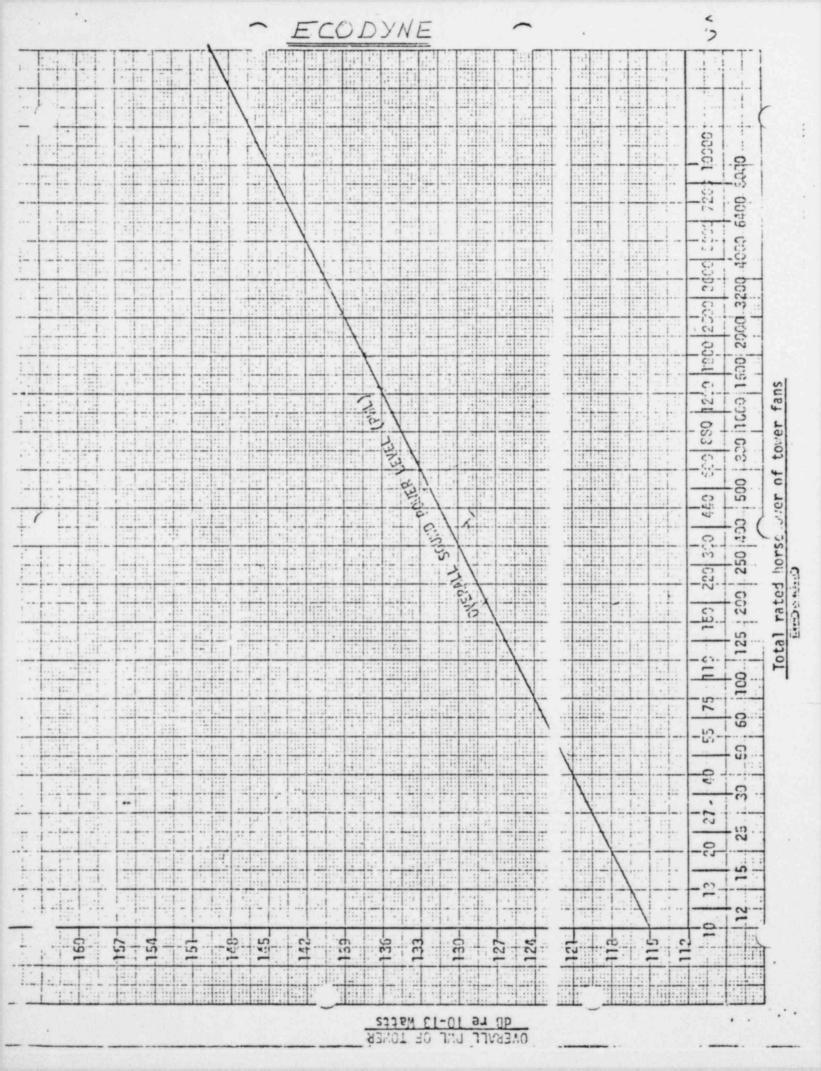
numerous reasons: (a) the sound emitted in continuous

and the frequency spectra is broad band, (b), this method provides

a single value that can be easily compared to sound

from other sources or existing data in the literature,

the A-weighted sound level


and (c)/is the parameter being used by various government

agencies to regulate noise emissions.

Based upon existing local noise requirements and recomended EPA guidelines, permissible power plant noise emission requirements in suburban rural areas are often required to be less than 50 dB(A), and in urban areas where vehicular traffic increases the community ambient noise level, permissible noise levels would generally range from 50 dB(A) to 55 dB(A).

At a power plant site, there are numerous sources producing noise other than cooling towers. At a new plant site, compliance with permissible property line sound regulations may be achieved by allocating equal acoustic power emission by the cooling tower and the other mechanical equipment in the generating station. This means that the permissible noise emission level of the cooling tower would be reduced from 45 dB(A) to 50 dB(A) by 3 dB to 42 dB(A) to 47 dB(A).

Determination of the permissible sound contribution of a new cooling tower at an existing plant is significantly more complicated because of the existing relationship of the generating station noise emissions to the local permissible noise requirements. For example, if the noise emissions from an existing generating station complies with the local noise control ordinance, the sound emission level from the new cooling tower would have to be & 6 dB(A) below the existing plant noise emission level to have a sound level increase of 1 dB(A) at the residential area, or the cooling tower sound emission level would have to be 9 dB(A) below the existing plants noise emission level if maximum there is to be no increase in existing community noise. The / permissible noise emission level from a cooling tower retrofitted in an existing plant in a rural or suburban area could be 39 dB(A) to 44 dB(A) for a 1 dB(A) increase, or 36 dB(A) to 41 dB(A) for no community noise increase.

*ATTENUATIONS, Octave Band, Center Band Frequency, cps

Distance, Ft.	63	125	250	500	1000	2000	4000	8000
50	52	54	56	60	62	64	65	64
100	55	58	61	64	65	68	70	70
200	58"	63	66	70	70	72	75	78
400	64	69	73	77	77	80	84	89
500	65	70	74	78	79	82	. 87	92
800	70	75	80	84	86	90	97	104
1000	71	76	82	86	88	93	101	109
1200	72	77	83	87 .	90	95	103	112
1600	76	81	89	93	97	104	116	128
2000	77	82	91	95	100	108	123	137
2400	78	83	93	97	104	112	128	144
A-Scale	25	16	9	3	0	-1	-2	-2
**End Wall	0	0	0	7	7	9	9	11

^{*}Attenuation for di tance based on measurement location perpendicular to louvre face. The attenua ion values assume a tower location with little or no interference from the s roundings. Minimum SPL to be reported is 24 dB.

^{**} If sound measure ant location is at an end wall and within 400 ft. of the tower select PWL based on single cell HP and deduct the end wall attenuation values in addition to the attenuation values shown in Table II.

CLIE	ENT:	Geor	gia Po	wer Con	mpany -	Plan	t Bowen	PRIM	ARY N	OISE	sou	RCE:	Ur	nit 1	coc	oling	g to	ver
JOB	NO:			DA	TE:	9-20-	72	EQUI	P. MA	KE &	MODE	L:Re	s. C	ottr	ell	Nati	ural	Draf
OBS	ERV	ERS:	С	. E. H	ickman			CLIE	NT DE	SIGN	ATION	v: Un	it 1					
NO	LM:	TYPE_			s	ER.#_		OPE	RATIN	G CO	NDITI	ONS:	Ţ	nit	1 01	perat	ing	
TAT	RAN	SDUCE	R: TYPE	GR156	0-P6 s	ER.#4_	1950	a	t rat	ed 1	oad							
RUN					8-BP S		2279	Cc	oolin	g to	wer	is c	ount	erf1	ow t	уре		
INST	CALII	BRATO		GR156	2-A_s		3122		NDAR									
TIME		CALI- BRA- TION	TEMP	% R H	ммне	WIND	WIND DIR.	CLIE	P. MAR NT DE	SIGN	ATIO	v:						
1:2	5p	OK						-		-								
-									SOUN	D PR	ESSU	RE LE	EVEL	.dB R	E 20	4 N/M	2 rms	
TES		TIME	POSI-		CONDI	TIONS		A	OVER			VE B						Hz
			11014						LEVEL		_	T	_	_			-	
1	1	L:30p	Al	Base	of towe	r		86	89	80	74	72	71	76	79	77	78	82
2			B1	At fer	nce≃15	from	base	82	87	79	73	73	68	72	75	74	74	77
3			Cl	Base	of towe	r		86	89	80	74	75	72	75	78	77	78	82
4			Dl	At fer	nce≃15'	from	base	83	88	80	73	74	70	73	75	75	76	-
5			E1	Base	of towe	r		87	89	80	82	77	75	78	79	79	79	83
6			F1	At fer	nce≃15'	from	base	84	87	80	81	76	72	73	76	76	77	78
7			Gl	Base	of towe	r		87	89	80	79	74	74	79	79	78	80	83
8			H1	At fer	nce≃15'	from	base	85	88	80	78	72	69	74	76	76	77	81
	D1 At fence≃15' from base 83 88 80 73 74 70 73 75 75 76 78 E1 Base of tower 87 89 80 82 77 75 78 79 79 79 83 F1 At fence≃15' from base 84 87 80 81 76 72 73 76 76 77 78 G1 Base of tower 87 89 80 79 74 74 79 79 78 80 83																	
RECO	ММЕ	NDATI	ONS:									f' - '	50		1			

CL	EN	T: Geor	gia Po	wer Cor	mpany -	Plant	Bowen	PRIM	IARY N	OISE	sou	RCE :	Uni	t 1	cool	ing	towe	r
JOI	BNC):		DA	TE: 9-	20-72		EQUI	P. MA	KE &	MODE	EL:Re	s. C	ottr	ell	Natu	ral	Draf
OB	SER	VERS:	C.	E. Hic	ckman		10 14	CLIE	NT DE	SIGN	MOITA	v: U	nit	1				
NO	SLN	TYPE_			s	ER.#		OPER	RATIN	G CO	NDITI	ONS:	Un	it 1	ope	rati	ng	
TAT	TRA	NSDUCE	R : TYPE	GR156	0-P6 s	ER.#	1950	at	rate	d 10	ad							
NSTRUMENTATI				GR1558				_Coo	ling	tow	er i	s co	unte	rflo	w ty	pe		
NSTR				GR156				SECO	NDAR	y NO	ISE S	OURC	E:	economics.	-			
	OTH	ER:	,	-					P. MAH									
TII	ME	CALI- BRA- TION	TEMP.	% R H	ммне	WIND	WIND DIR.		NT DE					*				
								-								r L		_
TE	ST		POSI-						SOUN	ID PR	ESSL	JRE LE	EVEL	, dB R	E 20µ	N/M	2 rms	
	0.	TIME	TION		CONDI	TIONS		A	OVER		ОСТА	VE B	AND (CENTE	ER FF	REQUE	NCY,	Hz.
								LEVEL	LEVEL	31,5	63	125	250	500	1000	2000	4000	8000
	9	2:00p	I1	Railro	oad tra	ick - w	est	75	79	70	72	67	60	65	67	67	68	70
1	0		J1	25' fa	arther	west t	han Il	73	77	70	70	66	60	64	66	65	66	67
1	1		K1	North:	≃200' f	rom ba	se	74	81	71	72	71	64	63	66	67	67	65
1	2		L1	Betwee	en towe	er and	plant	81	85	80	79	73	69	69	74	7.5	74	71
_1	3		M1	At ro	ad			69	79	74	70	67	58	58	61	62	62	63
							1											
				uRING L		(5:												
	OMN	MENDAT	ONS:			•												

1	LIEN	T: Geo	rgia Po	ower Co	Plan	t Bower	n	PRIN	MARY	NOISE	SOU	RCF .	Uni	t 1	Cool	ing	Towe	r
1				DA												-		Draf
				an and					NT DE						211	1764.64		DLai
	SLI	M: TYPE_		ries h	s	ER.#_		7	RATIN								4	
1	-			GR156					Test							at		
	NA L			GR1558					695-7					,	1119		L	
	2							Te	st 5/	A: Ur	nit :	l of	f the	e li	ne			
				GR156												MANAGEMENT BO		
L.	-	HER: W				destruction of		1	NDAR									
	TIME	CALI- BRA- TION	TEMP.	% RH	MMHG	WIND	WIND DIR.		NT DE									
1	14:00	OV						OPER	MITAS	G CON	DITIO	INS:						
-	14:00	UK						-					-	_				
-								-					-				-	
-					-			-	80118	10.00	F C C I	DF 1.	-1/51	40.0	E 20,		ž	
ľ	TEST	TIME	POSI-	A Paris	CONDI	TIONS		A	OVER	T	_	_	-	-		-		
	NO.		TION				SCALE	ALL LEVEL	-	-	125	_	_	ER F	_	,	-	
-	1	14:00	A2	Rim of	hacin	-blost		-	-	65	74	-	-	-	1000	-		-
	2		B2			-North	wast	85	-	67	72	68	68	-	78	77	78	79
	3		C2		-	-South			-	-	-	69	68	77	-	78	78	79
	4		D2	Rim of			west	85	-	67	72	67	68	77	-	77	78	79
	5		E2	-	-	-At va	1	-	-	75	80	72	70	77	-	77	78	79
	5			Killi Oi	Dasin	ive	95	96	76	81	84	84	87	90	89	85	82	
	5A	**	42	Dim of	h/-	Mark		0.5										
DI		-		Rim of				85	87	70	73	70	68	76	79	78	78	77
	**Mea	sureme	nts ta	ken May	13, 1	974 wi	th Unit	1 of	f th	e li	ne.						N	合
	Cooli	ng tow	er is	counter	flow t	ype.						P2 /	-	_	E2			-
												B2/	/		1)	\		
		+		72	1							11	To	WER	. \	1		
		2000	,		500'	4	00'	2	+		AZ	11	,,	WEI	1	102	-	
												1,	/		/	/		
												cş.	-		/			
RE	сомм	ENDATI	ONS:								-				-			
																	-	
									-									

JOB N	RVERS:	24	Power Comman and	TE:	4/6/73		EQU	IP. MA	KE a	MOD	ELRE	s. C	otti				
RUMENTATION O D L L S	M: TYPE ANSDUCE ALYZER BLE: TYP	ER: TYPE	G R15	58-BPs	ER.#_ ER.#_ ER.#_ ENGTH_	1950 2279	OPE	RATIN at 69	G CO	NDIT	ONS:			oper	atin	g	
SN CA	LIBRATO	R: TYPE	GR156	2-A_s	ER.#	3122		NDAR									
TIME	CALI- BRA- TION	TEMP	% R H	ммна	WIND	WIND DIR.	CLIE	P. MAR NT DE	SIGN	ATIO	N:						
TEST NO.	TIME	POSI-		CONDI	TIONS		A	SOUN		-	-	-	-	ER FI		-	
			West o	of Towe	r		SCALE	LEVEL			1	-	-	- sprinstellundaring	-		8000
6	14:25	F2	10' fr	om rim	of ba	sin	83	84	66		64	64	-	-		75	75
7		G2	20' fr	om rim	of ba	sin	80	81	67	75	64	62		-		72	73
8		H2	-	om rim			79	80	65	74	63	61				72	73
9		12	40' fr	om rim	of ba	sin	78	79	64	74	64	61	-	-		71	71
10		J2	50' fr	om rim	of ba	sin	77	78	63	72	65	60	67	-	-	70	69
11		K2	80' fr	om rim	of ba	sin	74	75	62	67	63	58	64	56	67	67	66
12		L2	100' f	rom ri	m of ba	asin	73	75	63	68	66	57	63	65	67	67	64
13	M- SHOW	M2	150' f	rom ri	n of ba	asin	71	74	63	71	61	55	62			64	69
Vate R=13 T=-2 D= 22 h=37	sketch criptive er flow: 38'=42m ''=-0.6: 2'=9.75r ''=11.3r 30'=9.15	on page Data = 258,4	ge 1 : Coun	terflow							o ive	AT ///	T. C.	SHELL	7		A h
							M OF	7.18		BA	'''				D	4	4

SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM, ALABAMA 3520

Unit Unit U	nit Un	ott 1 nit	rell	Naty	ural	Draf
Unit U	nit : Ur	1 nit				
CE:	U1	nit	1 0	perat	ting	
CE:	£:		1 0	perat	ting	
CE:	£:					
				-		
			The Part of the Pa			
		-				
-	-					
		-			2	
EVEL	-		-		_	-
AND	-	-	-	-	_	
250		-	-	-	4000	8000
62	62	57	60	62	60	53
			+		-	
61	61	63	64	65	65	61
-	-	-	-	+	-	56
-		-	-	1	-	52
	-	-	-	-	1	45
56			-	-		40
1	07		1 3/	100	131	40
-	6 5 5	5 59 5 56	5 59 58 5 56 59	5 59 58 61 5 56 59 59	5 59 58 61 61 5 56 59 59 59	5 59 58 61 61 59 5 56 59 59 59 56

RECOMMENDATIONS:

TEST NO.	VERS: _ : TYPE _ NSDUCE	Hickma B&K 2	an and				EQUI	P. MA									
TEST NO. TEST NO. 1 2 3	: TYPE_ NSDUCE	B&K 2		Thomps	on												r.a.
TEST NO.	NSDUCE		209		-		CLIE	NT DE	SIGN	ATIO			-				
TIME 16:10 TEST NO. 1 2 3		D . TVD		SI	ER.#_4	154249	OPE	RATIN	G CO	NDITI	ONS:						
TIME 16:10 TEST NO. 1 2 3	LYZER:	H: ITPE	B&K	4145 s	ER.# 4	56988											
TIME 16:10 TEST NO. 1 2 3			B&K 1														
TEST NO.	LE: TYP	Ε		L	ENGTH_			-						-			
TEST NO. 1 2 3	BRATOR	R: TYPE	B&K 4	220 st	ER.#_4	57476	SECO	NDAR	Y NO	SE S	OURC	E:					
16:10 TEST NO. 1 2 3	ER: Wir	ndscree	en			,		P. MAH									
TEST NO.	CALI- BRA- TION	TEMP	% R H	MMHG	WIND	WIND DIR.	I amount	NT DE				1.00					-
1 2 3	0K		LL I				-				JNO:						
1 2 3										-				-		_	
1 2 3		POSI-						SOUN	ID PR	ESSU	IRE LE	EVEL	, dB R	E 201	N/M	2 rms	
2 3	TIME	TION		CONDI	TIONS		SCALE	OVER		ОСТА	VE B	AND (CENTI	ER FF	REQUE	ENCY,	Hz.
2 3			South	west o	f Tower	^		LEVEL	31.5	63	125	250	500	1000	2000	4000	8000
3	16:20	А3	Rim of	basin			84	89	70	72	70	69	78	79	77	77	76
		В3	10' fr	om rim	of bas	in	82	89	73	73	68	67	74	77	75	74	73
4		C3	20' fr	om rim	of bas	sin	78	81	65	72	69	64	71	72	72	72	70
		D3	25' fr	om rim	of bas	in	78	80	67	74	70	63	69	71	72	72	70
5		E3		om rim		-	76	79_	64	72	64	62	66	69	70	69	67
6		F3		om rim			74	79	63	70	64	61	65	67	68	68	66
7		G3		om rim			73	76	62	72	62	57	63	66	67	67	63
8 DIAGRAM		НЗ	-	rom rin		sin	72	75	63	70	66	60	63	65	66	65	61
R=13 T=-2 D=32 h=37		w=258, m 61m 5m 3m	ounterf 400 gpm		wer	Rim e Basin			P	OLVE 111 111 111 111 111 111 111 1	111	La Comment	SHE	7	· * * * * * * * * * * * * * * * * * * *	1	
RECOMME	ENDATIO	NS:		WHITE.			-			2R			7				
With the			- 7		-												

CLI	ENT: _	ieor	rgia Pr	ower Co	-Plan	t Bower	1	PRIN	ARY	NOISE	sou	RCE :	Uni	t 3	Cool	ing	Towe	r
1				DA				EQU	P. MA	KE &	MOD	ELRE	s.Co	ttre	11 N	atur	al D	raft
	SERVER	RS: _	Hickma	an and	Thompso	on		CLIE	NT DE	SIGN	ATIO	N: Un	it 3					
				209				OPE	RATIN	G CO	NDIT	ONS:	Un	it 3	off	lin	е	
TAT	TRANSD	UCE	R: TYPE	B&K 4	145_ s	ER.# 45	56988	Cool	ing	towe	r is	cou	nter	flow	typ	e		
MENT	ANALYZ	ER:	TYPE	3&K 161	3 si	ER. # 46	50875	_										
LRUM										_								
Train .				_B&K_4	220_ si	ER. #_4	157476	SECO	NDAR	Y NO	ISE S	OUR	E:					
-	OTHER:	-	ndscre	en				EQUI	P. MAI	KE &	MOD	EL:			144			
TIM	E BR	Δ -	TEMP	% RH	мина	WIND	WIND DIR.		NT DE								-	
10:0	00 OK	(6-8	E	-	ATTIN	3 001	VOITE	ONS:						
-								-										
		-						-	80111	10.00	500	10.5	E 1 : E :	15.			2	
TES	TIN	1E	POSI-		CONDI	TIONS		-	A STATE OF THE PARTY OF THE PAR				-		E 201			
N,).		TION		of Towe			SCALE	ALL						ER FF			
1	10:	05	A4	Rim of		:1					-	-	-		_			
2		00		10' fr		of has	in	81	86				68		76			
3				20' fr				79			73	7.0 69		72 68	75			73_
4				25' fr				77		-	74	67	62	66	72 69	72	73	72
5				40' fr				75		75	72	63	59	62	65	68	69	68
6				50' fro				74			73	65	58	63	65	67	68	67
7				80' fro				72			71	65	55	62	64	66	67	65
8				100' f				71	79	74	69	63	59	60	63	64	65	61
Desc	Water R=158. T=-2'= D=36'= h=44'= h'=34'	e D flo 5'=-0. 110. 113. = 10	w = 31 48.4m 61m 9m 4m .4m .4m	O,000 g	flow tgpm=23,	ower 400 kg	1 water	m of 95/N	v.		Pa	LVER KIN, SIN 2R		-	SHELL SHELL	7	T, 'h' ↓	1
						•												
55 193	5-1-0																	

CLIEN	T: G90	enia P	ower Co	,Plant	Bowe	n	PRIN	ARY I	NOISE	sou	RCE :	Ur		3 Coc			
)/74		P. MA									
						fel (ac.		NT DE							110.00	LL Walan	21.0
						454249		RATIN						R off	lin	0	
mar I						456988								011			
EN ANA						460875						-				1	F
ALC:								L	FI				101				
No.						457476	0.500			105					-		
990	HER: W						3	NDAR									_
TIME	CALI-	25.00	0/ 0//	Laker	WIND	WIND	EQUI	NT DE								-	
TIME	TION	TEMP	% R H	ммнс	MPH	DIR.		RATING					-				
10:57	OK			historia.			TOPER	AIIIV	3 001	VUITI	ONS:						
			le ter d			A Maria				1							
13:15	OK			1200													
TEST		POSI-						SOUN	D PR	ESSU	JRE L	EVEL	, dB F	RE 20	u N/M	2 rms	
195.	TIME	TION		CONDI	TIONS		A	OVER	T	-		-		ER F	-		Hz.
			East o	f Tower			LEVEL	LEVEL			1	-	T	7	-		-
9	10:30	14		rom rim		basin	69	78	72	69	62	54	59	62	63	63	61
10		J4	200' f	rom rim	of !	basin	66			65	62	51	57	60	61		55
11		K4		rom rim			62			66_	58_	50	52	55	57		51
12		L4		rom rim						65	59	49	52	55		54	47
13	10:55	M4		rom rim			-			65	59	45	45	48	48	50	40
14	13:25	N4	600' f				53			64		53	46	47		40	37
15			700' f			The second second second second				63	54	50	48	44		39	28
16	13747	P4	800' f	rom rim	of t	pasin		74		62	54	50	48	44	38	36	28
DIAGRAI	M- SHOV	V MEAS	URING L	OCATION:	S:												
RECOMM	ENDATI	ONS:															
		100											-			-	
											-						
\$195 -1	. 0										-						

JOB NO OBSER SLI TRA	O: 041 RVERS: M: TYPE ANSDUCE	Hickma B&K 20 ER: TYPE	B&K 4	Thomps:s 145 s 613 s	5/20/7 on ER.#_/ ER.#_/	4	CLIE	MARY I	KE B SIGN	MODI	Re V: Un	s. C	it 3 ottr	ell	ling Na tu	Tow	er
TRANS.	IBRATO	R: TYPE	_B&K_4	220 s	ER.#	457476	SECO	ONDAR									
TIME	CALI- BRA- TION	TEMP.	% R H	ммнс	WIND	WIND DIR.	CLIE	NT DE	SIGNA	ATIO	N:						
17:00	ОК						OPE	RATING	CON	IDITIO	ONS:	_					
								66111								2	
NO.	TIME	POSI- TION	East o	CONDIT f Tower			SCALE	OVER ALL LEVEL	(ОСТА	VE B	AND	CENT	ER FF	REQUE	ENCY,	
17	13:45		900' f			sin	48				1	200	500	1000	2005	4000	8000
18			1000'				45										
																	-
		7.5					-			-							
			URING LO														
RECOMM	ENDATI	ONS:															
5798 -1																	

SOUND LEVELS MEASURED AT VARIOUS DISTANCES FROM THE UNIT 1 NATURAL DRAFT COOLING TOWER AT PLANT BOWEN

Distance from Rim, Feet	Sound Level,
At rim	85
10	83
20	80
40	78
50	77
80	74
100	73
200	69
300	66
400	62
600	48-50
700	49-51
800	49-51
900	50
1000	50
1300	47-48
1400	43-45
1500	44
1600	41-45
1700	44
1800	43
1900	40
2000	42-44
2100	42
2300	41

SOUND LEVELS MEASURED AT VARIOUS DISTANCES BETWEEN UNIT 1 AND UNIT 2 NATURAL DRAFT COOLING TOWERS AT PLANT BOWEN

Distance from Rim of Unit 1 Tower, Feet	Distance from Rim of Unit 2 Tower, Feet	Sound Level,
440	At rim	84
430	10	82
400	40	79
360	80	76
340	100	- 74
290	150	71
240	200	67
190	250	67
140	300	68
90	350	73
40	400	78
25	415	79
20	420	81
10	430	83
At rim	440	. 85

CL	IEN	T: Gu	lf Pow	er Co.	- Cris	t Steam	m Plant	PRIM	MARY	NOISE	sou	RCE :	Co	olin	g To	wer		
JOI	BNO	0:	021	DA	TE:	11-2-7	2	EQU	IP. MA	KE &	MOD	EL: _	Ma	rley	- 8	cel	ls	
				Hickma				1	NT DE									77
O								7	RATIN								no a	+
ENTATI							1950		rate							***	45_0	
EN				GR155														
NSTRUM																		
NST				GR156				SECO	NDAR	V NO	105.0	01100				MICEORE LINES.		
		HER:							P. MAI									
TIM	ME	CALI- BRA- TION	TEMP	% R H	ммне	WIND	WIND DIR.	CLIE	NT DE	SIGN	ATIO	N:						
12	:30	ОК	7.5					OFER	RATING	3 CON	VOITIO	JNS:						
TE	C.T.		POSI-						SOUN	D PR	ESSU	RELI	EVEL	.dBR	E 20	N/M	2 rms	
1000	0.	TIME	TION		CONDI	TIONS		A	OVER		-				-		ENCY,	H ₇
					West o	f Towe	r	LEVEL	LEVEL		-	-	The second second	gen remember of	-			
	1	13:00	A1	South	end -	5'		84	95	86	82	81	79	74	73	74	76	79
- 2	2		B1	Center	- 5'			84	95	89	82		82			75		
3	3		C1	North	end -	5'		83	93	82	80		80					
4	4		D1	Center	- 10'			83	94	84	80	81	80	74				
	5		E1	Center	- 25'			82	92	86	80	79	79	73	-	73		
- 6	5		F1	South	end -	50'		77	88				75			69		
7	7		G1_	Center	- 50'			80	92	82	80	75	76	72	72	72	70	
8	-		H1		end -			78	90	82	79	75	75	70	70	70	69	72
		W- 3HO	75	_F/	CATION:	5:		;/					н				mess;	7
				A/			8	/		- 27			<u>c</u> '					
				0		0		C) (0	(7	u u	V /		w/	
PECC	21111	ENDATIO	2116											1 25	1 50	1	100	
	Z INI MI	CNUATIO	JNS:				•											
\$100	-																	

	-			0	-			T	-			-	_				-	
	-	T:Gul							ARY N					-	Tev	-		
JOE	3 NC):	021	DA	TE:	11-2-72		EQUI	P. MAH	KE &	MODE	L:	Mar	ley	- 8	cell	s	
OB	SER	VERS:		Hickman	n and V	Vright		CLIE	NT DE	SIGNA	ATION	:	Uni	t 6	towe	er		
NO	SLM	TYPE_			s	ER.#		OPER	RATINO	G CON	ITION	ONS:	Uni	t 6	oper	ratir	ng at	
TAT	TRA	NSDUCE	R: TYPE	GR156	0-P6 s	ER.#	1950	rat	ted 1	oad.								
EN	ANA	LYZER:	TYPE_	GR155	8-BP S	ER.#	2279	-									1	
RUN		LE: TYP														-11		
NSTRUMENTAT		IBRATO						SECO	NDARY	v NO		OURC	-					
=		HER:						1										
TI	W E	CALI- BRA- TION	TEMP		ммне	WIND	WIND DIR.	CLIE	NT DE	SIGNA	TION	v:						
							14.5	OPER	ATING	CON	DITIC	NS:						
	-							-	001111								2	
TE	ST	TIME	POSI-	61	CONDI	TIONS		A	SOUN			-	-				-	
N	10.	- TIME	TION					SCALE	ALL			T		_	7	-	ENCY,	
-						of Towe	r	1	LEVEL		-	-	-	-	-	-	-	8000
	9	13:15			end -			73	83	78	76	70	66	67	66	65	64	64
_1	0		J1		end -			72	84	74	76	71	64	66	65	64	63	63
-				West	of Cana	al		-				-						
_1	1	-	K1		end ≃			70	81	74	74	72	67	64	64	63	62	62
_1	2		Ll	Cente	r = 20	0'		71	83	72	72	72	68	64	64	63	63	62
_1	3		M1	North	end ≃	200'		70	80	75	75	72	66	65	64	63	63	62
								-										
DIA	GRA	M- SHO	V NEAC	IDING	COLTION	16		51										
UIA	ONA	m- 3HU	M MEASI	URING L		15:		RI		+								
				NI	25	0+01		PI		+	QI							
					20	v'+K1		LI		+	M/					1	1	
					150	·+		_		7.	TI				E			
							CANAL			1								
					10	0'+	Critini			1	II							
					54	c'+				+								
						00	000	00	00	0								
REC	COMI	MENDAT	IONS.															
		- IVAI					•											
551	95 -	1-0																

SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM, ALABAMA 35202

JOE	NO	0:	021	DA	TE:	11-2-7	2	EQU	IP. MA	KE &	MOD	EL:	Ma	rley	- 8	cel	ls	
		RVERS:						1	ENT DE								1	
NOI	SLA	H: TYPE_			s	ER.#_		7	RATIN								ne a	t
TAT	TRA	NSDUCE	R: TYPE	GR156	0-P6 s	ER.#	1950		ted]						and place	- No. 340 - No. 175	*********	-
MEN	ANA	ALYZER	TYPE	GR155	8-BP S	ER.#	2279											
NSTRUMENTAT	CAE	BLE: TYP	Ε		L	ENGTH_												
INST	CAL	IBRATO	R: TYPE	GR156	2-A s	ER. #	3122	SECO	NDAR	Y NO	ISE S	OUD	-					
	OTH	ER:		1					IP MAI									
TIM	Ε	CALI- BRA-	TEMP.	%RH	MMHG	WIND	WIND		NT DE									
_		TION				WhH	DIR.	1	RATING									
-																		
	-				-													
TES	T	TIME	POSI-		*****				SOUN									
NO).	TIME	TION		CONDI				OVER		OCTA	VE B	AND (ENT	ER FI	REQUE	ENCY,	Hz.
-	-			- V	Vest of	Tower		LEVEL	LEVEL	31.5	63	125	250	500	1000	2000	4000	8000
-	-				Cop of			_										
14		13:40	N1	West o	of pump	s ≃ 25	0'	69	79	73	79	70	65	65	63	61	59	55
15			01	South	end ≃	250'		71	82	71	74	71	66	68	65	62	60	59
16			P1	Center	≃ 275	1		72	83	75	77	71	66	68	66	64	63	61
17			Q1	North end ≈ 250'				71	84	73	74	70	65	67	65	63		
18	_		R1	Center	67	83	72	73	68	62	62	62		59				
19			S1	Center	= 400	'shie	lded											
				from t	ower b	y bank		61										

See Sketch on Page 2.

