UNITEDSTATES

*UUCLEAR REGULATORY COMMISSION

[^0]Mr. Warren 9 . Murphy
Senior Vice President-Operations
Vermont Yankee Nuclear Power Corporation
R.D.5, Box 169

Ferry Road
Brattleboro, Vermont 05301
Dear Mr. Murphy:
SUBJECT: COLLATEFQL DUTIES OF SHIFT ENGINEER (SHIFT TECHNICAL ADVISER) AS FIRE BRIGADE LEADER (TAC NO, M80365)

Over the past year and a half, a series of meetings and letters concerning the collateral duties of the Shift Engineer (SE), also known as the Shift Technical Adviser (STA), has occurred. Your position is that, if an event involves a fire, the STA would serve as the fire brigade leader vather than performing those functions identified for the STA in a Commission policy statement, You have maintained the position that this approach best used the STA's knowledge and expertise.

The staff has further reviewed the assignment of the STA as Fire Brigade Leader at Vermont Yankee. The staff's evaluation concludes that the use of the STA as a member of the fire brigade is not compatible with the "accident assessment* duties and responsibilities of the STA since these dutios and responsibilities may be required as a result of an event caused by a fire in the plant. However, the NRC staff is reviewing the STA policy on a generic basis as a result of experience and understanding gained since implementation of the STA policy. Pending completion of this review, the NRC position on the role and implementation of the STA remains unchanged and is stated in the NRC "Policy Statement on Engineering Expertise on Shift, "publishedi in the Eederal Register (50 FR 43621) on October 28, 1985. In light of this review, the

NRC staff plans no further action on your practice of using the SE as Fire Brigade Leader at this time. Depending on the outcome of the staff's generic review of this inatter, we may request you to modify your practice in the future.

> Sincerely,

> James G. Partlow Associate Director for Projects Office of Nuclear Reactor Regulation

Enclosure:
Policy Issue (Information) paper.
"Implementation of the Shift
Technical Advisor at Nuclear
Power Plants"
cc: See next page

* See previous concurrence

DATE $: 43 / 92$
DOCUMENT NAME: VFM80365.N02

DISTRIBUTLON:
Docket file No, 50-271
NRC\&Local PDRs
PDI-3 reading file
S. Varga
J. Calvo
V. Nerses
P. Sears
M. Rushbronk

OGC
ACRS (10)
R. Lobel
J. Linville, RI
J. Partlow
J. Wermiel
J. Roe
W. Russell
F. Miraglia
C. Thoma

```
Mr. L. A. Tremblay, Senior Licensing
    Engineer
cC:
Mr, J, Gary Weigand
President & Chief Executive Officer
Vermont Yankee Nuclear Power Corp.
R.D. 5, Box }16
Ferry Road
Brattleboro, Vermont 05301
Mr. John DeVincentis, Vice President
Yankee Atomic Electric Company
500 Main Street
Bolton, Massachusetts 01740-1398
Regional Administrator, Region I
U. S. Nuclear Regulatery Commission
4 7 5 \text { Allendale Road}
King of Prussia, Pennsylvania }1940
R. K. Gad, 111
Ropes & Gray
One Internatfonal P1ace
Boston, Massachusetts 02110-2624
Mr. W. P. Murphy, Senior Vice President,
    Operations
Vermont Yankee Nuclear Power Corporation
R.D. S, Box i69
Ferry Road
Brattleboro, Vermont 05301
Mr. Richard P. Cedano, Comnissioner
Vermont Department of Public Service
120 State Street, 3rd Floor
Montpelier, Vemmont 05602
Public Service Board
State of Vermont
120 state street
Montpelier, Vermont 05602
Chairman, Boand of Selectmen
Town of Vernon
Post Office Box }11
Verion, Vermont 05354-0116
```

