Arizona Public Service Company

PALI VERDE NUCLEAR GENERATING STATION

PO BOX 52034 . PHOENIX ARIZONA 85072-2034
240-01404.HFB/GAC
January 10, 1995
Mr. Joseph Calla
regional Administrator, Region IV
United States Nuclear Regulatory Comrnission
611 Ryan Plaza Drive, Suite 400
Arlington, Texas 76011
Dear Mr. Callan:
Subject: Dockets Nos. STN 50-528/529/530
License Nos. NPF-41/51/74
Paio Verde Nuclear Generating Station (PVNGS)
Unit I, II, and III
1995 Annual Emergency Plan Exercise 90 Day Submittal
File: 95-002-493
Attached for your review and comment are the "Exercise Objectives and Extent of Play" for the 1995 PVNGS Arınual Emergency Plan Exercise (Exercise). This information is being provided at this time in order to conform with the 90 day s Hal requirement prior to conduct of the Exercise. The Exercise is tentatively scheduled fl rill 12, 1995.

Arizona Public Service Company requests that the information in the enclosure be withheld from public disclosure pursuant to 10CFR2.790(a). The information enclosed is considered confidential and should be withheld until the conclusion of the Exercise.

If you need additional information, please call me at 602/393-6280.
Very truly yours,

Harry F. Bieling Manager,
Emergency Planning

HFB/GAC/cb

Enclosures

cc: Ken Johnson
040177
*agios

OBJECTIVES

The following objectives, taken from the PVNGS Emergency Planning Master List of Objectives, have been chosen to be demonstrated in the 1995 PVNGS annual Exercise:

A. PVNGS Objectives

1. Demonstrate the ability to assess plant conditions.
2. Demonstrate the ability to classify the event in accordance with EPIP-02.
3. Demonstrate the ability to identify projected trends and potential consequences.
4. Demonstrate the ability to alert and notify PVNGS Emergency Response personnel in a timely manner.
5. Demonstrate the ability to mobilize PVNGS Emergency Response personnel within the time frames specified in the Emergency Plan.
6. Demonstrate the ability of PVNGS to notify state and county agencies within 15 minutes of emergency declaration.
7. Demonstrate the ability to determine actual or potential offsite radiological hazards.
8. Demonstrate the ability to make timely Protective Action Recommendations to offsite agencies.
9. Demonstrate the ability to track plume passage.
10. Demonstrate the proper use of radiation monitoring instruments and dosimetry.
11. Demonstrate the proper use of sampling equipment and contamination control techniques.
12. Demonstrate the ability to respond effectively to a contaminated injured individual within the plant.
13. Demonstrate the ability to coordinate with ambulance and hospital personnel in the handling, transport, and treatment of a contaminated injured individual.
14. Demonstrate the ability to draw and analyze a PASS sample during adverse radiological conditions.

B. Facility Objectives

1. Emergency Operations Facility (EOF)

a. Demonstrate the adequacy of the Emergency Plan and the Emergency Plan Implementing Procedures (EPIPs) both in terms of management control and workability of the procedures for the EOF.
b. Demonstrate the adequacy of communications links between the CR/STSC, government emergency facilities, field teams, and the EOF.
c. Demonstrate the effectiveness and availability of appropriate emergency equipment and supplies.
d. Demonstrate the adequacy of security access control.
e. Demonstrate activation and staffing of the EOF in a timely manner.
f. Demonstrate the functional adequacy of the EOF

2. Technical Support Center (TSC)

a. Demonstrate the adequacy of the Emergency Plan and the Emergency Plan Implementing Procedures (EPIPs) both in terms of management control and workability of the procedures for the TSC
b. Demonstrate the adequacy of communications links between the CR/STSC, OSC, EOF, in-plant response teams, and the TSC.
c. Demonstrate the effectiveness and availability of appropriate emergency equipment and supplies.
d. Demonstrate the adequacy of security access control.
e. Demonstrate activation and staffing of the TSC in a timely manner.
f. Demonstrate the functional adequacy of the TSC.
g. Demonstrate the capability to perform core damage assessment and to project the time remaining to core uncovery.

B. Facility Obiectives (continued...)

3. Satellite Technical Support Center (STSC)

a. Demonstrate the adequacy of the Emergency Plan and the Emergency Plan Implementing Procedures (EPIPs) both in terms of management control and workability of the procedures for the STSC.
b. Demonstrate the adequacy of communications links between the TSC, OSC, EOF, in-plant response teams, and the CR/STSC.
c. Demonstrate the effectiveness and availability of appropriate emergency equipment and supplies.
d. Demonstrate activation and staffing of the STSC in a timely manner.
e. Demonstrate the functional adequacy of the STSC.

4. Operations Support Center (OSC)

a. Demonstrate the adequacy of the Emergency Plan and the Emergency Plan Implementing Procedures (EPIPs) both in terms of management control and workability of the procedures for the OSC.
b. Demonstrate the adequacy of communications links between field teams, the TSC/STSC, and the OSC
c. Demonstrate the effectiveness and availability of appropriate emergency equipment and supplies.
d. Demonstrate activation and staffing of the OSC in a timely manner.
e. Demonstrate the functional adequacy of the OSC

B. Facility Objectives (continued...)

5. Joint Emergency News Center (JENC)

a. Demonstrate the adequacy of the Emergency Plan and the Joint Public Information Procedures (JPiPs) both in termis of management control and workability of the procedures for the JENC.
b. Demonstrate the adequacy of communications links between government emergency facilities, the site's emergency facilities, and the JENC.
c. Demonstrate the effectiveness and availability of appropriate emergency equipment and supplies.
d. Demonstrate the adequacy of security access control.
e. Demonstrate activation and staffing of the JENC in a timely manner.
f. Demonstrate the functional adequacy of the JENC.

C. State of Arizona / Maricopa County Objectives

1. Demonstrate the capability to alert and fully mobilize personnel for both emergency facilities and field operations. Demonstrate the capability to activate and staff emergency facilities for emergency operations.
2. Demonstrate the adequacy of facilities, equipment, displays, and other materials to support emergency operations.
3. Demonstrate the capability to direct and control emergency operations.
4. Demonstrate the capability to communicate with all appropriate emergency personnel at facilities and in the field.
5. Demonstrate the ability to continuously monitor and control radiation exposure to emergency workers.
6. Demonstrate the appropriate use of equipment and procedures for determining field radiation measurements.
7. Demonstrate the capability to develop dose projections and protective action recommendations regarding evacuation and sheltering.
C. State of Arizona / Maricopa County Objectives (continued...)
8. Demonstrate the appropriate use of equipment and procedures for the measurement of airborne radioiodine concentrations as low as 10E-7 (0.0000001) microCurie ($\mu \mathrm{Ci}$) per cubic centimeter in the presence of noble gases and obtain samples of particulate activity in the airborne plume.
9. Demonstrate the capability to make timely protective action decisions (PAD).
10. Demonstrate the capability to promptly alert and notify the public within the 10 -mile plume pathway emergency planning zone (EPZ) and disseminate instructional messages to the public on the basis of decisions by appropriate State or local officials.
11. Demonstrate the capability to coordinate the formulation and dissemination of accurate information and instructions to the public.
12. Demonstrate the capability to coordinate the development and dissemination of clear, accurate, and timely information to the news media.
13. Demonstrate the capability to establish and operate rumor control in a coordinated and timely manner.
14. Demonstrate the capability and resources to implement potassium iodide (KI) protective actions for emergency workers, institutionalized individuals, and, if the State plan specifies, the general public.
15. Demonstrate the capability and resources necessary to implement appropriate protective actions for special populations.
16. Demonstrate the capability and resources necessary to implement protective actions for school children within the plume pathway emergency planning zone (EPZ).
17. Demonstrate the organizational capability and resources necessary to control evacuation traffic flow and to control access to evacuated and sheltered areas.
18. Demonstrate the adequacy of procedures, facilities, equipment, and personnel for the radiological monitoring, decontamination, and registration of evacuees.
19. Demonstrate the adequacy of facilities, equipment, supplies, personnel, and procedures for congregate care of evacuees.
20. Demonstrate the adequacy of vehicles, equipment, procedures, and personnel for transporting contaminated, injured, or exposed individuals.
C. State of Arizona / Maricopa County Objectives (continued...)
21. Demonstrate the adequacy of the equipment, procedures, supplies, and personnel of medical facilities responsible for treatment of contaminated, injured, or exposed individuals.
22. Demonstrate the adequacy of procedures for monitoring and decontamination of emergency workers, equipment, and vehicles.
23. Demonstrate the capability to identify the need for external assistance and to request such assistance from Federal or other support organizations.
D. Joint Objectives (PVNGS, State of Arizona, Maricopa County)
24. Demonstrate the ability to respond to an emergency which initiates between the hours of 0400 and 1800 on workdays.
25. Demonstrate that emergency response organizations can activate and staff direction and control facilities in a timely manner.
26. Demonstrate the functional adequacy of emergency facilities.
27. Demonstrate the adequacy of communications links between government emergency facilities, field teams, and the utility's emergency facilities.
28. Demonstrate the adequacy of communications with the public via the Emergency Broadcast System (EBS).
29. Demonstrate the ability to implement personnel dosimetry for both utility and government emergency response personnel.
30. Demonstrate the ability to perform onsite and offsite dose assessment in a timely manner.
31. Demonstrate remote activation and operation of the offsite siren alerting system.
32. Demonstrate timely coordination and release of information to the media through coordinated action by state, county, and utility elements.
33. Demonstrate the ability to coordinate protective actions in the plume exposure pathway EPZ.
34. Demonstrate the adequacy of communications with the public via the news media.
35. Demonstrate the adequacy of communications with the public via Rumor Control.

RESPONSE LOCATIONS / EXTENT OF PLAY

1. Utility - Palo Verde Nuclear Generating Station (l-10, Exit 98)

1.1 Unit 3 Control Room (Simulator-A)

Unit 3 Control Room (Simulator-A) will be used to accommodate the event initiators. An off-shift Operations staff will be utilized to represent the onshift Operations crew. Auxiliary Operators assigned to the Simulator crew will receive the shift turnover information in the Simulator and then traverse to Unit 3, where they will simulate the on-shift Auxiliary Operators.
1.2 Simulator-A Satellite Technical Support Center (STSC)

Simulator-A STSC will be fully activated.
1.3 Technical Support Center (TSC)

The TSC will be fully activated

1.4 Unit 3 Operations Support Center (OSC)

Unit 3 OSC will be fully activated.

1.5 Emergency Operations Facility (EOF)

The EOF will be fully activated.

1.6 Forward News Center (FNC)

The FNC will be fully activated at the Notification of Unusual Event (NUE) classification and will deactivate when the Joint Emergency News Center (JENC) is activated.

2. Federal

2.1 US Nuclear Regulatory Commission (USNRC) Washington DC Region-IV (Arlington TX)

The USNRC will engage as participants and observers. The participants will be evaluated against predetermined federal standards by USNRC evaluators.

2. Federa! (continued...)

2.2 National Weather Service (NWS) - Phoenix AZ

The National Weather Service, an agency of the National Oceanic and Atmospheric Administration, correlates weather data per local agencies' requests for atmospheric dispersion and near-term forecasts related to radioactive plume characteristics. The NWS will accommodate requests as delineated by the local agencies.

2.3 Federal Emergency Management Agency - Region-IX (FEMA)

FEMA will deploy and establish a limited FRMAC. The extent of play will be limited to joint federal field team response in attendance with state field teams. FRMAC response will encompass performance of decision-making management in choosing a location.

3. State of Arizona

3.1 Emergency Operations Center (EOC)

The State EOC (including the Public Inquiry Center, the Joint Emergency News Center, and the State Technical Operations Center) will be fully activated. Equipment will be pre-staged for the TOC. A simulated supplemental request for assistance to Albuquerque NM will be demonstrated, but may occur out-of-sequence to other evaluated demonstrations.

3.2 Joint Emergency News Center (JENC)

The JENC will be fully activated.

3.3 Radiological Emergency Assistance Team (REAT)

The REAT Center (Environmental Surveillance Laboratory) will be fully activated

3.4 REAT Forward

REAT Forward will be fully activated. Three (3) teams will be established, with one (1) team dispatched tu the Reception and Care Center. Charcoal filters will substitute for Silver Zeolite in performance of sampling techniques. Emergency worker monitoring will be demonstrated, but will occur out-ofsequence to other evaluated demonstrations. The Buckeye Fire Department will be used (simulated) for decontamination of a vehicle.
3. State of Arizona (continued...)

3.5 Reception and Care Center

The participating Reception and Care Center is located at Tolleson Union High School, 9419 W. Van Buren, Tolleson AZ. It will be fully staffed to demonstrate evacuee reception and care using simulated evacuees. This demonstration will be pre-staged and may be conducted out-of-sequence to other evaluated demonstrations.

4. Maricopa County

4.1 Maricopa County Emergency Operations Center (MCEOC)

The County EOC will be fully activated.

4.2 Maricopa County Sheriff's Office (MCSO)

The MCSO On-Scene Command Post will be fully activated.

5. Volunteer Agencies

5.1 American Red Cross (ARC)

Deployment of the Phoenix Chapter of the ARC will occur.

6. General Response

6.1 The Notification Alert Network (NAN) will be used.
6.1.1 Governnent Response Organizations will be alerted.
6.2 State, County, and volunteer response organizations will be mobilized.
6.3 The demonstration of evacuation for affected citizens within the EPZ will be simulated. The evacuees will be pre-staged at the Reception and Care Center (RCC). Monitoring and radioactive decontamination, if appropriate, will occur. Surveys will be demonstrated for six (6) evacuees.
6.4 An evacuation of a representative resident group with special needs (approximately 4 -6 individuals) will occur. One special needs evacuation location will be established for evaluation purposes.
6. General Response (continued...)
6.5 Transportation of a contaminated injured person will be demonstrated separately in a Medical Drill involving Good Samaritan Hospital and AirEvac at a date to be determined. The ability to draw and analyze a sample using the Post-Accident Sampling System (PASS) during adverse radiological conditions will be simulated in the Exercise and will be fully demonstrated in a PASS Drill at a date to be determined.
6.6 State Protective Action Decisions will be transmitted to affected schools. Evacuation of the schools will not be demonstrated.
6.7 Road Blocks/Access Control Points (1 for evaluation) will be implemented to demonstrate this function and then secured.
6.8 The onsite monitoring teams will simulate the donning of protective clothing appropriate to the scenario as directed by the RFAT Lead Controller. All offsite teams wiil simulate the use of protective clothing and related equipment.
6.9 In-plant teams will simulate the donning of protective clothing appropriate to the scenario as directed by the facility Lead Controller.
6.10 Primary and backup (limited demonstration) communications systems will be utilized as required by the scenario.
6.11 The siren portion of the PVNGS Site Warning Siren/Public Address System will be simulated. The public address portion of this system will be used onsite only. Verbal notifications in the affected area for simulated siren malfunctions will be provided by the Maricopa County Sheriff's Office.
6.12 Use of the Offsite Siren Activation System will be simulated. Siren sounding will not occur. Emergency Broadcast System (EBS) messages will be generated and distributed to KTAR, but none will be broadcast. The warnings will be disseminated amongst the Exercise participants via the emergency communications systems and to the representative resident group via a supplemental warning team for the evacuation.
6.13 The media will be simulated for emergency information dispensation. Rumor Control will be activated and simulated inquiries will take place.
6.14 Onsite assembly and accountability will be simulated. Evacuation will also be simulated.
6.15 The JENC staff will produce coordinated press releases and conduct oral briefings to actual and simulated media personnel.
6. General Response (continued...)
6.16 The distribution of Potassium lodide (KI) to emergency workers will be simulated. The appropriate Exercise Controller will receive verbal notification that an announcernent has been transmitted to affected personnel. REAT Forward will subsequently be notified that KI has been dispensed.

PAIO VERDE nuclatir gentrative station

1995 EMERGENOY RREPAREDNESS EXERCISE

I

ARIONAPUBE C SERVCE CONPNY PROJECT MANAGER AND OPERATING AGENI

PALO VPRDE
NuCIEN GENzMMIU STMION

- 1995
 EMERCENCY PREPAREDNESS EXERCISE

SUMMARY OF CHANGES

\#	LOCATION	DATE	REVISION
1	Pre-sec 01	06AFR95	Added "NRC Resident" phone number to SIM Phone List
2	Pre-sec 01	06APR95	Completed Controller Listing
3	SEC 01-1.2.3	01MAR95	Changed Reception and Care Center to Dysart High School
4	SEC 01-1.3.3.4	10MAR95	Changed wording to reflect State/FEMA extent-of-play agreement
5	SEC 01 - 1.3.3.5	01MAR95	Changed Reception and Care Center to Dysart High School
6	SEC 03 - II.C. 3	24MAR95	Eliminated
7	SEC 03 - Page 8	28MAR95	Enhanced SIM Setup
8	SEC 03 - IV.A.9.g	30MAR95	Corrected briefing item for SIM ERDS activation capabilities
9	SEC 03 - IV.A.9.h	28 MAR95	Enhanced SIM capability for COLSS blowdown constants
10	SEC 03-IV.B.1.f	16MAR95	Added option for FTA requirements to reflect Operations staffing
11	SEC 03 - Scenario	28 MAR95	Reconfigured Controller assignments as per "VIA" Column
12	SEC 03.0800	28MAR95	Added "weather" CAE as automatic SIM instruction
13	SEC 03.0808	22MAR95	Added Contingency Message " rt "
14	SEC 03-0808	23MAR95	Added Contingency Messages "mms" and "aaa"
15	SEC 03.0810	01MAR95	Changed multipoint recorder entry due to SIM work order
16	SEC 03.0848	22MAR95	Added Controller ID and Message for NAN backup control
17	SEC $03-0955$	28 MAR95	Qualified CTMT pressure notation
18	SEC 03.0959	$28 \mathrm{MAR95}$	Modified LOCA diagnosis analyses
19	SEC 03-1200	28MAR95	Modified CTMT discussion based on re-analysis of parameters
20	SEC $03-1400$	29MAR95	Added RU-09 controlled malfunction for scenario enhancement
21	SEC 03 - Briefing	17FEB95	Corrected briefing item \#7 for SIM ERDS activation capabilities
22	SEC 04	28MAR95	Reconfigured Controller assignments
23	SEC 04	22MAR95	Added Contingency Message " x t"
24	SEC 04	23 MAR95	Added Contingency Messages "mms" and "aaa"
25	SEC 05-08	23MAR95	Added more messages and tuned Sections per State/FEMA request
23	SEC 09 - Front	07APR95	Added RMS CAE data to specific RP Controller Manuals only
27	SEC 09-18-67	30MAR95	Corrected Chemistry data / enhanced all Plume data per FEMA request
28	SEC 10-Met	16MAR95	Changed $\triangle T$ s to effect stability class changes per FEMA request

DRILL / EXERCISE PHONE NUMBERS

TELEPHONE NUMBERS FOR SIMULATOR-A

SIMULATOR-A (as UNIT \times CONTROL ROOM)

Shift Supervisor 7206
Assistant Shift Supervisor 7205
Control "Horseshoe" Area 7201
Control "Horseshoe" Area 7202
Control "Horseshoe" Area 7203
Control "Horseshoe" Area 7204
(from STSC to Control) 6035
(from OSC to Control) 6036
(from TSC to Control) 6037
(from EOF to Control) 6038
Technical Line (at RMS DCU) 6039
Maintenance Line (at RMS DCU) 6040
STSC - SIMULATOR-A (as UNIT \times STSC)
Technical Line (STA) 6031
Rad Assessment 6032
Environmental Assessment 6033
Emergency Coordinator 6034
NRC Resident 5008
(from SIM to STSC) 6027
(from OSC to STSC) 6028
(from TSC to STSC) 6029
(from EOF to STSC) 6030
Exercise Controller (SIM Work Station) 5500
Exercise Controller (STSC) 6119
Emergency Operations Director (EOF) 6012

FOR: EXERCISE 95-E-AEV-04002

CONTROLLER LISTING - ONSITE

ID	STATION	NAME	PHONE	PAGE
C. 1	SIM - EXERCISE LEAD	Gary Cerkas	5500/6119	3713
C-1a	SIM (AO Communications interface)	Bradley Lee	6119/3974	3777
C-1b	SIM (Floor / Operations Crew)	Daniel Marks	6119/3974	3532
C-1c	SIM (Floor-STSC / STA)	Ray Buzard	6119/3974	2293
C. 1 d	SIM (STSC / NAN Communications)	${ }^{1}$ Mary Pioggia	6119/3974	2970
C-1e	SIM (STSC-Dose Projection)	Charles Mighells	6119/3974	
C. 11	SIM (STSC-RPM)	${ }^{2}$ Michael O'Neal	6119/3974	3770
C-1g	SIM (LOCT-Operations Crew)	Derek Edmunds/Eric Shouse	6119/3974	
C-1n	SIM (SIM Operations)	Roger Jones/John Dedon	6119/3974	
C-2	TSC - FACILITY LEAD	Tom Barsuk	2047	2916
C-2a	TSC (Radiological / Chemistry)	Edward Walker	2047	
C-2b	TSC (Engineering / PRA)	Robert Lindquist Jr.	2047	
C-2c	TSC (Reactor Engineering / STA)	Peter Murphy 	2047	
C. 3	OSC - FACILITY LEAD	Charles Bolle	3278/3383	2973
C-3a	OSC (Operations Coordination)	William Johnson	3278/3383	
C-3b	OSC (RP)	Kenneth Byers	3278/3383	
C-3c	OSC (RP)	Patrick Kikendall	3278/3383	
C-3d	OSC (RP)	Gary Mobos	$3278 / 3383$	
C-3e	OSC (RP)	Michael Sexton	3278/3383	
C-3t	OSC (RP / General Areas)	Karen Akers	$3278 / 3383$	махамама
C-4	EOF . FACILITY LEAD	Harry Bieling	6181	1679
C-4a	EOF (Operations Coordination)	Harold Lines	6185	2775
C-4b	EOF (Engineering / STA)	john Reynoso	1513	
C-4c	EOF (General Areas)	${ }^{\text {' }}$ Mary Pioggia	1513	2970
C-4d	EOF (RAC)	Lynn FitzRandolph	6719	2936
C-4e	EOF (RAC)	${ }^{2}$ Michael O'Neal	6719	3770
C. 5	CHEMISTRY LEAD	Len Thorpe	1275/1274	
C. 6	SECURITY LEAD	N/A	7019/7022	
C. 7	OFFSITE SURVEY - LEAD	Michael Taney	Radio CH_{4}	
C-7a	Offsite Survey-RFAT	David Roberts	Radio CH_{4}	
C.7b	Offsite Survey-RFAT	Carolyn Seliga	Radio CH 4	

1. Mary Pioggia traverses from the SIM STSC to the EOF after initial notifications are made to offsite agencies from the STSC.
2. Michael O'Neal traverses from the SIM STSC to the EOF after dose assessment responsibilities are transferred to the EOF upon that facility's activation.

CONTROLLER LISTING - OFFSITE

ID	STATION	NAME	PHONE	PAGE
C. 8	CEC - FACILITY LEAD	N/A	m	naenmmery
Pl- 1	JENC Work Room	Bill Wolfe	231-6359	2915
Pl-2	Forward News Center	${ }^{3}$ Miles Koudelka	250-1530	3939
G-1	CHIEF GOVERNMENT CONTACT	Harry Border	231-6200	
G-2	State TOC	${ }^{4}$ Ray Duncan	231-6204	1970
G-3	State EOC Direction and Control	Daniel Roe	231-6296	
G.3a	State EOC Direction and Control	Hugh Fowier	231-6297	
G-3b	State EOC (Utility)	${ }^{4}$ Ray Duncan	231-6204	1970
G-4	State Offsite Controller	Charles McHugh	Cell 228-2659	
G-4a	State Offsite Controller	${ }^{3}$ Gwyn La Gois	Cell 228-2659	
G-5	REAT Forward	Leroy Klotz	Radio	
G. 5 a	REAT Forward (Utility)	${ }^{3}$ Miles Koudelka	Radio	3939
G-6	Chief County EOC Controlier	Frank Landino	273-1411	
G. 7	Department of Agriculture EOC			
G. 8	MCSO Onscene Command Post		Radio	
G-9	Supplemental Warning Team (MCSO)		Radio	
G. 10	Evacuation Group Controller	Mary Carr	Radio	
G-11	Road Block Controller (MCSO)		Radio	
G-12	Reception and Care Center	${ }^{5}$ Gwyn La Gois	Radio	
G-13	National Weather Service	Mike Franjevic	231-6287	
G-14	Good Samaritan Regional Medical Center	N/A	239-2222	
G. 15	Maryvale Samaritan Medical Center	N/A	$848-5204$	N
S-1	Telephone Simulation Group (questions)			

3. Miles Koudelka traverses from the FNC to REAT Forward after utility communications responsibilities are transferred to the JENC upon that facility's activation.
4. Ray Duncan serves as Controller in shared facilities
5. Gwyn La Gois serves as a State Offsite Controller, with simultaneous duties at the Reception and Care Center

FACILITY LEAD CONTROLLER CHECKLIST

Facility:

Event Date:

| DRILL/EXERCISE CONTROLLER EVENT LOG | |
| :---: | :---: | :---: |
| Controlier Name: | Date: |
| Location: | ACTIVITY OR EVENT |
| TIME | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

| DRILL/EXERCISE CONTROLLER EVENT LOG | |
| :---: | :---: | :---: |
| Controller Name: | Date: |
| Location: | ACTIVITY OR EVENT |
| TIME | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

POST-DRILL/EXERCISE CRITIQUE OUTLINE

PURPOSE: A. To assist the Facility Lead Controiler in facilitating a complete and comprehensive critique of participant duties, responsibilities, procedures, and actions
B. To provide for feedback regarding observations and possible enhancements to the PVNGS Emergency Preparedness Program

CRITIQUE: 1. Provide a brief summary of events and timeline associated with the scenario. Ensure all participants have a thorough understanding of the scenario events.
2. Provide an overall assessment of the following items:
a) Facility participant performance (staffing, activation time, command and control)
b) Adequacy of the Emergency Plan and implementing procedures
c) The facility and associated equipment and supplies
d) Participant logkeeping and maintenance of documentation
e) Intra- and inter-facility communications
3. Solicit specific assessments and comments from other Controllers.
4. Obtain comments and feedback from participants. If necessary, record participants' verbal comments to ensure each is addressed.
5. Assemble all drill/exercise documentation (comments, objective evaluation forms, Lead Controller Checklist, participant logs and associated forms, etc.) and deliver to the Dril/Exercise Lead Controller for evaluation and documentation of the Drill/Exercise.
6. If appropriate, encourage all Controilers and key participants to atter I the Site Critique in the EOF following the individual facility critiques. In some cases, a Controller debrief may be conducted in addition to, or in lieu of, the Site Critique.

DRILL / EXERCISE STANDARDS

1.0 OVERALLRULES

1.1 Stop play immediately if personnel or plant safety is jeopardized or if a real emergency occurs.
1.2 Do not physically operate/change valves, switches or component status in response to simulated events. Players should indicate components to be operated and what operation will be performed. Controllers will then provide information on their response to the simulated action.
1.3 Any communications transmitted over communications lines must be preceded and followed by the statement "THIS IS A DRILL.".
1.4 Non-Players are exempt from acting on simulated radiation levels specified for the Drill/Exercise. However, normal radiological control practices shall be followed throughout the course of the Drill/Exercise. The REP Number for the Drill and/or Exercise is $3-95-0048$.
1.5 It is important to play out all actions as much as possible to convincingly demonstrate the proper emergency response. For this reason, except for actual manipulation of plant equipment, no actions will be simulated unless first approved by a Controller. Some instances may exist, however, where physical or time related constraints prevent a Player from realistically fulfilling actions associated with a desired result (e.g., the erection of scaffolding required for access to a particular component). In these cases, the Controller may request verbal response from the Player(s) regarding the actions necessary to achieve the result.
1.6 Controllers cannot give Players information that the Players would normally be able to see, either visually or by using instrumentation.
1.7 The actual Unit Control Room and STSC will not be used. Instead, PVNGS Simulator-A will be used to simulate the Control Room and STSC. A separate Drill/Exercise Phone Directory will be provided in the appropriate facilities which lists Simulator-A Control Room and STSC phone numbers.
1.8 Accountability, onsite evacuation, use of the Emergency Broadcast System, use of the offsite siren system, and use of the siren portion of the PVNGS Site Warning Siren/Public Address System will be simulated. Only the public address portion of the site PA system will be used.
1.9 Plant response will be simulated through the use of message sheets and handouts. Controllers will distribute handouts containing this information at predetermined times during the Drill/E xercise, or upon request at any time when appropriate. These plant parameters will ve available in the Control Room, STSC, TSC and EOF. Appropriate radiological parameters will also be available in the Effluents Office. All Players should base their responses on information provided in these formats. Controllers should clarify the information, if necessary. As Simulator modeling improves and as data which has generally been made available in the form of data sheets becomes less of a necessity, Player response to given conditions will rely more heavily on Simulator output.

[^0]
DRILL / EXERCISE STANDARDS

1.0 QVERAL RULES (continued.u)

1.11 Not all PVNGS personnel will be participating and not all personnel participating will be Players. To identify those involved in the Drill/Exercise, the following arm-band colors are used:

* Players:	RED
*	Controllers: GREEN
*	Evaluators:
- PURPLE	
Observers:	YELLOW

NOTE: Lapel badges may be used in addition to or in lieu of arm-bands.
1.12 Please refrain from inconveniencing personnel assigned to a Unit in an outage. If extra personnel are required to supplement participant actions, they should be obtained from a Unit that can provide them.
1.13 At the conclusion of the Drill/Exercise, please return your Drill/Exercise Scenario Manual to a Controller or to the area from where you received it. The binders are expensive and will be required for use in future Drills and Exercises.
1.14 It is imperative that all documents and paperwork produced during the course of the Drill/Exercise be gathered and tumed over to your Facility Manager prior to leaving the area at the conclusion of the Drill/Exercise. These documents are vital in reconstructing the timeline of events that have occurred.

DRILL / EXERCISE STANDARDS

2.0 RULES FOR CONTROLLERS

2.1 Be on-station a few minutes before any Player action commences. Locate the phone, radio, or pager that you will be using to communicate with the Lead Controller. Contact the Lead Controller to test communications and synchronize watches to ensure correct event times are recorded. All watches will be synchronized before the Drill/Exercise begins.
2.2 Know the overall Controller organization and to whom you must communicate during the Dril/Exercise. Call your Lead Controller if in doubt about Drill/Exercise control or the direction of Player activities.
2.3 Few messages are time dependent. For those that are, issue the messages on time. Keep the play on schedule by checking your scenario manual frequently. For the majority of messages which are based on actions instead of timelines, ensure they are issued appropriately. Generally, a call to your Facility Lead Controller prior to issuing a message will avoid subsequent Player frustration and may help to mitigate unsynchronized actions which may occur as a result of untimely Controller message delivery. Issue contingency messages only if it is obvious the Players are not going to take the actions designated in the scenario, in order to keep the Drill/Exercise on course. Flexibility does exist at various portions in the timeline where a contingency message may want to be delayed in delivery pending accomplishment of certain actions by a Player. Notify the Exercise Lead Controller if in doubt regarding message delivery.
2.4 Allow the Players reasonable flexibility to do their functions and demonstrate their skill, knowledge, and initiative. However, call your Lead Controller immediately for advice if the Players depart significantly from the scenario. If necessary, intervene and put them back or track.
2.5 Evaluate the Player response actions and keep a chronological \log of events as they occur. Note strengths, weaknesses, and areas for improvement. Do not criticize a Player's actions during the Drill/Exercise.
2.6 Attend the post-Drill/Exercise Critique and/or the Controller Debrief to provide your comments and recommendations. Complete the evaluation forms and provide them to the PVNGS Emergency Planning Manager.

DRILL / EXERCISE STANDARDS

3.0 RULES FOR PLAYERS

3.1 The 1995 EP Evaluated Exercise is scheduled for WED 12. APR 95. It will be a Unit 3 day shift Exercise encompassing the activation of all onsite and offsite emergency response facilities. For onsite, this includes SIM-A C.R. and STSC, the TSC, Unit 3 OSC, and the EOF. Personnel involved in a Unit outage will not be affected and should not respond to any announcements. They also should not be requested for support.
3.2 Controllers provide messages or safety guidelines to Players who may require certain actions necessary to assure continuity of the events described in the Dril/Exercise scenario. If you are dispatched from the facility as part of a response team, you must take a Controller with you to provide you with the readings or conditions simulated in the plant. Controllers may prompt or coach you during a Drill if specifically prearranged to do so. They may not prompt or coach you during an evaluated Exercise.
3.3 Controllers will be noting all actions, both good and bad. They will be the main source of input at the PVNGS critique.
3.4 The Drill/Exercise will be conducted in real time unless otherwise specified by a Controller.
3.5 Arriving at your facility before it is required to be activated is known as "pre-staging." This is prohibited, unless prearranged by the Drill/Exercise Lead Controller. Wait until the activation announcements are made, then proceed to your facility.
3.6 Some subsequent scenario data may become invalid if you take an action outside the bounds of the projected events. The scenario development team tried to determine the actions you might take when presented with the problems and data provided in the scenario manual. However, if a Controller asks you not to take a certain action, it may not be because it is the wrong action, but more likely it is to keep the scenario data synchronized with the rest of the actions that are necessary to complete the Drill/Exercise objectives. Take this in stride and realize that scripted emergencies will always present these problems.
3.7 Identify yourself by name and function to the Controllers and Evaluators. Speak out loud to identify your key actions and decisions. This may seem artificial and unrealistic, but will assist in the evaluation process.
3.8 You must play as if radiation levels are actually present in response to the information you have received. This will require normal radiological protective measures be taken, including the wearing of protective clothing (except offsite), if applicable, into the area you are entering
3.9 Remember to stay within the bounds of the scenario and maintain a serious attitude at all times. If there is a slow period, think ahead to what events might take place next, but do not try to guess the remainder of the scenario. Map out your response strategy or use the time to organize your response area, complete your paperwork, and review your procedures. Drillsmanship always plays a very important role to evaluators interested in participant attitudes.
3.10 Players inside the Power Block should have with them the safety equipment they would normally have available (i.e., hard hats, safety glasses, etc.).

DRILL / EXERCISE STANDARDS

3.0 BULES FOR PLAYERS (continued.

3.11 All teams dispatched from the OSC should have Team Briefing Forms in-hand as they leave, in accordance with EPIP.12. The "Team Member" section of the form should contain the person's name, not the person's job title.
3.12 Decision-making processes rely on correct, pertinent data. Don't always base Protective Action Recommendations and other decisions on current values when a trend history of parameters may be more appropriate to the process. ERFDADS displays may not always reflect instantaneous values associated with plant parameters due to rolling averages, power supply problems, etc., which could cause these values to become misleading.
3.13 The primary Emergency Response Organization responsibility is to protect the health and safety of plant personnel and the public. The key duty in fulfilling this responsibility lies in the appropriate response to each event by the staff as they occur in the emergency. Analyzing events at the time could greatly distract from and hamper efforts involved with your primary duties. ERO staff members have at their disposal several tools with which to perform their duties. If a tool becomes unavailable for use (i.e., no longer performs its intended function), it becomes your duty to utilize an alternate tool to perform your primary responsibility
3.14 For the evaluated Exercise, USNRC personnel will be arriving on site to assume their duties regarding co-location with PVNGS counterparts in various emergency facilities. Upon their arrival, they will proceed to the EOF, where they will receive an initial briefing concerning plant conditions and actions taken. After the initial briefing, they will assume their job duties within the various facilities. When USNRC personnel arrive at their facilities, they will expect to be introduced to their counterpart PVNGS personnel and shown the facility logistical characteristics pertaining to their workstation, work support equipment, etc.
3.15 Plant status boards in the TSC and EOF are currently undergoing changes such that their layout and organization will accurately reflect the USNRC form page layout and organization for PVNGS. This will help tremendously in record-keeping and should vastly increase communications effectiveness between regional headquarters and EOF personnel. However, it may take some time before ERFDADS screen layouts are organized to coincide with the reorganized status board layouts. In addition, the event chronology board in the EOF has been replaced with one which will allow instantaneous hardcopy printouts of the board prior to erasure.
3.16 If Assembly/Accountability is called, it will be totally simulated (i.e., no site-wide page, either simulated or not, will take place). Even a "simulated" A/A announcement causes confusion. Do not make any A/A related announcements or sound any signals
3.17 Comment sheets will be available for feedback throughout the Drill/Exercise for all participants. If a critique item identifies an observation, only the person identifying it should annotate it. Redundant observations will be discarded. The individual generating the comment will be tasked with detailing noted observations and providing possible evaluation. Apply scrutiny to your comment - if the comment identifies a need for CRDR generation, the comment observation must be specifically detailed enough and flagged as CRDR-related. When appropriate, the individual generating the comment will be tasked with CRDR initiation.

DRILL / EXERCISE STANDARDS

3.0 RULES FOR PLAYERS (continued.)

3.18 New phone lines and telephones have recently been installed in the iSC to accommodate the positions of Emergency Coordinator Technical Assistant, NRC Liaison Operations, and NRC Senior Resident. Also installed was an SL phone for the Emergency Coordinator position. It has a phone number extension of 6292 as the prime number and has roll-up capabilitie : to extensions 2560 and 2561. A detailed description of telecommunications capabilities issociated with these pocitions is available for those who request it. The telephone numbers for all new extensions will be available in the EP TeleCom Manual.
3.19 One copy of the Simulator Unit 1 Cycle 4 Core Data Book with Safety Analysis Operational Data will be provided in the TSC and one in the EOF during the Exercise. They are clearly marked "FOR EXERCISE USE ONLY" and will be available for whoever requires it for use during the Exercise only. Controllers will ensure that these documents are removed prior to leaving the facilities after the Exercise has been terminated.
3.20 To preclude impact to outage personnel, one Operations contact will be established for related interface to that department should the need arise prior to facility activation. All communications raised to the Operations Management level should be directed to the Site Shift Manager assigned to support the Exercise.
3.21 If you are confronted by a member of the general public or the news media asking about the Drill/Exercise, inform them it is a training simulation and refrain from any further comment or discussion. Direct all such inquiries to your Controller.

If you have any questions, please call Harry Bieling at $\times 6128$ or Gary Cerkas at $\times 3755$.

DRILL / EXERCISE STANDARDS

4.0 RULES FOR OBSERVERS

4.1 Observers should not participate in the Drill/Exercise or interfere with actions taken by the Players, Controllers, and Evaluators. This is especially important with respect to the confidentiality of the event times and scenario data. Do not discuss any of this information with the Players and do not leave scenario information unattended where it is accessible to the Players.
4.2 Identification badges (if used) are to be worn on the upper front of the torso so as to be clearly visible. Yellow arm-bands must be worn at all times during the Drill/Exercise Identify yourself to the Controllers in the area(s) you will be observing. (Badges and arm-bands must be returned at the end of the Drill/Exercise or critique.)
4.3 If you have questions during the course of the Drill/Exercise, contact the Lead Controller for the area in which you are observing
4.4 Observers inside the RCA (if any) shall adhere to normal radiological control practices.

DRILL/EXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S. 6050)
NAME: \qquad FACILITY:

DATE: \qquad ERO POSITION: \qquad PHONE: \qquad CONTACT ME FOR FURTHER INFORMATION: YES NO COMMENT BASIS: Exercise Drill Training Other \qquad
(circle one choice)
COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEP06 Step 3.13 .4 for instructions)
\qquad $\begin{array}{ll}\text { DEFICIENCY / WEAKNESS - } & \text { (requires CRDR initiation) } \\ \text { TRACKABLE ITEM } & \text { (requires EPAIL initiation) } \\ \text { NON-TRACKABLE ITEM - } & \text { (resolved per Comment below) }\end{array}$
Assigned to:
Due: \qquad

COMMENT ACTION
CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution \qquad
\qquad
\qquad
\qquad
\qquad
Name:
Date:

DRILLIEXERCISE COMMENT FORM

\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEPO6 Step 3.13 .4 for instructions)

COMMENT ACTION

CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution \qquad
\qquad
\qquad
\qquad

Name:
Date:

DRILL/EXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S.6050)
NAME: ——_ FACILITY:
DATE: \quad ERO POSITION:
PHONE: \quad CONTACTME FOR FURTHER INFORMATION: YES NO
COMMENT BASIS: Exercise Drill Training Other (circle one choice)

COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEPO6 Step 3.13 .4 for instructions)

COMMENT ACTION

 CRDR / EPAIL Number:NON-TRACKABLE ITEM Resolution
\qquad
\qquad
\qquad
Name:
Date:

DRILL/EXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S. 6050)

NAME:
DATE:
PHONE:
PACILITY:
PROPOSITION:
CONTACTME FOR FURTHER INFORMATION: YES NO

COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-0EPO6 Step 3.13 .4 for instructions)
\qquad DEFICIENCY / WEAKNESS - (requires CRDR initiation)
TRACKABLE ITEM - (requires EPAIL initiation)
NON-TRACKABLE ITEM - (resolved per Comment below)
Assigned to:
Due: \qquad

COMMENT ACTION
CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution
\qquad
\qquad
\qquad
\square
Name:
Date:

DRILL/EXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S. 6050)

NAME:
DATE:
PHONE:
FACILITY:
CONTACTME FOR FURTHERINFORMATION: YES POSITION: NO

COMMENT BASIS: Exercise Drill Training Other
(circle one choice)
COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEPO6 Step 3.13 .4 for instructions)

DEFICIENCY / WEAKNESS - (requires CRDR initiation)
TRACKABLE ITEM - (requires EPAIL initiation)
NON.TRACKABLE ITEM - (resolved per Comment below)
Assigned to:
Due: \qquad

COMMENT ACTION
CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution
\qquad
\qquad
\qquad
\qquad
Name:
Date:

DRILLIEXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S. 6050)
NAME: \qquad FACILITY: \qquad
DATE: \qquad ERO POSITION: PHONE: CONTACT ME FOR FURTHER INFORMATION: YES NO COMMENT BASIS: Exercise Drill Training Other \qquad
(circle one choice)
COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEPO6 Step 3.13 .4 for instructions)

COMMENT ACTION
CRDR/EPAIL Number:
NON-TRACKABLE ITEM Resolution
\qquad
\qquad
\qquad

Name:
Date:

DRILL/EXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S. 6050)

NAME:
DATE:
PHONE: \quad EACILITY:
PROPOSITION:
CONTACTME FOR FURTHER INFORMATION: YES NO

COMMENT BASIS: Exercise Drill Training Other \qquad
(circle one choice)
COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEPO6 Step 3.13 .4 for instructions) \bar{Z}

DEFICIENCY / WEAKNESS - (requires CRDR initiation)
TRACKABLE ITEM - (requires EPAIL initiation)
NON-TRACKABLEITEM - (resolved per Comment below)
Assigned to:
Due: \qquad

COMMENT ACTION
CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution
\qquad
\qquad
\qquad
\qquad
Name:
Date:

DRILLIEXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S.6050)						
NAME: FACILITY:						
DATE: - ERO POSITION:						
PHONE: CONTACTMEFOR FURTHER INFORMATION: YES NO						

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEPO6 Step 3.13.4 for instructions)

\square | DEFICIENCY / WEAKNESS |
| :--- |
| TRACKABLE ITEM |\quad| (requires CRDR initiation) |
| :--- |
| (requires EPAIL initiation) |
| NON-TRACKABLE ITEM |\quad| (resolved per Comment below) |
| :--- |

COMMENT ACTION

CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution
\qquad
Name:
Date:

DRILL/EXERCISE COMMENT FORM

DRILL/EXERCISE COMMENT FORM

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-DEP06 Step 3.13 .4 for instructions)

COMMENT ACTION CRDR / EPAIL Number:

NON-TRACKABLE ITEM Resolution

Name:
Date:

DRILL/EXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S. 6050)

NAME:
DATE:
PHONE:
FACILITY:
ERO POSITION:
CONTACTME FOR FURTHER INFORMATION: YES NO

(circle one choice)
COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad

COMMENT CATEGORIZATION AND ROUTING (see 16AC-OEPO6 Step 3.13 .4 for instructions)
\qquad
COMMENT ACTION
CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution
\qquad
\qquad
\qquad
\qquad
Name:
Date:

DRILL/EXERCISE COMMENT FORM

ORIGINATOR COMMENT (fill out top unshaded portion and return to EP at M.S. 6050)
NAME:
FACILITY:

DATE: \qquad ERO POSITION: \qquad

PHONE: \qquad CONTACT ME FOR FURTHER INFORMATION: YES

NO

COMMENT BASIS: Exercise Drill Training Other \qquad
(circle one choice)
COMMENT (one per sheet)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RECOMMENDED SOLUTION (attach additional pages if necessary)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENT CATEGORIZATION AND ROUTING isee 16AC-OEP06 Step 3.13 .4 for instructions)

\square	DEFICIENCY / WEAKNESS - TRACKABLE ITEM
(requires CRDR initiation)	
(requires EPAIL initiation)	

Assigned to
Due: \qquad

COMMENT ACTION
CRDR / EPAIL Number:
NON-TRACKABLE ITEM Resolution
\qquad
\qquad
\qquad
\qquad
Name: \qquad Date:

SECTION 01

INTRODUCTION

TABLE OF CONTENTS

01.0 INTRODUCTION
1.1 Purpose
1.2 Participating Agencies
1.3 Response Locations / Extent of Play
1.4 Acronyms and Abbreviations
02.0 OBJECTIVES
2.1 Objectives
2.1.1 Evaluation of Drill/Exercise Objectives
03.0 PV GUIDE
3.1 PVNGS Scenario Controller Guide
04.0 PVMESSAGES
05.0 GOVT GUIDE
06.0 GOVT MESSAGES
07.0 PI GUIDE
08.0 PI MESSAGES
09.0 CHEM / RAD
10.0 METEOROLOGICAL
11.0 MEDICAL
12.0 EQUIPMENT

1.0 INTRODUCTION

1.1 Purpose

1.1.1 To conduct an exercise that includes the mobilization of licensee, state, county, and federal personnel and resources to adequately verify the capability to respond to an emergency at the Palo Verde Nuclear Generating Station.
1.1.2 To satisfy the requirements of 10CFR50 Appendix E, 44CFR350.9, and the guidance in NUREG-0654/FEMA REP-1, Revision 1.

1.2 Participating Agencies

1.2.1 Utility

Arizona Public Service Company

- Palo Verde Nuclear Generating Station (PVNGS)

1.2.2 Federai
US Nuclear Regulatory Commission - Washington DC
US Nuclear Regulatory Commission - Region-IV (Arlington TX)
Federal Emergency Management Agency - Region-IX (FEMA)
National Weather Service (NOAA-NWS)
U.S. Departmeny of Energy (DOE)
U.S. Department of Agriculture (USDA)
Environmental Protection Agency (EPA)

1.2.3 State

Arizona Division of Emergency Management (ADEM)
Arizona Radiation Regulatory Agency (ARRA)
Arizona Department of Public Safety (DPS)
Department of Environmental Quality (DEQ)
Department of Water Resources (DWR)
Department of Health Services (DHS)
Department of Agriculture (DA)
Dysart High School

1.2.4 County
 Maricopa County Department of Emergency Management (MCDEM)
 Maricopa County Sheriff's Office (MCSO)

1.2.5 Volunteer Agencies
 American Red Cross (ARC)

1.3 Response Locations / Extent of Play

1.3.1 Utility - Palo Verde Nuclear Generating Station (1-10, Exit 98)

1.3.1.1 Unit 3 Control Room (Simulator-A)
 Unit 3 Control Room (Simulator-A) will be used to accommodate the event initiators. An off-shift Operations staff will be utilized to represent the on-shift Operations crew. Auxiliary Operators assigned to the Simulator crew will receive the shift turnover information in the Simulator and then traverse to Unit 3, where they will simulate the on-shift Auxiliary Operators.

