123 Main Street White Plains, New York for 914 681 6846

Ralph E. Beedle Executive Vice Presider Nuclear Generation

August 1, 1991 JPN-91-039

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Mail Stop P1-137 Washington, D.C. 20555

SUBJECT: James A. FitzPatrick Nuclear Power Plant Docket No. 50-333 Generic Letter 89-10, Supplement 3 Response to Request for Additional Information

Reference: NRC letter, B. C. McCabe to R. E. Beedle, dated June 26, 1991, "Request for Additional Information Re: Generic Letter 89-10, Supplement 3: Consideration of the Results of NRC-Sponsored Tests of Motor-Operated Valves."

Dear Sir:

The NRC requested additional information concerning motor operated valves at the FitzPatrick plant in the referenced letter. Attachment 1 provides the Authority's response. Attachments 2 through 4 provide supplemental information.

If you have any further questions, please contact Mr. J. A. Gray, Jr.

Very truly yours,

Raiph E. Beedle Executive Vice President Nuclear Generation

cc: next page

PDR

2108070128 210801

ADOCK 05000333

Office of the Resident Inspector U. S. Nuclear Regulatory Commission Post Office Box 136 Lycoming, New York 13093

Regional Administrator U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, Pennsylvania 19400

Brian C. McCabe Project Directorate I-1 Division of Reactor Projects I/II U. S. Nuclear Regulatory Commission Mail Stop 14 B2 Washington, D. C. 20555

CC:

1.4

ATTACHMENT 1 TO JPN-91-039

1.00

. .

GENERIC LETTER 89-10, SUPPLEMENT 3 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

New York Power Authority

JAMES A. FITZPATRICK NUCLEAR POWER PLANT Docket No. 50-333

Attachment 1 to JPN-91-039

đ

NRC Question 1:	Identify any modifications (e.g., torque switch setting adjustments, gearing changes, or motor/actuator replacement) for each MOV within the scope of Supplement 3 to GL 89-10 since June 1990 or planned for the future.
NYPA Response:	As stated in the Authority's Supplement 3 response (Reference 1), the torque switches for all motor-operated valves (MOVs) within the scope of Supplement 3 are now set at the manufacturer's recommended maximum setting. The Authority reset one of these MOVs (13MOV-16) to this maximum setting (2.5 from 2.0) during the March 1991 Maintenance Outage. Torque switches for all other MOVs within the scope of Supplement 3 had been reset to the manufacturer's recommended maximum setting before June 1990. Attachment 2 shows the current (maximum design conditions) torque switch settings for the affected operators.
	As discussed in Reference 1, modification F1-90- 97 will replace the actuator and certain valve components for 13MOV-16. This modification will upgrade 13MOV-16. It will also address a previously identified deficiency (Reference 2) in the design full stroke time. No other modifications or adjustments are currently planned.
NRC Question 2:	Provide valve, actuator, and motor type and size, torque switch settings (in pounds thrust if known), and information necessary to confirm motor adequacy for each MOV within the scope of Supplement 3 to GL 89-10.
NYPA Response:	Attachment 2 (14 pages) provides actuator sizing analysis spread sheets for the Supplement 3 MOVs. The Authority performed analyses for both design conditions and postulated high energy line break (HELB) conditions. This information is also summarized in Tables 1, 2, and 3 of Reference 1. All of the affected actuators are presently set at the maximum torque switch setting determined by using the pull-out efficiency. This is in accordance with Limitorque Corporation recommendations (References 3 and 4).
NRC Question 3:	Provide justification for using 100% voltage in evaluating MOV capability.
NYPA Response:	As stated in Note 2 of Tables 1, 2, and 3 of Reference 1, the 100% voltage capability assumption applies only to DC powered MOVs for postulated HELB conditions (not design conditions). Justification for this assumption was provided in the note as follows:
	The DC MOV motors were designed to operate at a reduced voltage of 105 VDC, or 84% of nominal bus voltage. The 105 VDC limit was based on the results of the station battery design duty cycle calculations and effectively considered the available voltage two hours after a design basis loss-of-coolant accident

concurrent with a loss of battery charging capability. Under HELB conditions, nominal DC voltage would be available to affect line isolation.

The AC powered MOVs were evaluated at + or - 10% of nominal voltage which was the original equipment specification requirement. According to the FitzPatrick plant Final Safety Analysis Report (FSAR) Section 8.6 (Reference 5), the minimum 600 V emergency bus voltage is 535 volts. This is about 93% of the MOVs' rated voltage of 575 volts. This allows an additional 3%, or about 17.5 volts, of line loss from the bus to the MOV motor terminals to reach the 90% level. Voltage drop calculations performed for Modification F1-89-096 (Reference 8) determined that this allowance (17.5 volts) will not be exceeded for all safety-related AC MOVs.

Limitorque SEL-3 (Reference 6) indicates that no reduced voltage factor is required for 90% of rated voltage. Evaluation without a reduced voltage factor is, therefore, justified. As required by Generic Letter 89-10, Item e, MOV capabilities with degraded voltage and cable voltage drop will be verified.

NRC Question 4: In Information Notice 90-72 (November 28, 1990), "Testing of Parallel Disc Gate Valves in Europe," the NRC staff indicates that foreign utilities are using a valve factor of 0.4 for a new German design of parallel disc gate valve. Describe the results of your evaluation of this information notice.

NYPA Response: The Authority reviewed Information Notice 90-72 in accordance with Plant Standing Order (PSO) 28 for Industry Operating Experience Review (OER). OER 900484 (Reference 7) included Reference 1 as an attachment. It concluded that no immediate safety concern existed because of "leak before break" considerations. The review noted that Anchor/Darling parallel double disc gate valves were not tested in the test program discussed in Information Notice 90-72. The OER added that a final assessment of the required valve factor will be made when the results of the proposed Anchor/Darling test program (Question 5) are available.

NRC Question 5: Describe the Anchor/Darling testing program and its schedule for completion.

NYPA Response: Attachment 3 provides a summary description of the Anchor/Darling Valve Co. blowdown test program including a tentative schedule. This information was obtained from an Anchor/Darling representative on July 24, 1991.

NRC Question 5: The safety assessment prepared by the NRC staff in conjunction with the development of Supplement 3 to GL 89-10 supports continued operation for 18 months or one refueling outage to complete any necessary MOV modifications. Provide a safety assessment to support continued operation if any corrective action is scheduled for completion beyond that date.

NYPA Response:	Attachment 4 is the Plant Specific Safety Assessment prepared for Item 1 of Generic Letter 89-10, Supplement 3. It notes specific features including parallel double disc gate valves and the 1 inch warming line for the High Pressure Coolant Injection (HPCI) turbine steam supply. The 1 inch bypass warming line permits the outboard HPCI steam supply isolation valve (23MOV-16) to be normally closed. This avoids the need for 23MOV-16 to close under HELB conditions and reduces the flow and differential pressure that the inboard valve (23MOV-15) would experience. Due to the smaller size of the RWCU and RCIC lines (6 inches and 13 inches, respectively), margin (above de sign valve disc factor) is available at the maximum torque switch setting as shown in Attachment 2. These features and design considerations provide additional safety assurance beyond that of the "standard" BWR design (the subject of the generic assessments performed by the BWROG and the NRC staff). The NRC sponsored testing program, which is the subject of Supplement 3, focused exclusively on flexible wedge gate valves. As noted in Reference 1 and Attachment 4, none of the Supplement 3 valves at the FitzPatrick plant are flexible wedge gate valves. Therefore, the Authority considers that the Plant-Specific Safety Assessment provides justification for operation until the need for further modifications can be determined.
NRC Question 7:	What practice is employed in the use of torque switch bypass and thermal overload protection.
NYPA Response:	For the open torque switch, the Authority uses the bypass for approximately the first 33% travel. The close torque switch is not bypassed for any significant amount of valve travel. The thermal overloads are set for 300% of the full rated current (run current) of the actuator motor. This effectively prevents thermal overload trips from stopping motor operation.
NRC Question 8:	How have you addressed the rate of loading phenomenon in MOV sizing and torque switch settings.
NYPA Response:	The rate of loading phenomenon is still an area of research. Currently, there is no clear understanding of when this phenomenon exists or how to determine its magnitude. However, the FitzPatrick plant uses a diagnostic system (VOTES) that can detect this phenomenon during flow/differential pressure tests. The Authority will consider the rate of loading phenomenon if it is detected during these tests. When it becomes available, the Authority also plans to use guidance provided by appropriate industry organizations (Electrical Power Research institute, Motor-Operated Valve Users Group, Limitorque, etc.).

REFERENCES

- NYPA letter JPN-91-013, R. E. Beedle to NRC Document Control Desk, "Generic Letter 89-10, Supplement 3, Item 2, HPCI, RCIC and RWCU MOVs," dated April 17, 1991.
- 2. NYPA, PORC Meeting Minutes, dated June 27, 1990.
- Notes of telecon, P. Swinburne, NYPA and Mark Smith, Limitorque Corp., dated April 9, 1991.
- 4. Limitorque Corporation letter, M. H. Smith to P. G. Trudell, Tennessee Valley Authority, "Engineering Data for Limitorque Actuators," dated April 16, 1991.
- 5. FitzPatrick plant Updated FSAR Section 8.6, Emergency AC Power System.
- Limitorque Corporation, Gate and Globe Valve Operator Selection Procedure, SEL-3, page 4 of 4, dated July 1, 1977.
- Operating Experience Review (OER) Report 900484, Source Document: NRCN 90-72, "Testing of Parallel Disc Gate Valves in Europe," dated April 26, 1991.

ATTACHMENT 2 TO JPN-91-039

· · ·

GENERIC LETTER 89-10, SUPPLEMENT 3 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

ACTUATOR SIZING ANALYSIS

New York Power Authority

JAMES A. FITZPATRICK NUCLEAR POWER PLANT Docket No. 50-333

MOV THRUST SIZING ANALYSIS FOR 12MOV-15 - CALC. NO. JAF-91-033 ANALYSIS OF MELB REQUIREMENTS FOR NRC GL 89-10 SUPP. 3

		Valve Humber	Desig	C1 12MOV-15 n Conditione		C2 12MOV-15 NEL8 W/ PO Eff	H	C3 12940V-15 IELB w/ Run Eff	HE	C4 12MOV-15 L8 w/ Stell E1
	R1	Manufacturer	Anch	or/Derling		Anchor/Derling		ochor/Decling		***************
	R2	Mfg. ID No.	EA57	0-16		EA570-14	E	A570-14		nchor/Darling
	R3	Valve Size,		6*		6*	- 7	63	E.	1370-14
	R4	Press. and Type	900 1	OD Gate		900 DD Gate	0	00 DD Gate		0"
	85	Ref Mfg. Dwg. No.	W8821	2747		W8822747	u	8822747		NO DO Gate
	Ró	File No.	6.3	7-280		6.37-280		6.37-280		1042747
	R7	Limitorque Order No.	12717	3-06		127173-06	1	27173-06		0.37-280
	Rð	18557852393235555552752257428888888	TA SHARES	*******		***********	**	**********	10	11/3-06
	R9	Seet Nean Die.		5.300		5.300		5 300		REALENEER BURN
2P[*(R9*R9)/4	R10	Seet Area	*	22.062		22.062		22 043	ω.	5.30
	R11	Line Design Press.		1,750		1.045		1 045	÷.	30.35
	R12	Design Diff. Press.		1,020		1.045		1 048		1,04
R10*R12	R13	Disc dP Load		22,503		23.055		28 055		1,36
	R14	Valve Disc Factor		0.20		0.20		0 20		23,05
R13*R14	R15	Disc dP Thrust	ĸ	4,501	8	4.611		4 411	1	0.2
	R16	Stem Dia (in valve)		1.500		1,500	<u>, 1</u>	1,500	<u>.</u>	4,01
2PI * R16* R16/4	R17	Stem Area (in valve)	5	1.767	×	1.767	2	5 767		1.50
R11*R17	R18	Stem End Load		3,093		1.847	Ç.,	1.707	2	1.76
	R19	Stuff Box Load		1,200		1 200		1,047	1	1,84
13-1 7	R20	Total Stem Load	×	8,793	×	7 658	41	7,000	5	1,20
	R21	NAMBANNANNAN SARAFFERSE IN SEBUARA		*********				7,028		7,65
	R22	Stem Dia. (thread)		1,2500		1 2500	_	1 36.00	8.8.0	大学学校的 化学校 化学校
	R23	Stem Pitch		0.250		0.250		1.2300		1.250
	826	Stom Lead		0.500		0.500		0.230		0.25
	R25	Stem Friction Coeff.	1.1	0.15		C. 15		0.500		0.50
R25*(R22-R23/2	R26	Stem Factor	÷ .	0.0142		0 0143		0.15		0.1
+0.96815*R24/8 1)/(24*(0.9681 5-R25*R24/(@P1* R22-R23/2))))						0.014		0.0142		0.014
120*820	R27	Steen Torque	<	124.91	<	108.78	4	108.78	÷.	108.7
	R28	Stem Total Travel (in)		6.00		6.00		6.00		6.0
	R29	Design Stroke Time (sec)		18.0		18.0		18.0		16.
28°60/R29	R30	Nominal Speed (in/min)	4	20.00	*	20.00	ę :	20.00		20.0
130/R24	R31	Drive Sieeve RPH	< .	40.00	×	40.00	κ.	40.00		41.0
	R32	Notor RPM		1,700		1,700		1,700		1 704
	R33	AC or DC		AC		AC		AC		AC
	R34	Overall Gear Ratio								~
32/R31	835	Calculated	×	42.50	×	42.50	e 1	67.50		42.5/
	R36	Actuei		38.60		38.60		38.40	2	76.31
32/836	R37	Actual Drive Sleeve RPM		44.04		64.04	e l	44 04		30.0
37°R24	R38	Actual Stam Speed (in/min)		22.02	*	22.02	2	22 02	2	66.US
28°60/R38	139	Actual Stroke Time (sec)		16.35	*	16.25	4	14 37	1	22.0.
	R40	Unit Pull-Out Eff.		0.40		0.40		0.33		10.3
	R41	Run Efficiency		0.50		0.50		0.40		0.44
	842	Stall Efficiency		0.60		0.60		0.50		0.90
	R43	Application Factor		0.90		0.00		0.00		0.6(
		and a second second		0.75		0.70		0,90		0.%