G. Dana Bisbee, Esq.

Office of the Attorney General
Environmental Protection Bureau
State House Annex
25 Capitol Street
Concord, New Hampshire 03301-6937
Mr. James Pelletier
Vice President - Engincering
Vermont Yankee Nuclear Power Corp.
P. 0. Box 169, Forry Road

Brattieboro, Vermont 05301
Resident Inspector
Vermont Yankee Nuclear Power Station
U.S. Nuclear Regulatory Commission
P. 0. Box 176

Vernan, Vermont 05354
Chief, safoty Unit
office of the Aitorney General
One Ashburton Place, 19th Floor
Boston, Massachusetts 02109
Mr. David Rodham, Director
Massachusetts Civil Defense Agency
400 Worcester Road
P.0. Box 1496

Framingham, Massachusetts 01701-0317
ATTN: James Muckerheide

Mr. Raymond N. McCandless
Vermont Division of Occupational
and Radiological Health
Adminiscration Building
Montpelier, Vermont 05602

January 21, 1992

For:
Erom:

Subject:

Purpose:

Background:

POLICY ISSUE
SECY-92-026
(Information)
The Cormissioner:
James M, Taylor
Executive Director for Operations
IMPLEMENTATION OF THE SHIFT TECHNICAL ADVISOR AT NUCLEAR POWER PLANTS

To keep the Commission informed of the current role and use of the shift technical adviso: (STA) at nuclear power plants, describe staff concerns with the implementation of the STA position based on recent events studted by AEOD and a survey conducted by NRR, and advise the Cormission of proposed staff actions. This paper addresses the Commission's request in the August 14, 1991 Staff Requirements Memorandun.

On September 25, 1985, the Commission approved the final Policy Statement on Engineering Expertise on Shift. The Commission issued this policy statement to ensure that edequate engineering and accident assessment expertise is provided to the operating staff at each nuclear power plant. The policy stresses the importance of "providing engineering and accident assessment expertise on shift, * and defines "accident assessment" as "inmedibue actions needed to be taken while an event is in progress." It notes that requirements corcorning the STA should improve the ability of shift operating persont i to recognize, diagnose, and effectively respond to plant transients or other abnormal conditions. On February 13, 1986, the staff issued Generic Letter 86-04, "Policy Statement on

NOTE:
TO BE MADE PUBLICLY AVAILABLE
IN 10 WORKING DAYS FROM THE
Contacts:
DATE OF THIS PAPER
Jesse A. Arildsen, NRR
49-21026
Eugene Trager, AEOD 49-24496

```
Eng: "eering Exbertise on Shift, " to provide licensees a copy of the Conmission's policy statement. In the Generic Letter, the staff also requested itcensees to submit their plans for implearnting the position of the STA at their facilities.
The Cormission's policy statenent offers licensees two options for meeting the STA requirements for providing engineering expertise on shift. Option 1 , the preferred option according to the policy, provides for eltminating the dedicated STA position by allowing licensees to combine ore of the required onshift senior reector operator (SRO) positions with the STA asition into a "dual-role" (SRO/STA) DOsttion. The SRO/STA must hold a baccalaureate degree in enginvering, engineering tectnology, or physical scicace, or hold a Professional Engineer license. Option 2 states that a licensee mey sotisfy the policy by placing on each shift a dedtcated STA who meets the education and knowledge criteris of NUREG-0737, Item 1.A.1.1, and that the STA should participote in normal shift activities.
```

Sunmary:
The AEOD studies and staff survey of STA implementation resulted in the following deterninations:

- At 14: (15) of the plants, the dedicated STAs' responsibilities did not include significant involvement in shift activities.
- At 18\% (20) of the plants, the dedicated STAs are assigned in an "on-call" status, spending much of their time outside the control room. This may not be having the intended effect when consultation is required during events.
- At many plants, STAs , rain independently from their assigned operating crews which may adversely affect the STAs' abflity to interact with the operating craw sturing an event.
- At several plants, plont personnel appeared to lack confidence in the dedicated STA.
- At plants with a dual-role STA, switching from an SRO position to the STA function may adversely impact control room resources needed for other ictivities during on event.
- At some plants, the placement of the STA in the organization may not be approptiate to ensure that the STk function is properly utllized.