RECOMMENDATIONS:	
\$\$195-1-0	

JO	IENT: _	G	021	wer co.	- Cr1	st Ste	am Plar	PR	IMARY	NOIS	E SO	URCE	:(cooli	ng 7	ower		
OF	SERVE	20	021	D	ATE:	11-2-7	72		UIP. M									
NO	SIMIT	15:		Hickm	an and	Wright		CLI	ENTD									
Section 1	TRANCE	PE.			S	ER.#_			ERATI									at
NTA	ANALYSE	001	EH: TYP	E GR15	60-P6 s	ER.#_	1950		ated	load	d.							
RUMENTAT	CARLE	ER	TYPE	GR15	58-BP S	ER.#	2279											
No.	CABLE:	TYP	'E		L	ENGTH.												
-	CALIBR	АТО	R: TYPE	_GR156	2-A S	ER. #	3122	- SEC	ONDAR	Y NO)ISE	SOUD.	0.5		The same of the sa	ALC: MICHORINA		-
	OTHER:		T	T	1	1	-		IP. MA									
TIM	E BR	4 -	TEMP.	% RH	MMHG	WIND	WIND		ENT DE									
-	- 110	n -		-		MPH	DIR.	1	RATIN									
-	_	-									10111	UNS:						
	-	-																
-		-																
TES	The second of th		POSI-						SOUN	ID PR	ESSU	REL	EVEL	, dB R	E 20	u N/M	2 rme	
NO	TIM	-	TION		CONDIT	TIONS		A	OVER							REQUI		
7		-		1	North o	f Towe	r	LEVEL	LEVEL	31,5	63	125	250	500	1000	2000	4000	800
()		15	T1	Center	nter - 5'				81							59	-	-
21		+	U1	Center	- 25'			1	82			-	-					-
22		+	Vl	Center	- 50'			64			71	70			56	55		
23	-	+	Wl	Center	- 100	1		61					00	23	26	54	53	5:
-	-	+																-
	+	4															-	
	-	+										-					-	-
		1														-	-	
AGR	AM-SH	OW	MEASU	RING LO	CATIONS	:												
See	Sketc	h o	n Page	1.														
JM.	MENDAT	ION	9.															
JM	MENDAT	ION	S:							_								

\$\$195 -1-0

NOISE SURVEY FORM

CLIEN	T: Gu	lf Powe	r Co.	- Cris	t Steam	m Plant	PRIM	ARY N	OISE	SOUF	RCE .	Cod	olin	g To	wer		
	0:						1	P. MAI								ls	
	RVERS:							NT DE									
	M: TYPE_						7	RATING								no 0	+
	ANSDUCE							ated			0143.			Whe	141	118 4	
L AN	ALYZER:				_		-	acca	1000	**							
M CAE	BLE: TYP						1-										
	IBRATOR						-					E-NEARCH.	Вос	oste	r pui	mps	
MARKET TO STATE OF THE PARKET TO STATE OF THE	HER:							NDARY									
TIME	CALI- BRA-	TEMP.	% R H	ммне	WIND	WIND DIR.		P. MAK									_
	TION						OPER	ATING	CON	DITIO	NS:						
	-																
							-										
								SOUN	D PR	ESSU	RE LE	VEL	dB R	E 201	N/M	2 rms	
TEST NO.	TIME	POSI-		CONDI	TIONS		A	OVER		OCTA					_		Hz.
140.		11011		South o	of Towe	er		LEVEL	-		-	_		-	2000		-
24	14:30	Xl	Cente	r - 10	1		75	85	77	77	77	73	70	74	64	63	58
25		Y1	Near	pumps :	81	89	81	80	79	80		76		66			
26		Z1	Betwe	en boos	ster pu	ımps	87	94	85	82						73	
27		A2		er pum;	Lance Service		88			79						75	1
28		B2	Appro	x. 100	from	tower	75			76				-		64	
29		C2		x. 200				79							-		49
													711				
	M-SHOV			OCATION	5:												
2500111	MENDATI	ONS.															
CCUMI																	

CL	IEN"	T: Gu	lf Powe	er Co.	- Crist	t Steam	n Plant	PRIN	MARY	NOISE	sou	RCE:	Co	olin	g To	wer		
JO	BNO):	021	DA	TE:	11-2-72	2	EQU	IP. MA	KE &	MOD	EL: _	Ma	rley	- 8	cel	1s	
	SER	VERS:		Hickma	n and V	Vright		CLIE	NT DE	SIGN	ATIO	N:	Un	it 6	tow	er		
NO	SLM	TYPE.			s	ER.#_		OPE	RATIN	G CO	NDIT	ONS:	Un	it 6	ope	rati	ng a	t
TAT	TRA	NSDUCE	ER: TYP	GR156	0-P6 s	ER.#_1	950		ted 1									
RUMENTAT	ANA	LYZER	TYPE	GR155	8-BP S	ER.# 2	279											
	CAB	LE: TYP	E		L	ENGTH_												
NST				GR156:				SECO	NDAR	Y NO	ICE C	OUR					in descuored	
		ER:						EQUI										
TI	ME	CALI- BRA- TION	TEMP	% R H	ммне	WIND	WIND DIR.	CLIE	NT DE	SIGN	ATIO	N:	*					_
_								1-			-	JNS:						
												unine ma						
TE	ST	Tites	POSI-						SOUN							u N/M	-	
N	0.	TIME	TION		CONDI	TIONS			OVER	-	-	1	A	-	-	REQUI	-	-
	-				East		er	LEVEL	LEVEL	31,5	63	125	250	500	1000	2000	4000	8000
30		15:10		South		5'		84	95	84	81	82	81	75	74	75	76	79
_ 31			E2	Center	- 5'		84	95	88	81	82	81	.76	75	75	76	79	
32			F2	Center	- 10'			83	95	88	80	83	82	76	74	74	75	78
_33			G2	Center	- 20'			82	90	88	82	80	81	75	73	73	73	77
34			H2	Center	- 25'			81	94	83	82	80	80	74	72	72	72	75
35			12	Center	- 40'			79	93	84	83	77	77	73	71	72	70	73
36	-		J2	Center	- 50'			79	89	83	83	75	76	71	71	71	69	72
37	-	1 - 01101		Center				75	87	82	81	72	70	69	68	68	67	68
JIAC	MAN	1- SHOW	MEASL	IRING LO	CATIONS	S:			TOY	IE P	_	~	_	_	-	_	-1	
						ōz					E F G T T T	2				-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	٧
										100	o'+)	<2						
										150	+ 1	.2						
ECC	ЭММ	ENDATIO	ONS:							20	d + V	12						
\$191	5 - 1 -	. 0																

OBSERVERS: Hickman and Wright CLIENT DESIGNATION: Unit SLM: TYPE SER.# OPERATING CONDITIONS: Unit TRANSDUCER: TYPE GR1560-P6 SER.# 1950 rated load. ANALYZER: TYPE GR1558-BP SER.# 2279 CABLE: TYPE LENGTH CALIBRATOR: TYPE GR1562-A SER.# 3122 SECONDARY NOISE SOURCE: EQUIP MAKE & MODEL: TIME BRATTION TEMP WIND DIR. OPERATING CONDITIONS: OPERATING CONDITIONS: TEST NO. TIME POSITION FAST OF THE CONDITIONS FAST OF TOWER SCALE ALL LEVEL LEVEL 31.5 63 125 250 38 15:40 L2 Center - 150' 72 86 80 79 71 65	Unit 6	nit 6	6 tov	wer erat:		it.
SLM: TYPE	Unit 6	nit 6	6 оре	erat	ing a	it
TRANSDUCER: TYPE GR1560-P6 SER. # 1950 ANALYZER: TYPE GR1558-BP SER. # 2279 CABLE: TYPE LENGTH CALIBRATOR: TYPE GR1562-A SER. # 3122 OTHER: TIME CALIBRATOR: TEMP % RH WMMG WIND DIR. TIME BRATION TEMP % RH WMMG WIND DIR. TON TIME TION TIME TON TON TON TON TON TON TON TON					ing a	it
ANALYZER: TYPE GR1558-BP SER. # 2279 CABLE: TYPE LENGTH CALIBRATOR: TYPE GR1562-A SER. # 3122 OTHER: TIME CALIBRAT TEMP WRH MMHG MIND DIR. TIME CALIBRAT TEMP WRH MMHG MIND DIR. TIME CALIBRAT TEMP WRH MMHG MIND DIR. TIME CONDITIONS East of Tower A OVER ALL LEVEL LEVEL SI.6 63 125 250 38 15:40 L2 Center - 150' 72 86 80 79 71 65 39 M2 Center - 200' 69 84 78 79 70 64 Top of Tower 40 N2 North end 66 84 73 70 68 66						
CABLE: TYPE						
OTHER:						
OTHER:						
TIME CALI-BRA-TION TEMP. %RH MMHG MIND MPH DIR. OPERATING CONDITIONS: OPERATING COND						
TEST NO. TIME POSI- TION CONDITIONS East of Tower Center - 150' 72 86 80 79 71 65 M2 Center - 200' 69 84 78 79 70 64 Top of Tower 40 N2 North end 66 84 73 70 68 66						
TEST NO. TIME POSI- TION CONDITIONS East of Tower SOUND PRESSURE LEVEL, CONDITIONS A OVER SCALE ALL LEVEL SI.5 63 125 250 38 15:40 L2 Center - 150' 72 86 80 79 71 65 39 M2 Center - 200' 69 84 78 79 70 64 Top of Tower 40 N2 North end 66 84 73 70 68 66						
TEST NO. TIME TION CONDITIONS East of Tower Conditions East of Tower Top of Tower Top of Tower Top of Tower Top of Tower A OVER ALL LEVEL 31.5 63 125 250 A OVER ALL LEVEL 31.5 63 125 250 72 86 80 79 71 65 69 84 78 79 70 64 Top of Tower No North end Top of Tower North end Top of Tower						
TEST NO. TIME TION CONDITIONS East of Tower Conditions East of Tower Top of Tower						
TEST NO. TIME TION CONDITIONS East of Tower Conditions East of Tower Top of Tower	VEL.dB R	.dB R	RE 20	U N/N	1 ² rms	-
East of Tower SCALE ALL 31.5 63 125 250 38 15;40 L2 Center - 150' 72 86 80 79 71 65 39 M2 Center - 200' 69 84 78 79 70 64						Hz.
38 15:40 L2 Center - 150' 72 86 80 79 71 65 39 M2 Center - 200' 69 84 78 79 70 64 Top of Tower 40 N2 North end 66 84 73 70 68 66		-	-	-	-	-
Top of Tower 66 84 73 70 68 66		1	+	-	-	-
40 N2 North end 66 84 73 70 68 66	64 62	62	2 62	2 62	61	60
41 02 South end 77 97 86 89 87 80	66 60	60	58	8 58	57	54
	80 73	73	3 70	0 69	5.8	48
42 P2 Fan motor ≈ 5' west 93 101 93 94 88 88	88 88	88	8 89	9 85	81	7.5
DIAGRAM- SHOW MEASURING LOCATIONS:						

SOUTHERN SERVICES, INC.

Gulf Power	Company - Crist Stea	m Plant	CHECKED	DATE
			ower	SHEETOF
		61 @	400'	
		67 @	300'	
69	7/	72		7/
	70	7/		70
	CANAL			72 @ 150' 73 @ 100'
	77 .	80		78
		62		
	84	83		<u>£3</u>
Funes SI	75		00	66 65 64 6
			00	66 65 64 6
	}			
		83		
		62. 61		
		79		N N
		79		
		75		
	, Sound Le	Sound Level (dBA) Around Ur 70 CANAL 77	69 71 72 70 71 CANAL 71 80 84 84 84 Fumps 81 75 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gulf Power Company - Crist Steam Plant

150

72

69 @ 200'

CLIENT	- Gul	f Powe	r Co(Crist I	Init 7		Tani										MA 35.	
			DA				1	MARY I								-	-	
						zepluch									al al			
Z SLM	: TYPE	B&K	2209	S	FR # 4	54249												
			B&K 4				UP	ERATIN	6 60	NUII	IONS:					-		
ANA			B&K 16		001000		-			-							_	
2																		
			6&K 42		_		-					WEST NAME					-	
and the same of th			en & Ra					ONDAR										
	CALI-				WIND	WIND	1	IIP. MA									-	
TIME	BRA - TION	TEMP	% R H	ммнс	мрн	DIR.	1	ENT DE										
11:00	OK						OFE	RATING	, cor	VOITI	ONS:							
								SOUN	ID PR	ESSI	IRE L	EVEL	da a	E 20	N/M	2		
NO.	TIME	POSI-		CONDI	TIONS		A	OVER		-	VE B	_	-			-	-	
140.		TION		ing To			SCAL	E ALL		-	-	Name and Address of the Owner, where	og-monomers.	Anna Carlotte	-	******		
150	10:20	Q6		- ctr.		ver	84 94 86 87 86 84 79 76 76 76 76											
151		R6		of tow			69			80	74		63		62		1	
152		S6		- ctr.		/er	83	-		84	85	84	79		75	-	-	
153		T6		of towe		-	78	89		79	-	73	73	-	70	-	-	
154		U6		of CT			85	94		84		84			76	-	-	
									The last con-			04		13	70	13	13	
									•									
			JRING LO			nt D-19	9000											
ЕСОММ	ENDATIO	ONS:																

SOUND LEVEL SURVEY
UNIT 5 COOLING TOWER
PLANT JACK WATSON
MISSISSIPPI POWER COMPANY
GULFPORT, MISSISSIPPI

September 29, 1977

Charles E. Hickman
Research & Development Department
Southern Company Services, Inc.
Birmingham Alabama

INTRODUCTION

A sound level survey was conducted for Mississippi Power Company around the Unit 5 cooling tower at Plant Jack Watson on September 29, 1977. The major purpose of this survey was to document sound levels around the only round mechanical draft cooling tower within the Southern electric system.

Measurements were made using the A- and C- weighting networks and octave bands centered at ANSI Preferred Frequencies (ANSI Standard S1.6-1967(R1971)) from 31.5-8000 Hz. The sound level meter used meets the Type I specifications of ANSI Standard S1.4-1971. Instrumentation used during the survey is listed below.

Manufacturer	Туре	Model No.	Serial No.
Bruel & Kjaer Bruel & Kjaer Bruel & Kjaer Bruel & Kjaer Bruel & Kjaer	Sound Level Meter Octave Band Analyzer Microphone Calibrator 10' Cable	2209 1613 4145 4220 AO 0027	454249 460875 455974 457476

To supplement the sound level data, the following documents are included in this report.

- Print E-PS-3014 which shows the location of the cooling tower relative to the plant and on which the measurement locations are marked.
- 2. Schematic View-Plan-Concrete Crossflow
- 3. Schematic View-Elevation-Concrete Crossflow
- Various parameters, both operational and dimensional, for the tower.

SURVEY RESULTS

Sound level data measured around the Plant Jack Watson Unit 5 cooling tower are presented on six pages of "Noise Survey Forms." Unit 5 is a 500 MW, 2400 PSIG unit and the cooling tower is a Marley Round

Class 700 Mechanical Draft Crossflow type. The tower cools 172,000 GPM of water from 120°F to 90°F at a wet bulb temperature of 80°F . During the survey Unit 5 was operating at 460 MW and 15 out of 16 fans were running.

The Marley Company supplied the following statement concerning sound levels in their bid.

"SOUND LEVELS - Predicted sound levels (dbA) at 5 ft. above ground level and specified distance from towers.

Distance	100'	500'	1000'	20001	3000'	40001	50001
dbA	68	59			3000	4000'	5000'
4571	00	39	55	49	46	43	40

No contribution from ambient design features of the base tower including high efficiency fans, low pressure drop system, and round partitionless plenum structure ensure minimum noise characteristics. Should further noise reduction be required due to site requirements, treatment would be determined as a function of location of sensitive area or areas, amount of reduction required and the frequencies to be attenuated. Treatment as established by the foregoing could consist of barrier walls, or attenuation baffles in

Due to the location of (1) the main plant with its exterior equipment, (2) the ash pend and (3) a spray module cooling canal for another unit, the number of traverses for obtaining meaningful data was quite limited (See Print E-PS-3014). Also, distances of approximately 300 feet along these traverses were maximums before the noise from external sources such as forced draft and induced draft fans became clearly audible.

From the Noise Survey Forms the following observations can be made.

- Sound levels agreed within 2 dBA at every point along two traverses from the tower.
- 2. At the basin rim, 84-85 dBA was measured.
- At 100 feet from the basin rim, a sound level of 72 dBA was measured. The Marley prediction was 68 dBA. It should be noted that the original design specified 13 fans. To improve the performance of the tower, 2 additional fans have been added (See Schematic View-Plan-Concrete Crossflow-Drawing No. 73-41622).

- 4. The sound level between the booster pumps located 40 feet from the basin rim was 86 dBA which was 1-2 dBA higher than sound levels measured at the basin rim. As a result, sound levels were approximately 2 dBA higher at distances of 40-100 feet from the pumps when compared to sound levels at equivalent distances from the basin rim along traverses not affected by the pump noise.
- Octave band sound levels measured at the basin rim, at 100 feet from the rim and at 200 feet from the rim are plotted on Figure 1. No discrete tones were audible nor evident from these data.

Descriptive data and engineering information for the particular cooling tower investigated are included in this report. Perhaps this information will be useful in the development or verification of an equation to estimate sound power radiated by the round cooling tower.

SUMMARY

Based on the sound level results and the location of the round cooling tower on the plant site at Plant Jack Watson, no community noise complaints related to cooling tower noise are anticipated. Measured sound levels are comparable to those measured near other mechanical draft towers within the Southern electric system. One obvious exception, however, is that the round tower does not exhibit the near-field directivity observed with conventional mechanical draft systems.

SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM, ALABAMA 35202

CLIENT: MPCo - Plant Jack Watson					PRIMARY NOISE SOURCE: Cooling Tower															
JOB NO:					EQUIP. MAKE & MODEL: Marley Round Tower CLIENT DESIGNATION: Unit 5															
OBSERVERS: Hickman and Newton																				
NO	S SLM: TYPE B&K 2209 SER. # 454249					OPERATING CONDITIONS: Unit 5 operating														
TRANSDUCER: TYPE					at 460 MW; cooling tower															
ANALYZER: TYPE B&K 1613 SER. # 460875					operating with 15 of 16 fans															
ANALYZER: TYPE B&K 1613 SER. # 460875 CABLE: TYPE B&K LENGTH 10' CALIBRATOR: TYPE B&K 4220 SER. # 457476					on															
INST	CAL	IBRATO	R: TYPE		4220 st	ER. # 45	7476	SECO	NDAR	Y NO	SE S	OURC	E:							
	OTH	ER: W	indscre	een	7			EQUI	P. MAK	(E &	MODE	L:								
TIN	4E	BRA- TION	TEMP.	% R H	ммнс	WIND	WIND DIR.	100	CLIENT DESIGNATION:											
8:	00	OK	78	90		0-6		OFERATION		ZERATING CONDITIONS:										
TEST POSI-				SOUND PRESSURE LEVEL, dB RE 20µ N/M2 rms																
NO.	TIME	TION	CONDITIONS			SCALE	OVER	OCTAVE BAND CENTER FREQUENCY, Hz.												
									LEVEL		63	125	250	500	1000	2000	4000	8000		
1		8:05	A1	Basin	Basin rim			85	93	90	87	83	81	77	76	77	80	80		
2			B1	3' from rim			82	92	91	86	80	79	75	74	74	77	77			
3			C1 6' from rim				81	90	90	85	80	76	73	72	72	75	75			
4			D1 10' from rim				80	89	86- 90	85	79	76	72	71	72	75	75			
5			E1	12' from rim				80		89		79	76	72	71	71	74	75		
6			F1	F1 20' from rim				78		85-	82-	78	74	70	68	69	73	73		
7			G1	24' from rim				77	88	891	88	78	75	70	68	68	71	69		
8			Н1	40' fr	om rim			75	89	840	82.	82	74	70	66		70			

NOTES:

- See Southern Services Dwg. No. E-PS-3014 for sound level measurement locations.
- See Marley Company Dwgs. No. 73-41622 and 73-41623 for details of the cooling tower construction.

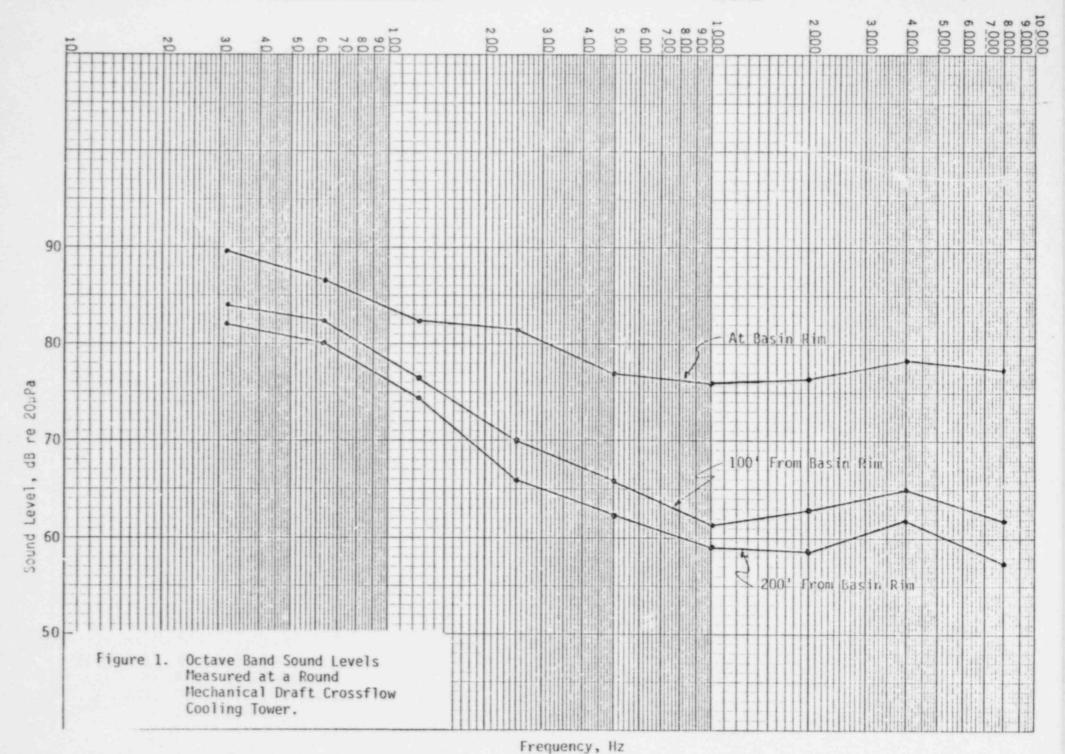
RECOMMENDATIONS	

MPCO - F 070 Hic B&K ER: TYPE PE B&K OR: TYPE Windscre	DA kman a 2209 B&K B&K B&K	TE:	9/29/7: ton ER # 45 ER # 46 ENGTH _	7 54249 55974 50875	CLIE OPER		KE B SIGN G CO	MODE ATION NOITH	L: ons: . towe	Mar Uni Uni	ley t 5 t 5	Roun	d To						
Hic B&K ER: TYPE E: TYPE_ PE_ B&K DR: TYPE Windscre	kman a 2209	1613 Si 4220 Si	ton ER # 45 ER # 45 ER # 46 ENGTH _	54249 55974 50875	OPER 460	NT DE	SIGN G CO	ATION NDITION Ling	ons:	Uni Uni	t 5 t 5								
B&K ER: TYPE E: TYPE_ PE_B&K DR: TYPE Vindscre	2209 B&K B&K B&K	\$14145 \$1 1613 \$1 4220 \$1	ER # 45 ER # 46 ENGTH _ ER # 45	55974 50875	OPER _460	RATIN MW;	c c c c	NDITI	ons:.	Uni	t_5_	oper.	atin	n at					
ER: TYPE TYPE B&K DR: TYPE Windscre	B&K B&K	4145 SI 1613 SI 4220 SI	ER # 46 ER # 46 ENGTH_ ER # 45	55974 50875	460	MW;	coo	ling	towe			- learn	63 4 4 4 4 4						
PE B&K DR: TYPE Windscre	B&K	1613 si 4220 si	ER # 46 ENGTH_ ER # 45	10'					460 MW; cooling tower operating with 15 of 16 fans on										
OR: TYPE	B&K	4220 si	ER. # 45		-				ans c										
Windscre	en			57476					A	CTATRICES.					-				
				11410	SECO	NDAR	Y NO	ISE S	OURC	E:									
						P. MAH													
	% R H	ммнс	WIND	WIND DIR.	CLIENT DESIGNATION:														
					1		, ,,,												
											a h	4.,							
										TOTAL CONTRACT									
POSI-						-	-	-	-	-									
TION		CONDI	TIONS			M to to					-			-					
-					-		-	-		250	500	1000	2000	4000	8000				
-					75		-	-	78	73	69	65	66	69	66				
J1	80' 1	from ri	im		73	87	860	85	77	70	67	64	64	_67	_64				
K1	96'	from r	im		72	86	86	85	799	70	66	63	63	66	_63				
L1					72	86	88	784	79	70	_66	62	_63_	65	_62				
M1	50'	from	cim		69	84	85	82	748	_68_	63	60	61	63	50				
N1_	160'	from r	rim					100					61	-63	60				
					68	84	80	792	74	66	62	58	59	62	_58				
					67	_83	81	81	74	65	62	58	58	62	57				
	I1 J1 K1 L1 M1 N1 O1 P1	TION I1 48' J1 80' K1 96' L1 100' M1 50' N1 160' O1 192' P1 200'	TION 11 48' from r J1 80' from r K1 96' from r L1 100' from r M1 50' from r O1 192' from r P1 200' from r	TION CONDITIONS	TION CONDITIONS	TION CONDITIONS SCALE I1	TION CONDITIONS A OVER SCALE ALL LEVEL LEVEL	TION	TION CONDITIONS A OVER OCTA	TION	TION	TION	TION CONDITIONS A OVER OCTAVE BAND CENTER FRANCE	TION CONDITIONS A OVER OCTAVE BAND CENTER FREQUENTS	TION CONDITIONS A CONTINUE CONDITIONS A CON				

								,					O III III	INGHA	m, AL	ADAN	MUUN
CLIEN	T:M	PCo - P	lant J	ack Wa	tson		PRIM	ARY N	IOISE	sout	RCE :	Coo	ling	Tow	er		
JOB NO	0:0	70	DA	TE:	9/29/77	7	1	P. MAH								wer	
		Hic						NT DE					-				
		B&K				4249	OPERATING CONDITIONS: Unit 5 operating									1	
E TRA	ANSDUCE	R: TYPE	B&K	4145 s	ER # 45	5974		460 M									
NA ANA		TYPE_			-	-		h 15							- in the second		
>		E B&K															
S CAL	IBRATO	R: TYPE	B&K					NDARY						nd II	fai	ns	
TIME	CALI- BRA-			ммнс	WIND	WIND DIR.		P MAK									
	TION						OPER	ATING	CON	IDITIO	NS:						
TEOT		2000						SOUN	D PR	ESSU	RELE	EVEL	dB R	E 204	N/M	² rms	
TEST NO.	TIME	POSI-		CONDI	TIONS		A	OVER		OCTA	VE B	AND (ENTE	ER FF	REQUE	ENCY,	Hz.
							LEVEL	LEVEL	31.5	63	125	250	500	1000	2000	4000	8000
17	9:45	Q1	300'	from	rim		63	82	75-	78	71	63	57	54	54	56	51
_18		R1	320'	from	rim		63	80	-20	73-	721	65	58	54	54	56	51
19		S1		from r			63	80 80	81	77	76	65	58	55	54	55	50
20		T1	400'	from	rim			78	78	72- 76	72	65	58			55.	
21		U1	450'	from r	rim			79									
		V MEASU															
		isible,				le from	1 аррт	roxima	atel	y 30	0' a	nd b	eyon	d.			
RECOMM	MENDATI	ONS:											-				

INSTRUMENTATION OF STATE OF ST	T:MI O:OT RVERS: _ M: TYPE _ ANSDUCE ALYZER: BLE: TYP LIBRATOR HER:WT	54249 55974 50875 10' 57476	CLIE OPER at wit	P. MAI NT DE RATIN 460 M h 15	KE B SIGN G COI MW; O Of	MODE ATION NOITIC	ing to	Mari Unit Unit tower	t 5 t 5 r op	Roun	d To						
TIME	CALI- BRA- TION	TEMP	% R H	ммнс	MPH	WIND DIR.	CLIENT DESIGNATION:										
TEST		POSI-						SOUN	-	ESSU	RE LE	VEL,	dB R	E 20µ	N/M	2 rms	
NO.	TIME	TION		CONDI	TIONS		SCALE	OVER	-		-	-	_	_	_	ENCY,	
								LEVEL			125	250	500	1000	2000	4000	8000
22	13:10			n rim			84	94	92	86	82	82	77	76	76	77	75
23	-	B2	3' f	rom ri	n		82	92	87	87	80	77	74	73	73	74	72
24		C2	6' f	rom ri	n		80	91	889	87	80	76	73	72	71	72	_71
25		02		from r			78	90	841	84	79				70	72	70
26		E2	12'	from r	im		78	91	85-	83	79				70	72	70
27		F2	20'	from r	im		77	89	84-	85	80	75	71	68	68	71	69
28	-	G2	24'	from r	im		76			84					68	71	68
29	M- SHOV	H2	40'	from r	im		75	89	91	83	78	74	71	66	67	69	67
RECOM	NENDATI	ONS:															

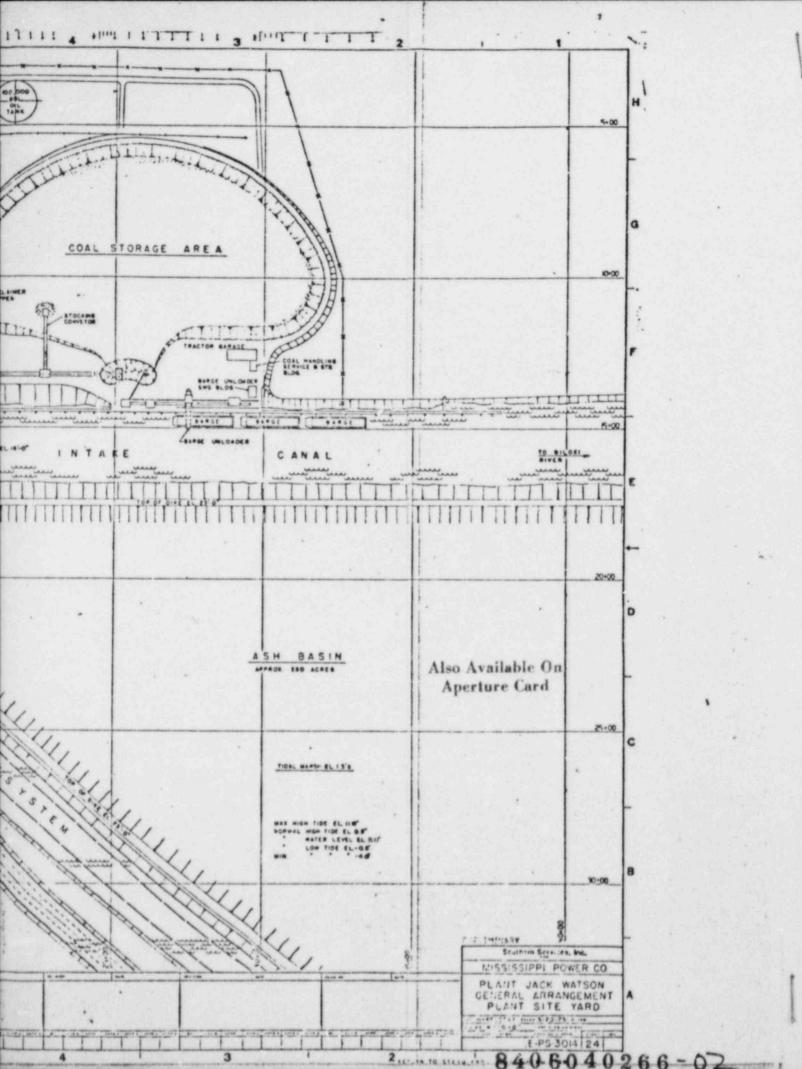
SOUTHERN SERVICES INC. P.O. Box 2625 BIRMINGHAM, ALABAMA 35202


-	-	-	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	-	-		-	-	-	-		_			_				
CLIE	NT: _	MF	Co - P	lant J	ack Wa	tson		PRIM	ARY N	NOISE	SOUF	RCE : .	Coo	ling	Tow	er			
JOB	NO: _	07	70	DA	TE:	9/29/77	7	EQUI	P. MA	KE &	MODE	L:	Mar	ley	Roun	d To	wer		
			Hic					CLIE	NT DE	SIGN	ATION		Unit	5					
NOS	LM: T	YPE_	B&K	2209	S	ER. # 4	54249	7	ATIN						oper	atin	g		
-						ER.# 4			460 1								3		
A A						ER. # 46		1	h 15							1119			
45						ENGTH_			I day of the second				d.l.k						
STE	ALIBE	RATOR	TYPE	B&K	4220 s	ER. # 45	57476	0500	NDAR		05.0	21150	F	and	d ID	fan	S		
			indscre		make the Standar				P. MAK					2 4111	- 10	1 (4)	-		
TIME	C/ Bi	ALI-	TEMP		ммнс	WIND	WIND DIR.	CLIE	NT DE	SIGNA	ATION	:	Ur		5				
14:0	0 01	<	85			0-6		OPER	ATING	CON	DITIO	DITIONS:							
TES'			POSI-						SOUN	D PR	ESSU	RELE	VEL,	dB R	E 20µ	N/M	2 rms		
NO.	TI	ME	TION		CONDI	TIONS		SCALE	OVER	(OCTA	/E B/	AND C	ENTE	ER FF	REQUE	ENCY,	Hz.	
								LEVEL	PR No. bo	31.5	63								
30	13	3:35	12	481	from r	im		75	86	86-	83	78	73	70	66	66	69	66	
31			J2	80'	from r	im		73	87	85-	82	77	71	68	63	64	66	63	
32			K2	96'	from r	im		72	86	88	83	77	70	67	64		66		
33			L2	100'	from	rim		72		807		76							
34			M2	150'	from	rim		70		86		76							
35			N2	160'	from	rim		68	85	87	80		-	-			62		
36			02	192'	from	rim		68	84							-			
37			P2					68			79= 84					59			
DIAGE	AM-		MEASU													-			

P2. Plant visible, Unit 5 fans audible from approximately 200' and beyond.

