SEISMIC EVENT EVALUATION REPOR'T FOR THE

MARCB $15,1992 \mathrm{Kc}=3.5$ EARTEOUAKE

PERRY NUCLEAR PLANT

DOCKET NOS, 50-440; 50-441

THE CLEVELAND ELECTRIC ILLUMTNATING COMPANY

MARCH 1992

Approved By:

Direcior, PNSD
1.0 INIRODUCTION AND CONCLUSIONS
2.0 SEISMIC EVENT OVERVIEW
3.0 EARTHQUAKE ANALYSIS
4.0 SEISMIC INSTRUMENTATION AND RECORD RETRI $/$ \&
5.0 SEISMIC EVILUATION OF RECORDED EVENT
6.0 APPENDICES
A. KINEMETRICS STRONG MOTION DATA
B. ENGDAHL SIRONG MOTION DATA
C. ANALYSIS OF PDAS-100 RECORDINGS AND CAV CALCULATIONS
1.0 INIRODUCTION AND CONCLUSIONS
2.0 CEISMIC EVENT OVERVIEW
3.0 EARTHQUAKE ANALYSIS
4.0 SEISMIC INSTRUMENIATION AND RECORD RETRIEVAL
5.0 SEISMIC EVALUATION OF RECORDED EVENT
6.0 APPENDICES
A. KINEMETRICS SIRONG MOTION DATA
B. ENGDAHL STRONG MOTION DATA
C. ANALYSIS OF PDAS-100 RECORDINGS AND CAV CALCULATIONS

The purpose and scope of this report is to provide the results of The Cleveland Electric Illuminating (CEI) Company's seismic event evaluation of the March 15, 1992 earthquake pursuant to Perty Nuclear Plant Technical Specification $4,3,7,2.2$. This evaluation report addresses the key issues related to the March 15 earthquake including the immediate response to the event, the plant status and impact assessments following the earthquake, evaluations of the seismological aspects of this event, and an analysis of the plant seismic design basis capabilities compared to recorded plant data.

The discussions contained herein provide the basis for CEI's conclusions that the March $15,1992 \mathrm{Mc}=3.5$ earthquake in the vicinity of the Perry site in Lake Erie:

1) did not adversely effect the plant structures, systems or components,
2) was within the Operating Basis Earthquake (OBE) of the Perry Nuclear plant,
3) does not change the licensing basis ar conclusions regarding the site geology, seismology or design basis earthquake, and
4) is further evidence that the Electric Power Research Institute (EPRI) recommendations on OBE exceedance should be implemented.

2.0

 2.1EVENT

An earthquake, with an approxim ee magnitude of 3.5 Mc , was recorded by the CEI seismic monitoring network (stations located in Lake and Geauga Counties) on Sunday, March 15, 1992 around 01:14 ESI. The epicenter of the earthquake was located in Lake Erie about four (4) miles northwest of the Perry Nuclear Plant located in Perry, Lake County, Ohio. Figure 2.1 shows the epicentral location of this event. This event was followed by eight (8) aftershocks which were all substantially smaller than the main shock. From newspaper and police report accounts, the event was felt by the local population, mainly in the towns along the lake shore from Painesville to Geneva, Ohio. This earthquake was recorded by the seismic monitoring systems operated by CEI (Autostar) and John Carroll University, Plant staff began analyzing the Autostar records within one hour of the event and provided preliminary information to control room operators and local officials. The data was also evaluated by Weston Geophysical Corporation and these results are provided in Section 3.0 and Appendix C of this report.

2.2 PLANI RESPONSE

At the time of the event, the plant was operating at 99% power. This local earthquake (magnitude $M=3.5$) was felt by Plant Operations personnel at the Plant and was recorded by in-plant strong motion seismic instruments. The Plant seismic instruments provided information which indicated that motions experienced by the Plant were significantly below the design or safe shutdown earthquake (SSE) and well below the operating basis earthquake (OBE). The SSE zero period acceleration (ZPA) is .15 g and the OBE ZPA is .075 g .

Control Room indications provided imnediate information that the earthquake had occurred and that the recorded motion was below $2 / 3$ of the OBE at the containment foundation. See Section 4.0 of this report.

