```
April 14, 1995
```

MEHORMDOH TO: Herber: N. Berkow, Director
Project Directorate I1-2
Division of Reactor Projects $1 / 11$
FRON:
Kamal A. Manoly, Chief /S/ Component Integrity Section - Echanical Engineering Branch Division of Engineering

SUEWECT:
REQUEST FOR ADOITIOMAL INFORMATION

The attached request for additional information contains the information requested by the EMEB staff from Georgia Power Company during a conference call on April 11, 1995, concerning the licensee's response to the staff's concerns on the shroud repair. Please forward this request to the licensee.

Attachment: Request for Additional
Information

CONTAC: J. R. Rajan, NRR
415-2788

Cistribution:
Entral Elles
GLainas
EMEB RF/CHRON
KJabbour
EHackett
DOCUMENT MAME: a:gpC *See previous concurrences
To receive esopy of this document, Indicate in the bex cocopy w/o ottechment/enclosure Escopy with eftachment/anclosura tiono cogy

Oerice	EMEB:DE	$*$	EMEB:DE
une	JRajan;eh	KManoly	
oare	$4 / 14 / 95$	$4 / 14 / 95$	

REQUEST FOR ADOITIONAL INFORMATION
 GEORGIA PONER COMPANY'S
 hatch muclear plant, unit 1

By letter dated January 19, 1995, the NRC staff requested Georgia Power Company (GPC) to provide additional information regarding the core shroud repair aodification recently installed on Hatch Unit 1 . In its response to Question No. 1, GPC stated that a gap of 0.008 'nches is calculated to occur at the H 6 B weld location during normal operation if 360° through-wall cracking at H2 and H3 welds is also postulated to occur. GPC had previously stated that no crack separation would occur at the lower weld location during normal operation as a result of the cracking scenario. This error was due to the fallure to properly account for the loss of preload in the tie rods resulting from fallure of welds H2 and H3 during the design of the repair. GPC further stated tha: this gap value bounds all load cases corresponding to the current licensed power and cor flow and that the gap does not inhibit the ability of the repalred core shroud to perform its safety function and power generation objectives.

In these evaluations, the crack locations were modeled at the top surface of the ring for the H_{2} weld and the bottow surface for the H 3 weld. The toe of each fillet weld was chosen as the pivot point of the through-wall crack. In order to complate its review, the staff is requesting the following additional information relating to the shroud evaluation under normal operation, upset, emergency and faulted conditions:

- The pertinent analytical model and supporting calculations performed to deterwine the calculated gap size as well as other conclusions stated in the response.
- The analytical models and supporting calculations used to determine the prejected separation at the H6B weld for the following cases:

Case 1. Welds H_{2} and H_{3} have 360° through-wall cracks on the shroud shell side of the fillet weld.

Case 2. Welds H^{2} ? and H3 have 360° through-wall cracks and the fillet welds are not considered in the model.

Case 3. Welds H_{2} and H_{3} are not cracked and the , liet welds are intact.

- Supporting documentation of the maximum stresses in the tie rod (including upper and lower attachment assemblies) and shroud wall during various design conditions.

Evaluation of projected loss of tie rod preload and potential increase in originally-estimated gap sizes if shroud and/or tie rod stresses exceed minimum-specified yield values.

- Basis for shroud and/or tie rod yield values if they are different from minion ASME code-specified values for the materials used.