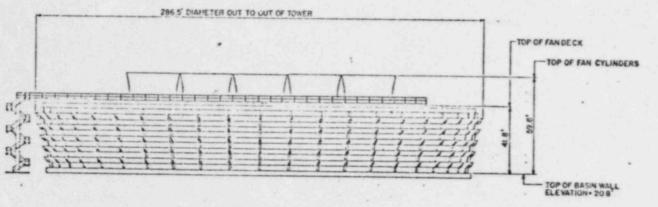
LINE AND DESCRIPTION OF THE PERSON OF THE PE				
RECOMMENDATIONS				
	 		 -	

CLIEN	T: MI	PCo - P	lant J	lack Wa	tson		PRIM	IARY 1	VOISE	SOUF	RCE :	Воо	ster	pum	ps		
	0:0					7		P. MA									
	RVERS:							NT DE									
-	M: TYPE_					54249		RATIN						mps	on		
A100	NSDUCE																
EN ANA	ALYZER:																
2	BLE: TYP										-	mas.mas.vo		na managara.			a vertice and
Anne I	IBRATOR	R: TYPE	B&K	4220 s	ER. # 4	57476	SECO	NDAR	Y NO	SF S	OURC	F. C	0011	ng T	ower		
	HER: W	indscre	en				EQUI	P. MAR	(E &	MODE	L:	Mar	ley	Roun	d To	wer	
TIME	CALI- BRA- TION	TEMP	% R H	ммнс	WIND	WIND DIR.	CLIE	NT DE	SIGNA	ATION	l:	Uni	t 5				
12.30	OK	85			0-6			460 M								9	
12.00	OK	00			0-0			h 15					Opi	6100	1119		
							1	11 10	0, ,		1113	211					
	İ			-	-	A TANKE LANDSON	1	SOUN	D PR	ESSU	RELE	EVEL	dB R	E 201	N/M	rms	
TEST NO.	TIME	POSI-		CONDI	TIONS		A	OVER		OCTA	VE B	AND (ENTE	ER F	REQUE	ENCY,	Hz.
,,,,		11011	Boos	ter Pu	mps			LEVEL									
38	12:35	АЗ	3' N	of pur	mp		83	93	88	88	86	83	82	78	70	70	65
39		В3		een pu			86	94			88						
40		C3		of pu			83	93	89	88	87	82	82			1	
41		D3		from C		ımps	79	88	86	84	79	77	76	76	65	64	60
42		E3		from C			75	90	85	84	80	73	72	73	64	65	61
43		F3	60'	from C	Lofp	umps	74	86	88	82	79	73	69	69	64	64	61
44		G3	80'	from C	L of p	umps	73	86	83	81	78	73	68	68	62	64	60
45	M- SHOV	НЗ	100'	from	CLof	numps	72	84	84	80	78	73	67	64	62	62	58
RECOMA	MENDATI	ONS:									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						



DESCRIPTIVE DATA AND ENGINEERING INFORMATION

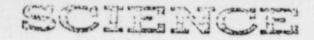
The following descriptive data and engineering information are furnished in connection with Unit 5 at Plant Jack Watson


	Total of the connection with only 5 at Flant o	ack Macson
1.	Type of tower	Mechanical Draft
2.	Crossflow or counterflow	Crossflow
3.	Water flow from tower - gpm	172,000
4.	Temperature of water to tower - OF	120
5.	Temperature of water from tower - OF	90
6.	Design wet bulb temperature - OF	80
7.	Range - OF	30
8.	Approach - °F	10
9.	Orientation of tower	Refer to: Southern Services Dwg. No. E-PS-3014 Marley Dwg. No. 73-41622
10.	Pumping head required above sill at design conditions - ft	43.9
11.	Mean fill cross section area - ft ²	16,000
12.	Depth of fill section - ft	42
13.	Volume of fill section - ft ³	672,000
14.	Splash area - ft ²	448,000
15.	Fill wetted surface - ft ²	896,000
16.	Tower loading (per unit of splash area or wetted surface) - gpm/ft2	0.384
17.	Outside diameter of tower - ft	287
18	Overall height of tower - ft (above sill)	59.8 Refer to
19.	Height of distribution headers above sill - ft (to flume water level)	Marley Dwg. No. 73-41623
20.	Material of fill	Corrugated Asbestos Cement Board per ASTM C221 (Type II Cement; Autoclaved)

21.	Material of support system	Precast concrete with noncombustible glass reinforced polyester grids
22.	Air inlet area - ft ²	33,000
23.	Stack exhaust velocity - ft/sec	30
24.	Number of cells required	One
25.	Number of fans required	16
26.	Fan manufacturer	Marley
27.	Diameter of fan - ft	28
28.	Fan blade material	Glass Reinforced Polyester
29.	Fan blade tip speed - ft/sec	201
30.	Fan speed - rpm	137
31.	Gear reducer manufacturer	Marley
32.	Brake horsepower per fan - hp	147
33.	Motor description	150 Hp, 3/60/550, 1800 RPM, 445TS, TEFC

MISSISSIPPI FOWER COMPANY JACK WATSON PLANT UNIT NO. 8 *50 - DISTRIBUTION BASIN LOUVERS - DISTRIBUTION FLUME - FAN DECK PLAN S CUTLET ST OTHERS ACCESS WALKWAY AND EQUIPMENT REMOVAL IN ET RISER Qz.

SCHEMATIC V.EW-PLAN CCACRETE CROSSRLOW THI MANUTE COMMAN


MISSISSIPPI POWER COMPANY
JACK WATSCH PLANT
UNIT NO 5

ELEVATION

GONCRETE CROSSFLOW

THE NAME OF COMMAND

THE NAME O

Propagation of Environmental Noise

More theoretical and experimental work could permit the prediction and subsequent control of environmental noise.

R. H. Lyon

Sound propagation is a general term that embraces the myriad of processes that occur in the transmission of acoustical energy from the place where it is generated to the point of observation. It includes the phenomena of refraction and geometric spreading, air and surface absorption, and scattering, reflecting, and diffraction. All of these are important and particular examples of environmental noise propagation. The main problem in studies of noise propagation is that of determining which mechanisms are dominant in any particular situation.

The process of observing the sound by measuring it with a microphone or listening to it has little interaction with the propagation process, except that the strategy for making accurate observations is affected by our understanding of the propagation. There is not such a distinct separation between the processes of generation and propagation, however. The location of a source may affect both its sound power output and the transmission of the sound. Location affects the directivity of the sound source.

As an example, let us consider an ordinary fan operating in an open window. If the window is closed, the sound power radiated by the fan may increase because of the impact of flow upon the window page, winter the programmen

path is also very markedly changed. Nevertheless, with most environmental noise, we assume that the sound output of the sources such as cars, jackhammers, and aircraft remains nearly unchanged as the sources move about.

The Phenomena That Comprise Propagation

The physical phenomena that are associated with sound propagation have been mentioned. Most practical situations include at least two or three of these phenomena. In this section, I give a brief description of each phenomenon and an indication of the kind of propagation problems in which it occurs.

Geometric spreading. This refers to the spreading of sound energy in space as a result of the expansion of the wave fronts, as shown in Fig. 1. It (almost) always causes an attenuation in sound levels by a certain amount when the propagation distance is changed by a fixed ratio. This ratio is ordinarily the distance doubled, abbreviated dd. Geometric spreading is generally considered to be independent of frequency and has a major effect in all situations of sound propagation (1).

Refraction. Refraction is the bending of sound rays caused by gradual changes in the speed of mean that are rought about 11mm, only by wind and temperature gradients in the atmosphere (2). Humidity also changes the speed

of sound by changing the average molecular weight of the gas. Since the speed of sound is shown by c= $(\lambda RT/M)^{12}$, the effects on sound of changes in molecular weight, M, and temperature, T, are equivalent (R is the gas constant and A is the ratio of specific heat). This equivalence is expressed by deriving an "acoustic temperature" for purposes of sound speed calculation (3). An example of refraction with temperature lapse and wind gradient is shown in Fig. 2. Refraction is important when the change in the path of sound may affect shielding of the observer from the source as shown in Fig. 3. Refraction effects are usually only observed for distances of a few hundred meters (1 foot = 0.3 meter) or more.

Air absorption. The absorption of sound in air is caused by (shear) viscosity, heat conduction, and molecular vibrational relaxation (4). The effect is commonly expressed as a change in sound level in a fixed distance. Commonly chosen distances are 1000 feet or I kilometer. The attenuation is frequency dependent and typically amounts to a few decibels per 1000 feet in the most audible frequency bands. 500 hertz to 2 kilohertz. This form of attenuation is most significant for the noise of aircraft landing and taking off or for other noise problems in which the propagation distance is rather long.

Surface absorption. Sound levels are affected by surface reflections in two distinct ways. When the source and receiver are both close to the ground, the ray reflected from the ground may interfere destructively with the direct ray as shown in Fig. 4 (5). This effect is usually noticeable over ranges of propagation from a few hundred to a few thousand feet in the frequency range from 100 to 500 hz. When the source is very close to the ground as in the case of snowmobiles or lawnmowers, the effect is even more important and can affect sound levels very close to the source. An example of this aticonabite exect is shown in 192, 5 (6).

Sound levels are also affected by the loss of energy upon reflection. This process is called surface absorption in

The author is in the department of mechanical engineering at the Massachusetts Institute of Technology, Cambridge 02139.

acoustics. The effect is of paramount importance in room acoustics for the sound strikes the walls many times (7). In outdoor propagation the losses upon reflection are also important. When sound propagates along a constant for example, multiple reflections from building faces occur. Sound that would reach the observer if the buildings were perfect mirrors is reduced because of absorptive reflection losses (8) and because of redirection of the acoustical energy. The redirection of sound is more properly included in the subject of scattering.

Scattering. When sound waves en-

counter a region of inhomogeneity in the medium (a local variation in sound speed or air density) some of their energy is redirected into many other directions. This process is called scatterper and is Connect trees for among pert rejection, in those processes, the redirection is essentially into one direction. Scattering is produced in environmental noise situations by turbulence (9), rough or irregular surfaces (10), and obstacles in the path such as trees and other vegetation (11). In industrial situations pipes, machines, and other obstacles scatter and redirect the acoustical energy.

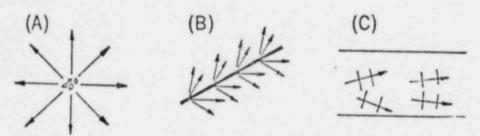
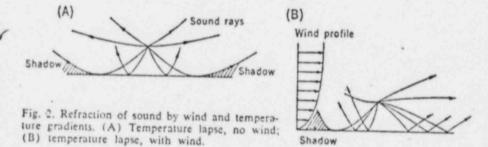



Fig. 1. Geometric divergence of sound waves and resulting attenuation. (A) Spherical spreading, 6 dB/dd; (B) cylindrical spreading, 3 dB/dd; (C) sound in channel, 0 dB/dd.

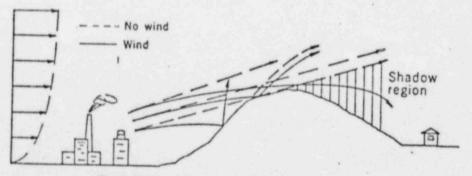


Fig. 3. Destruction of barrier effect by wind refraction.

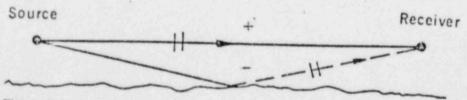


Fig. 4. Reflection of grazing wave from ground showing possibility of destructive interference.

Scattering can cause quite remarkable changes in sound levels. When sound would normally be shielded from some region by a barrier, turbulence can cause the effectiveness of the barrier to be a say to fueed. Parriers rately not vide more than 15 dB of shielding in field situations because of the sound energy scattered into the shadow region by furbulence (12). On the other hand, turbulence scattering does not cause losses in energy great enough to compete with other attenuation processes in directly illuminated regions.

The scattering of sound by rain, fog, or snow, for example, at ordinary frequencies is not great enough to be significant (13). The effects of precipitation are far more important in changing sound transmission by changing the humidity and the temperature distributions in the lower atmosphere.

Reflection. When the sound encounters a surface that is several wavelengths in extent, the entire wave is redirected. This results in increased sound levels for positions illuminated by the rebounding wave and reduced levels at other positions, as shown in Fig. 6. Barriers reduce sound levels by reflection; the orchestra shell of a concert hall enhances sound by the same process.

As mentioned before, reflections are of particular importance in propagation along city streets. Experiments show that significant amounts of sound energy may still be present after a wave makes four or five reflections from the surfaces of a building. In most outdoor situations, however, reflection and scattering take place simultaneously because of the rough texture of the surfaces. The actual absorption of sound from masonry walls is generally less than 10 percent, but the amount redirected by scattering may be significantly greater than this (14).

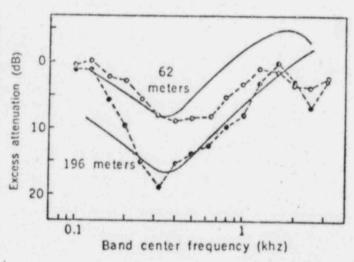
Diffraction. In a shielded region (behind a house that faces a busy street, for example) sound levels may be limited by diffraction. Diffraction and scattering are very similar phenomena. Diffraction may, in fact, be defined as the scattering that occurs at a region of inhomogeneity at the bounding surface of the medium, such as where there is a rapid change in impedance or radius of curvature (4, p. 449). Thus, a finite wall forms a boundary to the medium. The flat surfaces of the wall result in reflection, but the sharply curved surfaces at the edges of the wall cause the scattering termed "diffraction"

Became the pipes and medines in

e factory might be defined as part of the "bounding surface" of the medium, it is evident that the distinction between scattering and distriction may be somewhat artificial. Diffraction in outdoor sound propagation is important in ransmitting sound energy into shielded areas, although the absolute amount of sound power redistributed by diffraction is quite small.

Wall transmission. The phenomena already discussed are of principal importance to people outside of buildings. Because most people spend much of their time within buildings, the transmission of sound through the exterior walls, windows, and doors of these buildings is of prime importance in establishing the noise levels to which people are exposed. In this article I discuss the prediction of noise levels outside buildings; once the exterior sound levels are known it is possible to predict the noise within buildings by reference to standard transmission values (15).

To show how the various phenomena that affect sound propagation enter into practical noise situations I will consider several examples. In each example there are aspects to the propagation that are well understood and there are others that are uncertain. Active research is ider way in this field and we may hope that some of the uncertainties will soon be removed.


Aircraft Take-Off Noise

In Fig. 7 an aircraft is shown taking off along the path ABC, and we are interested in the sound levels heard by the observer at O. The principal determinants of the sound at O are (i) the power of the source (in octave bands), (ii) the directivity of the source, (iii) geometric spreading, (iv) air absorption, and (v) ground reflection (16). Determinants (i) and (ii) are source characteristics and not propagation effects; (iii) and (iv) are the principal propagation effects that must be evaluated for this situation; (v) is important, but is easy to evaluate-the ground reflection simply adds 3 dB to the received sound level at a normal height of the observer's ear above the ground.

Geometric spreading for "point" sources is simply 6 dB of loss per doub
3 of distance (6 dB/dd). Refraction of the sound may change this simble. There is more uncertainty in the air absorption. In calculations of aircraft noise at distances of several kilometers.

the sound levels in the higher frequency bands have been consistently overestitioned (1/1), reduction become as in-

Recent investigations of air absorption over wide ranges of frequency and humidity indicate that the role of nitrogen in producing attenuation in the lower frequency bands has been underestimated (18). Although a single relaxation theory of molecular vibration for oxygen and nitrogen molecules appears to fit the form of the absorption data, the role of water molecules in catalyzing this energy transfer alters the temperature dependence of the absorption (19). Also, the reaction can become complicated in that there may be several different modes of energy transfer to the molecules. These multiple transfer processes together with the eatalyzing effect of the water vapor tend to conceal the temperature design of the second conceal
Fig. 5. Excess attenuation caused by absorption; ground receiver height, 1.83 meters; source height, 1.52 meters. Symbols: O. theoretical data; O, experimental data. Parameter on curves source-receiver distance. [From Delaney and Bazley (6); courtesy of the Journal of Sound and Vibration]

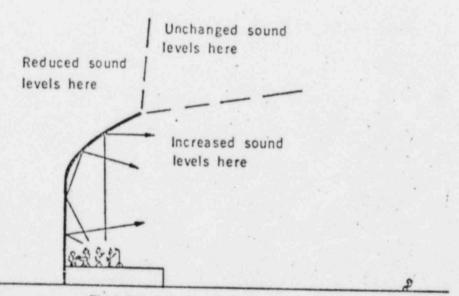


Fig. 6. Reflection of sound energy by orchestral shell.



Fig. 7. Sources of attenuation of aircraft noises.

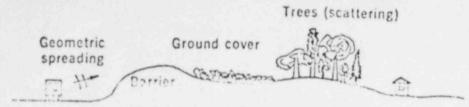


Fig. 8. Sources of attenuation of traffic noise.

pendence. Thus, although air absorption is well understood at a temperature of 20°C it is not understood how the absorption should vary as one departs from this temperature.

Highway Noise

The noise from trucks or automobiles is generated close to the ground and usually the receiver is also near the ground. Figure 8 shows some topographical features that may occur near a highway and affect sound propagation. These features act as barriers to the sound. Ground cover and trees may produce low-frequency attenuation as a result of absorptive reflection and sound scattering.

Attenuation caused by geometric spreading of the sound waves from a single vehicle increases at 6 dB/dd. A line of traffic, on the other hand, produces an average noise level that decays

at 3 dB/dd (20). Theoretical and experimental studies have been conducted on the statistics of noise from lines of traffic composed of different numbers of the principal classes of noise sources: trucks, passenger cars, and motorcycles (21). In making a precise determination, a different geometric attenuation factor must be applied to each statistic of the noise field. This is an area in which it is very difficult to separate source characteristics from "propagation."

The attenuation produced by topographical features is treated as a simple barrier diffraction problem in most calculations (22). Much more work needs to be done in this area since earth berms, road cuts, and barrier walls can be used in the control of noise from roadways. The use of standard diffraction formulas for "thick barriers" such as buildings or elevated roadways is not a resolved issue at present. In most calculations the thick barrier is treated as a single, equivalent, taller, thin

harrier (23); in other calculations the theory of double diffraction is applied (24). It is evident, however, that a rounded earth berm covered with short vegetation is not adequately accounted for if it is treated as a simple rigid wedge. The use of diffraction studies of absorbing cylinders would represent a step forward (25), but studies of diffraction by layered cylinders would be even better.

There has also been a series of studies regarding the attenuating power of trees, but the results of these studies are inconclusive (26). Most acousticians agree that (aside from esthetics) ringing on syard with trees presents very little bather to neighborhood noise. Studies of propagation through various kinds of weoded regions show attenuation factors that differ by a factor of 10. Even the proper form of attenuation dependence is uncertain.

An interesting study of sound attenuation by vegetation and ground was reported recently by Aylor (27). In this study, major mechanisms of attenuation by vegetations were identified as scattering by leaves, stems, and trunks. and ground interference. Aylor attempted to identify the relative importance of various mechanisms and presented some theoretical considerations that support his conclusions. Although a fully developed scattering theory could probably account for such data, the problem of presenting the results in a manner intelligible and useful to noise control engineers would remain.

Thus road traffic noise over open flat ground is reasonably well understood. Reduction in noise levels can certainly be achieved by the use of topographical features, including ground cover, but the quantitative prediction of such reduction may be substantially in error.

Noise Propagation in the City

A possible reaction to this topic is that urban noise does not have to propagate-it is everywhere! It is true that noise sources in the city are ubiquitous. Nevertheless, there are quiet regions in which the background noise is set by the general distribution of noise sources throughout a city (28). There are also quiet streets that have intrusive noise that is produced on a busy adjoining thoroughfare (29,. In addition, there are intensive noise sources that may dominate the sound in a particular vicinity, even in busy areas. In all of these situations, the combined effects of reflection and shielding by buildings are

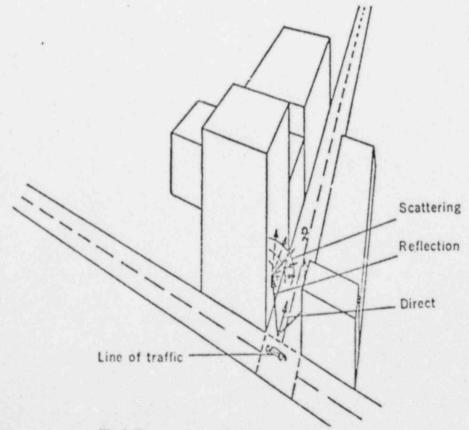
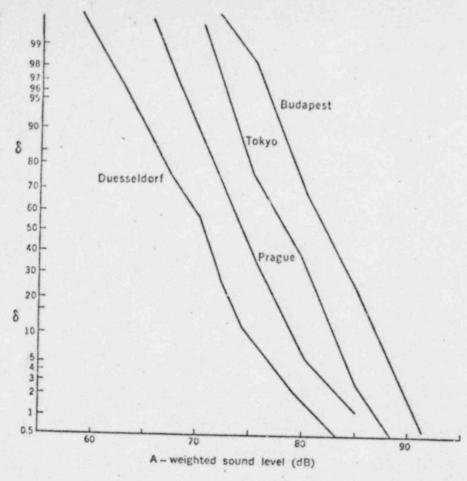
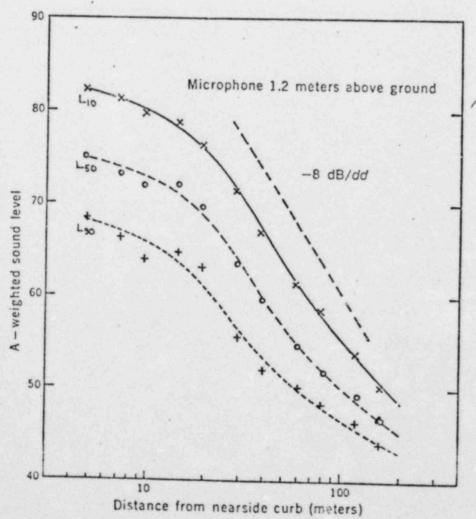


Fig. 9. Transmission phenomena in urban traffic noise.

Fig. 10 (top). Cumulative distributions of traffic noise in the loudest streets of Budapest, Tokyo, Prague, and Duesseldorf. Fig. 11 (bottom). Variation of noise level with distance from main road along cross road. [From Delancy et al. (29); courtesy of National Physical Laboratory]


(aside from geometric spreading) the dominant propagation factors that determine sound levels for the observer.


As an example, let us consider sound propagation along a city street as shown in Fig. 9. Specular reflection from building facades produces the effect of an infinite line of sources (images of the real source) which has a 3 dB/dd decay along the street. The scattering and capture of sound by the spaces between building acts as an absorption effect, which means that the sound levels should eventually decay at 6 dB/ dd (8). In fact, however, experiments show that there are ranges near the source along which the sound decays at 7 to 8 dB/dd, a rate that is impossible with a model that contains only specular reflection and absorption (29). This discrepancy can probably be accounted for by the effect of scattering both in enhancing the sound levels near the source and acting as an excess absorption effect, but such conclusions are very speculative.

Propagation in Relation to Noise Criteria

If it is important for us to identify the major features of propagation for various environmental noise situations, it is equally important that we understand what questions we should ask the propagation model once the phenomena are identified. Our asking the right questions depends on our knowing what are the features of the noise pattern in space and time that are related to annoyance, task interference, loss of hearing acuity, or some other undesirable effect. Thus, although we can separate the physical processes of propagation and observation, we cannot make such a separation when we have to predict noise impact. Most calculations of propagation losses for sound waves are computed or expressed for average sound levels. When other statistics of the noise are of interest, the effect of propagation is not the same as it is for

some of the measures of noise levels that are based on these statistics we can formulate some questions that might be asked of the propagation model.

Psychoacoustic Criteria

The term "criterion" in environmental matters is used in two ways (30). First, it is an expression or an alice of he limit for some goest, for example, "my understanding of speech should not be interfered with more than 10 percent of the time," or "my hearing should not be impaired so much, that while I may not be able to hear some musical features very well, my understanding of speech should be unaffected." On the basis of laboratory and psychoacoustical field tests, these "performance criteria" are then translated into physical measures such as speech interference level (SIL) or A-weighted sound levels (measured by the "A" selting on a sound level meter) according to the Occupational Safety and Health Act of 1970 (1, p. 546). Second, the numerical values of the disturbance of these physical scales that correspond to the performance criteria are also referred to as "criteria." Although this has often resulted in confusion. it is very difficult to change the dual usage of the term.

Psychoacoustical criteria have to do with both the physical effects of sound on the biological or nervous system and the subjective aspects of sound. Physical effects include such criteria as loss of hearing, disorientation, and pain. This class of criteria is not generally thought to be of prime significance in the art page in a second which meanly loudness, analysance, speech interference, startle, and task interference, are so termed because the degree to which they are apparent depends upon the attitude of the listener toward the noise and on his familiarity with it. The establishment of standards for urban noise must include consideration of several subjective criteria and not just a single one.

The proliferation of scales for measuring noise appropriate to these criteria is a cause of some embarrassment to acousticians. It is the source of the "alphabet soup" one encounters in the literature on environmental noise: the A-weighted sound level [units dB(A)]; perceived noise level, PNL (with various suffixes, prefixes, and subscripts to note corrections for duration, presence of tones, and impulse); noise criterion curves (NC curves); noise exposure forecast (NEF); composite (or community) noise rating (CNR); community noise equivalent level (CNEL), and so on. Out of these, the simple Aweighted reading of the sound level

S". S'

Fig. 12. Scale drawing showing acoustical images heard by listener. The sound generated at S is preserved at ground level on a simulated city street. The points S', S', and S'' are acoustical images of the source point,

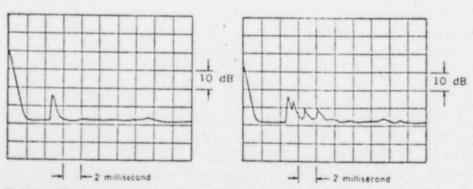


Fig. 13. Time pattern for received sound level in the 32-kilohertz band; (A) with sound absorbing material on the walls; (B) no sound absorbing material.

meter appears to be gaining credibility as a general scale for noise. The A-weighting filter in the meter gives an importance to various frequency compositions of the tasset in accordance with the foundations scattarily of the ear at moderate sound levels.

The A-weighted sound pressure level, $L_{\rm p}^{\rm A}$, will vary in time and place, however, in a random—or at least unpredictable—manner. In the following discussion I will assume that the "A" notation is understood; that is, all levels are A-weighted. The variability of the noise has been shown to have an influence on its acceptability. Studies of traffic and aircraft noise have led to a rating scale for noise called the noise pollution level, $L_{\rm NP}$, that takes account of this variability (31).

It is given by

$$L_{NP} = L_{\infty} + (L_{16} - L_{-}) + \frac{1}{60} (L_{10} - L_{\infty})^{3}$$
 (1)

when the A-weighted sound levels are distributed in an approximately normal distribution (the tendency of environmental levels of pollutants to be distributed in a log-normal fashion has also been noted in air and water pollution problems). Statistical distributions of some traffic noise levels are shown in Fig. 10. The quality L_n is the nth percentile value of the cumulated variable, the value that is exceeded n percent of the time. Equation 1 shows that wide variations in sound levels will increase the value of $L_{\rm em}$

As mentioned earlier, propagation effects will cause differing changes in these various statistics as the observer (or source) moves from one place to another. Most studies of acoustical propagation have been concerned with changes in average signal energy only. In a traffic noise situation, we might want to determine the effect of a barrier, say, on the 10 percentile noise level (L10), which may be quite different from its effect on Law Generally, a burrier has a greater noise-reducing effect on nearer sources than more distant ones. Since there are more sources at a distance, the effect of the barrier is to reduce the variance of the sound levels and to decrease L10 values more than L_{50} values are reduced (32). Similar calculations have also been made for sound transmission through walls and windows (33).

Delaney et al. (29) have shown that a row of houses facing a busy street will reduce the noise entering their

back yards by 10 to 15 dB. The noise reduction for the 10 percentile levels is about 5 dB more than it is for the 90 percentile levels. This would appear to confirm the suggestion that nearby sources (that are more effectively blocked by the houses) are responsible for the 10 percentile levels and that more distant sources dominate the 90 percentile levels.

If a particular kind of noise source is prevalent (such as surface vehicular traffic) these various statistics of the noise will be interrelated in the sense that the form of the distribution is known. Examples of traffic noise distributions in city streets are shown in Fig. 10 (34). In this event, one may represent the sound field by a single statistic, such as the L_{10} value. The English use L_{10} because it is not so dependent on infrequent, very loud noises in the way that L1 or L5 might be, and tends to be determined by noise sources that are generally in the vicinity of the observation point. Thus, one can avoid setting noise standards on the basis of the general prevailing background noise of the city in the way that Loo prescription might tend to do.

How Well Do We Understand Propagation?

In my discussion of what propagation effects are, and how we should use propagation information to predict noise measures of interest, I have only suggested some of the limitations that exist in predicting the numerical effect of propagation in particular situations. I will now discuss in more detail the problems of identification of propagation effects and the evaluation of those effects.

The first problem, that of identification, is the most crucial one. Practical field measurements rarely allow the kind of control of source parameters and variation in path properties that would be ideal. Thus, although we know that geometric spreading, reflection, and scattering are the important processes occurring in Fig. 9, for example, we cannot tell from the data just what the contribution of each will be. The data of Delaney et al. that apply to this situation are shown in Fig. 11 (29). As explained earlier, these data connot be explained on the basis of reflection and geometric spreading

One way of identifying propagation 16 MARCH 1973

paths and effects is through the use of scaled models. In acoustic scaling, we select the frequency of operation so that the ratio of wavelength to dimension is preserved. If the modeling medium is air at ordinary temperatures. this means that high frequencies must be used. Typically, scaling ratios from 1:10 to 1:100 may be employed for propagation modeling, which may require that one generate and sense sound signals at frequencies up to about

An example of path identification by modeling is shown in Figs. 12 and 13 (35). In this experiment, a spark is used to generate an impulsive sound and the sound is measured at the ground in a model of a city street. The relative contribution of the reflections from building surfaces is determined by covering them with absorbing material. When this is done, only the direct pulse is evident at the microphone.

This experiment is a relatively simple example of an important advantage provided by the use of models. Changes may be made in the propagation path, walls may be made absorbent, rough, or of different shape, for example, in ways that could not be done in a field experiment. The field experiment is necessary as a baseline, however, and is used as a guide to establish realism in the model. Once the sound patterns in the model and the field data are found to correspond, variations in the surfaces, source, and receiver locations can be made. By changing from smooth building surfaces, for example, we can see the effects of surface scattering without changing other acoustical parameters such as path length or surface materials.

The phenomena associated with propagation can be discerned from laboratory or field data on the basis of time or spatial patterns of the sound. The quantitative prediction of the effect of each process may not be so quickly obtained. For example, the theory of surface scattering that has been so well developed for underwater sound (nonspecular reflection from the upper free surface and the bottom) has not been developed for the nonspecular reflection from the faces of buildings, or reflection from an irregular ground. In fact, most of the ordinary processes of sound propagation in the outdoors have obvimake not had the deeper of their most or extension a contract to their that the more detense-related problems

Conclusions

Although the basic processes associated with the propagation of environmental noise, such as reflection, scattering, and spreading are well known. numerous theoretical problems remain. The propagation processes that are significant in different situations have yet to be identified, and criteria for evaluating their relative importance in each situation must be developed. In evaluating the noise of aircraft, for example, attenuation caused by the spreading of energy may exceed 60 dB, with atmospheric attenuation accounting for another 10 dB or so. In the propagation of highway noise, on the other hand, spreading may account for only 10 dB of attenuation, air absorption for 1 dB, and absorption by ground may account for 10 to 15 dB of attenuation. If those problems are approached systematically, we should be able to predict accurately the effects of noise sources and barriers and thus control the distribution of noise levels in cities and suburban areas.