Discussion:
Events studied by AEOD have highlighted concerns with the iliplementation of the STA position as described in the Cormission's policy statement. These events prompted the staff to survey STA practices at individual plants in May of 1991. This survey disclosed some diversity in STA implementition practices. The survey results alsu showed that some licensees had not implemented the changes to their STA practices that they intended to make to address the Commission's policy statement and that were reported in SECY-E6-231.

The staff's survey indicated that 32 operating units use the dual-role STA from option 1 of the Commission's policy statement exclusively. The Commission preferred this approach because it would help ensure that engineering expertise on shift was held by licensed senior reactor operators, who were thoroughly faniliar with all aspects of plant operation. Using the dual-role position also ensures that the STA has extensive experience at this plant, is fully integrated into the crew's "on-shift" activities 8 nd training, and may be considered a more credible source of information by the crew.

The staff's survey indfated that 79 operating units use a dedicated STA on shift, which follows option 2 from the Commission's policy statement. The policy states that the dedicated STA should "assume an active role in shift oct "ties," and specifically encourages thet the STA revien plant logs, participate in shift turnover activities, and maintain an awareness of plant configuration and status. '\& \&its using a dedicated STA, the STA's responsibilete do not include both reviewing plant logs and participaing in shift turnover activities. The staff continues to believe that these activities are necessary to ensure that the Sis knows the current configuration and status of the plant in order to provide timely engineering expertise in response io plant transiants in ahnormal conditions.

The staff's survey also showed that at 20 of the 79 operaiting units using dedicated STAs, STAs are assigned in an "on-sall" status, speriding much of thetr assigned time outside of the control room. In somit cases STAs are in 24 hour on-call status and are provided sleeping facilities within the plant. These STAs report to the control room

When notified of the occurrence of an event requiring engineering expertise. The staff recognizes that dual-role STAs and dedtcated STAs may also not be in the control room at all times. The on-call STA is senerally required to report to the control room within 10 minutes of the initiation of an off-normal event. Although the on-call status is neither specifically adoressed in the Commission's Policy Statement nor clearly defined in other NiRC documentation, the staff had accepted this practice since it believed that the practice would allow the STA to perform the intended funcifin of providing engineering expertise during an event. However, this does not appear to meet the intent of option 2 of the Cormission's Policy Statement. in aldition, the survey pointed out several cases in which the technical specifications fe" the plant indicate that the STA is an on-shift position vien, in practice the STA is on-call and is not performing as a member of the un-shift crew. The staff is pursuing this issue with the individual affected 1 icensees.

The staff has noted that many ilicensees train STAs independently from their assigned operating crews. The staff believes that simulctor training for a crew is most effective when it is conducted in a manner that best replicates the actual conditions expected in the plant. This approach is specified in the Examiner Stanuards ([S-601, Rev. 6). Therefore, the STA assioned to a shift shouid participate actively in that shift's simulator training. Similerly, during licensed operator requalification examinations, the STA should participate with the crew in simulator evaluations. The Operator Ltcensing Branch is conducting a survey in each region to determine the manner in which the licensees are using their STAs during the dynamic simulator portion of the licensed operator requalification examinations in order to determine the need for improvements in this area.

AEOD's human performance study program notes examples of both the effective and ineffective use of the STA during recent events. At several plants that use dedicated STAs, plant personnel appeared to lack confidence in the STA. The staff constiers the STA's credibility important to ensuring responsible consideration of STA recommendations.