At 01:43 EST the Plant declared an Unusual Event (UE), the lowest emergency ai tion level, and Operations personnel immediately commenced a Plant walkdown to investigate for any Plant damage which could be earthquake related, and found none. The Plant remained at 99% power. Additionally, Plant technical support personnel were called into the Plant for further evaluations of the event. These personnel were needed to gather information from a seismic monitoring network located in the Lake/Geauga counties and to recommend further Plant actions. Also, PNPP Instrumentation and Control (IGC) technicians were called into the plant for strong motion earthquake records retrieval

The seismic monitoring network provided data on size and location of the earthruake, which was provided to the Control Room personnel. Seismic specialists examined this field data and again reviewed the in-plant monitors, and consulted with Operations on results of Plant walkdowns which included the reactor containment building. At approximately 04:40 EST the Unusual Event was declared over as there were no safety concerns identified and all indications were that the OBE had not been exceeded.

EARTHQUAKE ANALYSIS

This is the first event since the $1 / 31 / 86$ Leroy Earthquake (magnitude $\mathrm{Mb}=5.0$) that was felt and recorded at the plant. This was a non-damaging small event, several times smaller than that of $1 / 31 / 86$ event and below the OBE design of the Plant. The occurrence of the $3 / 15 / 92$ earthquake and its aftershocks is typical of the periodic low level seismicity of the region and does not alter the conclusions of local and regional seismicity previously docketed by CEI in the following references:

- Periy USAR, Section 2.5, Revision 4, March, 1992.
- 18th Quarterly Seismic Monitoring Report (PY-CEI/NRR-0144L, dated 2/27/92).
- SSER No. 9 Confirmatory Activities Close Out: Geological and Geophysical Studies (PY-CET/NRR-0486!, dated 6/24/86).

2.4 SEISMIC DESIGN EVALUATION

Results of the immediate inspections on $3 / 15 / 92$ indicated that the peak ground acceleration at the Auxiliary Bullding foundation on Engdahl Peak Recorders was .038 g and subsequent analysis of Kinemetrics time history data indicated a eimilar peak acceleration of .038 g at the Containment Buslding foundation.

Acceleration data taken from the in-plant seismic recorders showed recorded floor response spectra were within the obE design spectra. Similar to the 1986 earthquake response, the instrumentation located at elevation 686^{\prime} of containment recorded the highest accelerations. This is an expected result as motions input to the foundaticn mat will be amplified as they are transmitted up through the structure. Design floor response spectra consider this amplification when they are developed for above grade elevations.

CEI analysis shows the high frequency accelerations involved are of a very short duration and the velocities and dienlecemente are well below those which could cause damage even to non-engineered structures. The total energy associated with these high frequency accelerations is small, and theretore has no adverse impact on plant structures and equipment. Th.. the high frequency accelerations have no engineering significance and the effects of the earthquake experienced at Perry are well within the seismte capability of the plant. This latest event is
further evidence that the proposals provided by the Electric Power Research Institute (EPRI) on OBE exceedance should be implemented, and the application of Cumulative Absolute Velocity (CAV) would allow faster and more accurate plant assessments of potential damage. See Section 5.0 and Appendix C of this Report.

\square 4

- Size profortionate to magnitude
- JCU Station
\triangle CEI Station

Epicentral Location
03/15/92 Earthquake
FIGURE 2.1

In addition to the strong motion instrumentation installed at different locations inside the Perry Nuclear Plant, CEI still operates a small aperture telemetered seismic monitoring network, named AUTOSTAR. This Auromated Seismic Telemetering and Recordiny system has five 3-component stations and a 1-component analog station near Geneva, all of which are telemetered to a central receiving/processing station at the Plant. At the time of the earthquake, CEI was also testing a PDAS-100 instrument at the Antioch station of the Autostar network. In addition, John Carroll University (JCu) operates ε small regional network centered around the epicenter of the January 31, 1986 earthquake. This section provides a preliminary summary review and analysis of all the data collected by the CEI and JCU stations. Appendix C provides a review of the PDAS-100 data and calculates a Cumuiative Absolute Velocity (CAV) measurement for this event.