Preparer/Date P. S. Lum "1/1/ Approvel/Date When Saly 4/16/9/ Reviewer/Date B. S. Review Miggle Hethod Congrade Page 1 of 4

MOV THRUST SIZING ANALYSIS FOR 12MOV-15 - CALC. NO. JAF-91-033 ANALYSIS OF HELB RECUIREMENTS FOR NRC GL 89-10 SUPP. 3

a

Formulas										
		Valve Humber	Desig	C1 12MOV-15 n Conditional	HEL.	C2 12MOV-15 B M/ PO EFF	NELB	C3 12NOV-15 N/ RVh Eff	MEL	C4 12MOV-15 8 w/ Stall Ef
R36*R40*R43	R44	Adj. Motor Torque Factor	*	13,90	*	13 00		***********		
R27/R44	R45	Mtr Calc Torque @ 100% V	*	8.99		7 83	2	13.90	*	13.9
	R46	Minimum Voltage X		90		00	1	7.83	*	7.8
	R47	Voltage Factor		1.00		1.00		90		9
R65/847	R48	Mtr Calc Torque & Min V	*	8.99		7.83		1.00		1.0
	R49	Rated Motor Torque		10		10	· .	7.83		7.8
	850	Selected Mtr, Unit & Type		S8 0U-10		SR 00-10		10		1
	R51	Actustor Nex. Thrust		14,000		14 000		58 00-10		58 00-10
	R52	A、1000年8月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日		STRUCTURE STREET				16,000		14,00
R20-R19	R53	Aveilable Thrust	*	7,593	<	A 458				187年後後後回回回回時187年後
R18 <r19< td=""><td>R54</td><td>Running Load</td><td></td><td>4.293</td><td>4</td><td>3 047</td><td>2</td><td>0,020</td><td>*</td><td>6,451</td></r19<>	R54	Running Load		4.293	4	3 047	2	0,020	*	6,451
100*R54/R20	R55	Running % of Total Load	*	48.8		30 8	2	3,047		3,04
(R26*R54)/(R36*	R56	Notor Run Torque	<	3.16	4	2.24	2	34.8	÷.,	39.1
241)						6.64	1	6.66	*	2.24
100***56/**49	R57	Motor Run Torque % Rated	κ.	32		22		22	1	
R49*R36*R42*1.1	R58	Calculated Stall Torque	*	254.8	٢	254.8	*	254.8	*	254.1
	859	Max Act Stall Torows		500		500				
R58/R26	R60	Stem Thrust at Stall		17 014		17 034		500		504
2.5*R51	R61	Max Act Stell Thrust		35 000	2	35 000	-	17,936	*	17,934
	R62	建建进设的投资使来应用专用设计设计算法有关设计算法		***********	*****	33,000		35,000	4	35,00
	R63	Cont. Duty Yorque Limit		250		250				1.名素原於古佛的名称的推進。
R51*R26	R64	Torque for Act Nax Thrust		190		100		250		251
R27	R65	Steek Torque	*	125		100	2	199		194
R44*R49	R66	Max Pull-Out Torque 2 100% V	*	130	2	180	2	109		204
					1	1.34	*	1/4	*	204
									81	
R66*R47	R67	Max Pull-Out Torque @ Min V		130	*	130	1.844	-147-841/840	P 28	144 "R49"R42/R4(
	R68	Selected Spring Pack		0049		0160		1/4		200
	R69	New Spring Pack Number		0301-112		0301-112		0301-112		0069
	R70	Required TSS		1.50		1 00		1.00		0301-112
	R71	Torque at TSS		130		115		1.00		1.94
R71/R26	R72	Thrust of TSS	*	0 161		8 004		112		115
	R73	Hasienan 155		1.75	2	1.75	1	0,090		8,396
	R74	Torque at Nax 155		130		170		6.73		3.00
874/826	R75	Thrust at Nax TSS	<	0 785		0.785		1/5		185
	876	Limiting Factor for New 155	Note	(Pull-Out)	Note	7,763	Man	12,319		13,023
	8.77	Effective Valve Gisc Factor	ing cu	((Full (Wall)	HOLD	(Full-Out)	MOER	(Puil-our)		apring Pack
(R75-R19-R18)/F	878	at Maximum ISS		0.24		0.70				
18				0.69	-	0.29		0.40	1	0.63

Preparer/Date D. S. June "/"/" Approval/Date Umutuly 4/4/9, Reviewer/Date Blacom Higher Hethod Der Red. Page 2 of 4

1

٩ŀ

()

MOV THRUST SIZING ANALYSIS FOR 12MOV-18 - CALC. NO. JAF-91-034 ANALYSIS OF HELB REQUIREMENTS FOR WRC GL 89-10 SUPP. 3

,		Valve Number	Desi	C8 12MOV-18 ph Conditions		C9 12MOV-18 IELB W/ PO EFF		C10 12MOV-18 HELB w/ Run Eff	HE	C11 12MOV-18 .8 w/ Stall Ef
	R1	Menufecturer	Anci	hor/Darling	A	Inchor/Derling		Archor/Darting		whor /beel in
	R2	Nfg. ID No.	EA5	70-15	ε	A570-15		EA570-15		570-15
	R.3	Valve Size,		6 ^m		6*		6*		68
	84	Press. and Type	900	DD Gate	9	NOO DO Gate		900 DD Gate	90	O DD Gete
	R5	Ref Mfg. Dwg. No.	W882	2748	V	882271.8	1	6822748	UR	822748
	R6	File No.	6.	37-263		6.37-263		6.37-263		6 37-263
	R7	Limitorque Order No.	1271	73-07	- 1	27173-07		127173-07	12	7178-07
	R8	推進後的調整者國際基金市政法会社工会支援之公司的高速社会社	\$ 35.84	************		**********			-	BRANKERREARES
	RP	Seet Neen Die.		5.300		5.300		5.300		5 30
@P1*(R9*R9)/4	R10	Seat Area	4	22.062		22.062	×	22.062	4	22.04
	R11	Line Design Press.		1,750		1,045		1.045		1.06
	212	Design Diff. Press.		1,020		1,045		1.045		1.04
R10*R12	R13	Disc dP Load	× .	22,503	. 6	23,055		23,055	κ.	23.05
	R14	Valve Disc Factor		0.20		0.20		0.20		0.2
R13*R14	R15	Disc dP Thrust	×	4,501		4,611	4	4,611	*	4.61
	R16	Steme Dia (in valve)		1.500		1.500		1,500		1.50
@P1*R16*R16/4	R17	Stem Area (in valve)	۰.	1.767		1.767	×	1.767		1.76
R11*R17	218	Stam End Load	<	3,093		1,847	*	1.847		1 844
	R19	Stuff Box Load		1,200		1,200		1,200		1 20
R15+R18+R19	#20	Total Stem Load	*	8,793	*	7.658	<	7.658	4	7 65
	821	\$#####################################	*****	***********	**	****************				
	R22	Stee Die. (thread)		1.2500		1.2500		1,2500		1.250
	R23	Stem Pitch		0.250		0.250		0.250		0.250
	R24	Stem Lead		0.500		0.500		0.500		0.50
	R25	Stee Friction Coeff.	a	0.15		0.15		0.15		0.1
(R25*(R22-R23/2)+0.96815*R24/a P1)/(24*(0.9681 5-R25*R24/(8P1* (R22-R23/2))))	R26	Stem Factor	ĸ	0.0142	*	0.0142	*	0.0142	*	6.014
20*826	827	Stee Torrage	1.1	124 01		108 79		108 78		
	\$28	Stee Total Travel (in)	1.1	4.00		100.78	-	108.78	*	108.7
	820	Design Stroke Time (and)		18.0		10.00		0.00		6.00
28960 (820	830	Montinal Sneed (in/min)		20.00	μ.	20.00	4	10.0	2.5	18.0
10/024	281	Orive Electus B50	2.1	40.00	0	60.00	2	20.00	*	20.00
	883	Notor EDN	Č., 1	1 000		40.00	2	40.00	*	40.00
	DIX	AC or DC		1,900		1,900		1,900		1,900
	034	Augusti Case Resio		UC .		DC .		DC		DC.
199.091	6.39	Criminand		17.65		12.50				
Kae/Kat	R.33	Catculated		47.50	×.,	47.50	*	47.50	*	47.50
12.0014	0.30	Actual Defense Classes Dete		30.20		36.20		36.20		36.20
R36/R30	837	ACTIME DETVE SLEEVE RPM		32.49	*	52.49	*	52.49	*	52.49
C3/ "K24	070	Actual stem speed (In/MIN)	1	20.24	*	20.24	*	26.24	*	26.24
20"00/R38	839	ACTURE STOCKE TIME (Sec)	<	13.72	×.	13.72	*	13.72	<	13.72
	840	UNIT PULL-DUT ETT.		0.40		0.60		0.40		0.40
	841	RUN ETTICIONCY		0.50		0.50		0.50		0.50
	942	stall Efficiency		0.65		0.65		0.65		0.65
	R43	Application Factor		0.90		0.90		0.90		0.90

Preserer/Date & Simprum 4/9/ Approval /Date TMar aly 4/16/9, Reviewer/Date B Manales Hoge Method Das Bay Pagen of 4

*

MOV THRUST SIZING ANALYSIS FOR 12MCH-18 - CALC. NO. JAF-91-034 ANALYSIS OF HELR REQUIREMENTS FOR NRC GL 89-10 SUPP. 3

		Valve Mumber	Der	C8 12MOV-18		C9 1290V - 18		C10 12NOV - 18		C11 12NOV-18
V				CONTRACT CONTRACT		HELB W/ PO EFY		HELB W/ RUN EFF	NEL	B w/ Stall Eff
R36*R40*R43	R64	Adj. Notor Torque Factor		13.03		12.02		**************	- 14.5	********
R27/R44	R45	Mtr Celc Torque a 100% V		9.58		13.03	1	13.03		13.03
	R46	Ninimum Voltage %		84		e.33	. *	8.35	*	8.35
	R47	Voltage Factor		0.84		0.64		84		B6
R65/867	R48	Mtr Celc Torque & Min V	- 31	11.41		0.04	2	0.84		0.84
	869	Rated Notor Torque		15		7.96	. ^	9.94	4	9.94
	P50	Selected Htr, Unit & Type		S8 00-15		ER 00 18		15		15
	R51	Actuator Naz. Thrust		16,000		14 000		58 00-15		\$8 00-15
	R52	当然或武器等在主动服饰实法的具有自然的复数形式的现在分词		************	- 10			14,030		14,000
R20-R19	R53	Aveilable Thrust	1	7,593		6.458	1		1.49	*************
R18+R19	R54	Running Load	14	4,293		3 047	Ĵ	0,438	÷.,	6,458
100*#54/#20	R55	Running % of Total Load	*	48.8		30 8	Ű,	3,047	1	5,047
(\$26*\$54)/(\$36*	R56	Motor Run Torque		3.37	×	2 30	2	37.8	1	39.8
R61)						A	1	2.34	÷.,	2.39
100*R55/R69	R57	Motor Run Torque % Rated		22	*	16		14		
R49*R36*R42*1.1	R58	Calculated Stall lorque	κ.	388.2		388.2	2	01	2	16
								300.5	1	568.2
	R59	Max Act Stall Torque		500		500		500		Eas
R58/R26	R.60	Steen Thrust at Stall	8	27, 331	\mathcal{A}	27.331		27 581	1.1	500
2.5*R51	R61	Nex Act Stall Thrust	<	35,000	*	35,000	4	15 000	2.1	27,331
	R62	医麦里松的内外的热用的复数形式用用的力量的用于中的多生心	18.8	********				INNERSE PRESERVAN		33,000
	R63	Cont. Duty Torque Limit		250		250		28.0		
R51*R26	R64	Torque for Act Mex Thrust	*	199	*	129	×	100		250
R27	R65	Steen Torique	*	125		109		109		199
展与与中教会9	Róó	Max Pull-Out Torque @ 100% V	k	195	*	195		244	2	109
									÷.	316
								R44*840*841/840	F . B.	
R66*#47	R67	Nex Puil-Out Torque @ Min V	<	164	*	164	*	205		34.7
	R68	Selected Spring Pack		004.9		0049		0069		0040
	R69	New Spring Pack Number		0301-112		0361-112		0301-112		0301-112
	R70	Required TSS		1.50		1.00		1.00		1.00
	871	Torque at TSS		130		115		115		1.00
871/826	R72	Thrust at TSS		9,151	*	8.096	4	8 096	5	E 004
	873	Meximum TSS		2.50		3.00		8.00		5,00
	R74	Torque at Max 755		166		185		185		185
R74/R26	175	Thrust of Mex TSS	4	11,655	*	13,023	*	13 023	*	18 023
	R76	Limiting Factor for Max 155	Not	(or (Pull-Out)		Spring Pack		Spring Pack	S	Sprine Back
	R77	Effective Valve Disc Factor						The real cases		and the Pace
(R75-R19-R18)/R	878	at Maximum TSS	*	0.33	×	0.43	8	0.43	۰.	0.43