References and Notes

- I. U. Kurze and L. L. Beranck, in Noise and Vibration Control. L. L. Heranck, Ed. (McGraw-Hill, New York, 1971), chap. 7. K. U. Ingard, Proceedings of the Annual Na-
- tional Noise Abatement Symposium 4th, 1953. 3. U.S. Department of the Army. A Meteorology, Field Manual FM6-15
- Army Headquarters, Washington, D.C., 1952).
 4. P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968),
- p. 270. 5. K. U. Ingard, J. Acoust. Soc. Amer. 23, 239
- M. E. Delaney and E. N. Bazley, J. Sound Vib. 16, 315 (1971).
 L. E. Kinsler and A. R. Frey, Fundamentals
- of Acoustics (Wiley, New York, ed. 2, 1962), chap, 14.
- 8. W. R. Schlatter, thesis, Massachusetts Insti-tute of Technology (1971).
- 9. R. Kraichnan, J. Acoust. Soc. Amer. 25, 1096 (1953).
- 10. B. E. Parkins, ibid. 42, 1262 (1967). 11. T. F. W. Embleton, ibid. 40, 667 (1966). W. F. Scholes, A. C. Salvidge, J. W. Sargent,
 J. Sound Vib. 16, 627 (1971).
- 13. F. M. Wiener, J. Acoust. Soc. Amer. 33, 1200 (1961).
- J. E. Manning, personal communication. Manning found a loss of 2 to 3 dB upon reflection from typical building structures.
- 15. L. L. Beranek, Acoustics (McGraw-Hill, New York, 1954), chap. 11
- 16. Society of Automotive Engineers, Soc. Automotive Eng. Inform. Rep. No. 876 (1965).
- D. E. Bishop and M. A. Simpson, NASA Contract Rep. No. 1751 (1971).
 J. E. Piercy, "Comparison of standard meth-
- ods of calculating the attenuation of sound in air with laboratory measurements," paper presented at a meeting of the Acoustical Society of America, 21 October 1971; L. B. Evans and L. C. Sutherland, "Investigation of anomalous behavior of sound absorption by molecular relaxation" (Wyle Research Laboratories, El Senundo, Calif., 1970)
- I ke he metalling in John and (Mewraw-Hill, New York, 1971), chap. 7.
- 20. E. J. Rathe, J. Sound Vib. 10, 472 (1969).

FRANCIS M. WIENER

BOLT BERANEK AND NEWMAN INC. CAMBRIDGE, MASSACHUSETTS

Sound Propagation Outdoors

The engineer is faced with the problem of estimating the sound-pressure levels generated by a source of sound some distance away. The roar of jet aircraft being run up on the ground wakes children from their sleep in an apartment house a nfile or two away. Or an airplane taking off from a city airport interrupts telephone conversations in an office building under its climb path. In providing a sensible solution to these and a host of other problems of noise control, the engineer must take into account the attenuation of sound as it travels through the atmosphere. To be sure, in many cases the issue can be dodged by assuming "inversesquare law" attenuation and nothing more. This solution is almost always too conservative, i.e., the actual attenuation of sound that has travelled from source to receiver is larger than that calculated from the inverse-square law alone. In a growing number of cases, however, the engineer cannot afford to take the easy way out: a more accurate estimate of the actual atmospheric attenuation may result in a substantial saving in expensive noise control measures. This article attempts to provide a better understanding of the

principles governing propagation of an acoustic signal in the audio frequency range through the lower atmosphere.* It also presents design charts based on recent measurements † which permit engineering estimates of the attenuation for a number of practical situations. The reader is cautioned, however, in two respects, there is, as yet, no comprehensive theory, and the body of available experimental data on which the design charts are based is still limited.

Sound Transmission Through the Lower Atmosphere

The atmosphere is by its nature in constant motion and fluctuation. Density, temperature, pressure, and humidity are never uniform in a given volume of air, nor are they constant in time. Sound waves travelling through the atmosphere show these nonuniformities by fluctuations in sound level, whose average value depends materially on the wind, temperature

and humidity conditions along the path of propagation. The longer the transmission path through the atmosphere, the more important is the effect of these factors on the received sound level.

Typically, in a noise control problem, the receiving point is near the ground, and very frequently the noise source is also near the ground. The discussion in this article is, therefore, concerned primarily with the propagation of sound in the audible frequency range through the lower atmosphere along the ground, except in the important case of aircraft in low flight at an altitude of no more than a thousand feet or two. Sound transmission from aircraft flying at significantly higher altitudes will not be discussed here.

The strong interdependence between sound transmission along the ground and the "weather" is a matter of everyday knowledge. It has been a matter of scientific investigation for centuries.\(^1\) Results were frequently not general enough or not of the type needed by the engineer until recently when adequate micrometeo; ological techniques became available and were brought to bear on the problem. Significant strides have been made toward an engineering

^{*} Much of the material presented here has been taken from "Noise Reduction, A Series of Lectures Presented at the Massachusetts Institute of Technology," ed. Beranek (to be published by McGraw-

Hill Book Co., Inc., New York),

† This work was carried out under contract with the U. S. Army Signal Corps.

solution to the problem by means of a combination of theory and empirical design curves. For air-to-ground transmission of the type of ed here, on the other hand, to weather seems to play a much smaller role. The material presented here is an attempt to reduce to engineering practice what has been learned from theory and experiment to date.

The Inverse Square Law and Excess Attenuation

In an ideal, homogeneous, lossfree atmosphere, the sound pressure decreases inversely with distance when one is in the far free field of the source. In other words, there is a 6-db decrease in soundpressure level for each doubling of distance. However, due to atmospheric conditions and obstacles, the sound-pressure levels measured outdoors are almost always lower, sometimes drastically so, than those predicted from this spherical spreading alone. The important factors which affect sound propagation along the ground are: (1)

ed absorption in the air; (2) esence of walls and trees; and (3) wind and temperature gradients, atmospheric turbulence, and the acoustical effect of the presence of the ground.1, 3 All these factors are to some extent interrelated; the effect of one is dependent on the presence of the others. In the case of sound propagation from air to ground, the effect of obstacles on the ground and the effects of ground-created wind and temperature gradients are clearly not present. Sound absorption in the air and, to some extent, atmospheric turbulence are then the factors which primarily determine the attenuation.

It is useful to lump the net effect of atmospheric and terrain factors into a single quantity, the excess attenuation A, in decibels over and above the effect of spherical spreading. For the purpose of arriving at an engineering estimate the excess attenuation can be split

to several contributions assumed to be independent of each other:

 $A_e = A_{e1} + A_{e2} + A_{e3}$ decibels (1)

where:

 $A_e = \text{total excess attenuation},$ $A_{et} = \text{attenuation due to absorption in the air,}$

 A_{e2} = attenuation due to walls and trees,

 A_{e3} = attenuation due to wind and temperature gradients, atmospheric turbulence and ground effect.

In the following, we shall discuss these various contributions quantitatively and from a practical point of view. They are evaluated primarily in terms of their average values, ignoring for the moment fluctuations in the received sound-pressure levels. It is assumed that the small-signal approximations hold and that the sound is not so intense that non-linear terms need be considered.

The matter of sound absorption in the air, A_{cl} , while still a subject of investigation by several groups, is summarized in the literature and will, therefore, not be discussed here in detail. Figure 1 shows an estimate of the attenuation due to sound absorption in the air plotted as a function of distance from the source for the various octave bands. These curves were derived by following an approximate procedure given in Reference 4. They represent a con-

servative (i.e., the predicted attennation is smaller than that which one would measure) estimate of the actual values of molecular absorption. The curves will be useful in noise control problems until more accurate data become available. It was assumed, among other things, that the attenuation measured at the geometric mean frequency of the octave band is representative of that for the whole band and that the absolute humidity of the air through which the sound propagates is not too low (at least about 7 to 8 grams of water per cubic meter). The effect of barriers on the attenuation of sound was the subject matter of a recent article in these pages.5 Those results can be used to evaluate the second term in the excess attenuation, Acz.

In view of the above, a discussion of the effects of wind and temperature gradients, atmospheric turbulence, and the acoustical effect of the presence of the ground constitute the main part of this article.

Ground-to-Ground Transmission

Over open level ground, there are almost always appreciable vertical temperature and wind gradients: the former are due to the heat exchange between the ground

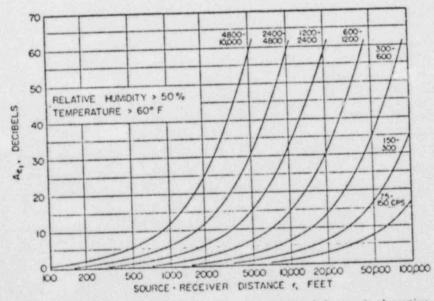
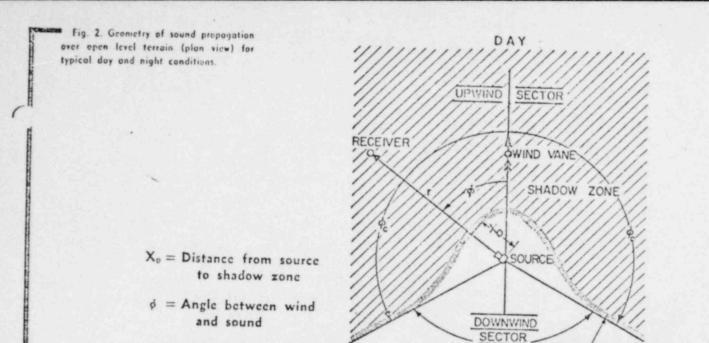
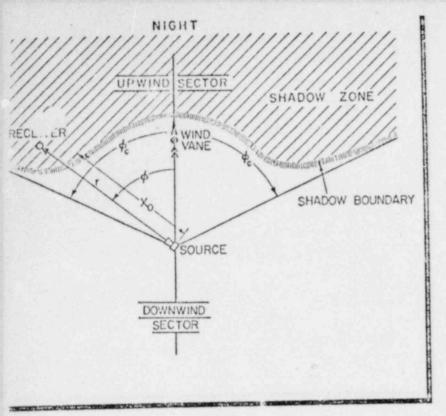



Fig. 1. Chart for estimating the excess attenuation of sound due to air absorption.

and the atmosphere, the latter, to the friction between the moving air and the ground. Because of these gradients, the speed of sound ries with height above the ound and sound waves are reracted, that is to say, bent upward or downward. Under such conditions, it is possible to have a "shadow zone" into which no direct sound can penetrate. A shadow zone is most commonly encountered upwind source, where the wind gradient bends the sound rays upward.* Downwind, the wind gradient bends the sound rays downward and generally no shadow zone is produced. Thus, the refraction of the sound waves by wind is not symmetrical about the source. The refraction of sound waves by temperature gradients, on the other hand, is symmetrical about the source. Typical daytime conditions are a negative temperature gradient or temperature lapse, i.e., the air temperature decreases with heigh. Sound waves are then refracted upward, and if the wind

p. = Critical angle

speed is low, a shadow zone may encircle the source completely. At night, with low winds and clear sky, a positive temperature gradient, or temperature inversion, exists and the sound rays are refracted toward the ground. With wind present, wind and temperature effects superimpose, but usually the wind effects control.


These shadow zones are never sharp in the sense of light propagation. Sound energy is diffracted into the shadow zone as well as scattered into it by turbulence.7 Some investigators feel that the finite acoustic impedance of the ground affects the sound-pressure level along the ground both in and outside of the shadow zone. Few systematic data are available for an estimate of this type of acoustical ground effect. However, the presence of the ground makes itself most strongly felt by creating wind and temperature gradients rather than by its finite acoustic impedance.

In the present state of the art it seems best to take an experimental approach to the problem of providing engineering estimates for the excess attenuation due to weather effects. Not only is there no comprehensive theory, but neither the measurement nor estimation of the micrometeorological parameters (which of necessity must be used in any computation of the excess attenuation) is probably not practical for the average engineer interested in noise control. On the other hand, useful engineering estimates of the excess attenuation to be expected from temperature and wind gradients over open level terrain can be obtained by considering recent experimental data.

SHADOW BOUNDARY

Figure 2 shows typical day and night situations. Source and receiver are shown a distance r apart. The average direction from which the wind is blowing is indicated by a wind vane. The angle between the direction of the wind vane and the line connecting the source and receiver is called o. There is generally a shadow zone (the shaded regions of Fig. 2) on the upwind side of the source because sound waves travelling upwind tend to be bent upward by the wind. However, any wind present tends to bend the sound waves downward in the downwind direction, and there is no shadow zone there. During the day the negative

Wind gradients near the ground are, the average, always positive, i.e., the ad speed increases with height.

mperature gradient tends to reforce the shadow zone formation
pwind but to oppose it downind. At some critical angle ϕ_e^{-1} te wir' and temperature gradints—cancel each other and
he distance to the shadow zone
ecceles theoretically to infinity. As
result the plane is divided into
n upwind sector $2\phi_e$ and a down-

wind sector $360^{\circ} - 2\phi_c$. At night the critical angle ϕ_c is typically much smaller than during the day. With very light winds and a strong temperature inversion, no shadow zone exists and the critical angle is zero.

Experiments have shown that the excess attenuation is frequently radically different upwind and downwind, with a gradual transition at the boundaries $\phi = 2 \phi_{+}$. On a sunny day with moderate winds, the excess attenuation inside the shadow zone upwind is typically 20 to 30 db higher tran that for the same distance downwind.

Extensive measurements in the frequency range from about 300 to 5000 cps have been made recently under a large variety of micrometeorological conditions.* These measurements have been taken over open level terrain with sparse low ground cover (1 to 2 ft high), a source height of 12 ft and a receiver height of 5 ft. Windspeeds encountered ranged from 2 to 3 mph to 10 to 15 mph. From this series of experiments empirical design curves have been derived,9 with the aid of which the excess attenuation can be estimated for any angle \(\phi \), and for distances r up to about one mile, provided the temperature and wind gradients are known at a height of approximately half the average source and receiver heights. Since the experiments did not include tests at the very low and very high audio frequencies, the design curves are subject to confirmation there.

In a typical noise control situation, the problem is usually not that of estimating the excess attenuation A_{ca} for a given instant, but of estimating A_{c3} on a year-round

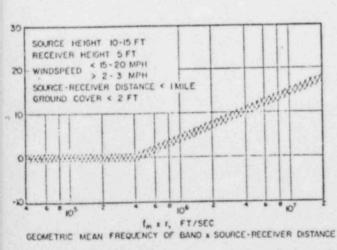


Fig. 3. Chart for estimating the excess attenuation of sound prop downwind over open level terrain (subject to confirmate a at the very low and very high andro frequencies).

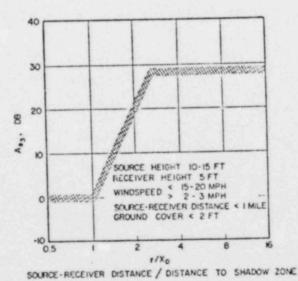


Fig. 1. Chart for estimating the excess attenuation of sound propagated upwind over open level terrain (subject to confirmation at the very low and very high audio frequencies)

12271

basis perhaps, or for many values of ϕ , since the wins! direction is generally subject to diurnal and seasonal changes. Diurnal and seasonal variations occur also in the temperature and wind gradients.

(view of the complexity of the

oblem it seems best to restrict ourselves to two conditions: (1) straight downwind propagation ($\phi = 180^{\circ}$), and (2) straight upwind propagation ($\phi = 0^{\circ}$). These conditions bracket the extreme values of $A_{\rm ra}$ for any given set of conditions. The engineer must then make his choice appropriate to the problem at hand.

Figure 3 is the empirical design chart giving values of A_{ea} for straight downwind propagation. The abscissa is plotted in terms of the product $f_m \times r$, where r is the distance from the source to the receiver in feet, and f_m is the center frequency of the octave band in question, in cycles per second.

Figure 4 is the design chart giving values of A_{e3} for straight upwind propagation. The abscissa is plotted in terms of source-receiver distance, normalized to the distance X_0 from the source to the shadow zone. The distance X_0 can be obtained by simple measure-

ats in the field, since at that a stance the sound-pressure level starts to drop markedly below what would be expected from the inverse-square law. The drop can often be detected by ear. For the given heights of source and receiver, the distance X_0 can also be estimated from the values given in the table.

It should be noted that these design charts contain implicitly the effect of atmospheric turbulence near the ground on the received sound-pressure level. Work is in progress to determine the effect of atmospheric turbulence itself as distinct from other effects. Although preliminary results indicate that the attenuation due to turbulence, in decibels, depends linearly on distance, it is still too early to draw more general conclusions.

Air-to-Ground Transmission

This case is of considerable practical importance for the engineer who needs to estimate the soundpressure level near the ground due to aircraft overhead. For sources at moderate altitudes, say, 1/2 mile or less, experiments have shown that the excess attenuation can be attributed primarily to molecular absorption and atmospheric turbulence. Until more accurate data are available on the excess attenuation due to turbulence, it seems best to take only molecular absorption into account (Fig. 1). These calculations are to be regarded as an estimate at best, since it is difficult to infer the average atmospheric conditions along the transmission path from measurements of the state of the atmosphere at ground level.

As the aircraft passes overhead in level flight, the sound-pressure level at a fixed point on the ground will rise, go through a maximum, and fall again. The position of the aircraft for maximum sound-pressure level depends on its acoustic directivity pattern. As a first approximation, a 45-degree position can be assumed for jet aircraft. Consequently, this slant

distance is the effective length of the transmission path and must be used not only to compute the excess attenuation but also the spherical divergence. For propeller aircraft the minimum distance to the flight path should be used.

Fluctuations of the Received Sound-Pressure Level

Fluctuations in level are characteristic of sound that has travelled through the atmosphere. These fluctuations typically encompass a fairly wide frequency spectrum and peak-to-peak fluctuations of appreciable magnitude occur. The peak-to-peak fluctuations for sound propagated over level ground have been investigated.5 The following general conclusions can be drawn and are essentially substantiated by the findings of other investigators: (1) for downwind propagation, the magnitude of the fluctuations increases with the frequency of the signal and with distance, (2) for upwind propagation the magnitude of the fluctuations is greatest near the shadow boundary, (3) in a stable atmosphere (clear night, weak winds) the peakto-peak fluctuations are typically about 5 db, (4) in an unstable atmosphere (clear sunny day, strong winds) the peak-to-peak fluctuations are typically 15 to 20 db, (5) the spectrum of the fluctuations measured over open level ground has components from fractions of a cycle to several cycles per second, (6) sound propagation from air to ground is frequently characterized by large low-frequency fluctuations in the received sound-pressure level in addition to the faster fluctuations observed over level terrain.

Conclusions

Progress has been made recently in furnishing the engineer with a better estimate of the attenuation of sound propagated outdoors than that provided by the inverse-square law alone. Future refinements will require not only the results of further basic research and experimentation but also the willingness and ability to use appropriate micro-

(Continued on page \$5)

Estimates of Distance X, Upwind Source height: 10-15 ft; receiver height: 5 ft											
		S	ky	Ter	np. Pr	ofile					
Day	Night	Clear	Over- cast	Lapse		Inver- sion	Wind mph	X _o ft			
	x	x				x	2-4	2000			
x			x		x		10-15	400			
		x		x			10-18	250			

DIST

(ft

CONVERSION TERM, INCLUDING ABSORPTION LOSSES,
FOR CALCULATING SPL FOR DISTANCES OF 100 FT. TO 10,000 FT.

FROM A NOISE SOURCE OF POWER PWL

SPL = PWL - CONVERSION TERM
where PWL is in dB re 10⁻¹² watts

DISTANCE		NVERSION		TO NEARE		
(ft)	31-250 FC	OR OCTAVE	1000	NCY BAND 2000	(cps) 4000	8000
100	38	38.	38	38	39	39
112	39	39	39	39	40	41
126	40	40	40	40	41	42
141	41	41	41	41	42	43
158	42	42	42	42	43	44
178	43	. 43	43	44	44	46
200	44	44	44	45	46	47
55/1	45	45	45	46	47	48
252	46	46	46	47	48	• 50
282	47	47	47	48	49	51
316	48	48	48	49	50	53 .
356	49	49	49	50	52	54
400	. 50	50	51	51	53	56
448	51	51	52	52	54	57
504	52	52	53	54	56	59
564	53	53	54	55	57	61
632 -	54	54	55	56	59	.63
712	55	56	56	57	60	65
800	56	. 57	57	58	62	67
900	57	58	58	60	64	70

TABLE 47 (continued)

DISTANCE D (ft)		ONVERSIO OR OCTAV 500		A contract of the contract of	EARE I d BAND (cr 4000	
1000	58	59	59	61	66	72 ;
1120	59	60	61	62	68	75
1260	60	61	62	64	70	78
1410	61	62	63	65	73	81
1580	62	63 .:	64 -	67 '	75	85 1
1780	63	64	66	68	77	89
2000	64	65	67	70	79	93
2240	65	67	68	72	82	.97
2520	66	68	70	74	85	102
2820	67	69	71	75	89	108
3160	68	70	72	77	92	114
3560	69	72	74	80	96	120
4000	70	73	76	82	101	-128
4480	71	74	77	84	105	136
5040	72	76	79	87	111	145
5640	73	77	81	90	116	154
6320	74	78	83	93	123	165
7120	75	80	85	96	130	178
8000	76	82	87	100	138	191
9000	77	83	90	104	146	207
10000	78	85	92	108	155	222

C.E. Hickmin F&D - SCS + 6523

VEGP-OLSER-Q

Question E290.14:

Provide the transmission line noise study prepared by Southern Company Services for the Miller-Arkadelphia 500 kV line.

Response:

A One copy of the report requested in enclosed. Was provided by D.O.

Foster's letter to H. P. Denton dated May 25, 1984

SOUND LEVEL STUDY

MILLER-ARKADELPHIA 500 kV TRANSMISSION LINE

ALABAMA POWER COMPANY

Marvin T. Newton Charles E. Hickman Jack H. Eastis

Research & Development Department Southern Company Services, Inc. Birmingham, Alabama August 16, 1978

INTRODUCTION

Due to the concern of the local citizens of Blount, Walker, and Jefferson Counties, Alabama, and in the customer interest of Alabama Power Company, a complete sound level survey to determine noise associated with the high voltage (500 kV) transmission line interconnect between Miller Steam Plant (APCo) and Tennessee Valley Authority (TVA) was requested by Alabama Power Company.

The survey was conducted by the Research & Development Department of Southern Company Services, Inc., of Birmingham, Alabama.

One major concern seemed to be the noise emitted from the line in relation to adverse weather conditions, i.e., rain and damp conditions.

Therefore, it was decided that a test site should be chosen at which a continually operating test station (mobile trailer) could be installed. This test station was equipped to provide the following parameters:

- . "A" weighted sound level
- . Rainfall
- . Wind speed
- . Wind direction
- . Ambient temperature
- . Dewpoint

On January 4, 1977, the test station was moved to the site which was located under the transmission line in an open pasture in Blount County, Alabama. Although the time frame of the study spanned one of the worst droughts in Alabama history, a number of adverse weather condition periods allowed the accumulation of considerable data.

INSTRUMENTATION

On February 4, 1977, test equipment was installed and made operational. A list of test equipment follows:

Sound Level Monitoring System

System 1:

B&K Type 4920 Outdoor Microphone System B&K Type 2120 Frequency Analyzer

System 2:

General Radio Type 1560-P6 Microphone General Radio Type 1560-P40 Preamplifier Power Mate (PMC) Model BP34D PowerSupply B&K Type 2120 Frequency Analyzer

Weather Monitoring System

Weather Measure Type P501-1E Rain Gauge
Weather Measure Type P521-E Event Clock/Recorder
Climet Model Oll-1 Wind Speed Transmitter
Climet Model Ol5-3 Ambient Temperature Sensor
Climet Model Ol5-12 Lithium Chloride Dewpoint Sensor
Climet Model Ol6-2 Asperated Temp. & Dewpoint Shield
Climet Model O60-10 Translator
TechEcology Model O20 Wind Direction Sensor & Adapter Card
For Climet Translator

Due to internal oscillator and microphone problems, a second outdoor microphone system utilizing a General Radio Type 1560-P6 microphone and
a General Radio Type 1560-P40 preamplifier in conjunction with the B&K Type
2120 analyzer was installed on February 24, 1977 to replace System 1.

After experimentation as to the best locations for all sensors and the resolution of minor problems with sound level System 2, test data collection began
on February 25, 1977.

Figure 1 shows the test site area and sensor locations. Figure 2 shows the location of the test site with respect to Structures 33 and 34 along the Miller-Arkadelphia transmission line and Figure 3 illustrates the configuration of the structures and conductor bundles.

During the course of the test period, equipment malfunctions proved to be of major concern. Although some causes remain unknown, the source of most failures or malfunctions could be determined. Lightning during storms took its toll on power supplies and preamplifiers. Also, during certain periods—particularly very dry periods—ground loop problems arose, and induced voltage signals made data unreliable. The data recorded during these equipment malfunctions have been omitted from the report.

Data which are deemed accurate have been tabulated on an hour-to-hour basis and are included at the end of this report as Table 2. This table includes not only sound level data but also meteorological data.

Therefore, the reader has access to considerable data which may not be explicitly described in this report but which should be informative.

COMPONENTS OF TRANSMISSION LINE AUDIBLE NOISE

Audible noise from transmission lines is primarily a wet or damp weather phenomenon, i.e., during rain, fog, snow, icing, etc., the sound level may increase significantly from low ambient levels. During wet weather conditions, water droplets collecting on the conductors produce numerous corona discharges which generate random noise. During dry weather, the conductors usually operate below the corona-inception level. Two components of audible noise are normally associated with transmission lines; namely, (1) broadband, and (2) pure tones at frequencies of 120 Hz and multiples.

The broadband component is generated by corona where corona is defined as a luminous discharge due to ionization of the air surrounding a conductor caused by a voltage gradient exceeding a certain critical value. Since corona consists of a random sequence of pulses produced by the discharges, a broadband noise, described as a crackling or hissing sound, results.

The ionization of the air creates a space charge around the conductors and the movement of this space charge causes a reversal of air pressure twice every half-cycle which, in turn, generates the pure tone components. The pure tones, with the 120 Hz tone predominating, produce a sound described as a "hum." The hum component may vary over a wide sound level range with respect to both time and space. For example, the 120 Hz component may fluctuate several decibels with time at one location and will vary greatly over short lateral distances.

The two components may be quite evident simultaneously, or one or the other may predominate. Figures 4 and 5 illustrate sound level spectrums obtained during wet weather conditions at two different times. Note that in Figure 4 a broadband spectrum exists with little evidence of pure tones whereas in Figure 5 pure tones are quite evident.

For additional information, the reader is referred to a detailed discussion contained in Chapter 6, "Audible Noise," in the book <u>Transmission</u>

<u>Line Reference Book - 345 kV and Above published by the Electric Power</u>

Research Institute (EPRI).

ANNOYANCE OF TRANSMISSION LINE AUDIBLE NOISE

To determine annoyance associated with transmission line audible noise, both the broadband and pure tone sound level components must be considered. Most of the accepted community noise criterions introduce a penalty for the presence of pure tones in the received sound signal. At the

present time, there are no sound level regulations which have been written specifically for transmission line audible noise. However, the Environmental Protection Agency (EPA) has published documents which rate the "normalized day-night sound level" as "probably the best available method at present to predict the most likely community reaction in the United States." There is a 5 dB penalty associated with a noise having tonal components using this criterion.

Also, State and local ordinances are being passed regularly with nighttime limits of 45-55 dBA. With no statewide noise regulations in effect in Alabama, complaints must be handled on an individual basis from a nuisance standpoint.

AUDIBLE INTERFERENCE AND NEGLIGIBLE NOISE SOURCES

It should be noted that during the test period, various other noise sources that were not associated with the subject transmission line contributed to the recorded data. For example, while reviewing Table 2, any data recorded while wind speeds were in excess of any average of 12 mph or more should be deleted since the speeds cause a corresponding increase in ambient noise level as illustrated by Figure 6.

Another example of "other" noise sources are, of course, the normal wildlife sounds which are very typical in the region of the subject transmission line. In this rural community, birds, frogs, and crickets were major sources of noise.

Note on the tabulated data that at approximately 1800 most evenings from about the middle of March until the end of the same month, there is an abrupt increase in sound level of approximately 15 dBA. This increase is due to crickets in the local area. The higher sound level generally held constant for a period of an hour or two and then decreased at sunset (Figure 7).

ADVERSE WEATHER OBSERVATIONS

To better grasp the idea of transmission line noise during "adverse weather," it must first be established what should be considered "normal" ambient conditions. For this purpose, March 29, 1977 has been chosen as an example using Figure 8a. (NOTE: The wind direction indicator was out of order during this period. However, this parameter is considered irrelevant to sound level at subject test site.)

At 0600 on the subject day, the following ambient conditions were present. The wind speed averaged 5 mph with ambient temperature at 16.5° C and dewpoint at 15.0° C. The load on the line was -3.9 MW. The sound level measured 50' east of the outer phase of transmission line was 42 dBA. Taking into consideration the season and time of day, these conditions are assumed to be "normal."

At 1600 hours, a steady rain was falling which had commenced at approximately 1410. At 1600, the wind speed was averaging 6 mph, temperature at 16.5°C, dewpoint at 14.5°C, and the load on the line was 17.2 MW. The noise level at 1600 had increased to an average of 55 dBA (Figure 8b). Since other ambient conditions were relatively constant, it is concluded that this sound level increase was, in fact, due to an excitation of the line corona by precipitation (rainfall).

Another example of this adverse weather phenomenon occurred on April 1, 1977. At approximately 1220, a light rain commenced. The wind was from the southeast at 8 mph. The ambient temperature was 14.0°C; the line was +124.5 MW. Before the rainfall, the sound level under the center phase of the line was 38 dBA. When a light rain commenced, the sound level increased to 45 dBA. At this time, the line was emitting the light hissing sound. This hissing became louder until approximately 1230. At this time,

the rain continued to fall harder and a 120 Hz hum was evident. This hum predominated the hissing noise, and as the rain continued to fall, the sound level increased to an average of 55 dBA with other ambient conditions remaining near constant. There is no recording of this particular example, but this phenomenon was observed and logged by project technicians present at the time.

Figures 4 and 5 may be used to illustrate these two components of line noise since the events which occurred on April 1, 1977 are almost identical to those events at the time the figures were recorded (July 29, 1977).

The examples described in this section are prime examples of the effects of adverse weather on the subject transmission line. Other examples of adverse weather conditions may be observed in Tables 1 and 2 and Figures 9-12 of this report.

CONCLUSIONS

At the test site utilized for the subject sound level study, it was found that the sound level on a "normal" day (clear with no precipitation) roughly averaged between 38 and 42 dBA with moderate to full line load. It should be noted that this average was derived using optimum conditions when no other major noise sources (i.e., crickets, excess winds, farming equipment) were present.

It was also found that during moderate to heavy rainfall with moderate to full load on the line and no other major noise sources present that the average sound level at the test site ranged from 55 to 58 dBA.

It is, therefore, concluded that adverse weather (i.e., rain) excites high voltage transmission line corona causing a 13 to 20 dBA increase in sound level.

To further examine these adverse weather effects, a sound level traverse (lateral noise profile) is planned to extend 500 feet from either side of the transmission line or until ambient sound level is achieved.

At the time of this writing, the profile has not been completed. Upon completion of the traverse, an appendix will be issued to this report.

TABLE 1 EXPLANATION OF FIGURES

Figure 1

The test trailer was located approximately 20' west of the west phase of transmission lines. The trailer was enclosed inside a 35' X 16' chain link fence with proper security and voltage warning signs.

Figure 2

This figure shows terrain and line configuration in the test site area. (NOTE: The various sag distances in the line are true for a 100° C temperature at full line load conditions.)

Figure 3

This figure shows a typical tower configuration for the subject transmission lines and the typical conductor bundle arrangement for each phase.

Figure 4

A tape recording was made at the test site on July 29, 1977 during a steady rainfall. This figure illustrates the phenomenon that usually occurs during moderate load conditions with a light rain falling. The noise that was emitted from the line at this time was the aforementioned hissing type of sound. There is very little evidence of pure tone(s).

The sound level meter was placed on the 60 dBC scale while recording.

Figure 5

This figure was plotted from the same tape utilized for Figure 4.

The sound level meter was placed on the 60 dBC scale.

Notice the obvious pure tones. This phenomenon usually occurred as the rain fell harder and the transmission line became wetter.

The noise emitted from the line was a distinct "hum" at 120 Hz. The major peaks shown are as follows:

Frequency (Hz)	dBC
120.00	47.8
180.00	30.0
240.00	39.6
360.00	30.6
480.00	29.2

Figure 6

This figure shows the effects of excess wind on sound level. During the period of this recording (March 22, 1977), the wind was averaging \sim 18 mph with gusts to 33 mph.

Figure 7

This figure is a chart recording of the "cricket phenomenon" which was recorded on March 23, 1977. This phenomenon was found to occur at approximately the same time each evening as warmer weather brought about more activity.

Figure 8a & 8b

Figure 8a shows the "normal" sound level average with no adverse weather conditions on March 29, 1977.

Figure 8b shows the effect of rainfall that occurred on the same day but several hours later. At approximately 1410, a light rain had commenced. By 1520, 0.11" of rain had fallen. The sound level before rainfall averaged 43 dBA. During the peak of rainfall, the sound level increased to an average of 55 dBA.

Figure 9

This figure shows the sound level during rainfall on June 16, 1977.

Note the broad peaks before and after the sound level increase.

These peaks are due to wind which subsided during rainfall.