1.3.1.2 Simulator-A Satellite Technical Support Center (STSC)

Simulator-A STSC will be fully activated.
1.3.1.3 Technical Support Center (TSC)

The TSC will be fully activated.
1.3.1.4 Unit 3 Operations Síranor: Eanter (OSC)

Unit 3 OSC will be fully activated.

1.3.1.5 Emergency Operations Facility (EOF)

The EOF will be fully activated.

1.3.1.6 Forward News Center (FNC)

The FNC will be fully activated at the Notification of Unusual Event (NUE) classification and will deactivate when the Joint Emergency News Center (JENC) is activated.

1.3.2 Federal

1.3.2.1 US Nuclear Regulatory Commission (USNRC) Washington DC Region-IV (Arlington TX)

The USNRC will engage as participants and observers. The participants will be evaluated against predetermined federal standards by USNRC evaluators.

1.3.2.2 National Weather Service (NWS) - Phoenix AZ

The National Weather Service, an agency of the National Oceanic and Atmospheric Administration, correlates weather data per local agencies' requests for atmospheric dispersion and near-term forecasts related to radioactive plume characteristics. The NWS will accommodate requests as delineated by the local agencies.

1.3.2.3 Federal Emergency Management Agency - Region-IX (FEMA)

FEMA will deploy and establish a limited FRMAC. The extent of play will be limited to joint federal field team response in attendance with state field teams. FRMAC response will encompass performance of decision-making management in choosing a location.

1.3.3 State of Arizona

1.3.3.1 Emergency Operations Center (EOC)

The State EOC (including the Public Inquiry Center, the Joint Emergency News Center, and the State Technical Operations Center) will be fully activated. Equipment will be pre-staged for the TOC. A simulated supplemental request for assistance to Albuquerque NM will be demonstrated, but may occur out-of-sequence to other evaluated demonstrations.
1.3.3.2 Joint Emergency Nows Center (JENC)

The JENC will be fully activated.

1.3.3.3 Radiological Emergency Assistance Team (REAT)

The REAT Center (Environmental Surveillance Laboratory) will be fully activated.

1.3.3.4 REAT Forward

REAT Forward will be fully activated. Three (3) teams will be established for REAT Forward and one (1) support team will be dispatched for the Reception and Care Center. Charcoal filters will substitute for Silver Zeolite in performance of sampling techniques. Emergency worker monitoring will be demonstrated, but will occur out-of-sequence to other evaluated demonstrations. The Buckeye Fire Department will be used (simulated) for decontamination of a vehicle.

1.3.3.5 Reception and Care Center

The participating Reception and Care Center is located at Dysart High School, 11405 N. Dysart Road, El Mirage AZ. It will be fully staffed to demonstrate evacuee reception and care using simulated evacuees. This demonstration will be pre-staged and may be conducted out-of-sequence to other evaluated demonstrations.

1.3.4 Maricopa County

1.3.4.1 Maricopa County Emergency Operations Center (MCEOC)

The County EOC will be fully activated.
1.3.4.2 Maricopa County Sheriff's Office (MCSO)

The MCSO On-Scene Command Post will be fully activated.

1.3.5 Volunteer Agencies

1.3.5.1 American Red Cross (ARC)

Deployment of the Phoenix Chapter of the ARC will occur.

1.3.6 General Response

1.3.6.1 The Notification Alert Network (NAN) will be used.

1.3.6.1.1 Government Response Organizations will be alerted.

1.3.6.2 State, County, and volunteer response organizations will be mobilized.
1.3.6.3 The demonstration of evacuation for affected citizens within the EPZ will be simulated. The evacuees will be pre-staged at the Reception and Care Center (RCC). Monitoring and radioactive decontamination, if appropriate, will occur. Surveys will be demonstrated for six (6) evacuees.
1.3.6.4 An evacuation of a representative residunt group with special needs (approximately 4-6 individuals) will occur. One special needs evacuation location will be established for evaluation purposes.
1.3.6.5 Transportation of a contaminated injured person will be demonstrated separately in a Medical Drill involving Good Samaritan Hospital and AirEvac at a date to be determined. The ability to draw and analyze a sample using the PostAccident Sampling System (PASS) during adverse radiological conditions will be simulated in the Exercise and will be fully demonstrated in a PASS Drill at a date to be determined.
1.3.6.6 State Protective Action Decisions will be transmitted to affected schools. Evacuation of the schools will not be demonstrated.
1.3.6.7 Road Blocks/Access Control Points (1 for evaluation) will be implemented to demonstrate this function and then secured.
1.3.6.8 The onsite monitoring teams will demonstrate the donning of protective clothing appropriate to the scenario as directed by the RFAT Lead Controller. All offsite teams will simulate the use of protective clothing and related equipment.
> 1.3.6.9 In-plant teams will demonstrate the donning of protective clothing appropriate to the scenario as directed by the Facility Lead Controller.
> 1.3.6.10 Primary and backup (limited demonstration) communications systems will be utilized as required by the scenario.
1.3.6.11 The siren portion of the PVNGS Site Warning Siren/Public Address System will be simulated. The public address portion of this system will be used onsite only. Verbal notifications in the affected area for simulated siren malfunctions will be provided by the Maricopa County Sheriff's Office.
> 1.3.6.12 Use of the Offsite Siren Activation System will be simulated. Siren sounding will not occur. Emergency Broadcast Systern (EBS) messages will be generated and distributed to KTAR, but none will be broadcast. The warnings will be disseminated amongst the Exercise participants via the emergency communications systems and to the representative resident group via a supplemental warning team for the evacuation.
1.3.6.13 The media will be simulated for emergency information dispensation. Rumor Control will be activated and simulated inquiries will take place.
1.3.6.14 Onsite assembly and accountability will be simulated. Evacuation will also be simulated.
1.3.6.15 The JENC staff will produce coordinated press releases and conduct oral briefings to actual and simulated media personnel.
1.3.6.16 The distribution of Potassium lodide (KI) to emergency workers will be simulated. The appropriate Exercise Controller will receive verbal notification that an announcement has been transmitted to affected personnel. REAT Forward will subsequently be notified that KI has been dispensed.

1.4 Acronyms and Abbreviations

ADV
AF
AFAS
AFW
AgX
AHU
AO
APP
APP
APS
ARC
ARRA
ASS
AUX
B0
BLDG
BOP
BWR
C-
CAS
cc
CDE
CDF
CE
CEA
CEAC
CEC
CEDE
CEDMCS
CEOG
CESSAR
CET
CFM
CFR
CH
Ci
CIAS
CLASS

AC	Alternating Current
ACAD	Automated Control Access Device

ADEM Arizona Division [0f] Emergency Management

Alternating Current
Arizona Division [of] Emergency Management
Atmospheric Dump Valve
Auxiliary Feedwater
Auxiliary Feedwater Actuation Signal
Auxiliary Feedwater
Silver Zeolite
Air Handling Unit
Auxiliary Operator
Appendix
Applicable
Arizona Public Service (Company)
American Red Cross
Arizona Radiation Regulatory Agency
Assistant Shift Supervisor
Auxiliary
Board number (Control Room Panel)
Building
Balance-of-Plant
Boiling Water Reactor
PVNGS Controller number
Central Alarm Station
cubic centimeter
Committed Dose Equivalent
Core Damage Fraction
Combustion Engineering
Control Element Assembly
Control Element Assembly Calculator
Corporate Emergency Center
Committed Effective Dose Equivalent
Control Element Drive Mechanism Control System
Combustion Engineering Owner's Group
Combustion Engineering Standard Safety Analysis Report
Core Exit Thermocouple
Cubic Feet [per] Minute
Code [of] Federal Regulations
Channel
Curie
Containment isolation Actuation Signal
Classification

CPC	Core Protection Calculator
CPIAS	Containment Purge Isolation Actuation Signal
CR	Control Room
CREFAS	Control Room Essential Filtration Astuation Signal
CRS	Control Room Supervisor
CRT	Cathode-Ray Tube
CRVIAS	Control Room Ventilation Isolation Actuation Signal
CSAS	Containment Spray Actuation Signal
CSD	Cold Shutdown
CSF	Critical Safety Function
CSFST	Critical Safety Function Status Tree
CST	Condensate Storage Tank
CTMT	Containment
DAWPS	Dry Activated Waste Processing [and] Storage
DC	Direct Current
DDE	Deep Dose Equivalent
DE	Dose Equivalent
DG	Diesel Generator
DNBR	Departure [from] Nucleate Boiling Ratio
DOT	Department of Transportation
DPS	[Arizona] Department [of] Public Safety
EAL	Emergency Action Level
E:-BAR	Average Disintegration Energy
EBS	Emergency Broadcast System
EC	Emergency Coordinator
ECCS	Emergency Core Cooling System
ED	Effective Dose Equivalent
EDS	Emergency Diesel Generator
EDT	Equipment Drain Tank
EMT	Emergency Medical Technician
ENS	Emergency Notification System
EOC	Emergency Operations Center
EOD	Emergency Operations Director
EOF	Emergency Operations Facility
EOP	Emergency Operating Procedure
EPA	Environmental Protection Agency
EPIP	Emergency Jlan Implementing Prosedure
EPRI	Electric Power Research Institute
EPTG	Emergency Procedure Technical Guideline
EPZ	Emergency Planning Zone
ERF	Emergency Response Facility
ERFDADS	Emergency Response Faciity Data Acquisition [and] Display
	System

ERO	Emergency Response Organization
ESF	Engineered Safety Features
ESFAS	Engineered Safety Features Actuation System
FAP	Fuel Alignment Plate
FBEVAS	Fuel Building Essential Ventilation Actuation Signal
FEMA	Federal Emergency Management Agency
FNC	Forward News Center
FPB	Fission Product Barrier
FRMAC	Federal Radiological Monitoring and Assessment Center
FRP	Functional Recovery Procedure
FSAR	Final Safety Analysis Report
FWLB	Feed Water Line Break
GDC	General Design Criteria
GE	General Emergency
GL	Government Liaison
gm	gram
gPm	gallons per minute
H2	Hydrogen (elemental)
HJTC	Heated Junction Thermocouple
HPSI	High Pressure Safety Injection
HSB	Hot Standby
HSD	Hot Shutdown
HVAC	Heating, Ventilation, [and] Air Conditioning
IC	Initiating Condition
INPO	Institute [0f] Nuclear Power Operations
JENC	Joint Emergency News Center
JPIP	Joint Public Information Procedure
KI	Potassium lodide
Kr	Krypton
KV	Kilovolt
LC	Load Center
LCO	Limiting Condition [for] Operation
LLEA	Local Law Enforcement Agency
LO	LockOut
LOAF	Loss of All Feedwater
LOCA	Loss Of Coolant Accident
LOOP	Loss of Offsite Power
LOP	Loss of Power
LPD	Local Power Density
LPSI	Low Pressure Safety Injection
LWR	Light Water Reactor
MCC	Motor Control Center
MCDEM	Maricopa County Department [of] Emergency Management

MCEOC	Maricopa County Emergency Operations Center
μ Ci	microCurie
MCSO	Maricopa County Sheriff's Office
MOV	Motor Operated Valve
MPC	Maximum Permissible Concentration
mph	miles per hour
mR	milliRoentgen
mrem	millirem
MSIS	Main Steam Isolation Signal
MSIV	Main Steam Isolation Valve
MSLB	Main Steam Line Break
NAN	Notification Alert Network
NEI	Nuclear Energy Institute
NESP	National Environmental Studies Project
NOAA	National Oceanic [and] Atmospheric Administration
NRC	Nuclear Regulatory Commission
NRR	Nuclear Reactor Regulation
NSSS	Nuclear Steam Supply System
NUE	Notification [of] Unusual Event
NUMARC	Nuclear Management and Resources Council (see NEI)
NWS	National Weather Service
OBE	Operating Basis Earthquake
OCS	Operations Computer Support
ODCM	Radiological Assessment Coordinator
OSC	Recirculation Actuation Signal
PAG	Operations Support Center
PAR	Protective Action Guideline
PASS	Protective Action Recommendation
PBX	Post-Accident Sampling System
PCs	Private Branch eXchange
PMS	Protective Clothing
PO	Plant Monitoring System
PORV	Primary Operator
Ppm	Power Operated Relief Valve
PSI	parts per million
PSIA	Pounds [per] Square Inch
PSIG	Pounds [per] Square Inch Absolute
PVNGS	Pounds [per] Square Inch Gauge
PWR	Palized Water
PZR	RAS

RCA	Radiologically Controlled Area
RCC	Reception (and] Care Center
RCP	Reactor Coolant Pump
RCS	Reactor Coolant System
RDT	Reactor Drain Tank
RE	Reference
REAT	Radiological Emergency Assessment Team
REP	Radiation Exposure Permit
RFAT	Radiological Field Assessment Team
RHR	Residual Heat Removal (i.e., SDC)
RMS	Radiation Monitoring System
RMWT	Reactor Makeup Water Tank
RO	Reactor Operator
RO	Fecovery Operations
RP	Radiation Protection
RPC	Radiological Protection Coordinator
RPM	Radiation Protection Monitor
RPS	Reactor Protection System
RPT	Radiation Protection Technician
RSP	Remote Snutdown Panel
RTM	Response Technical Manual
RU	Radiation Unit
RVLMS	Reactor Vessel Level Monitoring System
RWP	Radiation Work Permit
RWT	Security Shift Captain
RX	Refueling Water Tank
S/G	Reactor
SAE	Steam Generator
SAS	Site Area Emergency
SBCS	Secondary Alarm Station
SDC	Steam Bypass Controi System
SFP	Shutdown Cooling
SG	Spent Fuel Pool
SGTR	Steam Generator
SIAS	Steam Generator Tube Rupture
SIT	Safety Injection Actuation Signal
SO	Safety Injection Tank
SOER	Socondary Operator
SP	Significant Operating Experience Report
SPDS	SRO

ST	Surveillance Test
STA	Shift Technical Advisor
STSC	Satellite Technical Support Center
SWGR	Switchgear
TAVa	Temperature-Average
Te	Temperature-Cold leg
TBD	Total Body Dose
Tech Spec	Technical Specification
TEDE	Total Effective Dose Equivalent
TH	Temperature-Hot leg
TOC	Technical Operations Center
TS	Technical Specification
TSC	Technical Support Center
TSCCR	Technical Specification Component Condition Recoro
UE	Unusual Event (see NUE)
UFSAR	Updated Final Safety Analysis Report
UJTC	Unheated Junction Thermocouple
V	Volt
VCT	Volume Control Tank
WRF	Water Reclamation Facility

SECTION 02

OBJECTIVES

PREFACE

The objectives documented on the following pages are those which comprise the PVNGS Emergency Planning Master List of Objectives. Time frame annotations represent evaluation requirements as directed by USNRC or FEMA regulations. The listing is intended to display all objectives which comprise the Master List of Objectives to more accurately and completely represent the site Emergency Preparedness six-year plan.

Objectives highlighted as BOLDED-CAPTILLIzED are those selected to be demonstrated in this Drill/Exercise and will be evaluated, while those which are italicized are not required to be demonstrated and are not projected to be evaluated.

1. [ANNUAL] DEMONSTRATE THE ABILITY TO ASSESS PLANT CONDTIIONS.
2. [ANNUAL] DEMONSTRATE THE ABILTY TO CLASSIFY THE EVEMT IN ACCORDANCE WTHK EPIP-02.
3. [ANNUAL] DEMONSTRATE THE ABIITY TO IDENTIFY PRONECTED TRENDS AND POTENTLAL CONSEOUENCES
4. [ANNUAL] DEMONSTRATE THE ABILTTY TO ALERT AMD MOTIFY PWMGS EMERCENCY RESPONSE PERSONHEL IM A TIMELY MAMMER.
5. [ANNUAL] DEMONSTRATE THE ABILTY TO MOBLLLZE PNKGS EMEREENCY RESPONSE PERSONNEL. WITHIN THE YIME FRAMES SPECIFIED IIN THE EMERGENCY PLAK.
6. [ANNUAL] BEMDNSTRATE THE ABILTY OF PVMGS TO NOTIFY STATE AND COUNTY AGENCIES WITHIM 15 MINUTES OF EMERCENCY DECLARATION.
7. [ANNUAL] DEMONSTRATE THE ABLLITY TO DETERMINE ACTUAL OR POTENTLAL OFFSITE RADIOLOCICAL MAZRRDS
8. [ANNUAL] DEMONSTRATE TAE ABLITY TO MAKE TIMELY PROTECTNE ACTION RECOMMENDATIONS TO OFFSITE AGENCIE 3.
9. [ANNUAL] DEMONSTRAYE THE ABILTY TO TRACK PLUME PASSAGE
10. [ANNUAL.] DEMONSTRATE THE PROPER USE OF RADLATION MONITORING IMSTRUMENTS AND DOSIMETRY
11. [ANNUAL] DEMONSTRATE THE PROPER USE OF SAMPLING EOUIPMENT AND CONTAMIMATION CONTROL. TECHNIOUES.
12. [ANNUAL] Demonstrate the ability to respond effectively to a contaminated injured individual within the plant.
13. [ANNUAL] Demonstrate the ability to coordinate with ambulance and hospital personnel in the handling, transport, and treatment of a contaminated injured individual.
14. [6-YEAR] Demonstrate the ability to monitor contamination in the field from plume passage deposition.
15. [6-YEAR] Demonstrate the proper use of self-contained breathing apparatus (SCBA) as required by the scenario.

I. PVNGS OBJECTIVES

16. [6 - YEAR] Demonstrate onsite assembly and accountability for the protected area.
17. [6 - YEAR] Demonstrate the ability to respond to and control a fire.
18. [6-YEAR] Demonstrate the ability to assemble onsite evacuees at an offsite assembly area.
19. [6 - YEAR] Demonstrate a shift change of Emergency Response personnel.
20. [6-YEAR] Demonstrate the ability to draw and analyze a PASS sample during adverse radiological conditions.
21. [6-YEAR] Demonstrate the ability to perform recovery and reentry.
22. [6-YEAR] Demonstrate the ability to effectively respond to a secunity event.

GROUP "A"

1. DEMONSTRATE THE CAPABILTY TO ALERT AND FULLY MOBILLZE PERSONMEL FOR BOTH EMERGENCY FACLITIES AND FIELD OPERATIONS. DEMONSTRATE THE CAPABHITY TO ACTNATE AND STAFF EMERGENCY FACILITIES FOR EMERGENCY OPERATIONS
2. DEMONSTRATE THE ADEOUACY OF FACILIIES, EOUIPMENT, DISPLAYS, AMD OTHER MATERIALS TO SUPPORT EMERGENCY OPERAYIONS
3. DEMONSTRATE THE CAPABILTY TO DIRECT AKD CONTROL EMEREENCY OPERATIONS
4. DEMONSTRATE THE CAPABLLTY TO COMMUMICATE WTTH ALL APPROPRLATE EMERGENCY PERSONMEL AT FACILTIES AND IN THE FIELD.
5. DEMONSTRATE THE ABILTY YO CONTIWUOUSLY MOMTTOR AMD COMTROL RADLATION EXPOSURE TO EMERGENCY WORKERS
6. DEMONSTRATE THE APPROPRIATE USE OF EOUIPMENT AND PROCEDURES FOR DETERMINING FIELD RADLATION MEASUREMENTS
7. demonstrate the capabilit to develop dose projections and protective action RECOMMENDATIONS REGARDING EVACUATION AND SHELTERING
8. DEMONSTRATE THE APPROPRLATE USE OF EOUIPMENT AND PROCEDURES FOR THE MEASUREMENT OF AIRBORNE RADIOIODINE CONCENTRAFIONS AS LOW AS 10E-7 (0.0000001) MICROCURIE PER CUBIC CEMTIMETER IN THE PRESENCE OF NOBLE GASES AND OBTAIN SAMPLES OF PARTICULATE ACTNTTY IN THE AIRBORNE PLUME
9. DEMONSTRATE THE CAPABILITY TO MAKE TIMELY PROTECTNE ACTION DECISIONS (PAD)
10. DEMONSTRATE THE CAPABILTY TO PROMPTLY ALERT AMD MOTIFY THE PUBLIC WITHIN THE 1O-MILE PLUME PATHWAY EMERGENCY PLANWIMG 2ONE (EPZ) AND DISSEMINATE INSTRUCTIONAL MESSAGES TO THE PUBLIC ON THE BASIS OF DECISIONS BY APPROPRLATE STATE OR LOCAL OFFICLALS
11. DEMONSTRATE THE CAPABILTY TO COORDIMATE THE FRRMULAYION AND DISSEMINATION OF ACCURATE INFORMATION AND INSTRUCTIORS YO THE PUBLIC
12. DEMONSTRATE THE CAPABIITY TO COORDINATE THE DENELOPMENT AND DISSEMIMATION OF CLEAR, accurate, and timely imformation to the news medua
13. DEMONSTRATE THE CAPABILTY TO ESTABLISH AND OPERATE RUMOR CONTROL IN A COORDINATED AND TIMELY MANNER

GROUP "B"

14. demonstrate the capabuity and resources to implement potassium looide (Ki) protectre actions for emercency workers, iwstitutionalzed inoniduals, and, if the state plan specifiss, THE CENERAL PUBLIC
15. demonstrate the capablity and resources necessary to mplement approprlate protectne ACTIONS FOR SPECLAL POPULATIOHS
16. DEMONSTRATE THE CAPABILTY AND RESOURCES MECESSARY TO IMPLEMENT PROTECTINE ACTIONS FOR SCHOOL CHIDREN WTHIN THE PLUME PRTHWAY EMERGENCY PLANNIMG ZONE (EPZ)
17. demonstrate the organizatiomal capablity and resources mecessaby to control nvacuation traffic flow and to control access to macuateo and shelitred areas
18. DEMONSTRATE THE ADEDUACY OF PROCEDURES, FACLITIES, EOUIPMENT, AKD PERSOMNEL FOR THE radiolocical montoring, decontamination, and reistration of fvacuers
19. DEMONSTRATE THE ADEOUACY OF FACIITIISS, EQUIPMENT, SUPPLIES, PERSOMNEL, AND PROCEDURES FOR congregate care of kvacuets
20. DEMOHSTRATE THE ADEOUACY OF VEHICLES, EOUIPMENT, PROCEDURES, AND PERSONNEL FOR TRANSPORTIMG CONTAMHATED, INJURED, OR EXPOSED INONIDUALS
21. DEMONSTRATE THE ADEOUACY OF THE EOUIPMENY, PROCEDURES, SUPPLIES, AND PERSOMNEL OF MEDICAL faclimies responsible for treatment of contaminated inuured, or exposed inoniluals
22. DEMONSTRATE THE ADEOUACY OF PROCEDURES FOR MONTORING AND DECONTAMINATION OF EMERCENCY WORKERS, EOUPPMENT, AND VEHICLES
23. DEMONSTRATE THE CAPABIITY TO IDENTIFY THE MEED FOR EXTERMAL ASSISTAMCE AND TO REOUEST SUCH assistance from federal or other support organizations

II. STATE / COUNTY OBJECTIVES

GROUP "C"

24. Demonstrate the use of equipment and procedures for the collection and transportation of samples from areas that received deposition from the airborne plume.
25. Demonstrate laboratory operations and procedures for measuring and analyzing samples.
26. Demonstrate the capability to project dose to the public for the ingestion exposure pathway and to recommend protective actions.
27. Demonstrate the capability to implement protective actions for the ingestion exposure pathway.
28. Demonstrate the capability to develop decisions on relocation, reentry, and return.
29. Demonstrate the capability to implement appropriate measures for relocation, re-entry, and return.
30. Demonstrate the capability to maintain staffing on a continuous 24-hour basis through an actual shift change.
31. Demonstrate the capability to provide offsite support for the evacuation of onsite personnel.
32. Demonstrate the capability to carry out emergency response functions in an unannounced exercise or drill.
33. Demonstrate the capability to carry out emergency response functions during an offhours exercise or drill.
34. Demonstrate the capability of licensee offsite response organization (licensee ORO) personnel to interface with non-participating organizations and accomplish coordination essential for emergency response.

III. JOINT OBJECTIVES (PVNGS, STATE, COUNTY)

1. [ANNUAL] DEMONSTRATE THE ABLITY TO RESPOND TO AN EMERGENCY WHICH IMITLATES BETWEEK 0400 AND 1800 ON WORKDAYS.
2. [ANNUAL] DEMONSTRATE THAT EMERGENCY RESPONSE ORGANIZATIONS CAN ACTNATE AND STAFF direction and control pacliries in a fimely manner
3. [ANNUAL] DEMONSTRATE THE FUNCTIONAL ADEDUACY OF EMERGENCY FACILTIES.
4. [ANNUAL] DEMONSTRATE THE ADEOUACY OF COMMUNICATIONS LINKS BETWEEN GONERNMEKT EMERGENCY FACIITIES, FIELD TEAMS, AND THE UTLITTY'S EMEREENCY FACILTIES.
5. [ANNUAL] DEMOMSTRATE THE ADEOUACY OF COMMUMCATIONS WITH THE PUBLIC VIA THE EMERGENCY BROADCAST SYSTEM (EBS)
6. [ANNUAL] DEMONSTRATE THE ABILTY TO IMPLEMENT PERSOMNEL DOSIMETRY FOR BOTH UTILTY and covermment emergency response personnel.
7. [ANNUAL] DEMONSTRATE THE ABLLTTY TO PERFORM ONSTEE AND OFFSITE DOSE ASSESSMENT IN A TIMELY MANMER.
8. [ANNUAL] DEMONSTRATE REMOTE ACTNATION AMD OPERATION OF THE OFFSTE SIREN ALERTIMG SYSTEM.
9. [6-YEAR] Demonstrate the ability to respond to an emergency which initiates on weekends, off-days, or between 1800 and 0400 on workdays.
10. [6-YEAR] Demonstrate the ability to respond to an emergency which initiates at an unannounced date and time.
11. [6 - YEAR] Demonstrate the ability to respond to an emergency during adverse weather conditions.
12. [6 - YEAR] DEMONSTRATE TIMELY COORDINATION AMD RELEASE OF INFORMATION TO THE MEDU THROUGH COORDIMATED ACTION BY STATE, COUNTY, AMD UTLLTTY ELEMENTS
13. [6- YEAR] DEMONSTRATE THE RBLLTY TO COORDINATE PROTECTNE ACTIONS IN THE PLUME
EXPOSURE PATHWAY EPZ.
14. [6-YEAR] DEMONETRATE THE ADEOUACY OF COMMUNICATIONS WITH THE PUBLIC YLA THE MEWS MEDLA.
15. [6-YEAR] DEMONSTRATE THE ADEQUACY OF COMMUNICATIONS WITH THE PUBLIC VIA RUMOR
CONTROL

1. EMERGENCY OPERATIONS FACILITY (EOF)

a. [ANNUAL] DEMONSTRATE THE ADEOUACY OF THE EMEREENCY PLAN AMD THE EMEREENCY PLAN IMPLEMENTING PROCEDURES (EPIPS) BOTH IN TERMS OF MAKAGEMENT CONTROL AND WORKABLITY OF THE PROCEDURES FOR THE EOF
b. [ANNUAL] DEMOMSTRATE THE ADEOUAEY OF COMMUMICATIOHS LNKKS BETWEEN THE CR/STSC, GOVERMMENT EMEREENCY FACILIIES, FIELD TEAMS, AMD THE EOF.
c. [ANNUAL] DEMONSTRATE THE EFFECTNENESS AND AVALLABLLTY OF APPROPRLATE EMERGENCY EOUIPMENT AND SUPPLES
d. [ANNUAL] DEMONSTRATE THE ADEOUACY OF SECURTTY ACCESS CONTROL
e. [ANNUAL] DEMOMSTRATE ACTNATION AND STAFFING OF THE EOF BN A YIMELY MANNER.
f. [ANNUAL] DEmonstrate the fumctional adeouacy of the eof.
g. [6-YEAR] Demonstrate the capability to function from the Backup EOF.

2. TECHNICAL SUPPORT CENTER (TSC)

a. [ANNUAL] DEMONSTRATE THE RDEOUACY OF THE EMEREENCY PLAN AND THE EMEREENCY PLAN IMPLEMENTING PROCEDURES (EPIPS) BOTH M TERMS OF MANAGEMEKT CONTROL AKD WORKABHITY OF THE PROCEDURES FOR THE TSC.
b. [ANNUAL] DEMOMSTRATE THE ADEQUACY OF COMMUNICATIOMS LWKS BETWEEN THE CR/STSC, OSC, EOF, IWPLAKT RESPONSE TEAMS, AMD THE TSC.
c. [ANNUAL] DEMONSTRATE THE EFFECTNEMESS AND AVALLABILTY OF APPROPRLATE EMERCENCY EOUIPMENT AND SUPPLIES
d. [ANNUAL] DEMONSTRATE THE ADEOUACY OF SECURTY ACCESS CONTROL.
e. [ANNUAL] DEMONSTRATE ACTNATION AND STAFFINE OF THE TSC IM A YIMELY MANNER.
f. [ANNUAL] DEMONSTRATE THE FUNCTIONAL ADEQUACY OF THE TSC
g. [ANNUAL] DEMONSTRATE THE CAPABILTY TO PERFORM CORE DAMAGE ASSESSMENT AND TO PRONECT THE TIME REMAIMING TO CORE UNCOVERY.
h. [6 - YEAR] Demonstrate the capability to function from a Backup TSC.
3. SATELLITE TECHNICAL SUPPORT CENTER (STSC)
a. [ANNUAL] DEMONSTRATE THE ADEOUACY OF THE EMEREENCY PLAN AND THE EMERGENCY PLAN IMPLEMENTIMG PROCEDURES (EPIPS) BOTH IM TERMS OF MANAGEMENT CONTROL AND WORKABUITY OF THE PROCEDURES FOR THE STSC
b. [ANNUAL] DEMONSTRATE THE ADEQUACY OF COMMUNICAFIONS LNKS BETWEEM THE TSC, OSC, EOF, WPPLAKT RESPOMSE TEAMS, AND THE CR/STSC.
c. [ANNUAL] DEMONSTRATE THE EFFECTNENESS AND AVALLABILTY OF APPROPRLATE EMEREEMCY EGURPMENT AND SUPPLES
d. [ANNUAL] DEMONSTRATE ACTTVATIOK AND STAFFING OF THE STSC IN A TMELY MANEER.
e. [ANNUAL] DEMONSTRATE THE FUNCTIONAL ADEQUACY OF THE STSC
f. [6-YEAR] Demonstrate the capability to function from a Backup STSC.
4. OPERATIONS SUPPORT CENTER (OSC)
a. [ANNUAL] DEMONSTRATE THE ADEQUACY OF THE EMERGENCY PLAM AND THE EMERGENCY PLAN IMPLEMENTMG PROCEDURES (EPIPS) BOTH ${ }^{1}$ TERMS OF MANAGEMEIT CONTROL AMD WORKABILITY OF THE PROCEDURES FOR THE OSC
b. [ANNUAL] DEMONSTRATE THE ADEOUACY OF COMMUMICATIONS LNMKS BETWEEN FIELD TEAMS, THE TSC/STSC, AMD THE OSC.
c. [ANNUAL] DEMONSTRATE THE EFFECTNENESS AND AVALLABILTY OF APPROPRLATE EMERGENCY EOUIPMENT AMD SUPPLIES
d. [ANNUAL] DEMONSTRATE ACTNATIOH AMD STAFFING OF THE OSC IM A TIMELY MAMNER.
e. [ANNUAL] DEMONSTRATE THE FUNCTIONAL ADEOUACY OF THE OSC
f. [6-YEAR] Demonstrate the capability to function from the Backup OSC.

5. CORPORATE EMERGENCY CENTER (CEC) [NOTE: SECTION DELETED]

a. [6- YEAR] Demonstrate the adequacy of the Emergency Plan and the Corporate Emergency Procedures both in terms of management control and workability of the procedures for the CEC.
b. [6-YEAR] Demonstrate the adequacy of communications links between govermment emergency facilities, the site's emergency facilities, and the CEC.
c. [6-YEAR] Demonstrate the effectiveness and availability of appropriate emergency equipment and supplies.
d. [6-YEAR] Demonstrate the adequacy of secunity access control.
e. [6-YEAR] Demonstrate activation and staffing of the CEC in a timely manner.
f. [6-YEAR] Demonstrate the functional adequacy of the CEC.

IV. FACILITY OBJECTIVES

6. JOINT EMERGENCY NEWS CENTER (JENC)
$\begin{array}{ll}\text { a. [6-YEAR] } & \begin{array}{l}\text { DEMOMSTRATE THE ADEOUACY OF THE EMERGENCY PLAN AMD THE JONTT PUBLIC } \\ \text { IMFORMATIDM PROCEDURES (JPIPS) BOTH IM TERMS OF MANRGEMEMT CONTROL }\end{array} \\ & \text { AMD WORKABILITY OF THE PROCEDURES FOR THE JENC. }\end{array}$
b. [6-YEAR] DEMOMSTRATE THE ADEOUACY OF COMMUKICATIONS LLMKS BETWEEN GOVERNMENT EMERGENCY FACILTIES, THE STES EMERGENCY FACLITIES, RND THE JENC
c. [6 - YEAR] DEMONSTRATE THE EFFECTNEMESS AND AVALLABILTY OF APPROPRLATE EMERGENCY EOUIPMEMT AMD SUPPLES
d. [6-YEAR] DEMONSTRATE THE ADEOUACY OF SECURTTY ACCESS CONTROL
e. [6 - YEAR] DEMONSTRATE ACTwATION AMD STAFFIME OF THE JEHC IN A TIMELY MANNER.
f. [6 - YEAR] DEMONSTRATE THE FUNCTIOMAL ADEOUACY OF THE JENC

EVALUATION OF DRILL/EXERCISE OBJECTIVES

All Drill/Exercise Controllers will use the same criteria for evaluating objectives.

NOTE: ONLY BOLDED OBJECTIVES ARE TO BE EVALUATED

On the forms, all of the objectives from the Master List of Objectives are provided, but only those which are BELDEL are to be evaluated for this Drill/Exercise. As a Controller/Evaluator, you will be responsible for evaluating those objectives pertinent to your area of observation. Each Evaluator, during the conduct of the Drill/Exercise, should observe as much of the Player's actions as possible while recording key events or items on the Event Log. These observations and notes must then form the basis for determining whether a particular objective can be categorized as:

- D Demonstrated
- ND Not Demonstrated
- DWI Demonstrated With Issue
- NA Not Applicable
- NO Not Observed

Specific evaluation criteria are listed with each stated objective. However, the following general criteria are to be used to correlate the above categories with your objective evaluations and observations:

D (Demonstrated):
Personnel and equipment generally performed better than expected. Any errors or problems were minor in nature and were either corrected on the spot or, since they had no impact on the emergency response, were noted to be corrected at a later date.

ND (Not Demonstrated):
Personnel and equipment consistently failed to perform as required. Serious deficiencies were noted which severely impaired the capability to perform a required function.

DWI (Demonstrated With Issue):

Personnel and equipment were generally able to perform and complete a required function. However, certain aspects failed to meet expectations. (For example, an emergency facility is able to perform its intended functions, however, one of its staffing positions did not have a qualified individual arrive to oversee its activities.)

NA (Not Applicable):
Activities associated with a particular objective were not applicable to the area being evaluated.

NO (Not Observed):
Activities associated with a pa licular objective were not performed (or not observed), and thus could not be evaluated.

	OBJECTIVE EVALUATION PAGES		
FACILITY	PVNGS OBJECTIVES	JOINT OBJECTIVES	FACILITY OBJECTIVES
EOF	$16-37$	$72-86$	$87-93$
TSC	$16-37$	$72-86$	$94-101$
CR/STSC	$16-37$	$72-86$	$102-107$
OSC	$16-37$	$72-86$	$108-113$
CEC	$16-37$	$72-86$	$114-119$
JENC			

OBJECTIVE EVALUATION

Evaluator:

Location:

I. PVNGS Objective

1. bemomstrayt the abilut io assess plant conditoms.

Minimum criteria to meet this objective:

- Adequate instrumentation or sampling data was made available.
- Available procedures, Tech Specs, and plant drawings were current.
- Personnel did not become too deeply involved in a specific activity at the exclusion of others.
- Personnel were effective in resolving differences of opinion regarding technical issues and actions to be taken.

Explanation of ND / OWI:

Evaluator:
Location:
I. PVNGS Objective

Minimum criteria to meet this objective:

- Current controlled copy of EPIP-02 was available and was used.
- Current controlled copy of EPIP-02 Technical Bases was available and was used.
- Information and data necessary to correctly classify events was readily available and used by personnel to classify events.
- Event classification was performed in a timely manner IAW EPIP-02.

D	ND	DWI	NA	NO	(circle one)

[^1]
OBJECTIVE EVALUATION

Evaluator:

I. PVNGS Objective

Minimum criteria to meet this objective:

- Adequate data from instrumentation, sampling, and verbal reports were available and were used.
- Current procedures, Tech Specs, and plant drawi.igs were available.
- Personnel developed probable accident sequences and accurately identified probable consequences for each sequence.
- Personnel did not become too deeply involved in a specific activity at the exclusion of others.
- Personnel were effective in resolving differences of opinion regarding technical issues and actions to be taken.

D	ND	DWI	NA	$\stackrel{\text { NO }}{\text { No }}$	(circie one)

OBJECTIVE EVALUATION

Evaluator:

I. PVNGS Objective

Minimum criteria to meet this objective

- Current procedures, up-to-date notification lists, and rosters were available.
- Aler/notification methodology was adequate to ensure timely notification and/or alerting of emergency response personnel.
- Equipment required for alert and notification was operational and functionally adequate.
- Personnel were able to implement procedures and operate equipment.

Explanation of NO / DWI:

Evaluator:

1. PVNGS Objective
 \% THE EMEREEMCY PLAK

Minimum criteria to meet this objective:

- The TSC was declared activated by the EC within 1 hour (normal hours) or 2 hours (offhours) of an ALERT or higher event declaration.
- The EOF was declared activated by the EOD within 1 hour (normal hours) or 2 hours (offhours) of an ALERT or higher event declaration.
- The OSC was declared activated with the minimum staffing requirement IAW EPIP-12 upon gvent declaration of an ALERT or higher within 1 hour (normal hours) or 1.2 hours (offhours).
- The JENC was activated in a timely manner.

D	ND	DWI	NA	NO	(circle one)
(Damenstatad)	arat Demonsurated)	(Damensurated With insua)	(Not Apsicabie)	(aver Obsamed)	

Explanation of NO / DWI:

Evaluator:
Location:

1. PVNGS Objective

6. nemohstrate the abiuty of pwes to matify stait ani county acencles wimm is munte of bmerency atelaratiok.

Minimum criteria to meet this objective:

- Current procedures for State and County notification were available and were used.
- Procedural methodology and equipment for offsite notifications were adequate.
- NAN backup communications capabilities required for offsite notifications were adequate and were utilized, if appropriate.
- Notifications were made to offsite authorities within fifteen (15) minutes of emergency declaration.
- Notifications were made in a clear, unambiguous manner and included all required information.

D	ND	OWI	NA	NO	(circle one)
(Demonstates)	(4at Cemonarama)	(Demonstraseo Wiem insue)	(ver Apoicabio)	(wat Obsamea)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

1. PVNGS Objective

Minimum criteria to meet this objective

- Current copy of EPIP-14 was available and was used by dose assessment personnel.
- Plant status and meteorulogical data was available and was used to determine offsite radiological consequen ies.
- Equipment for performing dose assessment was operational
- A backup system was available for dose projections.
- Field monitoring/sampling data was compared with projected doses.
- Updated projections were made as plant, meteoological, or fieid data parameters changed.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:
I. PVNGS Objective

Minimum criteria to meet this objective:

- Current copies of EPIP-13 and EPIP-15 were available and were used.
- Information and data required for formulation of Protective Action Recommendations were available.
- Protective Action Recommendations were correctly communicated in a timely manner to offsite authorities.
- Protective Action Recommendations were updated or modified as plant status or dose projections changed

D	ND	DWI	NA	NO	(circle one)
(Demenatratas)	(Nat Comonstratac)	(Cumonstrated Wien neus)	(pot Appicabia)	(ixt cosemed)	

Explanation of ND / DWI

Evaluator:
I. PVNGS Objective

9. DEmonstrait the abiluty te track pleme passabe.

Minimum criteria to meet this objective:

- Current procedures and forms were available.
- Equipment required to detect and monitor the plume was available and operational.
- The RAComm effectively positioned field monitoring teams to facilitate tracking of the plume.
- Communications between field teams and the RAComm were short, concise, and accurate.
- Field teams demonstrated the capability to make direct measurements of radiation intensity and forward the information to the RAComm.

D	ND	DWI	NA	NO	(circle one)
(Damonematea)	(nat Demonsuraton)	(comensausad with	Mod Aesicaca	(vat comemen	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:

I. PVNGS Objective

Minimum criteria to meet this objecuive:

- All instrumentation was within calibration date and was operational.
- Operational checks were performed on instrumentation prior to use.
- Personnel properly operated radiation monitoring instruments.
- Personnel were provided dosimeters appropriate to potential radiological conditions and in accordance with plant procedures.
- Dosimeters were worn and handled properly by personnel.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:
I. PVNGS Objective

Minimum criteria to meet this objective:

- Equipment, instruments, and supplies required for sample collection were availabie.
- Equipment and instruments were handled in a manner to prevent cross-contamination.
- Samples were properly bagged and labeled
- Personnel properly operated sampling instruments and equipment while maintaining contamination control techniques.
- Adequate procedural guidelines were avaiiable.

D	ND	DWI	NA	NO	(circle one)
(Demonetrated)	(rist Semensuresion)	(Demonstated With sewa)	aret Apopicacie)	arat Onsened)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

I. PVNGS Objective
12. Demonstrate the ability to respond effectively to a contaminated injured individual within the plant.

Minimum criteria to meet this objective:

- Procedures, equipment, and supplies required to provide treatment for a contaminated individual were readily available.
- Appropriste first aid and/or medical treatment were provided to the victim(s) in a timely manner.
- Effective exposure and/or contamination control techniques were used.
- Radiological concerns did not interfere in the delivery or timeliness of critical medical care.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:
 Location:

I. PVNGS Objective
13. Demonstrate the ability to coordinate with ambulance and hospital personnel in the handling, transport, and treatment of a contaminated injured individual.

Minimum criteria to meet this objective:

- Procedures, equipment, and supplies for handling and site transport of the victim(s) were available.
- Procedures, equipment, and supplies to expedite access to the site by offsite medical responders were in place.
- Information conceming injuries and atatus of the victim(s) was clearly communicated to hospital and/or ambulance personnel.
- Exposure and contamination control procedures were followed at the site, during transport, and at the hospital.
- Treatment and/or stabilization of medical and radiological health threats to the victim(s) were provided

D	ND	DWI	NA	NO	(circle one)
(Demonstretac)	(vat Cremonsuratea)	(Demonatrated Witiol isua)	(pider Applicasio)	(rat coremen)	

Explanation of ND / DWI

Evaluator:

I. PVNGS Objective
14. Demonstrate the ability to monitor contamination in the field from plume passage deposition.

Minimum criteria to meet this objective:

- All instrumentation was within calibration date and was operational.
- Operational checks were performed on instrumentation prior to use.
- Personnel properly operated radiation monitoring instruments.
- Personnel were provided dosimeters appropriate to potential radiological conditions and in accordance with plant procedures.
- Dosimeters were worn and handled properly by personnel.

Explanation of ND/DWI:

OBJECTIVE EVALUATION

Evaluator:

 Location:1. PVNGS Objective
2. Demonstrate the proper use of self-contained breathing apparatus (SCBA) as required by the scenario.

Minimum criteria to meet this objective:

- Equipment and supplies necessary for SCBA use were available.
- SCBA pre-use inspections were performed correctly.
- SCBA equipment was donned correctly.
- SCBA negative pressure checks were performed correctly
- Hose hookups and air supply valves were correctly manipulated such that proper air flows were provided.

[^2]
OBJECTIVE EVALUATION

Evaluator: Location:
I. PVNGS Objective
16. Demonstrate onsite assembly and accountability for the protected area.

Minimum criteria to meet this objective:

- Appropriate notifications by Affected/Unaffected Unit Shift Supervisors were made per EPIP-04, -20, respectively.
- Appropriate notifications by Affected/Unaffected Unit Shift Supervisors were made in a timely manner consistent with PA and paging systems limitations.
- An alphabetized listing (by name) of all unaccounted for personnel within the Protected Area was produced by Security.
- An alphabetized listing (by name) of all unaccounted for personnel within the Protected Area was provided to the EC within 30 minutes of the request.

Explanation of NO / OWI:

OBJECTIVE EVALUATION

Evaluator:
Location:
I. PVNGS Objective
17. Demonstrate the ability to respond to and control a fire.

Minimum criteria to meet this objective:

- Procedures, equipment, and supplies required for response to a fire were available.
- Information concerning status and location of the fire was clearly communicated by FP personnel.
- Exposure and contamination control procedures were followed by personnel, if appropriate.
- Response to the fire occurred in a timely manner.
- Control of the fire occurred safely and in a timely manner.

D	ND	DWI	NA	NO	(circle one)
(cemmarater)	(vat Comonsureat)	(Demonstrated Weit iske)	(not Appicasibe)	arat vosemas)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:
I. PVNGS Objective
18. Demonstrate the ability to assemble onsite evacuees at an offsite assembly area.

Minimum criteria to meet this objective:

- Procedures, equipment, and vehicles required for site evacuation were available.
- Offsite radiological hazards were evaluated and the proper evacuation route established.
- All communications were clear and concise and accomplished in a timely manner.
- Site evacuation occurred in an orderly and timely manner.

[^3]
OBJECTIVE EVALUATION

Evaluator:
Location:
I. PVNGS Objective
19. Demonstrate a shift change of Emergency Response personnel.

Minimum criteria to meet this objective:

- 24-hour manning and staff augmentation requirements have been accomplished.
- Adequate qualified personnel were available to accommodate a shift turnover.
- Status information and briefings were communicated clearly and concisely
- Transfer of responsibilities occurred in a concise and complete manner.
- Oncoming shift personnel assumed responsibilities in a smooth and uniform manner.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

I. PVNGS Objective
20. Demonstrate the ability to draw and analyze a PASS sample during adverse radiological conditions.

Minimum criteria to meet this objective

- Procedures for performing post-accident sampling were adequate.
- Equipment, instruments, and supplies required for sample collection were available
- Equipment and instruments were handled in a manner to prevent cross-contamination.
- Samples were properly bagged and labeled
- Personnel properly operated sampling instruments and equipment while maintaining contamination control techniques.

D	ND	DWI	NA	NO	(circle one)
(c)emonstatet)	(rat Comenstatas)	(Demonstasud Wien issua)	(ast repicalis)	(Nat Covenad)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:

I. PVNGS Objective
21. Demonstrate the ability to perform recovery and reentry.

Minimum criteria to meet this objective:

- Personnel were available to support the Recovery Organization.
- Downgrading or termination of the classified emergency event was discussed with appropriate personnel and offsite agencies.
- Communications with affected offsite organizations were clear and concise.
- A recovery operational plan for the affected Unit was formed in accordance with established guidance.
- The recovery operational plan was implemented and performed in a manner consistent with corporate policies and regulations.