· · · ·

Preserer/Date D. Sumlume "/1/4 Approvai/Date WMW ake 4/10/9, Reviewar/Date Blagen Had y Method Bes Bade Page 2 of 4

MOV THRUST SIZING ANALYSIS FOR 1300V-15 - CALC. NO. JAF-91-035 AKALISIS OF HELB REQUIREMENTS FOR NRC CL B9-10 SUPP. 3

Formulas	*****		St. 1997							
1				C2		C3		C4		C5
			1	340V - 15		13HOV-15		13HOV-15		13MOV-15
1.1.1.1.1.1.1		Valve Number	Design	Conditions		ELB W/ PO ETT	NE	LB w/ Run Eff	NEL	B w/ Stall E
¥			*****	*********	19.197.0	0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 >	111	***********	***	**********
	R1.	Menufacturer	<i>t</i> .ncho	r/Derling	An	schor/Derling	An	chor/Darling	AP	chor/Derling
	K5	Mfg. ID No.	EA570	-6	EA	570-6	EA	570-5	EA	570-6
	R3	Valve Size,		3*		3*		3*		3*
	R4	Promis. and Type	900 DI	D Gate	90	O DD Gete	90	O DD Gate	90	0 DO Gata
	R5	Ref Mfg. Dwg. No.	W8822	740	148	822740	68	822740	W8	822740
	86	File No.	6.37-	255	6.	37-255	6.	37-255	6.	37-255
	K7	Limitorque Order Ho.	12717	3-03	12	7173-03	1.2	7173-03	12	7173-03
	RB	医脊髓溃疡炎 计算数数据算法数据部分的代数能能定量目的指定包裹		*********	***		***	*********		******
	RP	Seet Neen Dis.		2.80		2.80		2.80		2.
@P1*(R9*R9)/4	R10	Seat Area		6.16	*	6.16	κ.	6.16	κ.	ó.
	R11	Line Design Press.		1,420		1,045		1,045		1,0
	R12	Design Diff. Press.		1,250		1,065		1,045		1,0
R10*R12	R13	Disc dP Load	8	7,697	8	6,435	*	6,435	*	6.4
	R14	Valve Disc Factor		0.20		0.20		0.20		0.
R13*R14	R15	Disc dP Thrust	*	1,539	κ.	1,287	ж	1,287	*	1.2
	R16	Stem Dis (in valve)		0.750		0.750		0.750		0.7
@P1*R16*R16/4	817	Stem Area (in valve)	*	0.442	κ.	0.442	4	0.442	4	0.4
R11*R17	R18	Stem End Load		627	*	462	6	462	4	4
	R19	Stuff Box Load		800		800		800		8
R15+R18+R19	R20	Total Stem Lond	×	2,967	*	2,549	*	2,549	4	2.5
	R21		******	********				**********	-	*******
	#22	Stem Dia, (thread)		0.6250		0.6250		0.6250		0.62
	R23	Stem Pitch		0.200		0.200		0.200		0.2
	R24	Stem Lead		0.200		0.200		0.200		0.2
	825	Stem Friction Coeff.		0.15		0.15		0.15		0.
(825*/822-823/2	R26	Stem Factor	*	0.0062	*	0.0062	*	0.0062		0.00
1+0.96815*824/2										
PI)/(24*(0.9681										
5-2259924/(2019										
(822-823/2111)										
CNEC - NE2767777	827	Stee Torout		18.27		15.60	4	15.69	2	15
NEV NEV	828	Stam Total Travel (in)		3 00	2.1	3.00		8.00	1.	
	020	Design Erroka Time (sar)		10.0		10.0		10.0		16
0.004420-00.00	030	Haminai Scend (in/min)	1.11	18.00	4.	18.00	4	18.00		18
RED"DU/REY	0.21	Delug Classes 808	2	90.00	2	00.00	Q11	90.00	2	90
R30/R69	831	Drive steeve krm	- T	3,400	÷.	\$ 400	÷.	3,400	Π.	3.4
	8.36	MOLOI KIM		40		AC		A/'		AC
	8.3.3	AL OF DU				n.,		AL.		~
	8.34	overall waer satto	1.0	17 78	1	17 79		\$7.78	1	17
R32/R31	R35	Calculated		37.10	8.	84 50		37.70		34
	K.50	Actual		36.30	12	30.30		30.30		30.
R32/R36	8.37	ACTUBL Drive SLeeve RPM	÷	93.15		93.13	3	V3.15	-	73.
R37*RZ4	R.58	Actual Stem Speed (In/min)	*	10.03		10.03	a	18.03		16.
R28*60/R38	R.39	Actual Stroke Time (sec)	K.	9.06		9.00	1	9.60	*	9.
	840	Unit Pull-Out Eff.		0.40		0.00		0.40		0.
	R41	Run Efficiency		0.50		0.50		0.50		0.
	R42	Stall Efficiency		0.55		0.55		0.55		0.
	R43	Application Fector		0.90		0.90		0.90		0.

O)

Preparer/Date P. Svinburn "/"/" Approval/Date Tapped Sale 4/1/6/91 Reviewer/Date Alta Part 1 of 6

MOV THRUST SIZING ANALYSIS FOR 13MOV-15 - CALC. NO. .44F-91-035 ANALYSIS OF HELB REGUIREMENTS FOR NRC OL 89-10 SUPP. 3

Formulas		***************************************								
		Valve Mumber	Desig	C2 1340V-15		C3 13NOV - 15		C4 1 SHOV - 15		C5 13HOV-15
V				in warsons north	nc	LB W/ PO ETT	HELB	W/ Run Eff	HELB	W/ Scall Et
R36*R40*R43	R44	Adj. Motor Torque Factor		13, 14	*	13.14				**********
A27/R44	R45	Mtr Calc Torque & 100% V	×	1.30	2	1.10	2	13.14	8	13.1
	846	Minimum Voltage %		90	÷	00		1.19	*	1.1
	£47	Voltege Factor		1.00		1 00		90		9
845/847	R68	Mtr Colc Torque & Min V	κ.	1 30		1.00		1.00		1.0
	R49	Reted Notor Torque		3	3	1.19	*	1.19	4	1.1
	R50	Selected Mtr. Unit & Type		U00-2		ER 000.3		2		
	R51	Actuator Max. Thrust		6.000		30 UUU-2		6 000-2		\$8 000-2
	R52	新国教室以从 以来和教科学 教室和2000年20月20日日日日11日				6,000		0,000		8,00
R20-R19	R53	Available Thrust		2 167		ANDRESS AND A TRANSPORT	******		*****	11.11.11.11.11.11.11.11.11.11.11.11.11.
R18+R19	R54	Rumming Load	2	1 437	3	1,749	*	1,769	8	1,74
100*#54/#20	R55	Running % of Total Load	*	48 1	2	1,202	*	1,262	*	1,26
(#26*#54)/(#36*	R56	Notor Run Torque	2	0.40	2	49.5	5	49.5	*	49.
R61)				0,40	2	0.63	*	0.43	*	0.4
100*#56/#49	857	Notor Run Torque X Rated	*	26.1		21.3				
R49*R36*R42*1.1	R58	Calculated Stall Torque	2	44 3	2	61.3	2	21.3	*	21.
						***.2		44.2	*	6.t .
	859	Max Act Stall Torque		180		180		180		
R58/R20	R60	Stem Thrust at Stell	~	7,173		7 173		7 177		18
2.5*R51	R61	Mex Act Stall Thrust	<	20,000		20.000	2	20,000	2	7,17
	R62	外经家里的赵贵俊孝飞贺着张影像孩子自己的过去分词不会有人口当下				CV, VVC		20,000		20,00
	R63	Cont. Duty Torque Limit		90		00				APPROX AND A
R51*R26	R64	Torese for Act Mex Thrust	*	40		40		90		
827	865	Steel orgue	*	18		16	2			
844*849	866	Max Puil-Out Torque à 100% V	*	26		24		10		11
		The second s	*			20		23	¥	34
							R			
R66*R47	R67	Hax Pull-Out Torque & Min V	*	24		76	r . N 9 9 -	N97-N917860	r : K44*	RAY-RAC/RA
	868	Selected Spring Pack		0023	2.1	0023		33	· · ·	*
	Rố.	New Spring Pack Number		101-091		0101-001	0	101-001	1.1	0023
	£70	Swoulded TSS		1.00		1.00	Ŷ	101-091		101-091
	871	Torque et 155		23		28		1.00		1.0
R71/R25	¥72	Thrust at TSS	*	8, 735		1 715		3 718		2 221
	873	Navinan 755		1 23	1	1 36	<u></u>	3,132	÷	3,13:
	874	Torouge at Nex TSS		27		27		1.72		2.01
074/074	875	Throat at May 750		1 2.85		1 305		50	2	34
ALT TAKES	874	limiting Eactor for May TEC	Horas	10111-003	Marro	*, 363		2,359		3,841
	377	Sterring Pactor for Mex 133	march	(Putt-out)	MOLO	(Putt-unit)	Motor	(Pull-dut)	MOTON	(Pull-Out)
1975-810-8181/8	0.78	at Mayimm TCC		0.75		0.10				
13	A.C.	as mentioned (22		0.30	1	0.49	· · · ·	0.64		0.71

3.

Preparer/Date R. S. Standarson Miles Approval/Date UMUSal 4/10/9, Reviewer/Date Africanan Style Method Bass Acts Page 2 of 4

MOY THRUST SIZING ANALYSIS FOR 13MOV-16 - CALC. NO. JAF-91-036 ANALYSIS OF HELD REGUIREMENTS FOR HRC GL 89-10 SUPP. 3

Formulas			· .								
		Valve Rumber	Der	CS 13MOV sign Con	-16 Nditions		C9 13MOV-16 HELB W/ PO EFF	н	C10 1300V-16 ELB w/ Run Eff	HE	C11 13HOV-16
v				******	******		***********		**********		the my proci E
	R1	Manufacturer	Ar	nchor/Da	rling		Anchor/Derling	A	nchor/Darling		inchor/Dari inn
	82	MTQ. 10 No.	٤/	1570-7			EA570-7	E	4570-7	E	A570-7
	R3	Valvo Size,		3*			3*		3.0		X.H
	R4	Press. and Type	90	DO DO GE	te		900 DO Gate	90	DO DO Gate	9	00 00 0020
	R5	Ref Mfg. Dwg. Ho.	W	3822741			W8822741	W	8822761		8822741
	RÓ	File No.	6	37-260			6.37-260	6	37-260	6	37-260
	R7	Limitorque Order No.	12	7173-04			127173-04	12	7175-04	1	27173-04
	资8	在董術教育委員會委員会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	12 2.23		*****	* *	*******				
	R9	Seat Newn Dia.			2.80		2.80		2.80		5.4
@P1*(R9*R9)/4	810	Sest Area	×		6.16		6.16	*	6.16	1	6.0
	R11	Line Design Press.			1,420		1,045		1.045		0.1
	R12	Design Diff. Press.			1,250		1,045		1.045		1,04
R10*R12	R13	Disc dP Loed	κ.		7,697		6,435	<	6.635		1,04
	R14	Velve Disc Fector			0.20		0.20		0.20	2	0,0
R13*R14	R15	Disc dP Thrust	4		1,539	×	1.287		1 287	1	0.2
	R16	Stem Dia (in valve)			0.750		0.750		0.750		0.75
@PI*R16*R16/4	R17	Stem Area (in valve)	× .		0.442		0.442		0.442		0.75
R11*R17	R18	Stewn End Load			627		462		462	2	0.04
	A19	Stuff Box Load			800		800		800		40
R15+R18+R19	R20	Total Stem Load	<		2.967		2.549		2 540	17	84
	R21	就要的外球產業的改進的成立目的大同的及口付非正常要用意			*******				£1,207	-	2,34
	R22	Stem Dis. (thread)			0.6250		0.6250		0 6280		A COL
	R23	Stem Pitch			0.250		0.250		0.0250		0.625
	824	Stem Lead			0.250		0.250		0.230		0.25
	9.25	Stem Friction Coeff.			0.15		3 15		0.230		0.25
(R25*(R22-R23/2)+0.96815*R24/a P1)/(24*(0.9681 5-R25*R24/(aP1*	R26	Stem Factor	1		0.0057	*	0.0067	*	0.0067	*	0.996
(NCC~RC3/C)))											
KEV-KED	RCI	STER TOPOLOG			19.90	*	17,10	<	17.10	κ.	17.1
	820	Steen lotal fravel (in)			3.00		3.00		3.00		3.0
384/0 (8 50	8.69	Design Stroke line (sec)			16.0		14.0		14.0		14.
(25"00/KEV	RSU	Nominal Speed (1//min)	*		12.86	*	12.86	۰.	12.86	*	12.8
(30/R24	851	Drive SLOeve RPM	*		51.43	4	51.43	*	51.43	۲	51.4
	RSZ	NOTOP RPM			1,900		1,900		1,900		1,90
	R.5.5	AC or DC		DC			DC		DC		pc
	R36	Overall Gear Ratio									
132/131	£35	Calculated	×		36.94	<	36.94	۰.	36.96	*	36.9
	R36	Actual			33.50		33.50		33.50		33.5
132/R36	R37	Actual Drive Sleeve RPN	۰.		56.72	<	56.72	۲.	56.72	æ	56.7.
137*824	R38	Actual Stem Speed (in/min)	× .		14.18	.4	14.18	e	14.18	ę .	16.11
23*60/R38	R39	Actual Stroke Time (sec)	*		12.69	<	12.69	<	12.69	4	12.5
	R40	Unit Full-Out Eff.			0.40		0.40		0.40		0.4
	R41	Run Efficiency			0.50		0.50		0.50		0.5
	R42	Stall Efficiency			0.55		0.55		0.55		0.5
	R43	Application Factor			0.90		0.90		0.90		0.94

Preparer/Date P. Som Lum "/"/" Approvel/Date United 4/15/4/ Reviewer/Date To Manage Higg Rethod Day Par Page 1 of 6

E.