The AEOD studies also identified problems with the dual-role STA function. For example, the dual-role SRO switching to assume the role of STA may leave the rema ining crew with minimal resources for the required direct response functions such as crew direction,
procedures reading, and control manipulations. Aiso, the dual-role STA may be given additional tasiks, such as event notitications, which detract from the normal STA role. This experience suggests that the dual-role STA can have difficulty simultanieously serving as part of the control room command stri, ture implementing the emergency operating procedures and as on independent technical advisor tasked with assessing the "bio picture."

The staff has also noted that the placement of the STA in the organization and the reporting structure for the STA varied among the plants. Some plants place he STAs in a separate "chain of cormand" from the operations staff. STAs reporting to individuals outside of operations management may promote a more objective perspective tc certain operational issues. However, a separate reporting structure should be balanced with the need to ensure acceptance of the STA function by the conirol room operating crew. AEOD human performance studies conducted in 1991 produced additional information that the orcanizational structure at some sites may provide additional obstacles to the STA giving an objective, engineering-based overview of the condition of the plant in the event of an accident.

The staff recognizes that the effectiveness of the control room crew will not be assured by focusing only on the role of the STA. NRC information Notice 91-77, "Shift Staffing at Nuclear Power Plants," issued November' $26,1991$. (Enclosure 1) provides discussion of some of the problems with control room organization. Effoctive response to reactor operational events requires good performance by the complete control room crew. Issues such as staffing levels, division of responsibilities, communication, tearmork, and decision-making, are integral aspects of effective crew performance. The role of the STA at individual reactor sites should be considered with in the context of the primary goal of control room organizational effectiveness in responding to operating events. These broader issues are currently under staff review and are being emphesized by AEOU during the review of operating events. AEOD plans to issue a report in July 1992.
Conclusion:
The staff concludes that a number of licensees have not implemented the Commission's Policy Statement on Engineering Expertise on Shift in the intended manner. Current STR practices vary widely, and the expression "engineering expertise on shift" has a variety of interpretations by licensees.

By fall of 1992, the staff will review the STA policy and will recommend whether or not there is a need for a change in policy, proposed rulemaking, or other action to address concerns with STA implementation.

ALOD will continue to evaluate control room organizational effectiveness in responding to operating events ard will issue a report in July 1992.

The Office of the General Counsel has reviewed this paper and has so lecel objection.

Enclosure:
As stated

DISTRIBUTION: Commissioners
OC
OCAM
OHG
REGIONAL OFFICES
EDO
ACRE
SECY

UNITED STATES
NUCLEAR REGULATORY COMMISSION
OFFINE OF NUELEAR REACTOR REGULATION
WASHINGTON, D.C. 20555

November 26, 1991

NRC INFORMATION NOTICE 91-77: SHIFT STAFFING NT NUCLEAR POWER PLANTS

Addressees

All holders of operating licenses or construction permits for nuclear power reactors.

Purpose

The U.S. Nuclear Regulatory Commission (NRC) is issuing this information notice to alert addressees to problems that could result from inadequate controls to ensure that shift staffing is sufficient to accomplish all necessary functions required by an event. It is expected that recipients will review the information for appilcability to their facilities and consider actions, as appropriate, to avoid similar problems. However, suggestions contained in this information notice are not NRC requirements; therefore, no specific action or written response is required.

Description of Circumstances

On April 29, 1991, the Maine Yankee Atomic Power Plant experienced man generator hydrogen fire. Although a senior reactor operator (SRO) and auxiliary operators from another shift were avaliable immediately, the need to provide personnel for the fire brigade and yet perform the many actions required by the event caused a heavy workload for the control room staff. This workload contributed to the licensee's fallure to notify some key emergency response personnel as specified in the licensee's procedure.