D	ND	DWI	NA	NO	(circle one)
manusuar	abt Comensutuen)	amontirea Wim	ane Anosicasas)	ana comenam	

Explanation of ND / OWI:

OBJECTIVE EVALUATION

Evaluator:
 Location:

I. PVNGS Objective
22. Demonstrate the ability to effectively respond to a security event.

Minimum criteria to meet this objective:

- Procedures and equipment required for response to a security event were available.
- Notifications to and communications of personnel were performed in a concise, accurate, and timely manner.
- Procedures and controls associated with the event were adhered to.
(Demoristrvild)
(Niot Oemonstrated)
(Demonsuratad With issue) (Not Applicabie)
(ikot Cosemed)

Explanation of ND / DWI:

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D (Demonsiratad)	ND Pict Oemenstrated?	DWI (Opmonststad With Issue)	NA (Not Applicabie)	NO (giot Comental)	(circle one)
anation	IOWI:				

OBJECTIVE EVALUATION

Evaluator:

II. State of $A Z$ / Maricopa County Objective

GROUP "A"
 THE MELS

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Dimmonsurata)	(thet Demonstrataf)	(Demonurseas Wiel inua)	(Net Appicasion)	(vict Obsemed	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Damoneiasme)	(Nay Camonstates)	(Damonstrated Witil lasua)	(vat Apoicasas)	arat Obeanas)	

Explanation of NO / DWI:

OBJECTIVE EVALUATION
Evaluator:
II. State of AZ / Maricopa County Objective

GROUP "A"
 MEASUBEMEITS.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Damonsiratan)	Owat Comensuriad)	(Demensurasd with iscua)	(Nat Apericatio)	(mat Obsenes)	

Explanation of ND / OWI:

OBJECTIVE EVALUATION

Evaluator:
Location:
II. State of AZ / Maricopa County Objective

GROUP "A"
7. demonstrate tue capaitity te develop bose pratctions am piotective action aecommendanions

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator: Location:

II. State of $A Z$ / Maricopa County Objective

GROUP "A"

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:		Location:			
II. State of $A Z$ / Maricopa County Objective GROUP "A" 9. aEmanstrate yen capabuity ta make mmely protective action aecisions (pad).					
Minimum criteria to meet this objective: - Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.					
	$\underset{\text { ND }}{\text { ND }}$	DWI (Demonstrated With issut)	NA (mact nexcatab)	$\begin{gathered} \text { NO } \\ \text { anc obsemes) } \end{gathered}$	(circle one)
Explanation of ND / DWI:					

Evaluator:

Location:

II. State of A.Z / Miaricopa County Objective

GROU's "A"

 becesions ey appagelate state or lecal offlais.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

II. State of AZ / Maricopa County Objective

GROUP "A"
 INSTRUCTI日S TS YHE PUBLLC.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991

D	ND	DWI	NA	NO	(circle one)
(Damensuratas)		(Cxmonsirved Wien issue)	(vot Apericabie)	(nat Cosamed)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:
II. State of AZ / Maricopa County Objective

GROUP "A"
 TMELY TMFOAMATIGN TO TRE MEWS MEAKA.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI

OBJECTIVE EVALUATION

Evaluator:

II. State of $A Z$ / Maricopa County Objective

GROUP "A"

Minimum criteria to meet this objective:

- Refer to FEMA.REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Comonstrated)	avat Comonsarasa)	(damonarreed With isus)	(puer nepoicacia)		

Explanation of ND / DWI:

Evaluator:

II. State of AZ. / Maricopa County Objective

GROUP "B"
14. demonstrate the cainibity ane arsources to mplement potassigm ieaiog (KI) pagtective actions foi

Minimum criteria to mect this objective:

- Refer to FEMA-RF.P-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, Se stember 1991.

D	ND	DWI	NA	NO	(circle one)
(Damenutratas)	arex Demonsiratad)	(c)emonstrame Wien issua)	(vat Apobicatio)	(nat cosemed)	

Explanation of ND / DWI:

Evaluator:
II. State of AZ / Maricopa County Objective

GROUP "B"
16. drmonstrate the capabuity and resousces hectssany yo mplement paotective actions for scaoat

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI:
Evaluator: Location:
II. State of AZ / Maricopa County Objective

GROUP "B"
 and te contiot access te fvacuatio ang sheltren antas.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of NO / DWI:

Evaluator:

Location:
II. State of $A Z$ / Maricopa County Objective

GROUP "B"
 montosime, atcontammanom, ame atcistanton of ruacuets.

Minirnum criteria to meet this objective:

- Refer to FEMA.REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology. September 1991.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator: Location:
 II. State of AZ. / Maricopa County Objective
 GROUP "B"
 caise of evacuers.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Demonstrated)	(Not Cemenstatad)	(Demonsirated Wieh lawe)	(Ovot Appicabie)	(Vot Obsened)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:
II. State of $A Z$ / Maricopa County Objective

GROUP "B"
 contaminatel, muveed, er bxposed moniouals.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(0amonatimas)	ara Comonerasa)	(Demonurates Wien isume)	(Nat Aepicasom)	(rat obenmen)	

Explanation of ND / DWI:

OB' 'ECTIVE EVALUATION
f
G法 jator: Location:
II. State of AZ / Maricopa County Objective

GROUP "B"

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Damonestion)	(mer Domonsictas)	(Demonserated Weit issua)	Ovat Apoticabio)	(Nat Cosanma)	

Explanation of ND / DWI:

Evaluator:

Location:
II. State of AZ / Maricopa County Objective

GROUP "B"
 from feberal amb tutie suppagt orgamizations.

Minimum criteria to meat this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D (Demonalrated)	ND (Not Cemonatraced)	DWI (Demenstrated With issue)	NA (Not Appicabie)	NO (Nat Obsemes)	(circle one)
anation	DWI:				

OBJECTIVE EVALUATION

Evaluator:

II. State of AZ / Maricopa County Objective

GROUP "C"
24. Demonstrate the use of equipment and procedures for the collection and transportation of samples from areas that received deposition from the airborne plume.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

[^4]
OBJECTIVE EVALUATION

Evaluator:

 Location:II. State of AZ / Maricopa County Objective

GROUP "C"
25. Demonstrate laboratory operations and procedures for measuring and analyzing samples.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Damanstratas)	Olit Demonsuatea)	(Demonarater With issue)	(Not Appticabie)	(wor Obsered)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

II. State of AZ / Maricopa County Objective

GROUP "C"
27. Demonstrate the capability to implement protective actions for the ingestion exposure pathway.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:
 Location:

II. State of AZ / Maricopa County Objective

3ROUP "C"
28. Demonstrate the capability to develop decisions on relocation, reentry, and return.

Minimum criteria to meet this objective

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Damonstrates)	(phet Demensuates)	(Demenstrated With lasue)	(patat Apolicaste)	arex cosemed	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

II. State of AZ / Maricopa County Objective

GROUP "C"
29. Demonstrate the capability to implement appropriate measures for relocation, re-entry, and retum.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator: Location:

II. State of AZ / Maricopa County Objective

GROUP "C"
30. Demonstrate the capability to maintain staffing on a continuous 24 -hour basis through an actual shift change.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
Samensater	ava	comons	avappicasos)	(uxacoseme)	

Explanation of ND / DWI:

Evaluator:

Location:

ii. State of $A Z$ / Maricopa County Objective

GROUP "C"
31. Demonstrate the capability to provide offsite support for the evacuation of onsite personnel.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

OBJECTIVE EVALUATION

Evaluator:

II. State of AZ. / Maricopa County Objective

GROUP "C"
32. Demonstrate the capability to carry out emergency response functions in an unannounced exercise or drill.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of NO / OWI

Evaluator: Location:
II. State of $A Z$ / Maricopa County Objective

GROUP "C"
33. Demonstrate the capability to carry out emergency response functions duing an off-hours exercise or drill.

Minimum criteria to meet this objective:

- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

[^5]
OBJECTIVE EVALUATION

Evaluator:

Location:

III. Joint Objective (PVNGS, State, County)

Minimum criteria to meet this objective:

- Both licensee and government response organizations maintained the minimum staffing required for emergency response to events occurring during normal work hours.
- Communications capabilities were sufficient to initiate and support emergency response to events occurring during normal work hours.
- All Emergency Response Facilities were activated in a timely manner.
- Emergency facilities, equipment, and procedures necessary to support emergency response were available and were used.

Explanation of ND / DWI:

Evaluator:

Location:
III. Joint Objective (PVNGS, State, County)
 facustiss II A timely manmes.

Minimum criteria to meet this objective:

- All utility Emergency Response Facilities were declared activated within 1 hour (normal hours) or 2 hours (off-hours) of an ALERT or higher event declaration.
- All govemment Emergency Response Facilities were declared activated within the time frame(s) allowed for those facilities.
- The staffing level of all Emergency Response Facilities was rigintzined at the level established by the appropriate guidelines and procedures throughout the emergency.

D	ND	DWI	NA	NO	(circle n ne)
(1ameneratas)	ara (omoneratas)	(cemonurues wim masa)	(vat Ascicasom)	arememen	

Explanation of ND / DWI:

OBJEC'IIVE EVALUATION

Evaluator:

Location:

III. Joint Objective (PVNGS, State, County)
3. oEmonstrate the fumctional abeauacy of emereemey facuutiss.

Minimum criteria to meet this objective:

- The operational capability of Emergency Response Facilities included providing safe environments for personnel to work, adequate work space, personal conveniences, and access to other personnel, facilities, or materials.
- Situations did not occur in which the lack of equipment or materials prevented personnel from performing assigned tasks.
- Appropriate means were available for personnel to provide for the resolution of equipment or material deficiencies.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:
 III. Joint Objective (PVNGS, State, County)

 and tir utury's emergeicy facuutis.

Minimum criteria to meet this objective:

- Communications systems specified in plans and procedures were available and were operational.
- Personnel were able to operate all communications systems in their respective facility.
- Clear and timely communications links were maintained between government emergency facilities, field teams, and the utility's emergency facilities.
- The minimum required phone lines in all facilities were available.

| D | ND | DWI | NA | NO |
| :---: | :---: | :---: | :---: | :---: |\quad (circle one)

[^6]
OBJECTIVE EVALUATION

Evaluator: Location:

III. Joint Objective (PVNGS, State, County)

Minimum criteria to meet this objective:

- Coordination, formulation, and dissemination of information and instructions to the public occurred in an accurate and timely manner.
- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

 Location:III. Joint Objective (PVNGS, State, County)
 RESPOMSE PERSOMMEL

Minimum criteria to meet this objective:

- Personnel were provided dosimeters appropriate to potential radiological conditions and in accordance with established procedures.
- All instrumentation/dosimetry was within calibration dates and was operational.
- Operational checks were performed on instrumentation prior to use.
- Dosimeters were worn and handled properly by personnel.

| D | ND | DWI | NA | NO |
| :---: | :---: | :---: | :---: | :---: |\quad (circle one)

Explanation of ND / DWI:
III. Joint Objective (PVNGS, State, County)

Minimum criteria to meet this objective:

- Current copies of appropriate procedures were available and were used by dose assessment personnel.
- Plant status and meteorological data were available and were used to determine offsite radiological consequences.
- Equipment for performing dose assessment was operational.
- Backup systems were available for dose projections, if appropriate.
- Field monitoring/sampling data was compared with projected doses.
- Updated projections were made as plant, meteorological, or field data parameters changed.

D	ND	DWI	NA	NO
(Demonsuratas)	(wer Domonsoxten)	(Comonstrated Wiel inava)	(mar Appicasio)	atocto

(circle one)

Explanation of ND / DWI:

Evaluator:

Location:
III. Joint Objective (PVNGS, State, County)

Minimum criteria to meet this objective:

- Activation successfully occurred from the primary activation source (MCDEM) and from 1 of the 2 secondary activation sources (MCSO or DPS).
- At least 95% of all sirens activated successfully.
- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circle one)
(Demonstutas)	(Nat Damonsirtad)	(Demenstrated With iswe)	(Nort Apsticabes)	(rat Obsensa)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:

III. Joint Objective (PVNGS, State, County)
9. Demonstrate the ability to respond to an emergency which initiates on weekends, off-days, or between 1800 and 0400 on workdays.

Minimum criteria to meet this obiective:

- Both licensee and government response organizations maintained the minimum staffing required for emergency response to events occurring during off-normal work hours.
- Communications capabilities were sufficient to initiate and support emergency response to events occurring during off-normal work hours.
- All Emergency Response Faciiities were activated in a timely manner.
- Emergency facilities, equipment, and procedures necessary to support emergency response were available and were used.

Explanation of ND / DWI:

Evaluator:

Location:
III. Joint Objective (PVNGS, State, County)
10. Demonstrate the ability to respond to an emergency which initiates at an unannounced date and time.

Minimum criteria to meet this objective:

- Both licensee and govemment response organizations maintained the minimum staffing required for emergency response to events occurring at an unannounced date and time.
- Communications capabilities were sufficient to initiate and support emergency response to events occurring at an unannounced date and time.
- All Emergency Response Facilities were activated in a tir lely manner.
- Emergency facilities, equipment, and procedures necessary to support emergency response were available and were used.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:
 Location:

III. Joint Objective (PVNGS, State, County)
11. Demonstrate the ability to respond to ar: mmergency during adverse weather conditions.

Minimum criteria to meet this objective:

- Both licensee and govemment response organizations mainiained the minimum staffing required for emergency response to events occurring during adverse weather conditions.
- Communzetions capabilities were sufficient to initiate and support emergency response to events occurring during adverse weather conditions.
- All Emergency Response Facilities were activated in a timely manner.
- Emergency facilities, equipment, and procedures necessary to support emergency response were available and were used.

D	ND	DWI	NA	NO

Explanation of ND / DWI:

Evaluator:

Location:
iii. Joint Objective (PVNGS, State, County)
 staik, county, ahs entur Elimelis.

Minimum criteria to meet this objective:

- Prints, drawings, and maps to support media briefings were available.
- Adequate communications facilities were available for use by members of the media.
- Clear and timely communications links were maintained with the utility and government facilities.

| D | ND | DWI | NA | NO |
| :---: | :---: | :---: | :---: | :---: |\quad (circle one)

Explanation of ND / OWI:

Evaluator:

 Location:III. Joint Objective (PVNGS, State, County)

Minimum criteria to meet this objective:

- Equipment required to detect and monitor the plume was available and operational.
- All communications were ciear and concise and accomplished in a timely manner.
- Coordination, formulation, and dissemination of information and instructions to the public occurred in an accurate and timely manner.
- Active communications links were maintained between government facilities and transportation field teams.
- Refer to FEMA-REP-15, Radiological Emergency Preparedness Exercise Evaluation Methodology, September 1991.

D	ND	DWI	NA	NO	(circie one)
(Cemonsurame	(Vat Cemonstrated)	(Camonsuated Wiet issua)	(mat Aspicains)	ara Ocsarmef)	

Explanation of NO / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:
III. Soint Objective (PVNGS, State, County)
14. oEmohstrate the abeouacy of communications witil tie puble via tue miws meain

Minimum criteria to meet this objective:

- Communications systems specified in the plans and procedures were available and were operational.
- A designated spokesperson was available to coordinate activities and briefings with the media.
- Clear and timely communications links were maintained between utility, government, and media personnel.
- Aids and materials were available to support accurate briefings to the media.
- Questions posed by members of the media received complete and accurate responses.

Explanation of ND / DW:

OBJECTIVE EVA!UATION

Evaluator:

Location:
III. Joint Objective (PVNGS, State, County)
15. nemahstrate the abeaucy of communcations witi tie pubuc va bumor control.

Minimum criteria to meet this objective:

- Communications systems specified in the plans and procedures were available and were operational.
- Incoming inquiries generated prompt and accurate answers or were referred to the appropriate information sources.
- The effectiveness of Emergency Broadcast Systern (EBS) messages and other forms of public notification were monitored.
- False trends in rumors which could impede adherence to PAR instructions were quickly identified and were efficiently corrected.

D (Demonsiratad)	ND (Not Demonatrated)	DWI (Demonstratad With issua)	NA (Niot Applicaiona)	NO (Nict Observed)	(circle one)

Explanation of ND / DWI:

Evaluator:

IV. Facility Objective

1. EOF
 (EPIPS) BOTM IM TERMS OF MAMAEEMEMT CONTROL AKB wORKABIUTY OF TME PBOCEDURES FOR THE EOF.

Minimum criteria to meet this objective:

- The EOD was in full control of EOF operations.
- Current procedures were available and were used.
- The logistical layout of the facility and equipment provide' in the EOF was adequate to support implementation of EOF procedures.

D	ND	DWI	NA	NO	(circle one)

Explanation of ND / DWI:
IV. Facility Objective

1. EOF
 FRELITIES, FELE TEAMS, AND THE EOF.

Minimum criteria to meet this objective:

- Communications systems specified in the plans and procedures were available and were operational
- Personnel were able to operate all communications systems
- Clear and timely communications links were maintained with CR/STSC, TSC, Survey Teams, the NRC, JENC, and government emergency facilities and notification points.
- Planned communications capabilities were available for use by the NRC Site Team.

D	ND	DWI	NA	NO	(circle one)
(Damonstrata)	(piat Damenstatea)	(Demonsurated Wiet issua)	(Nid Aposicabie)	arat Obsemed)	

[^7]
OBJECTIVE EVALUATION

Evaluator:

IV. Facility Objective

1. EOF
c. Demonstrate the effetweutss ane availabluty or appappate emereency eauipment and ssppues.

Minimum criteria to meet this objective:

- There was sufficient ligr ting, ventilation, and office equipment (e.g., furnishings, copiers, etc.) to support operations of the staff assigned to the EOF.
- Backup power was available for the EOF
- Maps were available showing the Plume EPZ and the following information: sectors, population, evacuation routes, and radiological monitoring grids.
- Simplified drawings of the affected Unit, maps detailing the site, site evacuation routes, and assembly areas were available.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:
 Location:

IV. Facility Objective

1. EOF
d. DEMAKSTRATE THE ABEOUACY EF SECURTY ACEESS COMTBOL

Minimum criteria to meet this objective:

- All access to the EOF was controlled.
- A listing of personnel allowed access to the EOF was available and was used.
- Procedures to authorize access for personnel not on the access listing were adequate.
- Accountability of personnel present in the EOF was maintained throughout the emergency.

Explanation of ND / DWI:

Evaluator:

IV. Facility Objective

1. EOF

Minimum criteria to meet this objective:

- The EOF was declared activated by the EOD within 1 hour (normal hours) or 2 hours (offhours) of an ALERT or higher event declaration.
- The staffing level of the EOF was maintained at the level established by the Emergency Plan and EPIPs throughout the emergency.

D	ND	DWI	NA	NO	(circle one)
(Damonatrasa)	avat Damonsurstas)	(Demonstated With issue)	arar Appicasie)	(wat ocmea)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:

IV. Facility Objective

1. EOF
f. DEmonstrate the functional abrauacy of tie taf.

Minimum criteria to meet this objective:

- EOF operational capability included providing a safe environment for personnel to work, adequate work space, personal conveniences, and access to other personnel, facilities, or materials.
- Situations did not occur in which the lack of equipment or materials prevented personnel from performing assigned tasks.
- Appropriate means were available for personnel to provide for the resolution of equipment or material deficiencies.

D	ND (Not Demensirated)	DWI (Cumonstrated With issue)	NA (Not Apolicable)	NO (Nict Observed)	(circle one)

Explanation of ND / DWI:

Evaluator:

Location:

IV. Facility Objective

1. EOF
g. Demonstrate the capability to function from the Backup EOF.

Minimum criteria to meet this objective:

- The logistical layout of the facility and equipment provided in the Backup EOF was adequate to support implementation of EOF procedures.
- Clear and timely communications links were maintained with CR/STSC, TSC, Survey Teams, the NRC, JENC, and government emergency facilities and notification points.
- A safe environment, adequate work space, personal conveniences, and access to other personnel, facilities, or materials was provided for personnel to work.
- The staffing level of the Backup EOF was maintained at the minimum level established for the EOF by the Emergency Plan and EPIPs throughout the emergency.

[^8]
OBJECTIVE EVALUATION

Evaluator:

Location:

IV. Facility Objective
2. TSC

Minimum criteria to meet this objective

- The EC was in full control of TSC operations.
- Current procedures were available and were used.
- The logistical layout of the facility and equipment provided in the TSC was adequate to support implementation of TSC procedures.

D	ND	DWI	NA	NO	(circle one)
(Demonatrated)	(fiot Comonatusad)	(Demionserated With issue)	(Nut Appilicabia)	(mot Obsaned)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

IV. Facility Objective
2. TSC
 TEAMS, AMB THE YSC.

Minimum criteria to meet this objective:

- Communications systems specified in the plans and procedures were available and were operational.
- Personnel were able to operate all communications systems.
- Clear and timely communications links were maintained with CR/STSC, OSC, EOF, in-plant response teams, and the TSC.
- Dedicated phone lines as specified in the Emergency Plan were available.

[^9]
OBJECTIVE EVALUATION

Evaluator:

 Location:IV. Facility Objective
2. TSC

Minimum criteria to meet this objective:

- There was sufficient lighting, ventilation, and office equipment (e.g., furnishings, copiers, etc.) to support operations of the staff assigned to the TSC.
- Backup power was available for the TSC
- Maps were available showing the Plume EPZ and the following information: sectors, population, evacuation routes, and radiological monitoring grids.
- Simplified drawings of the affected Unit, maps detailing the site, site evacuation routes, and assembly areas were available.

D	ND Nuot Dernonsirated	DWI (Cemonstrated Win lssue)	NA (Not Applicabin)	$\begin{gathered} \text { NO } \\ \hline \end{gathered}$	(circle one)

OBJECTIVE EVALUATION

Evaluator:

Location:

IV. Facility Objective
2. TSC
c. DEmonstrate the adeouacy of securty access contad.

Minimum criteria to meet this objective:

- All access to the TSC was controlled.
- A listing of personnel allowed access to the TSC was available and was used.
- Procedures to authorize access for personnel not on the access listing were adequate
- Accountability of personnel present in the TSC was maintained throughout the emergency.

D	ND	DWI	NA	NO	(circle one)
(1amenerates)	ava comonsisical	(comensuratas Wen isuas)	(matapocastal	anctomen	

Explanation of ND / DWI:

Evaluator:

IV. Facility Objectives
2. TSC
e. oEmonstrate activation am staffic of tai tic in a tmeiy manher

Minimum criteria to meet this objective:

- The TSC was declared activated by the EC within 1 hour (normal hours) or 2 hours (offhouls) of an ALERT or higher event declaration.
- The staffing level of the TSC was maintained at the level established by the Emergency Plan and EPIPs throughout the emergency.

Explanation of ND / DWI:

Evaluator:
 IV. Facility Objective

2. TSC
f. pemonstrate tue fonctionat adramacy of titit tic.

Minimum criteria to meet this objective:

- TSC operational capability included providing a safe environment for personnel to work, adequate work space, personal conveniences, and access to other personnel, facilities, or materials.
- Situations did not occur in which the lack of equipment or materials prevented personnel from performing assigned tasks.
- Appropriate means were available for personnel to provide for the resolution of equipment or material deficiencies.

D	ND	DWI	NA	NO	(circle one)
(Demonstrates)	(tar Comonerates)	(Damonatatea Ween issua)	(exat Appecabiol	(wat cosemm)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:
Location:
IV. Facility Objective
2. TSC
 core uncovery.

Minimum criteria to meet this objective:

- Adequate data from instrumentation, sampling, and verbal reports was available and was used.
- Current procedures, Tech Specs, and plant drawings were available and were used.
- The projection of the time remaining to core uncovery was demonstrated.
- The assessment of core damage based on available information per EPIP-58 was demonstrated

Explanation of NO / OWI:

OBJECTIVE EVALUATION

Evaluator:
 Location:

IV. Facility Objective
2. TSC
h. Demonstrate the capability to function from a Backup TSC.

Minimum criteria to meet this objective:

- The logistical layout of the facility and equipment provided in the Backup TSC was adequate to support implementation of TSC procedures.
- Clear and timely communications links were maintained with the Affected Unit CR/STSC, OSC, EOF, in-plant response teams, and the Backup TSC.
- A safe environment, adequate work space, personal conveniences, and access to other personnel, facilities, or materials was provided for personnel to work.
- The staffing level of the Backup TSC was maintained at the minimum level established for the TSC by the Emergency Plan and EPIPs throughout the emergency.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

IV. Facility Objective
3. STSC

Minimum criteria to meet this objective:

- Command and control was effectively maintained on all operations in the CR/STSC throughout the emergency.
- Current procedures were available and were used.
- The logistical layout of the facility and equipment provided in the CR/STSC was adequate to support implementation of CR/STSC procedures.

| D | ND | DWI | NA | NO |
| :---: | :---: | :---: | :---: | :---: |\quad (circle one)

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:

IV. Facility Objective
3. STSC
 AM THE CR/STSC.

Minimum criteria to meet this objective:

- Communications systems specified in the plans and procedures were available and were operational.
- Personnel were able to operate all communications systems.
- Clear and timely communications links were maintained with TSC, OSC, EOF, in-plant response teams, and the CR/STSC.
- Dedicated phone lines as specified in the Emergency Plan were available.

D	ND	DWI	NA	NO	(circle one)
(Demontries)	(vict Comonsarateo)	(Damonsurated With misua)	(0xtactachicatio)	abit Obsemes)	

[^10]
OBJECTIVE EVALUATION

Evaluator:
 IV. Facility Objective

 Location:3. STSC

Minimum criteria to meet this objective:

- There was sufficient lighting, ventilation, and office equipment (e.g., furnishings, copiers, etc.) to support operations of the staff assigned to the STSC.
- Maps were available showing the Plume EPZ and the following information: sectors, population, evacuation routes, and radiological monitoring grids.
- Simplified drawings of the affected Unit, maps detailing the site, site evacuation routes, and assembly areas were available.

D	ND	DWI	NA	NO	(circle one)
(Demonsirat)	(Vat Comonsurata)	(Demonsuraud Wiel asue)	(vat Acolicaide)	(was Obeenea)	

[^11]
OBJECTIVE EVALUATION

Evaluator:

IV. Facility Objective
3. STSC

Minimum criteria to meet this objective:

- The CR/STSC implemented emergency staffing upon declaration of an event.
- The staffing level of the CR/STSC was maintained at the level established by the Emergency Plan and EPIPs throughout the emergency.

Explanation of ND / DWI:

Evaluator:

IV. Facility Objective
3. STSC
e. demonstaate fir fuctional abeanacy of tie stse.

Minimum criteria to meet this objective:

- STSC operational capability included providing a safe environment for personnel to work, adequate work space, personal conveniences, and access to other personnel, faciiities, or materials.
- Situations did not occur in which the lack of equipment or materials prevented personnel from performing assigned tasks.
- Appropriate means were available for personnel to provide for the resolution of equipment or material deficiencies.

D	ND	DWI	NA	NO	(circle one)
(comoneratas)	arat Demonsurame		(wed tepecasas)	puacememe)	

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:

IV. Facility Objective
3. STSC
f. Demonstrate the capability to function from a Backup STSC.

Minimum criteria to meet this objective:

- The logistical layout of the facility and equipment provided in the Backup STSC was adequate to support implementation of STSC procedures.
- Clear and timely communications links were maintained with the TSC, OSC, EOF, in-plant response teams, and the Backup STSC.
- A safe environment, adequate work space, personal conveniences, and access to other personnel, facilities, or materials was provided for personnel to work.
- The staffing level of the Backup STSC was maintained at the minimum level established for the STSC by the Emergency Plan and EPIPs until activation of the TSC.

D	ND	DWI	NA	NO
(Comonstratas)	atet Demonsusied)	(Comenstrsad With istua)	(mat Application)	anot joweme

[^12]
Evaluator:

Location:

IV. Facility Objective
4. OSC
a. Demonstrate the abianacy of the emereency plan ans the bmebeeney plan lmplementue pracrabres

Minimum criteria to meet this objective:

- Command and control was effectively maintained on all operations in the OSC throughout the emergency.
- Current procedures were available and were used.
- The logistical layout of the facility and equipment provided in the OSC was adequate to support implementation of OSC procedures.

Explanation of ND / DWI:

Evaluator:

Location:

IV. Facility Objective
4. OSC

Minimum criteria to meet ihis objective:

- Communications syztems specified in the plans and procedures were available and were operational.
- Personnel were able to operate all communications systems.
- Clear and timely communications links were maintained with TSC, EOF, in-plant response teams, and the CR/STSC.
- Dedicated phone lines as specified in the Emergency Plan were available.

D	ND	DWI	NA	NO

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

IV. Facility Objective
4. OSC

Minimum criteria to meet this objective:

- There was sufficient lighting and ventilation to support operations of the staff assigned to the OSC.
- Emergency lighting was available for the OSC.
- Prints and drawings of the affected Unit and survey maps of plant locations were available.

Explanation of ND / DWI:

OBJECTIVE EVALUATION

Evaluator:

Location:

IV. Facility Objective
4. OSC
d. DEMOMSTRAIE ACTNATIOH AKE STAFFME OF THE OSC IN A TMELY MANAER.

Minimum criteria to meet this objective:

- The OSC was fully activated within 1 hour (normal hours) or 2 hours (off-hours) of an ALERT or higher event declaration.
- The staffing level of the OSC was maintained at the level established by the Emergency Plan and EPIPs throughout the emergency.

D	ND	DWI	NA	NO	(circle one)

Explanation of NO / DWI:

Evaluator:

Location:

IV. Facility Objective
4. OSC
e. bemonstatit the forctional adeauacy be tie osc.

Minimum criteria to meet this objective:

- OSC operational capability included providing a safe environment for personnel to work, adequate work space, personal conveniences, and access to other personnel, facilities, or materials.
- Situations did not occur in which the lack of equipment or materials prevented personnel from performing assigned tasks.
- Appropriate mear: were available for personnel to provide for the resolution of equipment or material deficistcies

D	ND	DWI	NA	NO	(circle one)
(Demonstratas)	(Nat Demenstrated)	(cemonsirated With laswe)	(mor Appicaicia)	(ave Oosemed)	

[^13]
OBJECTIVE EVALUATION

Evaluator:

Location:

IV. Facility Objective
4. OSC
f. Demonstrate the capability to function from the Backup OSC.

Minimum criteria to meet this objective:

- The logistical layout of the facility and equipment provided in the Backup OSC was adequate to support implementation of OSC procedures.
- Clear and timely communications links were maintained with the TSC, EOF, in-plant response teams, and the CR/STSC.
- A safe environment, adequate work space, personal conveniences, and access to other personnel, facilities, or materials was provided for personnel to work.
- The staffing level of the Backup OSC was maintained at the minimum level established for the OSC by the Emergency Plan and EPIPs throughout the emergency.

Expianation of ND / DWI:

Evaluator:

IV. Facility Objective
5. JENC

Minimum criteria to meet this objective:

- Command and control was effectively maintained on all operations in the JENC throughout the emergency.
- Current procedures were available and were used.
- The logistical layout of the facility and equipment provided in the JENC was adequate to support implementation of JENC procedures.

Explanation of NO / DWI:

Evaluator:

IV. Facility Objective
5. JENC
b. DEMONST\& Emencrucy facturies, amb fit jewc.

Minimum criteria to meet this objective:

- Communications systems specified in the plans and procedures were available and were operational.
- Personnel were able to operate all communications systems.
- Clear and timely communications links were maintained with the EOF and government facilities.
- Adequate communications facilities were available for use by members of the media.

D	ND	DWI	NA	NO	(circle one)
(Demonsurata)	(nat Demonutateo)	(Damensarated With issue)	(vid Appricabio)	(aver cosemea)	

[^14]
OBJECTIVE EVALUATION

Evaluator:

IV. Facility Objective
5. JENC
c. DEMOHSTRATE THE EFFECTVEMESS AKD RVAILABMITY OF APPRQPRLATE EMEREEMCY EOUPMENT AME SUPPLES.

Minimum criteria to meet this objective:

- There was sufficient lighting, ventilation, and office equipment (e.g., furnishings, copiers, etc.) to support operations of the staff assigned to the JENC.
- Prints, drawings, and maps to support media briefings were available.
- Adequate accommodations for news media personnel were available.

D	ND	DWI	NA	NO	(circle one)
(Demonatuan	(matemonstras)	(Demonorsted Wit	(Natapoicatio)	mex comemes)	

Explanation of ND / DWI:

Explanation of ND / OWI:

Evaluator:
IV. Facility Objective

5. JENC

Minimum criteria to meet this objective:

- The minimum staffing requirement was met in a timely manner by the JENC.
- The staffing level of the JENC was maintained at the level established by the Emergency Plan and JPIPs throughout the emergency.

Explanation of ND / DWI:

Evaluator:

IV. Facility Objective
5. JENC
f. demonstrate the fumctomal adeouacy of tit jemc.

Minimum criteria to meet this objective:

- JENC operational capability included providing a safe environment for personnel to work, adequate work space, personal conveniences, and access to other personnel, facilities, or materials.
- Situations did not occur in which the lack of equipment or materials prevented personnel from performing assigned tasks.
- Appropriate means were available for personnel to provide for the resolution of equipment or material deficiencies.

D	ND	DWI	NA	NO	(circle one)

[^15]
SECTION 03

PV GUIDE

SECTION 03

PV GUIDE

i. SCENARIO TIMELINE

0705 All 3 Palo Verde Units are operating at 100% full power. This unit has been at 100% power for the last 116 days. Core age is 200 Effective Full Power Days (reference Unit 1 Cycle 4 Core Data Book). The Unit is operating with the reduced TH program. RCS Boron concentration is 546 ppm per Chemistry sample. AFB-P01 was tagged out 7 hours ago for inboard bearing replacement and is expected back for surveiliance testing in approximately 18 hours. Technical Specification LCOs 3.7.1.2 and 3.3.3.5, Action Statements "a.". were entered and the pump declared INOPERABLE 7 hours ago. A TSCCR has been generated on SIMS. Security has requested movement of the 16,000 -pound "pillbox" presently located at the northwest comer of the Turbine Building to a new defensive position near the nitrogen tanks. Mechanical Maintenance personnel will be using a crane to do the move over the next few hours and will advise Operations when completed. Water Reclamation has taken the $66^{\prime \prime}$ effluent feeder line from the Hassayampa Pumping Station out of service 4 hours ago to repair a leaking flange 2 miles east of the site. The line is expected back in service in approximately 26 hours. Water Rec will advise when repairs are completed. ECC is planning to remove the Westwing-2 525 KV line from service within the next 6 hours and will call Unit 1 with preliminary action plans when they are ready to do so. A reactor bank located in the Westwing Switchyard must be replaced and the line is required to be de-energized for that operation. SRP will coordinate activities with APS personnel and Unit 1 Operations will inform the other Units prior to taking the line out of service. S/G blowdown is currently aligned for NORMAL rate from S/G-1 and ABNORMAL rate from S/G-2. They are due to be swapped at 1100 Both Abnormal Rate manual isolation valves are open and should remain open. The normal, shiftly surveillance tests have been completed. Operations Management has requested that 100% power operation be maintained.

0800 Facility time synchronization / begin event timeline.
0808 An RCS leak begins in containment on a sensing line for the S/G-2 DP Transmitter. The crew receives PMS annunciation for low DPs on the affected transmitter. At this time, no control board annunciation is received at the current leak rate, which is 32 gpm . Letdown flow slowly decreases to maintain PZR leve! constant. Containment humidity siowly increases and eventually alarms on a B07 multipoint recorder. The crew enters 41AO-1ZZ14, Excessive RCS Leakrate, to determine the current RCS leakage.

0839 The SS enters the Emergency Plan and classifies the event as an NUE based on unidentified RCS Leakage in excess of 10 gpm .
0857 After notifications are conveyed to Operations management, ECC, Chemistry, and RP, the crew commences a plant shutdown in accordance with 41AO-1Z256, Rapid Shutdown. The Primary Operator begins borating the RCS and the Secondary Operator maintains RCS temperatures by adjustment of turbine load.

0907 During the plant shutdown, the RCS leak increases to 65 gpm . CTMT Sump Excessive Leakage is indicated. Analyses of plant indications and diagnoses of conditions prompts the SS to consider re-entry into EPIP-02, Emergency Classification, after an estimated leak rate has been recalculated by the PO.

0927 The SS upgrades the event classification to an ALERT per EPIP-02, Emergency Classification, based on RCS leakage in excess of 44 gpm, as delineated in Table-1. Fission Product Barrier Reference. Offsite agencies are notified and the Emergency Response Organization is activated.

0958 Due to rising containment pressure and after a brief tailboard discussion, the crew may attempt a manual reactor trip and manual SIAS and CIAS actuations. The reactor will not trip and the CEDMCS Bus must be de-energized. At the time of the trip, 4.16 KV Class Bus PBB-S04 loses power due to a fault and its supply breaker and the bus are both severely damaged. The crew enters 41EP-1EO01, Emergency Operations. The board operators maintain safety functions and the CRS enters the Safety Function Flowchart. A LOCA is diagnosed 6 minutes later and the crew enters 41EP-1RO02, Loss of Coolant Accident. The SS does not reclassify the event whether or not an automatic reactor trip condition existed during operators' attempts to trip the reactor. (Note that if a manual reactor trip is not attempted at this time, procedures will direct the manual trip at 20% power within the following ten minutes. If this is the case, 4.16 KV Class Bus PBB-S04 will lockout and de-energize at 25% reactor power during the power reduction.)

1029 The crew commences a plant cooldown at $<100^{\circ} \mathrm{F} /$ hour as directed by procedure, with a goat of reaching $338^{\circ} \mathrm{F} \mathrm{T}_{\mathrm{c}}$, at which time the Shutdown Cooling System can be placed into operation. Onsite and offsite Emergency Response Facilities have been activated and Emergency Response Organization staffing has been achieved.

1114 RCS pressure suddenly decreases as the RCS leak becomes much larger. Safety Injection Tanks inject within several minutes as RCS pressure decreases through 600 psia. ESFAS actuations include CSAS as containment pressure increases above the 8.5 psig CSAS setpoint. Containment radiation monitor readings escalate.

1117 The crew notices that no containment spray flow exists and attempts to open an isolation valve. Being unsuccessful, the CRS enters 41EP-1RO08, Functional Recovery (via SFFC), due to loss of the Containment Integrity Safety Function while an AO is dispatched to check the status of the stuck valve.

1121 The Control Room crew receives a call stating that the crane operator working on the concrete "pillbox" relocation effort has accidentally swung the crane boom in the wrong direction and hit the side of containment with the boom. The crane operator states that the "pillbox" broke from the cable after contacting the containment side and fell some 45 feet onto a large pipe protruding out from the containment wall near the equipment hatch. He thinks he broke the pipe, since smoke or steam is now billowing from the penetration and making a very loud hissing noise. He says he has vacated the area and is calling from the 100^{\prime} elevation in the Corridor Building. A radiological release to the environment begins through the broken weld seam around the containment penetration.
1134 The EC upgrades the event classification to an SAE per EPIP-02, Emergency Classification, based on loss of both the RCS and CTMT Barriers, as delineated in Table-1, Fission Product Barrier Reference.
1200 It is determined that since the release cannot be stopped, the stuck valve has priority and all efforts will be taken to repair it. Field team monitoring of the radioactive plume continues to provide data for both onsite and offsite dose assessment activities.
1300 The offsite radioactive release to the environment continues.

95-E-AEV-04002
EXERCISE SCENARIO GUIDE
1995 EMERGENCY PREPAREDNESS

II. REQUIRED SIMULATOR PREPARATION

A. Documentation:

1. PVNGS C.R. Simulatīi-A:	Unit 1 specific	
2.	Reference material(s):	Unit 1 specific
3.	Telephone/radio configurations:	Unit 3 specific

B. Red Danger Tag(s) for the Following Equipment:

1. HS-10 (AFB-P01 Handswitch)
2. HS-30A (Discharge Throttle Valve HV-30)
3. HS-31A (Discharge Throttle Valve HV-31)
C. Special Procedure(s) / Equipment:
4. Updated Plant Status Boards
5. SIMS TSCCR on "B" Auxiliary Feedwater Pump (simulated)
D. Qualifications:
6. Simulator operations require PVNGS qualifications in knowledge and operation of the PVNGS Simulators. All functions which are required to effectively transform the contents of this document into a comprehensive Control Room scenario scheme may not be embodied within the document, nor can all possible contingent actions requested by performers be anticipated. It is imperative that the Simulator Operator(s) possess the capability to ensure valid Simulator functions are identified and entered into the computer system in a correct and timely manner upon the request for their related effects.
E. Special Instructions:
7. Ensure the Following:
a. Daily Operational Readiness Test (DORT) performed by Hardware Group
b. Operating System downloaded and uploaded (software clean-boot)
c. PMS computer and displays set up properly
d. RMS program running, if applicable
e. RMS Loops reinitialized, if appropriate
f. RMS printer ON, if applicable
g. STSC ERFDADS Printer(s) / Dose Projection Computer operational
h. Alarm and Log typers ON
i. Westronics recorders ON (B07)
j. Chart paper advanced on all recorders
k. Communications set up (telephone, headsets, radio, FAX)
I. All procedures up-to-date and available
m . Plant status boards updated
n. Flowcharts cleaned and positioned correctly
o. All required Operator Aids installed properly
p. Paper pads and pens available
q. CR/STSC Player attendance sheet(s) available
r. Simulator Operations Area logistics proper
s. All cameras functioning and directed properly, if appropriate
t. VCR and tape(s) ready, if applicable
u. Software and Hardware support personnel available for duration
v. All trash cans clean
ili. SIMULATOR SETUP
A. Initial Condition
8. IC-20 $\left(100 \%\right.$ Full Power - 200 EFPD - Reduced T_{H} Program - $\left.546 \mathrm{ppm} \mathrm{B}^{10}\right)$
B. Special Instructions
9. Engage INSTRUMENT NOISE ON
C. Confirm the Following Functions Are Entered to Ensure Setup:
10. [MALFUNCTIONS]
a. [RP04B] (Reactor Trip Switchgear Breaker "B" Stuck)
b. [RP04D] (Reactor Trip Switchgear Breaker "D" Stuck)
c. [RD12B] (Bypass MG Set \#2 Output Contactor)
11. [COMPONENT OVERRIDES]
a. MALFUNCTIONS
1) [MV06:SIAUV672] (Spray Valve SIA-UV-672 Stuck Shut)
2) [TR01:SQNRU16] $5.30 \mathrm{E}+00$ (RU-16 Normal)
3) [TR01:SQARU150] 2.30E +04 (RU-150 Normal)
4) [TR01:SQBRU151] 2.51E+04 (RU-151 Normal)
b. REMOTE FUNCTIONS

1)	[FP01 OFF]	(Stop Diesel Fire Pump "A")
2)	[FP02 OFF]	(Stop Diesel Fite Pump "B")
3)	[WD21 OPEN]	(Unisolate S/G-1 Abnormal Rate Blowdown)
4)	[WD35 OPEN]	(Unisolate S/G-2 Abnormal Rate Blowdown)
5)	[B202:AFBP01 RACK_OUT]	(Rack Out AFB-P01 Supply Breaker)
6)	[B401:AFBHV30 OPEN]	(Open HV-30 Supply Breaker)
7)	[B401:AFBHV31 OPEN]	(Open HV-31 Supply Breaker)
8)	[EP05 240]	(Wind Direction)
9)	[EP06 3]	(Wind Speed)
10)	[EP07 77]	(Ambient Temperature)
11)	[EP09 2.5]	(A Temperature)

(Δ Temperature)

NOTE: \quad Align S/G Blowdown for "Normal" from S/G-1 and "Abnormal" from S/G-2 after SWITCH-CHECK.
3. [ANNUNCIATORS]
a. NONE
4. [CAEP / TRIGGERS]
8. Assign Trigger File RXPWR25 to available trigger and link command IMF ED11C (PBq-Su4 Normal Supply 86 Lockout)
b. Assign Trigger File RPSCHC to Trigger-1 and link the following commands:

1)	mmf TR01:SQNRU16	$8.50 \mathrm{E}+02$	$1: 00$	$9.50 \mathrm{E}+02$		
2)	$m m f$ TR01:SQNRU16	none	$1: 00$	$1.00 \mathrm{E}+03$	$60: 00$	$8.50 \mathrm{E}+02$
3)	$m m f$ TR01:SQARU150	$1.00 \mathrm{E}+03$	$3: 00$	$2.30 \mathrm{E}+04$		
4)	mmf TR01:SQBRU151	$1.00 \mathrm{E}+03$	$3: 00$	$2.51 \mathrm{E}+04$		

D. Hang Red Danger Tag(s) on the Following Equipment:

1. HS-10 (Auxiliary Feedwater Pump AFB-P01 Handswitch - B06)
2. HS-30A (AFB-P01 Discharge Throttla Valve HV-30 - B06)
3. HS-31A (AFB-P01 Discharge Throttle Valve HV-31 - B06)

E9SSEC03 DOC

IV. BrIEFING

A. Review Simulator Rules with the Operators

1. The USNRC plans on having an examiner on the Simulator floor during the Emergency Preparedness Drill/Exercise whenever possible (based on available manpower). Their main function during the Drill/Exercise is to ensure the operating crew can implement the Emergency Plan satisfactorily. However, they cannot ignore any problems they observe during the Drill/Exercise. In the event that they should observe a performance problem, their expected action is to determine if this problem was uncovered by the evaluation team and, if so, what remedial action will be taken to correct the problem. If the NRC had discovered a performance problem and no subsequent training action had been taken, then they would have an issue with the training group and not with the operator. If an identified performance problem relates to a history of poor performance on an individual's or team's NRC Requalification Examination in regards to the same problem, then the NRC may take issue with the operator(s) and the training group. If performance problems do occur, the NRC will expect to see the utility take remedial actions to correct the problems.
2. The primary responsibility is to operate the Simulation Facility as if it were the plant.
3. In addition to exercising the PVNGS Emergency Plan, the following activities will be observed during the Dril/Exercise:
a. Teamwork / communications
b. Diagnostic skills
c. Procedure usage
d. Systems knowledge
e. Log-keeping
4. A rough log may be kept during the Drill/Exercise suitable to complete necessary formal log entries.
5. Designated support personnel will act as Auxiliary Operators, Radiation Protection and Chemistry Technicians, Maintenance Supervisors, Plant Management, etc.
6. A(n) Drill/Exercise Controller will provide a shift tumover before the Drill/Exercise begins. The shift turnover will include present plant conditions, power history, equipment out of service, abnormal conditions, surveillance(s) due, and instructions for the shift.
7. No control board switches will be purposely misaligned. Out-of-service equipment will te tagged or otherwise identified.
8. Restroom leaves are permitted provided they are performed in compliance with normal Control Room staffing requirements.
9. A briefing will now take place regarding logistical items of interest that pertain to this Drill/Exercise:
a) This Exercise comprises full activation of all onsite and offsite Emergency Response Facilities. All procedural actions should take place unless otherwise directed within this briefing.
b) The telephone system has been switched over such that all outgoing calls placed from the floor area will reach the prescribed areas as indicated on the Simulator telephone listing for Unit 3. When answering incoming calls, disregard the red LED display on the phones so equipped to display incoming numbers; they may not display the correct incoming number in all cases.
c) The green dedicated phone system is also live. Be aware that the phone at the RMS DCU will be answered by the RMS Technician at the DCU because physical location constraints prevent that person from operating from his (her) normally assigned area (i.e., Unit 3 Effluents Office).
d) If Assembly/Accountability is called, it will be totally simulated (i.e., no site-wide page, either simulated or not, will take place). Even a "simulated" A/A announcement causes confusion. Do not make any A/A related announcements or sound any signals.
e) If and when a site-wide page must be made regarding event classifications, be aware that it takes at least three (3) seconds for the system to activate (i.e., key the microphone and refrain from speaking for 3 seconds prior to making the announcement). Please speak slowly and clearly, as outside areas are prone to echo, which results in unintelligible statements heard at most outside locations.
f) The site-wide Exercise termination announcement should be made from the Simulator before the sysiem is reconfigured to its prior status. The Simulator and each Control Room are the only areas from where the site-wide announcement can be made and reach all inside and outside locations.
g) If ERDS must be activated, be aware that the normal password is accepted by the system in the Simulator. However, since the Simulator ERDS does not transmit to USNRC Headquarters, an established link cannot occur. Thus, activation of ERDS from the Simulator can take place only up to the point where MODEM dialing would occur. If and when this point is reached, a facility Controller should be informed that a simulated activation has taken place.
h) The Blowdown constants for COLSS on the CMC and PMS terminals are correct for current blowdown rates, but may not have the ability to be changed for other blowdown lineups.
i) Upon conclusion of shift turnover, the crew's Auxiliary Operators will be given time to proceed to their normal watch stations in Unit 3. The OSC Controllers will accompany them. Once there, they will each receive a radio to allow them normal communications means with the Simulator Control Room staff. Be aware that the AOs' radios, as well as the Simulator radio, will transmit and receive on Channel 3. However, should Unit 3 Operations require use of Channel 3, they must be given priority for any communications and we must refrain from use of that channel until Unit 3 Operations has concluded their communication transmissions.