-9

(i)

MOV THRUST SIZING ANALYSIS FOR 13MOV-16 - CALC. NO. JAF-91-036 ANALYSIS OF HELB REQUIREMENTS FOR NLC GL 89-10 SUPP. 3

		Valvo Number	13/ Design (C8 SOV-16 Conditions	NEL	C9 13MOV-16 8 w/ PO Eff	NEL	C10 13MOV-16	ME 1	C11 13400V-16
v						**********				W STRIFET
R36*R40*R43	R44	Adj. Notor Torque Factor	*	12.06	*	12.06	4	12.06	×	12.0
RZ7/R44	845	Mtr Calc Torque @ 100% V	s	1.65	4	1.42	× .	1.62	*	1.4
	846	Miniaus Voltage %		84		84		84		
	R47	Voltage Factor		0.84		0.84		0.84		0.8
R45/R47	R48	Mtr Celc Torque @ Min V	<. · · ·	1.96	4	1.69	ĸ	1.69	κ.	1.6
	R49	Rated Notor Torque		5		5		5		
	R50	Selected Mtr, Unit & Type	58	000-5		\$8 000-5		SE 000-5		S8 000-5
	RS1	Actuator Max. Thrust		8,000		8,000		8,000		8.00
	R52	********************************			****			**********		NARRARNESS CO.
R20-R19	R53	Aveilable Thrust	s	2,167	۰.	1,749	κ.	1,749	κ.	1.74
R18+R19	R54	Running Load	<	1,427	×	1,262	*	1,262	κ.	1,26
100*R54/R20	R55	Rusing % of Total Load	4	48.1	κ.	49.5	4	49.5	*	49.
(R26*R54)/(R36* R41)	R56	Motor Run Torque	×	0.57	×	0.51	×	0.51	×	0.5
100*R56/R49	R57	Notor Run Torque % Rated	<	11.4		10.1	*	10.1	×.	10.
R49*R36*R42*1.1	R58	Calculated Stall Torque	۰.	101.3	*	101.3	×	101.3	×	101.
	R59	Max Act Stall Torque		180		180		180		18
R58/R26	R60	Stem Thrust at Stail		15,105	κ.	15,105	*	15,105		15,10
2.5*851	R61	Max Act Stell Thrust	*	20,000	*	20,000	κ.	20,000	<	20,00
	R62			**********			***	**********		******
	R63	Cont. Duty Torque Limit		90		90		90		9
R51*R26	R.64	Torque for Act Max Thrust	*	54	*	54	۰.	54		5
R27	R65	Stem Torque	κ.	20	*	17	-4	17	<	1
844*849	Róć	Nax Pull-Out Torque @ 100% V	14	60		60	×	75	٧	8
							秋:		16:	
							F : 8	144*R49*R41/R40	F:	244*849*842/84
R06*R47	R67	Max Pull-Out Torque @ Win V		51		51	*	63	*	7
	R68	Selected Spring Pack		0023		0023		0023		0023
	859	New Spring Pack Number	0	101-091		0101-091		0101-091		0101-091
	R70	Required TSE		1.00		1.00		1.00		1.0
	R71	Torque at TSS		23		23		23		2
¥71/826	R72	Thrust at TSS	<	3,428		3, -28	*	3,428	4	3,42
	R73	HAXIOUN TSS		2.50		3.00		3.00		3.0
	874	Torque at Max TSS		43		50		50		5
874/826	875	Thrust at Max ISS	<	6,609	<	7,453	ĸ	7,453	*	7,45
	876	Limiting Factor for Max TSS	Motor	(Pull-Out)	A	ct Max Thrust	- 1	Act Max Thrust		Act Max Thrust
	877	Effective Valve Disc Factor								
(R75-R19-R18)/	R R78	et Heximum TSS	ĸ	0.65	×	0.96	4	0.96	*	0.5

Q.

Preparer/Date Dim from "/19/91 Approval/Date Waw al 4/4/9, Reviewer/Date B. Manam Charles, Method Durch and Part 2 of 6

MOV THRUST SIZING ANALYSIS FOR 23MOV-15 - CALC. NO. JAF-91-037 ANALYSIS OF HELB REGUIREMENTS FOR WRC GL 89-10 SUPP. 3

PO(1964) 88	*****	***************************************		C8	C9		C10	C11		
		Value Number		23MOV-15		23MOV-15		23MOV-15		2380V-15
v		Forte August	Dest	gn Conditions		HELB W/ PO EFF	HE	LB w/ Run Eff	HEL	B w/ Stall Ef:
	R1	Hanufacturer	And	hor/Darlina		nekos/Daulius		*************	1.499	***********
	82	Ntg. ID No.	E69	43-4	E	KGL3-L	An	chor/Darling	An	chor/Darling
	#3	Velve Size,		10*		10#	10	943-6	E6	P63-4
	R4	Press. and Type	900	00 Gate	0	00 00 0444	-	10*		10*
	R5	Ref Mfg. Dwg. No.	¥86	22457	10	8633457	90	U DO Gate	90	0 DD Gete
	Ró	File No.	6.3	7-245	6	37-245	80	862931	MD	622457
	R7	Limitorque Order No.	316	938A	31	16938A	9.	21-242	6.	37-245
	RS	·····································	A heat					OTA SOM	3.1	6938A
	R9	Seat Meen Dia.		8.2000		8 2000		8 3//00		**************
@PI*(R9*R9)/4	R10	Seat Area	s	52.8102		52,8102		6.2000		8.2000
	R11	Line Design Press.		1,250		1.045		1.046	1	52.0102
	R12	Design Diff. Press.		1,250		1.045		1,045		1,045
R10*R12	R13	Disc dP Load		66.013	14	55 167		55 187	100	1,045
	R14	Valve Disc Factor		0.20		0.20		35,167	÷.	55,187
R13*R14	R15	Disc dP Thrust		13,203		11 037	1	11 077	8	0.20
	R16	Stem Dia (in valve)		2.0000		2 0000	8.	2 0000	۰.	11,037
@P1=R16*R16/4	817	Stem Area (in valve)	× .	3,1416		3 1416	2	2.0000		2.000
R11*R17	R18	Stem End Load		3,927	*	3 263	2	3.1610	1	3.1616
	R19	Stuff Box Load		2,000		2 000	1	3,203	•	3,283
£15+£18+£19	R20	Total Stem Load	*	19,130	۲	16,320	×	16,320	۰.	16,320
	REI		N NKPH1	1. 实际管理管理管理管理管理		1.当然美兰东大学生的教育教育教育	RROA	RABBRE SERVICES	****	
	REE	stew Dia. (Enread)		2.0000		2.0000		2.0000		2.0000
	KC3	atem Pitch		0.200		0.200		0.200		0.200
	424	Stem Lead		0.600		0.400		0.400		0.100
	R25	Stem Friction Coeff.		0.15		0.15		0.15		0.400
(R25*(R22-R23/2	R26	Stem Factor	۲	0.0178	٤	0.0178	¢	0.0178	•	0.0178
P11//24*/0 0481										
5-825#924//201#										
(922-923/21)))										
2200224	827	Stan Torna	1.1	110 45		185 17	21			
NEV REN	828	Stem Total Linual (in)	11	337.05		209.11	*	289.77	*	289.77
	020	Decise Crocks Time (m)		9.90		9.90		9.90		9,90
025460/020	029	Enand (in/min)		13.3		13.3		13.5		13.5
R20 00/R27	831	Sperera (Triverin)		66.00		44.00		44.00		44.00
N.30/ NE*	012	BORGE BOR		110.00		110.00	*	110.00	*	110.00
	NJC	MOTOF RPR		3,400		3,400		3,400		3,400
	833	AC OF DC		AC		AC		AC		AC
072/071	675	Overall Gear Ratio				the second				
K36/K31	8.33	LECULETOD ACCURATE	. *	30.91	*	30.91	4	30.91	4	30.91
013 (034	830	ACTUBI		30.46	101	30.46		30.46		30.46
617463/	837	ACTUAL DELVE SLEEVE REM		111.62	*	111.62	*	111.62	<	111.62
071 160 1070	070	Actual Stanks Spend (In/min)	2.	60.00	*	44.05	4	44.65	*	44.65
HPD . 001 830	K28	MCCOMIC SCLOKE LIDE (SEC)		13.30	a.	13.30	*	13.30	s .	13.30

Preparer/Bate P. Sund "/m/41 Approvel/Date Umusal 4/10/9/ Reviewer/Date Date Date Market Market Page 1 of 4

NOV THRUST SIZING ANALYSIS FOR 23MOV-15 - CALC. NO. JAF-91-037 ANALYSIS OF MELB REQUIREMENTS FOR NRC GL 89-10 SUPP. 3

				cð		C9		C10		C11
		Value Kentur		2.5MOV - 15		23MOV-15		2.34OV - 15		2.3MOV - 15
Ý		FELTE RUNDER	Des	ign Conditions		HELB W/ PO ETT	. 1	HELS N/ RUM Eff	н	LB w/ Stall Ef
	R40	Unit Pull-Dut Eff.		0.45		8.2.6	1		-9	
	R41	Run Efficiency		0.60		0.45		0.45		0.4
	R42	Stall Efficiency		0.60		0.00		0.60		0.6
	R43	Application Factor		0.90		0.00		0.60		0.64
R36*R40*R43	R64	Adj Motor Yorque Factor		12. 14	÷.	0.90		0,90		0.9(
827/846	R45	Mtr Calc Torque & 100% V	×	27.53	2	23.40		12.34	. 4	12.34
	R46	Minimum Voltage %		90	1	63.69		23.49	٩	23.41
	R47	Voltage Factor		1.00		1 00		90		94
R45/R47	R48	Mtr Calc Torque & Min V	*	27.53	ĸ	28.40	5	1.00		1.0(
	R49	Reted Notor Torque		60		40	2	23.44		23.43
	R50	Selected Mtr. Unit & Type		58 1-40		58 1-40		60 1-40		
	R51	Actustor Max. Thrust		45,000		45 000		20 1-40		58 1-60
	#S2	前単型単築協会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会				ARNNESSEREENEWER		*5,000		45,00K
R20-R19	R53	Aveilable Thrust	κ.	17,130	*	14 320		14 120		ARAGEREN MARENAL
R18+R19	P.54	Running Load	*	5,927	*	5 283	0	19,300	1	14, 520
100*R54/R20	R55	Running % of Total Load		31.0		32.4	2	33.4	0	5,283
(825*854)/(836*	R56	Motor Run Torque	κ.	5.76		5 13	0	5 12	2	32.4
R41)						4.14		2.13		5.13
100*R56/R49	R57	Motor Run Torque % Rated		14	×	11	÷	13		
R49*R36*R42*1.1	858	Calculated Stall Torque	*	804.1		804.1	~	804 1	2	806.1
										ODec 1
	859	Nex Act Stall Torque		1,700		1,700		1,700		1 700
R58/R26	R60	Stem Thrust at Stall	κ.	45,291	κ	45,291	*	45,291		45 201
2.5*R51	R61	Man Act Stell Thrust	*	112,500	*	112,500	*	112,500		112 500
	R62	化酸盐盐酸物酸脂酸洗油物或的酸盐共和的化学的和生物的名称	3 897 5	************		*********	-			
	R63	Cont. Duty Torque Limit		850		850		850		850
R51*R26	R64	Torque for Act Max Thrust	× .	799	*	799	*	799		700
R27	R65	Steen Forque	<	340	÷.	290	*	290		290
244*249	Ráó	MAR Pull-Out Torque # 100% V	<	493	<	493	4	658	~	658
							K :			
							Fr	8444949*841/840	F ::	044 CA8=049* 440
R.66*R47	9.67	Nex Pull-Out Torque & Min V	*	493	κ.	493	*	620		658
	R68	Spring Peck		0068		8600		8000		0068
	R69	New Spring Pack Number		0701-212		0701-212		0701-212		0701-212
	R70	Required TSS		1.50		1.50		1.50		1.50
	R71	Torque at TSS		350		350		350		350
R71/R26	R72	Thrust of TSS	*	19,713	*	19,713		10.718		10 718
	R73	Nex incer TSS		1.75		1.75		2.25		2 28
	8.74	Torque et Max 755		438		438		636		63.8
\$74/\$26	R75	Thrust at Max TSS	4	24,669	*	24.669	÷.	550 27		770 27
	R76	Limiting Factor for Max TSS	Not	or (Pull-Out)	84	stor (Pull-Dut)	N	otor (Pull-Out)	-	ator (Pull-Out)
	877	Effective Valve Disc Factor				Contract and a		and trait wasy		and that was
(R75-R19-R18)/R	R76	ot Meximum TSS	<	0.28	*	0.35	×	0.56	×	0.56
13	0.70									
	819									