3.2 Hypocentral Determination

On March 15, 1992, at 6 h 13 m 56.8 s UT, a small earthquake with a coda magnitude of 3.5 , occurred offshore the town of Painesville, Ohio. The epicenter was located in Lake Erie approximately at 41.9 N and 81.3 W , about seven kilometers northwest of the Perry Nuclear Plant. Because of the short epicenter distance, some of the strong motion
instrumentation at the Plant were triggered by the arrival of the shear and surface waves.

The hypocentral solution was calculated using all arrival times from the stations of both CEI and JCU networks. Table 3.1 presents the details of the hypocentral solution obtained with the "Hypoellipse" locationing computer program.

Because the event is outside the aperture of the two networks aid far enough in Lake Erie, the fcal deptn estimate carries a large uncertainty. Othet arrival times at more distant stations, e.g. from the Lamont-Doherty Observatory, the Canadian National Network and from the University of Western Ontario were obtained, but not used since they clearly contaminate the excellent ciata provided by the two local networks. Figure 2.1 shows the epicentral location of the event. The sensitivity of the location is illustrated by showing the difference obtained when only the CEI data are used and when the JCU data are added. JCU has stations west of the epicenter, while the CEI stations are all located to the east. Figure 3.1 shows the earthquake as recorded by the CEI Autostar system. Figure 3.2 provides a 20 second trace of the parthquake along with selected P and S wave arrival times. Fiqure 3.3 shows a "zoom" earthquake trace for the Antioch station which is located about 1 mile east of PNPP.

The small earthquake was felt in towns along the lake shore, mainly from Jainesville to Geneva, Ohio. Although no formal intensity survey was conducted, the most common description as learned from police stations and local media reports corresponds to intensity (MM) III and IV levels, typical for events with similar magnitude. The event was clearly felt at the plant for a brief duration. From the recordings collected, one can assume that the perception of the tremor must not have lasted more than a few seconds.

Several aftershocks were detected by the two networks, at least eight over the next 60 hours. Table 3.2 presents the details of the entire sequence. The slight differences in epicentral location between the main shock and the aftershocks are not considered to be significant, and most probably reflect the bias introdiced by processing weaker events with different station configurations and reading accuracies.

It should be noted that previously on June 27, 1988, a similar sequence consisting of a microearthquake with a magnitude Mc 2.7 and five small
aftershocks ranging from -0.1 to 1.7 was detected and placed in the very same location, i.e. 41.81 and 81.229 W . These events were documented in Quarterly Seismic Monitoring Report No. 7 (Ref. PK-CEI/NRR-0905L, dated $8 / 26,88$).

3.3

3.4

FAULT PLANE SOLUTION

An attempt was made to obtain a fault plane solution. Unfortunately, all the CEI stations and most of the JCU stations are grouped in the same azimuthal quadrant. Additional data provided by other network operators are cleerly inconsistent, thus suggesting that first arrivals are not truly read. This is to be expected beyond 100 km . Because of this a fault plane solution could not be ottained.

DISCUSSION

The small earthquake was not strong enough to cause any damaye, but it was clearly felt by those awake at this early time of the night, within several tens of kilometers, particularly along the lakeshore where soil amplification is common. The instrumental data set is good enough to support a reliable epicenter, and possibly an indication that the depth was shallow. Occasional occurrences of magnitude 3 to 3.5 events are in agreement with the historica? record of the region. Previous studies have established that the Northeastern Ohlo seismicity is relatively low compared to other regions of the Northeast.

The examination of available accelerograms suggests that the largest peak ground acceleration observed at Antioch was associated with a very short duration wave, one or two cycles, at about 11 Hz . This seismic motion is well below any damage threshold. The CAV values obtained are low and consistent with several other observed magnitude 3 to 4 events with MM intensity III. See Appendix C.

