e. With measurements indicating

$$
\underset{\text { over } 2}{\operatorname{maximum}} \quad\left[\frac{F_{0}^{M}(z)}{R(z)}\right]
$$

has increased since tne previous determinatin of $F_{Q}{ }^{M}(z)$ either
of the following actions shall be taken:

1. F $Q^{M}(z)$ shall be increased by 2 percent over that specified in 4.2.2.2.5, or
2. $F_{Q}{ }^{M}(z)$ shaii se measured at least once per 7 effective full power days until 2 successive maps indicate that
maximum over z

$$
\left[\frac{F_{Q}^{M}(z)}{R(z)}\right] \text { is not increasing. }
$$

f. With the relationships specified in $4.2,2.2, \mathrm{c}$ above not being satisfied:

1. Calculate the percent $F_{Q}(z)$ exceeds its limit by the following

2. Either of the following actions shall be taken:
a. Place the core in an equilibrium condition where the limit in 4.2.2.2.c is satisfied. Power level may then be increased provided the AFD limits of Specification 3.2 .1 are reduced 1\% AFD for each percent $F_{Q}(z)$
exceeded its 1 imit, or
b. Comply with the requirements of Specification 3.2.2 for $F_{Q}(2)$ exceeding its limit by the percent calculated above.

SURVEILLANCE REQUIREMENTS (Continued)

e. With measurements indicating
maximum over z

$$
\left[\begin{array}{c}
F_{0}^{M}(z) \\
\frac{K(z)}{K}
\end{array}\right]
$$

has increased since the previous determinatin of $F_{Q}{ }^{M}(z)$ either
of the following actions shall be taken:

1. $F_{Q}{ }^{M}(z)$ shall be increased by 2 persent over that specified in 4.2.2.2.C, or
2. $F_{Q}{ }^{M}(z)$ shall be measured at least once per 7 effective full power days until 2 successive maps indicate that

$$
\underset{\text { maximum }}{\substack{\text { over } 2}}\left[\frac{F_{g}^{M}(z)}{K(z)}\right] \text { is not increasing. }
$$

f. With the relationships specified in 4.2.2.2.c above not being satisfied:

1. Calculate the percent $F_{Q}(2)$ exceers its limit by the following expression:

2. Either of the following actions shall be taken:
a. Place the core in an equilibrium condition where the limit in 4.2.2.2.c is satisfied. Power level may then be increased provided the AFD limits of Specification 3.2 .1 are reduced 18 AFD for each percent $F_{Q}(2)$
exceeded its 14 mit , or
b. Comply with the requirements of Specification 3.2 .2 for $F_{Q}(z)$ exceeding its 1 imit by the percent calculated above.

POWER DISTRIBUTION LIMITS

SURVEILLANCE REQUIREMENTS (Continued)

e. With measurements indicating
$\left.\begin{array}{l}\text { maximum } \\ \text { over } z\end{array}\right]\left[\begin{array}{l}F_{\rho}^{M}(z) \\ k(z)\end{array}\right]$
has increased since the pravious determinatin of $F_{Q}{ }^{M}(2)$ either of the following actions shall be taken:

1. $F_{Q}{ }^{M}(2)$ shall be increased by 2 percent over that specified in 4.2.2.2.c, or
2. FQ ${ }^{M}(z)$ shall be measured at least once per 7 effective full power days until 2 successive maps indicate that
$\underset{\text { over } z}{\operatorname{maximum}} \quad\left[\frac{F_{g}^{M}(z)}{R(z)}\right] \quad$ is not increasing.
f. With the relationships specified in 4.2.2.2.c above not being satisfied:
3. Calculate the percent $F_{Q}(2)$ exceeds its limit by the following expression:

4. Either of the following actions shall be taken:
a. Place the core in an equilibrium condftion where the limit in 4.2.2.2.c is satisfied. Power level may then be increased provided the AFD limits of Specification 32.1 are reduced 1\% AFD for each percent $F_{Q}(2)$ exceeded its 11 mit , or
b. Comply with the requirements of Specification 3.2.2 for $F_{Q}(z)$ exceeding its limit by the percent calculated above.
