8HROUD REPPAIR PROGRAM

FCR

QUAD CITIES UNIT 2

Sharoud Fiead Contact on Upper Support GENE $771-113-0695$ REV. 0 DRFW B13-01740
Back-up Calculations with Impact Factor for FDDRW EE2-0503
Jume 15, 1995

GRNTE771-113-0695 REV_0

REEFRENCTS

1. 718E816: . GE Shroud Head and Separatore Drtwing
2. 112D6541 4 GE Upper Support Long Drawing
3. GENE-771-68-1094 Qusd Cities Shroud and Repair REV. $0 \quad$ Hardware Stres Anslydis
4. 919D611P001 Rev. 4 Quad Cities GE Shroud Head Bolt Drawing
5. 112 D 5487 Rov. 6 Quad Cities GE Resctor, Modification \& Instaliation Drawing
6. GENE-771.69.1094 Backup Caleulations for Quad Cities Shroud Repair REV. 1 Shroud Stress Report

DESCRTPTION

During invallation of the shroud hesd and separators asembly at Quad Cities Unit 2, two of the lliting rod extensions contacted two of the upper supports that are part of the shroud modification assemblies. The purpose of this malysis is to justify the adequacy of the long upper aupport design to withstand the contact load from the shroud head and separators asembly.

ANALYSIS

According to the aketch provided (Figure 1), the ($3^{1 " \times 3.5 " \text {) cross sectional area of the }}$ support bears the highest stresses (bending and ahear) due to the contacs losd (P).
According to the referencese 1 and 4 drawings, the ahroud hasd and separators assembly plus the 48 shroud head bolts weigh $[(126.90+(48)(0.312)]=141.9 \mathrm{kjps} \mathrm{dry}$. In this calculation, it is asgumed that the total dry weighe of the assembly impacted one of the long upper supports at 103° and 283° aximuth locations. Uxing an impact factor of 1.25 , the total load on the support is conservatively assumed to be $(141.9 \times 1.25)=177.40 \mathrm{kips}$

According to the reforence 2 drawing and the Figure 1 AUTOCAD sketch:

$$
\begin{array}{ll}
\text { MOMENT ARM } & =1.70 \mathrm{in}(\text { distance from resctive force }) \\
\text { SHEAR AREA } & =(3.0)(3.5)=10.5 \mathrm{in}^{2} \\
I \text { (MOM. OF IN.) } & =\left(b \mathrm{~h}^{2} / 12\right)=\left[(3.5)(3.0)^{3} 1 / 12=7.88 \mathrm{in}^{6}\right. \\
\text { C (TO N-A }) & =(\mathrm{h} / 2)=(3.0 / 2)=1.5 \mathrm{in}
\end{array}
$$

GINE-771-113-0695 REV. 8

Therafores
SHEAR STRESS $\quad=(177.4) /(10.5)=16.9 \mathrm{kni}<.65$ 兹 $=(.6)(47.5)$
$=28.5 \mathrm{ksi}$
BENDING STRESS $=[(177.4)(1.7)(1.5)] /(7.9)=57.3 \mathrm{kal}<1.5 \mathrm{Sm}$

$$
=71.3 \mathrm{kki}
$$

The upper suppon material is $\mathrm{X}-750$ (reference 2) and the value of $\mathrm{Sm}=47.5 \mathrm{ksi}$ is the
 limit is ale extracted frora peragraph 5 of the reference 3 analysis. The 6 Sm limit is from ASME Section III Subsection N2-3237.2, 1989 Edition.

Since this conservative calculation shows the maximum stresees to be below their allowables, it is conchuded that the actuel loads on th? two supports did not damage the components.

Note that due to the asture of the shroud modifieation design (reference 5), the shroud head and aeparator asambly load on rop of the long upper support could not be transfered down into the lower componensts of the assembly (l.e. de rod, yoke,...) causing axiel compressive losding The shroud bead load was reacted by the ahroud flange.

Note also that the shroud bearing struss of $[(177.4) /(3.4 \times 3.5)]=14.91$ ksi is lower than the bearing sllowable of $\mathrm{Sy}=30.0 \mathrm{ksi}$ at $100^{\circ} \mathrm{F}$. The beering stress allowable is from ASME Section III Subaction NO-3227.1, 1989 Edition, and the value of Sy for 304 is from Appendix I of the same ASME code. The dirnensions for the bearing area can be found is the refercnce 5 drawing.

Furthermore, this compressive force on the shroud did not cause an overstreas condition in the top guide support plate. According to pages 17 and 18 of the reference 6 repart, a compressive losd of 165.5 kips by the long upper supports crates a maximum Normal + Upset (OBE) stress of 22.0 kel . Therefore, the 177.4 kjps compressive load on the shroud has creased approximately $\{[(177.4)(165.5)\}(22.0)\}=23.58 \mathrm{kai}$ atress in the top guide suppon plate. This velue is lower than the allowable of $1.5 \mathrm{Sm}=(1.5)(20.0)=30.0 \mathrm{ksj}$ and thus it is acceptable. The Sm value of 20.0 ksi for 304 shroud is from Appendix I of the ASME Section III, Division 1.

FIGURE 1

Criteria Used to determine Impact factor.

References:

1. Whiting Crane Handbooks Whiting Corporation, 1979.
2. Response to Request for Information on the Control of Heavy Loads, Nov. 1981, Rev 1. Section 2.1.7.c no. 13, page 2.1-12. Issued in response to Generic Letter 81-07.

3. AISC Code Section 1.3 .3

Reference 1 and 2 provide justification for the use of $1 / 2 \%$ impact for each $f t$ per minute of crane speed with a minimum of 15%. The maximum crane speed for the reactor building 125 Ton crane is 5 feet per minute. This would result in an impact factor of 2.5%. Reference 3 also recommends the use of 25% as the impact factor for traveling cranes and supports. Hence the use of 25% in the analysis for affect on the core shroud repair hardware is conservative as these values provide additional margin above required loads.

Prepared by:

Design Engineer
Approved by:

Design Supervisor