NOTE: Ensure copies of Step 9 Briefing Items are distributed within the Simulator for reference.
10. If there are any questions concerning the administration of the Drill/Exercise, those questions should be asked prior to the start of the Drill/Exercise.

B. Assign Positions

1. The crew will assume positions as determined by a(n) Drill/Exercise Controller and/or crew supervision:
a. (SS) Shift Supervisor
b. (CRS) Control Room Supervisor
c. (PO) Primary Operator
d. (SO) Secondary Operator
e. (RO) $3^{\text {red }}$ Reactor Operator
f. (FTA) Fire Team Advisor (optional)
g. (STA) Shift Technical Advisor
2. Auxiliary Operators (AOs) will strategically place themselves in their assigned areas of responsibility. All other support personne! will assume their normal responsibilities within their respective assigned work areas.

v. CONTROLLER INFORMATION

A. Simulator Conditions:

1. The progress of this Drill/Exercise depends primarily on the competence and capabilities of the personnel involved with it and also depends, to some degree, on the dependability of the software and hardware associated with the Simulation Facility. If, through unforeseen circumstances, the Simulator should fail during the course of Dril/Exercise operations, execution of the Drill/Exercise may become hampered. In this case, the Drill/Exercise timeline may have to be suspended until such time that it may again proceed. Accordingly, a timeline adjustment will then be incorporated onto the time-dependent events remaining in the Drill/Exercise. If the Simulator catastrophically fails such that immediate repair or scenario recall is not feasible, then the Lead Controller will, at that time, make a decision regarding future progression of the remaining portions of the Drill/Exercise.
B. Scenario Guide Layout:
2. The following is a brief composite of the Scenario Guide column descriptions:

a.	TIME:		Signifies real time with no applied adjustment b.
SIM INSTRUCTIONS:		Simulator Operator instructions c.	MSG:
Message number correlated to Section 04			
d.	VIA:		Controller designator
e.	TO:		Player designator
f.	EVENT SEQUENCE:		Major events sequenced in chronological order
g.	NOTES:	Controller information and/or Simulator Operator instructions	

2. Message identifiers used throughout this Scenario Guide (Section 03) are organized by type. Numeric-identified messages are employed for normal occurrences within the Drill/Exercise and should be used to achieve desired results based on predictable scenario events. Note that these messages may not always be directed on the designated scenario timeline and may depend on event time variations. Alpha-identified messages are employed as contingencies such that the messages are delivered only when or if predictable events or results do not take place. Contingency messages are keyed to specific actions, not time frames. Thus, when specific actions for which a particular contingency message is based do not occur on the timeline, this message should be saved and used when and if it is required. This type of message is utilized to maintain the Drill/Exercise on its predetermined course and not on its predetermined timeline.
C. Attachments:
3. Attachment A :

File 94-002-493, Conversation Memorandum (APS/NRR), 26JUL94 0840 MST
D. Scenario Guide Abbreviations and Acronyms:

AO	Ausiliary Operator	PSIG	Pounds [per] Square Inch Gauge
C ($n(x)$	Controller identifier	PO	Primary Operator
CAS	Central Alarm Station	P2R	Pressurizer
CET	Core Exit Thermocouple	RAS	Recirculation Actuation Signal
CIAS	Containment Isolation Actuation Signal	RCA	Radiotogical Controlled Area
CP	Charging Pump	RCP	Reactor Coolant Pump
CR	Control Room	RCS	Reactor Coolant System
CRS	Controi Room Supervisor	RFAT	Radiological Field Assessment Team
CTMT	Containment	RMS	Radiation Monitoring System
DG	Diesel Generator	RO	Reactor Operator
DNBR	Departure [from] Nucleate Boiling Ratio	RP	Radiation Protection
EC	Emergency Coordinator	RWT	Refueling Water Tank
ECCS	Emergency Core Cooling System	$R \mathrm{x}$	Reactor
EDG	Emergency Diesel Generator	SAE	Site Area Emergency
EHC	Electrohydrautic Control	SAS	Secondary Alarm Station
EMT	Emergency Medical Technician	SIAS	Salety Injection Actuation Signal
EOF	Emergency Operations Facility	SIT	Safety Injection Tank
ERFDADS	Emergency Response Facility Data Acgisition [and] Display System	So	Secondary Operator
ESFAS	Engineered Safeguard Features Actuation System	SS	Shift Supervisor
FTA	Fire Team Advisor	STSC	Satellite Technical Support Center
GE	General Emergency	TSC	Technical Support Center
GPM	Galions Per Minute	TSCCR	Technical Specification Component Condition Record
H.JYC	Heated Junction Thermocouple	USTC	Unheated Junction Thermocouple
HPS:	High Pressure Salety injection		
KV	Kilovot		
1 C	Load Center		
LCO	Limiting Condition [for] Operation		
10	Lockout		
LOCA	Loss Of Coolant Accident		
LPD	Local Power Density		
LPSI	Low Pressure Safety Injection		
MCC	Motor Control Center		
MSIS	Main Steam Isolation Signal		
MSN	Main Steam Isolation Valve		
MSLB	Main Steam Line Break		
NUE	Notification [of] Unusual Event		
OCS	Operations Computer Support		
OSC	Operations Support Center		
PASS	Post-Accident Sampling System	NOTE:	Nion 01. Step 1.4, for a comniete Isting of acronym
PSIA	Pounds iper! Square inch Absokute		eviablions used throughout this manual.

VI. SHIFT TURNOVER

A. Plant/Site Conditions:

1. All 3 Palo Verde Units are operating at 100% full power. This unit has been at 100% power for the last 116 days.
2. Core age is 200 Effective Full Power Days (reference Unit 1 Cycle 4 Core Data Book). The Unit is operating with the reduced T_{H} program. RCS Boron concentration is 546 ppm per Chemistry sample.
3. AFB-P01 was tagged out 7 hours ago for inboard bearing replacement and is expected back for surveillance testing in approximately 18 hours. Technical Specification LCOs 3.7.1.2 and 3.3.3.5, Action Statements "a.", were entered and the pump declared INOPERABLE 7 hours ago. A TSCCR has been generated on SIMS.
4. Security has requested movernent of the 16,000 -pound "pillbox" presently located at the northwest comer of the Turbine Building to a new defensive position near the nitrogen tanks. Mechanical Maintenance personnel will be using a crane to do the move over the next few hours and will advise Operations when completed.
5. Water Reclamation has taken the $66^{\prime \prime}$ effluent feeder line from the Hassayampa Pumping Station out of service 4 hours ago to repair a leaking flange 2 miles east of the site. The line is expected back in service in approximately 26 hours. Water Rec will advise when repairs are completed.
6. ECC is planning to remove the Westwing-2 525 KV line from service within the next 6 hours and will call Unit 1 with preliminary action plans when they are ready to do so. A reactor bank located in the Westwing Switchyard must be replaced and the line is required to be de-energized for that operation. SRP will coordinate activities with APS personnel and Unit 1 Operations will inform the other Units prior to taking the line out of service.
7. S/G blowdown is currently aligned to the Blowdown Flash Tank for NORMAL rate from S/G-1 and ABNORMAL rate from S/G-2. They are due to be swapped at 1100 . Both Abnormal Rate manual isolation valves are open and should remain open.
8. The normal, shiftly surveillance tests have been completed.
9. Operations Management has requested that 100% power operation be maintained.
B. Miscellaneous:
10. 20-25 minutes will be allowed for familiarization with the status and condition of the control boards and for the Auxiliary Operators to arrive on station in Unit 3 and assume their watch duties as part of the Drill/Exercise. Initial log entries may have been prepared by the Dril/Exercise Lead Controller or the crew may make the initial log entries for this shift.

NOTE: THE DRILLIEXERCISE TIMELINE BEGINS WHEN THE CREW ASSUMES WATCH DUTIES AND SHOULD OCCUR AT 0800. THE DRILLEXERCISE LEAD CONTROLLER WILL ESTABLISH TIMELINE SYNCHRONIZATION WITH ALL DRILLEXERCISE CONTROLLERS.

1995 EMERGENCY PREPAREDNESS EXERCISE SCENARIO GUIDE - 95-E-AEV-04002
PAGE 16

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
0705	*** SHIFT TURNOVER ***	1	C-1	CREW	The crew is informed of the Plant/Site Conditions as referenced in Section VI.A previous. Simulator rules and configuration aspects are covered and any questions are answered.	After shif tumover, 20-25 minutes will be allowed for familiarization with the status and condition of the control boards and for the Auxiliary Operators to arrive on station and assume their watch duties. If an initial log entry sheet has not been prepared for the crew, then they may prepare one. The Drill/Exercise Timeline will begin at 0800 .
0725		2	C-1	Ss	As Emergency Response Facilities become activated and manned during the course of this Drill/Exercise, the following information will be relayed to the managers and key players by the Shift Supervisor, as required: Although this entire Drill/Exercise is simulated as taking place in Unit 3. procedures applicable to the Simulator will be used IAW standard Simulator practices. All radiological information will be presented via the Control Room PDP-11 RMS DCU minicomputer, unless otherwise annotated.	The Shift Supervisor (SS) should review plant conditions, brief the crew, and have the operators walk down their respective areas of responsibility. The operators may, at this time, make the initial \log entries for their shift and review the plant status boards. Refer to Section 12 for data associated with malfunctioning equipment. All Controllers should ensure that facility managers are acquainted with the initial Scenario Plant/Site Conditions.
0800	** BEGIN TIMELINE ***	**	**	***	** BEGIN TIMELINE ***	*** BEGIN TIMELINE ***

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
0800	EWSURE SIMULATOR SETUP					Double-check Simulator setuo requirements to ensure all aspects are verified.
0800	[CAE] weather				The Control Room crew assumes shiff watch duties and responsibilities.	
0808	[MALF] TH07 25 [CAE] msloca35 (LOCA-Small Break)	$\underset{\substack{\mathrm{ntt} \\ \text { mms } \\ \text { zaaa }}}{ }$	$\begin{aligned} & C-1 b \\ & C-1 b \\ & C-2 \end{aligned}$	$\begin{aligned} & \text { SS } \\ & \text { EC } \\ & \text { EC } \end{aligned}$	An RCS leak begins on a sensing line for the S/G-2 DP Transmitter.	The RCS leak starts instantaneously at 32 gpm . NOTE: Applicable Controllers should review instructions for Contingency Messages -nt, -mms, and -aaa.
0809					Operators notice PMS annunciation for low DPs on the affected transmitter.	At this time, no control board annunciation is received at the current leak rate. PMS Annunciation: CORE DP LOOP 28 CORE DP LOOP 2A
0810					The PO notices letdown flow decreasing and attempts to determine the reason for the abnormality. A B07 multipoint recorder denotes increasing CTMT humidity.	Recorder 1JRMNTJR1: (PR. 17) S/G-1 100° CTMT HUMIDITY
0815					The crew enters $41 \mathrm{AO}-1 \mathrm{ZZ} 14$. Excessive RCS Leakrate, and begins a 15 -minute RCS leak rate determination.	The plant is stabilized for the calculation and the crew ensures that both RCS sampling and VCT makeup do not occur. The PO may have isolated letdown prior to the start of the 15 -minute time period and entered 41AO-1ZZ37. Extended Loss of Letdown.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
0820		A	C-1c	SSM	The SS notifies the Site Shift Manager (SSM) or Operations representative of the situation and both discuss the impending required plant shutdown.	MSG-A will provide the SSM or Operations representative direction from which to proceed with the discussion. The MSG delineates a 1 -hour plant shutdown per 41AO-1ZZ56, Rapid Shutdown. The MSG should be provided only if and when a plant shutdown is discussed.
0825		B	C-3	RP	The SS notifies RP to discuss the possibility of sending a team into CTMT to locate the source of the RCS leak.	MSG-B will provide the RP representative direction from which to proceed with the discussion. The MSG delineates advisement against sending a team into CTMT based on radiological conditions within CTMT at the present time. The MSG should be provided only if RP had been contacted and when current CTMT radiological conditions are understood.
0834					The PO has finished the 15 -minute RCS leak rate determination and has calculated $\approx 32 \mathrm{gpm}$ leakage.	Due to variations involving minor plant deviations in particular parameters, the calculation may yield values within a range of $32 \pm 5 \mathrm{gpm}$.
0835					The SS enters Technical Specification LCO Action Statement(s) for RCS Leakage [and] PZR level (if letdown had been isolated).	Applicable T.S. LCOs:
0837		c	C-1b	CRS		MSG-C will provide the CRS information pertaining to the RCS leak rate calculation only if the PO's calculation results did not reasonably fall within the prescribed range or if the calculation did not take place.
0839					The SS enters the Emergency Plan and classifies the event as an NUE based on unidentified RCS Leakage in excess of 10 gpm .	If the SS bases his emergency classification on identified RCS leakage in excess of 25 gpm , his justification should be noted and discussed in the facility critique when the Exercise is terminated.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
0845		D	C-1b	ss		MSG-D will provide the SS emergency classification criteria on which to base his judgment to classify the event as an NUE. The MSG should be provided only if the SS has classified the event erroneously or presents no appearance of classifying the event. The Exercise Lead Controller will prescribe the use of MSG-D.
0848			C-1d		Due to temporary NAN unavailability. offsite agencies are notified of the NUE via the NAN Backup (radio).	Telecommunications personnel are notified. NOTE: C-1d will note the NAN out-of-service.
0850					The CRS holds a crew briefing to discuss plans and contingencies for the plant shutdowi. Support staff is notified of the shutdown.	
0857					The crew commences shutdown of the plant. The PO begins borating the RCS and the SO will maintain RCS temperatures by adjusting turbine load accordingly.	The PO should start the boration at $35-45 \mathrm{gpm}$. The PO will commence reducing turbine load about 4 minutes later. Calculations should reference 2845 gallons of borated water required to shutdown, negating the effects of Xenon.
0907	[MALF] TH07 50 [CAE] msioca70 (LOCA-Small Break)				The RCS leak rate escalates during the plant shutdown. Operators notice the problem by observing PZR level changes and PMS displays.	RCS leakage increases to 65 gpm . Due to the location of the leak, RPS Channel-A for "LO RC FLOW SG 2^{*} will trip. The crew will place the affected channel in BYPASS and the SS will enter T.S. LCO 3.3.1 Action 2.
0912					CTMT sump level alarms are acknowledged on B07. CTMT Sump Excessive Leakage is indicated.	The crew should determine that RCS leakage has increased. Analyses of plant indications and diagnoses of conditions should prompt the SS to consider re-entry into EPIP-02, Emergency Classification, after an estimated leak rate has been recalculated by the PO.

\left.| TIME | SIM INSTRUCTIONS | MSG | VIA | TO | EVENT SEQUENCE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\right]$| NOTES |
| :--- |
| 0927 |

1995 EMERGENCY PREPAREDNESS EXERCISE SCENARIO GUIDE - 95-E-AEV-04002
PAGE 21

\left.| TIME | SIM INSTRUCTIONS | MSG | VIA | TO | EVENT SEQUENCE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\right]$| Ther a brief tailboard discussion, the |
| :--- |
| 0958 |

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1004					The CRS diagnoses a LOCA condition and directs the crew to enter 41EP-1RO02, Loss of Coolant Accident.	If a Reactor Trip was diagnosed by the CRS, major ciements within that procedure will not adversely affect the sequence of actions in the remainder of the scenario.
1006					The SS/EC reviews EPIP-02 for criteria related to an ATWS condition.	If it is clear to the crew that no automatic reactor trip setpoints had been met or exceeded prior to reactor shutdown, the trip event does not qualify as an ATWS event. (See Attachment-1, Conversation Memorandum, File 94-002-493 APS/NRR, for details.) However, use of ATWS classification criteria for this circumstance will not affect the current ALERT Classification, but should be noted by a Controller and discussed in the facility critique following termination of the Exercise.
1013	[REM FNC] EG21 STOP (Emergency Stop DG " B^{\prime})				The AO is directed to "Emergency Stop" Diesel Generator " B ".	If the time limitation for securing the diesel generator was exceeded, the fact should be recorded and discussed in the facility critique when the Exercise is terminated.
1016					If not manually actuated previousiy. an automatic MSIS occurs due to CTMT pressure reaching 3 psig	The slow CTMT pressure increase is due to the RCS inventory leak into CTMT.
1028	[REM FNC] CH05 ACKNOWLEDGE (Common TRBL Alarm Reset - ${ }^{-}{ }^{*}{ }^{*} \mathrm{H}_{2}$ Monitor)				An AO is directed to reset the "A" H_{2} Monitor "Common TRBL" Alarm.	This action may not occur at the specified time and is dependent upon the pace in procedure usage by the crew.
1029					The crew commences a plant cooldown at $<100^{\circ} \mathrm{F} /$ hour as directed by procedure, with a goal of reaching $338^{\circ} \mathrm{F} \mathrm{T}_{\mathrm{C}}$, at which time the Shutdown Cooling System can be placed into operation.	$338^{\circ} \mathrm{F} \mathrm{T}_{\mathrm{C}}$ is the maximum temperature allowed by procedure to place the SDC System into service. Depending upon the TSC EC direction, the goal may be modified to a lower RCS temperature prior to placing the system into service.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1030	[REM FNC] ED72 OVERRIDE_CLS [REM FNC] ED74 OVERRIDE_CLS [REM FNC] ED76 OVERRIDE_CLS (Re-energize M19, M71, and QBN-D91, respectively)				An AO is directed to re-energize nonClass load-shed Motor Control Centers M19 and M71 and Essential Lighting Panel QBN-D91.	Note that "B* Train equipment cannot be reenergized due to the loss of power to PBB-S04. The Simulator Operator should allow $1 / 2-1$ minute between each subsequent breaker closure.
1045	[REM FNC] MS25 100 [REM FNC] MS24 ON [MALF] AV02:ASNPV5A [MALF] AV02:ASNPV5B [MALF] AV02:ASNPV6 (Align Auxiliary Steam)				The operators continue with the plant cooldown. Startup detectors are energized, auxiliary steam is crosstied, and reactor coolant pumps are secured as required.	At this time, the plant cooldown is proceeding as expected. Onsite and offsite Emergency Response Facilities have been activated and Emergency Response Organization staffing has been achieved.
1114	[MALF] TH01D 10 [CAE] rmsioca8000 (LOCA-Loop 28 Cold Leg)				RCS pressure suddenly decreases as the RCS leak becomes much larger. It is apparent to the crew that stable plant cooldown conditions no longer exist.	SITs inject within several minutes as RCS pressure decreases through 600 psia. ESFAS actuations include CSAS as CTMT pressure increases above the 8.5 psig CSAS setpoint. CTMT radiation monitor readings escalate.
1116					The crew notices that no CTMT Spray flow exists. The SO is directed to manually reinitiate CSAS actuations.	The PO may diagnose the problem and notice that SIA-UV-672 is shut.
1116					The operators notice SIA-UV-672, "A" Train CS discharge header isolation valve, is shut. The PO is directed to open the vaive.	Note that [MALF] MV06:SIAUV672 was entered at Simulator Setup. (See Simulator Setup, Step IIIC.2.a.1, for details.) The valve will not move from its shut position. With "B" Train Class power lost and SIA-UV-672 stuck shut, no CTMT Spray is available. CTMT pressure increases to 35 psig.
1117					The CRS enters $41 \mathrm{EP}-1 \mathrm{RO} 08$, Functional Recovery (via SFFC), due to loss of the CTMT Integrity Safety Function. All RCPs are secured.	The procedure directs actions aimed at recovering the lost safety function and may hold procedure progression until recovery. Meanwhile, an AO is dispatched to check the status of SIA-UV-672.

1995 EMERGENCY PREPAREDNESS EXERCISE SCENARIO GUIDE - 95-E-AEV-04002
PAGE 24

TIME	SiM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	
1120			F	C-2	EC	The EC reviews EPIP-02 for criteria which has potential for upgrading the current event classification.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1123					An $A O$ is directed to investigate the call (via the OSC) and report back.	OSC personnel may not allow exit to the north side of the plant due to radiological concems.
1125		G	$\mathrm{C}-3 \mathrm{a}$	AO		An unproceduralized method exists to crossconnect the "A" Train CS Pump to the " B " Train spray header using the following valve lineup: Incorporation of this valve lineup would not allow successful completion of the scenario objectives. While this method may result in the ability to successfully regain the Loss of CTMT Integrity Safety Function, MSG-G is employed to prevent success of the cross-connected CTMT Spray System valve lineup. MSG-G should be provided only if actions to cross-connect the 2 Spray Systems by this method have begun. The valve lineup methodology employed, however, should be recorded and discussed as an innovative approach in the facility critique when the Exercise is terminated. Note that this action may not occur at the specified time and is dependent upon the pace in procedure usage by the crew.
1127	[REM FNC] B401:SIAUV672 OPEN (Breaker for SIA-UV-672)	5	C-3d	AO MECH ELEC	The AO reports that CTMT Spray Valve SIA-UV-672 is indeed stuck shut. (The crew may have the valve power supply removed in preparation for electrical maintenance.)	The valve motor operator housing is dripping with oil and appears damaged. The Controller should use MSG-5 for delivery to whoever is dispatched to check the valve. The Facility Lead Controller should be contacted if questions arise.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1133		6	C-3b	AO	The AO calis Control Room operators and substantiates the Maintenance individual's report conceming the "pillbox" accident.	This action is contingent on RP personnel decisions regarding access to the north side of CTMT. MSG-6 should not be used if OSC personnel deny access to the north side of CTMT to assess damages. Radiological concerns will drive the decision. However, the Controller should use MSG-6 for delivery to whoever is allowed access to the area to report damages.
1134					The EC reviews EPIP-02 for criteria which has potential for upgrading the current event classification. The EC upgrades the event classification to an SAE per EPIP-02, Emergency Classification, based on loss of both the RCS and CTMT Barriers, as delineated in Table-1. Fission Product Barrier Reference.	Even though no distinct CTMT Barrier EAL is specified for this condition, a true loss of CTMT exists. The EC should use EAL [V-24] as justification for the SAE upgrade. Offsite agencies must be notified within 15 minutes of the upgraded classification.
1141	[MALF] TR01:SQBRU151 (Delete) [MALF] TR01:SQBRU149 \{Delete) (Allow de-energization of RU-151 and $R \mathrm{U}-149$ upon loss of M42)				DC Electrical Bus M42 is lost as its battery voltage degrades to a point where it can no longer support loads.	Numerous alarms annunciate and all Channel " B " indications are lost in the Control Room as the bus is de-energized.
1142					DC Electrical Bus M44 is lost as its battery voltage degrades to a point where it can no longer support loads. Full ESFAS actuations occur due to the loss of both " B " Train channels. NOTE: If Channel 8 parameters were previously placed into BYPASS, then full ESFAS actuations will not occur with the loss of M44.	More slarms anjunciate and Channel " D^{*} indications are lost in the Control Room as the bus is de-energized. RAS must be overridden and the "A" Train ECCS pumps realigned to allow RCS injection to continue. At this time, the crew may enter 41AO-1ZZ32, inadvertent AFAS, to apply corrective actions. They may also enter App. "L" of the EOP for RAS verification. NOTE: Loss of "B" Train DC electrical buses may not occur at the prescribed times and is dependent on bus loading.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1144		H	C-2	EC		MSG-H will provide the EC emergency classification criteria on which to base his judgment to upgrade the event to an SAE. The MSG should be provided only if the EC has upgraded the event erroneously or presents no appearance of upgrading the event. The Exercise Lead Controller will prescribe the use of MSG-H.
1145					Since Site Assembly / Accountability is mandatory at the SAE classification level, the EC requests that A/A take place at this time, unless requested previously.	This event shall be totally simulated. The Controller should record the time and reason anid discuss A/A in the facility critique which follows the Exercise. (See Item IV.A.9.d for details.) The Controller should not allow the EC to sound the A/A signal or call Secuity for A/A.
1200					In lieu of attempting repairs to the offsite radioactive release CTMT penetration point, repairs to Spray Valve SIA-UV-672 have been raised to the highest priority. With an offsite radioactive release occurring and CTMT maintaining pressures in excess of the CTMT spray setpoint, it is imperative that the valve gets repaired as soon as possible.	Based on reports to the Control Room regarding the location of the "pillbox" and its position against the CTMT penetration piping, all efforts to attempt removal of the "pillbox" and subsequent repairs to the damaged CTMT penetration piping should have been abandoned. However, if attempts to remove the "pillbox" with a second crane are successful, it will become apparent that the penetration cannot be repaired from a position outside CTMT, nor can the CTMT leak be patched. Given the size of the penetration envelope and CTMT pressure in excess of 8.5 psig, a patch would be required to withstand a minimum pressure of 5,000 pounds of force.
1230					The RWT continues to be pumped down. At the present rate of RWT decrease, SIA-UV-672 must be repaired within the next $11 / 2$ hours. After a RAS occurs, the 88° West Penetration Room may become uninhabitable due to high radiation levels.	After a RAS and recirculation realignment takes place, radiation levels may increase in the West Penetration Room. Subsequently, RP may prohibit entry into that area and repairs to the affected valve could not take place.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1300					The offsite radioactive release to the environment continues. Field team monitoring of the radioactive plume continues to provide data for both onsite and offsite dose assessment activities.	The release will continue until Valve SIA-UV-672 is repaired and CTMT Spray is started and allowed to depressurize CTMT. With only 1 train of CTMT Spray available, it will take $11 / 2-21 / 2$ hours to effectively lower CTMT pressure to < 5 psig. However, the release could not be terminated until CTMT pressure is decreased to atmospheric and/or the affected CTMT penetration is sealed. Entry into CTMT and repair of the penetration would be encompassed under long-term recovery efforts. Maintenance personnel should not attempt repairs to seal the penetration from outside CTMT at this time.
1320	[MALF] MV06:SIAUV672 (Delete\} (Spray Valve SIA-UV-672 Stuck) [REM FNC] B401:SIAUV672 CLOSE (Breaker for SIA-UV-672)	7	C-3d	MECH ELEC	Maintenance informs Operations that SIA-UV-672 has been repaired.	MSG-7 states that valve repairs are complete and personnel await valve motor re-energization. NOTE: The valve will automatically cycle open upon re-energization.
1321					The PO starts CS Pump " A " and cycles the valve open after its breaker is racked in. "A" Train CS flow increases to 4000 gpm and CTMT parameters may indicate the beginning of a pressure reduction.	Availability of only 1 train of CTMT Spray will hamper and prolong the pressure decrease in CTMT. The rate of decrease is further restricted by increased temperatures of CTMT tructures (i.e., $200-300^{\circ} \mathrm{F}$).
1325	[MALF] TH05 $0 \rightarrow 10=120 \mathrm{sec}$ [CAE] msafuelfail (Fuel Pins Rupture)				Radiation monitor readings in CTMT suddenly begin soaring during the slow CTMT pressure decrease. It soon becomes evident that a loss of fuel cladding integrity has occurred. RU-148 increases to levels beyond $1200 \mathrm{R} / \mathrm{hr}$ within a few minutes.	With a radioactive release to the environment in progress, the sudden release of activity into the CTMT atmosphere will eventually drive Site Boundary dose rates to levels approaching GE thresholds. Dose projections may produce results mandating changes to protective action recommendations made to the state.

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1335					After validating the increased CTMT radiation readings with Control Room information, the EC escalates the emergency classification to a GE based on the loss of the thim fission product barrier.	The elevated RU-148 reading(s) constitute a loss of the Fuel Clad Barrier. The EC should base his upgrade to the current emergency classification level on the status of all 3 fission product bamiers. The RCS barrier has been lost with the LOCA and the CTMT barrier was lost when the "pillbox" fell onto the ILRT piping at CTMT Penetration 58. These 2 barrier losses, coupled with radiation readings in CTMT which surpass the thresholds that constitute a loss of that barrier, together indicate a loss of all 3 fission product barriers. Offsite agencies should be informed of the basis for the GE when they are notified of the upgrade to the emergency classification.
1345		1	C-2	EC		MSG-I will provide the EC emergency classification criteria on which to base his judgment to upgrade the event to a GE. The MSG should be provided only if the EC has not upgraded the event or presents no appearance of upgrading the event. The Exercise Lead Controller will prescribe the use of MSG-I.
1400	[MALF] TR01:SQNRU9 7.90E-06 (RU-09 RMS Response)				A RAS occurs due to RWT level reaching 7.4%. After the automatic actions associated with the RAS have completed, the crew must take additional manual actions from the Control Rc.m to isolate RWT suction and realign ECCS pump suction to the CTMT sump. When manual actions have been completed, the PO starts "A" Train ECCS pumps to continue core injection.	After a RAS has occurred, radiation levels in certain areas of the Auxiliary Building and West Penetration Rooms may increase due to CTMT sump volume supplying ECCS pump suction. The water is cooled and pumped back into the RCS. Note that the time at which the RAS occurs is dependent on varying ECCS pump flows over the past several hours and may occur up to $1 / 2$ hour before or after the prescribed time.

1995 EMERGENCY PREPAREDNESS EXERCISE SCENARIO GUIDE - 95-E-AEV-04002
PAGE 30

TIME	SIM INSTRUCTIONS	MSG	VIA	TO	EVENT SEQUENCE	NOTES
1430					Efforts continue to decrease CTMT pressure. Offsite agencies work to support the state's Protective Action Decisions which are based on the GE.	Offsite agencies are taking measures to protect the health and safety of the public within the site's 10 -mile EPZ. Since the time of the RAS, RP has been working to identify and control areas of the plant requiring restricted access. ERO personnel continue to address those areas requiring their attention. Under current plant conditions, ERO personnel should have the knowledge and ability to project the time remaining to consider the release terminated. The objective to support this goal may encompass time estimations to reduce CTMT pressure to a value where the affected CTMT penetration release point can be secured from outside CTMT with a patch. Further core cooling will reduce the amount of decay heat to a point where the effects of steam production would be negligible. Entry into CTMT to subsequently repair the penetration may not occur until weeks into the long-term recovery effort.
1515					Due to continuing CS operation, pressures in CTMT have now reached values < 5 psig.	ERO personnel may want to patch the damaged CTMT penetration at this time. Controllers should note all ideas presented and address them in the facility critique after the Exercise has been terminated.
1530					With the radioactive release to the environment terminated, efforts may be started by the EOD to establish a recovery organization in accordance with EPIP-31, Recovery.	This entry is contingent on many factors and may not occur at the prescribed time. Depending on Exercise limitations and logistical elements of the scenario, this item may not occur at all.
1540	** CONCLUDE TIMELINE ***	***	***	asa	*** CONCLUDE TIMELINE ***	*** CONCLUDE TIMELINE **

CONVERSATION MEMORANDUM

MARK SHAR?
Tom sarsuk \qquad
MIKE BAUGHMAN
B1LL 10E \qquad
HARRY BIELING DAVE BURNS \qquad
\qquad
PARTLEFPANTS (Nama/Camoanyl
USNRC - O2fice of Nuclear Reactov Regulation (D an Bass)
APS - PVNGS (Hany Corkes)
Evivet
ATWS - conermatism/DE-I I^{131} asumptions
SUMmARY
(see attached)
\qquad

TELECOMMUNICATIONS ATTACHMENT

Date: $\quad 26$ JUL $94-0840$ MST
Participants: USNRC, Office of Nuclear Reactor Regulation (NRR) Dan Ears APS - PVNGS Emergency Planning

Gary Cerkas

On THU 21 JUL 94 , a call was placed by Tom Barsuk and myself to Dan Bears, NRR - Rockville MD requesting clarification of Emergency Action Levels (EALs) relating to ATWS and Dose Equivalence I^{131} and the effects on emergency declarations under specific circumstances. Reply was received from Dan Bears, NRR at 0840 MST on TUE 26 JUL 94.
(1) An ALERT should be declared when a Reactor Protection System (RPS) automatic trip setpoint has been met or exceeded and the reactor must be shut down under manual actions from the Control Room. If manual actions from the Control Room are unsuccessful to shut down the reactor and actions from outside the Control Room must be taken, then a Site Area Emergency (SAE) declaration is warranted. If manual Control Room actions are successful, but it is not readily known if an automatic trip setpoint was met or exceeded during the time frame when manual actions were being taken, then a conservative ALERT should be declared. If it is known that no automatic trip setpoints were met or exceeded prior to manual shutdown of the reactor, then no emergency classification declaration is warranted. The basis for declaring no emergency under this latter condition is that state response is not required, nor recommended, when no Limiting Safety System Setting (LSSS), corresponding to any RPS automatic trip setpoint, was met or exceeded. It is highly unlikely that fuel cladding was jeopardized if no automatic trip setpoints were reached.
(2) When an Anticipated Transient Without Scram (ATWS) occurs, an assumption should not be made that Dose Equivalence I^{131} is greater than $300 \mu \mathrm{Ci} / \mathrm{gm}$. The EPIP.02, Table 1 Fission Product Barrier (FPB) Reference EAL for Reactor Coolant System (RCS) activity (Fuel Clad Barrier - "Loss" Column) is not automatically applicable in an ATWS condition. An RCS Chemistry sample is normally requested to verify that no clad damage took place. An emergency declaration should be made if an automatic trip setpoint was reached in an ATWS event and should not be terminated until the Chemistry sample verifies that no fuel clad damage occurred. The only time the Table 1 EAL regarding RCS activity should be applicable "s when Dose Equivalence I^{131} is verified to be greater than $300 \mu \mathrm{CV} / \mathrm{gm}$, and not on 2 . assumption made in an ATWS condition.

[^16]
EXERCISE 95-E-AEV-04002

BRIEFING ITEMS

1) This Exercise comprises full activation of all onsite and offsite Emergency Response Facilities. All procedural actions should take place unless otherwise directed within this briefing
2) The telephone system has been switched over such that all outgoing calls placed from the floor area will reach the prescribed areas as indicated on the Simulator telephone listing for Unit 3. When answering incoming calls, disregard the red LED display on the phones so equipped to display incoming numbers; they may not display the correct incoming number in all cases.
3) The green dedicated phone system is also live. Be aware that the phone at the RMS DCU will be answered by the RMS Technician at the DCU because physical location constraints prevent that person from operating from his (her) normally assigned area (i.e., Unit 3 Effluents Office).
4) If Assembly/Accountability is called, it will be totally simulated (i.e., no site-wide page, either simulated or not, will take place). Even a "simulated" A/A announcement causes confusion. Do not make any A / A related announcements or sound any signals.
5) If and when a site-wide page must be made regarding event classifications, be aware that it takes at least three (3) seconds for the system to activate (i.e., key the microphone and refrain from speaking for 3 seconds prior to making the announcement). Please speak slowly and clearly, as outside areas are prone to echo, which results in unintelligible statements heard at most outside locations.
6) The site-wide Exercise termination announcement should be made from th: Simulator before the system is reconfigured to its prior status. The Simulator and each Contre! "eom are the only areas from where the site-wide announcement can be made and reach all insicie and outside locations.
7) If ERDS must be activated, be aware that the normal password is accepted by the system in the Simulator. However, since the Simulator ERDS does not transmit to USNRC Headquarters, an established link cannot occur. Thus, activation of ERDS from the Simulator can take place only up to the point where MODEM dialing would occur. If and when this point is reached, a facility Controller should be informed that a simulated activation has taken place.
8) The Blowdown constants for COLSS on the CMC and PMS terminals are correct for current blowdown rates, but may not have the ability to be changed for other blowdown lineups.
9) Upon conclusion of shift tumover, the crew's Auxiliary Operators will be given time to proceed to their normal watch stations in Unit 3. The OSC Controllers will accompany them. Once there, they will each receive a radio to allow them normal communications means with the Simulator Control Room staff. Be aware that the AOs' radios, as well as the Simulator radio, will transmit and receive on Channel 3. However, should Unit 3 Operations require use of Channel 3, they must be given priority for any communications and we must refrain from use of that channel until Unit 3 Operations has concluded their communication transmissions.

SECTION 04

PV MESSAGES

TIME	MSG	VIA	TO	CONTROLLER INSTRUCTION
0705	1	C-1	CREW	Direct the MSG to the SS and the crew in the Simulator. It comprises shift turnover information.
0705	1	$\begin{aligned} & \text { FAC } \\ & \text { LEAD } \end{aligned}$	FAC	Direct the MSG to whoever requests it upon arrival at the facility. It comprises shift turnover information as it was presented to the Simulator crew when they assumed watch duties.
0725	2	C-1	SS	Direct the MSG to the SS so that he can pass the information along to Facility Managers as the facilities become activated.
N/A	rxt	C-1b	SS	Direct the MSG to the SS if a manual Rx trip is ordered prior to reactor shutdown such that impact to scenario data would hamper efforts in meeting remaining objective evaluation criteria. This MSG is based on an action and not on a specific time. (See Exercise Lead Controller for details)
N/A	mms	$\begin{aligned} & \mathrm{C}-1 \mathrm{~b} \\ & \mathrm{C}-2 \end{aligned}$	EC	Direct the MSG to the EC/SS if attempts are made, prior to 1100 , to vacate the plant north yard of personnel working on the security "pillbox" operation. Note the reasons for concem and discuss these in the facility critique when the Exercise is terminated. This MSG is based on an action and not on a specific time. (See Exercise Lead Controller for detalls)
N/A	aaa	C-2	EC	Direct the MSG to the EC if Assembly / Accountability actions are attempted prior to 1100. Note the reasons for concern and discuss these in the facility critique when the Exercise is terminated. This MSG is based on an action and not on a specific time. (See Exercise Lead Controlier for detalls)
0810	A	C-1c	SSM	Direct the MSG to the Site Shift Manager (or Operations Manager) to prepare him (her) for the CTMT entry and plant shutdown discussions projected to occur within the following 15 minutes.
0820	8	C-3	TP	Direct the MSG only if RP has been contacted for CTMT entry and when current CTMT radiological conditions are understood.
0837	C	C.1b	CRS	Direct the MSG only if the PO's calculation results do not fall within the prescribed range or if the calculation did not take place.
0845	D	C it	SS	Direct the MSG only if the SS has classified the event erroneously or presents no appearance of classifying the event.
0933	E	C-1b	SS	Direct the MSG only if the SS has upgraded the event erroneously or presents no appearance of upgrading the event.
1003	3	C-3a	AO ELEC	Direct the MSG only if the AO / ELEC, responds to the correct location(s) and takes the proper actions to eam the information.
1120	F	C-2	EC	Direct the MSG only if the EC has prematurely decided to upgrade the event or has no intentions to do so.

TIME	MSG	VIA	TO	CONTROLLER INSTRUCTION
1121	4	C-3b	MECH	Direct the MSG to the crane operator moving the "pillbox" outside on the north side of CTMT. Direct MSG at MSG "AREA"
1125	G	C-3a	AO	Direct the MSG only if actions to cross-connect the 2 Spray Systems by the method explained in the PV Guide have begun.
1127	5	C-3d	AO	Direct the MSG to the AO / MECH / ELEC (or appropriate) only if (s)he has been dispatched to check the status of SIA-UV-672.
1133	6	C-36	AO	Direct the MSG to the AO (or whoever) only if (s)he has been allowed access to the north side of CTMT to assess damages.
1144	H	C-2	EC	Direct the MSG only if the EC has upgraded the event erroneously or has no intentions of upgrading the event.
1320	7	C-3d	MECH	Direct the MSG to the MECH / ELEC (or appropriate) who is repairing SIA-UV-672.
1345	I	C-2	EC	Direct the MSG only if the EC has not upgraded the event or has no intentions of upgrading the event.

TIME:	0705	FROM:	C-1/LEAD
MSG:	1	TO:	Crew/FAC
AREA:	Simulator-A (Unit 3 C.R.)/Emergency Response Facilities		

MESSAGE:

Plant / Site Conditions:

1. All 3 Palo Verde Units are operating at 100% full power. This unit has been at 100% power for the last 116 days.
2. Core age is 200 Effective Full Power Days (reference Unit 1 Cycle 4 Core Data Book). The Unit is operating with the reduced T_{H} program. RCS Boron concentration is 546 ppm per Chemistry sample.
3. AFB-P01 was tagged out 7 hours ago for inboard bearing replacement and is expected back for surveillance testing in approximately 18 hours. Technical Specification LCOs 3.7.1.2 and 3.3.3.5, Action Statements "a.", were entered and the pump declared INOPERABLE 7 hours ago. A TSCCR has been generated on SIMS.
4. Security has requested movement of the 16,000 -pound "pillbox" presently located at the northwest corner of the Turbine Building to a new defensive position near the nitrogen tanks. Mechanical Maintenance personnel will be using a crane to do the move over the next few hours and will advise Operations when completed.
5. Water Reclamation has taken the 66° effluent feeder line from the Hassayampa Pumping Station out of service 4 hours ago to repair a leaking flange 2 miles east of the site. The line is expected back in service in approximately 26 hours. Water Rec will advise when repairs are completed.
6. ECC is planning to remove the Westwing-2 525 KV line from service within the next 6 hours and will call Unit 1 with preliminary action plans when they are ready to do so. A reactor bank located in the Westwing Switchyard must be replaced and the line is required to be de-energized for that operation. SRP will coordinate activities with APS personnel and Unit 1 Operations will inform the other Units prior to taking the line out of service.
7. S/G blowdown is currently aligned for NORMAL rate from S/G-1 and ABNORMAL rate from S/G-2. They are due to be swapped at 1100. Both Abnormal Rate manual isolation valves are open and should remain open.
8. The normal, shiftly surveillance tests have been completed.
9. Operations Management has requested that 100% power operation be maintained.
10. The ERFDADS Unit/Server Switch required to monitor Simulator-A output from the TSC and the EOF is "SIMULATED ERFDADS SUBSYSTEM A".

TIME:	0725	FROM:	C-1
MSG:	2	TO:	SS
AREA:	Simulator-A (Unit 3 C.R.)		

MESSAGE:

As Emergency Response Facilities become activated and manned during the course of this Drill/Exercise, please pass the following 3 information items to the managers and key players as required:

1. Although this entire Dril/Exercise is simulated as taking place in Unit 3, procedures applicable to the Simulator will be used in accordance with standard Simulator practices.
2. All radiological information will be presented via the Control Room PDP-11 RMS DCU minicomputer and linked via the Simulator-A ERFDADIS interface, unless otherwise annotated.
3. The ERFDADS Unit/Server Switch required to monitor Simulator-A output from the TSC and the EOF is "SIMULATED ERFDADS SUBSYSTEM A".

After shift tumover, 20-25 minutes will be allowed for familiarization with the status and condition of the control boards and for the Auxiliary Operators to arrive on station and assume their watch duties. If an initial log entry sheet has not been prepared, then you may prepare one. The Drill/Exercise Timeline will begin at 0800.

TiME:	N/A	FROM:	C-1b
MSG:	rat	TO:	SS
AREA:	Simulator-A (Unit 3 C.R.)		

MESSAGE:

Though your judgment may indicate the necessity for initiation of a manual reactor trip at this time, the ability to demonstrate several romaining EP objective evaluation criteria would be impacted.

Proceed as if the Site Shift Manager and/or Operations Manager had directed a o:7e-hour plant shutdown per 41AO-1ZZ56, Rapid Shutdown. Your reasons for concern may be valid and will be discussed in the facility critique when the Exercise is terminated. If you still feel it is absolutely necessary to manually initiate a reactor trip at this time, please discuss the situation with the Exercise Lead Controller prior to taking any action.

PALO VERDE MESSAGES

*** THIS IS A DRILL

*** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS ***

TIME:	N/A	FROM:	C-1b/C-2
MSG:	mms	TO:	EC
AREA:	Simulator-A (Unit 3 C.R.)/Technical Support Center (TSC)		

MESSAGE:

Though your judgment may indicate the necessity to vacate the plant yard area of personnel at this time as a conservative measure in anticipation of degrading plant conditions, the ability to demonstrate several remaining EP objective evaluation criteria would be impacted.

Proceed as if the necessity to vacate the plant yard area of personnel at this time does not yet exist. Your reasons for concern may be valid and will be discussed in the facility critique when the Exercise is terminated. If you stili feel it is absolutely necessary to vacate the plant yard area of personnel at this time, please discuss the situation with the Exercise Lead Controller prior to taking any action.

PALO VERDE MESSAGES

** THIS IS A DRILL. $\quad \Rightarrow$
** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS ***

TIME:	N/A	FROM:	C-2
MSG:	aaa	TO:	EC
AREA:	Technical Support Center (TSC)		

MESSAGE:

Though your judgment may indicate the necessity for personnel Assembly / Accountability at this time, the ability to demonstrate several remaining EP objective evaluation criteria would be impacted.

Proceed as if the necessity for personnel Assembly / Accountability does not yet exist. Your reasons for concern may be valid and will be discussed in the facility critique when the Exercise is terminated. If you still feel it is absolutely necessary for personnel Assembly / Accountability at this time, please discuss the situation with the Exercise Lead Controller prior to taking any action.

TIME:	0810	FROM:	C-1C
MSG:	A	TO:	SSM
AREA:	Site Shift Manager's Office (simulated)		

MESSAGE:

If and when the Simulator-A (Unit 3) Shift Supervisor calls to inform you about an RCS leak the crew has diagnosed, he may want to discuss the impending plant shutdown. He will discuss the fact that the PO is currently performing a 15 -minute RCS leak rate determination per 41AO-1ZZ14, Excessive RCS Leakrate, or has just finished the leak rate determination and has calculated $\approx 32 \mathrm{gpm}$. In either case, he will want to discuss logistics regarding the plant shutdown (i.e., when to begin shutting down the plant, at what rate, and per which procedure). He may also want to discuss a possible containment entry to identify the source of the RCS leak.

You should ask if RP had been contacted regarding a containment entry and, if so, what their response is. (Seek this information before communicating plant shutdown directions.) If the SS has not yet contacted RP conceming a containment entry, then suggest (s)he contact them now and call right back with the RP response. An altemative would be for you to contact RP to discuss a containment entry and call the SS back with the decision.

Based on a plant shutdown driven by RCS leakage, you want the plant shut down (100% power to 20% power, at which point the reactor is tripped per procedure) in 60 minutes. You want the shutdown accomplished per 41A0-1ZZ56, Rapid Shutdown. You do not want the shutdown to take longer than 1 hour. Therefore, ZZ56 is the procedure you want followed.

NOTE: Try to get the SS to start his shutdown as close to 0900 (or slightly before) as possible. This will keep the subsequent Exercise scenario events on the timeline. Based on the difference between the "Message Time" at the top of this form and the present time, you may verbally have to either hasten him or slow him down. But please do not tell him that the scenario calls for this. Use legitimate excuses, if possible, to ensure that his shutdown starts around 0900. The RP discussion item on containment entry could be used tc ensure the shutdown commences close to 0900. It is imperative that the 1 -hour plant shutdown starts as close to 0900 as possible, with "breakers open" estimated for 1000

The Shift Supervisor may also want to discuss other items. Discuss these other items with him freely. The only purpose for this message is to ensure the plant shutdown is performed in accordance with 41A0-1ZZ56, Rapid Shutdown, and that it is accomplished in 1 hour.

PALO VERDE MESSAGES

** THIS IS A DRILL

```
**
```

** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS

TIME:	0820	FROM:	C-3
MSG:	B	TO:	RP
AREA:	RP Island (work area or offices)		

MESSAGE:

If you are contacted by either a Control Room (Simulator-A) crew member, the Site Shift Manager, or the Operations Manager to discuss a containment entry for the purposes of looking for and identifying an RCS leak source, explain to him the basis for what normally would be permitted in this case. You advise against sending a team into containment based on radiological conditions within containment at the present time. Use your influence to discourage entry by anyone.