MARCH 15 , 1932 MATHSHOCK AND ASSOCIATED AFTERSHOCK PARAMETERS

	YEARMDEY	H2MISEC	LATITU0E	LONGITUDE	DEPTM	4 \%	GAP	R14S	ERH	ERL	M C	Irigger
1.	*19920315	61355.80	4 in $^{\text {+ }} 8.84$	31w13.19	2.3	16	235	. 05	. 2	4.7	3.5	7674
2.	19920315	523 5.61	41 N 68.61	81w12.94	2.1	10	236	. 03	- 3	13.7	1.8	1675
3	19920315	$752 \quad 7.92$	$41 N 48.81$	81 W 13.00	2.3	10	239	. 38	- 3	19.4	9.5	7677
4	19920315	1197.60	$41 N 48.73$	81 112.56	2.2	8	237	. 04	. 2	5.8	0.2	7678
5.	19920315	144937.81	41 N 48.67	81w12.65	2.2	10	235	. C 4	. 3	9.3	2.2	7679
6.	19920316	22935.90	41848.65	81612.9 \%	2. 1	10	296	. 03	. 2	9.7	1. 1	7630
7.	19920316	4530.56	$41 N 48.73$	81w12.21	2.2	9	295	.03	- 3	10.9	0.2	7691
8.	19920316	122414.98	41N43-61	21w12.44	1.9	10	234	. 04	- 3	- 2	1.6	7682
9.	19920316	141513.	No Trigge	r on Digi	tal Ne	rk					-0.3	
	$=4.25 \mathrm{~km} / \mathrm{s}$	Inicknas	$=2 \mathrm{~km}$									
	$=6.5 \mathrm{~km} /$	Thicknes	$=33$. 19	92		

Vp/Vs=1.78

* Indicates Mainshock

THME (SEC)
FlGuis 3.1 CEf Autnetar Recored
03/15/92 Ear thquake
All stations - 50 seconds
NOTES: 1 . Each signal is normalized to its peak amplitude for display.
2. Kn if station horizontal coroponent (RAY) is out of service.

4.0 SEISMIC INSTRUMISTIATION AND RECORDS RETRIEVAL
 4.1 INSTRUMEVTATION

Three different types of in-plant seismic strong motion monitoring instrumentation were used to record the March 15, 1992 Mc 3.5 earthquake located near PNPP in Lake Erie. Table 4.1 and Figure 4.1 delineate the specific instrument number, type and location, PNPP is a fully instrumented Regquatory Guide 1.12 facility.

One type of instrument used is the Kinemetrics Model SMA-3 strong motion triaxial time-historg aecelevagraph. This swetem detects and records three mutual perpendicular components of acceleration over the entire duration (recording starts within 200 ms of measuring . 005g) of the earthquake onto cassette magnetis tape. Power to the unit is supplied by internal rechargeable batteries which are kept in a charged state by 120 VAC 11 ne power. Two instruments of this type were used, one was located on the Reactor Building Poundation Mat at an elevation of approximately 575 feet, and the second on the containment shell at elevation 686 feet.

The second type of instrumentation used is the Engdah1 PSR $1200-\mathrm{H} / \mathrm{V}$ response spec'rum recorder. This total mechanical system records three mutually perpendicular components of acceleration, at selected frequencies, The instrur ont has twelve reeds fabricated of varying lengths, one for each frequency ranging from approximately 2 Hz to 25 Hz , and a diamond-tipped stylus at the free end of each reed to inscribe a permanent record on one of twelve record plates. Four instruments of this type are provided, two on the Auxiliary Building Foundation Mat, one at the Reactor Building Foundation Mat, and one in the Reactor Building located on the Bioshield Wall.

The thitd type of instrwnent is the Engdahl PAR 400 peak accelerograph.

This totally mechanical system records three mutually perpendicular components of peak local acceleration (i.e., the zero period acceleration). A diamond tipped scriber at the end of an amplifier arm records a permanent mark on a record plate. Again, this system is totally self-contained and requires no outside power source. Three instruments of this type are used and are located on the Auxiliary Building Foundation Mat, on a Reactor Recirculation Pump, and a third instrument on High Pressure Core Spray (HPCS) piping in the Reactor Building.

PLANT INSPECIIONS FOLLOWING EVENT

Prior to the earthquake that occurred on March 15, 1992, numerous testing, calibration and work completion activities were being conducted in preparation for the Third Refueling Outage. The plant had just completed a power reduction to 998 at Systems Operating Center (SOC) request.

On March 15, 19920116 the Control Room recoived a Seismic Trouble Alarm, heard a large thud and felt the building shake. The plant supervision entered off Normal Instruction (ONI) D51.