On June 15, 1991, at 11:50 p.m., lightning struck the switchyard at the Yankee-Rowe Nuclear Power Station. The lightning strike caused a fire, a loss of offsite power, a loss of normal telephone communication, and reactor trip. The staff on duty experienced difficulty in its effort to concurrently classify the event, notify the required people, implement emergency operating procedures, and provide personnel for the fire brigade. The lack of staff contributed to the licensee's fallure to make a timely Notification of Unusual Event to the State of Yermont and to the Commonweslth of Massachusetts. Two auxilisry operators, members of the five man fire brigade, did not respond to the fire because they were needed to start the steam driven emergency boiler feed pump. After the plant was initially stabilized, the shift supervisor sent the shift technical advisor to the central alarm station to report the plant's status to the plant manager via the loss-of-power telephone. This was done because their first attempts to repori by the control room phones wers unsuccessiul.

Discussion

The safe operation of a nuclear power plant and the preservation of the health and safety of the public depend on the ability of the on duty staff to respond to an event. The nuiaber of staff on each shift is expected to be sufficient to accomplish all necessary actions to ensure a safe shutdown of the reactor following on event. Those actions inciude tmplementing emergency operating procedures, performing required notifications, establishing and maintaining communications with the NRC and plant management, and any odditions: duties assigned by the licensee's administrative controis. Many licensees assign control room staff to be members of the fire brigade. Also, the operations staff is frequently required to support special security responses such as plant searches in response to a bomb threat. Section $50.54(\mathrm{~m})$ of Title 10 of the Code of Federal Regulations addresses only minimum staffing levels for licensed personnel and does not address personnel avallability for performing all of the necessary actions specified in the licensee's auministrative controls and required by an event. Licensees may wish to carefully review actual staffing needs to ensure that sufficient personnel are available to adequately respend to all events. This is especially relevant to the backshift when staffing levels are usually at t minimum.

Related Generic Commications

1. NUREG-0737, "TMI Action Plan," dated October 30, 1980.
2. NRC Generic Letter 82-16, "NUREG 0737 Technical Specifications," dated September 20, 1982.
3. NRC Generic Letter 83-02, "NUREG 0737 Technical Specifications," dated January 10, 1983.

This information notice requires no specific action or written response. If you have any questions about the information in this notice, please contact the technical contact listed below or the appropriate Office of Nuclear Reactor Regulation (NRR) project manager.

Technical contact: Jesse Ar11dsen, NRR

Attachment: List of Recently Issued NRC Information Notices

LIST OF RECENTLY ISSUED NRC IMFORMATION NOTICES

Information Notice No.	Subject	Date of issuance	Issued to
91-76	10 (FR Parts 21 and 50.55(e) Fina! Rules	11/26/91	All holders of OLs or CPs and vendors for nuclear power reactors.
91-75	Stotic Head Corrections Mistakenly not Included in Pressure Transmitter Calibration Procedures	11/25/91	All holders of OLs cr CPs for nuclear power reactors.
91-74	Changes in Pressurizer Safety Volve Setpoints Before installation	11/25/91	All holders of OLS or CPs for nuclear power reactors.
91-73	Loss of Shutdown cooling During Disassembly of high Pressure Safety Injection System Check Vilve	11/21/91	All holders of OLs or CPs for nuclear power reactors.
91-72	Issuance of Revision to the EPA Manual of Protective Action Guides and Protective Actions for Nuclear Incidents	11/19/91	All holders of OLs or CPs for nuclear power reactors.
$91-71$	Training and Suparyision of Individuals Supervised by an Authorized User	11/12/91	All NRC medical 1 icensees.
$91-70$	Improper Installation of Instrumentation Modules	11/4/91	All holders of OLs or CPs for nuclear power reactors.
91-69	Errors in Main Steam Line Break Analyses for Determining Containnent Parameters	11/1/91	All holders of OLs or CPs for pressurized-water reactors
91-68	Careful Planning Significantly Reduces the Potential Adverse Impacts of Loss of Offsite Power Events During Shutdown	10/28/91	All holders of OLs or CPs for nuclear power reactors.

[^1]
[^0]: Docket No, 50-271

[^1]: $\mathrm{OL}=$ Operating License
 $C P=$ Construction Permit