NOTE: Since the Simulator-A RMS DCU cannot be accessed from Unit 3 Effluents Office, an Exercise Controller can provide you with current containment radiological conditions, provided you explain to him (her) the logistics of retrieving the data supporting those conditions. Use this data as a basis for your discussion methodology.

PALO VERDE MESSAGES

*** THIS IS A DRILL
** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS

TIME:	0837	FROM:	C-10
MSG:	C	TO:	CRS
AREA:	Simulator-A (Unit 3 C.R.)		

MESSAGE:

An RCS leak rate determination has been performed by a Reactor Operator in accordance with 41AO-12714, Excessive RCS Leakrate, Section 2, and has logged the following data:

- PZR level / pressure constant over 15 minutes
- Related valves positioned accordingly
- No VCT makeup / diversion occurred
- No primary systems sampling occurred
- RCS temperatures constant over 15 minutes
- VCT level change over 15 minutes: -11.9%

PALO VERDE MESSAGES

*** THIS A DRILL
TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS ****

TIME:	0845	FROM:	C-1b
MSG:	D	TO:	SS
AREA:	Simulator-A (Unit 3 C.R.)		

MESSAGE:

A 32 gpm RCS leak rate has been calculated by a Reactor Operator per 41AO-1Z214 Excessive RCS Leakrate, Section 2.

Epip-02, Emergency Classification, Table 2, LEA, should be reviewed as soon as possible.

PALO VERDE MESSAGES

*** THIS IS A DRILL *** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS ***

TIME:	0933	FROM:	C-1b
MSG:	E	TO:	SS
AREA:	Simulator-A (Unit 3 C.R.)		

MESSAGE:

An estimated 65 gpm RCS leak rate has been recalculated by a Reactor Operator based on analyses of plant indications and diagnoses of current conditions.

Epip-02, Emergency Classification, Table 1, FPB, should be reviewed as soon as possible.

| TIME: | 1003 | FROM: |
| :--- | :--- | :--- | C-3a

MESSAGE:

Breaker P88-S04K is demolished. Pieces of it are everywhere. The breaker cubicle door is charred, but there is no fire or smoke. Inside the cubicle, it looks like the bus-work for that breaker is severely damaged. It also appears that other portions of the bus are damaged. Almost every relay on the bus is tripped.
" B " Diesel Generator appears to be running fine.
NOTE: If an estimated time for repairs is requested of Electrical Maintenance personnel, 12 hours is the estimated minimum time required to repair the bus so that it could be re-energized.

PALO VERDE MESSAGES

***IS IS A DRILL
TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS

TIME:	1120	FROM:	C-2
MSG:	F	TO:	EC
AREA:	Technical Support Center (TSC)		

MESSAGE:

If reactor vessel outlet plenurn voiding is indicated $<21 \%$ or if you believe that a loss of the containment barrier is indicated, you may initially want to escalate the event classification to an SAE based on impact to 2 fission product barriers. However, since plenum voiding below 21% may occur, it will recover shortly and the transition into an upgraded event classification for the short time period should be treated as a transitory event and offsite agencies notified accordingly. A potential loss of containment exists, but procedure logics do not allow escalation of the emergency classification level based on the current plant conditions.

NOTE: See EPIP-02, Emergency Classification, Page 8, Item 4.3.2.1 for details.
*** THIS IS ADRILL ***
*** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS ***

TIME:	1121	FROM:	C-3b
MSG:	4	TO:	MECH
AREA:	100	Corridor Building (phone located near elevator)	

MESSAGE:

You had the 16,000-pound "pillbox" suspended 45' above grade and was preparing to swing the crane boom counterclockwise about 180° to place the "pillbox" on a flatbed truck so it could be taken over to the nitrogen tank area. However, the crane boom swung clockwise instead, and the boom swung into the side of containment. When that happened, the "pillbox" broke from the cable and came crashing down onto a large pipe protruding out from the containment wall near the equipment hatch. You think the pipe is broke, because smoke or steam (you think it's steam) is now billowing from the penetration and making a very loud hissing noise. You left the area immediately and are calling from the 100^{\prime} elevation in the Corridor Building.

NOTE: You can't remember exactly why the boom swung in the wrong direction.
*HIS IS A DRILL
** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS

TIME:	1125	FROM:
MSG:	G	C-3a
AREA:	At manual SI x-connect valve SI-V460- "A" 70' SDC Heat Exchanger Entrance	

MESSAGE:

After unlocking the valve, you cannot dislodge the valve off of its "SHUT" seat. The valve cannot be moved.

NOTE: If approval is given to use a "valve persuader", you use it and promptly snap the valve stem somewhere down in the packing area. The valve handle spins freely, but nothing else is happening.

PALO VERDE MESSAGES

THIS IS A DRILL
** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS ***

TIME:	1127	FROM:	C-3d
MSG:	5	TO:	AO/MAINT
AREA:	At "A" Train Containment Spray Valve SIA-UV-672-88'	West Penetration Room	

MESSAGE:

The valve motor operator housing is dripping with oil and appears damaged. It has a diagonal crack on one side running half way down the motor operator housing.

PALO VERDE MESSAGES

** THIS IS A DRILL **
** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS **

TIME:	1133	FROM:	C-3b
MSG:	6	TO:	AO
AREA:	100^{\prime} Outside - North Side - at Containment Building		

MESSAGE:

The "pillbox" is resting at an angle on top of the ILRT piping. That's all that can be seen, because there is too much steam coming out and surrounding the area.
** THIS IS A DRILL $\quad \cdots$
** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS

TIME:	1144	FROM:	C-2
MSG:	H	TO:	EC
AREA:	Technical Support Center (TSC)		

MESSAGE:

A loss of the RCS Barrier has existed for some time. However, steam is now issuing from the side of containment.

Epip-02, Emergency Classification, Table 1, FPB, should be reviewed as soon as pcssible.
*** THIS IS A DRILL ***
** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS ***

TIME:	1320	FROM:	C-3d
MSG:	7	TO:	MAINT
AREA:	At "A" Train Containment Spray Valve SIA-UV-672-88' West Penetration Room		

MESSAGE:

"A" Train Contzinment Spray Valve SIA-UV-672 has been repaired. The valve had to have its motor operator changed and realigned. It is now ready to be cycled open.

PALO VERDE MESSAGES

THIS IS A DRILL
*** TAKE NO ACTIONS WHICH MAY AFFECT UNIT OPERATIONS

TIME:	1345	FROM:	C-2
MSG:	1	TO:	EC
AREA:	Technical Support Center (TSC)		

MESSAGE:

Control Room personnel are reporting RU-148 containment area radiation monitor readings in excess of $1,200 \mathrm{R} / \mathrm{hr}$ sustained.

Epip-02, Emergency Classification, Table 1, FPB, should be reviewed as soon as possible.

SECTION 05

GOVT GUIDE

SECTION 5

GOVERNMENT CONTROLLER GUIDE

SECTION 5

GOVERNMENT CONTROLLER GUIDE

TABLE OF CONTENTS

PAGE	CONTENTS
Section 5-2	Acronyms
Section 5-4	State Emergency Operations Center (EOC)
Section 5-6	Technical Operations Center (TOC)
Section 5-8	Direction and Control
Section 5-9	Maricopa County Emergency Operations Center (MCEOC)
Section 5-12	Maricopa County Warning Point (MCSO)
Section 5-14	On-Scene Command Post (MCSO)
Section 5-17	Supplemental Warning Teams (MCSO)
Section 5-18	Road Block Teams (MCSO)
Section 5-19	REAT Forward
Section 5-21	REAT Field Monitoring Teams
Section 5-22	Evacuation Groups
Section 5-23	Special Evacuation Group
Section 5-25	Supplemental Warning Site
Section 5-27	Reception and Care Center (RCC)
Section 5-28	Joint Emergency News Center (JENC)

SECTION 5

GOVERNMENT CONTROLLER GUIDE

ACRONYMTS

SECTION 5

GOVERNMENT CONTROLLER GUIDE

	ACRONYMS (Continued)
Mcso	Maricopa County Sheriff's Office
NAN	Notification Alert Network
OGC	Operations Group Chief
OSCP	On-Scene Command Post
Pi	Public Inquiry
POC	Privately Owned Conveyance
POL	Petroleum, Oil Lubrication Vehicle
PVNGS	Palo Verde Nuclear Generating Station
RB	Road Block
RCC	Reception and Care Center
REAT	Radiological Emergency Assistance Team
RF	REAT Forward
RFC	REAT Forward Controlier
SEG	Special Evacuation Group
SS	Shift Supervisor
sw	Supplemental Warning
TOC	Technical Operations Center
TOCC	Technical Operations Center Controller
TOD	Technical Operations Director

GOVERNMENT CONTROLLER GUIDE
STATE EMERGENCY OPERATIONS CENTER (EOC)

GOVERNMENT CONTROLLER GUIDE
STATE EMERGENCY OPERATIONS CENTER (EOC)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Antic, pated Response	Controller Notes
$\begin{gathered} 1134 \\ \text { to } \\ 1159 \end{gathered}$			SITE AREA EMERGENCY Notification	EOC Communications receive: NAN broadcast and ver fies authenticator. EOC staff fans out notification. TOC may recommend Protective Action to Director of Operations based on notification message. (PAR may not coincide with PAR in notification.) Director of Operations FAR decision announced. (Decision may not coincide with TOC PAR.) Public Inquiry to commence when role players initiate calls. PIO collects and sends releasable information to JENC.	EOCC monitors staff functions. Record time lines, PAR, Siren Activation, EBS and announcements. EOCC acts as contact for initiating role player activities.
$\begin{gathered} 1335 \\ \text { to } \\ 1400 \end{gathered}$			GENERAL EMERGENCY Notification	EOC Communications receives NAN broadcast and verifies authenticator. TOC recommends Protective Action to Director of Ops. Director of Ops decision announced. (decision may not coincide with TOC recommendation for Protective Action.) MCDEM liaison transmits decision to Maricopa County EOC for implementation. PIO collects and sends releasable information to JENC	COC maintains contact with MCEOC. JENC and PVNGS EOF controllers, as appropriate. EOCC monitors EOC staff functioning. EOC Controller monitors Protective Action Recommendations and decisions. TOCC monitors TOC staff functioning.

GOVERNMENT CONTROLLER GUIDE

TECHNICAL OPERATIONS CENTER (TOC)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 0839 \\ \text { to } \\ 0904 \end{gathered}$			Notification of Unısual Event	ARRA Duty Officer calls ADEM Duty Officer with follow up.	TOCC in TOC 15 min . prior to ALERT. Call EOCC for real time check.
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$			ALERT Notification	ARRA Emergency Coordinator notifies Technical Operations Director (TOD).	Relocate to TOC with TOC staff.
				TOD directs activation of TOC. TOD directs State Liaison to EOF.	TOCC observes TOC set up and arrangement, corrective action as appropriate in coordination with EOCC. Record time lines.
				TOC staff relocates to State EOC. TOC staff sets up and organizes TOC. TOC performs communications check	
	$\underset{\text { A }}{\text { TOC }}$	TOD		TOC Shift Supervisor reports activation to EOC Shift Supervisor. Initiates situation Assessment and formulate Protective Action Recommendations as required.	Compare dose projection to EOF and TOC, ensure consistency. Check inconsistencies for errors. Issue CTM MSG TOC-A when asked by staff which of several RCCs is the one in play.
	$\begin{gathered} \text { TOC } \\ 8 \end{gathered}$	$\begin{aligned} & \text { TOC } \\ & \text { SS } \end{aligned}$	TOC Directs REAT Forward to dispatch Field Monitor Teams to RCC.	Situation Assessment continues until downgrade.	Issue CTM MSG TOC-B to TOC Shift Supervisor if TOC staff fails to take action outlined above.

GOVERNMENT CONTROLLER GUIDE
TECHNICAL OPERATIONS CENTER (TOC)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 1134 \\ \text { to } \\ 1158 \end{gathered}$			SITE AREA EMERGENCY Notification	Continue Situation Assessment and may formulate Protective Action Recommendations. (Dir of Ops decision may not coincide with TOC recommendation of PAR.) Situation Assessment continues until downgrade.	TOCC observes TOC functioning: corrective action as appropriate. Record time lifies.
$\begin{gathered} 1335 \\ 10 \\ 1400 \end{gathered}$			GENERAL EMERGENCY Notification	Situation Assessment continues. Calculate projected dose as required. TOD recommends Protective Actions to Director of Operations. Director of Operations decision announced. (Decision may not coincide with TOC recommendation for Protective Actions.)	Record time lines.

GOVERNMENT CONTROLLER GUIDE
DIRECTION AND CONTROL (EOCC)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controlier Notes
$\begin{gathered} 0839 \\ 10 \\ 0904 \end{gathered}$			Notification of Unusual Event	ADO notified and notifies the Director of Operations	EOC Controller on siation 15 minutes prior to Exercise.
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$			ALERT Notification	ADO notified and notifies the Director of Operations. Srict Supervisor and EOC S' aff set up EOC. ADO directs Shift Supervisor to activate EOC and fan out Alert and activation instructions. Shift Supervisor d"clares EOC activated at his discretion when sufficiently staff in place to man key communications. Director of Operations and ADO report to the EOC.	Real time check. Key staff for decision should include: TOD, EOC Shift Supervisor, ADO and MCDEM Liaison. Record time lines.
$\begin{gathered} 1134 \\ \text { to } \\ 1159 \end{gathered}$			SITE AREA EMERGENCY Notification	Director of Ops or ADO acts upon TOD recommendation for Protective Action. Director of Ops or ADO formulates and announces Protective Action Decision to key staff and EOC.	Ensure MCDEM Liaison transcribes Protective Action decision as stated, corrective action as appropriate. Record Time Lines.
$\begin{gathered} 1335 \\ \text { to } \\ 1400 \end{gathered}$			GENERAL EMERGENCY Notification	Director of Ops or ADO acts upon TOD recommendations for Protective Action. Director of Ops or ADO formulates and announces Protective Action decisions to key staff and EOC.	Ensure MCDEM Liaison transcribes Protective Action Decision as stated, corrective actions as appropriate. Record Time Lines. Ops Dir. and/or TOD may be summoned to JENC to participate in media briefing.

MARICOPA COUNTY EMERGENCY OPERATIONS CENTER (MCEOC)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 0839 \\ 10 \\ 0904 \end{gathered}$			Notification of Unusual Event	MCDEM staff receives NAN broadcast and verifies authenticator.	
$\begin{gathered} 0827 \\ 10 \\ 0952 \end{gathered}$			ALERT Notification	MCDEM staff receives NAN broadcast and verifies authenticator. Notify Senior Coordinator and MCDEM Director. Initiate activation. Notify State EOC when activated. Advise County Manager concerning situation and MCEOC activation. Advise Response Organization to assemble at MCSO Avondale Substation. EOC staff reports to EOC. Place EBS on standby. County Liaison Officer reports to state EOC. Direct On-Scene Commander to deploy Response Organization when assembled.	Real time check. Record time lines of player arrivals and telecommunications establishment. Emergency Response Organization personnel may be assembled at marshaling areas or deployed to forward operational sites.
$\begin{gathered} 1134 \\ 10 \\ 1159 \end{gathered}$			SITE AREA EMERGENCY Notification	MCDEM staff receives NAN broadcast and verifies authenticator. Maintain readiness status of all deployed resources until further actions required. Notify schools within EPZ.	County EOC should be notified when forces are in position and ready to operate.

GOVERNMENT CONTROLLER GUIDE
MARICOPA COUNTY EMERGENCY OPERATIONS CENTER (MCEOC)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} \hline 1134 \\ 10 \\ 1159 \end{gathered}$	MC. MC- 2 MC- A	MC Ops Group Chief MC Comm Officer MC Ops Group Chief	SITE AREA EMERGENCY Continues	If Protective Action is directed during the Site Area Emergency, the action is implemented as actual exercise play. Direct activation of RCC at specified sites. Prepare and release Public Warning Message to EBS. Activate Sirens (Simulated) Malfunction of sirens reported by Communications Officer. Prepare and release Siren Failure Message. Monitor EBS receipt of warning. Prepare and release Public Warning Message to EBS. Notify Senior Coord and MCDEM Director.	County EOC should be notified when forces are in position and ready to operate. Issue CTG MSG MC-1 to ensure that RCC being evaluated is activated, if Required Issue MSG MC-2 indicating Siren Pole \#8 failed. Issue MSG MC-A indicating that this is the RCC that will be activated.
$\begin{gathered} 1335 \\ 10 \\ 1400 \end{gathered}$			GENERAL EMERGENCY Notification	MCDEM staff receives NAN broadcast and verifies authenticator. Receives and implement State EOC Protective Action decision.	County EOC should be notified when forces are in position and ready to operate.

GOVERNMENT CONTROLLER GUIDE
MARICOPA COUNTY EMERGENCY OPERATIONS CENTER (MCEOC)

GOVERNMENT CONTROLLER GUIDE
MARICOPA COUNTY WARNING POINT (MCSO)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 0839 \\ 10 \\ 0904 \end{gathered}$			Notification of Unusual Event	MCSO Warning Point staff receives NAN broadcast and verifies authenticator.	
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$			ALERT Notification	MCSO Warning Point staff receives NAN broadcast and verifies authenticator. MCSO conducts internal notification fan-out.	MCSO Waming Point controller on station 15 min . prior to exercise. Record time lines. Contact MC EOCC for time check. Ensure fan out occurs per MCSO procedures.
$\begin{gathered} 1134 \\ \text { to } \\ 1159 \end{gathered}$			SITE AREA EMERGENCY Notification	MCSO Warning Point staff receives NAN broadcast and verifies authenticator. MCSO Conducts internal notification fan-out.	
$\begin{gathered} 1335 \\ \text { to } \\ 1400 \end{gathered}$			GENERAL EMERGENCY Notification	MCSO Warning Point staff receives NAN broadcast and verifies authenticator. MCSO conducts intemal notification fan-out.	Maricopa County Department of Transportation to provide barricades, POL vehicle and to post evacuation signs. Maricopa County ESD is to provide a tow truck and driver. Evacuation and special assistance problems to be simulated by role players. Residents are not to be contacted.

MARICOPA COUNTY WARNING POINT (MCSO)

DRILL CONTROLLER GUIDE					
Time	Msq	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 1335 \\ 10 \\ 1400 \end{gathered}$			GENERAL EMERGENCY Notification (Continued)		As loudspeakers will not be used, it is imperative that role players be contacted and read warning message verbatim. Role players will be located ai the Supplemental Warning site and the Players will be identification. Role Players representing residents with special problems are to be provided assistance and transportation. One road block is to be established.

GOVERNMENT CONTROLLER GUIDE

ON-SCENE COMMAND POST (OSCP) [MCSO]

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 0839 \\ \text { to } \\ 0904 \end{gathered}$			Notification of Unusual Event	None	OSCP Controller on station 15 minutes prior to start of drill.
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$	$\begin{gathered} \text { OSC } \\ \text { P. } 1 \end{gathered}$	OnScene Comm	ALERT Notification	Response Organization assembles at MCSO Avondale Substation. When directed, deploy under control of OSCP. Set up OSCP and organize Response Organization Assembly Area. Prepare for response. Simulate Supplemental Waming activities.	Observe deployment and performance. Issue MSG OSCP-1 when directed by MCEOC indicating which RCC has been activated.
$\begin{gathered} 1134 \\ \text { to } \\ 1159 \\ \\ \\ \\ 1335 \\ 10 \\ 1400 \end{gathered}$			SITE AREA EMERGENCY AND GENERAL. EMERGENCY Notification	Receive notification and inform response force to stand ready. Receive Protective Action Decision. Respond to calls for assistance as directed by MCEOC. Receive notification and inform response force to stand ready. Receive Protective Action decision.	Special evacuees will commence assistance calls to MCEOC Special evacuees will commence assistance calis to MCEOC.

GOVERNMENT CONTROLLER GUIDE
ON-SCENE COMMAND POST (OSCP) [MCSO]

GOVERNMENT CONTROLLER GUIDE
ON-SCENE COMMAND POST (OSCP) [MCSO]

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controlier Notes
$\begin{gathered} 1335 \\ \text { to } \\ 1400 \end{gathered}$	$\begin{gathered} \text { OSC } \\ \text { P } \\ -2 \end{gathered}$	On- Scene Comm	GENERAL EMERGENCY Notification Continued When directed by MCEOC to assist special evacuees.	On-Scene Commander will direct special evacuees to the Dysart High School not the On-Scene Command Post	Evacuation and special assistance problems to be simulated by role players. Issue MSG OSCP- 2 upon Onscene Commander's first special evacuee directive. Issue MSG OSCP.C upon On-
	$\begin{gathered} \text { OSC } \\ \text { P } \\ \text { C } \end{gathered}$	Scene Comm	When directed by MCEOC to assist special evacuees.	On-Scene Commander will direct special evacuees to the Dysart High School, not the On-Scene Command Post.	Scene Commander's first special evacuee directive. Issue as inquiries are made as to progress of evacuating residents.

GOVERNMENT CONTROLLER GUIDE
SUPPLEMENTAL WARNING TEAMS (MCSO)

GOVERNMENT CONTROLLER GUIDE
ROAD BLOCK TEAMS (MCSO)

REAT FORWARD

DRILL CONTROLLER GUICE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 0839 \\ \text { to } \\ 0904 \end{gathered}$			Notification of Unusual of Event	None	
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$			ALERT Notification Initiate monitoring when directed.	REAT Forward Team will be prestaged at Buckeye Airport. Establish REAT Forward Center. Brief and orient Monitor Teams. REAT Forward Teams assembles and equips. Assign Field Monitrmissions. REAT Forward Teams deploy to field locations. Collect and report field data.	REAT Forward Controller on station 15 min . prior to Exercise. Observe assembly and organization of command post. Observe operation of command post. Move to field location.
$\begin{gathered} 1134 \\ 10 \\ 1159 \end{gathered}$			SITE AREA EMERGENCY	Continue field monitoring activities. Coilect and report field data. Implement instructions from the TOD.	Continue to observe operation of command post.
$\begin{gathered} 1335 \\ 10 \\ 1400 \end{gathered}$	RF-A		GENERAL EMERGENCY Notification	Implement instructions from TOD.	Issue CTG MSG RF-A if RCC locations are not identified by the TOC within 30 minutes of evacuation order.

REAT FORWARD

GOVERNMENT CONTROLLER GUIDE

REAT FIELD MONITOR TEAMS

DRILL CONTROLLER GUIDE					
Time	Msp	To	Event Summary	Anticipated Response	Controlier Notes
$\begin{gathered} 0839 \\ \text { to } \\ 0904 \end{gathered}$			Notification of Unusual Event	None	REAT Controllers should be on station 15 minutes prior to drill.
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$			ALERT Notification	REAT Field Monitor Teanis will be prestaged at Buckeye Airport. Co-locate with REAT Forward Center in assembly area.	Contact REAT Center Controller for real time check. Observe assembly and deployment.
$\begin{gathered} 1134 \\ \text { to } \\ 1159 \end{gathered}$			SITE AREA EMERGENCY Nolification	REAT Captain briefs monitors and assigns missions. REAT Captain may direct mission assignment to be executed.	Accompany monitor team and observe mission performance.
$\begin{gathered} 1335 \\ \text { to } \\ 1400 \end{gathered}$			GENERAL EMERGENCY Notification	Field Teams perform assigned monitoring missions (monitors are to report all background readings). Receives briefing and evacuee monitoring mission when directed by REAT Captain. Field Team deploys to RCC and reports to RCC Mgr. Field Team established personnel monitoring station at RCC. Field Team conducts personnel monitoring of evacuees at RCC. Contamination will be simulated.	Observe mission performance. Issue field data from data package at appropriate times during mission. Observe deployment and performance. Controller will ensure that evacuees will not carry any type of radioactive materials.

GOVERNMENT CONTROLLER GUIDE
EVACUATION GROUP (Volunteers)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controller Notes
0900			All evacuation group Controllers Assemble	Evacuation Group Controllers assemble at American Red Cross, 1510 E. Flower, Phoenix, and report to designated Lead Controller	All EG and SEG Controllers assemble at American Red Cross, 1510, E. Flower. Phoenix.
0930			Assemble and load EG and SEG.	EG assembles at American Red Cross, 1510, E. Flower, Phoenix.	Contact Chief Offsite Controller upon arrival for real time check.
No Later than 0930			Transport EG to PVNGS Energy Information Center.	Travel by van from American Red Cross, 1510, E. Flower, Phoenix, to PVNGS Energy Information Center.	
1100			Begin education presentation.	Reriain at PVNGS Energy Information Center for presentation and refreshments.	Respond to Special Evacuee Controller request for radio operator assignment.
$\begin{aligned} & \text { As } \\ & \text { Direct } \\ & \text { ed } \end{aligned}$			Upon Direction of Chief Offsite Controller, Load EG in vehicles.	Upon receiving Supplemental Warning from MCSO, proceed to RCC.	Inform Chief Offsite Controller upon departure from PVNGS. Upon receiving information from the Public Info Controller, proceed to RCC.
			Arrive at RCC.	Exercise participantion is terminated upon arrival at Dysart High School. Do not process into the RCC.	

GOVERNMENT CONTROLLER GUIDE

SPECIAL EVACUATION GROUP (Volunteers)

GOVERNMENT CONTROLLER GUIDE
SPECIAL EVACUATION GROUP (Volunteers)

government controller guide

SUPPLEMENTAL WARNING SITE

SUPPLEMENTAL WARNING SITE

GOVERNMENT CONTROLLER GUIDE.
RECEPTION AND CARE CENTER (Dysart High School)

GOVERNMENT CONTROLLER GUIDE

JOINT EMERGENCY NEWS CENTER (JENC)

DRILL CONTROLLER GUIDE					
Time	Msg	To	Event Summary	Anticipated Response	Controlier Notes
$\begin{gathered} 0839 \\ \text { to } \\ 0904 \end{gathered}$			Notification of Unusual Event	Contact State and County Public Information Spokesperson, initiate and maintain contact with FNC Director.	JENC Controller should be on station 15 minutes prior to Exercise.
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$		JENC/ MGR	ALERT Notification	Initiate activation, receive hard copy from FNC, determine staffing levels, check equipment operation and prepare for initial press briefing.	
$\begin{gathered} 1027 \\ t 0 \\ 1400 \end{gathered}$	$\begin{gathered} \text { JENC } \\ 1 \\ \text { thru } \\ 17 \end{gathered}$	JENC/ MGR	JENC activation completed.	Receive information from EOF, State and County EOCs, draft press releases, relay to EOF and EOCs for approval, disseminate information through press briefings.	
$\begin{gathered} 1134 \\ 10 \\ 1159 \end{gathered}$		JENC/ MGR	SITE AREA EMERGENCY Declared	Continue as above.	
$\begin{gathered} 1335 \\ 10 \\ 1400 \end{gathered}$		JENC/ MGR	GENERAL. EMERGENCY Declared	Continue as above.	
????		JENC/ MGR	TERMINATION OF EXERCISE Commence critique, secure facility.	Receive information from EOF, relay to State and County EOC 3 , Media Rumor Control Group and APS Media Relations.	

SECTION 06

GOVT MESSAGES

SECTION 6

GOVERNMENT MESSAGES

SECTION 6

GOVERNMENT MESSAGES

YABLE OF CONTENTS

PAGE	CONTENTS
Section 6-2	Acronyms
Section 6-4	Technical Operations Center Message Cards
Section 6-6	Maricopa County Emergency Operations Center Message Cards
Section 6-11	On-Scene Command Post Message Cards
Section 6-16	Supplemental Warning Team Message Cards
Section 6-17	Road Block Team Message Cards
section 6-18	REAT Forward Message Cards
Section 6-19	Special Evacuation Group Message Cards
Section 6-22	MCSO Special Assistance Transportation
Section 6-23	Reception and Care Center Message Cards
Section 6-24	Joint Emergency News Center Message Cards
Section 6-41	Public Inquiry Center Message Cards
Section 6-42	Public Inquiry Questions

SECTION 6

GOVERNMENT MESSAGES

ACRONYMS

ADEM	-	Arizona Division of Emergency Management
ADO	-	Assistant Director of Operations
ARRA	-	Arizona Radiation Regulatory Agency
coc	*	Chi* Offsite Controller
COMM. 0.	*	Communications Officer
DC	*	Direction and Cortrol
DCC	-	Direction and Control Controller
DO	-	Director of Operations
DPS	-	Department of Public Safety
EBS	-	Emergency Broadcast System
EG	-	Evacuation Group
EGC	-	Evacuation Group Controller
EOC	*	Emergency Operations Center
EOCC	-	Emergency Operations Center Controller
EOF	-	Emergency Operations Facility
EPZ	*	Emergency Planning Zone
ESD	-	Equipment Services Department
FEMA	-	Federal Emergency Management Agency
JENC	*	Joint Emergency News Center
KI	-	Potassium iodide
MC	-	Maricopa County
MCDEM	-	Maricopa County Department of Emergency Management

APPENDIXD

GOVERNMENT MESSAGES

		ACRONYMS (Continued)
MCSO	-	Maricopa County Sheriff's Office
NAN	-	Notification Alert Network
OGC	-	Operations Group Chief
OSCP	-	On-Scene Command Post
PI	-	Public Inquiry
POC	-	Privately Owned Conveyance
POL	-	Petroleum, Oil Lubrication Vehicle
PVNGS	-	Palo Verde Nuclear Generating Station
RB	-	Road Block
RCC	-	Reception and Care Center
REAT	-	Radiological Emergency Assistance Team
RF	-	REAT Forward
RFC	-	REAT Fonward Controller
SEG	-	Special Evacuation Group
Ss	*	Shift Supervisor
SW	-	Supplemental Warning
TOC	-	Technical Operations Center
Toce	-	Technical Operations Center Controller
TOD	-	Technical Operations Director

CONTINGENCY MESSAGE FORM

THIS IS A DRILL

To: TOC Director
Message No.: TOC-A
Time: After the TOC Director has inquired about the location of RCCs.
Location: Technical Operations Center
MESSAGE
The Reception and Care Center for residents is as follows:
Dysart High School
REAT Field Team is to respond to this RCC.

THIS IS A DRILL

To: TOC Shift Supervisor
Message No:: TOC-B
Time: Issue if TOC staff fails to inform TOC/SS of this infornation.
Location: Technical Operations Center

MESSAGE

The Reception and Care Center for residents is as follows:
Dysart High School
REAT Field Monitoring Team is to respond to this RCC.

THIS IS A DRILL

To: Maricopa County Operations Group Chief
Message No.: MC-1
Time: Maricopa County EOC
Location:

MESSAGE

The Reception and Care Center , for residents, to be activated for evaluation is as follows:

Dysart High School

THIS IS A DRILL

To: Maricopa County Communications and Warning Officer
Message No.: MC-2
Time: After Warning Officer completes Siren Activation Procedure
Location: Maricopa County EOC

MESSAGE

Siren Pole No. 8, INTRAC 460, failed to function.

THIS IS A DRILL

To: Maricopa County Operations Group Chief
Message No.: MC-3
Time: When ordering On-Scene Commander (MCSO) to establish roadblock.
Location: Maricopa County EOC
MESSAGE
One road block(s) will be evaluated. You must establish the road block at the following location:

1. Old Highway 80 and Desert Rose Road.

THIS IS A DRILL

To: Maricopa County Operations Chief
 Message No.: MC-A
 Time: When directing activation of RCC
 Location: Maricopa County EOC
 MESSAGE

The Reception and Care Center, for residents, being activated for evaluation purposes is as follows:

Dysart High School

THIS IS A DRILL

To: Maricopa County Group Operations Chief
 Message No.: MC-B
 Time: When supplemental warning instructions are being issued to the On-Scene Command Post (MCSO).
 Location: Maricopa County EOC

MESSAGE

Siren Pole No. 8 failed to function. INTRAC 460.

NOTE: Loudspeakers, lights and sirens will not be used by the Supplemental Warning Team.

CONTINGENCY MESSAGE FORM

THIS IS A DRILL

To: On-Scene Commander
Message No.: OSCP-A
Time:
Location: On-Scene Command Post
MESSAGE
Siren Pole No. 8 failed to function. INTRAC 460.
NOTE: Loudspeakers, lights and sirens will not be used by the Supplemental Waming Team

THIS IS A DRILL

To: On-Scene Commander
Message No.: OSCP-B
Time: When On-Scene Commander is directing the establishment of road block(s). Location: On-Scene Command Post

MESSAGE

One road block will be evaluated. You must establish the road block at the following location:

1. Old Highway 80 and Desert Rose Road

THIS IS A DRILL

Yo: On-Scene Commander

Message No:: OSCP-C
Time: Issue as inquiries are made as to progress of evacuating residents.
Location: On-Scene Command Post
MESSAGE
As inquiries are made concerning evacuation completion, provide the following information:

- 30 minutes after evacuation is ordered, estimate $\mathbf{4 0 \%}$ completion.
* 45 minutes after evacuation is ordered, estimated 60\% completed.
- 1 hour after evacuation is ordered, estimated 80\% completion.

100\% completion only after Special Evacuations are complete.

THIS IS A DRILL

To: On-Scene Commander
Message No.: OSCP-1
Time:
Location: On-Scene Command Post MESSAGE
The Reception and Care Center , for residents, being activated is as follows:
Dysart High School

THIS IS A DRILL

To: On-Scene Commander
Message No.: OSCP-2
Time: Upon receipt of information requesting Special Evacuee assistance. Location: On-Scene Command Post MESSAGE

All Special Evacuees need to be picked up. These are actual evacuations.
All Special Evacuees are to be transported to the Reception and Care Center at Dysart High School.

THIS IS A DRILL

```
To: Supplement Waming Team
Message No:: SW-1
Time: Upon arrival at the supplemental waming area.
Location: \(\quad 331\) st Ave and Baseline Road.
MESSAGE
```

Drive through affected area and simulate giving supplemental warning
DO NOT activate siren, lights or loudspeaker.
Make certain evacuation group role players in vehicle at or near 331st Ave and Baseline Road are notified.

The evacuation group role players will be wearing red arm bands.

THIS IS A DRILL

```
To: Road Block Team \#1
P't: sage No.: RB-A
Time: If On-Scene Commande: toes; not assign same location.
Location: In Patrol Car
```


MESSAGE

Establish a road block for evfiluation fi vid Highway; 80 and Desert Rose Roads.

THIS IS A DRILL

To: REAT Forward Captain
Message No.: RF-A
Time: If information is not received from the TOC within 30 minutes of evacuation order.

Location: REAT Forward
MESSAGE
The Reception and Care Center being activated for residents is as follows:
Dysan High School.
A REAT Field Monitoring Team is to respond to the RCC.

THIS IS A DRILL

To:	REAT Fonward
Message No::	
Time:	Out of sequence.
Location:	REAT Forward.

MESSAGE

A vehicle decontamination demonstration is scheduled to be part of this Exercise. At REAT Forwards convenience and out of sequence with the exercise a controller selected vehicle will be identified as contaminated and directed to an area where decontamination procedures will be demonstrated.

Note: The vehicle will not actually undergo decontamination. However, personnel will show the ability to identify and safely isolate contaminated vehicle.

Waste disposal will not be demonstrated.

THIS IS A DRILL

To: REAT Forward Controller

Message No.
Time: Out of sequence.
Location: REAT Forward

MESSAGE

NOTE: This message is for provision of data only. It contains data that will direct Emergency Workers through the decontamination process. It is not to be distributed to players under any circumstances. Maintain this message and provide the data to appropriate monitoring personnel as they demonstrate the surveying of the vehicle.

Instrument background readings will be as read.

Vehicle:	Initial reading	After Decon.
Front Left Wheel	$500 \mathrm{CPM}>$ BKGD	$90 \mathrm{CPM}>$ BKGD
Front Right Wheel	$\mathbf{4 0 0} \mathrm{CPM}>$ BKGD	$80 \mathrm{CPM}>3$ BKGD
Front Left Floor	$300 \mathrm{CPM}>$ BKGD	$50 \mathrm{CPM}>$ BKGD

THIS IS A DRILL

To: Special Evacuee \#1 Telephone Caller (Male Caller)
Message No. SEG-1
Time: At direction of Lead Controller
Location: PVNGS Energy information Center
MESSAGE

Dial 273-1411 (Maricopa County EOC), when the number answers say:
"THIS IS A DRILL."
*I need help. I'm old and don't see well enough to drive and I need a ride. Can you help me?
My name is _(Role Player's Name)_. I'm located at the Arlington School Road and
Rainbow Road.
"THIS IS A DRILL."

THIS IS A DRILL

To: MCSO Special Assistance Transportation
Message No.: SEG-2
Time: Upon arrival of the MCSO Assistance Team
Location: Special evacuee pick-up locations

MESSAGE
All Special Evacuees are to be transported to Dysart High School
This is the Reception and Care Center that will be activated for residents.

THIS IS A DRILL

To: Reception and Care Center Manager
Message No.: RCC•A
Time: If required, upon arrival of REAT Field Monitoring Team
Location: Tolleson Union High School
MESSAGE
Ensure that evacuees are monitored near arrival area.
Uncontaminated go to Reception.
Contaminated go to Decontamination (showers).
Note: 1. The use of the showers facilities for contaminated evacuees is to be simulated.
2. Evacuees will not carry any type of radioactive materials.

THIS IS A DRILL

To: APS Public information Spokesperson
Message No.: JIENC-1
Time: First New Briefing
Location: Joint Emergency New Center
MESSAGE
Was the declaration of ALERT related to an release of radiation? What really caused the ALERT notification? is the public in danger?

THIS IS A DRILL

To: APS Public Information Spokesperson
Message No.: JENC-2
Time: Second New Briefing
Location: Joint Emergency New Center

MESSAGE

Could the problems that are occurring at Palo Verde right now lead to another Chernobyl? How about another Three Mile isiand ?

THIS IS A DRILL

To: County Public Information Spokesperson
Message No: JENC-3
Time: Second New Briefing
Location: Joint Emergency New Center

MESSAGE

We understand that a hole was punched into this containment bui'ding, how can anything or anyone punch a hole into this so called three foot thick building: Have all of you people at Palo Verde been leading the public on? Is this building really thre ; feet thick? How do I know that your not just telling us this information to shut the press up ar A deceive the public into thinking this place is safe?

THIS IS A DRILL

To: State Public Information Spokesperson
Message No.: JENC-4
Time: Second New Briefing
Location: Joint Emergency New Center

MESSAGE

How many people live in the 10 -mile area surrounding Palo Verde, and is the state really prepared to handle the situation if this accident turns into another Chemobyl or Three Mile Island ?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To:	State Public information Spokesperson
Message No.:	JENC-5
Time:	Next News Briefing
Location:	Joint Emergency New Center
	MESSAGE

What is the weather forecast? How far is it estimated ihat the wind will carry any radiation that might be released? What happens if there is a wind shift ?

THIS IS A DRILL

```
To: APS Public Information Spokesperson
Message No.: JENC-6
Time: Next News Briefing
Location: Joint Emergency New Center
MESSAGE
```

Although you say that you have conditions under control at Palo Verde, do you have a plan for a worst-case meltdown at the plant ?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public Information Spokesperson
 Message No: JENC-7
 Time: Next News Briefing
 Location: Joint Emergency New Center
 MESSAGE

What happens to the employees at the plant site when an accident occurs? Are they sent home? Is anyone left to run the plant? If so, are they in danger?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To:	APS Public Information Spokesperson
Message No.:	JENC-8
Time:	Next News Briefing
Location:	Joint Emergency New Center

How will this accident affect the other two units? Could this same thing happen to them?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public Information Spokesperson
Message No: JENC-9
Time: 1230 News Briefing
Location: Joint Emergency New Center MESSAGE

Back to the accident at the plant. How many employees have been killed or injured on the job at Palo Verde?

THIS IS A DRILL

To: County Public Information Spokesperson
Message No.: JENC-10
Time: $\quad 1230-1245$ News Briefing
Location: Joint Emergency New Center

MESSAGE
How long does it take to evacuate all of the residents from the 10 -mile area surrounding Palo Verde? How do you know when total evacuation is completed?

THIS IS A DRILL

To: State Public Information Spokesperson
Message No: JENC-11
Time: Next News Briefing
Location: Joint Emergency New Center
MESSAGE
What information do you have on how long the release of radioactive materials into the atmosphere is likely to last?

THIS IS A DRILL

To:	State Public Information Spokesperson
Message No.:	JENC-12
Time:	Next News Briefing
Location:	Joint Emergency New Center

MESSAGE

What is the estimate of damage to crops and farm animals in the 10 -mile area around the plant as a result of the accident at Palo Verde?

EXERCISE MESSAGE FORM

THIS IS A DRILL

```
To: APS Public Information Spokesperson
Message No: JENC-13
Time: 1330 News Briefing
Location: Joint Emergency New Center
MESSAGE
```

Are we likely to see a core meltdown as a result of the events that have taken place at Palo Verde today?

THIS IS A DRILL

To: APS Public information Spokesperson
Message No.: JENC-14
Time: 1330 News Briefing
Location: Joint Emergency New Center
MESSAGE

Is today's situation at Palo Verde just another example of sloppy workmanship and poor management?

THIS IS A DRILL

To: APS Public Information Spokesperson
Message No:: JENC-15
Time: 1330 News Briefing
Location: Joint Emergency New Center

MESSAGE

How long will it take to clean-up after this accident? How much is the estimated cost for this clean-up?

THIS IS A DRILL

```
To: APS Public Information Spokesperson
Message No.: JENC-16
Time: Next News Briefing
Location: Joint Emergency New Center
```


MESSAGE

How soon after conditions at Palo Verde are back under control will we be able to get in and look at the damage ourselves?

THIS IS A DRILL

To: APS Public Information Spokesperson
Message No.: JENC-17
Time: 1330 News Briefing
Location: Joint Emergency New Center
MESSAGE

With the nuclear production of electricity costing more and more as a result of accidents like this, does APS anticipate more towns like Page and Gilbert Arizona trying to run their own independent electric conoanies in a better managed and more economical manner?

THIS IS A DRILL

To:	Public Inquiry Controller
Message No.:	Pl-1
Time:	1030
Location:	Public Inquiry Center

Call the State Public Inquiry Center at the times indicated on the following list of suggested Public Inquiry questions. Each question may be asked of more than one operator. Other freeplay questions are encouraged.

I just heard that there's an accident at Palo Verde. Is this the same type of thing that happened at Chemobyl?

I just heard on the radio that there's a problem at Palo Verde, but I didn't hear any warning sirens go off. I live in Arlington and thought we were supposed to be warned if something went wrong at the plant.

What's an ALERT?
What's happening at Palo Verde?
Should we evacuate now, just to be safe?
Is it safe for me to travel west from Phoenix on Interstate 10?
Is radiation being released from Palo Verde? Will someone tell us if we are in danger?
My husband is a construction worker at Palo Verde. Will he be OK?
I just heard the waming sirens go off, but when I tried to tune to KTAR for instructions, my radio quit working. What should I do?

If we have to leave our home because of the problem at Palo Verde, will someone build us a new home like they did in Russia after the accident at Chernobyl?

Is Palo Verde going to melt-down? Exactly what is a meltdown?
If they can't get this problem at Palo Verde fixed today, are they going to have to shut off our electricity?

Should I stay inside my house if I live in Goodyear?
What's going on at Palo Verde?
Should I bring my pets/farm animals inside? I live east of Tolleson?
Is the state going to take over operation of Palo Verde?
I have to fly over Palo Verde to get to a business meeting in Los Angeles. Am I going to get exposed to radiation?

I keep hearing about something called REMS and MilliREMS. What the heck are these things?

PUBLIC INQUIRY QUESTIONS (Continued)

(Refer to MSG Pl-1)
I live in Buckeye. Is it safe for me to go outside?
What is a SITE AREA EMERGENCY? Does it mean we're going to die or get cancer if we live within 10 miles of Palo Verde?

Will Ruth Fisher School be open tomorrow?
How much radiation is being released form Palo Verde?
If we have to evacuate to a Reception and Care Center, how long will it be before we can retum to our home?

Is the milk I bought at the Hassayampa Store last night safe to drink?
Someone told me that radiation is more dangerous to children and pregnant woman than to people like my husband. Why?

I'm on my way to a Reception and Care Center. Will someone make certain my house isn't looted while l'm away?

I live in Avondale. Is our water safe to drink, or has the accident at Palo Verde contaminated it?
I have a family living in the 10 -mile area surrounding Paio Verde. How do I find out if they have been able to leave the area and are safe?

I heard that the National Guard was going to take over Palo Verde. Is that true? My son's in the Guard and I don't want him near that mess.

I heard that there's a big cloud of steam or something hovering over Palo Verde. Is that radiation or just regular pollution?

When will an evacuation of Phoenix be required?
Are the vegetables from my home garden safe to eat? I live in Youngtown?
My electricity comes from Palo Verde. Is it going to be radioactive? Should I shut off my electricity to protect my family?

Is the radiation going to ruin my cottion crop? I live near Cotton Lane and Interstate 10.
Will I have to throw out the milk from my dairy farm? If so, will APS pay me for it? My farm is near 75th Avenue and Glendale.

PUBLIC INQUIRY QUESTIONS (Continued)

(Refer to MSG PI-1)
I just heard that a GENERAL EMERGENCY has been declared at Palo Verde. Isn't that the same thing that happened in Russia a couple of years ago? I have relatives in Phoenix... are they going to die?

I live in a trailer behind the Red Quail Store near Palo Verde, and I want to get out of the area until it's safe again. Can someone come out and help me?

My wife and I just retired here to Perryville and we're afraid that our house is going to be bumt up just like happened to that nuclear reactor in Russia -Cher- something or other. We don't have much life savings and if our house burned up, we wouldn't have any place to live. What are we going to do?

Is it safe to have sex when that thing is leaking? Will it make me have a deformed baby if I get pregnant?

I saw on the news that California had an earthquake. Did it cause your nuclear reactor to leak? should I sell my stock in Wal-Mart?

Your nuclear place is going to cause my daughter to have a miscarriage. I know this cause I read in the National Inquirer that radioactivity causes miscarriages. If my daughter loses her baby, I'm going to sue.

Hysterical voice on the phone....."My son just told me about the nuclear accident in Arizona and that the Russians are responsible for sabotaging the reactor so that they could send their missiles over while we were busy with this accident. Is this true? Are the Russians sending missiles over right now? I have to know please tell me......?

I've heard you've had an explosion. Should I call the travel agency and get my grandkids out of Peoria right now?

My name is Dr. Plethora Sandoch. Ethel Gardner is my patient. How could you tell her that radiation would make her pacemaker stop and scare her so bad? don't you people believe in ethics?

This is John Passisstichvitch from Scottsdale, is it true that nuclear fallout makes everything run backwards? I'm a clock maker and I need to know if all my clocks will start running backwards if the fallout reaches Scottsdale?

I read the newspaper reports when that nuciear place in Russia leaked and destroyed everything for 1000 miles around the plant, is that going to happen here? I'd hate to have my prize roses destroyed?

My water has started tasting bad. I know Glendale is the water supply for my city. Has PVNGS leaked into the Glendale water supply? Will I get sick if I drink the water? Is it safe to water my plants?

PUBLIC INQUIRY QUESTIONS (continued)

(Refer to MSG Pl-1)
This is Jane Jones, I am calling form Albany, New York. I just heard about the disaster down there. My boy friend is a student at Arizona State University and I haven't heard from him. How can I find out if he's okay?

My cancer is in remission. I've heard that radiation from nuclear reactors w il cause my cancer to come back and I just don't think I could deal with this anymore.

This is Geraldo, I am doing a show on people who have been exposed to radiation. Could PVNGS send some of its personnel to be on my show? I heard some people from your plant actually got direct exposure and I just know the public would like to hear their story.

My baby is a SIDS baby. She is susceptible to Sudden Infant Death Syndrome. Will radiation make her monitor go haywire or stop working? I don't want to lose my baby. How can I protect this monitor from radiation, would placing lead all the way around it work?

My narre is Aunt Gardner and I heard that radiation will stop my pacemaker. Should I go to the do tor now and get it checked?

This is Herbert Gardner. My Aunt Ethel is reaily afraid that her pacemaker is going to stop. Just what did you people tell her when she called?