880 881

Precarer/Date Provinter 4/14/ Approval/Date Unever +115/11

R

and a

MOV THRUST SIZING ANALYSIS FOR 23MOV-60 - CALC. ND. JAF-91-038 AMALYSIS OF MELB REQUIREMENTS FOR NRC GL 89-10 SUPP. 3

S

r trimer ag										
			6	22		C23		C24	C26	
			234	40V-60		23MOV-60	1	2340V-60		23901-60
		Valve Number	Design (Conditions	HELI	B W/ PO Eff	HELB	W/ RUN Eff	HELB	N/ STALL E4
v	81	Marriel		*********	****	* * * * * * * * * * * * *	*****	**********		
	0.0	and the second	Convel		Conv	al	Conve	el .	Conv	al
	88	Million Eliza	5.0. 98	567	\$.0.	9867	8.0.	9867	\$.0.	9867
	8.3	VALVE 5120,		1.		14		1.4		1#
	8.6	FIERS, BING Type	Globe		Glob	e	GLobe		GLob	
	83	Ret RTQ. DWg. No.	120201	105	12625	PJ-105	12629	PJ-105	1262	PJ-105
	80	FILE NO.	6.37-21	15	6.37	-215	6.37	215	6.37	-215
	87	Limitorque Order No.	341204	0	3412	04-8	36120	24-8	3K12	04 - 8
	B/A	· · · · · · · · · · · · · · · · · · ·	DESCURA	1.空运出的成功的资源等	SENSE.	************	******		HREEN	URABBERS AND
	KY	Seat Rean Dia.		0.8125		C.8125		0.8125		0.812
WF1 * (R9*R9)/4	R10	Seet Ares	*	0.5185	*	0.5185	*	0.5185	۹.	0.518
	811	Line Design Press.		1,300		1,045		1,045		1.04
	812	Design Diff. Press.		1,300		1,045		1,045		1.04
R10*R12	R13	Disc dP Load	κ	676	*	542	κ	542	*	54
	R14	Valve Disc Factor		1.10		1.10		1,10		1.1
R13*R14	R15	Cisc of Thrust	8	741	× ·	596	*	596	*	50
	R16	Stem Dia (in valve)		0.6250		0.6250		0.6250		0.626
@P[*R16*R16/4	R17	Stem Area (in valve)	× .	0.3068	× .	0.3068	*	0.3068	*	0.304
R11*R17	R18	Stem End Load	5	399	*	321	*	321	*	83
	819	Stuff Box Lond		1,000		1,000		1.000		1.00
R15+R18+R19	R20	Total Stem Load	¥	1,761	w.	1,596	*	1.595	×	1.50
			$\Phi(q) = 0$		¥:		N :	1,000	N -	1,034
			F:R15+R1	19	F:815	+819	F:R15	-#19	Fight	+910
	R21	******************	******		-	***********	STARE.			
	R22	Stem Dia. (thread)		0.6250		0.6250		0.6250		() 4 38 -
	R23	Stewn Pitch		0.125		0,125		0.126		0.12
										0.12
	R24	Stem Lead		0.125		0.125		0,125		0.12
	R25	Stem Friction Coeff.		0.20		0.20		0.20		0.2
(R25*(R22-R23/2	R26	Stam Factor	*	0.0066	*	0.0066	4	0.0066	*	0.004
)+0.96815*R24/R										
P1)/(24*(0.968)										
5-R25*R24/(@P]*										
(R22-R23/2))))										
R20*R26	827	Stem Torque	×	11.49	*	10.53	*	10.57		10.0
	828	Stem Total Travel (in)		0.28		0.76		0.53		10.5
	220	Design Stroke Time (art)		7.5		7 5		0.78		0.1
828*60/820	830	Speed (in/min)		6.50		6.50		1.5		1.
830/824	831	Drive Sleeve PPM	×	52.00		63.00		0.50		6.50
	079	Notor PPH	-	1,000		1.000		52.00		52.00
	022	AC or Of		00		1,900		1,900		1,900
	833	Overali Gan Baris		NC .		00		0C		DC
832 (874	0.36	Calculated					1.51.1			
832/831	8.35	Letculated		30.54	*	36.54	< .	36.54	*	36.54
	8.30	Actual Deline Block		36.50		38.50		36.50		36.50
R32/R30	837	ACTUAL DRIVE SLEEVE RPM		52.05		52.05	*	52.05	*	52.0
83/"824	R38	Actual Stem Speed (in/min)	*	6.51	×	6.51	4	6.51	*	6.5
858*60/838	839	Actual Stroke Time (sec)	4	7.20	× .	7.20	× .	7.20	*	7.2

Preparer/Date P. Srile 4/14/9, Approval/Date Mills & 4/16/9, Reviewer/Date B. Romman High Method Las & ar Pager 1 of 6

MOV THRUST SIZING ANALYSIS FOR 23MOV-60 - CALC. NO. JAF-91-038 ANALYSIS OF HELD REQUIREMENTS FOR NRC GL 89-10 SUPP. 3

Forest #s · · ·		***************************************		C22		C23		C26		6.26
				23MOV-60		23MOV-60		23HOV-60		234004 40
		Velve Number	Desi	gn Conditions		HELE W/ PO EFF	н	ELB w/ Run Eff	HEL	R W/ Stell E
	840	Unit Pull-Out Eff.		0.40		0.40		A 10		*********
	R41	Run Efficiency		0.50		0.50		0.40		0.
	R42	Stall Efficiency		0.55		0.55		0.50		0.1
	R63	Application Sactor		0.90		0.90		0.00		0,1
R36*R40*843	R64	Adj. Motor Torque Factor	4	13.16		13.14		0.90		0.1
R27/R44	R45	Mtr Calc Torque @ 100% v		0.87		0.80	÷.	13.14		13.
	R4B	Minimum Voltege %		84		84		0.80	۰.	0.1
	847	Voltage Factor		0.84		0.84		0.84		
R45/R47	R48	Mtr Celc Torque 9 Min V	× -	1.04		0.25	4	0.04	1.14	0.0
	849	Rated Motor Torque		2		2	η.	0.93		0.1
	RSO	Selected Mtr. Unit & Type		SHE 000-2		SNR C00-2		SMB 000.3		
	R51	Actuator Max. Thrust		8,000		8,000		B 000		SH8 000-2
	R52	的复数形式建筑的建筑和建筑中的方式公司经济的过去式和过去分词				**********		0,000		6,0
R20-R19	RS3	Available Thrust	4	741	*	596		504		E.
R18+R19	R54	Running Load		1,399	×	1.321	2	1 821	2	2.
100*#54/#20	R55	Running % of Total Load	8	80.3		82.7	4	83 7	2	1,3,
(RZ6*R54)/(R36*	R56	Motor Run Torore	κ	0.51		0.48	2	0.48	2.1	82
R41)							9.1	0.40		0.4
100"256/849	R57	Notor Run Torque & Rated	£	25		24		34	1	
R49*R36*R42*1.1	R58	Calculated Stall Torque	*	44.2	×	44.2	4	44.2	2	44.
	R59	Nax Act Stall Torque		180		160		180		
R58/R25	R60	Stem Thrust at Stall	4	6,696	*	6.696	4	0.696		4 40
2.5*#51	R61	Max Act Stell Thrust	ε	20,000	*	20,000	4	20,000	÷.	24.60
	862			********		RESULCESSERVINGED	-	NURBERSER CLASS		
	R.6.3	Cont. Duty Torque Limit		90		90		90		c
851*826	R64	Torque for Act Max Thrust	< 11	53	e.	53		53	4.1	
R27	R65	Steen Torque	4	11	*	11	4	11	2	
844*849	R66	Max Pull-Out Torque @ 100% V		26	4	26	N	87	2	
										•
								1119104911/910	8.04	140104013101
R66*R47	R67	Nex Pull-Out Torque & Min V	e	22		22		28		-H-3-K02/H4
	868	Spring Pack		0023		0023	24	0023	1	0028
	R69	New Spring Pack Mumber		0101-091		0101-091		0101-091		0101-001
	R70	Required TSS		1.00		1.00		1.00		1 0
	871	Torque at TSS		23		23		23		1.0
R71/R26	872	Thrust at TSS	<	3.487		3 487		8 4.87	5	3.48
	873	Naximan TSS		1.00		1.25		1.60	÷.,	3,40
	R76	Torque at Nax TSS		23		26		80		4.0
R74/R26	R75	Thr mt at Max TES	<	3.487	2	1 942		1 548	100	5 15
	R76	Limit ng Factor for Max TSS	NG. O	C (Full-Out)		otor (Pull-Out)	Ma	tor (PulliGues	Mar	2,92
	R77	Effective Valve Disc Factor		arear way		and there out	10	(((((((((((((((((((MOT	on thost one
(R75-R19-R18)/R	R78	at Meximum TSS	*	3.10	×	4.84	×	5.96	4	7.6
	R79									
	0.00									

R81

•

Preperer/Date Salan 1/2/41 Approvai/Date UMUSaly 4/16/9; Reviewer/Date Hanne Highly Hethod Day Box Page Dot 6

2

et.

76

•

Formulas								
				C2		C3		64
				23MOV-10		23MOV-16		2.5HOV-16
v v		Velve NC	Desig	ph Conditions	HEL	B W/ PO Eff	HEL	B w/ Run Eff
10.0	81	Reputertures		*************	*****	************	(1,0,0,0)	*************
	82	NEG. 10 NG	- Krict	nor/Derling	Anch	ior/Darling	And	hor/Derling
	#3	Velue Cise	6074	12-3	E694	3-3	EGP	43-3
	84	Press, and Tune	606	10+	111	10*		10*
	24	End Min Dun No	A00	DD Gete	900	DD Gete	900	DD Gate
	86	file kn	M001	62+30	W862	2456	MB6	22456
	87	Limitorous Order No.	0.31	1.546	6.37	-244	6.3	7-244
	6.8	REPRESENTATION OF AN AD	2101	1906	3169	388	316	V388
	89	Seat Nean Dis.	****		*****	L'IRRESERRES		
GP1*(#Q*EQ)/6	810	Seat Area		0005.8		8.2000		C005.8
	R11	Line Design Press	÷	52.8102	4	\$2.8102	*	52.8102
	812	Design hiff Brees		1,250		1,045		1,045
R10*812	P13	Disc all Land		1,250		1,045		1,045
	P14	Value Disc Sector	2.1	66,013	÷	55,187	*	55,187
#13+#14	P15	Ding do Thomas		0.20		0.50		0.20
N12 N14	P 14	Stee bis //s using)	κ.	13,203	* .	11,037	*	11,037
	897	a em bie (in velve)		2.0000		2.0000		2.0000
8119819	817	Stem Area (In Valve)	5	3.1416	8	3.1416	4	3.1616
WILL W.C.	810	Stee Eng Loag	5	3,927	*	3,283	4	3,283
815-818-810	817	STUTT BOK LODD		5,000		2,000		2,000
K 12-R IQ-R IV	REU	forei stem Load	÷	19,130	1	16,320	*	16,320
	R21	******			*****			********
	R22	Stam Die. (thread)		2.0000		2.0000		2.0000
	R23	Stem Pitch		0.250		0.250		0.250
	R24	Stow Load		0., 0		0.750		0.750
	R25	Ftem Friction Coeff.		0.15		0.15		0.15
(R25*(R22-R23/2	R76	Stem Factor	4 Ú	0.0225	4	0.0225		0.0226
)+0.9681**824/8						VIVEE.	Т.,	0.9663
PI3/(24*(1.9681								
5-R25*R24/(@P1*								
(#22-#23/2))))								
R20*R26	827	Ster Torque	100	430.32		347.13	1.1	862.18
Contraction of the second	828	Stem Total Travel (in)		9.90	e.,	0.00		5 85
	821	Design Stroke Time (sec)		13.5		18.5		13.6
i. 0/829	830	Speed (in/min)		44.00		44.00		10.0
834/624	831	Drive Siegue BPM	1	58.67	5	58.67	1.1	50.00
	832	Notor RPM	22.2	1,900		1 000		20.07
	233	30 30 34		1,900		1,900		1,900
	234	Overall Geer Patio		P.6		00		Dr.
P32/P31	135	Calculated	1.1	32.30	10	12.80	1211	** **
NAMES FOR I	189	Actual	1.0	32.39	1	36.39	1	52.39
832/836	837	Actual Drive Cleave BON	4	40.05	1	27.20		27.20
P37*P3/	Par	Actual Star Francis distant	3.1	69.63	2	69.65	2	68.90
8289607838	050	Actual Stocks Time (upp)	100	52.39	-	52.39	1	52.39
RED. 00/R30	6.24	WERMER STICKS LIME (REC)	1	11.34		11.54	*	11.34