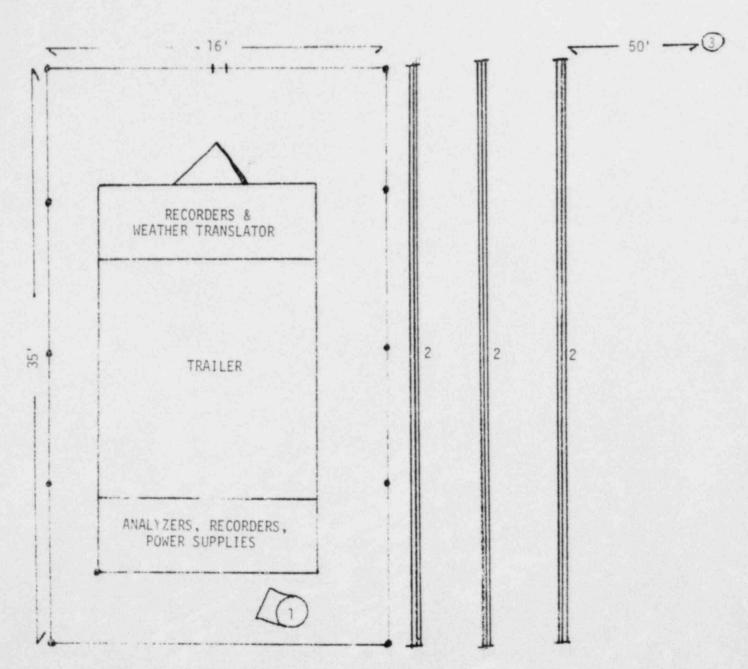
The average sound level one hour before rainfall was 43 dBA. The sound level increased to 55 dBA during peak of rainfall.

Figure 10

This figure shows sound level increase of 15 dBA during rainfall that occurred on September 6, 1977.

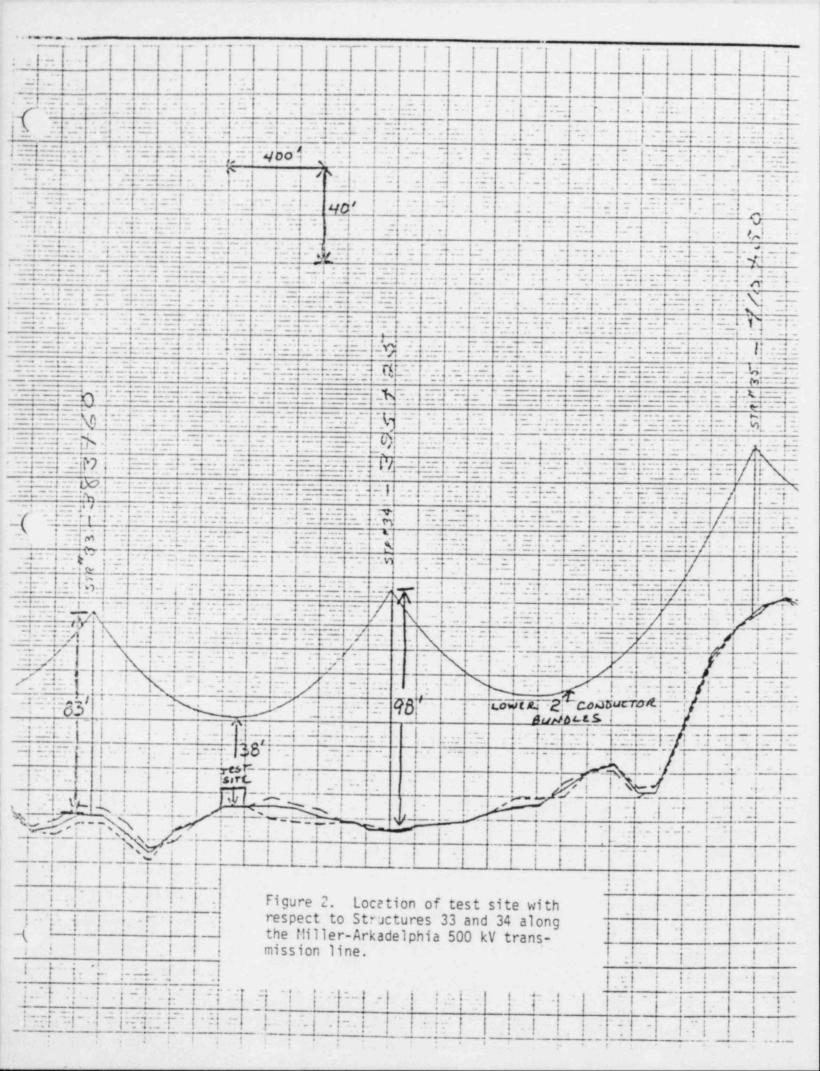
The average sound level before rainfall was 45 dBA. A steady rain commenced at \sim 0910 and sound level abruptly increased to 58 dBA then settled to average 55 dBA during the peak of rainfall.

Figure 11


This figure shows the effect of rainfall that occurred on the morning of September 4, 1977. The rain commenced to fall at \sim 0515 and had accumulated 0.05" by 0700.

The sound level increased from an average of 46 dBA before rainfall to 56 dBA during rainfall.

Figure 12


This figure shows the effect of rainfall which occurred at the test site on September 4, 1977.

There was a light rain falling at \sim 1100 but not hard enough to create more than a hissing. At \sim 1225, the rain commenced again with an abrupt increase in sound level.

- Power pole with extended platform for rain gauge; all weather sensors mounted here.
- 2. Transmission lines
- 3. Outdoor microphone and preamp

Figure 1. Test Site Layout

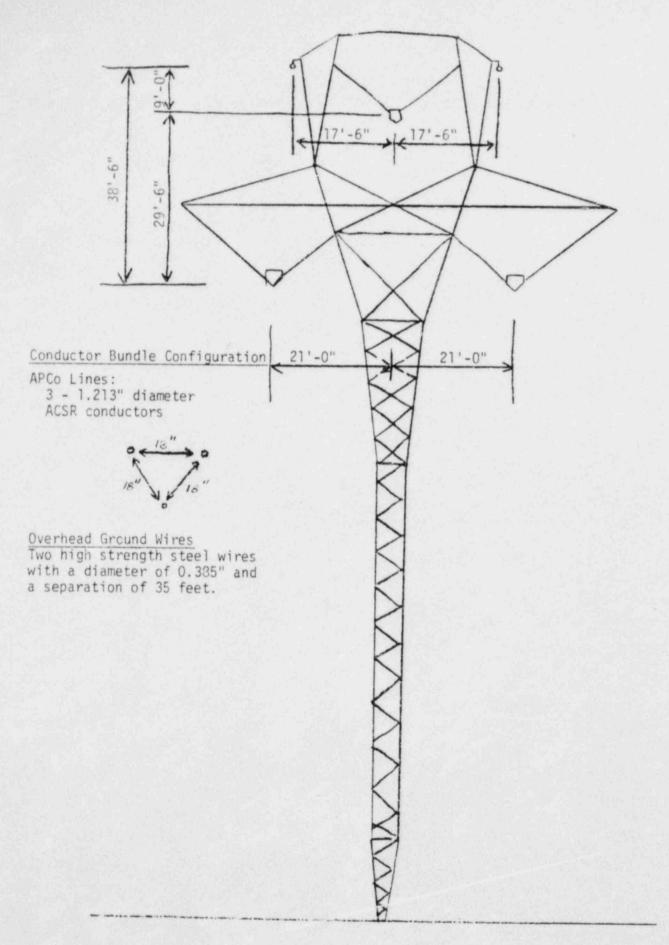
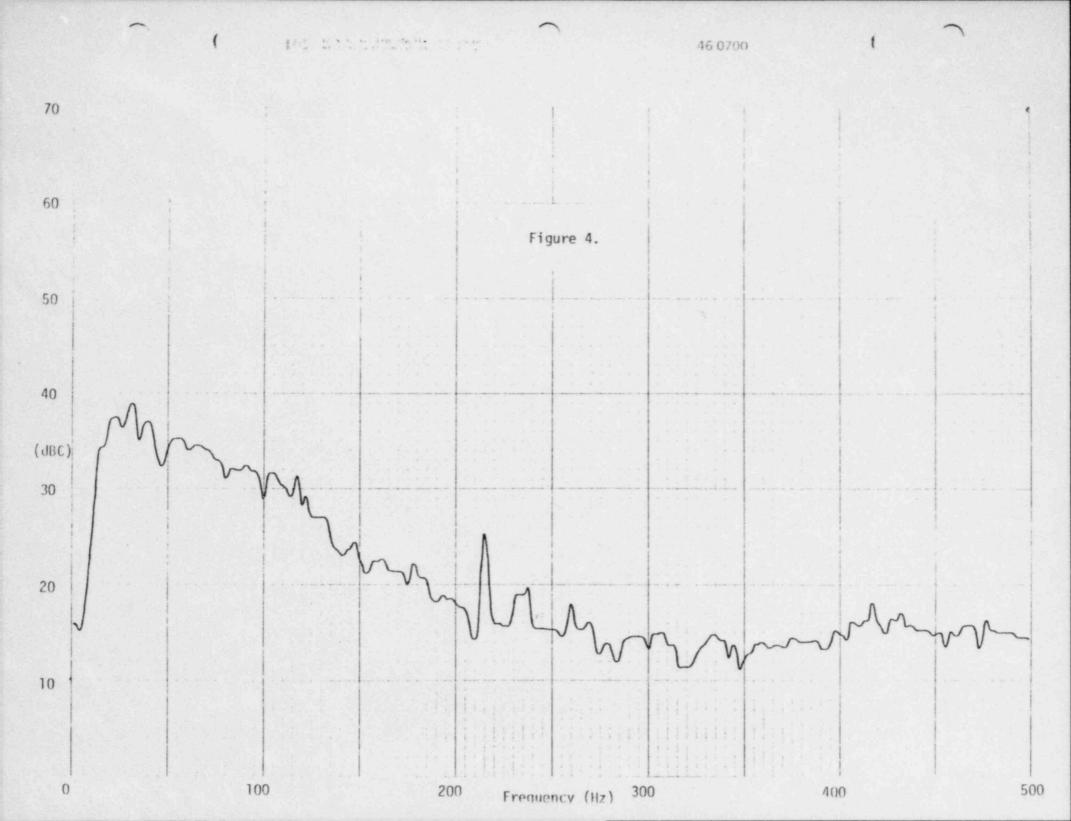
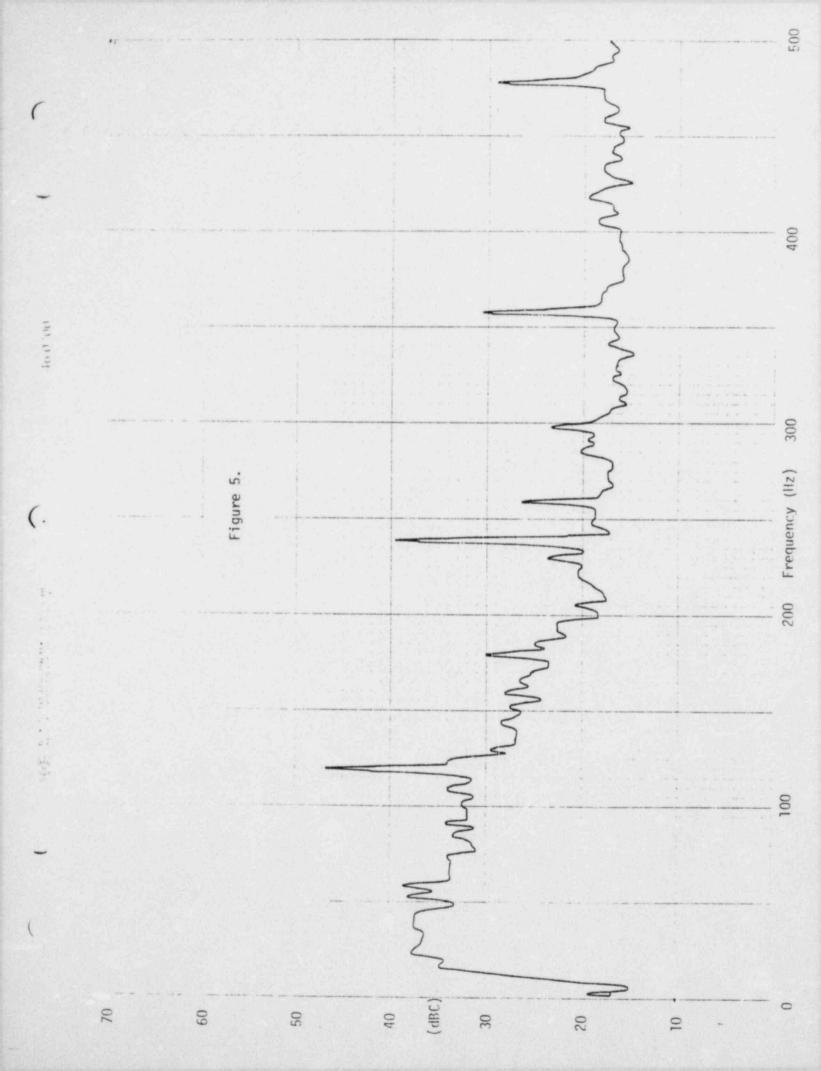




Figure 3. Transmission line structure and conductor bundle configurations.

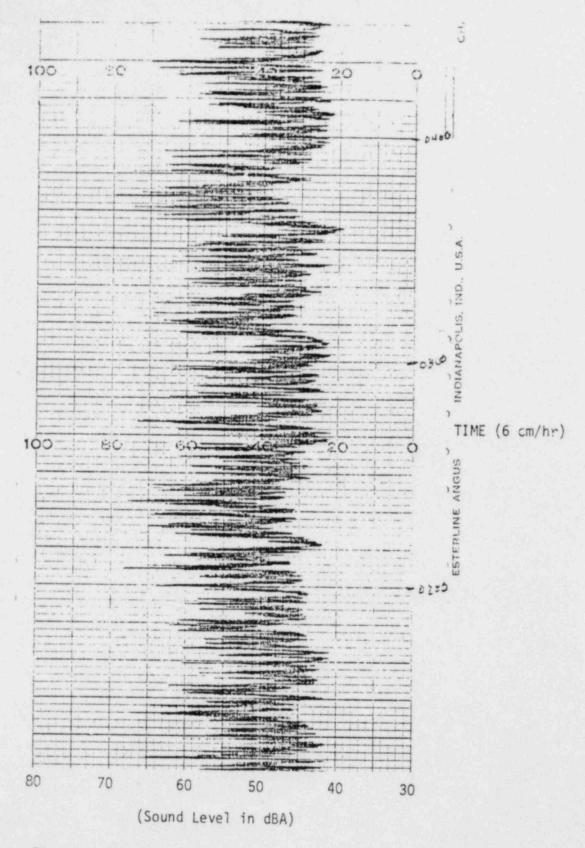


Figure 6. Effect of Excess Winds March 22, 1977

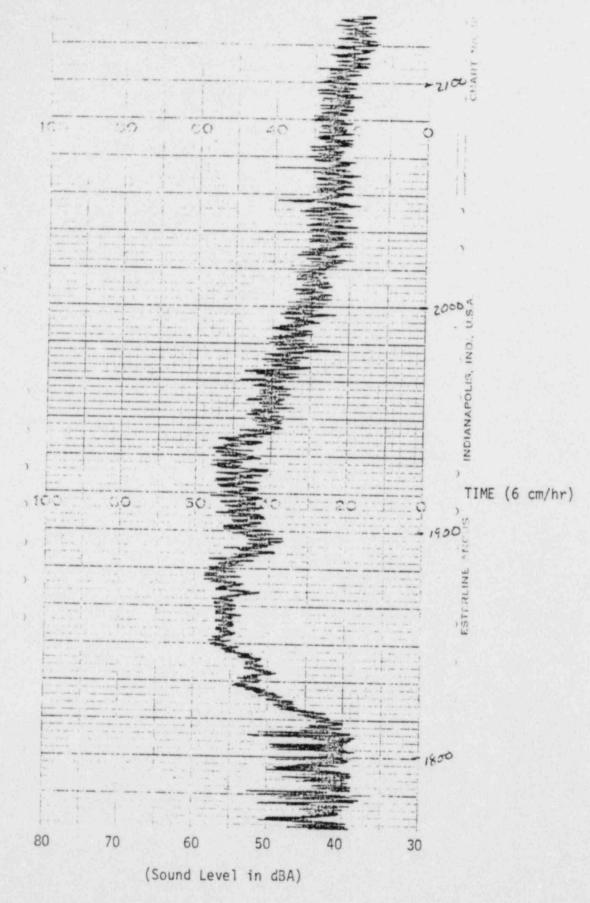


Figure 7. The "Cricket Phenomenon" March 26, 1977

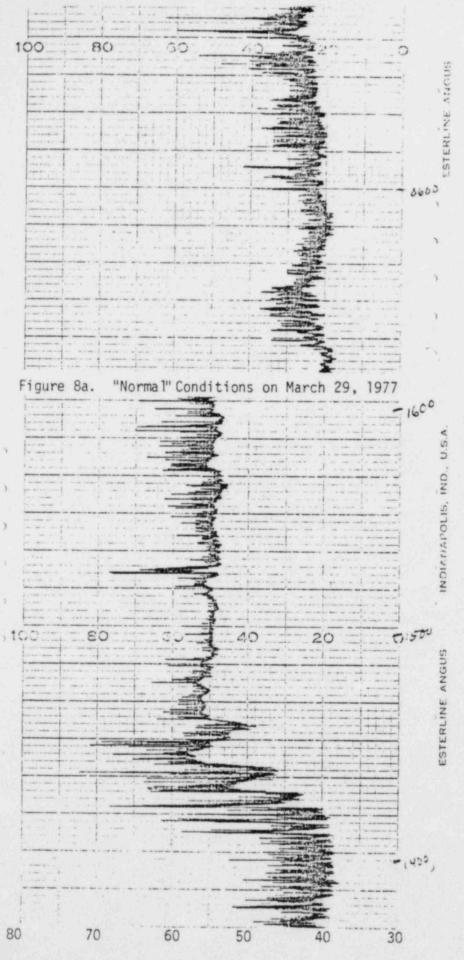


Figure 8b. Effect of Rainfall on March 29, 1977

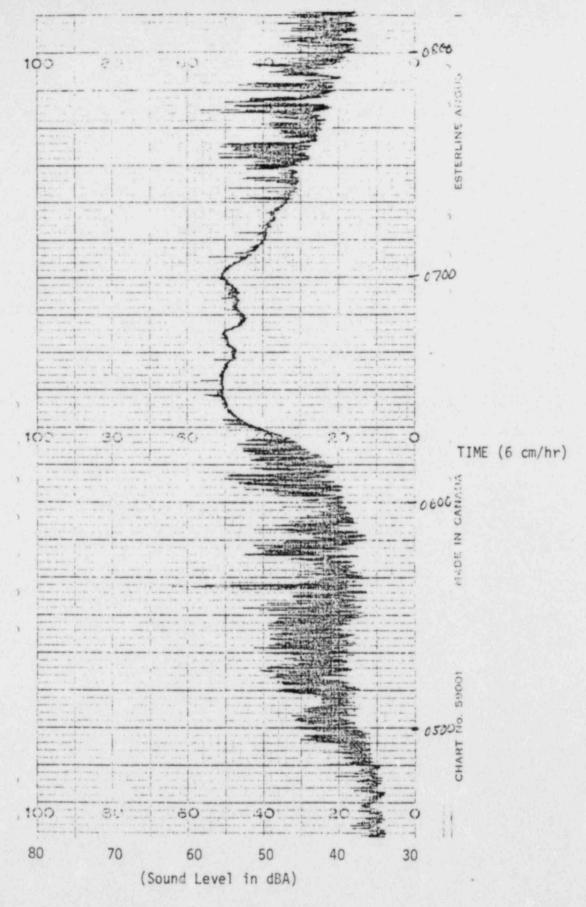


Figure 9. Effect of Rainfall on June 16, 1977

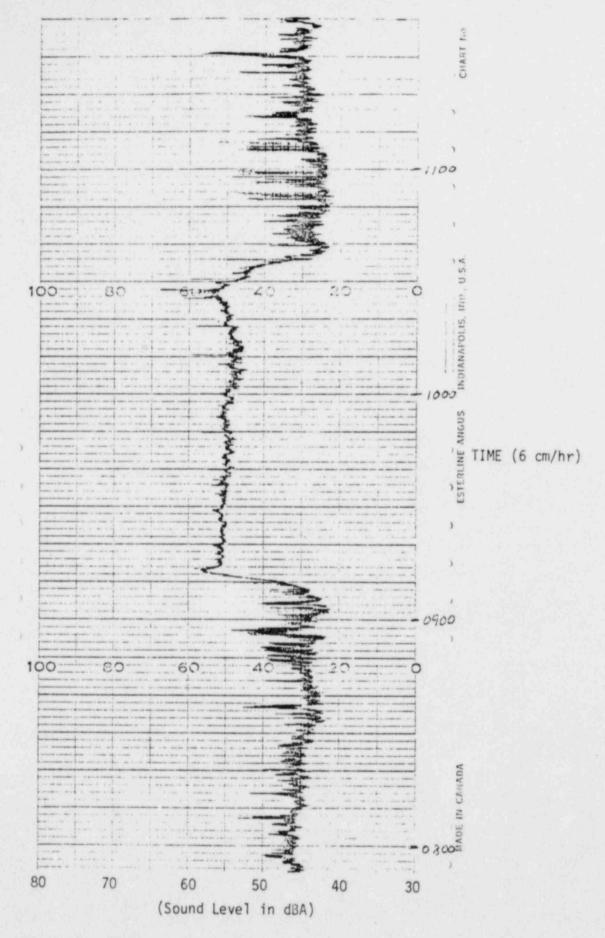
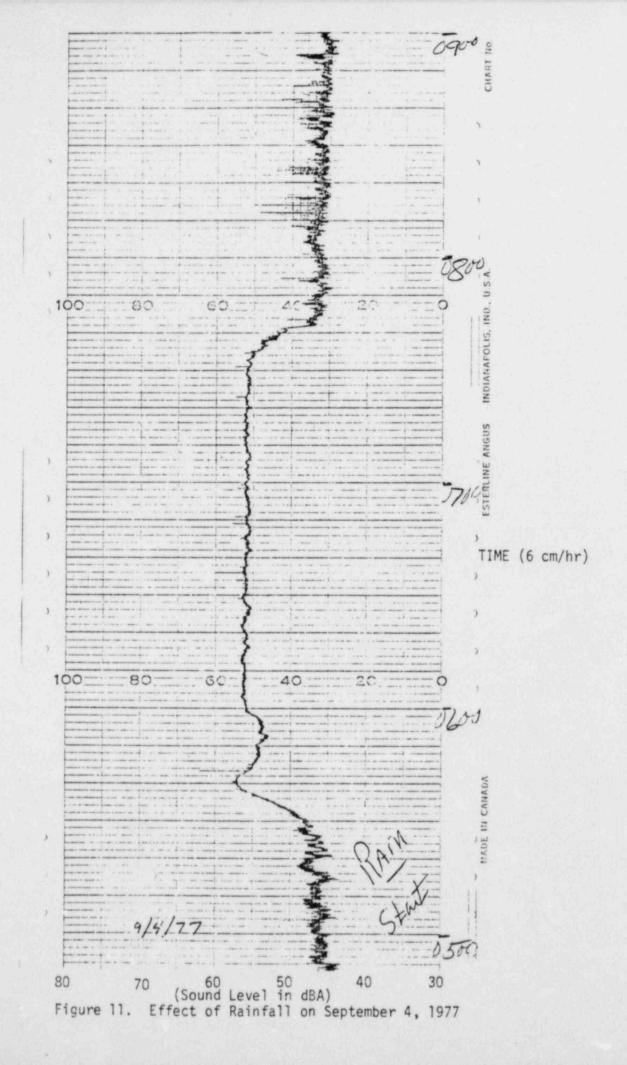



Figure 10. Effect of Rainfall on September 6, 1977

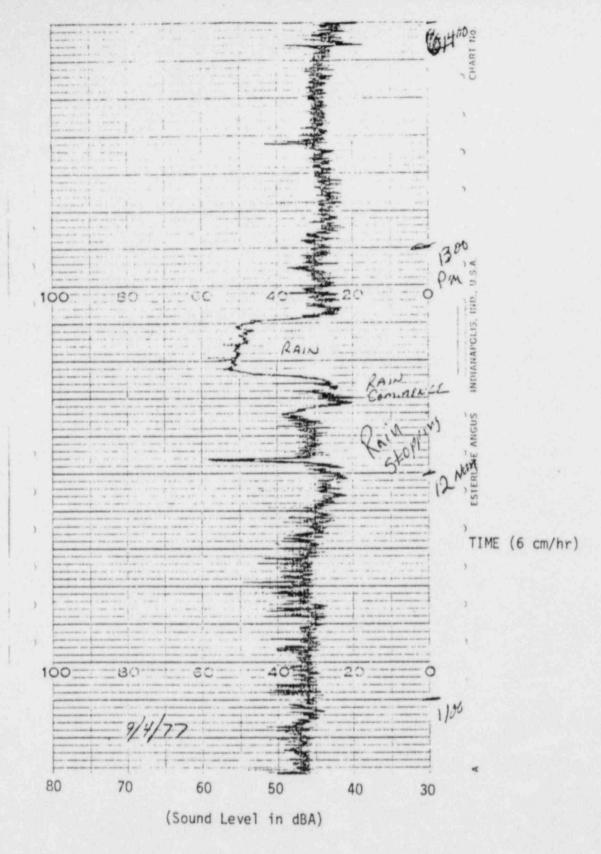


Figure 12. Effect of Rainfall on September 4, 1977

TABLE 2

SOUND LEVEL, METEOROLOGICAL, AND LINE LOAD DATA

	-1100							DATE: 2/	26/77		
DATE:	SOUND	RAINFALL (INCHES)	WIND DIRECTION (FROM)	2743 (MPH)	AMBILAT TEMPLEATURE (°C)	PEMPOINT	- ("tw)	SOUND LEVEL (AVERAC USA)	RAINFALL (INCHES)	WIND DILLCTION (FROM)	(m
0100								42 .	0	S	5,
								37	0	5	. !
0200								37	0	5	1
								37	0	5	1
0400								38	0	S	
0500								41	0		
0100								40	0	5	7
								44	0	5	
0800								43	0	S-SW	
0400								44	0	S-SW	
1000								43	0	S-SW	
1100								42	0	5-5W	*
1200								45	0	S-SW	
1300								45	0	5-5W	
1400								48	0	S	
1500								50	0	5	
1600	110			101	25.0	2.0	MNAVAILABLE	50	0	S	
1700			s-sw	83		3.0	*	51	0	5-52	
1800	L		\$ 5-5£		22.0	3.5		52	0	5.52	
1900				6				51	0	5	-
2000			38.5		20.0	3.0	"	48	0	5	-
2100		0	5.52	103		3.0	"	48	0	c	-
2200		0	S	10	20.0	4.0			0.35	SW	9 -
2300		0	S	9*	19.0	4.5		61			
2400	42	0	S	14	18.0	8.0		54	0.15	SW	

DATE: 2/27/77

2000	AMBIENT TENNERMAL (*C)	(.C)	LOAD ON	SOUND LEVE- (AVERAGE #84)	RAINFALL (INCH'S)	DIESCON)	SPLID (MPH)	AMBILITE (°C)	(.C)	LINE (NW.)
	18.0	11.0	MANAILABLE	56	0.03	w	9	16.0	13.5	HUNDALABLE
	18.:	12.0	**	56	0.11	W	18	13.€	11.5	**
0	18.0	12.0		45	€-	W-NW	:5	11.5	9.5	**
0	14.5	12.5		43	0	w-NW	15	10.5	8.0	
,	16.0	12.5		41	0	שנו. עו	15	9.5	6.5	. "
,	15.5	12.5		40	0	w-NW	14	8.5	5.0	
4	16.0	12.5		41	0	w-NW	15	8.0	4.5	**
11	14.5	12.5		40	0	W-NW	15	8.0	3.5	* *
4	18.0	13.0		43	0	W-N'N	15	7.0	3.0	
4	20.0	12.5		43	0	W-No	15	6.0	1.5	"
7	21.0	11.5		40	0	MW.	14	6.0	0.5	
6	23.5	11.0		41	0	NW.	15	6.0	0.5	*
5	25.0	10.5		39	0	NW	13	6.0	0.5	***
5	26.0	10.0		39	0	N-NW	13	6.5	0.5	* .
4	25,5	11.0		38	0	N-NW	10	7.5	0.5	
9	25.5	11.5		37	0	N	8	8.5	0.5	
6	25.0	11.5		37	0	N-NW	10	8.5	0	
4	24.0	11.5		38	0	N.NW	10	7.0	-1.0	*
0	23.5	11.5		36	0	N.NW	. 7	5.0	- 1.0	* .
2	23.0	12.5		35	Đ	N-NW	7	3.5	- 1.5	4
2	22.5	13.5		35	0	N-NW	7	3.5	- 2.0	"
1	22.0	15.0		34	0	N-NW	6	3.0	- 2.0	
0	19.0	14.5		34	0	NW	3	2.5	- 1.5	
9	16.0	14.0		34	0.	NW	, ,	1.5	- 1.5	

Also Available On Aperture Card

TI APERTURE CARD

DATE: 3/1/77

	DATL: 2/2	28/77						DATE: 3	11/77	
TIME	SOUND LEVEL (AVERDE 46A)	RAINEALL (INCHES)	BILLITION (FROM)	SOLLD (MAH)	AMOUNT TLAMESTURE (°C)	(·c)	() _	SOUND LEVEL (ANIME & BA)	CONNES (INKHES)	PAULINI S
0100	34	0	NW	1	1.0	-1.5	UNAVAILABLE	37	0	
0,200	34	0	NW	,	7.0	-1.5		38	0	3-58
0300	34	0	N-NW	1	0.5	-1.5		37	0	5
0400	34	0	W-NW	1	0.5	- 2.0		37	0	5-5W
0500	33	0	NW	1	0.0	- 2.0	**	37	6-	5.5W
0600	35	0	NW	1	- 0.5	-2.0		39	0	5-5W
0700	41	0		0	-0.5	-2.0		40	0	5-5W
0800	41	0		0	0.5	- 1.0		45	0	·sw ·
0100	39	0	N-NW	7	2.0	- 0.5		45	0	w-sw
1000	39	6-	N-NW	11	5.0	- 1.5		41	0	w
1100	38	0	N-NW	10	6.0	- 2.5		46	0	ω
1200	38	0	NW	10	8.0	-2.5		47	0	W-WW
1300	38	0	NW	'11	10.0	- 3.5		47	0	ש-אש
1406	37	0	NW	2 10	11.0	-4.5		49	0	w-NW
1500	38	0	NW	12	12.0	-5.5	,,	47	0	w-NW
1600	39	0	W-NW	11	12.0	- 5.0	,,	45	0	w-NW
1700	40	0	W-NW	14	11.5	- 4.5		41	0	W-NW
1800	38	0	W-NW	10	10.0	- 4.5	**	39	0	NW
1900	43	0	W-NW	8	8.5	- 3.5		40	0	N-NW
2000		0	3	2	5.5	-3.0		38	0	· N
2/00		0		0	2.5	- 1.5		37	0	N-NE
2,200	39	0		0	1.5	- 1.5		37	0	N-NE
2300	38	0		0	1.5	- 1.5		37	0	NL
2400	38	0		0	1.5	- 1.5		38	0	

for ro 20

DATE:	3/2/77
	-/-/

14. 110 100	AMBIENT TEMBLATHEL (°C)	(· c)	(mw)	LEVEL (AVLIALL dBA)	RAINEALL (INCHES)	DIND DIGILITING (FROM)	20165 (MOH)	TIMPLEATURE (OC)	('C)	LOAD ON
	1.5	-1.5	40.2	37	0	NE	3	5.0	-2.5	- 97.0
4	3.0	- 1.5	-7.7	37	0		0	4.0	- 1.5	-72.1
044	3.5	-2.0	- 46.5	37	0	E-NE	3	4.0	- 1.5	- 78.7
7	5.0	-2.0	-53.7	37	0	3	4	4.0	- 2.5	- 82.2
7	4.5	- 2.0	-26.3	37	0	2	6	4.0	- 3.0	-45.8
10	4.5	- 1.5	-27.5	37	0	3	9	4.0	- 3.0	- 13.4
10	5.0	- 1.5	-71.2	38	0	3	8	4.0	- 3.5	- 43.6
10	6.5	0.5	- 118.1	38	0	2.58	10	5.0	- 2.5	- //3.3
11	9.0	0	- 80.0							
18	12.0	0	- 62.6							
16	13.0	- 0.5	- 32.9	38	0	52	7	12.0	- 4.5	- 91.3
18	14.0	- 1.0	- 28.2	36	0	SE	5	14.0	- 4.5	-114.3
20	15.0	- 1.5	- 33.4	35	e	5	3	15.0	- 4.5	- 121.1
20	15.0	-2.0	- 41.5	34	0	SL	4	16.0	- 5.0	- 104.0
21	15.0	- 2.5	- 44.3	36	0	SŁ	4	16.5	- 5.0	- 78.2
16	14.5	-3.0	- 33,2	38	0	58	5	16.0	- 4.5	- 52.0
12	14.0	-2.5	- 39.2	37	0	SE	2	15.5	-4.0	- 61.5
8	12.0	-2.5	- 43.6	38	ě	38	3	15.0	- 2.5	-80.0
4	11.5	- 3.5	- 81.2	46	0	52	6	14.0	-2.5	-126.4
6	9.0	- 4.5	- 87.2	43	e	32	10	14.0	- 2.5	- 98.3
3	8.0	- 4.5	- 68.0							
4	6.0	-4.0	- 105.2						TI	
2	6.0	- 3.5	- 94.7			18			APERTI	IRE
0	4.5	-2.5	- 111.3						CARI	

17 33

33

2.7		DATE: 3/	3/77						DATE: 3/	7/77	
	TIML	SOUND	RAINFALL (INCHES)	BIRLETTON (PEIM)	444. 01.40 3PELB (9PH)	TEMPLATURE (+C)	(.c)	(MW)	SOUND LEVIL (AULINE HOA)	RAINEALL CINCHES	bieterion (Fam)
	0100										
	0200										
	0300										
	0400										
	0500										
	0600										
	0700										
	0800										
	0900										
1	1000										
1	1100										
	1200	46	0.01	56	16	42.0	8.5	108.6			
	1300	49	0.12	32	310	12.5	9.0	112.6			
	1400	53	0.11	5-58	7	12.5	9.5	105.6	42	0	N-NW
	1500	' 51	< 0.01	SE	14	13.0	10.5	101.8	43	0	N-NW
	1600	45	0.01	5-52	15	14.5	11.0	104.9	40	0	N-NW
	1700	48	0	5-52	20	17.0	10.5	107.4	39	0	N-NW
	1800	52	0	5-56	25	18.0	9.5	66.1	3 45	0	N
	1900								52	0	٤
	2000								49	0	
	2100								45	0	
	2200								43	0	
	2300								41	0	
	2400								41	0	3
		'41-60 dBA		Gests n	25				5 37-5248A		
				3 " "							
				4	40						

DATE: 3/8/77

	10 4 8 8 8 4
0 -67 0 -73 0.5 -58 0.5 -4	3.8
0 - 73 0.5 -5 0.5 -4 0.5 -7	3.8
0 - 73 0.5 -5 0.5 -4 0.5 -7	3.8
0.5 -5 0.5 -4 0.5 -1	1.4
0.5 -4	
0.5 -1	
	9.6
0 -6	5.5
	5.6
2.5 -/03	
3.5 - 9	
	0.2
	7.1
	8.5
	0.9
	9.1
	0.6
	0.4
	1.8
	2.3
	3.2
	8.3
4	0.5 20 1.0 30 1.5 20 0.5 12 2.5 12 3.5 23

APERTURE CARD

		34		
		4-		
	1	A.	N.	
_	1	ъ-	1	
	m.	R:	ø.	