This is Brenda Sue Hanes from Glendale. I had to do exercises when I was in the Air National Guard on what to do in case of nuclear war. I want to know if I can come down and help you'll out?

How can you people let this happen? We are still trying to clean up after Three Mile Island and it happened 50 years ago and now we have to come and clean up after you. Total incompetence, if you ask me.

This is Larry King's Office. Mr. King would like to cio a live interview with your Health Department radiation experts tonight on his show on CNN. Who do I need to talk to arrange this? Will I have to call the Govemor?

My name is k athy Vardaman and my son wants to fly his plane over your reactor and take some pictures. I ve neard thai directly overhead of a leaking nuclear place a black hole exists, and I'm afraid my so 1 will disappear into that black hole if he flies cu: there?

How much vill my APS bill go up?
I'm at the Circle K in Goodyear, which way should I go?
I'm pregnant will this hurt my baby?
Why do we need Palo Verde ariyway?
How long till it explodes?
What are you doing about the problem?

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG PI 1)

After the explosion, how long till I get my power back?
Is my water OK?
Should I tum off my gas?
My husband was hunting rabbits on Sunday about 5 miles from the plant, can we eat them?
I need to go to \%uma, can I take S.R. 89?
I live in Goodyear and the air smells funny, am I being radiated?
I bought groceries in Litchfield Park, should I throw them away?
I have friends driving in from LA on $1-10$, will they be radioactive and giow in the dark?
How many people do you think will die?
How can I tell if I have been exposed to radiation?
My dog got loose and I live 8 miles from the Palo Verde plant, can you send a helicopter to find him?

I ran out of my heart medicine and have been advised to stay indoors, can I go to Walgreen's if | drive real fast?

My father is on oxygen and his tank is almost empty, how can I get him more?
Can I milk my cows? (I live in Suprise)
My car won't start and I Don't want to stay home, will you come and get me?
How long will this last?
Did a terrorist cause this problem?
I work at the "Drop Inn" bar that's about 2.5 miles for the plant and I didn't leave work until 2:30 A.M. this morning, have I been exposed? Where can I go to get checked?

I'm Bill Smith and I have produce being picked right now, can I sell it?
Hi, this is Bill Smith again, should I do something about th:e farm workers I have picking in the fields? If they get sick, who will pay their medical bills?

I live at 75th Ave and Thomas, where is the nearest shelter?
I have been told to evacuate. What should I do with my pet Boa constrictor? He requires special lighting and cooling, are there provisions for him at the reception and care centers?

PUBLIC INQUIRY QUESTIONS (continued)

(Refer to MSG PI 1)
I have been advised to stay indoors but didn't know anything was wrong until 10A.M., before that I was tanning from about $8-10$ A.M. and I live 3 miles from the plant. Can I breast feed my baby?

I'm supposed to fly on American West to LA, is it safe to fly to fly over the area?
My niece goes to Palo Verde School and I am supposed to pick her up for a dentist appointment, can I come and get her ?

What is Govemor Symington doing about this problem?
Has anyone advised President Clinton of this problem?
is FEMA in charge? If not who is?
I live about 7 miles from the piant and just painted the outside of my house, as a matter of fact the paint is still wet, is it going to be contaminated?

I own 6 acres of land about 15 miles from Palo Verde is the govemment going to buy it?
I retired frum the Nevada Test Site 10 years ago and am a Nuclear Engineer, do you want me to come and help you?

My friend just fold me that the fall out is going to land on Tolleson, is this true?
I am a bee farmer, and live 12 miles outside of the plant, What can I do to save my honey?
My goat is pregnant, will her unbrm kid be OK?
I own a 15 passenger van and my husband is leaving to help evacuate the area, will he be safe?
Can't you just tum the plant off?
I live just outside the 5 mile marker and I heard instructions for all people inside a 5 mile area to evacuate, what about me?

My name is Sandy Shine and I represent "Prisoners Are Citizen's Too", Why aren't you evacuating the Perryville Prison? Are you trying to play judge and give them all a death sentence?

I saw a UFO over the plant last night, did the extra-terrestrials take over the plant?
I'm house-sitting for my daughter and : heard some sirens awhile ago when I was washing the car when I came in for a beer. Tre i' 'juy said that all people in a 5 mile area should evacuate, am I within 5 miles? My address is 31705 west Buckeye Road.

I live 8 miles from the plant and I was looking out my window with binoculars at the plant and I saw some men in suits and carrying all sorts of equipment, am I contaminated? Will I go blind by looking at the plant through my binoculars?

PUBLIC INQUIRY QUEST:ONS (Continued)
 (Refer to MS'3 PI 1)

My name is Wanda Byar and my sister just called me from Pennsylvania and she said that you people will be sending me to a resort in San Diego until titis is over, since I only live 4 miles from the plant? What time is my flight and what's the weather like in San Diego right now?

I'm from Rose Lane School and my fourth grade class was scheduled for a tour of Palo Verde today. Will you still be giving tours today?

My brother went hang gliding at the White Tanks Mountains, will he be OK?
This morning my aunt cut her hand and my husband took her to West Valley Emergency Center in Goodyear, Will they be able to come back home?

Why am I being told to evacuate when I see Sheriff's deputies driving arour.d? Why is it OK for them to stay in this area?

I read that if I take salt the radiation won't hurt me. How many tablespoons should I take?
Is it true that all animals at that Wild Animal Park out there are going to die? I'm willing to take in some of them. Who should I call?

My house is right next io siren 11 and after it went off my wife can't hear anything. Why didn't you wam us that you were going to sound the sirens?

I live at the 8 mile marker area and some new neighbors just moved in next door and I don't believe they know about the Plant. The sirens just sounded and I turned on the radio and it said to stay indoors, the neighbors are still outside barbecuing, would it be safe for me to go and tell them to go indoors?

Hi, we just moved in out in the area and were informed that we were to stay indoors, can we eat the steaks we, ist barbecued?

I forgot to pay iy APS bill this month, did you do this just to make me pay?
Hi, my name is Fred Gardner and II planted some carrots and radishes in my garden last week, will they be OK to eat? I live at the corner of Narramore and 333 Avenue.

My pregnant cat, who strayed away last week, just returned home this morning hungry and unpregnant. Jo you think she is contaminated with radiation? I live near Tonopah and I'm getting ready to leavs the area, should I bring the cat with me?

I slept Last night in my van at Salome. Should I go to the Maricopa County Medical Center and get checked for radiation contamination?

My grandfather traveis frequently between Needles and Quartzsite and he may be in Quartzsite now, Do you think he will be in any danger?

Hi , I am willing to fly my aerial sign in and around the 20 mile radius with the words "EVACUATE TO THE EAST OR WEST". What agency or authority do I contact to arrange this excellent method of alerting citizens.

PUBLIC INQUIRY QUESTIONS (continued)
(Refer to MSG PI 1)
I live in Gila Bend and I am supposed to travel to Phoenix tomorrow for a job interview. I normally travel on l-10 East into Phoenix. Jo you recommend another route into Phoenix? Is it safe in Phoenix or should I cancel my apps intment for this job interview?

I am a wealthy person and I know several o'hers who believe if we were contaminated and expose to radiation, we want the best medical assistance available. We can pay for this essistance. Which hospital do you recommend? I think you should alert the Mayo Clinic to be prepared to assist us.

I reside in the Carefree area North of Scottsdale. If there is a wind shift, will this area be contaminated with radiation? Isn't any amount of radiation contamination harmful? Why don't you advise evacuation of this area. I think l'll just take a vacation and get out of here for awhile. I refused to stay here and allow govemment officials to decide when I should evacuate. I know of some people in their RV who usually park everyday at the Buckeye Hills Park. It is located on State Route 85 just south of Palo Verde Road. Will they be able to hear a siren? Will they be notified if they should evacuate the area? I would feel real bad if something happened to them out there.

I'm calling in on my cellular phone. The battery is low. Please let me know if I should not be in the Hummingbird Springs Wilderness Area. (I just heard a bulletin over my truck radio but not all of it. I know that it concerns the PVNGS and I did manage to get this phone number.) Can I travel back into Phoenix or should I evacuate in another direction?

I live along the Sun Vailey Parkway between: Buckeye and Sun City (actually my home is on the West side of the Sun Valley Parkway and directly west of the (backside) White Tanks Mountains. Should I plan to evacuate?

My fevorite pass time is to fish at Hassayampa near the Gillespie Dam. Is it OK to continue doing this? Will it be OK to eat the fish I caught late yesterday afternoon? I live near Buckeye. Shouldn't I be leaving the area and which direction should I and my family go? Do you have any suggestions about how far we should travel and where we should stay if we need to evacuate?

I live within the 50 mile radius of the PVNGS. If I hear my sector is to be evacuated, how long should I plan to be gone?

My elderly husband and I are preparing for the worst. However, he has become very pugnacious about this whole incident at Palo Verde. He is resisting the advisories to prepare to evacuate. Who should be advised of this predicament? Will we be foiced to leave ever if we do not wish to leave? Our home is in the area of Arlington.

I'm calling because I live and own a business in Quartzite. Will you be evacuating anyone toward the Quartzsite area? Please have someone announce that there is a few aircraft with pilots available for rent at the Quartzsite airport. We can fly anyone into California from Quartzsite, but they must travel light. My phone number is (phone number) for further information.

PUBLIC INQUIRY QUESTIONS (continued) (refer to MSG PI 1)

My name is Jacob Waltz Jr. and I prospect in the areas of Gila Bend Mts. near Sundad, the Eagle Tail Mts. the Big Hom Mts. and along Centennial Wash (west of Phoenix). I usually prestash plastic gallon jugs of water and some canned foods in these areas for emergencies. I wondered if these supplies will be contaminated? Can I go into these areas today? If I nave to stay evacuated from the areas, how long will it be until I can go back?

I am caretaker of some acreage along I-10 between Tonopah and Vicksburg Junction. I need to travel into Phoenix. Will l-10 be open to Eastbound traffic? If not, when will it be open? During this emergency, can I request airift of food supplies to me (especially if $1 \cdot 10$ is closed off)?

I'm calling to let you know that I am psychic and I envision enormous problems with the incident at the PVNGS. In fact, radioactive releases cause me to become extra sensitive to forces beyond the physical world. You may be able to use me to reveal the unknowns associated wittthis incident. I am a reputable psychic and I have been used by law enforcement to solve mysteries. Anyone needing my help may contact me at (phone number). Please let me know of any interested governmental authorities that might need my help. Actually, you should tell them that I can see a chamber within the plant that is filling with radioactive water. I know the water is vary radioactive because it has a cobalt blue glow about it. And, I see red hot boiling bubbling water encompassing some sort of dial indicating high numberals at a pressure sensitive indication mark. I truly hope this helps. Oh, Oh, I am receiving more and more revelations now I see a hand - someone's hand pushing or tuming a button or a valve. Is someone, an employee, in the chamber of the plant? I better hang up now - I'm getting dizzy, which means a very important message will be coming to me soon. I'll call you back.

When Will President Clinton get here? Where will he be staying?
Hi my name is Kelly and I am in the fouth grade, I am doing a book report on desert plants, can you help me?

I have lived in Goodyear all my life and during the spring I like to collect the Sagaro Cactus Fruit out here, will I be able to do it this spring?

My mom is cooking vegetable soup and she doesn't believe me that were not supposed to eat fresh vegetables, will you talk to her and make some sense to her?

There is supposed to be a big concert this weekend at Blockbuster Sky Pavillion, do you think it will be canceled? If they cancel it where can I turn my ticket in for reimbu: sement?

I just saw this lady on the news and she said she is with emergency management and you should tell her that her clothes don'y match.

My uncle lives in Prescott and said that I better hurry up and get out of Tempe or I'll be contaminated, is this correct?

I have been advised to shelter in place, how many years will it be before I can leave?
If I hike to Squaw Peak will I be able to see the meltdown?
Is this a drill or is the plant really in trouble?

PUBLIC INQUIRY QUESTIONS (continued)

(Refer to MSG PI 1)
The Phoenix Suns are supposed to play tonight, is it safe for them?
I have developed a radiation catcher and if you let me go into the unit I can catch all the radiation in my devise. Who will I contact?

Can I take my ex-husband out there and leave him?
Who do those people think they are getting on the TV and telling me what to do? They are telling me where to go and what to do. Just what makes them the experts?

Why hasn't the problem been fixed?
My wife is a firefighter and I'm telling you now that if the plant explodes, you better not make her go to the plant!

I have been tuld to 9:, acuate but I'm worried that someone is going to steal all of my rocks in the front yard, can you send someone with a truck to help me load them in a truck?

I know this was a conspiracy so that the baseball stadium will not be built out there.
I want to know the name of the person who caused this problem?
Why don' you peopie just capture all to the radiation with one of those big planes?
My nephew works for NASA and if you want I'll call him and tell him to bring the shuttle here and we can just send the contamination to the moon? What time should I tell him to be here?

I'm lonely and I saw your number on the television. My children are all grown and they never have time for me. When Billy an Sally were' tie I devoted my whole life to them and look how they treat their loving mother? Do you call your mother? I bet you let your mom see the grandkids more than two times a week? But not my children, oh no they are to busy for an old woman like me! I think you should call them an tell them what a rotten child they are and that they should be grateful that you have such a wonderful mom. You can call Billy at the hospital where he works at Good Samaritan and Sally works at some school, I'm, not sure which one but you sound like a smart person and I know you'll find her and tell her.

I have some cattle that I allow to graze at the area bordered by the Hassayampa Gin Road, Centennial Wash, and Agua Caliente Extension Road. Should I send someone out to round them up? What is going to happen to my livestock when I evacuate?

Please, I wonder if you could give me a phone number to the Nuclear Regulatory Commission? I need to call and report all this trouble that the PVNGS and the State of Arizona are causing the citizens. I do not believe that a nuclear plant should be allowed to have accidents. I have been old for years and years about how something like this might happen. If you won't give me their umber, I'll just call information and get it. I live in Sun City and I am going to contact my congressman too.

PUBLIC INQUIRY QUESTICNS (continued)

(Refer to MSG F: 1)
Is the governor going to release all non-essential Statce employees from their work to go home nd take care of their families? I just heard that PVNGS has a very major emergency probiem nd evacuations are occurring or will be occurring. I work at the Department of Motor Vehicles and do not believe business should be conducted today. I think, as a precaution, I will just request leave of absence for the rest of the day.

I was watching TV when an EBS message was Broadcast. It said something about referming to your Palo Verde Public Safety Calendar. I don't have one. I know that there is trouble at the Nuclear Power Plant. Could you explain to me what is going on? I live in Laveen and I am certain the EBS message was teiling everyone to evacuate. Where would I evacuate to? This sounds pretty serious. There is going to be a live report soon on TV - you might want to watch it - Channel 12, 'think.

Hello, we operate the Rainbow Valley Dairy in Buckeye. We heard that there is trouble at the PVNGS. Our boss is not here. We believe that when something like this occurs, we are to cease our Dairy Operations, shelter the livestock and wait for further instructions. Is this true? How long will we be inoperable, If we are told to evacuate?

This is Ganley's Funeral Home at 104 East Baseline Road in Buckeye. We realize there is a problem at the PVNGS. Will it be advisable for us to cancel all graveside funeral services until authorities are certain that there is not a threat of radioactive contamination releases into the atmosphere? Can you tell us if this is a iong term threat or a short term threat to the population? Should I alert the Funeral Homes in Sun City West of potential problems?

This is Arizona Soaring Adventures. We're located on North Lake Pleasant Road and West of Carefree Highway about 8 miles South of Lake Pleasant. Our gliders do not normally attain very high altitudes. Should we shut our business down during this potential radioactive threat? Does it appear that our will be evacuated?

I am a resident of West Phoenix. I am very concerned about what is going on at PVNGS. Will the population of West Phoerix area be toid if radioactivity is transferred here by the wind. Shouldn't we all just leave now and not wait?

This is the manager of the Estrella Mountain Golf Course in Goodyear. I believe that due to the emergency at the PVNGS, people have been advised to leave or take shelter. Shouldn't evacuate this golf course? Will this area eventually be told to evacuate? Will I receive compensation from the Government for each day I lose business because of the PVNGS emergency? Are you going to alert the Golf Courses over in Sun City West to close?

Hi, my husband is a truck driver and he will be heading into Phoenix from Californin on $1-10$ today. Will he be delayed because of this emergency? He carries drug store com nodities such as soaps, toilet paper, perfume etc. Will he be allowed into the Phoenix area at ali? How is this emergency being handled? Is it going to get worse - - like is the City of Phoenix in any danger?

I'm calling long distance and I need the phone number of every Red Cross Reception and Care Center that opens. I am trying to locate a relative and I believe he will be among the evacuees. Will employees of the PVNGS be checking in at Reception and Care Centers? is there a phone number that ' an call directly to the PVNGS for information about their employees?

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG P11)

Hey, we just got word that we have to evacuate out of this area. We're at Old US 80 and Arlington Canal Road. If this is true, we only have enough gas to drive to Phoenix and we have no extra money for anything else. Will we get some financial help at the Red Cross Shelter? I do not get paid for five more days and, because I have to evacuate, I may not even be able to get my check until this emergency is over. You might want to tell someone to expect us. There is myself, my wife and four children under 10 years old. We're packing as much as we can and we are trying to bring all of our food that we bought with my last paycheck so that it does not spoil and go to waste. Do you think it might already be contaminated?

I would like some information about the Farker area. Is there a chance that this town will be affected by the radioactivity that may have been released form the nuclear generating station West of Phoenix? We have people boating and fishing on the Colorado River. All this outdoo: activity is occurring today and we are actually on the Colorado River Indian Reservation. Will the Indian Reservation receive timely notice if there is a threat to the population here? Is the City of Phoenix going to have to evacuate?

Yes, this is Pierce A:viaiion. I have a concern about my crop dusting business. Should I cancel my scheduled crep dusting activities today? We have several farms in the agriculture areas West of Phoenix - pretty close to PVNGS. If there is a release of radioactive steam shouldn't we all stop our work and get at 100 miles away from the area?

Hello, I am a stuctent at ASU, Science and Engineering. Could the Emergency Management Organization workıng the emergency at PVNGS use us? We are perfectly willing to help with sample gathering, monitoring, and/or Lab analysis. Here is our phone number so that someone can get back to us. Some of our Science Club members are very eager to leam what is happening on site at the PVNGS.

I telephoned the Lake Pleasant Park Department to see about reserving an area for a privece party next weekend and the Park Ranger told me that they may have to close the Park down depending upon what is happening at the PVNGS. Is this true? If radioactivity is released into the air and the breeze carries it over to Phoenix or Lake Pleasant - won't it be harmfui to the population in those areas? How may I stay informed on shat is occurring with this emergency? Thank You

Hello, I had to drive all the way into Morristown to use a phone to call you. I hope you can give me some accurate information. I am a rock hound and part of the time I just prospect in the area of the Hieroglyphic Mountains and Castle Hot Springs. When the weather is nice, I just sleep out under the stars. will I be in jeopardy of potential radiation from the PVNGS because I am outside all the time? Will my food be OK? Does the situation appear to be escalating? Will my radio be enough to keep me informed? What areas of the state are affected by this right now? If I notice the wildlife acting strange and getting sick should I call you? I thank you. I might call you again.

Hello, I work at Westridge Mall. Should I go to work as usual? Isn't this a dangerous situation out there al the PVNGS?

1 am owner operator of a popular Valley Mexican Food Restaurant. We use daily shipments of lettuce, tomatoes, onions, green chilies, parsiey etc. Some of theni are obtained locally and some are shipped over from LA and Yuma. Should I expect a cutback or shortage of these fresh produce? Will shipments be halted entirely if problerrs increase : it the PVNGS? Have the local producers/shippers/receivers/wholesalers been informed of t , is fotential predicament? I'm afraid this is going to hurt my business.

If there is a radioactivity found in my neighborhood should I empty my swimming pool before using it again?

SECTION 07

PI GUIDE

SECTION 7

PUBLIC INFORMATION CONTROLLER GUIDE

SECTION 7

PUBLIC INFORMATION CONTROLLER GUIDE

TABLE OF CONTENTS

PAGE	CONTENTS
Section 7-2	Acronyms
Section 7-4	Forward News Center (FNC)
Section 7-5	Joint Emergency News Center (JENC)
Section 7-6	Rumor Control Group (RCG)
Section 7-7	Public Inquiry Group (PIG)

SECTION 7

PUBLIC INFORMATION CONTROLLER GUIDE

ACRONYMS

SECTION 7

PUBLIC INFORMATION CONTROLLER GUIDE

ACRONYMS (Continued)

MSG	-	Message
NAN	-	Notification Alert Network
NRC	-	U.S. Nuclear Regulatory Agency
NUE	-	Notification of Unusual Event
PI	-	Public Inquiry
PVNGS	-	Palo Verde Nuclear Generating Station
RCG	-	Rumor Control Group
RCP	-	Reactor Coolant Pump
RCS	-	Reactor Coolant System
REAT	-	Radiological Emergency Assistance Team
RF	-	REAT Forward
SG	-	Sieam Generator
SPI	-	State Public Information Spokesperson
SS	-	Shift Supervisor
TOC	-	Technical Operations Center
WRF	-	Water Reclamation Facility

PUBLIC INFORMATION CONTROLLER GUIDE
FORWARD NEWS CENTER (FNC)

PUBLIC INFORMATION CONTROLLER GUIDE
JOINT EMERGENCY NEWS CENTER (JENC)

DRILL CONTROLLER GUIDE					
Time	Msq	To	Event Summary	Anticipated Response	Controller Notes
$\begin{gathered} 0839 \\ \text { to } \\ 0904 \end{gathered}$		$\begin{aligned} & \text { JENC/ } \\ & \text { MGR } \end{aligned}$	PVNGS Unit 3 Notification of Unusual Event	None	JENC Controlier should be on station 15 minutes prior to Drill.
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$		$\begin{aligned} & \text { JENC/ } \\ & \text { MGR } \end{aligned}$	PVNGS Unit 3 ALERT Notification	Contact State and County public information spokesperson, initiates and maintains contact with FNC. Initiate activation, receive hard copy from the FNC. determine staffing levels, check equipment operation and prepare for initial press briefing.	Perform time-check with chief Controller. Record time lines. Continue to observe staff functions.
$\begin{gathered} 1027 \\ 10 \\ 1400 \end{gathered}$	$\begin{gathered} \text { JENC } \\ -1 \\ \text { thru } \\ -17 \end{gathered}$	$\begin{aligned} & \text { JENC/ } \\ & \text { MGRR } \end{aligned}$	JENC activation completed.	Receive information from EOF and State and County EOCs, draft press releases, relay to EOF and EOCs for approval, disseminate information through press briefings.	Observe staff functioning.
$\begin{gathered} 1134 \\ 10 \\ 1159 \end{gathered}$		JENC/ MGR	PVNGS Unit 3 deciares a SITE AREA EMERGENCY	Continue as above.	
$\begin{gathered} 1335 \\ \text { to } \\ 1400 \end{gathered}$		JENC/ MGR	PVNGS Unit 3 declares a GENERAL EMERGENCY	Continue as above.	
?7??		JENC/ MGR	Terminate Exercise.	Receive information from EOF, relay to State and County EOCs, Media, Rumor Control Group and APS Media Relations.	
?7??		JENC/ MGR	Commence critique, secure facility.		

PUBLIC INFORMATION CONTROLLER GUIDE

RUMOR CONTROL

PUBLIC INFORMATION CONTROLLER GUIDE
PUBLIC INQUIRY

DRILL CONTROLLER GUIDE					
Time	Ms,	To	Event Summary	Anticipated Response	Controlier Notes
$\begin{gathered} 0927 \\ \text { to } \\ 0952 \end{gathered}$		PI/SS	PVNGS Unit 3 ALERT Notification	Initiate activation, establish contact with EOC/GPIO and RCG/SUPV, determine staffing levels, check equipment operations, receive hard copy of press releases from JENC, brief staff.	
$\begin{gathered} 1027 \\ \text { to } \\ ? ? ? ? \end{gathered}$	$\begin{aligned} & \mathrm{PI} \\ & -1 \end{aligned}$	PI/SS	Pl activation completed.	Respond, from approved press releases and stock information, to questions from the public and the media concerning government response to conditions at PVNGS. Inform the EOC/GPIO and RCG/SUPV of any unusual rumors or questions received.	
?7n? ?7??		PI/SS PI/SS	Terminate Exercise. Commence critique, secure facility.	Receives termination notification from EOC/GPIO.	

SECTION 08

PI MESSAGES

SECTION 8

PUBLIC INFORMATION MESSAGES

SECTION 8

PUBLIC INFORMATION MESSAGES

TABLE OF CONTENTS

PAGE CONTENTS
Section 8-2 Acronyms
Section 8-4 Joint Emergency News Center Message Cards
Section 8-21 Rumor Control Group Message Cards
Section 8-22 Rumor Control Questions
Section 8-26 Public Inquiry Group Message Cards
Section 8-27 Public Inquiry Questions

SECTION 8

PUBLIC INFORMATION MESSAGES

SECTION 8

PUBLIC INFORMATION MESSAGES

ACRONYMS (Continued)

MSG	*	Message
NAN	*	Notification Alert Network
NRC	-	U.S. Nuclear Regulatory Agency
NUE	-	Notification of Unusual Event
PI	-	Public Inquiry
PVNGS	-	Palo Verde Nuclear Generating Station
RCG	-	Rumor Control Group
RCP	*	Reactor Coolant Pump
RCS	-	Reactor Coolant System
REAT	*	Radiological Emergency Assistance Team
RF	*	REAT Forward
SG	*	Steam Generator
SPI	*	State Public Information Spokesperson
SS	*	Shift Supervisor
TOC	-	Technical Operations Center
WRF	-	Water Reclamation Facility

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public Information Spokesperson
Message No: JENC-1
Time: First New Briefing
Location: Joint Emergency New Center
MESSAGE

Was the declaration of ALERT related to an release of radiation? What really caused the ALERT notification? is the public in danger?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public information Spokesperson
Message No.: JENC-2
Time: Second New Briefing
Location: Joint Emergency New Center
MESSAGE

Could the problems that are occurring at Palo Verde right now lead to another Chernobyl? How about another Three Mile Island?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: County Public information Spokesperson
Message No.: JENC-3
Time: Second New Briefing
Location: Joint Emergency New Center
MESSAGE

We understand that a worker at Palo Verde was injured in a work related accident. Can you tell us more about what happened?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: State Public Information Spokesperson
Message No: JENC-4
Time: Second New Briefing
L ocation: Joint Emergency New Center
MESSAGE

How many people live in the 10 -mile area surrounding Palo Verde, and is the state really prepared to handle the situation if this accident tums into another Chemobyi or Three Mile Island ?

Thiis IS A DRILL

To: State Public Infor,nation Spokespersun
Message No.: JENC-5
Time: $1100-1115$ News BriefingLocation: Joint Emergency New Center
MESSAGE
What is the weather forecas " rorv far is it estimated that "he wind will carry any radiation that$m^{\prime} \quad$ be released? What happeis if there is a wind shift?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public Information Spokesperson
Message No.: JENC-6
Time: $\quad 1100-1115$ News Briefing
Location: Joint Emergency New Center
MESSAGE
Although you say that you have conditions under control at Palo Verde, do you have a plan for a worst-cese meltdown at the plant ?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public information Spokesperson
Message No.: JENC-7
Time: $\quad 1115-1130$ News Briefing
Location: Joint Emergency New Center
MESSAGE:

What happens to the employees at the plant site when an accident occurs? Are they sent home? is anyone left to run the plant? If so, are they in danger?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public Information Spoxesperson
Message No.: JENC-8
Time: $\quad 1115-1130$ News Briefing
Location: Joint Eme:gency New Center MESSAGE

How will this accident affect the other two units? Could this same thing happen to them?

EXERCISE UESSAGE FORM

THIS IS A DRILL

To: APS Public information Spokesperson
Message No.: JENC-9
Time: $\quad 1130-1145$ News Briefing
Location: Joint Emergency New Center
MESSAGE
Back to the accident at the plant. How many other employees have been killed or injured on the job at Palo Verde?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: County Public Information Spokesperson
Message No.: JENC-10
Time: $\quad 1130-1145$ News Briefing
Location: Joint Emergency New Center
MESSAGE

How long does it take to evacuate all of the residents from the 10 -mile area surrounding Palo Verde? How do you know when total evacuation is completed?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: State Public Information Spokesperson
Message No.: JENC-11
Time: $1145-1200$ News Briefing
Location: Joint Emergency New Center
MESSAGE

What information do you have on how long the release of radioactive materials into the atmosphere is likely to last?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: State Public Information Spokesperson

Message No.: JENC-12
Time: $\quad 1145-1200$ News Briefing
Location: Joint Emergency New Center
MESSAGE
Whan is the estimate of damage to crops and farm animals in the 10 -mile area around the plant as a resiult of the accident at Palo Verde?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public information Spokesperson
Message No.: JENC-13
Time: $\quad 1200-1215$ News Briefing
Location: Joint Emergency New Center
\section*{MESSAGE}

Are we likeiy to see a core meltdown as a result of the events that have taken place at Palo Verde today?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public information Spokesperson
Piessage No:: JENC-14
Time: $\quad 1200-1215$ News Briefing
Location: Joint Emergency New Center
MESSAGE

Is today's situation at Palo Verde just another example of sloppy workmanship and poor management?

:XERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public Iniormation Spokesperson
Message No: JENC-15
Time: \quad 1215-1230 News Briefing
Location: Joint Emergency New Center
MESSAGE

How long will it take to clean-up after this accident? How much is the estimated cost for this clean-up?

THIS IS A DRILL

To:	APS Public Information Spokesperson
Message No::	JENC-16
rime:	$1215-1230$ News Briefing
Location:	Joint Emergency New Center

How soon after conditions at Palo Verde are back under control will we be able to get in and look at the damage ourselves?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: APS Public information Spokesperson
Message No.: JENC-17
Time: $1230-1245$ News Briefing
Location: Joint Emergency New Center

MESSAGE

With the nuclear production of electricity costing more and more as a result of accidents like this, does APS anticipate more towns like Page and Gilbert Arizona trying to run their own independent electric companies in a better managed and more economical manner?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: Rumor Control Group Controller
Message No.: RCG-1
Time: 1030
Location: Rumor Control Center

MESSAGE

Call the Rumor Controi Group Cente: at the times indicated on the following list of suggested Rumor Control questions. Each question may be asked of more than one operator. Other freeplay questions are encouraged.

RUMOR CONTROL QUESTIONS

(Refer to MSG RCG-1)
I just heard that there's an accident at Palo Verde. Is this the same type of thing that happened at Chernobyl?

I just heard on the radio that there's a problem at Palo Verde, but I didn't hear any warning sirens go off. I live in Arlington and thought we were supposed to be warned if something went wrong at the plant.

What's an ALERT?
What's happening at Palo Verde?
Should we evacuate now, just to be safe?
Is it safe for me to travel west from Phoenix on Interstate $10 ?$
Is radiation being released from Palo Verde? Will someone tell us if we are in danger?
My husband is a construction worker at Palo Verde. Will he be OK?
I just heard the warning sirens go off, but when I tried to tune to KTAR for instructions, my radio quit working. What should I do?

If we have to leave our home because of the problem at Palo Verde, will someone build us a new home like they did in Russia after the accident at Chernobyl?

Is Paio Verde going to melt-down? Exactly what is a meltdown?
If thay can't get this problem at Palo Verde fixed today, are they going to have to shut off our electricity?

Should I stay inside my house if I live in Goodyear?
What's going on at Palo Verde?
Should I bring my pets/farm animals inside? I live east of Tolleson?
Is the state going to take over operation of Palo Verde?
I have to fly over Palo Verde to get to a business meeting in Los Angeles. Am I going to get exposed to radiation?

I keep hearing about something called REMS and MilliREMS. What the heck are these things?

RUMOR CONTROL QUESTIONS
 (Refer to MSG RCG-1)

I live in Buckeye. Is it safe for me to go outside?
What is a SITE AREA EMERGENCY? Does it mean we're going to die or get cancer if we live within 10 miles of Palo Verde?

Will Ruth Fisher School be open tomorrow?
How much radiation is being released form Palo Verde?
If we have to evacuate to a Reception and Care Center, how long will it be before we can return to our home?
is the milk I bought at the Hassayampa Store last night safe to drink?
Someone told me that radiation is more dangerous to children and pregnant woman than to people like my husband. Why?

I'm on my way to a Reception and Care Center. Will someone make certain my house isn't looted while l'm away?

I live in Avondale. Is our water safe to drink, or has the accident at Palo Verde contaminated it?

I have a family living in the 10 -mile area surrounding Palo Verde. How do I find out if they have been able to leave the area and are safe?

I heard that the National Guard was going to take over Palo Verde. Is that true? My son's in the Guard and I don't want him near that mess.

I heard that there's a big cloud of stzam or something hovering over Palo Verde. Is that radiation or just regular pollution?

When will an evacuation of Phoenix be required?
Are the vegetables from my home garden safe to eat? I live in Youngtown?
My electricity comes from Palo Verde. Is it going to be radioactive? Should I shut off my electricity to protect my family?

Is the radiation going to ruin my cotton crop? I live near Cotton Lane and Interstate 10.
Will I have to throw out the milk from my dairy farm? If so, will APS pay me for it? My farm is near 75th Avenue and Glendale.

RUMOR CONTROL QUESTIONS

 (Refer to MSG RCG-1)I just heard that a GENERAL EMERGENCY has been declared at Palo Verde. Isn't that the same thing that happened in Russia a couple of years ago? I have relatives in Phoenix... are they going to die?

I live in a trailer behind the Red Quail Store near Palo Verde, and I want to get out of the area until it's safe again. Can someone come out and help me?

My wife and I just retired here to Perryville and we're afraid that our house is going to be burnt up just like happened to that nuclear reactor in Russia -Cher-something or other. We don't have much life savings and if our house burned up, we wouldn't have any place to live. What are we going to do?

Is it safe to have sex when that thing is leaking? Will it make me have a deformed baby if I get pregnant?

I saw on the news that California had an earthquake. Did it cause your nuclear reactor to leak? should I sell my stock in Wal-Mart?

Your nuclear place is going to cause my daughter to have a miscarriage. I know this cause I read in the National Inquirer that radioactivity causes miscarriages. If my daughter loses her baby, I'm going to sue.

Hysterical voice on the phone....."My son just told me about the nuclear accident in Arizona and that the Russians are responsible for sabotaging the reactor so that they could send their missiles over while we were busy with this accident. Is this true? Are the Russians sending missiles over right now? I have to know please tell me......?

I've heard you're had an explosion. Should I call the travel agency and get my grandkids out of Peoria right now?

My name is Dr. Plethora Sandoch. Ethel Gardner is my patient. How could you tell her that radiation would make her pacemaker stop and scare her so bad? don't you people believe in ethi:s?

This is John Passisstichvitch from Scottsdale, is it true that nuclear fallout makes everything run backwards? I'm a clock maker and I need to know if all my clocks will start running backwards if the fallout reaches Scottsdale?

I read the newspaper reports when that nuclear place in Russia leaked and destroyed everything for 1000 miles around the plant, is that going to happen here? I'd hata to have my prize roses destroyed?

My water has started tasting bad. I know Glendale is the water supply for my city. Has PVNGS leaked into the Glendale water supply? Will I get sick if I drink the water? Is it safe to water my plants?

RUMOR CONTROL QUESTIONS
 (Refer to MSG RCG-1)

This is Jane Jones, I am calling form Albany, New York. I just heard about the disaster down there. My boy friend is a student at Arizona State University and I haven't heard from him. How can I find out if he's okay?

My cancer is in remission. I've heard that radiation from nuclear reactors will cause my cancer to come back and I just don't think I could deal with this anymore.

This is Geraldo, I am doing a show on people who have been exposed to radiation. Could PVNGS sand some of its personnel to be on my show? I heard some people from your plant actually got direct exposure and I just know the public would like to hear their story.

My baby is a SIDS baby. She is susceptible to Sudden Infant Death Syndrome. Will radiation make her monitor go haywire or stop working? I don't want to lose my baby. How can I protect this monitor from radiation, would placing lead all the way around it work?

My name is Aunt Gardner and I heard that radiation will stop my pacemaker. Should I go to the doctor now and get it checked?

This is Herbert Gardner. My Aunt Ethel is really afraid that her pacemaker is going to stop. Just what did you people tell her when she called?

This is Brenda Sue Hanes from Glendale. I had to do exercises when I was in the Air National Guard on what to do in case of nuclear war. I want to know if I can come down and help you'll out?

How can you people let this happen? We are still trying to clean up after Three Mile Island and it happened 50 years ago and now we have to come and clean up after you. Total incompetence, if you ask me.

This is Larry King's Office. Mr. King would like to do a live interview with your Health Department radiation experts tonight on his show on CNN. Who do I need to talk to arrange this? Will I have to call the Governor?

My name is Kathy Vardaman and my son wants to fly his plane over your reactor and take some pictures. I've heard that directly overhead of a leaking nuclear place a black hole exists, and I'm afraid my son will disappear into that black hole if he flies out there?

EXERCISE MESSAGE FORM

THIS IS A DRILL

To: Public Inquiry Controlier
Message No.: $\mathrm{Pl}-1$
Time: 1030
Location: Public Inquiry Center

MESSAGE

Call the State Public Inquiry Center at the times indicated on the following list of suggested Public Inquiry questions. Each question may be asked of more than one operator. Other freeplay questions are encouraged.

PUBLIC INQUIRY QUESTIONS
 (Refer to MSG Pi-1)

I just heard that there's an accident at Palo Verde. Is this the same type of thing that happened at Chemobyl?

I just heard on the radio that there's a problem at Palo Verde, but I didn't hear any warning sirens go off. I live in Arlington and thought we were supposed to be warned if something went wrong at the plant.

What's an AL.ERT?

What's happening at Palo Verde?
Should we evacuate now, just to be safe?
Is it safe for me to travel west from Phoenix on Interstate 10 ?

Is radiation being released from Palo Verde? Will someone tell us if we are in danger?
My husband is a construction worker at Palo Verde. Will he be OK?
I just heard the warning sirens go off, but when I tried to tune to KTAR for instructions, my radio quit working. What should I do?

If we have to leave our home because of the problem at Palo Verde, will someone build us a new home like they did in Russia after the accident at Chernobyl?

Is Palo Verde going to melt-down? Exactly what is a meltdown?
If they can't get this problem at Palo Verde fixed today, are they going to have to shut off our electricity?

Should I stay inside my house if I live in Goodyear?
What's going on at Palo Verde?
Should I bring my pets/farm animals inside? I live east of Tolleson?
Is the state going to take over operation of Palo Verde?
I have to fly over Palo Verde to get to a business meeting in Los Angeles. Am I going to get exposed to radiation?

I keep hearing about something called REMS and MilliREMS. What the heck are these things?

PUBLIC INQUIRY QUESTIONS (Continued)
 (Refer to MSG Pl-1)

I live in Buckeye. Is it safe for me to go outside?
What is a SITE AREA EMERGENCY? Does it mean we're going to die or get cancer if we live within 10 miles of Palo Verde?

Will Ruth Fisher School be open tomorrow?
How much radiation is being released form Palo Verde?
If we have to evacuate to a Reception and Care Center, how long will it be before we can return to our home?

Is the milk I bought at the Hassayampa Store last night safe to drink?
Someone told me that radiation is more dangerous to children and pregnant woman than to people like my husband. Why?

I'm on my way to a Reception and Care Center. Will someone make certain my house isn't looted while I'm away?

I live in Avondale. Is our water safe to drink, or has the accident at Palo Verde contaminated it?

I have a family living in the 10 -mile area surrounding Palo Verde. How do I find out if they have been able to leave the area and are safe?

I heard that the National Guard was going to take over Palo Verde. Is that true? My son's in the Guard and I don't want him near that mess.

I heard that there's a big cloud of steam or something hovering over Palo Verde. Is the radiation or just regular pollution?

When will an evacuation of Phoenix be required?
Are the vegetables from my home garden safe to eat? I live in Youngtown?
My electricity comes from Palo Verde. Is it going to be radioactive? Should I shut off my electricity to protect my family?

Is the radiation going to ruin my cotton crop? I live near Cotton Lane and Interstate 10.
Will I have to throw out the milk from my dairy farm? If so, will APS pay me for it? My farm is near 75th Avenue and Glendale.

PUBLIC INQUIRY QUESTIONS (Continued)
 (Refer to MSG Pl-1)

I just heard that a GENERAL EMERGENCY has been declared at Palo Verde. Isn't that the same thing that happened in Russia a couple of years ago? I have relatives in Phoenix... are they going to die?

I live in a trailer behind the Red Quail Store near Palo Verde, and I want to get out of the area until it's safe again. Can someone come out and help me?

My wife and I just retired here to Perryville and we're afraid that our house is going to be burnt up just like happened to that nuclear reactor in Russia -Cher-something or other. We don't have much life savings and if our house burned up, we wouldn't have any place to live. What are we going to do?

Is it safe to have sex when that thing is leaking? Will it make me have a deformed baby if I get pregnant?

I saw on the news that California had an earthquake. Did it cause your nuclear reactor to leak? should I sell my stock in Wal-Mart?

Your nuclear place is going to cause my daughter to have a miscarriage. I know this cause I read in the National inquirer that radioactivity causes miscarriages. If my daughter loses her baby, I'm going to sue.

Hysterical voice on the phone....."My son just told me about the nuciear accident in Arizona and that the Russians are responsible for sabotaging the reactor so that they could send their missiles over while we were busy with this accident. Is this true? Are the Russians sanding missiles over right now? I have to know please tell me......?

I've heard you've had an explosion. Should I call the travel agency and get my grandkids out of Peoria right now?

My name is Dr. Plethora Sandoch. Ethel Gardner is my patient. How could you tell her that radiation would make her pacemaker stop and scare her so bad? don't you people believe in ethics?

This is John Passisstichvitch from Scottsdale, is it true that nuclear fallout makes everything run backwards? I'm a clock maker and I need to know if all my clocks will start running backwards if the fallout reaches Scottsdale?

I read the newspaper reports when that nuclear place in: Russia leaked and destroyed everything for 1000 miles around the plant, is that going to happen here? I'd hate to have my prize roses destroyed?

My water has started tasting bad. I know Glendale is the water supply for my city. Has PVNGSleaked into the Glendale water supply? Will I get sick if I drink the water? is it safe to water my plants?

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG PI-1)

This is Jane Jones, I am calling form Albany, New York. I just heard about the disaster down there. My boy friend is a student at Arizona State University and I haven't heard from him. How can ! find out if he's okay?

My cancer is in remission. I've heard that radiation from nuclear reactors will cause my cancer to come back and I just don't think I could deal with this anymore.

This is Geraldo, I am doing a show on people who have been exposed to radiation. Could PVNGS send some of its personnel to be on my show? I heard some people from your plant actually got direct exposure and I just know the public would like to hear their story.

My baby is a SIDS baby. She is susceptible to Sudden Infant Death Syndrome. Will radiation make her monitor go haywire or stop working? I don't want to lose my baby. How can I protect this monitor from radiation, would placing lead all the way around it Work?

My name is Aunt Gardner and I heard that radiation will stop my pacemaker. Should I go to the doctor now and get it checked?

This is Herbert Gardner. My Aunt Ethel is really afraid that her pacernaker is going to stop. Just what did you people tell her when she called?

This is Brenda Sue Hanes from Glendale. I had to do exercises when I was in the Air National Guard on what to do in case of nuclear war. I want to know if I can come down and help you'll out?

How can you people let this happen? We are still trying to clean up after Three Mile Island and it happened 50 years ago and now we have to come and clean up after you. Total incompetence, if you ask me.

This is Larry King's Office. Mr. King would like to do a live interview with your Health Department radiation experts tonight on his show on CNN. Who do I need to talk to arrange this? Will I have to call the Governor?

My name is Kathy Vardaman and my son wants to fly his plane over your reactor and take some pictures. I've heard that directly overhead of a leaking nuclear place a black hole exists, and I'm afraid my son will disappear into that black hole if he flies out there? How much will my APS bill go up?

I'm at the Circle K in Goodyear, which way should I go?
I'm pregnant will this hurt my baby?
Why do we need Palo Verde anyway?
How long till it explodes?

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG Pl-1)

What are you doing about the problem?
After the explosion, how long till I get my power back?
Is my water OK?
Should I tum off my gas?
My husband was hunting rabbits on Sunday about 5 miles from the plant, can we eat them?
I need to go to Yuma, can I take S.R. 89?
I live in Goodyear and the air smells funny, am I being radiated?
I bought groceries in Litchfield Park, should I throw them away?
I have friends driving in from LA on $1-10$, will they be radioactive and glow in the dark?
How many people do you think will die?
How can I tell if I have been exposed to radiation?
My dog got loose and I live 8 miles from the Palo Verde plant, can you send a helicopter to find him?

I ran out of my heart medicine and have been advised to stay indoors, can I go to Walgreen's if I drive real fast?

My father is on oxygen and his tank is almost empty, how can I get him more?
Can I milk my cows? (I live in Suprise)
My car won't start and I Don't want to stay home, will you come and get me?
How long will this last?
Did a terrorist cause this problem?
I work at the "Drop Inn" bar thats about 2.5 miles for the plant and I didn" leave work until $2: 30$ A.M. this moming, have I been exposed? Where can I go to get checked?

I'm Bill Smith and I have produce being picked right now, can I sell it?
Hi, this is Bill Smith again, should I do something about the farm workers I have picking in the fields? If they get sick, who will pay their medical bills?

I live at 75th Ave and Thomas, where is the nearest shelter?
I have been told to evacuate. What should I do with my pet Boa constrictor? He requires special lighting and cooling, are there provisions for him at the reception and care centers?

PUBLIC INQUIRY QUESTIONS (continued)

(Refer to MSG Pl-1)
I have been advised to stay indoors but didn't know anything was wrong until 10 A.M., before that I was tanning from about 8-10 A.M. and I live 3 miles from the plant. Can I breast feed my baby?

I'm supposed to fly on American West to LA, is it safe to fly to fly over the area?
My niece goes to Palo Verde School and I am supposed to pick her up for a dentist appointment, can I come and get her ?

What is Governor Symington doing about this problem?
Has anyone advised President Clinton of this problem?
Is FEMA in charge? If not who is?
I live about 7 miles from the plant and just painted the outside of my house, as a matter of fact the paint is still wet, is it going to be contaminated?

I own 6 acres of land about 15 miles from Palo Verde is the government going to buy it?
I retired from the Nevada Test Site 10 years ago and am a Nuclear Engineer, do you want me to come and heip you?

My friend just told me that the fall out is going to land on Tolleson, is this true?
I am a bee farmer, and liva 12 miles outside of the plant, What can I do to save my honey?
My goat is pregnant, will her $\quad 1$ kid be OK?
I own a 15 passenger van and ...f husband is leaving to help evacuate the area, will he be safe?
Can't you just tum the plant off?
I live just outside the 5 mile marker and I heard instructions for all people inside a 5 mile area to evacuate, what about me?

My name is Sandy Shine and I represent "Prisoners Are Citizen's Too", Why aren't you evacuating the Perryville Prison? Are you trying to play judge and give them all a death sentence?

I saw a UFO over the plant last night, did the extra-terrestrials take over the plant?
I'm house-sitting for my daughter and I heard some sirens awhile ago when I was washing the car when I came in for a beer. The TV guy said that all people in a 5 mile area should evacuate, am I within 5 miles? My address is 37705 west Buckeye Road.

I live 8 miles from the plant and I was looking out my window with binoculars at the plant and I saw some men in suits and carrying all sorts of equipment, am I contaminated? Will I go blind by looking at the plant through my binoculars?

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG Pl-1)

My name is Wanda Byar and my sister just called me from Pennsylvania and she said that you people will be sending me to a resort in San Diego until this is over, since I only live 4 miles from the plant? What time is my flight and what's the weather like in San Diego right now?