In support of the ongoing testing and surveillance activities, a significant number of systems were in operation. In addition, nume rous other systems were energized and in the standby mode. All of the operating safety-related and non-safety systems continued to operate through the event. None of the systems in the standby mode experienced any spurious initiations.

In addition to the emergency plan action previously discussed, immediately following the event plant operators performed a plant walkdown. Areas of visual inspection include the Diesels Roors,

Control Complex 620', Auxiliary Boilers, Intermediate, Auxiliary, Fuel Handling, Turbine Heater Bay Buildings and the accessible areas of the Reactor Building. The plant outer structures including the Cooling Tover, Circulating Vater Pump House, Emergency Service and Service Vater Bulldings were inspected. The reports to the Control Rom indicated that the areas vere found in satisfactory condition vith no damage. An existing crack in the vest stalrway to the Heaterbay Building vas noted as possibly disturbed, and was the only noted observation during the valkdown.

4.3 RECORDS RETRIEVAL

As pert of CEI's response to the earthquake, the data collected from active and passive seismic recorders has beell evaluated. The tapes from the Kinemetrics Strong Motion Acceleration system were sent to the vendor for further data reduction and analysis. See Appendix A of this report. Record plates vere removed from the Engdahl Strong Motion monitors for the Auviliary and Reactor Buildings and the High Pressure Core Spray Pump base. The records were analyzed and data interpreted by the system engineer, see Appendix B of this report,

One set of Engdahl records (vertical component) from the D51-R190 instrument located on the Auxiliary Building foundation were discovered damaged upon inspection and will be forwarded to the vendor for fur her analysis.

Peak accelerations recorded from instruments wate as followst

Instrument

D51-N101
D51-N111
D51-R120
D51-R130
D51-R140
D51-R160
D51-R170
D51-R180
DS1-R190

Location

R.B. Foundation

Containment Vessel
Reactor Recirc Pump
HPCS Piping
A,B. Foundation, BFCS Room
R.B. Foundation

Bioshield Wall
A.B. Foundation, HFCS Room
A. B. Foundarion, BCIC Roon

Acceleration

```
0.038g 2PA (uncortected)
0.03g 0 12 Hz (2% damped)
to be examined
to be examined
0.038g 2PA
0.0625g 25.6 Hz (2% dampec)
to be examined
out-of-service
to be examined
```

1mnediately following the event, preliminary indications were provided to the control room operators that this earthouake was rot safety significant because:

1. Engdahl Panel H13-P969 indicated there were no recorded accelerations above the OBF or above $2 / 3$ OBE at the 12 trequencies monitored at the containment toundation.
2. Kinemetries Panel H51-P021 "seismic switch" indicated that the OBE had not been exceeded at the containment foundation.
3. There were no plant damage reports suggesting equipment may malfunction.
4. There were no unusual plant system reactions to the earthquake.
5. The location and magniture of the event provided by the off-site monitnring network indicated the event was non-danaging.

In the early morning hours of $3 / 25 / 92$, records were examined from instruments D51-N101, D51-R140 and D51-R190 to determine further the significance of the event, and to determine the noed for additional records examination. Based on those initial three instrument readings, it was decided to sontinue records retrieval on a phased schedule with the refueling outage (RFO3) which conmenced $3 / 20 / 92$.

Off Normal instruction (ONI) DS1 recquites removal and analysis of earthquake records following an event of this nature which is felt by ENPP personnel and triggers $(.005 \mathrm{~g})$ on the kinemetrics recording unit. Technical specification 4.3.7.2.2 requires submittal of a Special Report to the Nuclear Regulatory Commission if any of the above instruments record accelerations greater than . 03 g .