	Sound	Lawrence	w/w.b	AV4.	American	DEWPOINT	Lens on	Sound	RANCALL	w.w.5	
FIML	(AVERALL HEA)	(mus)		CHEN.	(ic)	(.e)	CAN'S	CONCERCT HOA)	(want)	(Fash)	5
0100	41	0		6	11.0	0	13.6	39	0		
0200	43	0		4	8.0	1.0	25.4	40	0		
0300	42	0		5	8.5	0.5	23.8	40	0		
0400	42	0		8	11.0	- 0.5	46.8	40	0		
0500	40	0		8	9.0	- 1.0	48.6	41	0		
0600	41	0		5	8.5	- 1.0	70.1	41	0		
0700	40	0		4	7.5	- 0.5	68.5	42	0		
0800	44	0		8	9.5	. 0	24.9	44	0		
0100	42	0		9	12.5	0.5	35.7	41	0		3
1000	40	Ð		8	15.0	2.0	52.1	45	0		
1 00	40	0		10	16.5	1.5	65.0	45	0		
1200	41	0		'11	19.0	0	90.9	45	0		-
1300	39	0		10	19.0	-1.0	69.7	43	0		
1400	40	0		10	19.5	-1.0	63.0	42	0		
1500	40	0		10	20.0	-0.5	50.2	43	0		111
1600	45	0		8	19.5	- 1.0	104.7	43	0		
1700	45	0		8	18.5	-0.5	101.4	44	0		
1800	39	4		6	17.0	0	65.6	45	0	52	2
1900	46	0		6	15.5	0	33.7	54	0	SE	2
2000	50	D		6	14.5	0.5	49.6	51	0	52	2
2100	48	0		6	N.5	1.0	35.7	48	0	SE	,
02,200	44	0		6	13.0	1.5	-14.2	45	•	SE	1
2300	42	0		7	13.0	2.5	- 29.2	43	0	SE	
2400	40	0		8	13.0	2.5	-64.1	41	0	38	1

"ours to 18

Gusts 10 2

Also Available On Aperture Card

CARD
APERTURE
IL

ב מהשם בינה ואכבנמצה זה 59 שבת השבושה למוש

	-	SA BURING AS	P 65 al	datasas	NI ""'S DE 90 &	•			
1.64	5.71	20.05	10	35-5	9	817	E116 -	5'11	5.51
6.99	5.31	2.05	23	35-5	0	81	8.06 -	5'11	5.81
73.2	-5. 91	0.050	22	75-5	0	sh	7.18 -	0.11	0.41
4.911	0.91	0.020	61	35-5	0	84	25.3	0.11	0.41
8.88	0.31	-5.61	61	35	-0	55	1.81	0.11	0.41
6.49	0.91	5.61	12	35	0	75	€.85	0.11	0.41
5:58	0.91	0.61	12_	75	0	617	27.6	011	0.41
9.811	0.91	0.61	13	35-5	0	04	p 'hh	011	0,40
1.88.7	0.91	0.91	13	75-5	0	04	1'64	5.01	0:51
6-00/	5:51	-5.81	13	75	0	11	5.94	5.6	5.9/
9.16	15.0	-2.81	71	35.5	0	Th	L.54	0.9	5.71
5.911	15.0	-5.81	11	75-5	0	th	4.19	5.8	0.81
7.68	0:51	-25/	51	75	9	14	4.8C	0.9	5'81
5.28	2.41	.0.1/	71	75	-0	Th	3.78	0.6	5.71
4.45	0.41	5.51	51	35	40.0 W	43	-2.88	5.8	0.9/
0.09	13.5	0.51	H	75-7	4	Et	0.28	0.7	Z.W -
1.62	13.0	0:51	11	75-3		Sh	L.27	9'9	0.81
8.38	-2.51	-6.41	01	75	10.0 €	64	0.66	0.2	5.51
1-95	12.5	-5.41	201	35	01.0	Th	6.69	-5.4	0.51
0.9	0.4	0.11	13	35	. 0	Th	5'81	72.€	2.51
E. S. E -	0.501	0.4	71	35	0	Th	8.6 -	-2.5	5.4
8.56-	5.11	0.4	71	75	0	11	C.C.C -	2.50	5'71
0.18 -	2.11	0.41	51	35	-0	14	0.58-	2.5	0.81
1.74-	- 5.11	-2.51	21	75	0	11	4.99-	0.50	0.81
2017 2017	(3.)	ANTARATURE (2.)	(MP) 67101 67101	שיישם (מוחד)	(יחמום) עשות בערר	(09/1001/480) 71/17 70000	(MH) 3 M17 M 0 0 P 0 7	(Si)	המחמונה (ביב) (ביב)
				100					

DATE: 3/12/77

DATE: 3/4/77

TIML	SOUND LEVIL Greene dea)	RAINEALL (INCHES)	bairmon (Fun)	STILE (MAN)	AMBILET TEMPLETURE	(oc)	(MW)	LEVEL WEAD	RAINFALL (INCHES)	BIRRETTO W (FRAM)	47 L WALK SPUS (70M)
0100	53 (42-67)	0.08	5/36	'21	20.0	17.0	- 0.8		**		
0200	49	0.19	S	20	19.5	17.0	- 3,2.5				
0.300	58	0.10	5-52	20	19.5	17.0	- 26.3				
0400	59	0.50	5-52	19	19.5	17.5	- 0.7				
0500	55	0.25	5.58		195	17.5	12.6				
0600	55	1.25	5.52		14.5	17.5	-16.5				
0700							70.0				
0800											
0900											
1000											
Die											
12											
1300											
1400											
1500											
1600			*					41	0	Sw	7
1700								43	0	Sw	6
1800			*					40	0	SW	6
1900								41	. 0	W-SW	3
2000								56	-0-	3	3
2100								58	0	SE	3
2200							*	47	. 0	5	5
								46	0	E-SE	4
2300								43	0	5-52	6
2700								43	0	5-52	6

6 usrs 70 35

LATE: 3/:5.7"

Amount Transma (°C)	100)	- MM -	Sound Litt (avenie w64)	RAINTRUL (INCHES)	BILLETTO W	445. MINO 1840	AMBILIATE PROPERTY (OC)	DEWRONT (OC)	(MW)
			42	0.	3.52	8	16.5	4.5	/5.6
			42	0	5	9	17.5	4.0	- 16.7
			42	0	5	8	16.5	4.5	-24.7
			43	0	5-5w	6	15.5	5.0	- 3.5
			43	0	5-5W	5	15:0	6.0	23.9
\$10 P. L.			43	€-	SE	5	14.0	6.5	93.8
			44	0	SE	3	13.0	7.5	134.5
			45	6	5.52	5	15:0	9.0	60.3
			43	6	5-58	6	16.5	10.0	24.3
			42	0	5	6	17.0	11.5	7.2
			40	0	5-5W	6	18.5	14.0	-13.2
			39	0	Sw	6	19.5	14.5	- 0.8
			38	0	SW	6	22.0	15.5	15.0
			38	0	Sw	7	24.5	16.5	12.2
26.0	2.5	41.1	38	0	w-sw	7	25,5	16.5	13.0
26.0	2.5	54.8	37	0	Sw	8	26.0	16.5	19.2
26.0	3.0	41.1	38	0	s.sw	7	26.0	16.5	19.2
23.0	3.5	7.8	40	0	S-SW	6	24.5	16.5	29.6
17.5	8.0	-21.7	55	0	5-5W	6	23.0	16.5	11.7
15.5	8.0	2.5	50	0	S-SW	5	22.0	16.5	26.6
17.0	5.0	20.2	44	0	SW	5	22.0	16.5	66.1
15.0	5.0	-16.2	40	0	W-SW	4	21.5	16.5	41.0
15.5	5.5	- 32.7	40	0	W-SW	5	21.0	16.0	-15.8
15.0	5.5	- 31.5	40	0	w	5	20.5	15.5	-36.8

TI APERTURE CARD

-	DATE :	3/16/77						DAIL: 3/	17/77		
- Time	SOUND LEVIL (AVERME SOA)	(INENIS)	bieterani (Flam)	200 (MAN)	AM SILAT TEMMARKEL (°C)	DIMPOINT (-C)	LOAD ON	SOUND LEVEL (AVERAGE ABA)	(INCHES)	DIELETINA (Frem)	SPLI
0100	41	0	5	3	18.0	14.5	-18.9	42	0	NL	6
0200	40	0	W	5	17.0	14.5	0.3	43	0	N-NL	6
0300		0	NW	7	17.5	14.5	8.7	43	0	N-NL	6
0400		0	N	15	16.5	13.0	0.5	43	0	NE	6
0 500	40	0	N	14	15.5	10.0	33.2	4.3	0	NE	3
0600	110	0	N	13	14.0	7.5	105.8	42	0	3	19
0700	1/3	0	N	13	13.5	7.0	138.7	43	0	E-NE	4
0800	44	0	N	15	13.5	6.5	101.1	44	0	E-SE	6
0900	45	0	N	17	14.0	6.0	64.5	45	0	E-SE	9
4)	41	0	N	15	15.0	5.0	73.0	43	0	SE	7
11100	43	0	N	14	16.0	3.0	64.7	44	0	SŁ	4/0
1200	41	0	N	14	16.5	2.5	57.0	42	0	3-58	4/2
1300	43	0	N	15	17.5	1.0	64.0	42	0	S	10
1400	43	0	. N	14	18.5	0.5	41.3	41	0	5	10
1500	43	0	N	15	18.5	-0.5	46.3	41	0	5	7
1600	43	0	N	3/2	18.5	- 1.0	63.2	43	0	S	9
1700	42	0	N	9	17.5	-1.5	62.5	43	0	S	9
1800	43	0	N	5	16.0	-0.5	44.3	44	0	S	9
1900	49	0	N-NL	3	13.5	0	0.7	50	0	5	511
2000	49	0	NE	3	12.0	0.5	21.7	47	0	S	13
2100	48	0	NE	1	10.0	2.0	37.3	43	0	32.2	
2200	42	0	NE	5	. 11.5	0	13.3	45	0	5	13
2300	42	0	NE	6	11.5	- 2.0	14.4	44	0		18
2400	42	٥	E-NE	7	11.5	- 2.5	- 13.6	44	0	5	17

Gusts 1023

3 60 STS TO 19

. . . 2

DATE: 3 1:8.77

Amortur. Timererust (°C)	(· c)	CWC)	SSUND LEVEL (OVERNE NOA)	RAINEAU.	BILLITH W (FROM)	MINA SPLED (MAN)	A MOINT TEMPLATURE (*C)	DEWPOINT (· c) -	LOAD ON
11.5	-2.5	-1.7	41	0	S	7/3	19.0	13.5	65:5"
10.5	- 1.5	4.7	43	0	S-SW	*17	20.0	14.5	78.1
10.0	- 1.5	40.9	46	0	5-5W	17	20.0	15.0	75.7
10.0	-1.5	47.8	45	0	5-5W	17	20.5	15.0	75.3
9.0	-0.5	76.8	46	0	SW	15	20.5	15.0	78.0
9.5	- 1.0	126.8	44	0	SW	15	20.0	15.0	105.9
9.5	- 1.0	172.4	45	0	5w	9,2	20.0	14.5	161.4
10.0	0	108.8	45	0	5W	13	20.0	14.5	113.5
12.5	- 0.5	79.5	46	0	Sw	1.13	20.5	14.5	67.2
14.0	-0.5	73.8	47	0	w-Sw	16	21.5	14.5	58.1
16.0	0	78.1	47	0	w-sw	18	22.5	14.5	55.4
18.5	0	104.8	45	0	w-sw	16	23.0	13.5	61.2
20.0	0.5	113.8	44	0	ω	15	24.5	12.0	68.0
20.0	2.0	104.8	43	0	W	15	25.0	8,5	74.1
20.5	3.5	103.9	43	0	W	15	24.5	7.5	76.2
22.0	5.0	113.1	43	0	W	14	24.0	6.0	83.6
22.0	6.5	92.0	40	0	w	"10	23.0	3.0	90.3
21.0	7.5	80.6	39	0	W-NW	10	21.5	2.5	77.3
20.5	8.5	46.9	48	0	W-NW	5	021.5	2.5	52.3
19.5	8.5	65.4	52	0	NW	4	19.0	2.5	54.0
19.0	8.0	72.3	40	6	N-NW	6	18.5	1.5	86.2
19.0	9.5	38.8	40	0	N	5	18.0	1.5	62.0
19.0	10.5	40.0	40	0	N	6	17.0	2.5	56.7
19.0	12.0	48.5	39	0	N-NE	5	16.0	3.5	91.8

" - 25 " - 17 TI APERTURE CARD

		DATE: 3	3/19/77						DATE:	3/20/7	7
	TIML	SOUND LEVEL (AVLENCE SBA)		WIND BRICTON (FRAM)	SPLLO	AMBIENT TEMPLEATURE (*C)	(· c)	LOAD ON	Sound LEVIL (AMANOE dEA)	KANTALL CONCLES	winds Binderija (vikus)
	0100	38	0	N-NE	5	15.0	3.5	110.1	39	0	
	0200	38	0	N-NE	6	14.0	4.0	104.1	39	0	
	0300	37	0	N. NE	7	13.0	4.5	75.9	39	0	
	0400	45	0	N-NE	3	12.5	4.5	80.8	39	0	
	0500	48	0	NE	5	12.0	4.5	91.1	40	0	
	0600	48	0	N-NL	5	11.5	4.5	70.3	42		
	0-100	49	0	N-NE	6	11.5	4.5	56.4	52	0	
	0800	49	Ð	NE	9	12.0	5.0	76.1		0	
	0900	47	0	NE	8	13.5	4.5	68.8	44	0	
-	1000	43	0	E-NE	10	15.0	5.0		40	0	
	1160	43	0	E-NE	10	16.5		73.2	38	0	
	1200	39	0	3	7	19.0	5.5	88.3	37	0	
	1300	40	0	NE	7	20.5	4.5	71.8	37	0	
	1400	43	0	N-NE	10			69.1	39	0	
	1500	43	0		6	21.5	4.5	61.1	39	0	
	1600	40	0		4	21.5	4.5	49.9	41	0	
	1700	45 (36-50)	0		7	19.5	6.0	71.6	43	0	
	1800	49	0		8	18.0	6.5	97.0	44	0	
	1900	49	0		7	17.5	6.5	95.6	44	0	
	2000	48 (36.65)	0.15		210	17.5	6.0	91.8	47	0	
	2/00	55	0.05			16.5	6.5	72.1	50	6	
	2200	46			11	11.5	8.5	71.5	47	0	
	2300	51	0.05		310	11.0	9.0	54.4	44	0	
	2400		0		8	11.0	9.0	58.7	41	0	
	2703	39	0		8	10.0	8.5	62.7	41	0	
										-	

'ousrs to 18
2 " " 33
3 " " 28

busts n

Also Available On Aperture Card

TI RTURE	VPE		98 "	" L					10
-2.050	5.01	0.21	8	0	EH	4.72	0.0	9.51	
2.71	0.01	0.61	6	0	54	7.73	0.8	5.81	
1.54	0.01	511	01	0	26	6.801	2.4	2.51	
6.52	0.01	0.21	51	0	15	1:551	5.4		
9.84	-2.01	0.21	91	0	53	p.c.p.	3.5	0.81	
5.45	5.01	102.0	112	10.0	> 79	2.751	2.50	5.51	1
F:24	5.01	12.0	520	90.0		2.011	2.1	0.91	77.01.0
2.86	0.01	511	000,	01.0	200	1.061		5.91	h
6.4.2	0.01	511	13	50.0	200	6.18	5.0	5.71	٤
E.M	001	0.21	7	h2.0	100	1.18	5.0	5.71	9
.5.99	0.01	0.21	215	12.0		2.95	5.0	2.71	9
5.23	0.01	0.51	81	10.02	30.95	3.92	5.0	0.71	9
8.15	0.01	2.61	11	12.0	0 -	0.97	97	9.91	9
-2.98	2.8	0.61	81	40.0	64	6.08	9.1	0.91	9
E.74	5.6	5.51	81	#	84	4.27	9.1	0%1	4
8.75	5.5	0.81	020	9	09		5'/	5.61	8
L'18	72	5.51	11	9	ph	h*h8	0.9	0.11	01,
1'86	3.5	2.81	13	0	43	1.69	2.7	5.8	9
5.4%	3.2	5.51	6	9	77	5.29	2.5	0.8	h
1.7%	2.4	0.11	5	-9		1.69	0.7	0.8	h
777	2.50	5.57	5	9	5 h	7.73	2.5	0.6	6
2.34	5"	-5.51	01	9	14	2.49	0.8	5.6	8
2.14	2.50	0.61	4	4	14	2.49	2.8	5.6	10
38.2	377	5.51	2	9		9.99	9'3	0.01	4
· rows	(0.)	(20)	(HOW) 400		(17	9.56	5.8	2.01	9
7717	Tuloguas	א אישונאן	SULE MATERIA	Aid	22122	LOAD OU	(Se)	LIMPERATURE (12)	Mr. Co. 4 15

TT/16/8: 2744

	DATE:	3/22/7	7			Marie Control		DATE:	3/23/7	7	
TIME	SOUND LEVEL CANCERS OBA)	RAINEALL (INCHES)	arub besterioni (Glom)	AVA. NINA SPILD (~V~)	AMOILUT TEMPLEMURE (°C)	DEWPOINT (-C)	LOAD 0~	Sound LEVEL (AVERNE dBA)	RAINFALL (INCAS)	billures (FEI 11)	SPEE (MA)
0100	44	0	N	16	12.0	8.5	24.8	44	0	N	3
0,200	50	0	~	22	11:5	4.5	20.0	43	0	N	3
0300	50	0	N	20	7.5	2.0	36.2	41	0	N	3
0400	51	0	N	20	5.5	0	43.3	42	•		6
0500	48	•	N	2/8	5.0	-1.5	79.5	42	0	N	1
0400	43	0	N	3/3	4.0	-1.5	125.1	44	0	N	
0700	43	0	N	13	4.0	-1.5	134.7	45	0		1
0800	43	0	N	15	5.0	-0.5	81.4	43	0	N	3
0900	44	0	N	15		-0.5	68.1	42	0	N	4
1000	46	0	N	18	8.0	-1.0	87.8	40	0	N	6
1100	46	0	N	16	8.5	-1.5	97.3	41	0	N	1
()0	45	0	~ ~	16	10.0	- 2.5	83.7	42	0	N	4
1300	45	0	~	15	11.0	- 2,5	87.7	41	0	N	40
M00	44	0	N	15	12.0	-3.6	81.5	41	0	N	,
1500	44	0	N	15	12.5	-3.0	87.0	40	0	N	6
1600	43	0	N	12	12.5	- 3.5	92.9	40	0	/3	
1700	43	0	N	12	12.5	-4.0	83.9	40	0		
1800	42	0	N	8	11.0	-4.5	73.0	41	4		
1900	44	0	· N	5	9.5	-3.0	33.6	46	0		
2000	47	0	· W	1	5.5	- 1.0	42.7	52	4		
2/00	46	0	~	1	4.5	0	56.1	46	0		
2200	44	2	i N	,	5.0	- 1.0	54.4	45	0		
2300	44	4	N	2	3.5	- 1.0	49.9	44			
2400	43	0	1 N	3	3.5	- 1.0	20.7	43	4		

2 " 37

DAIL: 3/24/77

AMOINT THRUTHER (+c)	DEWPOINT.	CAN)	CAVILLE OBA)	RAINEALL (ENENG)	wind binecrion (Asn)	SOLLS (MON)	AMBILIAT- TAMELOTUAL (+C.)	DEMPOSAT (°C)	LOAD ON LINE (MW)
3.5	-2.5	22.3	43	A			5.0	2.0	-13.1
3.0	-3.5	45.8	41	0			4.0	1.5	9.2
3.0	-4.5	66.1	41	0			3.5	1.5	15.1
1.0	- 4.0	80.4	40	0			3.0	1.0	29.3
0	-3.5	113.6	40	A .			3.5	1.5	37.0
- 1.0	-2.5	151.8	42	0			2.5	1.0	102.6
0.5	-1.0	125.2	43	0			5.0	2.5	114.9
3.0	-1.0	100.7	42	0			7.5	3.5	66.9
6.5	-0.5	75.2	41	0			10.5	3.0	81.6
10.0	- 3.0	74.9	40	0		7	14.0	1.0	89.5
11.5	-3.5	70.7	38	0		8	16.0	1.5	72.9
14.0	- 2.5	46.6	39	0		5 10	18.0	1.0	78.9
16.0	-2.0	70.4	41	0		9	19.0	-2.0	99.8
17.0	-1.5	48.4	39	0		. 8	19.5	- 3.0	90.0
18.5	- 1.5	49.9	38	0		6	A.5	-5.0	82.3
18.5	- 1.0	50.0	40	4		7	20.0	- 4.5	79.0
19.0	-0.5	22.5	39	0		5	19.5	-5.0	41.1
18.0	-0.5	0.2	40	0		3.	17.5	- 3.0	34.9
15.0	0	20.0	50	0		3	14.0	3.0	28.0
9.5	2.0	29.8	47	4		4	4.5	2.0	14.6
7.5	3.0	39.2	40	0		5	N.5	- 2.5	31.6
7.0	3.0	10.2	40	0		4	14.5	-2.5	23.4
6.0	2.5	1.4	39	0		5	13.0	- 1.5	-21.8
6.0	2.5	-12.9	39	•		4	13.0	-1.0	-35:9

5 ture to 20

TI APERTURE CARD

		DATE: 3	125/77					DATE: 3,	126/77	
	TINL	SOUND LEVEL (AVERDE GIBA)	RA.Wines (DEMES)	bitteres still (Film) (min)	TLANGETTEL	600000 xc	LINE (MW)	LEVEL (AVIENDE CIBA)	RAINFALL (ENCHIS)	bies (Fa
	0100	39	0	8	12.5	- 1.0	-14.1	49	0	
	0200	39	6	7	13.5	-2.0	1.2	49	0	
	0 300	39	-0-	5	12.5	-1.0	44.7	48	0	
	0400	41	0	3	10.5	1.0	69.2	48	0	
	0500	42	0	3	10.0	2.0	77.9	49	0	
	0600	43	6	3	7.5	3.0	81.5	50	6	
	0700	44	0	2	9.0	3.0	98.4	44	0	
	0800	42	0	4	13.5	2.0	95.1	42	0	
	0900	40	0	6	15.0	3.0	96.6 .	42	0	
	1000	42	0	7	20.0	3.0	109.7	41	4	
)	1100	41	0	7	21.5	-1.0	102.9	43	0	
	1200	39	0	7		-4.0	125.5	40	6	
	1300	37	0	7	22.0	-2.5	128.4	41	0	
	1400	39	0	7		-1.5	123.6	43	0	
	1500	39	0	7	23.5	-2.0	115.2	40	0	
	1600	38	0	5	23.5	-2.0	94.4	40	D	
	1700	38	0	5	23.0	-2.5	77.7	41	0	
	1800	4/	0	2	20.0	-1.0	63.0	41	0	
	1900	52	0	3	14.5	5.5	78.7	53	0	
	2000	52	0	3	12.5	5.0	75.0	49	0	
	2100	47	4	3	11.0	4.0	74.2	42	0	
	2200	48	0	3	11.0	4.5	64.6	40	4	
	2300	50	4	3	11.5	4.0	42.7	39	0	
	2400	49	0	0	10.0	3.5	41.3	38	0	

DATE: 3/27/77

AID FIRM)	Angillar (16)	DEWPOINT.	LOAD ON	SAUND LEVEL (AVERAGE COA)	RAINFALL.	SPILE	TIMPLEATURE	DEWPO IT	LINE (MW)
1	9.0	4.0	45.1	37	6	7	17.5	8.0	43.9
3	8.5	3.5	38.4	37	€.	7	17.5	8.5	69.8
3	9.0	3.5	70.2	38	0	6	17.5	8.0	5-7.8
3	9.5	3.0	83.4	39	6	4	17.0	7.5	67.3
1	9.0	2.5	81.8	40	0	4	16.0	7.5	76.8
0	8.0	2.5	86.1	41	0	7	16.0	7.5	91.9
4	11.0	4.0	100.1	43	0	12	16.0	7.5	98.3
8	15.0	4.5	138.2	44	0	13	17.0	8.5	127.0
8	18.0	4.5	140.8	46	0	15		9.0	74.7
6	20.0	5.5	156.9	45	0	16		9.5	52.3
9	21.5	6.0	139.3	47	•	2/8		10.5	41.3
9	23.5	6.0	139.0	48	0	20		11.5	44.6
10	24.0	5.5	130.6	49	0	20		11.5	39.7
9	24.5	5.5	141.1	46	€	19	25.0	62.0	6.6
7	24.5	5.5	143.5	47	0	19	24.5	2.5	18.6
7	24.5	6.0	145.2	44	0	17		2.5	8.2
8	23.5	6.0	131.0	43	0	16	23.5	12.5	11.5
5	21.5	5.5	107.7	43	0	17	23.5	11.5	18.4
4	17.5	7.0	115:4	51	0	17	10 to 100 to 100 to	10.0	17.7
5	16.0	7.0	105.2	48	0	19		10.0	18.4
6	18.0	7.0	109.0	47	0	17		9.5	4.2
6	18.0	7.5	83.0	49	0	3,20		8.5	5.9
5	11.5	8.0	59.7	55	0	. 125		5.0	-32.3
6	18.0	8.0	32.7	50	<i>6</i> -	424		3.5	- 31.2
-									FRIT

TI APERTURE CARD

	DATE: 3	/28/77					DATE: 3	3/29/77	
Tings	(evient dea)	RAINEALL (INCHES)	BINGTON SPEED (FROM) (MPM)	AMOINT TIMMINIM	(.C)	LINE (MW)	(AVERAL GOA)	(INCHIS)	wind wind biatches special (Flam) (min
0100		0.01	20	20.5	4.5	- 39.2	40	0	12
8200	52	0.01	21	20.5	4.5	- 43.3	40	0	12
0300	51	0	22.	20.0	7.5	-48.2	39	0	
0400	51	0	23	20.0	9.0	-36.1	39	0	8
0500	54	0	25	19.5	10.0	-13.2	38	0	3
0600	55	0	25	19.5	10.5	17.7	40	0	5
0700	57	<0.01	25	19.0	11.5	63.4	.44	0	1
0800	56	0.22	27	18.5	12.5	36.3	43	0	3
0900	59	0.10	. 13	14.0	12.0	30.8	44	0	3
1000		0.15	6	13.5	11.5	8.2	42	0	5
10	4.1	0.22	*10	13.5	11.5	7.4	43	0	9
1200	50	<0.01	315	14.5	11.5	19.0	45	0	12
1300	45	0	15	16.0	12.5	18.7	43	0.01	7/0
1400	45	0	15	17.5	11.5	26.5	43	0	8,3
1500	45	0	17	A.5	11.0	41.4	50	0.04	9
1600	45	0	15	20.0	10.5	52.0	55	0.07	6
1700	'44	0	15	A.5	10.0	30.7	56	0.17	9
1800	42	0	13	18.0	9.5	9.2	55	0.11	5
1900	50	0	13	17.0	9.5	-26.1	54	0.07	
2000	51	0	. 13	16.0	9.5	- 40.5	52	₹0.01	10
2100	49	0	15	15.5	10.0	- 33.8	46	0.01	10
2200	45	0	. "13	15.5	10.5	-1.5	45	0	2130 7
2300		0	15		11.5	24.1	43	0	2200 12
2400		Ð	15	17.0	12.5	-9.9	44	0	13
			2 6-013 10 46						* 64575 10 18

-

\$6.50 m >50 "... 22 \$... 31 6... 22

PLAKED SONUB LLUCK & 7548A AT SOME POINTS DATE: 3,/30/77

AMOUNT TIMBLEAGURL (°C)	(.C.	CAM ON	SOUND LIVE (AUGORENE SON)	LAMENCE (INCHES)	BINGTON WIND SPECE (FROM) (NEW)	TUPLE WAR	DEMPOINT (· C)	LINE (mw)
17.0	4.0	-55:0	43	0	14	22.0	19.5	106.1
17.5	14.5	-66.1	·° 50	€0.01	"9	.2.2.0	19.5	-112.5
18.0	15.5	-64.6	45	0.05	17	21.5	19.5	-105.7
18.5	16.5	-45.8	45	C.01	14	22.0	19.5	-84.2
17.5	15.5	-22.2	44	6	12	22.0	19.5	-86.0
16.5	15.0	- 3.9	43	0	11	22.0	19.5	-48.9
16.5	15.0	14.6	42 .	6	10	22.0	19.5	-17.5
17.0	15.5	- 43.9	42	6	10	22.5	20.0	-27.5
18.5	16.0	-63.9	44'	0.01	9	21.5	19.5	-40.6
20.5	14.5	-60.9	43 .	0	11	22.0	19.5	-68.0
020.5	15.0	-58.7	43	0	. 14	22.5	19.5	-88.0
18.0	13.0	-8.5	41	0	3/2	23.5	20.0	-91.2
16.5	11.5	19.2	42	0	11	27.0	020.0	-91.2
18.0	12.5	15.9	41	0	10	26.5	19.5	-118.2
17.5	1.0	10.4	4/	0	11	26.5	19.5	-137.8
16.5	14.5	17.2	40	4	8	275	20.0	-121.6
17.0	15.0	15.7	40	0	8	26.5	19.5	-1270
17.0	15.0	1.0	40	0	8	25.0	19.0	-114.7
17.0	15.5	-42,3	52	0	6	24.0	20.0	-134.1
17.5	16.0	-78.4	51	0	7	23.0	20.0	-138.4
18.0	16.5	-85.2	49	0	. 5	22.5	20.0	-132.6
18.5	17.0	-60.5	45	0	6	22.5	19.5	- 130.8
19.0	17.5	- 49.4	42	0	5	22.0	17.0	-118.7
21.5	19.0	-81.4	40	0	. 3	20.0	14.5	-1130
			"@ 0130 @		"60575 TO 20		API	TI ERTURE

sound theel wright 61dBA you approx 4

CARD

	DATE: 3	3/31/77						DATE:	4/1/77	
rink	SOUND LEVEL (ALLENE OBA)	PAINFALL (INCHES)	SEUTION SELD	AMOILUT TIMPUMTURL ()C)	DENFOINT (-C)	LOAD ON	. (Sound LLVLL AVLLANCE NOA)	CINCHES)	200 000 000 000 000 000 000 000 000 000
0100		4	0:30 1	19.5	12.5	-105.6		38	0	5
0200	38	0	10	18.5	7.5	-69.1		38	0	3
0300	40	0	12	17.0	2.5	-53.9		38	0	2
0400	42	0	13	15.5	1.0	-48.8		38	0	2
0500	43	0	12	14.5	-1.0	-53.8		37	0	6
0600	41	0	6	13.0	- 1.5	- 4.8		40	0	7
0700	42	0	9	12.5	- 1.0	45.1		42	0	5
0800	43	0	12	14.0	- 1.5	37.3		45	0	3/1
0900	43	0	12	15.0	- 1.5	30.7	1	43	4	11
1000	41	0	8	16.0	-1.0	65.2		43	0	415
) >	42	0	7	17.0	-0.5	68.5		43	0	10
1200	41	0	7	18.0	0.5	69.1		45	0	511
1300	42	0	7	20.0	1.0	77.8		49	0.03	12
1400	42	D	9	20.5	1.5	86.3		50	0.01	10
1500	42	0	-9	21.5	1.5	115.6		46	<0.01	6/3
1600	42	0	8	21.5	1.5	131.6		44	0.01	10
1700	41	0	8	22.0	1.5	124.0		45	0.01	12
1800	43	0	8	A.5	2.5	114.6		50	6	12
1900	43	0	6	17.0	2.5	81.9		48	0	11
2000	43	0	5	15.0	3.0	64.0		46	. 0	12
2100	41	0	4	14.5	3.0	86.0		42	. 0	12
2200	40	0	4	14.0	3.0	69.9		41	0	12
2300	39	0	3	14.0	3.0	28.1		40	0	13
2400	39	0	3	14.0	3.0	84.0		39	ð	12

"hus = 20

\$40.575 TO 22.