I'm from Rose Lane School and my fourth grade class was scheduled for a tour of Paio Verde today. Will you still be giving tours today?

My brother went hang gliding at the White Tanks Mountains, will he be OK?
This morning my aunt cut her hand and my husband took her to West Valley Emergency Center in Goodyear, Will they be able to come back home?

Why am I being told to evacuate when I see Sheriff's deputies driving around? Why is it OK for them to stay in this area?

I read that if I take salt the radiation won't hurt me. How many tablespoons should I take?
Is it true that all animals at that Wild Animal Park out there are going to die? i'm willing to take in some of them. Who should I call?

My house is right next to siren 11 and after it went off my wife can't hear anything. Why didn't you warn us that you were going to sound the sirens?

I live at the 8 mile marker area and some new neighbors just moved in next door and I don't believe they know about the Plant. The sirens just sounded and I fumed on the radio and it said to stay indoors, the neighbors are still outside barbecuing, would it be safe for me to go and tell them to go indoors?

Hi, we just moved in out in the area and were informed that we were to stay indoors, can we eat the steaks we just barbecued?

I forgot to pay my APS bill this month, did you do this just to make me pay?
Hi, my name is Fred Gardner and II planted some carrots and radishes in my garden last week, will they be OK to eat? I live at the corner of Narramore and 333 Avenue.

My pregnant cat, who strayed away last week, just retumed home this morr.ing hungry and unpregnant. Do you think she is contaminated with radiation? I live near Tonopah and I'm getting ready to leave the area, should I bring the cat with me?

I slept Last night in my van at Salome. Should I go to the Maricopa County Medical Center and get checked for radiation contamination?

My grandfather travels frequently between Needles and Quartzsite and he may be in Quartzsite now, Do you think he will be in any danger?

Hi, I am willing to fly my aerial sign in and around the 20 mile radius with the words "EVACUATE TO THE EAST OR WEST". What agency or authority do I contact to arrange this excellent method of alerting citizens.

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG Pl-1)

I live in Gila Bend and I am supposed to travel to Phoenix tomorrow for a job interview. I normally travel on $1-10$ East into Phoenix. Do you recommend another route into Phoenix? Is it safe in Phoenix or should I cancel my appointment for this job interview?

I arn a wealthy person and I know several others who believe if we were contaminated and expose to radiation, we want the best medical assistance available. We can pay for this assistance. Which hospital do you recommend? I think you should alert the Mayo Clinic to be prepared to assist us.

I reside in the Carefree area North of Scottsdale. If there is a wind shift, will this area be contaminated with radiation? Isn't any amount of radiation contamination harmful? Why don't you advise evacuation of this area. I think I'll just take a vacation and get out of here for awhile. I refused to stay here and allow government officials to decide when I should evacuate. I know of some people in their RV who usually park everyday at the Buckeye Hilis Park. It is located on State Route 85 just south of Palo Verde Road. Will they be able to hear a siren? Will they be notified if they should evacuate the area? I would feel real bad if something happened to them out there.

I'm calling in on my cellular phone. The battery is low. Please let me know if I should not be in the Hummingbird Springs Wilderness Area. (I just heard a bulletin over my truck radio but not all of it. I know that it concerns the PVNGS and I did manage to get this phone number.) Can I travel back into Phoenix or should I evacuate in another direction?

I live along the Sun Valley Parkway between Buckeye and Sun City (actua'/ my home is on the West side of the Sun Valley Parkway and directly west of the (backside) ' ite Tanks Mountains. Should I plan to evacuate?

My favorite pass time is to fish at Hassayampa near the Gillespie Dam. Is it OK to continue doing this? Will it be OK to eat the fish I caught late yesterday afternoon? I live near Buckeye. Shouldn't I be leaving the area and which direction should I and my family go? Do you have any suggestions about how far we shiould travel and where we should stay if we need to evacuate?

I live within the 50 mile radius of the PVNGS. If I hear my sector is to be evacuated, how long should I plan to be gone?

My elderly husband and I are preparing for the worst. However, he has become very pugnacious about this whole incident at Palo Verde. He is resisting the advisories to prepare to evacuate. Who should be advised of this predicament? Will we be forced to leave even if we do not wish to leave? Our home is in the area of Arlington.

I'm calling because I live and own a business in Quartzite. Will you be evacuating anyone toward the Quartzsite area? Please have someone announce that there is a few aircraft with pilots available for rent at the Quartzsite airport. We can fly anyone into California from Quartzsite, but they must travel light. My phone number is (phone number) for further information.

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG PI-1)

My name is Jacob Waltz Jr. and I prospect in the areas of Gila Bend Mis. near Sundad, the Eagle Tail Mts. the Big Hom Mis. and along Centennial Wash (West of Phoenix). I usually prestash plastic gallon jugs of water and some canned foods in these areas for emergencies. I wondered if these supplies will be contaminated? Can I go into these areas today? If I have to stay evacuated from these areas, how long will it be until I can go back?

I am caretaker of some acreage along $1-10$ between Tonopah and Vicksburg Junction. I need to travel into Phoenix. Will $1-10$ be open to Eastbound traffic? If not, when will it be open? During this emergency, can I request airlift of food supplies to me (especially if $1-10$ is closed off)?

I'm calling to let you know that I am psychic and I envision enormous problems with the incident at the PVNGS. In fact, radioactive releases cause me to become extra sensitive to forces beyond the physical world. You may be able to use me to reveal the unknowns associated with this incident. I am a reputable psychic and I have been used by law enforcement to solve mysteries. Anyone needing my help may contact me at (phone number). Please let me know of any interested governmental authorities that might need my help. Actually, you should tell them that I can see a chamber within the plant that is filling with radioactive water. I know the water is very radioactive because it has a cobalt blue glow about it. And, I see red hot boiling bubbling water encompassing some sort of dial indicating high numberals at a pressure sensitive indication mark. I truly hope this helps. Oh, Oh, I am receiving more and more revelations now - I see a hand - someone's hand pushing or tuming a button or a valve. Is someone, an employee, in the chamber of the plant? I better hang up now - I'm getting dizzy, which means a very important message will be coming to me soon. I'll cal! you back.

When Will President Clinton get here? Where will he be staying?
Hi my name is Kelly and I am in the fourth grade, I am doing a book report on desert plants, can you help me?

I have lived in Goodyear all my life and during the spring I like to collect the Sagaro Cactus Fruit out here, will I be able to do it this spring?

My mom is cooking vegetable soup and she doesn't believe me that were not supposed to eat fresh vegetables, will you talk to her and make some sense to her?

There is supposed to be a big concert this weekend at Blockbuster Sky Pavillion, do you think it will be canceled? If they cancel it where can I tum my ticket in for reimbursement?

I just saw this lady on the news and she said she is with emergency management and you chould tell her that her clothes don't match.

My uncle lives in Prescott and said that I better hurry up and get out of Tempe or I'll be contaminated, is this correct?

I have been advised to shelter in place, how many years will it be before I can leave?
If I hike to Squaw Peak will I be able to see the meltdown?
Is this a drill or is the plant really in trouble?

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG PI-1)

The Phoenix Suns are supposed to play tonight, is it safe for them?
I have developed a radiation catcher and if you let me go into the unit I can catch all the radiation in my devise. Who will I contact?

Can I take my ex-husband out there and leave him?
Who do those people think they are getting on the TV and telling me what to do? They are telling me where to go and what to do. Just what makes them the experts?

Why hasn't the problem been fixed?
My wife is a firefighter and I'm telling you now that if the plant explodes, you better not make her go to the plant!

I have been told to evacuate but I'm worried that someone is going to steal all of my rocks in the front yard, can you send someone with a truck to help me load them in a truck?

I know this was a conspiracy so that the baseball stadium will not be built out there.
I want to know the name of the person who caused this problem?
Why don't you people just capture all to the radiation with one of those big planes?
My nephew works for NASA and if you want I'll call him and tell him to bring the shuttle here and we can just send the contamination to the moon? What time should I tell him to be here?

I'm lonely and I saw your number on the television. My children are all grown and they never have time for me. When Billy an Sally were little I devoted my whole life to them and look how they treat their loving mother? Do you call your mother? I bet you let your mom see the grandkids more than two times a week? But not my children, oh no they are to busy for an old woman like me! I think you should call them an tell them what a rotten child they are and that they should be grateful that you have such a wonderful mom. You can call Billy at the hospital where he works at Good Samaritan and Sally works at some school, I'm not sure which one but you sound like a smart person and I know you'll find her and tell her.

I have some cattle that I allow to graze at the area bordered by the Hassayampa Gin Rcad, Centennial Wash, and Agua Caliente Extension Road. Should I send someone out to round thern up? What is going to happen to my livestock when I evacuate?

Please, I wonder if you could give me a phone number to the Nuclear Regulatory Commission? I need to call and report all this trouble that the PVNGS and the State of Arizona are causing the citizens. I do not believe that a nuclear plant should be allowed to have accidents. I have been old for years and years about how something like this might happen. If you won't give me their umber, I'll just call information and get it. I live in Sun City and I am going to contact my congressman too.

PUBLIC INQUIRY QUESTIONS (continued) (Refer to MSG PI 1)

Is the governor going to release all non-essential State employees from their work to go home nd take care of their families? I just heard that PVNGS has a very major emergency problem nd evacuations are occurring or will be occurring. I work at the Department of Motor Vehicles and do not believe business should be conducted today. I think, as a precaution, I will just request leave of absence for the rest of the day.

I was watching TV when an EBS message was Broadcast. It said something about referring to your Palo Verde Public Safoty Calendar. I don't have one. I know that there is trouble at the Nuclear Power Plant. Could you explain to me what is going on? I live in Laveen and I am certain the EBS message was telling everyone to evacuate. Where would I evacuate to? This sounds pretty serious. There is going to be a live report soon on TV - you might want to watch it - Channel 12, I think.

Hello, we operate the Rainbow Valley Dairy in Buckeye. We heard that there is trouble at the PVNGS. Our boss is not here. We believe that when something like this occurs, we are to cease our Dairy Operations, shelter the livestock and wait for further instructions. Is this true? How long will we be inoperable, If we are told to evacuate?

This is Ganley's Funeral Home at 104 East Baseline Road in Buckeye. We realize there is a problem at the PVNGS. Will it be advisable for us to cancel all graveside funeral services until authorities are certain that there is not a threat of radioactive contamination releases into the atmosphere? Can you tell us if this is a long term threat or a short term threat to the population? Should I alert the Funeral Homes in Sun City West of potential problems?

This is Arizona Soaring Adventures. We're located on North Lake Pleasant Road and West of Carefree Highway about 8 miles South of Lake Pleasant. Our gliders do not normally attain very high altitudes. Should we shut our business down during this potential radioactive threat? Does it appear that our will be evacuated?

I am a resident of West Phoenix. I am very concerned about what is going on at PVNGS. Will the population of West Phoenix area be told if radioactivity is transferred here by the wind. Shouldn't we all just leave now and not wait?

This is the manager of the Estrella Mountain Golf Course in Goodyear. I believe that due to the emergency at the PVNGS, people have been advised to leave or take shelter. Shouldn't evacuate this golf course? Will this area eventually be told to evacuate? Will I receive compensation from the Govemment for each day I lose business because of the PVNGS emergency? Are you going to alert the Golf Courses over in Sun City West to close?

Hi, my husband is a truck driver and he will be heading into Phoenix from California on 1-10 today. Will he be delayed because of this emergency? He carries drug store commodities such as soaps, toilet paper, perfume etc. Will he be allowed into the Phoenix area at all? How is this emergency being handled? Is it going to get worse - - like is the City of Phoenix in any danger?

I'm calling long distance and I need the phone number of every Red Cross Reception and Care Center that opens. I am trying to locate a relative and I believe he will be among the evacuees. Will employees of the PVNGS be checking in at Reception and Care Centers? Is there a phone number that I can call directly to the PVNGS for information about their employees?

PUBLIC INQUIRY QUESTIONS (continued) (Refer to MSG PI 1)

Hey, we just got word that we have to evacuate out of this area. We're at Old US 80 and Arlington Canal Road. If this is true, we only have enough gas to drive to Phoenix and we have no extra money for anything eise. Will we get some financial help at the Red Cross Shelter? I do not get paid for five more days and, because I have to evacuate, I may not even be able to get my check until this emergency is over. You might want to tell someone to expect us. There is myself, my wife and four children under 10 years old. We're packing as much as we can and we are trying to bring all of our food that we bought with my last paycheck so that it does not spoil and go to waste. Do you think it might already be contaminated?

I would like some information about the Parker area. Is there a chance that this town will be affected by the radioactivity that may have been released form the nuclear generating station West of Phoenix? We have people boating and fishing on the Colorado River. All this outdoor activity is occurring today and we are actually on the Colorado River Indian Reservation. Will the Indian Reservation receive timely notice if there is a threat to the population here? Is the City of Phoenix going to have to evacuate?

Yes, this is Pierce Aviation. I have a concern about my crop dusting business. Should I cancel my scheduled crop dusting activities today? We have several farms in the agriculture areas West of Phoenix -- pretty close to PVNGS. If there is a release of radioactive steam shouldn't we all stop our work and get at 100 miles away from the area?

Hello, I am a student at ASU, Science and Engineering. Could the Emergency Management Organization working the emergency at PVNGS use us? We are perfectly willing to help with sample gathering, monitoring, and/or Lab analysis. Here is our phone number so that someone can get back to us. Some of our Science Club members are very eager to learn what is happening on site at the PVNGS.

I telephoned the Lake Pleasant Park Department to see about reserving an area for a private party next weekend and the Park Ranger told me that they may have to close the Park down depending upon what is happening at the PVNGS. Is this true? If radioactivity is released into the air and the breeze carries it over to Phoenix or Lake Pleasant - won't it be harmful to the population in those areas? How may I stay informed on shat is occurring with this emergency? Thank You

Hello, I had to drive all the way into Morristown to use a phone to call you. I hope you can give me some accurate information. I am a rock hound and part of the time I just prospect in the area of the Hieroglyphic Mountains and Castie Hot Springs. When the weather is nice, I just sleep out under the stars. will I be in jeopardy of potential radiation from the PVNGS because I am outside ail the time? Will my food be OK? Does the situation appear to be escalating? Will my radio be enough to keep me informed? What areas of the state are affected by this right now? If I notice the wildife acting strange and getting sick should I call you? I thank you. I might call you again.

Hello, I work at Westridge Mall. Should I go to work as usual? Isn't this a dangerous situation out there at the PVNGS?

PUBLIC INQUIRY QUESTIONS (continued)
 (Refer to MSG PI-1)

I am owner operator of a popular Vailey Mexican Food Restaurant. We use daily shipments of lettuce, tomatoes, onions, green chilies, parsley etc. Some of them are obtained locally and some are shipped over from LA and Yuma. Should I expect a cutback or shortage of these fresh produce? Will shipments be halted entirely if problems increase at the PVNGS? Have the local producers/shippers/receivers/wholesalers been informed of this potential predicament? I'm afraid this is going to hurt my business.

If there is a radioactivity found in my neighborhood should ! empty my swimming pool before using it again?

SECTION 09

CHEM / RAD

RAD DATA OVERVIEW

1) Rad data is prepared in three main groups: the P-58 leak area; the lower Aux. Bldg. after the RAS occurs; and one the Chemistry Lab during PASS sampling activities. Each area will have a Controller assigned.
2) For the Exercise, all onsite and offsite radiological conditions will be "as read" until 11:21 when a penetration is broken on the outside of containment near the 100^{\prime} Personnel Hatch (outside). This leak will be the primary source on onsite and offsite radiological problems until the RAS occurs at 1400. The RAS action will cause problems on the 70' Aux Bldg and below only.
3) The $\mathbf{1 4 0}$ ' OSC and RP Island area remain at "as read" dose rates, contamination and airborne levels throughout the exercise.
4) The Chemistry Lab will remain at "as read" dose rate, contamination and airborne levels throughout the exercise EXCEPT FOR periods when PASS Sampling is taking place. During those periods the PASS Controller will notify all RMS Controllers that the prepared PASS sampling data is in use.
5) The 140^{\prime} Control Room, STSC and areas within the heavy steel doors remain at "as read" dose rate, contamination and airborne levels throughout the exercise.
6) All levels of the Control Building remains at "as read" dose rate, contamination and airborne levels throughout the exercise.
7) The Diesel Generator Buildings remain at "as read" dose rate, contamination and airborne levels throughout the exercise.
8) The OSB Building remains at "as read" dose rate, contamination and airborne levels throughout the exercise.
9) The Corridor Building will remain "as read" throughout the exercise; however, during the $13: 25$ to $15: 15$ time period, when you leave the Corridor Bldg on any level to approach the Turbine Hall the shine from the penetration area and some plume shine will be seen on the far end of the walkway. Refer to the MSSS structure maps for dose rates on the walkway areas. There will be no airborne or contamination seen on the walkway or Turbine Hall areas during this exercise as the plume will be carried up and around the south side of the Containment (point out to the players that they can clearly see the steam release being carried up and over the south side of containment). Since the dose rates are significant during the peak release they will be able to see some plume shine dose effect. OW will $=\mathrm{CW}$.

CONTROLLER NOTES FOR LEAK AT P-58

1121 Penetration P-58 is broken at this time. The "Crane Operator" will call in an original report to Control Room. By now OSC will be activated, so a request for an investigative team will be made. Be sure you are dispatched with the team so you can supply the initial perspective.

Initial RP Team arrival: inform the team as they are heading from the Corridor Bldg to the reported leak site that they can hear steam being released and can see some steam wafting over the south end of containment. As they round the corner where they can see the penetration supply them with the "original conditions" map (page 9-4) and amplify what the map is depicting. If they are unsure what a "pillbox" is explain that they are looking at large broken chunks of a broken concrete box (the actual pillbox should be at the end of the Turb Hall for explanation purposes). Make it clear that the large amount of concrete is overlaying the penetration and penetration post protectors; also there is a large amount of crane cable snarled up in the debris and still connected to the crane boom. The boom has been lowered to the ground and is also impacting access - the team will have to approach from the side next to the RCA boundary. In the same time frame make it very clear that a steady amount of live steam is being released and can clearly be seen to be carried up over the 100° hatchway and continue on up over the south side of containment. The wind at this time will be from 304° and will generally carry in that direction. It is important that the players are given a clear mental picture of the release path so questions as to whether released activity is being brought into the Aux Bldg or Control Bldg ventilation can be answered. The activity will not be brought into the buildings as we do not want to prompt a possible OSC relocation. Work area air samples are provided for this initial period.

Provide the dose rate data while making clear to the surveyor and any other players that the closest possible approach physical safety allows is 10^{\prime} from the leak due to steam blowing out. The followup teams to the area may attempt some rapid recovery actions with the intent to somehow stop the leak from the outside. The Controller must delay these actions until 1325 when fuel damage will elevate dose rates to the point where teams will have to withdraw. For drill purposes the only approach to the leak site is from the south side along the RCA boundary. The existing crane was shut off by the operator after the accident - the boom is now down on the ground and over some of the debris. The boom appears bent and the crane cannot be started. If another crane is asked for it will not arrive for 45 minutes after it is asked for; and it will take another 45 minutes to clear the old crane, boom, cables, etc. to the point where any possible actions to begin sealing the penetration might take place. It is difficult to predict what the players may choose to try here; however the bottom line is that the Controller must keep recovery attempts from being successful until the extreme dose rate phase.

1325 actions: the fuel pin failure causes a very rapid increase in the dose rates; you will need to have the mRem/minute figures well in hand to monitor the work group ex posure. They may note the increase immediately and drop back immediately; however if no one is watching their meter or taking a SID reading they may be in the extreme dose rates for some time without knowing and you will have to provide some gross indication of the dose they would have received. Be aware of what RP is doing so you can provide data at a realistic opportunity - there will be no sign outside the building that the activity has increased as the steam volume will stay the same. Also the wind has shifted slightly from 304° to 290° - make it clear to the players that the steam is still rising up over the 100° hatch and over the south side of containment - after 13:25 they will see plume shine in the breezeway area and on the upper walkway by the Turbine hall but they will not be in the plume. Air samples are provided for work area samples taken during this peak leak period.

1400 actions: at this time containment spray has been restored and containment pressure begins dropping; dose rates will decrease with decreasing pressure until by 1515 containment pressure is near " 0 " and the release stops. Data is provided for this period. It is likely that any efforts to seal the leak in this area will stop at this point; if it does get sealed adjust the dose down per the NOTE on the map.Air samples are provided for 1400 to 1515 and for 1515 to drill end for the work area.

There will be contamination at the penetration area to contend with once the leak starts and from then. All dress and respiratory requirements must be fully demonstrated at least once by each player - be sure to keep up with changing REP requirements (players should have copy of REP with them).

1515-END Conditions map for Controller NOTE: after break is plugged decrease all data by $1 / 2$ including air samples.

Dose Rate Information $\mathrm{m} \mathbf{R} / \mathrm{hr}$:

Start to 13:25-provide "As Read" for all Teams.

13:25 to $15: 15$ - provide values in Δ :
$15: 15$ to end - use .01 X values in

Air Sample Data \& Contamination Data:
"As Read" in these areas throughout exercise.
As players will not be in the plume in these areas, the OW dose is the same as the CW listed in

NOTES FOR AUX BLDG

0958 The unit loses "B" bus which impacts RMS significantly. All post accident area monitors are lost so no remote indication of dose rates below the 100^{\prime} will be available; RU-9 and 10 are available; the SIAS around this time frame causes the Fuel Bldg Essential Filtration to line up to the 100^{\prime} Aux Bldg; RU-145 will be monitoring any release activity from here and it goes on battery backup at this time; no increase in activity seen yet. All dose rates "as read".

1114 RCS leakage is increasing in containment causing an airborne increase on the containment monitors but which is not seen outside containment.

1121 Penetration is broken on containment near the 100° hatch outside and release begins to the environment; no indication of increased activity seen in Aux Bldg.

1320/1325 Containment spray started; followed by failed fuel indication 5 minutes later; dose rates on containment monitors increase rapidly; however no increase seen in Aux Bldg at this time due to effective containment shielding; dose rate at 140^{\prime} containment hatch goes up to $45 \mathrm{mR} / \mathrm{hr}$ because of minimal shielding in hatch area; if personnel place a meter ON containment penetrations where one might expect reduced shielding effectiveness the player will see from $1 \mathrm{mR} / \mathrm{hr}$ to a maximum of $25 \mathrm{mR} / \mathrm{hr}$ depending on the shielding gap size.

1400 A RAS occurs through the "A" train equipment. Dose rates increase primarily in the West Wrap room, the "A" Shutdown HX Room and the "A" HPSI pump room. General areas on the 70' and below increase also; RU-9 increases due to some minimal accumulated leakage although not enough to cause other than a slight rise through the Fuel Bldg Vent release path which is monitored by RU-145 (RU-145 will be lost when the battery backup is lost). Use the data below and on page 9-12 for any entries - few or none are expected as no need for an entry is foreseen.

DOSE RATE INFO TO KEEP TRACK OF PLAYER DOSE:

$.25 \mathrm{Rem} / \mathrm{hr}=$	4	$\mathrm{mRem} /$ minute
$1.0 \mathrm{Rem} / \mathrm{hr}=$	17	$"$
$4.0 \mathrm{Rem} / \mathrm{hr}=$	67	$"$
$10 \mathrm{Rem} / \mathrm{hr}=$	170	$"$
$40 \mathrm{Rem} / \mathrm{hr}=$	670	$\mathrm{mRem} /$ minute

AUX BLDG DOSE RATES on LEVELS Below 100'

Drill Start until 1400 dose rates:
For all entries dose rates and air sample data will be "as read".
Repair work is expected to be ongoing in the West Wrap to repair SI-672 valve; and entries may be made to look at SI-460 in "A" Shutdown HX Room; and there may be other unexpected team requests.

1400 until end of drill dose rates (post RAS time frame):
Repair work is expected to be completed by now and no actual entries are anticipated; use the below data if an entry does occur.

Peak Piping Contact Levels will read 40 Rem $/ \mathrm{hr}$ contact :
This includes all contact readings on RAS lines in West Wrap, valve 672 (Containment Spray MOV Isolation Valve), "A" Shutdown HX/piping, "A" HPSI Pump/piping.

Peak Room Dose Rates will be .25 Rem/hr at entry point increasing to 4 Rem/hr at 10 ' from " A " side equipment.

General Areas in halls from 70' Aux Bldg on down and any unaffected equipment rooms on " A " Side (west side of 70°) will read from $10 \mathrm{mR} / \mathrm{hr}$ at elevator to $250 \mathrm{mR} / \mathrm{hr}$ at entrances to " A " side equipment rooms. All " B " side (east side of 70°) will also read from $10 \mathrm{mR} / \mathrm{hr}$ to $250 \mathrm{mR} / \mathrm{hr}$ as the west end of the levels are approached.

AUX BLDG AIR SAMPLE DATA for LEVELS Below 100'

Drill Start until 1400: RU-9 and RU-10 will both indicate normal activity (low $\mathrm{E}-7 \mu \mathrm{Ci} / \mathrm{cc}$) if release stack samples are taken from the Plant Vent Stack or the Fuel Bldg Exhaust Stack they will also indicate normal "as read" activity.

After 1400: RU-10 will increase slightly (P\&I will be "as read"; NG will be $8.2 \mathrm{E}-7 \mu \mathrm{Ci} / \mathrm{cc}$) with no noticeable increase on the Plant Vent Stack sample (RU-143 will be inoperable but a grab sample could be obtained; "as read" if it is).

After 1400: RU-9 will increase about one decade (to $7.9 \mathrm{E}-6 \mu \mathrm{Ci} / \mathrm{cc}$) but will not reach the Alert or Alarm setpoint. RU-145 will be lost due to battery failure by now (a Fuel Bldg Exhaust Stack grab samples will show 6.8E-7 $\mu \mathrm{Ci} / \mathrm{cc}$ Noble Gas activity with "as read" on Iodine and Particulate samples).

ONSITE/OFFSITE AIRBORNE DATA HANDLING

The only data readily available without bringing samples in to the Site for an isotopic analysis will be from the RFAT Teams using the Air Sample Data Sheet cpm-to- $\mu \mathrm{Ci} / \mathrm{cc}$ conversion for iodine and particulate activity. Players must earn that data by using the sheet properly.

Therefore DO NOT GIVE OUT ANY L :TA in $\mu \mathrm{C} / \mathrm{cc}$ units. The only air sample data you may give the player is the cpm rate on the iodine and particulate media.

Field air samples/stack grab samples/etc. that are brought in for isotopic analysic will be handled as follows:

- the Controller covering the collection of the air sample should insure that the sample paperwork being filled out contains
the time and specific locatio,n where the sample was taken; the types of samples coller ted (particulate, iodine, noble gas or all three) the player who needs the results (RPC/RAC/whomever)
- the samples must be delivered to the Unit Count Room with the completed paperwork. The Affected Unit Count Room will stay usable throughout the Exercise. For drill purposes the samples will be intersected in the OSC by the Lead Controller who will act as a simulated Count Room.
- after a reasonable time lapse reflecting count time, etc. the Lead Control'er will supply an isotopic analysis sheet to the RP Staff in the OSC. They vili take care of informing and/or faxing the appropriate players.
- one exception to this is a stack grab sample that the RMS/EFFLUENT Tech may collect. The Controller in the Sirnulator should have the player talk through the collection process. At that point the Simulator Controller should notify the Chemistry PASS Controller that a stack grab has been collected. Again the time/type/results information as above must be given. The Chemistry PASS Controller will then simulate the Chemistry Count Room and provide the data to the Chemistry player after an appropriate interval. The Chemistry player will then process the information as appropriate.

This methodology will allow the correct isotopic breakdown to be provided for whatever samples the players happen to decide to take and bring in for analysis. It will also provide a realistic sequence of actions for the players to follow.

PASS CONTROLLER DATA

Chem Lab Radiological Drill Conditions:

1) During the period the PASS Sample Team is in the Chemistry Lab the Controller will provide the dose and RU monitor information. All players in the area will be affected by the below dose rates when sampling is being done. Note that the Chem Lab is at "as read" values during all periods except for PASS sampling. If possible, notify the Simulator (Chuck Mighells), the EOF (Lynn Fitzrandolph) and the TSC (Ed Walker) when any sampling is done after 13:25. As the dose will not be seen on ERFDADS or the Simulator RMS DCU there may be confusion when readings are reported from the Chem Lab.
2) The actual Onshift RMS/Chemistry Technician (non-player) should be informed prior to the start of the Exercise that players may call there incorrectly. Provide a phone number to allow the RMS Tech to correct the caliers.
3) The Chemistry Player should be available when the Exercise starts in the simulator. The Simulator Control Room Staff will call the Chem Lab with requests prior to OSC activation. The designated player should respond to these requests rather than non-playing Unit Chemistry Techs.
4) The PASS System will not actually be operated during the exercise. A separate annual PASS drill is done to fully operate the PASS system. Other than that (no real recirculation, no real samples drawn) all activities need to be fully played out. All briefing dress requirements, dosimetry requirements, etc. need to be followed and demonstrated at least once (if a player has already demonstrated donning PCs, or posting an area then that activity may be simulated thereafter by that player).
5) The Count Room is assumed to be operational throughout the exercise. Air samples taken will show the same activity as the 140° OSC area. Therefore, all actions may be played out in Unit 3. Review page 9-14 for stack grab sample handling.

Prior to Sample Recirc (Initial):

Contact lead bricks
Gen Area by sink In door to sink area
RU-158D
RU. 26
RU-23
RU-10
Count Foom area
"As Read" mF/hr
"As Read" mR/hr
"As Read" mR/hr
"As Read" $\quad \mathrm{mR} / \mathrm{hr}$ (lose at 09:58)
"As Read" mR/hr
"As Read" mR/hr
"As Read" $\mu \mathrm{Ci} / \mathrm{cc}$
"As Read" mR/hr

At end of Sample Recirc prior to flush (high readings):

Contaci lead bricks
Ger, Area by sink
lin door to sink area
RU-158D
RU-26
RU. 23
RU-10
Count Room area
"As Read" mR/hr
"As Read" mR/hr
"As Read" mR/hr
"As Read" mR/hr (lose at 09:58)
"As Read" mR/hr
"As Read" mR/hr
"As Read" $\mu \mathrm{Cl} / \mathrm{cc}$
"As Read" mR/hr

After flush is complete:

Contact lead bricks Gen Araa by sink In door io sink area
RU-158D
RU-26
RU. 23
RU. 10
Count Room area
"As Read" $\mathrm{mR} / \mathrm{hr}$
"As Read" mR/hr
"As Read" mR/hr
"As Read" mR/hr (lose at 09:58)
"As Read" mR/hr
"As Read" mR/hr
"As Read" $\mu \mathrm{Cl} / \mathrm{cc}$
"As Read" mR/hr

PASS Syringe Dose Rates UNSHIELDED:

1.0 cc is	80.0	$\mathrm{mR} / \mathrm{hr}$ contact	6.5	$\mathrm{mF} / \mathrm{hr} \mathrm{@} 1^{1}$
	1.5	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	1.0	$\mathrm{mF} / \mathrm{hr} \mathrm{@} 3^{\prime}$
. 500 is	40.0	$\mathrm{mR} / \mathrm{hr}$ contact	3.0	mP/hr @ 1^{\prime}
	7	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	4	$\mathrm{mR} / \mathrm{hr}$ (9) 3^{\prime}
. 100 is	6.0	$\mathrm{mR} / \mathrm{hr}$ contact	. 6	$\mathrm{mR} / \mathrm{hr}$ @ 1^{\prime}
	. 2	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	. 1	$\mathrm{mR} / \mathrm{hr}$ @ 3^{\prime}

PASS Syringe Dose Rates SHIELDED:

$1.0 c c$ is	23.0	$\mathrm{mR} / \mathrm{hr}$ contact	.7	$\mathrm{mR} / \mathrm{hr}$ @ 1^{\prime}
	2.0	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	.1	$\mathrm{mR} / \mathrm{hr}$ @ 3^{\prime}
$.5 \propto c$ is	10.0	$\mathrm{mR} / \mathrm{hr}$ contact	.3	$\mathrm{mR} / \mathrm{hr}$ @ 1^{\prime}
	$7 \mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	.5	$\mathrm{mR} / \mathrm{hr}$ @ 3^{\prime}	
$10 c$ is	1.0	$\mathrm{mR} / \mathrm{hr}$ contact	.3	$\mathrm{mR} / \mathrm{hr}$ @ 1^{\prime}
	1	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	.1	$\mathrm{mR} / \mathrm{hr}$ @ 3^{\prime}

Prior to Sample Recirc (Initial):

Contact lead bricks	"As Read"	$\mathrm{mR} / \mathrm{hr}$
Gen Area by sink	"As Read"	$\mathrm{mR} / \mathrm{hr}$
In door to sink area	"As Read"	$\mathrm{mR} / \mathrm{hr}$
RU-158D	"As Read"	$\mathrm{mR} / \mathrm{hr}$
RU-26	"As Read"	$\mathrm{mR} / \mathrm{hr}$
RU-23	"As Read"	$\mathrm{mR} / \mathrm{hr}$
RU-10	"As Read"	$\mu \mathrm{Cl} / \mathrm{cc}$
Count Room area	"As Read"	$\mathrm{mR} / \mathrm{hr}$

At end of Sample Recirc prior to flush (high readings):

Contact lead bricks	375	$\mathrm{mR} / \mathrm{hr}$
Gen Area by sink	$80-180$	$\mathrm{mR} / \mathrm{hr}$
In door to sink area	5	$\mathrm{mR} / \mathrm{hr}$
RU-158D	50	$\mathrm{mR} / \mathrm{hr}$
$\mathrm{RU}-26$	80	$\mathrm{mR} / \mathrm{hr}$
RU-23	"As Read"	$\mathrm{mR} / \mathrm{hr}$
RU-10	"As Read"	$\mu \mathrm{Ci} / \mathrm{cc}$
Count Room area	"As Read"	$\mathrm{mR} / \mathrm{hr}$

After flush is complete:

Contact lead bricks	35	$\mathrm{mR} / \mathrm{hr}$
Gen Area by sink	$8-20$	$\mathrm{mR} / \mathrm{hr}$
In door to sink area	1	$\mathrm{mR} / \mathrm{hr}$
RU-158D	"As Read"	$\mathrm{mR} / \mathrm{hr}$
RU-26	8	$\mathrm{mR} / \mathrm{hr}$
RU-23	"As Read"	$\mathrm{mR} / \mathrm{hr}$
RU-10	"As Read"	$\mu \mathrm{Cl} / \mathrm{cc}$
Count Room area	"As Read"	$\mathrm{mR} / \mathrm{hr}$

PASS Syringe Dose Rates UNSHIELDED:

1.0 cc is	$1500 \mathrm{mR} / \mathrm{hr}$ contact	125	$\mathrm{mR} / \mathrm{hr} @ 1^{\prime}$	
	30	$\mathrm{mR} / \mathrm{hr} @ 2^{\prime}$	19	$\mathrm{mR} / \mathrm{hr} @ 3^{\prime}$
$.50 c$ is	$750 \mathrm{mR} / \mathrm{hr}$ contact	63	$\mathrm{mR} / \mathrm{hr} @ 1^{\prime}$	
	$150 \mathrm{mR} / \mathrm{hr} @ 2^{\prime}$	7	$\mathrm{mR} / \mathrm{hr} @ 3^{\prime}$	
	$10 c$ is	$115 \mathrm{mR} / \mathrm{hr}$ contact	6	$\mathrm{mR} / \mathrm{hr} @ 1^{\prime}$
	$13 \mathrm{mR} / \mathrm{hr} @ 2^{\prime}$	1	$\mathrm{mR} / \mathrm{hr} @ 3^{\prime}$	

PASS Syringe Dose Rates SHIELDED:

$1.0 c c$ is	43.0	$\mathrm{mR} / \mathrm{hr}$ contact	14.0	$\mathrm{mR} / \mathrm{hr}$ @ 1^{\prime}
	3.0	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	2.0	$\mathrm{mR} / \mathrm{hr}$ @ 3^{\prime}
$.50 c$ is	19.0	$\mathrm{mR} / \mathrm{hr}$ contact	6.0	$\mathrm{mR} / \mathrm{hr}$ @ 1^{\prime}
	1.5	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	1.0	$\mathrm{mR} / \mathrm{hr}$ @ 3^{\prime}
$.10 c$ is	1	$\mathrm{mR} / \mathrm{hr}$ contact	$.6 \mathrm{mR} / \mathrm{hr}$ @ 1^{\prime}	
	1	$\mathrm{mR} / \mathrm{hr}$ @ 2^{\prime}	$.1 \mathrm{mR} / \mathrm{hr}$ @ 3^{\prime}	

1995 Exercise
 Chemistry Data

RCS Hot Leg Activity, $\mu \mathrm{Ci} / \mathrm{Cc}$

| Nuclide | 0900 | 1000 | 1100 | 1130 | 1200 | 1300 | 1400 | 1500 | $1600+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ar-41 | $8.6 \mathrm{E}-06$ | $8.6 \mathrm{E}-06$ | $6.4 \mathrm{E}-06$ | $5.4 \mathrm{E}-06$ | $4.6 \mathrm{E}-06$ | $3.2 \mathrm{E}-06$ | $2.2 \mathrm{E}-06$ | $1.6 \mathrm{E}-06$ | $1.1 \mathrm{E}-06$ |
| $\mathrm{Kr}-85 \mathrm{~m}$ | $1.1 \mathrm{E}-01$ | $1.1 \mathrm{E}-01$ | $5.5 \mathrm{E}-02$ | $2.8 \mathrm{E}-02$ | $9.3 \mathrm{E}-03$ | $1.6 \mathrm{E}-03$ | $1.6 \mathrm{E}-01$ | $8.0 \mathrm{E}-02$ | $6.2 \mathrm{E}-02$ |
| $\mathrm{Kr}-87$ | $6.0 \mathrm{E}-02$ | $6.0 \mathrm{E}-02$ | $3.0 \mathrm{E}-02$ | $1.5 \mathrm{E}-02$ | $3.0 \mathrm{E}-03$ | $5.6 \mathrm{E}-04$ | $5.6 \mathrm{E}-02$ | $1.9 \mathrm{E}-02$ | $1.1 \mathrm{E}-02$ |
| $\mathrm{Kr}-88$ | $2.0 \mathrm{E}-01$ | $2.0 \mathrm{E}-01$ | $1.0 \mathrm{E}-01$ | $5.0 \mathrm{E}-02$ | $1.2 \mathrm{E}-02$ | $2.8 \mathrm{E}-03$ | $2.8 \mathrm{E}-01$ | $1.3 \mathrm{E}-01$ | $9.4 \mathrm{E}-02$ |
| $\mathrm{Xe}-133$ | $1.8 \mathrm{E}+01$ | $1.8 \mathrm{E}+01$ | $9.0 \mathrm{E}+00$ | $4.5 \mathrm{E}+00$ | $3.0 \mathrm{E}-01$ | $2.0 \mathrm{E}-02$ | $2.0 \mathrm{E}+00$ | $1.2 \mathrm{E}+00$ | $1.0 \mathrm{E}+00$ |
| $\mathrm{Xe}-133 \mathrm{~m}$ | $2.2 \mathrm{E}-01$ | $2.2 \mathrm{E}-01$ | $1.1 \mathrm{E}-01$ | $5.5 \mathrm{E}-02$ | $1.2 \mathrm{E}-03$ | $2.6 \mathrm{E}-05$ | $2.6 \mathrm{E}-03$ | $1.8 \mathrm{E}-03$ | $1.8 \mathrm{E}-03$ |
| $\mathrm{Xe}-135$ | $3.5 \mathrm{E}-01$ | $3.5 \mathrm{E}-01$ | $1.7 \mathrm{E}-01$ | $8.5 \mathrm{E}-02$ | $2.6 \mathrm{E}-02$ | $8.0 \mathrm{E}-03$ | $8.0 \mathrm{E}-01$ | $4.8 \mathrm{E}-01$ | $4.4 \mathrm{E}-01$ |
| $\mathrm{Xe}-135 \mathrm{~m}$ | $1.3 \mathrm{E}-02$ | $1.3 \mathrm{E}-02$ | $8.5 \mathrm{E}-03$ | $6.5 \mathrm{E}-03$ | $5.4 \mathrm{E}-03$ | $4.6 \mathrm{E}-03$ | $4.6 \mathrm{E}-01$ | $2.4 \mathrm{E}-01$ | $19 \mathrm{E}-01$ |
| $\mathrm{Xe}-138$ | $4.4 \mathrm{E}-02$ | $4.4 \mathrm{E}-02$ | $2.2 \mathrm{E}-02$ | $1.1 \mathrm{E}-02$ | $3.7 \mathrm{E}-05$ | $1.2 \mathrm{E}-07$ | $1.2 \mathrm{E}-05$ | $6.3 \mathrm{E}-06$ | $5.0 \mathrm{E}-06$ |
| $\mathrm{I}-131$ | $2.7 \mathrm{E}-01$ | $2.7 \mathrm{E}+00$ | $1.3 \mathrm{E}+00$ | $7.0 \mathrm{E}-01$ | $1.4 \mathrm{E}-02$ | $2.8 \mathrm{E}-04$ | $2.8 \mathrm{E}-02$ | $1.7 \mathrm{E}-02$ | $1.5 \mathrm{E}-02$ |
| $\mathrm{I}-132$ | $1.0 \mathrm{E}-01$ | $1.0 \mathrm{E}+00$ | $5.0 \mathrm{E}-01$ | $2.5 \mathrm{E}-01$ | $4.7 \mathrm{E}-03$ | $8.8 \mathrm{E}-05$ | $8.8 \mathrm{E}-03$ | $3.8 \mathrm{E}-03$ | $2.7 \mathrm{E}-03$ |
| $\mathrm{I}-133$ | $3.8 \mathrm{E}-01$ | $3.8 \mathrm{E}+00$ | $1.9 \mathrm{E}+00$ | $9.5 \mathrm{E}-01$ | $2.2 \mathrm{E}-02$ | $5.1 \mathrm{E}-04$ | $5.1 \mathrm{E}-02$ | $3.0 \mathrm{E}-02$ | $2.6 \mathrm{E}-02$ |
| $\mathrm{I}-134$ | $4.7 \mathrm{E}-02$ | $4.7 \mathrm{E}-01$ | $2.4 \mathrm{E}-01$ | $1.2 \mathrm{E}-01$ | $1.8 \mathrm{E}-03$ | $2.6 \mathrm{E}-05$ | $2.6 \mathrm{E}-03$ | $7.0 \mathrm{E}-04$ | $3.7 \mathrm{E}-04$ |
| $\mathrm{I}-135$ | $1.9 \mathrm{E}-01$ | $1.9 \mathrm{E}+00$ | $9.0 \mathrm{E}-01$ | $4.5 \mathrm{E}-01$ | $1.3 \mathrm{E}-02$ | $3.7 \mathrm{E}-04$ | $3.7 \mathrm{E}-02$ | $2.0 \mathrm{E}-02$ | $1.7 \mathrm{E}-02$ |
| $\mathrm{H}-3$ | $8.6 \mathrm{E}-01$ |
| $\mathrm{Rb}-88$ | $2.0 \mathrm{E}-01$ | $2.0 \mathrm{E}+00$ |
| $\mathrm{Cs}-134$ | $2.5 \mathrm{E}-02$ | $2.5 \mathrm{E}-01$ |
| $\mathrm{Cs}-137$ | $1.8 \mathrm{E}-02$ | $1.8 \mathrm{E}-01$ |
| $\mathrm{Cs}-138$ | $5.4 \mathrm{E}-02$ | $5.4 \mathrm{E}-01$ |

Safety injection, $\mu \mathrm{Ci} / \mathrm{cc}$

Nuclide	0900	1000	1100	1130	1200	1300	1400	1500	$1600+$
Ar-41	As read	2.2E-06	1.6E-06	1.1E-06					
Kr.85m	As read	As read	As read	As read	As rea	As read	1.6 E .01	8.0E-02	6.2E.02
K_{r-87}	As read	As read	As read	As read	As rea	As read	5.6E-02	1.9E-02	1.1E.02
Kr -88	As read	As read	As read	As rea	As rea	As read	2.8 E .01	1.3E-01	$9.4 \mathrm{E}-02$
Xe-133	As read	As read	As read	As read	As rea	As rea	$2.0 E+00$	$1.2 \mathrm{E}+00$	$1.0 E+00$
Xe-133m	As	A	A	As r	As rea	As rea	$2.6 \mathrm{E}-03$	1.8E-03	3
Xe-135	As rea	8.0E-01	4.8E-01	$4.4 \mathrm{E}-01$					
$x e-135 m$	As read	As read	As read	As	As	As	4.6E-01	2.4E-01	$1.9 \mathrm{E}-01$
Xe-138	As rea	As re	As	As rea	As rea	As rea	1.2E-05	6.3E-06	5.0E-06
1.131	As read	As rea	2.8E-02	1.7E-02	1.5E-02				
1.132	As read	As read	As rea	As rea	As re	As rea	8.8E-03	3.8E-03	2.7E-03
1.133	As read	As rea	As rea	As re	As rea	As read	5.1E-02	3.0E-02	2.6E.02
1.134	As rea	As read	As rea	As rea	As read	As read	2.6E-03	7.0E-04	3.7E-04
1.135	As read	As read	As read	As rea	As rea	As rea	$3.7 \mathrm{E}-02$	2.0E-02	$1.7 \mathrm{E}-02$
$\mathrm{H} \cdot 3$	As read	As read	As read	As read	As rea	As read	8.6E-01	8.6E-01	8.6E-01
Rb-88	As rea	As read	As read	As red	As read	As read	$20 E+00$	$2.05+00$	$2.05+00$
Cs-134	As read	2.5E.01	2.5E-01	2.5E-01					
Cs-137	As read	$1.8 \mathrm{E}-01$	1.8E-01	1.8E-01					
Cs-138	As read	5.4E.01	5.4E-01	5.4 E .01					