PERRY NUCLEAR POWER PLANT UNET NO. 1 SEISMIC MONITORING INSTRUMENTATION

TABLE 4.1

Instrument	Type	Manufacturer / Model Number	Location	$3 / 15 / 92$ Status
DS:-N101	(1)	Kinemetrics/ SMA 3	Reactor Building Foundation Mat Elevation 575*-10* Azimuth 175°	Operable
D51-N111	(1)	Kinemetrics/ SMAA 3	Reactor Buriding Containment Vessel Elevation $636^{\circ}-9^{-1}$ Azimuth 174*	Operable
OS1-R120	(2)	Engdahi / PAR-600	Reactor Recirculation Pump (Inside Drywell, Reactor Buslding) Elevation $605^{\circ}-0^{-}$(Approx:mately) Azimuth 145°	Gperable
DS1-R130	(2)	Engdahi: PAR - 400	Reactor Bailding HPCS Piping Elevation 631^{*}-1"	Operable
D51-8140	(2)	Engdahl/PAR-400	Auxiliary Building Foundation Mat (HPCS Pump Koum) Elevation $568^{\circ}-4^{-}$	Gperable

[^0]PERRY NUCLEAR POWER PLANT UNIT NO. 1 SEISMIC MONITORING INSTRUMENTATION
${ }^{\text {T }}$ ABLE 4.1

mastrument Number	Type	Manufacturer/ Model Number	Location	3/15/92 Status
DS1-R160	(3)	Engdahl / PSR-1200-H/V-12A	Reactor Building Foundation Mat Elevatión 574'-10 Azimuth 225°	Querabie
D51-R170	(3)	Engdahl / PSE-1200-H/V	Reactor Building (Inside Drywell) Biological Shield Wall Elevation $636^{\circ}-6^{\prime \prime}$ Azimuth 238°	Operable
D51-R180	(3)	Engdaht / PSR-1200-H/V	Auxiliary Buidding Foundation Mat (HPCS Pump Room) Elevation 568'-4*	Det-of-Service
DS1-R190	(3)	Engdahi / PSR-1200 H/V	Auxiliary Bualding Foundation Mat (fRCIC Fümp Fioum) Elevation $568^{\circ}-4^{*}$	Operable

1 Triaxial Time-History Accelerograph
2 Triaxial Peak Accelerograph
3 Triaxial Response Spectrum Recorder

KEY:

| 1. Instrument fDS1-N101 | 5. Instrument fDS1-R160 |
| :--- | :--- | :--- |
| 2. Instrument tDS1-N111 | 6. Instrument tDS1-R170 |
| 3. Instrument tDS1-R120 | 7. Instrument fD51-Ri80 |
| 4. Instrument fDS1-R140 | 8. Instrument fD51-R190 |

FIGURE 4.1 - PERRY POWER PLANT INSTRUMENT LOCATIONS, PLAN VIEW

KEY:

1. $5951-\mathrm{M} 101 \mathrm{R} / \mathrm{B}$ Foundation Mat. E1. 575 . Az. 175°
2. BS1-N111 R/B Contalmment Vessel. El. 686*
$\mathrm{Az}, 174^{\circ}$
3. FDSI-R120 Reactor Recire Pump. El. 605 \% Az. 145°
4. BD51-R140 A/B Foundation Mat, E1. 568*
5. $1051-\mathrm{R} 160 \mathrm{R} / \mathrm{B}$ roundation Mat, EL. $574^{\circ}, \mathrm{Az}, 225^{\circ}$
6. \#DSI-R170 R/B Platform, El. $630^{\circ}, A z=23 R^{\circ}$
7. FD51-R180 A/8 Foundation Mat. El. 568 .
8. FD51-R190 A/R Foundation Mat, E1. 568*

FIGURE 4.1 - PERRY PONER PIANY TNSTRUMEIJT LOCATIONS, ELEVATION VIEW

5.0

Seismic Design Background

The seismic design basis for the Perry Nuclear Power Plant is established by requirements in 10CFR Part 100 , Appendix A and NFC Regulatory Guide 2,60 . These regulations reguire nuclear plant structures and safety class systems and components to be designed to withstand loads induced by a "Safe Shutdown Earthquake" (SSE) for the particular site. The SSE is the strongest earthquake in terms of magnitude of vibratory round motion that is expected to occut at a pa: 'iculur site. The SSE is the design basis earthquake considered for plam licensing. A second seismic event also considered in dasigning nuclear plants is the "Operating Basis Earthquake" (OBE). The OBE is the strongest earthquake considered likely to occur at a particular site during a plant lifetime, and is at least one-half of the SSE. Operations may resume following an earthquake which exceeds the OBE arter demonstrating that no functional damage has occurred to safety-resated plant features. (10CFR Part 100, Appendix A, III(c), $V(a))$.