	166	-	- 4	-	
- 8	Δ.	7			
A	7		<u>-</u>	•	

			DATE:			
AMBILIT TIMPLEATURE (OC)	DEWPOINT (.c)	LINE (MW) .	SOUND LEVEL (AVERA).	(IMMLS)	WIND DIELECTION SPLED (FROM) (MON)	TIMPLIATURE DEMPOINT LOA (°C) (°C)
14.0	3.5	84.5				
12.5	4.0	92.8				
12.0	4.5	98.8				
11.5	6.0	118.8				
12.5	5.0	109.7				
12.0	5.0	148.3				
12.0	6.0	186.2				
13.0	6.0	130.9				
13.5	6.5	122.2				
14.0	8.0	125.9				
15.0	9.5	118.7				
15.0	10.5	115.5				
15.0	12.0	124.6				
14.0	12.0	81.3				
14.5	12.5	14.6				
14.5	12.5	6.6				
15.0	13.0	3.3				
15.0	13.0	16.9				
15.5	13.5	11.9				
16.0	14.0	12.8				
16.5	14.0	26.6				Also Available On
16.5	14.0	-0.1	3			Aperture Card
16.5	14.0	-11.3				Aperture Can
16.5		-66.3				

TI APERTURE CARD

DATE: 6/10/77 DATE: 6/9/77 AVE. LOAD ON SOUND DEWFOINT AMOIENT LIVEL RAINFALL DINS BAINFALL DILLETTEN SPELD SPEE LEVEL TIMPLEOTURE שונבחס או (avenu dBA) (weres) (·c) (MW) (FROM) (MM) CAMPAN NEA) (INENES) (FRAM) (MAH 0100 34 0 0200 34 6 0300 34 0 0400 34 0 0500 35 0 0600 40 0 0700 40 0 0800 0 40 0900 38 0 1000 40 0 10 38 0 1200 38 0 1300 37 0 1400 37 0 1500 37 ファファラシュス 0 1600 40 11 0 33.5 NW 15.0 38 -170.9 0 1700 39 0 NW 10 33.0 -142.6 38 15.5 0 1800 39 4 7 NN 31.5 16.5 - 160.1 36 0 1900 39 0 7 - 138.8 NN 30.5 16.5 0 36 39 2000 0 NW 029.0 16.0 - 144.7 39 0 2100 38 3 0 NW 27.0 0 16.0 - 141.4 39 38 2200 -0-3 1 - 128.8 NW 16.0 24.0 39 0 2300 36 4 0 NN - 103.6 24.0 15.0 38 0 2400 36 0 NW - 99.1 23.5 12.5 2 35 0 +4375 TO 19

DATE: 6/11/77

(·C)	(OE)	LINE .	SOUND LEVEL (AVERAL & BA)	RAINFALL (INCHES)	MIND WIND DIRECTION SOLLD (FROM) (MIN)	TEMPLETULE (OC)	(·c)	(MW)
22.5	9.5	- 1229	35	0	2	21.0	15.5	/24.8
21.5	8.0	-146.2	35	0	2	20.0	15.0	-118.1
21.0	7.5	-131.2	35	0	2	21.0	14.5	- 107.3
20,0	7.5	- 115.0	35	0	3	20.5	13.5	- 93.7
20.0	8.0	- 71.7	36	0	2	20.0	14.5	-94.2
19.5	8.0	4.9	42	0	1	19.0	14.5	- 80.9
19.0	8.5	26.9	40	0	,	20.0	15.5	-61.7
20.5	9.5	35.1	38	0	2	225	16.5	- 34.5
22.0	10.0	- 5.2	38	0	4	28.0	15.0	-22.9
24.5	10.5	- 78.9	38	0	5	30.0	14.5	- 75.8
25.5	11.0	-122.8.	38	0	5	31.5	16.5	-/30.5
27.5	11.5	-172.1	37	0	9	33.5	17.5	-168.3
29.0	12.0	- 138.9	38	0	10	35.0	18.5	-182.7
31.0	13.0	-152.8	36	0	10	36.0	19.0	- 188.7
31.5	13.5	-217.5	35	0	8	37.0	19.0	-160.4
32.5	14.5	-237.3	35	0	7	37.5	18.5	-163.7
33.5	15.0	-233.1	38	0	11	37.5	17.5	- 142.3
33.0	15.5	- 198.15	. 38	0	10	375	18.0	-139.0
32.5	16.0	- 163.6	40	4	7	36.0	18.5	-157.5
30.0	16.5	- 130.8	42	•	6	34.5	18.0	-183.4
25.5	17.5	- 140.1	40	0	2	29.5	19.0	-184.8
25.0	16.5	-185.1	42	4	2	27.5	19.5	-115.8
245	16.5	-148.7	42	0	2	26.5	185	- 83.9
21.5	16.5	-122.6	42	0	2	25.5	20.0	-101.7

Also Available On Aperture Card

TI APERTURE CARD

	Sound	2/77	mmp pitternen	AV6.	Ambilar	Dempoint	Load on	SOUND LIVE	PAINEALL	DING A
· TIME	(AULINE dOA)	(INCHIS)	(240)	(APN)	(.c)	(00)	(MN)	(AVERALL OBA)	(incues)	(Fain) (M
0110	40	0		1	255	20.0	-61.4	39	0	
0200	39	*		2	23.5	20.0	-69.4	38	0	
0300	38	4		2	24.5	20.0	- 67.9	38	0.	
0400	38	0		3	240	20.0	- 128.8	37	•	
0500	38	0		5	25.5	19.5	-148.0	39	0	
0600	43	0-		4	25.5	19.0	-142.9	40	0	
0700	40	0		5	26.5	19.5	-88.0	41	0	
0800	40	0		5	26.5	19.5	- 22.4	41	0	
0900	39	0		7	28.0	20.0	18.7	38	•	
,300	38	0		8	30.0	19.5	18.0	. 40	•	12-1
1.100	38	0		9	325	19.0	7.2	37	•	
1200	40	0		15	35.0	17.0	- 9.9	38	0	-
1300	41	0	5	15	. 36.5	16.0	- 14.3	40	0	1
1400	40	0		14	37.0	15.5	- 35.0	37	•	2
1500	40	0-		13	37.5	15.0	-49.3	37	•	
1600	38	0		12	37.5	155	-54.2	39	•	0
1700	38	0	i.	11	37.5	15.5	-62.01	40	0	,
1800	38	0	1	9	37.5	15.0	- 55.7	40	•	9
1900	37	0		5	36.5	155	- 70.0	243	0.02	5 20
2000	38	0		4	33.0	17.0	- 93.5	49	0.03	
2100	40	0	Š	3	28.5	18.0	- 79.9	40	<i>A</i>	1 12
2200	40	0		2	26.0	18.5	- 69.0	40	4	
2300	39	0		2	25.5	18.0	-62.9	39	4	4
2400	38	0		2	25.0	18.0	-41.6	39	0	6
			'buses n	23			Merchanis Con	2 Sound Swell 55 JBA gar 3 minutes place of reing	dies.	36wrs ro 3:

DATE: 6/14/77

Market Harrison Co.								
TEMPLIATURE (OC)	Dembour.	MAE CAM	LEVEL.	(INCHES)	DINICHON WIND SPECE (Fain) (MAN)	AMBIENT TEMPLEMENT (.c)	bemoone	LOAD ON
25.5	16.5	- 9.5	39	6	5	23.0	20.5	- 33.1
029.5	18.0	-9.6	37	0	2.	23.0	21.0	-26.8
24.5	18.0	40.3	38	0	0	22.5	·20.5	25:4
24.5	18.0	- 54.6	38	0	3	22.5	20.5	- 30.5
23.5	175	-49.2	39	6	0	22.5	21.1	-11.3
25.5	120	-10.0	4!	0	€.	22.5	20.5	33.9
25.5	18.0	29.1	39	6	6	22.5	210	27.9
26.5	18.5	25.5	40	0	6	23.5	215	- 35.6
28.5	20.0	-51.9	41	0	.3	25.0	215	- 80.6
30.0	21.0	-134.2	40	0	7	26.5	20.5	
31.5	21.5	-163.9	41	6	9	275	20.5	- 106.6
34.0	21.0	-184.8	38	0	8	29.0	20.5	-121.0
35.0	20.5	-157.8	41	0	8	30.0	20.0	-84.4
35.0	21.5	- 159.8	39	•	8	30.0	20.5	-128.6
37.0	18.5	-197.5	40	0	10	30.5	20.5	
37.5	17.5	- 220.6	40	0	11	30.0	20.5	-172.4
37.0	18.0	-228.6	40	•	10	30.0	20.0	-199.3
36.0	18.5	- 221.2	41	•	7	29.5	20.5	
31.0	18.0	- 190.4	40	A	,	28.0	21.0	-210.5
026.0	17.5	- 138.3	40	0		27.0	20.5	- 157.9
23.5	20.5	-134.0	40	0	3	26.0	20.5	
23.0	19.5	- 160.0	41	•	. 2	25.5	20.0	-160.6
23.5	20.0	- 73.8	41	0	3	25.0	20.0	-128.6
23.0	20.5	-18.0	40	0	1	24.5	20.0	-68.6

Also Available On Aperture Card

TI APERTURE CARD

DAIL: 6, 677 DAIL: 6/15/77 DIECTION SHILLS (PAD) (MPH) A 16. Sound SOUND MIND AMOILNY LOAD ON LAINEALL DEWPOINT KAINFALL DILLETTON SPEED TIMPLIATURL LEVEL LINL LLVILL (INCHES) (00) (inches) (tim) (new) Time (answed BA) (00) (mm) (over o'BA) 0. 23.5 - 3.4 20.0 - 21.0 23.0 20.0 0.200 - 25.9 20.0 22.0 -44.2 20.0 - 31.3 22.0 20.0 44.0 20.0 0.01 21.5 20.0 €.0.01 40.4 21.5 -15.0 20.5 21.0 -101.4 23.5 6.01 20.5 -156.6 25.0 19.5 - 197.1 26.0 19.5 27.0 - 205.0 - 190.5 28.0 19.5 -199.9 0.01 26.5 20.0 25.5 21.5 - 225.4 27.0 21.0 -244.3 28.5 20.5 - 242.9 28.5 20.0 -253.4 27.5 19.5 -208.6 26.0 19.5 -151.5 24.5 20.0 -135.2 20.0 - 125.0 24.5 - 113.4 24.0 20.0 -89.0 24.0 20.0

for several minute during

CAIC: 6/17/77

			64,00	1.1.11				
AMOIEN.	DEW NO. NI-	(ME)	SOUND LEVEL	LAINEALL (INCHES)	bulcrish speed (Eean) (men)	Amoilor Maneral (+C)	Coe)	LOAD ON LINE
,24.0	20.0	- 56.4	41	0	3	25.0	20.0 .	
23.5	20.0	-60.4	40	4	,	23.0	20.0	-21.4
-23.0	-20.0	-62.4	40	0	2.	22.5	20.0	6.8
22.5	20.0	- 71.5	39	•	1	23.0	20.0	4.3
22.0	20.0	- 74.9	38	0	3	23.5	20.0	10.6
22.0	20.0	-25.4	44	0.	3	24.0	20.6	19.1
22.5	20.5	-26.7	43	0	3	24.5	20.0	- 2.6
23.0	21.5	- 75.8	45	0	3	25.5	20.0	-14.4
24.5	22.5	- 125.6	43	•	5	27.5	20.5	-75.1
25.0	22.5	- 90.8	44	0	6	29.0	21.0	-106.1
026.0	22.5	-129.7	44	0	6	30.5	21.5	-137.1
26.5	22.0	-158.9	41	. 0	6	32.0	21.0	-177.3
28.5	21.0	- 122.9	42	0	9	33.0	21.5	-151.5
29.5	20.5	-130.1	45	0.30	10	32.0	21.5	-178.4
29.5	20.5	-189.1						
30.0	205	-200.9						
31.0	20.5	-216.4						
30.5	20.0	-235.5						
30.0	20.0	-207.5						
28.5	20.0	-198.0						
26.0	020.5	-170.7						
25.0	20.0	-188.8						
25.0	20.0	-121,2						
255	20.0	-54.4						

Also Available On Aperture Card

> TI 'APERTURE CARD

DATE: 7/31/77 DATE: DIELETION WINE SOUND DEWPOINT Sound LAINEALL RAINFALL LINE LEVEL TEMPLATURE bielcrie w SPLED (00) TIME (orune do A) (INCHES) (sun) (AVLENE dOA) [INCHES) (=non) (non) (mon) €-SW SW W-SW 5 W - 235.9 33.5 22.5 Sw 22.5 SW 33.5 -235.9 SW SW 32.0 -238.8 23.0 SW 29.5 - 188.8 23.0 NIU 2.8.5 -190.2 W-SW 23.0 27.5 23.0 - 201.7 -137.0 26.5 23.0 - 88.6 26.0 23.0 - 69.7 25.5 23.0

DATE: 8/1/77

AMBILATURE (OC)	DEW BOINT	(mw)	CALLAGE COA)	(INCHIS)	WIND DILICTED (ERM)	AVO. WIND SPEED (MIN)	AMBIENT TEMPLETURE (OC)	(OC)	LONE ON
25.0	22.5	- 52.8	46	6		0	24.0	21.5	= 66.7
24.0	220	- 57.9	44	0		0	23.0	20.5	. 58 8
24.0	22.0	- 54.2	45	0		0	22.5	20.5	- 50.Z
23.5	22.5	- 54.5	44			0	22.5	20.0	- 60.0
23.0	21.0	- 52.8	44	0		0	225	20.5	- 48.0
23.0	21.0	- 53.6	46	0		0	22.0	20.0	- 37.1
23.0	21.0	- 37.2	47	0		0	22.5	21.0	- 35 3
23.5	21.5	6.7	51	0		0	23.0	21.5	- 25.1
24.5	22.0	7.9	. 46	0		4	23.5	22,0	- 141.1
26.0	22.0	- 23.0	45	0		0	25.0	21.5	- 228.4
27.5	22.5	-53.7	44	0	NW	3	27.0	21.5	- 282.0
29.5	22.5	-69.4	42	0	NW	2	30.0	22.0	- 283.6
30.0	22.5	-116.4	39	0	NO	4	31.5	22.5	- 310.8
31.0	22.5	-148.6	38	0		0	33.0	22.0	- 350.7
32.5	22.5	-152.4	37	0		0	34.0	21.5	- 391.2
30.5	22.5	-177.7	40	0	W-NW	1	34.0	21.0	- 401.7
28.0	23.5	- 162.4	40	0		0	33.5	21.0	- 442.5
26.0	225	- 145.6	43	0	N-NW	4	33.0	21.5	- 440.3
026.0	22.0	- 136.0	42	0	N-NW	3	32.5	21.0	- 385.4
26.0	22.0	- 134.2	43	4		4	30.5	21.5	- 354.1
24.5	21.5	-137.2	45	0-	N-NW	1	28.5	20.5	- 358.8
. 24.0	21.5	- 137.2	46	0	N	2	28.0	20,5	- 351.8
24.0	21.0	- /32.3	46	0	N	2	27.0	21.0	- 264.7
24.0	21.5	- 62.3	46	•	N-NE	2	27.0	21.0	- 194.0

TI APERTURE CARD

+	98	to 151 -	0.91	5:00			4	14	2400
	45	1.111 -	0.31	25.55			0	Th	0000
0	38	1 572 -	0.61	550			-0	745	2500
-9	04	Z. 045 -	0.61	Sho			-0	oh	0012
0	EH	L'zhz -	0.71	5:40			-0	on	00000
4	TH	8'187 -	0.71	5.90	6	5	9	54	0061
-0	Th	5.112 -	271	28.5	61	35	+	95	1800
-	10	1.222 -	0.120	340	8	ms-m	-0	EH	2021
0	Oh	2,008 -	2.050	SHE	3	m5	0	68	001/
-0	94	1.072	0.00	5'hE	~	5	0	48	0251
+	5E	2. 288 -	-2.050	340	2	35-5	0	88	00h'
-9	14	8. 81.8 -	2.00	0.56	1	PIN-N	0	8€	00E1
0	56	5' 658 -	012	2.56	2	35	0	Off	07
4	pp	0.138 -	0.50	2.05	1	35-3	-0	£#	0011
-0	p. p.	2, 228 -	510	0.850	7	~	4	9%	0001
+	Th	5 788 -	0.050	25.55	1	N	-9	bh	0060
+	45	5.651 -	5.31	0.45	p	N	0	ht	0080
-0-	Th	9.801 -	5.81	0.50	0	N	-0	94	00 40
.0	14	1-101 -	5.81	23.5	~	31	-	54	0090
9	01	1.001 -	0.91	23.50	3	7N-N	0	St	0.250
+	240	1.211 -	2.000	540	20	JN-N	0	St	oche
-0	5E	L 07	0.12	0.5%	2	~	-0	54	0050
0	04	1-14/ -	0.10	0.920	~	N	•	sh	0000
-0	11	9-861	0.15	0.90	2	3W-W	-	9%	0010
(SINCHIZ)	(ASE JOHNIA)	(min)	(%)	(0.)	"(men)	(ww) "	(incus)	(48P 1471/4)	TWIL
KAINFALL	77077	ייייי אריי	Demporar.	TEMPERATURE	61192 61192	MIND DIES	RAINEOLL	73/77	
12:5/	8 : 7140				***		LLIE	18 :2744	

DIALO (MAN)

DIALON SOUR

DIALON

DIAL

10

Also Available On Aperlure Card

(CARL	
IKE	APERTU	
	IL	

FRTII	dV.						17 1101		0/6	275
IL							1-402	-	0.150	0.85
2027							7.842		2.050	518
							E. THS	-	0.00	2.5.
							1- 567	-	0.05-	2.18
							E- 745	-	0.050	0.52
							1.322	-	0.050	OIE
							8 9/2	-	20.05	0.05
							1.56.	-	070	285
							8.312	-	2.000	220
1755 -	-2.12	30.0	3	~	0	64	0.122	-	2.05	0.92
8 497 -	2:120	520	3	N	0	05	5.861	**	20,5	255
J.872 -	0	07550	3	MM	0	64	8.141	-	20.5	052
5°ZH/ -	9750	5.65	3	m	-0	94	1.28		0.050	23.5
- 130.0	031	-2150	h	3	0	£4	7.85	**	-6.91	510
1.421 -	VV	512	5	3	0	04	H: 06	_	5:61	0,55
908 -	531	_5750	1	3	0	04	8.571	**	2.91	0.550
0.225 -	0.050	2.50	L	35-3	. 4	14	5'151		-581	0.55
P. EEL -	277	0.55	4	3	0	tota	7'55	-	0.91	516
1- 206 -		2.86	9	3N.3	+	24	5021	-	2.61	500
1. 525 =	2.00	0:52	9	35.5	4	24	2.081	*	6.91	22.5
(mm)	(3.)	(2.)	(Hew)	(500)	(incais)	(ANENOLABA)	· (um)		(30)	(20)
3000	Demonst	AMBILLE	A HILL	פילה נפח מואס	KAINEOLL	23V21	- 400		DE MOSIMA.	Amount F
					,	-1-				

1.88 -

0.25.0

072

LL/00/8:2:47

	0440										124/77		
FIRE TREE LET	LVLL	(INCHES)	Butterne (vitam)	SPLLD (MIN)	AMOIENT TEMPLEATION (°C)	Dimeoini (.c)		LINE LINE		SOUND LEVEL (ANUME CIBA)	RAINEALL	WOB BILLETON (FROM)	4W. 5040 (men)
0100											*		
0,200													
0300													
0400													
0500													
0600													
0700													
0800													
0900													
1000						}							
), ,			1			;				20			
1200										39	0	NW	7
1300			į.					1		40	0	WWW	3
1400	42	_	1							37	0	W-NW	4
1500	41	0	SE	10	35.0	22.0	-	305.9	- 1	37	0	SW	3
		0	5.7	10	35.0	21.5		265.4	,	39	4	SW	3
1700	39	0	32	8	30.5	21.5	-	290.2		42 !	0	SW	5
	39	0	3	3	027.5	21.0	i -	301.4		41	0	SW	3
	30 44	0.06	£-5E	3	28.0	21.5		302.3		40	0	E-5E	4
1900			1			1		1	1	47	0	3	3
02000									1	45	0	NE	4
2100						1				46	0	W	5
2200									4	46	0	58	7
2300			1							44	0	SE	8
2400										43	0	NE	8
	to a fer	in of of	nox . 5	minu	ka								
Jun	I before	1600 Its	sound	level									
ev	night 63	4BA (w/	prede	T 73	16A)								
Q.Z	le remon	in un	Lucion				1	,					

DATE: 8/25/77

HOMBIENS TIMPLEATURE (OC)	(OC)	(MM)	SOUND LEVEL.	RAINFALL (INCHES)	BIRE THE	WIND SOLLO (MAN)	ANDILYT TEMPERATURE (OC)	DENGINE (OC)	LINE (AN)
			43	0	٤	8	243	21.5	- 166.2
			44	0	N	8	23.5	21.5	- 153.5
			43	0	SE	7	23.5	21.5	- 176.0
			40	0	E-5E	9	23.5	21.5	- 180.0
			46	0-	NE	9	23.0	21.0	- 140.3
			43	0	3	4	23.0	20.5	- 13.0
			43	0	2	2	23.5	21.0	111.0
			43	0	3	3	24.0	21.5	125.0
			43	0	3	4	25.0	22.0	100.7
			44	0	SE	7	27.0	22.5	34.9
31.0	23.5	- 201.5	43	0	SE	6	29.5	23.0	- 3.6
32.5	23.0	- 294.2	41	0	SL	7	32.5	23.5	- 52.8
34.0	22.0	- 313.4	39	0	SE	7	33.5	24.0	- 31.2
35.0	22.0	- 305.9	39	0	5	7	33.0	23.5	- 24.4
35.0	22.0	- 265.4.	, 41	0	5-5W		32.5	23.5	- 43.3
34.5	22.0	- 290.2	39	0	50	-	34.5	240	- 37.8
34.0	22.5	- 301.4	47	0	SW	4	33.5	24.0	- 34.3
30.0	21.0	- 302.3	44	0	E-52	6	30.0	23.5	14.0
29.0	20.5	- 285.1	46	0	SE	6	29.5	25.0	1:4
27.0		- 273.6	, 46	•	3	7	28.0	25.0	48.9
26.0	21.5	- 279.2	45	0	NE	7	27.5	25.0	34.5
26.5	22.0	- 259.1	44	0	٤	5	27.5	24.0	- 16 6
26.5	21.5	- 234.1	44	•	8-51		27.0	23.0	- 16.6
25.0	22.0	- 178.6	44	0	SE	-	26.5	22.0	108.9

3

	DATE: 8	12,100								
		1/26/77						DATE: 8	130,77	
rimL	LEVEL (AVLEAN ABA)	RAINEALL (INCNES)	BILLETION (FROM)	SPLED (MPH)	AMBILWE TEMPLIATURE (°C)	DENPOINT (°C)	LOAD ON ,	Sound	RAINFALL	DIELECT
0100 0200 0300 0400 0500 0600 0700 0800 0900	44 44 44 43 44 46 44 44 43	• • • • • • • •	\$ 5 £ 5 £ 5 £ 5 £ 5 £ 5 £ 5 £ 5 £ 5 £ 5	8 6 7 8 10 4 3 4 29	26.0 26.0 25.5 25.0 24.5 25.0 25.0 26.0	22.0 22.0 22.0 21.5 22.0 22.0 22.5 23.0	(mw) 127 .1 119 .2 75.8 20.6 63.2 153.8 208.9 193.3 153.3	(AVLLAGE CLAA)	(incres)	(FA)
1200										
1500								42 39	0	
2000								47 47 46	6 6	
		2	w57'S 70	21				46	0	

2 17

DATE: 8/31/77	b	ATE:	8/31/77
---------------	---	------	---------

Ambient Dempoint Load on Lette. Raineau. Wind Aux Amount Dempoint Load on Lette. (MW) (NUME) (EDD) (NM) (NUMED) SEED TIMPERATURE DEMPOINT LOAD ON LINE 45 & E-SE 5 26.0 17.0 24.0 43 & E-SE 4 25.5 17.0 18.1 41 & E-SE 7 25.0 16.5 - 3.5 41 & 6 E-SE 7 25.0 17.0 - 76.7 47 & SE 9 25.0 17.0 9.8 4.4 47 & SE 9 25.0 17.0 9.8 4.4 45 & E-SE 10 28.0 17.0 9.8 4.4 45 & E-SE 10 28.0 17.0 84.4 43 & E-SE 10 28.0 17.0 84.4 43 & E-SE 10 28.0 17.5 17.8 44 & E-SE 10 30.0 17.5 10.6 44 & E-SE 31 31.5 9.5 10.6
(AVILLIA) (AVILLE) (SEAM) (SAID) TIMPLEATURE DEWPOINT LOAD ON LIVE (SC) (SC) (MM) 45 6 E-SE 5 26.0 17.0 24.0 43 6 E-SE 4 25.5 17.0 24.0 42 6 E-SE 4 25.5 17.0 18.1 41 6 E-SE 7 25.0 16.5 - 3.5 43 6 E-SE 7 25.0 17.0 - 76.7 47 6 E-SE 10 25.0 17.0 9.8 47 6 E-SE 10 28.0 18.0 79.3 44 44 45 6 E-SE 10 28.0 18.0 79.3 44 45 6 E-SE 311 46 6 E-SE 311
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
45 & E.SE 10 28.0 18.0 77.8 44 & E.SE 10 30.0 19.5 10.6 43 & E.SE 311 3.0 19.5 83.1
44 & E.SE 10 28.0 19.5 77.8 43 & E.SE 311 3.5 19.5 10.6
43 6 8-58 311 31 - 19.5 - 83 1
E-SE 3/1 2, - 83 !
20 8-56 1/2 32 - 1/4.0
- 22 - 22 - 20 2 - 18/.7
- 108 2 = 20 2 15 340 12 - 111.5
£ 11 350 180 4
20 8.32 /0 350
230 8.52 10 350 1 182.1
SL X 7 AD X
32 32 5 34.5 17.0
-137 6 48 - 532 5 290 110 223.6
270 -140 6 50 2 2.32 5 26.0 180 -1.3.
-AU - 11
21.5 47 € 5 26.5 18.5
32.6 26.5 18.5 - 34.5
3600 TO 22
5 " 23 APERTUD
APERTURI

CARD

	W. W.	1/77							DATE:		9/4/77		
TIML	(averse 46A)	RAINFALL (IMENIS)	(Fear)	AVE. WIND SPLLO (MIH)	AMBIENT TEMPLEATURE	DEWASINT (°C)		LOAD ON	SOUND LEVEL (AVELL dOA)		RAINFALL (INCHES)	WIND DIELETION (FEOM)	SELTE
0100	46	0	E-SE	5	26.0	17.5	-	26.4	44	*			men
0,200		0	SE	5	26.0	17.0	_	29.9	43		0	2.58	4
0300	44	0	E-SE	5	25.5	17.5		22 11	43		0	E-5L	5
0400	45	0	2-52	5	25.5	18.0	**	33.4			0	2-56	5
0500	43	0	32-38	7	25.5	17.5		6Z.7	42		0	2-32	3
0600	45	0	2-52	7	25.0	17.5	-	39.0	41	×	0	NL	3
0700	47	0	! 58	8	25.0	17.5		23 .9	41		0	8-56	2
0800	48	0	18-52	7	26.0		-	17.5	. 43	1	0	8-58	3
0900	47	0	18-58	9	28.0	19.0	-	19.3	45		0	E-NE	4
1000	44	0	E-SC	9		20.0	-	36.9	47	÷	0	NE	5
) 1100	43	0	1 8	10	27.5	20.0	-	90.9!	. 46		0	E-NE	7
10	43	0	E-NL	1/2	31.0	20.0	~	118.7	44		0	٤	1/1
1300	40	0	1 2	13	31.5	19.0	-	196.0	42		0	3	314
1400	< 30	•	3	12	33.0		-	215.1	39		0	3	13
1500	<30	0		- A	33.5	18.0	***	197,3:	39		0	E-NE	2//
1600	530		. 2	11.	34.5	17.5		2045	40		0	3	3,2
1700	< 30	4	3	12	35.0	17.5	-	188.1	39	**	0	٤	12
1800	<30	0	1 -	10	34.5	18.0	-	174.7	39		0	٤	11
1900	<30	0	3 1	9	34.0	17.5	-	179.21	42		•	5	9
2000		0	٤	5	32.5	17.5	_	192.4	42		0		6
2/00	< 30	0	8.52		28.5	18.0	_	124.6	45			0 00	
2200	45	4	58	4	26.5	18.5	-	169.51	52			2-52	5
	51	0	58	5	25.0	19.0	-	139.8	51			2-52	5
2300	48	0	E-56	6	25.5	19.0	_	11 8	49			2-52	4
2401	47	4	2-52	5	25.5	15.0		55.5				2-58	/
								202	47		0	٤	3

Also Available On Aperture Card

	CARD								
BE	APERTU								
	LL		520		5				
	LL		61	at trems					
1522.		055	6	35-	9	15	L' LE	-6.150	
732.2		5 920	2	75-3	0	75	1. 22	510	07720
של אסד .		0.85-	7	35	-	15	2.82 -	510	550
5.525 -		1850	1	35	0	55	526 -	0.10	
8:841 -		3.05	1	75-3	0	Sh	1:15 -		. 5220
8.55 -	215	53.0	1	75-3	9	65	6'tc -	5/2	2.950
5.08 -	-2.15.	5 HE	01	35-3		EH	1.38 -	0,500	0.55
2.16 -	016	35.0	01	7	•	43	5.85 -	0,550	345
8	215	0.58	11	3	0	54	1" 1 0	25.55	35.0
89 -	- 512	5 th E	11	7N-3		En	5.59 -	0.55	. 0.ZE
7.8	2.50	OHE	51	7		43	3.43 -	22.0	-C.4E
+° E -	22.5	0.55	51	7N-3	4	bh	2' ~	25.50	2.55
3.5	22.0	32.0	2/4	3N-3	0	74	7. 28 -	2.55	0.55
8-04	2.50	30.0	515	3		86	6.45 -	0.55	218
9.48	2.50	285	01	3	0	6h	1.2	0.55	018
7.18	-515	5.95	0/	3	0		1:11	0720	2 620
8.56	070	5790	1	31	0	64	51:1	0120	022
2.84	2.05	500	5	3	-	6/2		2.000	0.50
6. 88	0.120	5120	٤	31	+	4	8.261	200	-2.0C
8. 82	012	0.50	5	31	9	L#	0.511	0.05	510
0.02	010	512	5	3	0	Lh	2.26	561	22.5
8.72	0.15	0.55	1	31	0	43	5.46	5.61	SHE
8 37	510	3.55	2	30	-0	43	8.69	031	SHE
5.14	512	2,40		70		24	2.73	561	5 hz
(mm)	8-0	(3.)	(MILL)	-	4	. 74	5'58	0.81	25.0
300	(30)	Tensumment	77745	פונדרנוח	(inemis)	(שוואד מפש)	(~~)	(5.)	(3.5)
C. 4407	DEMPoint	THIBITAL	40.14	4U/W	א שיוח בשרר	gares	Le 0 40-1	· Lei Domig	AMBILLYT .
*** **									

PATE: 9/3177

9/4/77 9,5/77 DATE: LATE: WIND AND AMBIENT DIRECTION SPEED TEMPERATURE Samo WIND AND DIRECTION WIN RAMFALL SOUND DEWPOINT LOAD ON RAIMFALL LEVEL LEVEL LINE (INCHES) (FRM) (MPH) TIME (Avecane 18A) (-c) (mw) DUCHES! (AVERAGE dBA) (FROM) (MF 50 0100 0 E-SE 7 49 27.0 21.0 233.7 0 8-58 7 50 0 0200 9 €.5€ 26.5 48 20.5 220.6 8-58 0 50 0300 0 8.38 26.0 44 20.5 243.0 0 2-112 3 48 0400 2-58 0 25.5 196.6 20.0 43 SE 0 45 0 ٤ 0500 25.0 192.4 46 20.0 £-5E 0 50 E-NE 0600 0.02 187.8 24.0 20.0 47 0 £-32 5 5% 0.03 E-NE 0700 23.5 48 20.0 186.0 0 3 I-NE 54 2 0800 < 0.01 6 23.5 157.7 20.0 47 0 2 3 46 8 0900 0.02 24.0 165.8 20.5 47 E-NE 7 0 35 7 1000 ٤ 0.06 24.0 186.3 210 47 58 0 7 10 2 9 €0.01 24.5 21.5 164.6 46 0 58 8 47 1200 0.01 ٤ 25.5 22.5 - 160.4 45 0 SE . 47 < 0.01 ٤ 4 1300 25.5 225 - 181.0 8 46 58 0.01 44 8 1400 0 2 24.5 225 8 - 202.0 43 0 8-58 42 ٤ 4500 0 10 27.5 22.5 0 - 204 4 43 7 32 43 1600 0 E-NE 10 28.0 225 - 183 3 40 0 8 5-52 1700 42 0 ٤ 10 29.0 22.5 208 5 41 6 0 SE 41 0 E-NE 1800 28.5 022.0 - 211 .6 39 0 S 5 40 0 1900 E-NE 28.0 021.5 203.6 41 0 5 5-58 45 E-NE 2000 0 6 26.5 21.5 - 1915 45 0 5 6 52 0 2100 E-NL 26.0 21.5 - 208.3 52 5-52 4 0 52 2200 0 ٤ 4 26.0 021.5 51 - 202 9 SE 0 3 51 0 2300 2 4 25.0 49 22.0 -215.2 3 0 (-38 50 0 2400 ٤ 25.0 -218 .9 22.0 49 0 8-58

Sound lovel everyed 55 dBA for about 18 minutes @ and of campall.