Preparer/Date ______ Approval/Date ______ Reviewer/Date ______ Method _____ Page 1 of 6

-1

MOV THRUST SIZING ANALYSIS FOR 23MOV-16 - CALC. ND. JAF-91-_____ AMALYSIS OF HELE REQUIREMENTS FOR NRC GL 89-10 SUPP. 3

Formalas		***********************	*					
				62		23		
				23MOV-16		27400-14		C4
		Valve Number	Desig	n Conditions		KELB W/ DO FIA		23MOV - 16
v			5.6.4.4			upro et en fit	211	ELB M/ RUN EFF
	R40	Unit Pull-Dut Eff.		0.40		0.40		
	861	Run Efficiency		0.50		0.60		0,40
	R62	Stall Efficiency		0.60		0.50		0.50
	R43	Application Factor		0.90		0.00		0.60
R36*R40*R63	R64	Ad, . Notor Torque Factor	8	9.70	-16	0.70		0.90
R27/844	R45	Mtr Celc Torque # 100% V	*	43.95	4	87.46	2	9.79
	R40	Minimum Voltage %		84		84		37.49
A 18 19 19	R47	Voltege factor		0.84		0.64		84
845/847	14月	Mtr Calc Torque & Min V	4	52.32	*	44.63		0.84
	R49	Rated Motor Torque		60		60		44.63
	R50	Selected Mtr, Unit & Type		\$8 1-60		58 1-60		68 1.40 SU
	R51	Actuator Max. Thrust		45,000		45,000		540 1 · DKJ
	R52	·····································		***********		1000 1000 1000 1000 1000 1000 1000 100	1.11	45,000
R_D-R19	R53	Available Thrust	×	17,130	×.	16.320		AL TOO
R18+R19	R54	Running Load	*	5,927	4	5.283	2.	14,320
100*R54/R20	R55	Running % of Total Load	.4	31.0		82.4	2	3,263
(#26*#54)/(#36*	R56	Notor Run Torque	ж.	9.80		8.74	2	32.4
R41)						0.78		0.74
100*#\$6/#49	R57	Motor Run Torque % Rated	4	16	ж.	15	5	
R49*R36*042*1,1	R58	Calculated Stall Torque	κ	1077.1		1077.1	2.	1077 1
							2.7	10//.1
	R59	Max Act Stall Torque		1,700		1.700		1 700
R58/R26	R60	Stem Thrust at Stell		47,882	*	47.882		47 883
2.5*R51	R61	Max Act Stail Thruse	*	112,500	*	112,500	2	112 500
	R62	新市市市市市市市市市市市市市市市市市市市市市市市市市市市市 	******	**********	-		-	112,200
	R63	Cont. Duty forque Limit		850		850		150
k51*R26	R64	Torque for Act Max Thrust	κ.	1,012	. 6	1.012		1 012
R27	R65	Stem Torque		430		367	21	347
R44*R49	R66	MAX Pull-Out Torque & 100% V	×	588	*	568		754
								1.34
								LAND LOPPLI ALD
R66*R47	R67	Nax Pull-Out Torque & Kin V	8	494	4.1	404		A17
	R68	Spring Peck		0068		8000	2	0048
	R69	New Spring Pack Number		701-212		0701-212		0201-212
	R70	Required TSS		1.75		1.75		1.75
	871	Torque et TSS		438		438		430
R71/R26	R72	Thrust at TSS	*	19,471	*	10 471	21	10 471
	873	Naximum TSS		1.75		2.00		2 25
	£74	Torque at Nax TSS		438		550		638
R74/R26	R75	Thrust at Max TSS	×	19,671	4	24.450	2	28, 343
	R76	Limiting Factor for Max TSS	Hotor	(Pull-Out)	No	tor (Pull-Out)	Mert	en, and
	R77	Effective Valve Disc Factor				the second water	my	tor (Port-owe)
(R75-R19-R18)/R 13	R78	et Maximum TSS	κ.	0.21	< 1	0.35	۰.	0.42
	R79							
	R80							
	R81							

Preparer/Date _____ Approval/Date _____ Reviewer/Date _____ Method _____ Page 2 of 6

. . .

ATTACHMENT 3 TO JPN-91-039

GENERIC LETTER 89-10, SUPPLEMENT 3 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

ANCHOR/DARLING TESTING PROGRAM

New York Power Authority

JAMES A. FITZFATRICK NUCLEAR POWER PLANT Docket No. 50-333

Attachment 3 to JPN-91-039

Anchor/Darling valve Co.

Gate Valve Blowdown Test Program Summary

This test program is set up to evaluate the high flow valve closure effects on A/DV Double Disc Gate valves and A/DV Flex Wedge Gate valves.

Test Valves

1. 6" 900# A/DV Double Disc Gate Valve

2. 6" 900# A/DV Fiax Wedge Gate Valve

Both valves a perulpped with an SMB-1-40 Limitorque motor operator.

Test Description

Each test valve will be subjected to the following two sets of tests:

1. Three valve blowdown (closing) cycles using water at ambient temperature,

2. Three valve blowdown (closing) cycles using water at 580 degrees Fahrenheit.

The blowdown tests shall subject the gate valves to a 1400 psi differential pressure during valve closure from 50% closed to 100% closed. Seat leakage tests shall be performed at the start of each test set and after each valve test cycle. The test valves shall be disassembled and inspected after each valve test cycle.

Schedule

The current schedule is as follows:

Task	Planned Completion	
	6" 900# FW	6" 900# DD
Test valve preparation	10/25/91	9/27/91
Test procedure preparation	8/16/91	8/16/91
Start testing at Wyle	1/6/92	10/28/91
Completes ambient temp. testing	1/24/92	11/15/91
Complete hot cycle tests	2/21/92	12/13/91
Finalize test report	4/24/92	2/21/92

This schedule is tentative and subject to change as the test mogram progresses.

ATTACHMENT 4 TO JPN-91-039

GENERIC LETTER 89-10, SUPPLEMENT 3 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

PLANT SPECIFIC SAFETY ASSESSMENT

New York ! wer Authority

JAMES A. FITZPATRICK NUCLEAR POWER PLANT Docket No. 50-333 Attachment 4

JAMES A. FITZPATRICK NUCLEAR POWER PLANT

PLANT - SPECIFIC SAFETY ASSESSMENT

FOR THE

ISOLATION FUNCTION OF MOVS FOR HPCI AND RCIC STEAM SUPPLY LINE AND RWCU WATER SUPPLY LINE

Based on the Generic Safety Assessment prepared by:

GE NUCLEAR ENERGY FOR BWR OWNER'S GROUP

Prepared by Link

----- Date 12/12/90

Reviewed by Viter M Staly Date 12/12/90

Approved by

Date 12/12/90

Reviewed by Plant Operations Review Committee

Meeting No. # 90-110

Date 14/12/40

1.0 Introduction

On June 7, 1990 the NRC by letter to the BWR Owners' Group (BWROG) requested data concerning certain safety-related BWR Motor Operated Valve (MOV) capabilities. Data was requested for the primary containment isolation valves in the High Pressure Coolant Injection (HPCI) and Reactor Core Isolation Cooling (RCIC) steam supply lines, and the Reactor Water Clean-Up (RWCU) suction lines. This request was the result of a BWROG and NRC May 23, 1990 meeting which concerned the applicability of the Idaho National Engineering Laboratory (INEL) test data obtained to resolve Generic Issue 87. The NRC interpretation of this data is in NRC Information Notice 99-40 "Results of NRC-Sponsored Testing of Motor-Operated Valves" dated June 5, 1990.

The NRC interpretation of the test results appeared to indicate that a 0.2 or 0.3 disc factor, normally used to calculate valve seating forces, is not conservative. The calculated valve seating force is used to size the valve actuator and motor, and to establish the torque switch setpoint. Therefore, the actuator size or torque switch setting may be marginal or may not fully close the valve against postulated maximum design basis event flow and differantial pressure (dp). This document demonstrates that a significant safety concern does not exist, even if the HPCI, RCIC and RWCU isolation MOVs are not optimally sized.

2.0 Summary

In summary this document explains that,

 The need for these isolation values to perform their intended design function of isolating a line break against a maximum differential pressure condition resulting from a postulated double-ended guillotine pipe break is unlikely because of leak before break characteristics and the availability of leak detection instrumentation.

- 2. The consequences of postulated leaks in these lines have been evaluated from a radiological, Environmental Qualification, and equipment flooding point of view and are bounded by other analyzed plant events.
- 3. The INEL tests represent extreme and worst case conditions. When breaks are postulated given expected system response and accident scellerios, successful isolation of the break is more likely.

This assessment concludes that existing FitzPatrick NOVs for the HPCI and RCIC steam supply line and RWCU suction line isolation have a high probability of full isolation under realistic conditions. In addition, HPCI and RCIC steam supply lines and the RWCU suction line MOVs have demonstrated proper operation under conditions mimicing the likely demand event, a pipe leak. System isolation will occur before the postulated design basis event high flow dp condition. Based on this the presently installed and maintained equipment does not represent an undue risk to the health and safety of the public.

3.0 Safety Assessment - HPCI/RCIC/RWCU Pipe Leaks

3.1 Leakage Considerations

It is industry experience that high energy piping experiences leaks long before a pipe break condition develops. Industry has referred to this as Leak-Before-Break (LBB). The FitsPatrick plant has multiple channel, and redundant leak detection monitoring of the high energy system lines external to the primary containment. This monitoring is sensitive to small leaks (-7 gpm) and causes both an alarm in the control room and automatic isolation signals to the leaking system's isolation MOVs. Isolation signals would initiate MOV closure long before the leakage could cause any significant flow change, fluid loss or radiation release, and before a significant long term environmental challenge to the MOVs. The MOVs have been environmentally qualified to the more extreme double-ended guillotins break environmental conditions. The HOVs are periodically inspected and tested to demonstrate operability during plant operation. In addition, these valves have occasionally been inadvertently closed during system operations. This has demonstrated unscheduled demand operability against the significant dp resulting from normal system flow rates.

3.2

Lesk-Before Break Justification

Although the design basis for the FitzPatrick plant as discussed in the PSAR, includes the evaluation of a loss of coolant accident resulting from a postulated pipe break, considerable effort goes into designing piping and vessel nozzle safe-end systems to assure that such a break will not occur. Piping systems are analyzed using appropriate codes and standards to limit applied stresses and materials are selected to provide adequate ductility and toughness. Piping design also provides implicit margine concerning fatigue failure. Extreme environmental effects are not considered significant. Piping materials (carbon steel) and steady state temperatures preclude environmentally-assisted cracking. Thus, while cracking may be postulated, the probability is low. Furthermore, leak detection systems are designed to assure that, even if a pipe or safe-end (nozzle-pipe transition piece) should experience cracking, the crack would grow to a through-wall leak and the leak would be detected long before it reaches critical crack size which could cause a pipe rupture. This concept is called the 'Leak-Before-Break' concept or approach. This critical crack basis already exists in Section 4.10.3 of the FitzPatrick FSAR as part of the plant design basis discussion for the Reactor Coclant System.

In general terms, the LBB concept is based on the fact that reactor piping and vessel safe-ends are fabricated from tough ductile materials which can tolerate large through-wall cracks without complete fracture under service loadings. By monitoring the leak rate from the throughwall cracks and setting a conservative leakage limit of 7 gpm, cracks in piping can be detected well before the margin to rupture is challenged.

In NUREG 1061, Volume 3(1), the NRC Piping Review Committee outlined the limitations and general technical guidance on LBB analyses to justify mechanistically that breaks in high energy fluid system piping need not be postulated. In a recent modification to General Design Criterion 4(2), the NRC has formalized the use of the LBB approach to justify the elimination of pipe whip restraints and jet impingement barriers as design requirements for a hypothetical double-ended guillotine break in high energy reactor piping systems. Thus there is NRC recognition that the LBB concept provides realistic margin over and above the ASME Code piping design structural margins.

A key parameter in the LBB evaluation is the critical crack length at which pipe rupture is predicted. The focus in the LBB evaluation is on the through-wall circumferential cracks because such cracks could lead to a double-ended guillotine break.