Containment Atmospherg, $\mu \mathrm{Ci} / \mathrm{Cc}$

Nuclide	to 1115	1115	1130	1200	1300	1400	1500	$1600+$
Ar-41	$3.2 \mathrm{E}-07$	$3.2 \mathrm{E}-07$	$2.7 \mathrm{E}-07$	$2.3 \mathrm{E}-07$	$1.6 \mathrm{E}-07$	$1.1 \mathrm{E}-07$	$8.0 \mathrm{E}-08$	$5.7 \mathrm{E}-08$
$\mathrm{Kr}-85 \mathrm{~m}$	As read	$3.7 \mathrm{E}-06$	$5.2 \mathrm{E}-06$	$5.6 \mathrm{E}-06$	$5.8 \mathrm{E}-06$	$8.2 \mathrm{E}-04$	$4.0 \mathrm{E}-04$	$3.1 \mathrm{E}-04$
$\mathrm{Kr}-87$	As read	$3.8 \mathrm{E}-06$	$4.8 \mathrm{E}-06$	$4.2 \mathrm{E}-06$	$3.0 \mathrm{E}-06$	$2.8 \mathrm{E}-04$	$9.5 \mathrm{E}-05$	$5.5 \mathrm{E}-05$
$\mathrm{Kr}-88$	As read	$8.2 \mathrm{E}-06$	$1.1 \mathrm{E}-05$	$1.1 \mathrm{E}-05$	$1.1 \mathrm{E}-05$	$1.4 \mathrm{E}-03$	$6.3 \mathrm{E}-04$	$4.7 \mathrm{E}-04$
$\mathrm{Xe}-133$	$2.1 \mathrm{E}-06$	$3.0 \mathrm{E}-05$	$4.3 \mathrm{E}-05$	$5.0 \mathrm{E}-05$	$6.2 \mathrm{E}-05$	$1.0 \mathrm{E}-02$	$5.8 \mathrm{E}-03$	$5.2 \mathrm{E}-03$
$\mathrm{Xe}-133 \mathrm{~m}$	As read	$1.3 \mathrm{E}-05$	$8.9 \mathrm{E}-06$	$9.0 \mathrm{E}-06$				
$\mathrm{Xe}-135$	$8.1 \mathrm{E}-08$	$9.1 \mathrm{E}-06$	$1.4 \mathrm{E}-05$	$1.7 \mathrm{E}-05$	$2.3 \mathrm{E}-05$	$4.0 \mathrm{E}-03$	$2.4 \mathrm{E}-03$	$2.2 \mathrm{E}-03$
$\mathrm{Xe}-135 \mathrm{~m}$	As read	$8.7 \mathrm{E}-06$	$1.2 \mathrm{E}-05$	$1.4 \mathrm{E}-05$	$1.5 \mathrm{E}-05$	$2.3 \mathrm{E}-03$	$1.2 \mathrm{E}-03$	$9.7 \mathrm{E}-04$
$\mathrm{Xe}-138$	As read	$5.8 \mathrm{E}-07$	$4.5 \mathrm{E}-07$	As read				
$\mathrm{I}-131$	$1.2 \mathrm{E}-10$	$1.2 \mathrm{E}-10$	$1.2 \mathrm{E}-10$	$1.2 \mathrm{E}-10$	$1.6 \mathrm{E}-10$	$3.5 \mathrm{E}-05$	$2.1 \mathrm{E}-05$	$1.9 \mathrm{E}-05$
$\mathrm{I}-132$	$2.6 \mathrm{E}-11$	$1.8 \mathrm{E}-11$	$1.6 \mathrm{E}-11$	$1.4 \mathrm{E}-11$	$1.1 \mathrm{E}-11$	$1.1 \mathrm{E}-05$	$4.8 \mathrm{E}-06$	$3.4 \mathrm{E}-06$
$\mathrm{I}-133$	$2.1 \mathrm{E}-10$	$2.1 \mathrm{E}-10$	$2.1 \mathrm{E}-10$	$2.4 \mathrm{E}-10$	$3.1 \mathrm{E}-10$	$6.4 \mathrm{E}-05$	$3.7 \mathrm{E}-05$	$3.3 \mathrm{E}-05$
$\mathrm{I}-134$	As read	$3.3 \mathrm{E}-06$	$8.8 \mathrm{E}-07$	$4.6 \mathrm{E}-07$				
$\mathrm{I}-135$	$1.3 \mathrm{E}-10$	$1.3 \mathrm{E}-10$	$1.7 \mathrm{E}-10$	$2.0 \mathrm{E}-10$	$2.4 \mathrm{E}-10$	$4.6 \mathrm{E}-05$	$2.5 \mathrm{E}-05$	$2.1 \mathrm{E}-05$
$\mathrm{H}-3$	$6.6 \mathrm{E}-08$	$8.8 \mathrm{E}-08$	$7.6 \mathrm{E}-07$	$6.7 \mathrm{E}-06$	$5.4 \mathrm{E}-05$	$4.3 \mathrm{E}-04$	$3.3 \mathrm{E}-03$	$3.3 \mathrm{E}-03$
$\mathrm{Br}-82$	$1.6 \mathrm{E}-10$	$1.6 \mathrm{E}-10$	$2.0 \mathrm{E}-10$	$2.2 \mathrm{E}-10$	$2.7 \mathrm{E}-10$	$5.2 \mathrm{E}-05$	$2.9 \mathrm{E}-05$	$2.5 \mathrm{E}-05$

Elliot Rd
Elliot Rd

OFFSITE SURVEY INFORMATION - 0800-1115									
Distance, Miles	Centerline 3' \& 3' readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	Ag $\times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
All	as read	as read	as read	cs read	as read				

OFFSITE SURVEY INFORMATION - 0800-1115

BB	B A	B	C	D	E	F G	H	1	
1 - 3									
						$\xrightarrow{\text { bamen }}$		E	1
comay									
,									
$w-\frac{8}{}$									
									12
	-	1 m							14
		100 m							16

OFFSITE SURVEY INFORMATION - 0800-1115									
Distance, Miles	Centerine $3^{\prime} \& 3^{* \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGScpin	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
All	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1115-1130									
Distance, Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	mR/hr WO	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \hline \text { PVNGS } \\ \text { cpm } \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	$A g X$	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	$\mathrm{Ag} X$	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	3.0	1.5	15000	as read					
0.5-1.0	as read								

OFFSITE SURVEY INFORMATION - 1115-1130

OFFSITE SURVEY INFORMATION - 1115-1130

OFFSITE SURVEY INFORMATION - 1115-1130									
Distance, Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ 'readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ wo	mR/hr WC	PVNGS cprn	PVNGS readings			ARRA readings		
				Filter	AgX	AgX ${ }^{\text {chi/cc }}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	3.0	1.5	15000	as read					
0.5-1.0	as read								

OFFSITE SURVEY INFORMATION - 1130-1145

SURVEY INFORMATION - 1130-1145									
Distance. Miles	Centerline 3' \& 3' readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Cl} / / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0.0.5	4.0	2	20000	as read					
0.5-1.0	1.0	0.5	5000	as read					
1.0-1.5	as read								

1200.000

OFFSITE SURVEY INFORMATION - 1145-1200

SURVEY INFORMATION - 1145-1200

Distance, Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\begin{aligned} & \mathrm{mR} / \mathrm{hr} \\ & \mathrm{WO} \end{aligned}$	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	4.2	2.1	21000	as read					
0.5-1.0	1.0	0.5	5000	as read					
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.4	0.2	2000	as read					
2.0-2.5	0.2	0.1	1000	as read					
2.5-3.0	as read								

Elliot Rd

Elliot Rd

SURVEY INFORMATION - 1200-1215									
Distance. Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	$\mathrm{Ag} X$	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	Ag $\times \mathrm{pCi} / \mathrm{m}^{3}$
$0.0-0.5$	4.2	2.1	21000	as read					
0.5-1.0	1.0	0.5	5000	as read					

OFFSITE SURVEY INFORMATION - 1200-1215

SURVEY INFORMATION - 1200-1215

SURVEY INFORMATION - 1200-1215									
Distance. Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \text { PVNGS } \\ \text { cpm } \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX		Filter	$A g X$	$\mathrm{AgX} \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	4.2	2.1	21000	as read					
0.5-1.0	1.0	0.5	5000	as read	as	as r	as read	as	5 r
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.2	0.1	1000	as read	as rea				
2.0.2.5	0.2	0.1	1000	as read					
2.5-3.0	as read								

OFFSITE SURVEY INFORMATION - 1215-1230

SURVEY INFORMATION - 1215-1230

Distance, Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	mR/hr WO	mR/hr WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0.0.5	4.4	2.2	22000	as read					
0.5-1.0	1.0	0.5	5000	as read					
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.2	0.1	1000	as read					
2.0-2.5	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1230-1245									
Distance, Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	Ag $X \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0.0.5	4.4	2.2	22000	as read					
0.5-1.0	1.0	0.5	5000	as read					

OFFSITE SURVEY INFORMATION - 1230-1245

SURVEY INFORMATION - 1230-1245

SURVEY INFORMATION - 1230-1245									
Distance. Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ wo	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{aligned} & \text { PVNGS } \\ & \mathrm{cpm} \end{aligned}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCim}^{3}$
0.0-0.5	4.4	2.2	22000	as read					
0.5-1.0	1.0	0.5	5000	as read					
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.4	0.2	2000	as read					
2.0-2.5	0.2	0.1	1000	as read					
2.5-3.0	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1245-1300									
Distance. Miles	Centerline 3' \& 3' readings			Centerline air samples					
	mR/hr WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	Ag $\times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	AgX pci/m ${ }^{3}$
0.0-0.5	4.4	2.2	22000	as read					
0.5-1.0	1.0	0.5	5000	as read					

$1300.00 C$
9.35

032885 11:03:01

OFFSITE SURVEY INFORMATION - 1245-1300

SURVEY INFORMATION - 1245-1300									
Distance, Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS com	PVNGS readings			ARRA readings		
				Filter	AgX	$\mathrm{Ag} \times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0.0.5	4.4	2.2	22000	as read					
0.5-1.0	1.0	0.5	5000	as read					
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.4	0.2	2000	as read					
2.0-2.5	0.2	0.1	1000	as read					
2.5-30	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1300-1315									
Distance. Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{array}{\|c} \hline \text { PVNGS } \\ \text { cpm } \\ \hline \end{array}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	4.4	2.2	22000	as read					
0.5-1.0	1.0	0.5	5000	as read					

OFFSITE SURVEY INFORMATION - 1300-1315

SURVEY INFORMATION - 1300-1315

SURVEY INFORMATION - 1300-1315									
Distance, Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\begin{aligned} & \mathrm{mR} / \mathrm{hr} \\ & \mathrm{wo} \end{aligned}$	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \text { PVNGS } \\ \mathrm{cpm} \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	4.4	2.2	22000	as read					
0.5-1.0	1.0	0.5	5000	as read					
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.4	0.2	2000	as read					
2.0.2.5	0.2	0.1	1000	as read					
2.5-3.0	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1315-1330									
Distance, Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ r readings			Centerline air samples					
	mR/hr WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	AgX pCi/m ${ }^{3}$
0.0-0.5	4.8	2.4	24000	as read					
0.5-1.0	1.2	0.6	6000	as read					

OFFSITE SURVEY INFORMATION - 1315-1330

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1330-1345									
Distance, Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ wo	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \hline \text { PVNGS } \\ \mathrm{cpm} \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Cl} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	1360.0	680.0	offscale	118000	$21 \mathrm{mR} / \mathrm{hr}$	3.80E-05	4900	49400	$380 \mathrm{E}+07$
0.5-1.0	1.6	0.8	8000	as read					

OFFSITE SURVEY INFORMATION - 1330-1345

SURVEY INFORMATION - 1330-1345									
Distance, Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WC	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filier	AgX	Ag $\times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	13600	680.0	offscale	118000	$21 \mathrm{mR} / \mathrm{hr}$	3.80E.05	4900	49400	$3.80 \mathrm{E}+07$
0.5-1.0	1.6	0.8	8000	as read					
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.4	0.2	2000	as read					
2.0.2.5	0.2	0.1	1000	as read					
2.5-3.0	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1345-14C0									
Distance, Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	Ag $\times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	1100.0	540.0	offscale	91000	$16 \mathrm{mR} / \mathrm{hr}$	2.93E-05	3800	38000	$2.93 \mathrm{E}+07$
0.5-1.0	260.0	130.0	offscale	24000	236000	7.61E.06	1000	9900	$7.61 \mathrm{E}+06$

140000 C

OFFSITE SURVEY INFORMATION - 1345-1400

SURVEY INF ORMATION - 1345-1400									
Distance Miles	Centertine $3^{\prime} \& 3^{\prime \prime}$ readings			Cenierline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	mR/hr WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	AgXpCi/m
0.0-0.5	1100.0	540.0	offscale	91000	$16 \mathrm{mR} / \mathrm{hr}$	2.93E.05	3800	38000	$2.93 E+07$
0.5-1.0	260.0	130.0	offscale	$240^{1} 0$	236000	7.61E.06	1000	9900	$7.61 \mathrm{E}+06$
1.0-1.5	0.6	0.3	3000	as read					
1.5-2.0	0.4	0.2	2000	as read					
2.0.2.5	0.2	0.1	1000	as read					
2.5-3.0	as read	a j read	as read	as read	as read				

	Elliot R									Elliot Rd
				SURVE	Y INFO	MATION	-1400-1415			
		Centerli	e 3^{\prime} \& 3	readings			Centerline	samp		
	Distance.	mR/hr	$\mathrm{mR} / \mathrm{hr}$	PVNGS		VNGS re	dings		RRA re	dings
	Miles	Wo	WC	cpm	Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{Cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
	0.0-0.5	620.0	310.0	offscale	49000	493000	1.59 E .05	2100	20700	$1.59 \mathrm{E}+07$
	0.5-1.0	150.0	75.0	offscale	13500	135000	4.36 E .06	600	5700	$4.36 \mathrm{E}+06$
\square	141500					. 45				03289513

OFFSITE SURVEY INFORMATION - 1400-1415

Elliot Rd

SURVEY INFORMATION - 1415-1430									
Distance. Miles	Centerline 3' \& 3' readings			Centerline air samples					
	mR/hr WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS c.pm	PVNGS readings			ARRA readings		
				Filter	$4 \mathrm{~g} X$	Ag $\times \mu \mathrm{Cl} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	320	160	offscale	25.00	252000	8.14E-06	1100	10600	$8.14 \mathrm{E}+06$
0.5-1.0	80	40	400000	6900	69000	2.23E-06	300	2900	2.23E +06

OFFSITE SURVEY INFORMATION - 1415-1430

SURVEY INFORMATION - 1415-1430

SURVEY INFORMATION - 1415-1430									
Distance. Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	mR/hr WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	320	160	offscale	25200	252000	8.14E-06	1100	10600	$8.14 \mathrm{E}+06$
0.51 .0	80	40	400000	6900	69000	2.23E-06	300	2900	$2.23 E+06$
1.0-1.5	42	21	210000	3900	39000	$1.26 \mathrm{E}-\mathrm{C} 8$	160	1600	$1.26 \mathrm{E}+06$
1.5-2.0	26	13	130000	2700	27000	8.73E-07	100	1100	$8.73 E+05$
2.0-2.5	18	9	90,000	2000	20000	$6.36 \mathrm{E}-07$	as read	800	$6.36 \mathrm{E}+05$
2.5-3.0	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1430-1445									
Distance,Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	mR/hr WO	mR/hr WC	$\begin{gathered} \text { PVNGS } \\ \mathrm{cpm} \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	$\mathrm{Ag} \times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	200	100	offscale	14000	140000	4.53E-06	600	5900	$4.53 \mathrm{E}+06$
0.5-1.0	50	25	250000	3800	38000	$1.24 \mathrm{E}-06$	160	1600	$1.24 \mathrm{E}+06$

OFFSITE SURVEY INFORMATION - 1430-1445

SURVEY INFORMATION - 1430-1445									
Distance. Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	mR/hr WC	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	Ag $\times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	AgX pCi/m ${ }^{3}$
0.0-0.5	200	100	offscale	14000	140000	4.53E-06	600	5900	$4.53 \mathrm{E}+06$
0.5-1.0	50	25	250000	3800	38000	1.24E-06	160	1600	$1.24 \mathrm{E}+06$
1.0-1.5	26	13	130000	2200	22000	7.03E-07	as read	900	$7.03 \mathrm{E}+05$
1.5-2.0	16	8	81000	1500	15000	4.86E-07	as read	600	$4.86 E+05$
2.0-2.5	11	6	55000	1100	11000	$3.54 \mathrm{E}-07$	as read	460	$3.54 \mathrm{E}+05$
2.5-3.0	8	4	39000	850	8500	$2.74 \mathrm{E}-07$	as read	360	$2.74 \mathrm{E}+05$
3.0-3.5	6	3	29000	700	7000	$2.26 \mathrm{E}-07$	as read	300	$2.26 \mathrm{E}+05$
3.5-4.0	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION-14/ - 1500									
Distance, Miles	Centerine $3^{\prime} \% \cdot 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{ar}$ WC	$\begin{gathered} \text { PVNGS } \\ \mathrm{cpm} \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	$\mathrm{AgX} \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	82	41	410000	6100	61000	1.98E-06	260	2600	$1.98 \mathrm{E}+06$
0.5-1.0	20	10	100000	1700	17000	5.41E-07	as read	700	$5.41 \mathrm{E}+05$

OFFSITE SURVEY INFORMATION - 1445-1500

SURVEY INF ORMATION - 1445-1500									
Distance, Miles	Centertine $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \text { PVNGS } \\ \text { cpm } \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	82	41	410000	6100	61000	1.98E-06	260	2600	$1.98 \mathrm{E}+06$
0.5-1.0	20	10	100000	$170{ }^{n}$	17000	5.41E-07	as read	700	$5.41 \mathrm{E}+05$
1.0.1.5	11	5	51000	1000	9500	3.07E-07	as read	400	$3.07 E+05$
1.5-2.0	7	3	33000	700	6600	2.12E-07	as read	300	$2.12 E+05$
2.0-2.5	5	2	23000	500	4800	$1.5 \rightarrow$ E-07	as read	200	$1.54 \mathrm{E}+05$
2.5-3.0	3	1.6	16000	400	3700	1.19E-07	as read	150	$1.19 \mathrm{E}+05$
3.0-3.5	2	1.2	12000	300	3100	$9.85 \mathrm{E}-08$	as read	as read	as read
3.5-4.0	1.2	0.6	6000	150	1600	5.04E-08	as read	as read	as read
4.0-4.5	as read								

ONSITE SURVEY INFORMATION - 1500-1515

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1500-1515									
Distance, Miles	Centerline $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	Ag $\times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	$\mathrm{Ag} X$	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	5	2	24000	350	3500	1.12E-07	as read	150	1.12E+05
0.5-1.0	20	10	100000	1700	17000	5.41E-07	as read	700	$5.41 \mathrm{E}+05$

OFFSITE SURVEY INFORMATION - 1500-1515

SURVEY INFORMATION - 1500-1515									
Distance. Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	mR/hr WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	5	2	24000	350	3500	1.12E-07	as read	150	1.12E+05
0.5-1.0	20	10	100000	1700	17000	5.41E-07	as read	700	$5.41 E+05$
1.0.1.5	10	5	51000	1000	9500	3.07E-07	as read	400	$3.07 E+05$
1.5-2.0	7	3	33000	700	6600	$2.12 \mathrm{E}-07$	as read	300	$2.12 \mathrm{E}+05$
2.0-2.5	5	2	23000	500	4800	$1.54 \mathrm{E}-07$	as read	200	$1.54 \mathrm{E}+05$
2.5-3.0	3	1.6	16000	400	3700	1.19E-07	as read	150	$1.19 \mathrm{E}+05$
3.0-3.5	2	1.2	12000	300	3100	9.85E-08	as read	as read	as read
3.5-4.0	1.2	0.6	6000	150	1600	$5.04 \mathrm{E}-08$	as read	as read	as read
4.0-4.5	0.8	0.4	4000	100	1200	$3.73 \mathrm{E}-08$	as read	as read	as read
4.5-5.0	0.6	0.3	3000	as read	800	2.50E-08	as read	as read	as read
5.0-5.5	as read								

ONSITE SURVEY INI ORMATION - 1515-1530

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1515-1530									
Distance, Miles	Centertine $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	mR/hr WC	$\begin{gathered} \text { PVNGS } \\ \text { cpm } \\ \hline \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.41E-09	as read	as read	$8.41 \mathrm{E}+03$
0.5-1.0	2	0.8	8000	100	1000	3.07E-08	as read	as read	$3.07 E+04$

$\begin{array}{lll}\text { E줄 } \\ 153000 C & 9.55 & 03319506.4734\end{array}$

OFFSITE SURVEY INFORMATION - 1515-1530

Elliot Rd
Elliot Rd
SURVEY INFORMATION - 1530-1545

SURVEY INFORMATION - 1530-1545									
Distance. Miles	Centerline 3' \& 3" readings			Centerline air samples					
	mR/hr WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \sim 0$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	0.1	0.1	600	as read					

OFFSITE SURVEY INFORMATION - 1530-1545

SURVEY INFORMATION - $\mathbf{1 5 3 0 - 1 5 4 5}$

SURVEY INFORMATION - 1530-1545									
Distance, Miles	Centerine 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ Wo	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{array}{\|c} \hline \text { PVNGS } \\ \text { cpm } \end{array}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	$8.06 \mathrm{E}-09$	as read	as read	as read
0.5-1.0	0.1	0.1	600	as read					
1.0-1.5	0.6	0.3	3000	as read	500	1.74E-08	as read	as read	as read
1.5-2.0	6	3	30000	700	6600	2.12E-07	as read	300	2.12E+05
2.0-2.5	4	1.9	19000	500	4800	$1.54 \mathrm{E}-07$	as read	200	$1.54 \mathrm{E}+05$
2.5-3.0	2	1.2	12000	400	3700	1.19E-07	as read	150	$1.19 \mathrm{E}+05$
3.0-3.5	1.8	0.9	9000	300	3100	$9.85 \mathrm{E}-08$	as read	as read	as read
3.5-4.0	1.4	0.7	7000	150	1600	$5.04 \mathrm{E}-08$	as read	as read	as read
4.0-4.5	1.0	0.5	5000	100	1200	3.73E-08	as read	as read	as read
4.5-5.0	0.8	0.4	4000	as read	800	2.50E-08	as read	as read	as read
5.0-5.5	0.6	0.3	3000	as read	750	$2.43 \mathrm{E}-08$	as read	as read	as read
5.5-6.0	0.6	0.3	3000	as read	650	$2.13 \mathrm{E}-08$	as read	as read	as read
6.0-6.5	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1545-1600									
Distance. Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PV'NGS readings			ARRA readings		
				Filter	AgX	Ag $\times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	AgXpCi/m ${ }^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								

OFFSITE SURVEY INFORMATION - 1545-1600

SURVEY INFORMATION - 1545-1600

SURVEY INFORMATION - 1545-1600									
Distance, Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \text { PVNGS } \\ \mathrm{cpm} \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	$\mathrm{Ag} \times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								
1.0-1.5	as read								
1.5-2.0	0.4	0.2	2000	as read					
2.0.2.5	4	1.9	19000	500	4800	$1.54 \mathrm{E}-07$	as read	200	$1.54 E+0.5$
2.5-3.0	2	1.2	12000	400	3700	1.19E-07	as read	150	$1.19 \mathrm{E}+05$
3.0-3.5	1.8	0.9	9000	300	3100	9.85E-08	as read	as read	as read
3.5-4.0	1.4	0.7	7000	150	1600	5.C1E-08	as read	as read	as read
4.0-4.5	1.0	0.5	5000	100	1200	3.73E-08	as read	as read	as read
4.5-5.0	0.8	0.4	4000	as read	800	2.50E-08	as read	as read	as read
5.0.5.5	0.6	0.3	3000	as read	750	$2.43 \mathrm{E}-08$	as read	as read	as read
5.5-6.0	0.6	0.3	3000	as read	650	2.13E-08	as read	as read	as read
6.0 .6 .5	0.4	0.2	2000	as read	550	1.86E.08	as read	as read	as read
6.5-7.0	as read								

ONSITE SURVEY INFORMATION - 1600-1615

Elliot Rd

SURVEY INFORMATION - 1600-1615									
Distance. Miles	Centerline 3' \& 3' readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0 .0 .5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								

OFFSITE SURVEY INFORMATION - 1600-1615

SURVEY INFORMATION - 1600-1615									
Distance. Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readirgs			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ vo	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \hline \text { PVNGS } \\ \mathrm{cpm} \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Cl} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0.0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								
1.0-1.5	as read								
1.5-2.0	as read								
2.0-2.5	0.4	0.2	2000	as read					
2.5-3.0	2	1.1	11000	275	2750	8.80E-08	as read	as read	as read
3.0-3.5	1.6	0.8	8000	200	2000	6.40E-08	as read	as read	as read
3.5-4.3	1.2	0.6	6000	150	1500	4.80E-08	as read	as read	as read
4.0.4.5	0.8	0.4	4000	100	1000	3.20E-08	as read	as read	as read
4.5-5.0	0.6	0.3	3000	as read	730	$2.40 \mathrm{E}-08$	as read	as read	as read
5.0-5.5	0.4	0.2	2000	as read	500	1.60E-C8	as read	as read	as read
5.5-5.0	0.4	0.2	2000	as read	500	$1.60 \mathrm{E}-08$	as read	as read	as read
6.0-6.5	0.3	0.2	1500	as read	375	1.20E-08	as read	as read	as read
6.5-7.0	0.2	0.1	1000	as read	250	8.00E-09	as read	as read	as read
7.0-7.5	as read								

Elliot Rd
Elliot Rd

SURVEY INFORMATION - 1615-1630									
Distance. Miles	Centerine $3^{\prime} \& 3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ wo	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{array}{\|c} \hline \text { PVNGS } \\ \text { cpm } \\ \hline \end{array}$	PVNGS readings			ARRA readings		
				Filter	AgX	Ag $\times \mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								

OFFSITE SURVEY INFORMATION - 1615-1630

SURVEY INFORMATION - 1615-1630

SURVEY INFORMATION - 1615-1630									
Distance Miles	Centerline 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-0y	as read	as read	as :aad
0.5-1.0	as read								
1.0-1.5	as read								
1.5-2.0	as read	as read	as read	as read	as iead	as read	as read	as read	as read
2.0.2.5	as read								
2.5-3.0	0.4	0.2	2000	as read					
3.0-3.5	1.6	0.8	8000	200	2000	6.40E-08	as read	as read	as read
3.5-4.0	1.2	0.8	6000	150	1500	4.80E.08	as read	as read	as read
4.0-4.5	0.8	0.4	4000	100	1000	3.20E-08	as read	as read	as read
4.5-5.0	0.6	0.3	3000	as read	750	2.00E-08	as rea	S rea	as read
5.0.5.5	0.4	0.2	2000	as read	500	$1.60 \mathrm{E}-08$	as read	as read	as read
5.5-6.0	0.4	0.2	2000	as read	500	1.60E-08	as read	as read	as read
6.0.6.5	0.3	0.2	1500	as read	375	1.20E-08	as read	as read	as read
6.5-7.0	0.2	0.1	1000	as read	250	8.00E-09	as read	as read	as read
7.0.7.5	0.2	0.1	800	as read	200	$6.40 \overline{\mathrm{E}-09}$	as read	as read	as read
7.5-8.0	as read								

SURVEY INFORMATION - 1630-1645									
Distance, Miles	Centertine 3^{\prime} \& $3^{\prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	$\begin{gathered} \text { PVNGS } \\ \mathrm{cpm} \end{gathered}$	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Cl} / \mathrm{cc}$	Filter	AgX	$\mathrm{AgXpCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								

OFFSITE SURVEY INFORMATION - 1630-1645

SURVEY INFORMATION - 1630-1645

SURVEY INFORMATION - 1630-1645									
Distance. Miles	Centertine 3' \& 3' readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\mathrm{mR} / \mathrm{hr}$ WC	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Ci} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								
1.0-1.5	as read								
1.5-2.0	as read								
2.0-2.5	as read								
2.5-3.0	as read								
3.0-3.5	0.4	0.2	2000	as read					
3.5-4.0	1.2	0.6	6000	150	1500	4.80E-08	as read	as read	as read
4.0-4.5	0.8	0.4	4000	100	1000	$3.20 \mathrm{E}-08$	as read	as read	as read
4.5-5.0	0.6	0.3	3000	as read	750	$2.40 \mathrm{E}-08$	as read	as read	as read
5.0-5.5	0.4	0.2	2000	as read	500	$1.60 \mathrm{E}-08$	as read	as read	as read
5.5-6.0	0.4	0.2	2000	as read	500	$1.60 \mathrm{E}-08$	as read	as read	as read
6.0-6.5	0.3	0.2	1500	as read	375	$1.20 \mathrm{E}-08$	as read	as read	as read
6.5-7.0	0.2	0.1	1000	as read	250	$8.00 \mathrm{E}-09$	as read	as read	as read
7.0.7.5	0.2	0.1	800	as read	200	$6.40 \mathrm{E}-09$	as read	as read	as read
7.5-8.0	as read	as read	600	as read	150	4.80E-09	as read	as read	as read
8.0-8.5	as read								

SURVEY INFORMATION - 1645-1700									
Distance. Miles	Centerline $3^{\prime} \& 3^{\prime \prime \prime}$ readings			Centerline air samples					
	$\mathrm{mR} / \mathrm{hr}$ WO	$\begin{aligned} & \mathrm{mR} / \mathrm{hr} \\ & \mathrm{WC} \end{aligned}$	PVNGS cpm	PVNGS readings			ARRA readings		
				Filter	AgX	AgX $\mu \mathrm{Cl} / \mathrm{cc}$	Filter	AgX	$\mathrm{Ag} \times \mathrm{pCi} / \mathrm{m}^{3}$
0.0-0.5	0.8	0.4	4000	as read	250	8.06E-09	as read	as read	as read
0.5-1.0	as read								

SECTION 10

METEOROLOGICAL

Meteorological Data

TIME		WIND FROM	WIND SPEED	TEMP	\triangle TEMP
FROM	TO				
0800	0815	240	3.0	77	2.5
0815	0830	248	3.2	77	2.3
0830	0845	246	3.1	77	2.0
0845	0900	247	3.0	77	1.8
0900	0915	248	3.0	77	1.6
0915	0930	250	3.0	77	1.5
0930	0945	253	3.1	78	1.4
0945	1000	256	3.1	78	1.2
1000	1015	260	3.0	78	1.0
1015	1030	259	3.0	78	0.6
1030	1045	257	2.9	79	0.3
1045	1100	260	3.0	79	-0.1
1100	1115	285	3.3	79	-0.4
1115	1130	304	3.1	80	-0.5
1130	1145	304	3.0	80	-0.5
1145	1200	305	3.0	80	-0.5
1200	1215	304	3.0	81	-0.5
1215	1230	304	3.0	81	-0.5
1230	1245	304	3.0	81	-0.5
1245	1300	304	3.1	81	-0.5
1300	1315	295	3.0	81	-0.5
1315	1330	290	2.9	82	-0.5
1330	1345	290	3.0	82	-0.5
1345	1400	290	3.0	82	-0.5
1400	1415	290	3.1	82	-0.6
1415	1430	290	3.0	82	-0.6
1430	1445	290	2.9	82	-0.7
1445	1500	290	3.0	83	-0.7
1500	1515	290	3.0	83	-0.8
1515	1530	290	3.0	83	-0.8
1530	1545	290	3.0	83	-0.9
1545	1600	290	3.0	83	-1.0
1600	1615	290	3.0	83	-1.0
1615	1630	290	3.0	83	-1.0
1630	1645	290	3.0	83	-1.0
1645	1700	290	3.0	83	-1.0

GEAERAL METBOROLOGICAL DATA

```
APRIL 12, 1995 - PVNGS PLUME EXPOSURE PATHWAY EXERICSE
```

WOTE: PARTLY CLOUDY...NO PRECIPITATIOR
SLIGETLY BELO WORMAL DAYTIME TEMPERATURES
MEAR MORMAL MIGHTTIME TEMPERATURES

HORMAL BAROMETRIC PRESEURE

FORBCAST ($\begin{aligned} & \text { IND8: }\end{aligned}$

TODAY: VERY LIGBT WEST-gOUTHVEST WIADS MOBTKY 3 MPH, BECOMING WEST-NORTHWEST BY ABOUT NOON, AND CONTYNUING LIGHT WEST-NORTEWEST WINDS ABOUT 3 MPH THROUGHOUT THE APTERNOON.

TUNIGHT: VERY LIGET WEST-AORTHWEST AROUND 3 MPE, BECONING CALM WIMDS DURIAG THE BVENING HOURS.

GENERAL WEATHER SCENARIO

APRIL 12, 1995 - PVNGS PLUME EXPOSURE PATHWAY EXERCISE

SYNOPSIS:

 WESTERN UNITED STATES. A LOW PRESSURE AREA AT THE SURFACE WAS ASSOCIATED WITH THE UPPER LEVEL LOW PRESSURE SYSTEM. THE SURFACE LOW PRESSURE AREA WAS LOCATED OVER SOUTHEAST IDAHO AND NORTHERN UTAH THIS MORNING. THE UPPER LEVEL AND SURFACE gYgTEMS WERE MOVING EASTWARD.

A RATHER WEAK PACIFIC COLD FRONT TRAILED SOUTH-SOUTEWEST PROM TEE IDAHO AND UTAH SURFACE LOW PRESSURE AREA. IT EXTENDED THROUGH FAR SOUTHERN NEVADA AND FAR SOUTHEASTERN CALIFORNIA. THE WEAK COLD FRONT WILL MOVE INTO WESTERN ARIZONA DURING THIS MORNING, AND MOVE ACROSS MUCH OF THE STATE BY LATE THIS AFTERNOON AND EVENING. THE COLD FRONT WILL MOVE THROUGH THE GREATER PHOENLX AREA ABOUT NOONTIME.

MOST OF THE WEATHER ACTIVITY ASSCCIATED WITH THE UPPER LEVEL AND SURFACE SYSTEMS WAS OCCURRING OVER NEVADA, UTAH AND FAR NORTHERN ARIZONA THIS MORNING, WELL NORTH OF THE GREATER PHOENIX AREA. THE STORMY CONDITIONS ARE EXPECTED TO REMAIN WELI. NORTH OF PHOENIX DURING TODAY AND INTO TONIGHT. TgMPERATURES WILL BE ONLY SLIGHTLY COOLER THAN NORMAL TODAY.

WEATIER FORECAST:

TODAY: PARTLY CLOUDY AND MILD. HIGH IN THE LOWER 80.

VERY LIGHT WEST-SOUTHWEST WINDS MOSTLY 3 MPH, BECOMING WEST-NORTHWEST BY ABOUT NOON, AND CONTINUING LIGHT WEST-NORTHWEST WINDS ABJUT 3 MPH THROUGHOUT THE AFTERNOON.

TONIGHT: GENERALLY FAIR AND MILD. LOW NEAR 60.

VERY LIGHT WEST-NORTHWEST AROUND 3 MPH, BECOMING CALM WINDS DURING THE EVENING HOURS.

CHARTS AVAILABLE TO THE EMERGENCY OPERATIONS METEOROLOGIST

```
APRIL 12, 1995 - PVNGS PLUME EXPOSURE PATHWAY EXERCISE
```

THE FOLLOWING CHARTS VILL BB GIVEN INITIALLY:
VALID TIMB (DEBCRIPTION) VALID DAY
0500 MST 500 MB (IMIT AMAL) WEDNEBDAY, APRIL 12, 1995
0500 MBT 700 MB (IMIT ANAL) WBDMESDAY, APRTL 12, 1995
0500 MST BURFACE (INIT ANAL) WEDNESDAY, APRIL 12, 1995
0500 MST RADAR GUMOARY WEDNESDAY, APRIL 12, 1995
0500 - 1100 MST QPF (6 HR PROG) MBDNBSDAY, APRIL 12, 1995
1100 - 1700 MST QPF (12 HR PROG) WBDMESDAY, APRIL 12, 1995
1100 MST SURPACE (6 HR PROG) WEDNESDAY, APRIL 12, 1995
1700 MST 500 MB (12 HR PROG) MEDNESDAY, APRIL 12, 1995
1700 MST 700 KB (12 HR PROG) MEDNESDAY, APRIL 12, 1995
THE POLLOWING ADDITIONAL CHARTS ARR AVAILABLE:

VALID TIME (DESCRIPTION)

1100 KST RADAR BUMMARY
1700 MST SURFACE (12 HR PROG)

VALID DAY

WEDNESDAY, APRIL 12, 1995
WEDNESDAY, APRIL 12, 1995

NOTE: ASSUMB THAT ALL PROGS ARE PERFECT PROGS.

SECTION 11

MEDICAL

1995 EMERGENCY PREPAREDNESS EXERCISE - 95-E-AEV-04002

MEDICAL

Transportation of a contaminated injured person will be demonstrated separately in a Medical Drill involving Good Samaritan Hospital and AirEvac at a date in 1995 to be determined and will not be demonstrated in this Exercise

SECTION 12

EQUIPMENT

EQUIPMENT

COMPONENT PAGE
AFB-P01 02
Pillbox / ILRT Penetration-58 03
Hassayampa Feeder Line 05
Westwing-2 525 KV Line 06
PBB-S04 07
SI-V460 09
SIA-UV-672 11
Fuel Pin 13

EQUIPMENT

AUXILIARY FEEDWATER PUMP AFB-P01

INITIAL CONDITION:

"B" Train Class Auxiliary Feedwater Pump AFB-P01 is tagged out-of-service 7 hours prior to the start of the scenario for inboard bearing replacement and is expected back for surveillance testing in approximately 18 hours from the start of the scenario. Technical Specification LCO 3.7.1.2, Action Statement "a.", was entered and the pump declared INOPERABLE at the time it was tagged out-of-service. This pump will not be available for the remainder of the scenario.

ANTICIPATED RESPONSE:

The crew may initially try to anticipate the scenario events as involving some type of loss of feedwater or inability to maintain RCS heat removal. However, as the scenario progresses, it will become increasingly clear that a tagged out component does not always indicate failure mechanisms tied to events in the scenario. Industry statistics show that probabilities are very high that the status of an unavailable component will heighten the awareness of operators to events which could possibly involve areas within the component's domain. The crew may initially review procedures for loss of feedwater events, which is generally classified as a good sperator practice, but other events will take place early in the scenario that should negate the suspicions about the tagged auxiliary feectwater pump.

Note that no diagram or layout showing the failure mechanism of the pump is included in this section, as this component is not encompassed within any portion of the scenario. The tagged pump is included as part of the shift turnover merely to simulate actual day-to-day logistics of an operator's watch duties.

PILLBOX/ILRT PENETRATION-58

INITIAL CONDITION:

Security has requested movement of the 16,000-pound "pillbox" which is located at the northwest corner of the Turbine Building to a new. defensive position near the nitrogen tanks. Mechanical Maintenance personnel will be using a crane to do the move over the first few hours into the scenario and will advise Operations when they are completed.

ANTICIPATED RESPONSE:

The crew may initially try to anticipate the scenario events as involving some type of catastrophy in the yard later in the scenario. They may foresee a personnel injury or accident mechanism concerning the crane, etc. However, it will never be exactly clear to them the type of problem this component will cause until it occurs. This component serves as the basis for initiating the radiological release to the environment and, subsequently, for upgrading the Alert emergency classification level to a Site Area Emergency. Some time after the LOCA has occurred, the Control Room crew receives a call stating that the crane operator working on the concrete "pillbox" relocation effort has accidentally swung the crane boom in the wrong direction and hit the side of contairiment witt the boom. He s:ates that the "pillbox" broke from the cable after contacting the coniainment side and fell sorme 45 feet onto a large pipe p tiuding out from the containment wall on the north side of containment. He thinks he broke the pipe, since smoke or stearn is now billowing from the penetration and making a very loud hissing noise. The pipe is the ILRT connection which is periodically used to pressurize containment to design pressure for testing purposes. The crew's priority, after the event, is to minimize pressure in containment to mitigate the radioiogical release. Their response will be to repair the valve which is preventing containment spray flow, since the containment release path cannot be sealed from outside the building with containment at a pressure in excess of 30 psig

HASSAYAMPA FEEDER LINE

INITIAL CONDITION:

Water Reclamation has taken the $66^{\prime \prime}$ effluent feeder line from the Hassayampa Pumping Station out of service 4 hours ago to repair a leaking flange 2 milus east of the site. The line is expected back in service in approximately 26 hours. Waier Rec will advise when repairs are completed. This feeder line will not be available for the remainder of the scenario.

ANTICIPATED RESPONSE:

The crew may initially try to anticipate the scenario events as involving some type of loss of circulating water or inability to prevent flooding onsite. However, as the scenario progresses, it will becorne increasingly clear that a component removed from service does not always indicate failure mechanisms tied to events in the scenario. Industry statistics show that probabilities are very high that the status of an unavailable component will heighten the awareness of operators to events which could possibly involve areas within the component's domain. The crew may initially review procedures related to accidents associated with huige water volumes, which is generally classified as a good operator practice, but other events will take place early in the scenario that should negate the suspicions about the tagged effluent feeder line

Note that no diagram or layout showing the failure machanism of the leaking feeder line flange is included in this section, as this component is not encompassed within any portion of the scenario The unavailable feeder line is included as part of the shift turnover merely to simulate actual day-to-day logistics of an operator's watch duties.

EQUIPMENT

WESTWING-2 525 KV LINE

INITIAL CONDITION:

The Energy Control Center is planning to remove the Westwing-2 525 KV line from service within the next 6 hours after the start of the scenario and will call Unit 1 with preliminary action plans wien they are ready to do so. A reactor bank located in the Westwing Switchyard must be replaced and the line is required to be de-energized for that operation. SRP will coordinate activities with APS personnel and Unit 1 Operations will inform the other Units prior to taking the line out of service.

ANTICIPATED RESPONSE:

The crew may initially try to anticipate the scenario events as involving some type of loss of offsite power or worse, a site blackout. However, as the scenario progresses, it will become increasingly clear that a component removed from service does not always indicate failure mechanisms tied to events in the scenario. However, since power supply problems can occur at any time and generally have no precursors associated with them. this component may serve to cause lingering suspicions with the crew for the better part of the scenario. Industry statistics show that probabilities are very high that the status of an unavailable component will heigh.en the awareness of operators to events which could possibly involve areas within the component's domain. The crew may initially review procedures associated with power supply problems or they may review the Blackout Emergency Operating Procedure, which is generally classified as a good operator practice, but other events taking place early in the scenario should lessen the anxiety concerning the 525 KV line.

Note that no diagram or layout showing the isolation mechanism of the 525 KV line is included in this section, as this component is not encompassed within any portion of the scenario. The plans for removing the 525 KV line from service are included as part of the shift turnover merely to simulate actual day-to-day iogistics of an operator's watch duties.

4.16 KV CLASS BUS PBB-S04

INITIAL CONDITION:

The operators observe that 4.16 KV Class Bus PBB-S04 de-energizes when the reactor is tripped. (The bus actually loses power when reactor power falls below 25%.) The SS directs an AO to respond to the loss of power at PBB-S04. Upon arrivai at the bus and after a few brief moments, the AO reports that 4.16 KV Breaker PBB-SO4K appears to be destroyed and that evidence of charring exists on the breaker cubicle door. To be more realistic, breaker PBB-S04K is demolished. Pieces of it are everywhere. The breaker cubicle door is charred, but there is no fire or smoke. Inside the cubicle, the bus-work for that breaker is severely damaged. Other portions of the bus are damaged as well. Aimost every relay on the bus is tripped. The mechanism of failure results from an instananeous overcurrent condition on the bus. This fault propagates to the incoming feeder breaker, where a semi-deteriorated condition leads to blowout of the breaker closing mechanism, resulting in severe arcing and eventual failure of the breaker and that portion of the bus housing the breaker. This 4.15 KV bus will not be available for the remainder of the scenario.

ANTICIPATED RESPONSE:

If the crew dispatches Electrical Maintenance to the scene, similar conditions will be reported Based on this report, it should become quite evident that the Class " B " Train bus must undergo major repairs before it can be expected to function as designed. However, with a plant trip on their hands and RCS integrity deteriorating, the crew should accept the fact that 1 train of safeguards equipment is all that remains at their disposal, if required. It should also be clear that a catastrophic electrical failure such as this requires an appreciable amount of time to repair, far too much time for the immediate necessity the operators put on this equipment. In all likely respects, it is anticipated that the cr эw will forgo their attention to this bus and try to live with the remaining equipment they have, at ljast for the time being.

SI-V460

INITIAL CONDITION:

An unproceduralized method exists to cross-connect the "A" Train Containment Spray Pump to the " B " Train spray header using a valve lineup which empioys the use of 2 manual isolation valves separating the 2 trains of CS Systems. Since train separation is mandatory, these 2 valves are closed and locked in that position. (However, incorporation of this valve lineup would not allow successful completion of the scenario objectives.)

During manual manipulation of one of these valves, SI-V460, the AO discovers that it cannot be moved from its "SHUT" position. (The degree of probability for this to happen is higher than would be for valves that are cycled more frequently.) The valve is stuck shut, but must be opened for the crew to successfully cross-connect the 2 trains of Containment Spray. If the Shift Supervisor approves the use of a "valve persuader", the AO will use it and cause the valve stem to break. The valve handwheel will spin freely, it should be clear to everyone that the valve stem either pulled out of its disk or the valve stem broke. The mechanism of failure involves corrosion products binding the valve disk to its seat, effectively causing the 2 parts to become rusted tight. Successful repairs to this : alve encompass a full overhaul of the valve bonnet assembly and lap work to the valve body seat

ANTICIPATED RESPONSE:

Since major events are currently unfolding, it is anticipated that the crew, as well as ERO personnel, will divert their attention away from this item and focus, on more pressing needs. For one thing, a successful CS System cross-connect using this lineup would result in containment spray flow fed through a 6 -inch line, rather than the 10 -inch design size. Reduced flow results in hampered depressurization and nothing is to be gained when a vilve must be repaired, regardless of which one is chosen Concentrating efforts on repairing SIA-UV-672 is advantageous to concentrating efforts on repairing the manual valve. Time frames to effect repairs are lower for SIA-UV-672 than they are for SI-V460. Design spray flow via its designed path is much preferred over this alternate method

EQUIPMENT

EQUIPMENT

SIA-UV-672

INITIAL CONDITION:

At the time of the LOCA, containment pressure rises rapidly and approaches the 8.5 psig threshold setpoint for automatic Containment Spray actuation. When the setpoint is reached, a Containment Spray Actuation Signal is generated and both trains of containment spray normally actuate. However, " B " Train equipment had lost power a while ago. " A " Train CS is now required, since it is the only train of containment spray remaining. Actuated equipment on " A " Train responds correctly, with the exception of SIA-UV-672, which remains closed. The Reactor Operator is directed to insert the key into the lock-switch and attempt to manually open the valve. When no valve response is indicated, an AO is dispatched through the OSC in an attempt to manually open the valve. Upon his arrival, and later substantiated by Maintenance, it is determined that the valve motor operator housing is dripping with oil and appears damaged

ANTICIPATED RESPONSE:

Response to this event becomes the highest prioritized one of the scenario. Plant staff knows that opening this valve to allow containment spray is probably the only avenue of success for mitigating the radiological re'ease to the environment 1 a timely manner. They know the success of repairing SI-V480 would yield containment spray, but at a much less flow rat- greatly hindering the slow containment depressurization which would take place under ideal conaitioris with 1 intact train of containment spray. They also are very aware that an attempt to seal the containment penetration from outside the building under 30 pounds of pressure per square inch from within would be futile, at best. Since they quickly delermine that repairs to SIA-UV-672 are top priority, all efforts to accomplish this are directed at resources required for the task.

Auxiliary Building Elev. 88' - 0"

EQUIPMENT

FUEL IN

INITIR:- CONDITION:

Radiation monitor readings in containment suddenly begin soaring during the slow containment pressure decrease. It soon becomes evident that a loss of fuel cladding integrity has occurred. RU-148 increases to levels beyond $1200 \mathrm{R} / \mathrm{hr}$ witnin a few minutes. Radioactive plume readings slowly increase as the total gis gap activity (i.e., 2168 Curies) from several fuel elements is released into the: primary coolant, wrare it mixes with the containment atmosphere and is expelled to the envirciment out through the broken containment penetration. With a radioactive release to the environment in progress, the sudden release of activity into the containment atmosphere will eventually drive Site Boundary dose rates to levels approaching GE thresholds. Dose projections may produce results mandating changes to protective action recommendations made to the state

ANTICIPATED RESPONSE:

Plant operators continue their task of depressuriziny containment. Radiological Field Assessme ${ }^{\text {nt }}$, Teams (RFFTT) continue to monitor and sample the radioactive discharge plume. The State of AZ Radiologica! Emergency Ascessment Teams (REAT) continue to assess conditions downwind of the plant. If Site Bour dary dose rates exceed General Emergency thresholas, protective action decisions made by the state will change.

[^0]: 1.10 Players should not become obsessed with finding the exact cause of the acciden: or event at the time when response to the event has priority. As in the case of many, zal emergencies, the cause may not be fully determined until months after the event occurs.

[^1]: Explanation of ND / DWI:

[^2]: Explanation of NO / DWI:

[^3]: Explanation of ND / DWI:

[^4]: Explanation of ND / DWI:

[^5]: Explanation of ND / DWI:

[^6]: Exp: nation of ND / DWI

[^7]: Explanation of ND / OWI:

[^8]: Explanation of ND / DWI:

[^9]: Explanation of ND / DWI:

[^10]: Explanation of ND / DWI:

[^11]: Explanation of ND / DWI:

[^12]: Explanation of ND / DWI:

[^13]: Explanation of ND / DWI:

[^14]: Explanation of ND / DWI:

[^15]: Explanation of ND / DWI:

[^16]: Nary do. Cexkas
 Gary A. Cerkas - PVNGS Emergency Planning Onsite