DATE :	9/3:77
--------	--------

AMBIEUT TEMPERATUE	DEWPOINT	LINE	SOUND	RAINFALL	WIND DIRECTION	ANG	AMBIENT TEMPERATURE	DELOPOINT	LOAD ON
25.0	22.0	(MW)	(AVERAGE & BA)	(INCHES)			(c)	(cc) -	(wm) =-
25.0		- 243.9	49	0	€-5€	6	25.0	20.0	- 267.6
	22.0	251.4	48	0	E-56	5	240	23.6	- 205.1
24.5	22.0	- 242.1	48	0	852	7	240	19.5	- 270.5
240	22.0	- 248.4	41	0	8-58	6	24.5	19.5	. 241.5
24.0	22.0	- 243 3	47	0	2-52	6	014.5	19.0	17.6
24.0	22.0	- 229.0	44	0	8-5€	5	24.5	19.0	. 172.5
23.5	22.0	- 289.9	46	6	3	5	24.5	19.5	- 163.1
24.5	22.0	- 269.4	44	0	E-5E	7	24.5	20.0	- :81.0
26.0	22.0	- 220_3	55	0.02	8-58	7	25.0	20.5	- 221.1
28.0	22.5	- 24x.8	49	0.05	E-52	9	24.5	21.0	- 247.1
29.5	23.5	- 237.6	44	0	8-58	10	025.0	22.0	- 267.0
30.0	23.5	- 227.3	44	0	3	2/2	25.0	21.5	- 285.9
31.0	23.0	- 254.5	44	0	3	13	-25.5	25	- 235 6
31.0	22.0	- 267.3	46	0	3	15	26.5	22.0	- 209.5
31.5	21.5	- 275.9	45	0.01	3	13	26.5	21.5	- 182.4
31.5	21.0	- 288.7	45	0.04	3	311	26.0	21.5	- 115.0
31.0	21.5	- 287.9	44	0.10	3	13	26.0	21.5	· das 1
30.5	21.5	- 299.8	55	0.12	8-36	415	25.0	21.5	- 219.4
29.5	21.5	- 278.5	55	0.02	3	11	24.5	20.5	- 232.6
28.5	21.5	- 250.8	54	0.25	3	15	24.5	21.0	- 213.2
27.0	21.5	- 257.3	55	0.25	3	15	24.5	20,5	- 271.1
026.5	210	- 300.4	60	0.25	3	17	24.5	20.5	. 248.5
25.0	21.0	- 280.1		0.70	2	16	24.5	240	. 122.5
25.0	20.5	- 270.5	57	1.50	٤	19	245	20.0	- 172.0

60 ses 70 21 3 - - 19 4 - - 30 TI APERTURE CARD

1	- 5	1	
1	2	1	
	1		

										, 48h !	9 2. Eh		
										. my oce 1 00	June 1	,	
										when rein as	butety.	7	
									1	well incure	James 1		
-	75	0	94	8. 8	_	512	23.55	0		-0	Lti	oohz.	
	75-3	.0	717	1.24		5120	23.55	.0		0	84	00200	
-	35.7	0	4	9.1	-	0.55	0.45	0		0	08	0000	
•	35-3	0	64	5 50		0.550	2,550	0		0	617	DOLL	
	75-3	0	54	9'84		2,500	2.55	0		0	St	0000	
	31	-0	11	2.64		0.550	0.23.0	0		0	14	0061	
	MV-N	4	Oh	6.19		0,550	0.55	0		0	54	0081	
		0	1+	5.13		0.550	0.55	0		0	53	80T1	
		0	Eth	8.19		5.150	0.55	0		10.0	19	0091	
		0	th	84,3		5130	2.55	0		-0	25	0001	
		0	Th	2,08		212	-5.4E	0		20.0	I EH OFF	, ash!	
		0	Th	8. 25		5.150	0.25.0	0		-60.0	pp	0051	
		0	ph	33.4		21.50	25.50	0		-9	pp	0051	
		-0	94	5.25		0.560	25.0	0		4	84	00	1
		0	6th	ti 81	-	0.500	2.450	+		60.0	09	000.	1
		•	8th	0.32	-	2.5.5	0.450	0		0	05	0092	
		-0	84	2,101	-	205	0350	0		50.0	15	0080	
		0	84	1.001	-	0.81	0,40	1	5	60.0	53	0000	
		-	84	6.301	-	0.81	0.450	11 0550	5	90.0	53	0090	
		-0	ht	L'251	-	5.81	0.450	6	5	11.0	hs	0250	
		-0	SH	3.581	-	581	23.55	13	3	e.0	75	0040	
		4	**	8.081	-	0.91	0.45	-	35-3	05.0	45	0026	
		0	54	1:12/	-	0:61	0.45	11	3	61.0	55	0050	
		-0	9.5	1.561	-	5.91	0.45		3N-3	PT.0	49	0010	
146	(4124)	(SIMINE)	(ASB HOUSE)	" CMW) "	(20)	(5.)	(now) "	(4027)	(simmis) "(שאודיאר קשע) Juil	
770	- metotaid	KAINIF ALL	77777	אס מא	67	Dimenint	I MOUNT	SUL SUL	AN VAL	למוחבמר	77177		
*										LL/L/6	: 2140	1	
		1-1/8/6	:3140										

DAT : 9.19.77

						100			and the first of the same
AMOUNT : EMPLOYEE	L'ec	tone in	CAMERIC 4'BA)	L'AINTRLL (INCHIS)	DIELETAN .	MIND SPALD MAN)	AMBILM.	(OC)	(MW)
22.5	22.0	- 41.4	45	6-	8.52	2.	.2.2.0	19.0	- 45.2
22.1	22.0	- ::5	74	0	28.3	2	21.5	19.0	- 47.9
21.5	21.5	6	43	0	٤	1	21.0	18.5	- 53.0
=21.5	21.0	48.0	43	0	٤	2	20.5	18.5	- 49.8
,2,'5"	21.0	73.3	44	0	٤	2	20.5	18.0	- 22.7
210	21.0	103,3	47	0	٤	02.	2:.0	17.5	33.6
0210	21.0	:35.7	50	4	3	2	20.0	16.5	41.3
215	21.5	113.4	49	0	NE	2	22.0	16.0	101.8
22.5	21.5	60:	48	0	SE	2	25.0	16.5	73.9
245	21.5	15.5	47	0	5	5	28.0	17.0	47.0
26.0	22.0	- 13.2	45	4	5-5W	6	295	16.5	65.5
27.5	21.5	- 34.2	45		5W	7	31.0	14.0	15.7
290	21.5	- 31.1	4-	0	SW	7	31.5	14.0	3.5
30.0	21.5	. 53.9		0	SW	7	32.5	14.0	- 1.1
30.5	20.5	- 51.3		0	SW	4	33.0	13,5	1.8
31.5	20.0	- 7.9		0	SW	6	33.0	12.5	10.6
31.0	21.0	- 53	43	6	SW	5	31.5	12.0	6.4
31.0	21.0	- 4.4	44	0	SW	7	30.5	12.5	38.1
29.5	19.5	- 10 5	42	0	541	5	29.0	15.0	36.3
25.5	19.5	- 12.3	45	4	SW	5	27.5	16.0	25.8
23.5	19.5	- 46.9	50	6.	SW	5	27.5	15.5	. 4.4
215	20.0	- 38 6	48	+	5	3	25.5	13.5	8.0
22.5	19.5	- 30:4	47	0	3	3	24.5	13.5	31.8
22.5	19.0	- 81.2	47	€-	5	1	24.5	102.5	26.4

TI APERTURE CARD

IME:	SOUND LEVEL (AVERNOS ABA)	RAIN FALL (THENES)	WIND DIRECTION (FRAM)	SPEED T (MPH)	AMBIENT EMPERATURE (°C)	DEUPOINT		(Me)	LEVEL AVERACE dEA)	(ENCHES)	MIND DESCRION (FRMI)	MIN MA
0100	47	0	, 5	3	25.0	12.5		14.3	44	+	N	2
0200	48	0	. SW	4	25.0	12.5		.1	43	0-	N	2
0300	47	0	SW	3	24.5	12.0		20,3	43	0	N	3
0400	47	0	W-SW	4	24.5	11.5		47.6	44	0	N	2
0500	47	0	+ w	3	24.0	11.5		82.5	45	0	NE	-7.
0600	47	•	11-5W	2.	24.0	11.5		112.8	45	0	N-NE	3
0700	47	0	1 5	2	23.5	11.5		138.4	47	0	N-NE	4
0800	47	0	SW	3	235	13.0	ŧ.	215,5	47	0	N	6
0900	46	0	· w	6	25.0	13.5		187.4	48	4	N	8
1000	46	0	W	8	25.5	15.0		106.4	47	4	N	8
100	44	0	W-NW	5	27.0	15:5		69.2	45	4	~	9
1200	43	0	N-NN	'11	28.5	17.5	1	11.6	44	*	N	10
1300	42	0	N-NW		29.5	18.5		12,3;	40	4	N	10
1400	42	0	, NW	8	30.5	19.5	-	11 5	39	4	N	9
1500	41	0	W-NW	9	31.0	0.00		23.11	39	•		9
1600	39	0	w	6	31.5		-	8 .2	39	0		8
1700	40	0	W-SW	7	32.0		-	39 5	39	0		8
1800	40	0	NW	8	31.0		1 -	48.2	42	. 0		6
1900	39	0	N	6	27.5			23,34	40	4		2
2000	48	4	: N	4.	26.0		-	35.8	45	4		3
2100	49	0	5	4	24.5		1-	48.3	47	0		:
2200	48	0	: 56	2	23.0		1	10.3	46	4		3
2300	46	0	N	1.	22,5	1	7	50.4	45	4		3
2400	46	0	! N	3.	22.0	1		8.1	44	0		2

. THE 444 .

DATE:	9/12/77
-------	---------

AMBIENT TEMPERATURE (CC)	DEWPOINT	LORS ON LINE (MW)	SOUND LEVEL (AVERNES dBA)	RAINPALL (INCHES)	DIEFLINA (FEM)	AGE SAED	AMBIENT TEMPERATURE C	DEWPOINT		LINE (MW)
-22.0		- 17.2	43	0		4			-	.42.6
22.5		- 20.2	41	0		2.				37.0
-21.5		14.7	42	0-		6			-	30.1
21.0		30.7	41	0		6			-	34.3
21.0		13.9	41	4		4			-	16.1
20,0		- 2.9	42	0		3				21.0
A.5		8.4	43	0		3				36.5
19.5		87.0	47	4		5				57.2
22.0		137.4	47	4		10				57.3
24.0		151.9	48	0		213				23.8
026.0		169.1	47	0		11				4.4
27.5		138.6	45	0		12			-	26.9
28.0		112.3	41	0		12			-	39.3
029.0		87.5	38	•		8			-	25.8
30.0		86.0	38	.6	5	8	320	20.0	-	46.0
30.0		81.4	41	6	5	7	31.5	205	-	21.0
29.5		29.3	40	4	5-58	5	31.0	205	-	75.9
29.0		29.7	40	0	8-52	5	30.0	21.0	-	62.1
26.0		50.7	43	0-	32-3	7	28.5	21.0	-	20.6
021.5		. 112,5	48	0	SE	8	26.5	20.0		235
20.0		1 10.5	49	0	5.58	320	26.5	19.5	-	41.4
020.0		25,4	49	4	5.52	10	245	19.0	-	49.2
20.0		8.8	48	0	·SE	15	245	19.5		17.9
19.5		- 1.7	48	0	38	413	24.0	20.0		53.3

6.675 10 25 3 .. - 33 4 .. . 29

Also Available On Aperture Card

> TI APERTURE CARD

	DATE!	RAINFALL	WIND PRECTION	AUG WIND	AMBIENT TEMPERATURE	- DEWPOINT		LOAD ON	DATE: 9/	RAINFALL	WINE DESCTION	A
TIME	(MERACE ABA)	(INCHES)	(FROM)		(%)	(°C)		(mw)	(PVERAGE OLBA)	(INCHES)	(Ferm)	
0100	47	0.15	3-58	1/3	24.0	20.0	-	86.1	47	0	3 2	
0200	50	0.01	5-58	10	23.5	20.0		35.2	47	4	58.	
0300	47	•	58	9	23.5	20.5		4.6	47	•	52	. 4
0400	47	0	5-52	10	23.5	21.0		22,5	48	0	5-52	
0500	48	•	5-52	13	23.5	21.0		38.8	49	4	5-52	
0600	50	0.83	5-52	. 10	23.5	21.0		98,3	50	4	5-52	
0700	55	0.78	5	28	23.5	21.6		97.7	51	4	5-58	
0500	54	< 0.01	5-SW	10	240	22.5		40.8	48	0	52	
0900	51	0	S	213	24.5	23.5	_	16.2	46	2	5-52	
1000	49	0	5	10	25.5	23.5	_	34.0	45	•		
1100	49	4	5	11	27.0	24.0	_	72.5	44	0	5	3
1200	46	4	5	14	029.0	23.0	_	78.1	45	0	5	
Boo	47	0	5	17	295	23.0	-	53.7	43	0	5	
1400	45	0	5	15	29.0	24.0	_	45.3	39	0	.5	1
1500	44	0	5	15	30.0	23.5	-	43.2	38	0	5	-
1600	45	0	5	16	30.5	23.5	_	23.2	42	0.14	32	2
1700	47	4	5	15	29.5	21.5	_	14.0	50	1.00	32	41
1800	42	•	5	8	28.5	21.0	_	6.9		,,,,,		1
Hoo	42	0	5	7	26.5	20.0		18.9				
2000	49	4	5-SW		25.0	20.0		29.9.				
2100	50	0	2	00 6	25.0	20.0		6.7				
2200	47	-0-	500	3	23.0	19.0		5.9				
2300	47	0	E-58	3	21.5	18.5		15.8				
2400	46	0	3	3	21.5	18.0	_	39.9				

16055 TO 21 2 11 " 20

					DATE:	4/10/11						
子田で	AMBIENT TEMPERATURE (°C)	DEW POINT		MW)	SOUND LEVEL (AVEXAGE (BA)	RAMFALL (INCHES)	DIFECTION	ANG WIND SPEED	AMBIEUT TEMPERATURE (°C)	DEWPOINT	LINE (MW)	
3	22.0	18.5	-	18.0								
9	022.5	:9.0	-	.28 4								
	023.0	23.0	-	17.3								
0	23.0	20.0		30.1								
9	23.0	20.0		18.2								
3	23.0	20.0		65.!								
9	23.6	20.5		136.2								
	24.0	22.0		12.4								
0	26.5	22.5		47.1								
5	28.5	22.5		22.6								
5	29.5	22.5		11.9								
3	30.0	22.5	-	31.4								
0	31.0	220	-	36.8								
0	32.0	22.5	-	28.8								
?	32.5	22.5	-	30 ,5								
1	30.0	21.0	**	13.6								
0	24.0	21.0		15.9	41	0	N	3	26.5	23.0	9	
					42	6	N-NW		26.0	23.0	3.9	
					40	0	3	3	25.0	23.0	37.7	
					46	0	٤	1	25.0	22.5	22.5	
					48	6	58	1	245	22.0		
					48	•	SE	4	24.0	22.0	21.9	
					47	0	SE	4	24.5	22.0	26.9	
					46	0	SE	8	24.0	02:5	44.7	
					, ,	0			SC 7.0		42.5	
7										T	I	
100		,								APERT	TURE	
111	men in a	hat is								CAR	D	
	men for al									CAI		

8406040266-25

		0/17/17		-				DATE: 9	118/77		
TIME.	SOUND LEVEL (AVERAGE ABA)	(INCHES)	DRECTINO (FROM)	WIALD SPEED	AMBIENT TEMPERATURE	DEWPOINT (°C)	LINE (MW)	SOUND LEVEL (AVERAGE & BA)	RAINFALL (INCHES)		WE
0100	47	0	1 3	4	23.5	20.5	44.5	45	0	E-5L	(4:
0200		0	5-52	4	22.5	20.0	61.8	46	0	58	
0300	46	•	5-58	5	22.5	20.0	415	45	0	SE	-
0400	45		5-52	6	22.5	20.0	36.4	44	•	W-SW	-
0500	44	0	32	5	22.5	20.0	47.2	44	0	58	0
0600	46	0	SE	5	22.5	020.0	52,2	45	0	5-58	4
0700	46	0	5-5€	3	22.0	19.5	61.5	46	0	5-52	-
0800	47	0	5-52	5	22.5	20.0	125.9	47	0	5	
0900	45	0	32-52	8	225	20.0	155 9				0
1000	44	0	5	6.	23.5	20.0	155.9	45	•	500	4
1100	43	0	: 50	5	25.5	20.5	124.4	43	0	5-52	4
100	40	0	W-5W	5	27.0	21.0	86.3	43	0	5-5W	6
1300	43	0	SW	8	28.5	21.0	68 .4				
1400	42		W-5W	8	30.0	21.5	44.1.				
1500	41	•	W	7	30.0	21.0	39.0				
1600	43	4	W	8	30.0	21.0	33.7	f .			
1700	44	4	W-NW	8	30.0	21.0	4.0				
1800	43	0	NN	6	29.0	021.0	- 21.5				
1900	40	6	SE	1	27.5	21.0	29.9				
2000	47	4	18-52	1	24.5	20.5	6.0				
2100	48	0	3	2	23.5	20.0	7.0;	; ;			
2200	47	0		0	22.5	19.5	14.3				
2300	47	0		4	22.0	19.0	26.9				
2400	46	0	13.13	A	21.5	19.0	127 .3				

DATE: 9/20/77

AMBIENT TEMPERATURE	DEWPOINT	LINE (MIL)	LEVEL DENAL	RAIN FALL	DIEGETIMO WI	FAN TEMPERATURE	DEL POINT	LOAD ON
21.5	18.5	118.1			,			(Mm)
22.0	195	61.7						
22.5	19:5	66.5						
21.5	19.0	44.9						
21.0	18.0	36.6						
22.0	19.0	53.0						
22.0	19.5	63.c						
22.5	021.0	135,5						
25.0	022.5	142.8						
27.0	22.5	112.1						
28.5	22.5	15.0						
					14-11, 23 8 .			
			. 42	•	ש-אש ב	28.0	19.0	- 433
			42	0	W-NW S		19.0	
			40		W-NW 4		18.5	- 45.8
			42	0	NW 4		19.0	- 100 5
			41	0	NW 1		18.5	- 100.5 44.3
			. 46	. 0	E-38 =		18.5	24.4
			46		0		17.5	35.8
			46	4	. 0		16.5	65.0
			46	•	0		16.0	78.1
			44	. •	5 1		15.5	142.2

Also Available On Aperture Card

TI APERTURE CARD

DATE: 9/21/77

DATE: 9/22/77

TIME	SOUND LLVIL (AVLEANT JBA)	RAINEALL (INCHES)		SPILD (MAN)	AMBIENT TEMPLATURE	DEWPOOT (. c.)	LINE !	SOUND LEVEL (AMERIC SEA)	(INCHES)	DIELCTION	SPILD (MIN)
0100	44	0	٤	1	18.0	15.0	212.4	43	4	SE.	3
0,200	43	0	E-3E	1	17.5	14.5	201.2	43	0	SL	2
0300	43	0	SE	1	17.5	14.5	170.2	43	0	٤	1
0400	43	0		4	17.0	14.0	150.4	42	9	2-56	.,
0500	44	0	E-NL	1	17.0	14.0	190.0	41	0	N	3
0600	45	0	٤	1	17.0	14.0	270.9	41	0	NE	1
0700	46	0	٤	1	17.0	14.0	232.9	43	4	2	2
8800	47	0	N-NW	1	17.5	15.5	141.2	47	0	NE	2
0900	41	0	NW	4	18.5	16.5	151.0	49	+	N	5
1000	45	4	NW	5	21.0	18.5		51	•		
)1100	44	0	W-NW		0245	19.5	122.7.	45	0	NW	5
1	43	4	W-NW	1100	27.0	17.0	65.2	46	0	N	9
1300	43	0	NW	7	0275	125	66 9	50	4	~	0
1400	41	0	N-NW	7	28.5	17.0	33.4	48	0	N	6
1500	45	0	NW	7	29.0	16.5		42	0		6
1600	47	0	NW	8	29.5	16.5		43		N-NN	0
1700		0	N-NW	8	29.0	17.0	- 12 5	48	-	N	5
1800	52	•	N	6.	27.5	17.0			•	~	7
1900	43	0	NE	5	24.5	16.0	22.2	37	4	NC	2
2000	47	0	٤	2	21.5	15.5	25.0	32	4	NL	7
2130	48	•	E-SL	3	19.5	15.0	48.2.		0	E-NE	3
020200	46	4	€-5€	3	18.5	15.0	61.0	40	0	3	3
2200	45	0	E-NE		18.0	15.0	108.0	42	4	€-5€	3
,2400	44	0	2	3	18.0	14.5	183.8	39	0	E-36	4

C

Also Available On Aperture Card

APERTURE CARD

8.24	0.00	-24.5°	9	75		ot	7'171	0.9/	0.91
756	2.000	-5'he	9	75	•	45	1321	591	0.050
1.98	-2050	0.50	5	35	•	98	1.831	2:31	0.120
34.0	0.150	5.56	5	35-5		EE	2:111	5.91	0.00
1°04	-2.150	0520	+	35	0	18	9-72/	2.71	-2.150
8 77	21.50	0.750	3	35	9	05 >	7:511		6.20
5 72	2.150	0.95	3	35-5		05>	6:11	7.51	0.250
t. LE	-2.050	01E	9	5	0	05 >	0.251		The second secon
I. 18	0.050	0.55	i	5	•	32	5.821	5.91	0.05
6° 15	2.050	-518	2	5	•	88	1.041	591	2.6%
8 75	20.5	278	6	5	0	04	7.011		
p. 14	0.050	0.05	8	35-5		27	2.30%	5.91	0350
1.511	200	-2.950	8	75	0	14	E.83/	0.3/	27.5
8.751	2.000	2750	01	35	0	Lh	4.041	2.71	2.650
8.551	531	2:5%	51	75	•	84	2.17.3	251	0.25
6-181	031	-2.550	6	35		£43	1.191		0,55
6181	021	2.21	8	3N-N	0		1.806	5.71	5.81
かかかせ	12:0	2:11	.20		4	54	7 800	021	0.71
2.016	0:51	521	20	34-7		EH	2.836	-2.51	0.9/
5'701	15:0		20	3	9	ih	7.788	-2.81	0.91
5.00	0:51	5.81	3	3	4	040	8.016	.5.81	0.91
5.09	12:2	-2.81		7N	•	74	2.001	3.4.	5.91
7.80%	-2:21	.5.81	5	75-3	•	76	6.84/	0%	071
E. 421 .	- 0.3/	0.81		3	4	94	9.000	0.41	031
(~~)	//		*	35-3	4	14	7.68:	72.41	0.91
3000	(2.)	MINORAL TO SERVICE (2)	AND AND	MAR TOSSIA		בניננ לא)	רוחני (שע)	D.D.	או מינושותו (פינו
			.444.	4mm	03.07	9 11 105	NO 3007		Amama

Trissip : 37Ad

	DATE: 9/	124/77						DATE:	9/25/77		
TIML	SOUND LLVLL (AVLENCE OBA)	RAINEAUL (INCHES)	MIND MICTON (Plan)	MIND SPLED (MPN)	AMOILUT TEMPLETIMES (OL)	01 W 901 W T	LINE !	Sound LEVEL (AVERDE DEA)	RAMPALL (INCHES)	WIND DILLETON (COON)	AUG. NMB SPELD (MM)
0100	42	0	SE	6	24.0	19.5	108.3;	49	0	52	7
0200	43	4	SŁ	6	23.5	19.0	75,5	49	0	58	8
0300	46	0	SL	6	23.0	19.0	18 .4	49	0	52	9
0400	47	0	52	8	23.0	185	12	50	4	se	
8500	49	0	SE	7	22.5	18.0	99.3	49	0	SE	9
0600	48	0	SE	6	22.5	18.0	158.1	49	0	SE	9
0700	48	0	52	8	22.0	18.0	208.3	50	4	5-58	
0800	48	0	3-52	9	22.5	18.0	257.1	48	4	5-56	10
0900	47	0	' SE	7	23.5	18.5	256.6	45	D .	5-56	1/2
1000	47	0	5-52	6	25.0	19.0	211.11	44		S	
)100	45	0	5	7	26.0	20.0		43	0		11
10	45	4	5	9	28.0	21.0	133.7	43	•	5-5W	7
1300	43	0	5	7	29.0	21.0		41		5-541 511	7
1900	42	0	SW	6	295	621.0	75.6	39	0		8
1500	40	0	SW	5	295	20.5	84.3	. 40		SW	6
1600	42	0	. N	6	29.0	20.5	101.4	44	0	5-5W	4
1700	42	4	NW	5	28.0	20.5	105.1	48	0	5	6
1600	44	0	· NW		27.5	21.5	108.3		0	58	5
1900	45	0	SW	3	26.0	24.0	82.8	55	1.00	NE	20
2000	51	0	5-52	4	25.5	21.0	106.1	55	0.50	N	220
2100	52	0	5-52	10	25.0	21.5	111.1	7 8	0.28	NE	10
2200	51	0	5-52	8	25.0	21.0	90.0	53	0.01	5-58	16
2300	50		32-2	4:	24.5	20.5	104.9	48	0	38	17
2400	48	0	2-25	5	23,5	20.0	143,41	47	0	5 E	5
						1		4			

DATE: 9/26/77

				,					
AMBIENT TIMPLEATURE (°C)	DEWPOINT (°C)	(mm)	(overes 489)	(NENES)		SPICE (MPH)	AMBIENT TIMPLEMENT (°C)	DEWPOINT (· C)	CHW)
23.5	20.0	136.5	46	0	SE	3	21.0	190 -	. 98.7
23.5	20.0	116.5	45	4	SE	9	21.0	19.0	57.8
23.5	20.0	144.1	45	4	52	8	21.0	19.0	48.8
23.5	20.0	140.4	45	4	5.52	10	021.0	19.5	54.0
23.5	20.5	121.9	44	4	5-58	10	21.0	19.0	65,9
23.5	20.5	132.7	43	e.	5-52	10	21.5	19.5	172.1
23.5	20.5	157.1	43		5-58	6	215	20.0	243.4
24.0	21.0	216.0	42	0	5	8	202.5	21.5	193.4
26.0	22.5	199.8	40	0	S	9	024.5	23.0	72.7
26.5	23.0	153.8	41	0	SW	8	25.0	24.0	24.5
28.5	24.5	133.7	39	4	W-SW	7	025.0	24.0	- 24.9
30.0	024.0	126.4	38	•	W-SW	7	27.5	24.5	- 29.5
30.5	24.5	66.2	38	4	· W	6	28.5	24.5	- 14.0
30,5	24.0	46 .8	39	0	N-NW	7	29.0	23.0	- 66.2
30.0	24.0	45.3.	39	0	NE	3	30.5	22.5	- 62.7
29.5	24.0	84.2	38	4	SE	4	31.0	22.5	- 90.0
28.0	24.0	70.9	36	0	SE	6	310		- 135.1
22.5	20.5	73.1	38	0	5-56	2	30.5		- 130.8
220	020.0	82.2	42	4	s.sw	2	28.0	23.5	- 94.9
21.0	19.0	97.9	49	0	32	1	24.5	23.0	- 89.5
21.0	19.5	85.5.	49	4	5	3	24.0	23.0	
21.0	19.5	137.8	50	0	5	4	25.0	23.0	- 99.7
21.0	19.5	169.0	48	0	5	2	24.0	020.5	50 5
21.0	A.0	141.5	46	0	3-52	3	23.0	22.5	- 1.1

TI APERTURE CARD

	DATE:	9/27/77						DATE:	9/30,77	'	
TIML	SOUND LEVEL CAUGE AND BA	LAINEALL	DILLETTON	AVE. WIND SPLED (MOH)	AMOUNT TENTILIZEDE (°C)	(OC)	LOAD ON (MW)	SOUND LEVEL CAVILAGE ABA		WIND L DILLOTON (Flori)	Some
0100		0	SE	1	23.0	2.2.0	41.7				
0200	44	0	SE	4	22.8	21.5	80.5				
0300	45	0	52	4	22.0	22.0	97.5				
0400	48	0	SE	6	22.5	22.5	78.4				
0500	43	0	5-58	6	22.5	022.0	100.4				
0600	43	0	5	6	022.5	220	119.9				
0700	42	÷	5	5	22.5	22.0	80.4				
0800											
0900											
1000											
1.											
1200											
1300											
1400											
1500											
1600								42	4	E-5E	9
1700								41	6	E-56	
1800								41	. 0	52	
1900								44	0	58	7
2000								45	0	SE	
2100								44		SE	10
2200								45	0	58	12
2300			y 1					44		SE	13
2400								4.3	. 0	52	13

DATE: 10:01/77

AMBILATIEL (+C)	C.C.	LOND ON	SOUND LEVEL (AVERAGE SBA)	EAINFAL (INCHES)	billettes (Ren) (WIND SPLLD MAH)	AMOIGNT TEMPLEATURE (°C)	(°C)	CAME (MM)
			43	0	5-56	11	24.0	22.5	- 25.5
			43	•	5.52	13	24.5	23.0	42.9
			44	0	5	15	25.5	23.0	60.0
			42	0	S	212	26.0	23.5	65.2
			45	0	5	2/:	26.0	24.0	69.1
			43	0	5	2/1	25.5	24.5	92.0
			43	4	S	2:1	26.0	24.0	112.5
			43	4	5	11	26,0	24.0	166.2
			40	•	5	10	26.5	24.0	143.7
			43	-	5-SW	12	27.5	24.5	51.0
			. 46	0	SW	15	29.5	24.5	- 16.9

28.0	23.0		42,7
28.0	23.5	-	62,4
27.0	23.0	-	51.4
25.5	22.5		4.7
25.0	22.5		11.8
025,0	22.5		16,5
24.5	022.0		32.7
24.0	22.0		48.9
24.0	22.0		43.6

Also Available On Aperture Card

'60srs 10 29 2 " " 22

TI APERTURE CARD