The LBB approach is not being applied in this assessment to eliminate pipe whip restraints or jet impingement barriers or reduce inspections. Therefore, explicit LBB margins are not calculated nor are they necessary. Instead, the LBB concept is used in this assessment to demonstrate that the leakage from a through-wall crack with a length up to but less than the critical crack length, would be large enough to be readily detected such that isolation actions can be taken well before the critical crack length is achieved and long before maximum design basis event flows and pressures are established which could challenge the isolation motor-operated valves.

Critical Crack Length and Leak Rate Calculations

3.3

Critical crack length and leak rate calculations for FitzPatrick piping geometries is documented in Section 4.10.3.2 of the FitzPatrick FSAR. Reference [3] is an example of such calculations. The calculations presented here use methods [4,5,6] more recent than that used in the FitzPatrick FSAR calculations.

Table 1 lists the values of parameters used in the critical crack length and leak rate calculations which are typical for the FitzPatrick applications of interest. The results of the calculations for representative pipe sizes are summarized in Table 2. A limit load approach with a conservative value of stress equal to 2.4 S_m (where S_m is the value of material design stress intensity given in the ASME Code), was used in calculating the critical crack lengths. When based on test data, the stress for four inch diameter pipes was assumed to be 2.7 S_m. The leak rate calculation methods used for both the water and the steam lines are outlined in Reference [5].

An inspection of Table 2 shows that the calculated leak rate at critical crack length is a strong function of pipe diameter. Nevertheless, even for a 4-inch diameter water line, the predicted leak rate is 25 gpm at the critical crack length. A 25 gpm leak rate is larger than the leak detection rate sensitivity identified in the following section of this evaluation on leak detection with the exception of the RWCU cold water lines. These calculations conservatively ignore leak rate increases due to steam cutting, that can occur for a given crack length. Once leakage starts due to steam cutting it increases with time and the Table 2 leak rates can occur before reaching critical crack length. Full design basis MOV dp corresponding to a double ended guillotine break will not occur at these limits due to the downstream flow restriction (crack). Complete MOV closure will occur under these conditions. The RWCU cold

Page 6

lines have a much lower potential for cracking because of their constant cold condition.

Of significance is that the LBB margin increases with increasing pipe size. Thus, larger pipes where failure could be more significant have inherent LBB advantages. While the LBB margin is somewhat lower for smaller pipes, there is still a large BWR experience database supporting the integrity of such piping.

Inspection programs (e.g., In Service Inspections (ISI) per ASME Section XI), Generic Letter 89-08 [8] related commitments and other periodic inspections on system piping outside the isolation valves provide additional assurance of continuing piping integrity and low probability of pipe leak and break conditions. As indicated in the NRC's Staff Safety Assessment (Enclosure 1 of Generic Letter 89-10 Supplement 3), the HPCI and RCIC ferritic steel steam supply lines have low erosion/corrosion susceptibility. This is due to only intermittent operation during HPCI/RCIC pump testing. Unlike most BWR's no austenitic stainless steel is utilized for the FitzPatrick RWCU system piping. Therefore the concerns of Generic Letter 88-01 with respect to intergranular stress corrosion cracking (IGSCC) do not apply. The RWCU system has been modeled using the EPRI CHEC analysis program for erosion/corrosion potential. This system model accounts for the possible effects of Hydrogen Water Chemistry (HWC) on the corrosion layer within the carbon steel RWCU piping. The generally low flow velocities which exist in the RWCU system cause few areas of significant erosion/corrosion potential. These areas were inspected during the FitzPatrick 1990 refueling outage with no erosion/corrosion degradation noted. Additional inspections are planned for the 1991 refueling outage.

Based on the results of this and the following evaluation, it is concluded that the subject piping systems (HPCI, RCIC Steam Supply Line and RWCU Suction Line) are expected to develop a detectable leak before reaching the point of incipient rupture. A double-ended guillotine break in these lines with the resulting high break flows is highly unlikely.

3.4

Leak Detection Monitoring and Isolation

These systems at FitzPatrick have been designed for compliance to General Design Criterion (GDC) 54 [7] - "Piping system penetrating containment. Piping systems penetrating primary reactor containment shall be provided with leak detection, isolation, and containment capabilities ..." This GDC was satisfied with a defens-in-depth combination of pipe break, high flow monitoring and isolation sensors for large leaks for each high energy piping system. RCIC and HPCI use high flow and temperature monitoring and RWCC uses only temperature monitoring for isolation sensing. These same high energy piping systems also have sensitive, small leak (-7 gpm), temperature monitoring and isolation sensors.

At FitzPatrick redundant, safety grade temperature monitoring equipment continuously monitors areas outside primary containment where high energy lines are routed. The temperature sensors for this monitoring are grouped with the piping of each system and will alarm and isolate that system when a leak condition is detected. At FitzPatrick the sensors and logic are applied in a redundant design configuration to be single failure tolerant.

For the HPCI, RCIC and RWCU Systems the alarm and isolstion limit is based on detecting leaks of less than 7 gpm [12]. This isolation is converted to a temperature value and is expressed in terms of a temperature rise of 40°F above maximum ambient temperature as listed in Technical Specification Table 3.2-1. The sensitivity of the temperature sensors provides a fast response to a developing leak. Even though a temperature limit may relate to a specific leak rate, these same temperature limits can be attained with .such lower leak rates. A smaller leak for a longer time period can reach the temperature limit and allows recognition of smaller cracks.

In addition to the temperature monitoring system, the operator can detect small leakage flow into the reactor building floor and equipment drain sumps. There are also area radiation monitoring system gamma detectors that alarm during small leak conditions. These additional sources of leak detection provide data to the operator which call for further assessment including a visual inspection of the area.

Operating experience has shown relatively quick operator response to leaking conditions in safety systems and other monitored systems upon leak identification by routine inspection activities or by monitoring equipment isolations and alarms.

The leak detection temperature monitoring capability installed at FitzPatrick can detect the small leakage condition and initiate isolation long before a pipe break condition would develop. Therefore, the combination of the leak-before-break approach in conjunction with the leak detection capability provides early isolation at less than design basis conditions for a potential pipe break that might challenge the MOVs isolation capability at maximum flow-induced dp.

3.5

Radiclogical Consequences of Leakage Flow

The radiological consequences of the leakage flow from the HPCI, RCIC or

RWCU lines are bounded by plant design basis radiological release evaluations. The FitzPatrick design basis event for offsite release is the double-ended guillotine break of the main steam line. The evaluation of the offeite release results for this break assumes a large amount of reactor inventory loss prior to break isolation. The liquid phase of the reactor inventory contains most of the radioactive material which is released into the turbine building during the postulated break event. However, the resulting dose from the main steam line break is still only a fraction of the IOCPRIOO limits. Furthermore, the total inventory loss for the small leakage sesociated with the HPCI, RCIC or RWCU line is only a small fraction of that from a main steam line double ended guillotine break and is contained inside secondary containment. For example, a 25 gpm hot water leak from RWCU typically can be detected within 10 seconds. This means that the total inventory release before detection is less than 30 lbs. This is a small fraction compared to the main steam line break liquid inventory loss which is approximately 140,000 lbs. total, of which 120,000 lbs. is liquid. Therefore, even if the leak detection requires 4000 times longer to isolate the detected leak, the radiological release from the leakage flow will be a very small fraction of the 10CFR100 limit. This radiological release would further be reduced by operator action in accordance with Emergency Operative Procedures and by the capabilities of secondary containment.

3.6

Environmental Qualification and Flooding Potential

The FitzPatrick Equipment Qualification (EQ) program has established the capability of the plant safety related electrical equipment to perform their design basis safety functions under the limiting environmental conditions postulated for that equipment. Equipment is qualified based on analysis and type testing at bounding environmental conditions that envelope a broad range of applications. The HPCI, RCIC and RWCU isolation MOVs are qualified to environmental envelopes that bound HELB

conditions as well as containment LOCA conditions. Other required equipment is gualified to the analyzed HELB conditions which are much worse than the small leak environmental conditions that would be postulated due to the leak before break scenario. The existing HELB analysis assumes 100% relative humidity for 48 hours post-LOCA. Therefore, the Leak-Before-Break scenario cannot result in a worse relative humidity condition. Since mass and energy release is much less, the overall severity of the accident in the terms of temperature and pressure condition will be much less. Therefore, the Leak-Before-Break scenario is enveloped by the design basis HELB analysis. Since essentially atmospheric pressure would exist in the reactor building the maximum achievable temperature (i.e., 212°F) would be the same with or without prompt isolations. The worst case localized superheated expansion temperature to atmospheric pressure would be approximately 325°F. Time duration at maximum conditions would increase without prompt isolation. The motor operators installed on the HPCI/RCIC/RWCU isolation MOVs are qualified to primary containment accident conditions which exceed these temperature values.

For noncompartmentalized arrangements such as FitzPatrick, the bulk building conditions could be postulated to reach saturated steam conditions at atmospheric pressure if the pipe break is not isolated. These conditions would exceed existing qualification limits for some equipment. However, the FitzPatrick Emergency Operating Procedures provide low administrative temperature limits for several reactor building areas. If a primary system is discharging into the reactor building and the maximum safe temperature is exceeded in two or more areas, then emergency RPV depressurization is required. This action would successfully minimize the exposure of sensitive reactor building equipment from harsh conditions.

The final potential area of concern that has been considered is

equipment submergence due to flooding resulting from a postulated pipe break without isolation. At FitzPatrick existing flood control measures such as curbs and drains and equipment elevations above floor level are adequate to control the volume of condensed water released from such breaks. The fluid released in such a postulated break would be steam or hot water which would quickly flash to sterm and condense on various heat sink surfaces throughout the reactor building. EQ program controls, such as requirements for orientation, weep holes and conduit seals would effectively protect vital equipment from such conditions. Flooding and submergence potential is a result of the collection of this condensate. Therefore any flooding effects would be widely distributed within the reactor building and delayed after the postulated break. Additionally, since the reactor building cannot withstand any significant pressure, evaporation and venting of water vapor may occur further reducing the potential for any flooding problems. Plooding expected under these conditions may be similar to that which would occur with activation of the fire protection system water curtains.

Therefore, no EQ concern exists for MOV isolation or the functioning of other safety systems equipment due to small pipe leaks postulated under the leak before break criteria. In evaluating the consequences of a postulated double-ended guillotine break without prompt isolation it is expected that existing EQ enveloping environmental conditions would not be significantly exceeded as the result of emergency RPV depressurization.

Leakage Flow and Inadvertent Closure

3.7

From leak-before-break considerations, with the capabilities of detection and isolation of a small leak, the leakage flow from a postulated leaking piping system would be small. Such small leakage, when compared with normal and standby flow capabilities of the systems, would not establish any appreciable dp across a closing isolation MOV until fully closed.

Purther, there have been inadvertent isolation events of these MOVe since they were installed. Some of these isolations have tourned at or near 100% system flow rates. This demonstrates isolation. Apability well in excess of small pipe leak flow conditions. It should be further noted that as the HPCI/RCIC valves close they are subjected to the full reactor pressure (1000 psi) across the valve seat. This dp will be equivalent to the isolation MOV end-of-stroke dp conditions for a double-ended guillotine break. Therefore, in-situ valve closure capability has been demonstrated. MOV isolation operability for small pipe leaks has been demonstrated for all three systems.

Safety Assessment - Design Basis Pipe Break

4.1 Realistic Analysis Conditions

4.0

An analytical assessment of a postulated design basis pipe break condition in one of the three BWR systems of concern can be looked at from a realistic perspective, just like the postulated small leak condition. A realistic review without all of the design basis assumptions was conducted because of the low probability (4 x 10⁻⁴/yr) of a high energy line break in one of these systems. Any MOV at FitzPatrick which might be considered marginal or inadequate, when comparing the actuator size and deliverable stem force against expected required thrust, may still be helpful in achieving full or partial system isolation. Table 3 provider design thrust requirements and valve functional test results as provided to the BWROG in response to the NRC's request [13].

Some beneficial conclusions can be drawn from the system design,

equipment design, and physical attributes of the systems and oquipment. There are MOV design considerations which have been included during the design process which make MOV actuators more capable than their ratings state [11].

The actual flow during a postulated leak would probably be closer to the 100% system flow rate rather than that attributable to the double-ended guillotine break. This is because ductile pipe lines do not physically guillotine rupture and there would be a flow interference from the remaining piping. Some of these valves have already demonstrated the ability to close under comparable full flow conditions when inadvertent system initiation and isolations have occurred.

There are two MOV isolation valves in series on each of the subject lines. These valves are mounted in the supply lines very close together and separated only by the primary containment wall. Upon receipt of isolation signals they will not close at exactly the same time. This is because of realistic, but small physical differences, as well as the fact that inboard units are driven by high speed AC motors while outboard units are driven by DC motors. Therefore, each valve may be subjected to instantaneously different dp levels as they are closing. The alternate sharing of the break flow high pressure conditions and any cycling of this sharing between the two valves would probably allow at least one of the isolation valves to continue its closure motion until it becomes fully closed with the possibility of the second valve following thereafter. This possibility might better be described as a sharing or splitting of the high pressure condition between the valves. As the values reach the end of stroke, they will be subjected to the full dp condition. However, as discussed in Section 3.7, this is equivalent to the conditions that these valves would experience at the end of travel during an inadvertent isolation.

Nuclear System Impact

4.2

Assuming the high energy line break occurs external to the primary containment in one of the three subject systems the impact on the nuclear system would be less severe than a Design Basis Accident (DBA). The high energy lines are small lines (compared to the DBA) and would require less Emergency Core Cooling System (ECCS) flow for core cooling and maintain reactor vessel inventory. Any one of the six low pressure injection pumps (Core Spray or Low Pressure Coolant Injection) would be sufficient to provide core cooling and handle the consequences of a postulated line break. The FitzPatrick loss of coolant accident analyses for the same line breaks inside the containment (which cannot be isolated) show that there will not be any resulting core or fuel damage for the smaller line break events.

ECCS components have spatial separation such that the impact of the postulated high energy line break should affect only one division of equipment. The remaining division will be more than sufficient to handle even the maximum line break considered in this analysis (as opposed to a more likely small leak in the line).

Therefore, the FitzPatrick plant has adequate safety margin to protect the reactor core and provide adoquate leak detection and isolation capability using the presently designed isolation MOVs and other mitigating measures.

4.3 Offeite Dose Release Impact

The radiological release from the postulated double-ended guillotine break of the HPCI and RCIC steam line is bounded by that of the main steam line break. These smaller lines do not depressurize the reactor vessel as fast as the main steam line. The reactor inventory release for these breaks is mostly steam. The dose from steam loss through an outside line break is small. Therefore, the offsite release from the HPCI and RCIC steam line break vill still meet requirements of 10CFR100. The reactor inventory loss from the double-ended guillotine break of the RWCU line will be mostly liquid. However, the radiological consequences of the RWCU line is bounded by that of the main steam line, based on the significantly smaller line size and valve closure times for the RWCU isolation valves assuming prompt isolation occurs. The radiological release from the main steam line is only a small fraction of that of 10CFR100. Therefore, any slightly longer valve stroke time for the RWCU isolation valves will not result in exceeding the requirements of 10CFR100.

5.0

Applicability of the NRC Spynsored INEL Tests to FitzPatrick

A significant difference exists between the gate valves tested in the NRC sponsored testing program and the gate valves installed in these systems at the FitzPatrick plant. The valves tested by the NRC were representative of several different manufacturers but all were the flexible wedge gate valve design. When the NEC planned and initiated their testing program the flexible wedge gate valve war the predominant design used by BWR's for these spplications. During the 1988 and 1990 FitzPatrick refueling outages Anchor Darling parallel double disc gate valves were installed at the FitzPatrick plant for all lines of concern. The parallel double disc gate valve is considered a better design than the flexible wedge gate valve for flow isolation purposes. Many PWR's use parallel double disc gate valves as main steam isolation valves (MSIV's). Because of this fundamental difference in valve design, the Authority does not believe that NRC sponsored test results are directly applicable to these particular MOV's at the FitzPatrick plant.

The Anchor Darling Valve Co. designed and sized the actuators for these MOV's using a valve disc friction coefficient or valve factor of 0.2. Choice of this valve factor was based on Anchor Darling's considerable experience with parallel double disc gate valve applications. Reference 10 describes tests performed in Germany on a KSB parallel disc gate valve. These flow interruption tests were similar to the NRC sponsored tests except they were performed at somewhat higher pressures (approximately 1300 to 1750 psia). The results of these tests were maximum valve friction coefficients of 0.33 to 0.41 for high pressure and temperature tests. While these friction coefficients are greater than the 0.2 used by Anchor Darling they are considerably less than the 0.5 to 0.7 disc friction factor suggested by the NNC sponsored test results on flexible wedge gate valves. The Authority does not know how similar are the KSB and Anchor Darling parallel double disc gate valve designs. The Authority understands that the Anchor Darling Valve Co. plans to perform flow interruption tests on their design of parallel double disc gate valve during the second quarter of 1991. These tests will provide data that will be directly applicable to the isolation MOV's of concern at the FitzPatrick plant.

6.0

Other Mitigating Factors

6.1 Training and Emergency Operating Procedures

The FituPa rick Emergency Operating Procedures (EOP's) will quickly lead to reactor depressurization for the case of a primary system discharging into the reactor building, such as a double ended guillotine break of the NPCI/RCIC/RWCU lines without isolation. Emergency Operating Procedure EOP 5 (Secondary Containment Control) leads to emergency reactor deprior support if the maximum safe temperature is exceeded in two or more reactor building areas. The maximum safe temperatures are as low as 113 to 133 degrees F for several reactor building areas where the most sensitive reactor building equipment is located. A double ended guillotine break without isolation will result in saturated conditions at atmospheric pressure with a resulting temperature of 212 degrees F. Therefore these conditions would direct emergency RPV depressurization before significant damage to reactor building equipment could occur. In addition, Emergency Operating Procedure EOP 2 (Reactor Pressure Vessel Control) applied together with EOP 5 provides for rapid depressurization using the bypase valves if it is anticipated that any reactor building maximum safe temperature will be exceeded.

Thorough training on the requirements and the use of the FitzPatrick EOP's is included as part of the initial and requalification licensed operator training programs. Simulator training includes an exercise which simulates a HPCI line DEGS without isolation (Simulator Exercise Guide 81930). This tests the control room operator's response, using the guidance of EOP 2 and 5, to successfully protect the reactor fuel and reactor building equipment by means of RPV depressurization. The failure of the isolation function is readily apparent from the light indication for the MOV's. From the reactor building area temperature rise and the isolation valve position light indications, the operator will be able to determine when reactor depressurization is required.

6.2 Waterhammer Prevention Practices

The HFCI and RCIC steam supply lines are kept pressurized and drained of condensate. This draining practice generally prevents the possibility of water hammer and turbine water induction due to prompt demand operation. There have been some water hammer problems with one of the two steam condensing lines to the RHR heat exchangers. This water hammer may be the result of flashing of undrained condensate during HPCI initiation. This problem is under evaluation and may be corrected with modifications to the piping system. The RWCU system is a normally and continuously operating system which has not experienced water hammer events during isolations. This is because that with an isolation, the RWCU pump trips and flow rate decays as pump speed coasts down. Thus there is little flow velocity when the isolation values approach the closed position.

As a general practice, operating procedures require that water systems be filled and vented prior to start-up This operating practice, together with "keep full" systems has reduced the likelihood of water hammer events at the FitzPatrick plant.

6.3 Probabilistic Risk Considerations

The Authority has developed a Probabilistic Risk Assessment (PLA) model for the FitzPatrick plant in accordance with Generic Letter 88-20 guidelines. The probability of failure of the ECCS systems combined with the probability of a line break is sufficiently low as to preclude consideration of this event as a practical concern.

6.4 Current Torque Switch Bypass Settings

At the FitzPatrick plant, the close torque switch is not hypassed for any significant portion of the valve stroke. Since the torque switch is in the circuit, it will tend to protect the actuator motor from overload failure if excessive loads are encountered during the closing stroke. This will permit repeated attempts to close the valve as the differential pressure and required thrust is reduced. Reduced differential pressure may be the result of emergency RPV depressurization or depressurization through the break.

6.5 dPCI Marming (Bypase) Valve

At FitzPatrick the steam supply line for the HPCI turbine is kept warm and pressurized through a 1 (one) inch bypass globe valve (23MOV-60) and the main supply outboard isolation valve (23MOV-16) is normally closed. Therefore design basis flow thru any break of the HPCI steam line downstream of the outboard containment isolations valves, while 23MOV-16 is closed (normal standby line-up), would be limited to choked flow through the bypass valve. This greatly reduces the closing flow requirement on the inboard isolation valve.

Conclusions

7.0

Because of the leak-before-break considerations for the HPCI/RCIC/RWCU piping and the installed leak detection and isolation systems, it is not expected that system isolation MOVs would ever be challenged at high flow design basis accident conditions. With these effective isolation systems leaks should be isolated early at low or zero flow conditions. Additionally, realistic consideration of expected plant and system response to postulated accident conditions leads to the conclusion that there is a significantly high probability of successful valve closure. Even without successful full valve closure for a postulated rupture in these lines, there is adequate safety margin in the ECCS to handle the resctor coolant inventory losses. The ECCS systems are designed for a much larger break than these small line ruptures. Delayed isolation response for these three systems is expected to keep offsite dose releases within 10CFR100 requirements.

8.0 References

- 65

- Report of the U.S. Nuclear Regulatory Commission Piping Review Committee, NUREG-1061, Volumes 1 through 5, 1984.
- [2] Federal Register, Volume 52, p. 41288, final rule modifying General Design Criterion 4 in 10 CFR Part 50, Appendix A.
- [3] GESSAR II, 238 Nuclear Island, Section 5.2.5, GE Document Bu. 22A7007, Rev. 0.
- [4] S. Ranganath and H.S. Mehta, "Engineering Nethods for the Assessment of Ductile Practure Margin in Nucless' Power Plant Piping," ASTM STP 803, 1983, pp. II-309 to II330.
- [5] A. Zahoor, R.M. Gamble, H.S. Mehta, S. Yukawa and S. Ranganath, "Evaluation of Flaws in Carbon Steel Piping: Appendixes A and B, "EPRI Report No. NP-48245P, October 1986.
- [6] Mehta, H.S., "Determination of Crack Leakage Rates in BWRs", Attachment 2 in Letter dated April 22, 1985, from Jack Fox, Chairman, ANS-58.2 Working Group to K. Wichman of FRC.
- [7] 10 Code of Federal Regulations 50 Appendix & General Design Criteria
- (8) NRC Generic Letter 89-08 Erosion/Corrosion-Induced Pipe Wall Thinning, dated June 25, 1989.
- (9) NRC IE Bulletin 85-03 Motor-Operated Valve Common Mode Failures During Plant Transients Due to Improper Switch Suttings, dated November 15, 1985.

(10) U. Simon, N. Rauffmann and H. Schafer, "Testing of Safety-Related Valves of PWR and BWR Power Plants," AMSE paper from PVP - Vol. 180, Pipeline Dynamics and Valves, Book No. H00495 - 1989.

*

10 1 11

- (11) Limitorque Corp. letter, "Simitorque Type SMB Actuator Thrust Ratings," dated April 30, 1987, from D. S. Waring to G. Levy, Duane Arnold Energy Center.
- (12) General Electric Co. APED Design Specification No. 22A2931, Rev. 1, "Nuclear Boiler Leak Detection," dated April 4, 1972.
- (13) NRC letter, "Performance of the Motor-Operated Valves Within the Scope of Generic Safety Issue 87," dated June 7, 1990, from J. E. Richardson to S. D. Floyd, Chairman F., Owners Group.

TABLE 1

•

. •

VALUES OF PARAMETERS USED IN CRITICAL CRACK LENGTH AND LEAK RATE CALCULATIONS

Pipe Thickness	1	Schedule 80
Pipe Internal Pressure	1	1050 pei
Temperature	÷	528°F
Normal Operation Bending		
Stresses	1	4 ksi
Material	i	Stainless Steel or
		Carbon Steel

TABLE 2

CRITICAL CRACK LENGTHS AND LEAK RATES FOR VARIOUS DIAMETER PIPES

Pipe	Diameter	Critical Crack	Leak Rate at	Critical
	(in.)	Length (in.)	Crack Length	(gpm)
			Water	Steam
-		and the second	1000.200300000.00.00	
	4	7.1	25	15
	6	9.8	41	27
	12	18.5	166	108
	16	23.1	262	170

TABLE 3

9 S. A.

ŧ.,

.

1

FUNCTIONAL VALVE TEST RESULTS

	VALVE/S	IZE	OPER/MOTOR	MTR 52	OPTR	D/P(1)	TEMP(1)	TORQUE SUI	TCH THRUST	BASIS	BASIS
	(18.)	MFG	(FT-LBS)		(PSIG)	(1)	DESIGN	TEST	TEST D/P	CALCS
HPC1 VLV	/\$										
23MOV - 15	A/D I	x0 10	.IM/REL	40	SB-1	1,250	545	19130	26271	N/A	VOTES
2.3MOV - 16	6 A/D 0	x0 10	LIM/PECR	60	58 - i	1,250	549	19125	20326	R/A	VOTES
RWCU VLV	vs										
12000-11	5 A/D I	00 6	LIM/REL	10	58-00	1,020	545	8793	9354	N/A	VOTES
12HOV-1	8 A/D I	00 6	LIM/PEER	15	58-00	1,020	545	8793	11465	N/A	VOTES
RCIC VL	vs										
13MOV-1	S A/D	00 3	LIM/REL	2	sa - 090	1,250	545	2967	3300	N/A	VOTES
13HOV - 1	6 A/D	00 3	S LIN/PEER	5	58-15-0	1,250	8C	2967	2606(2)	5/A	VOTES

.

2112 2

. ·

.

đ.

(1) A/E supplied design values, set and pening/closing parameters not specified.

(2) Acceptable because measured packing load was considerably less than the design assumed 800 Lbs.