The Perry SSE design response spectra were derived by using the standard response spectra of Reg. Guide 1.60 scaled to a zero period acceleration (2PA) of 0.15 g determined for the Ferry site. These spectra served as the design response spectra at fe foundation elevations for use in designing the plant buildings. The correspending OBE design response spectra are scaled to a 2PA of 0.075 g .

For more details concerning Perry's design response spectra, including significant inherent conservatisms within its development, refer to Section 6,0 of Reference 1 or USAR Chapter 3 .

The March 15,1992 evant vas determined to be of al: approximate 3.5 Mc magnitude, with an epicenteral location about four (4) miles northvest of the operating Perry Nuclear Plant. This event is of substantially lower magnitude and total energy than the earthquake for which the Perry Plant was designed. Comparison of recorded time-history accelerations (Pigure $A-1$ of Appendix A) at the foundation mat (el. $574^{\prime}-10^{\prime \prime}$) of the Reactor Building (RB) with the corresponding OBE time-history acceleration used for design has revealed the minor nature of this event with respect to its overall duration, time of strong motion and energy content. In fact, as stated in section 4.0 of Appendix A, the recurded data at this location was of such low magnitude that response spectrum analysis could not be performed by the vendor due to a low signal to noise ratio.

The overall minor nature of the event, as recorded by the Kinemetrics SMA-3 instrument at the R.B foundation, is further collaborated by the following seismic data:

- Engdahl PSR-1200 readings (at the same general R/B location) indicate very low acceleration values. See Table B-4 of Appendix B.
- Engdahl PAR-400 readings (at Auxiliary Bullding (AB) foundation, E1. $568^{\prime}-4^{\prime \prime}$) indicate a 2PA horizontal acceleration of 0.038 g . See Table B-5 of Appendix 3. This compares favorably to the SMA-3 data of the R/B foundation, which also is approximately 0.038 g (uncorrected) horizontal acceleration. See Figure A-1 of Appendix A for the latter data.
- Horizontal PSR-1200 readings (at A/B foundation, e1. $568^{\prime}-4^{n}$) indicate a very low response spectra values. See Table B-7 of

Abstract

(e1. $574^{\prime}-10^{\prime \prime}$) Appendix B. The vertical teadings utilized as the recordings (scratches) for this instrument are poor and appear to represent manmade disturbances, and are thus discounted.

5.3 Evaluation of Specific Recorded Date

To further evaluate the nature of this event, detalled response spectrum analyses were performed for the Kinemet ics SMA-3 data recorded at Elevation 68f' on the Containttent Vessel. This data is presented in Appendix A and the pertinent tripartite plots are repeated in Figures 5.2 through 5.3 (vertical, north-south and east-west. respectively) for convenience. Simalar to the January 31, 2986 Leroy earthquake (Reference 1), this event is also characterized by high frequency content, with maximum recorded accelerations occurring above 10 Hz .

For purposes of comparison against the plant's design basis, the 2f damped OBE design spectra have been superimposed on these tripartite plots in Figures 5.4 through 5.6 . As can be seen by coliparison to the 28 recorded data, the OBE spectra have not been exceeded in any case. In the low freguency tange (less than 10 Hz), there is substantial margin between the two. Again, similar to the 1986 event, it is not surprising that less margin is seen between the plots in the hiris frequency range (above 10 Hz). For very similar reasons as discussed in Section 6.3 of Reference 1, these high frequency responses have negligible engineeting significance due to associated low velocitief and displacements. Subsequent work by EPRI (References 2 and 3) has also further demonstrated the relative origineering insignificance of sma. 1 high frequency earthquakes in generad.

5.4

Conclusions

The March 15, 1992 earthquake was a very low magnitude event which did not exceed the design basis of the Perry Plant. Similar to the January

31, 1986 Leroy earthquake, the event was characterized by low energy, high frequency, short duration and small displacement. No further engineering evaluations for this event are considered necessary.
5.5 References

1. PY-CEI/NKR-0437L dated February 12, 1986, "Seismic Event Evaluation Report ${ }^{*}$.
2. EPRI NP-5030 Final Report dated July, 1988, "A Criterion for Deterinining Exceedance of the Operating Basis Earthquake".
3. EPRI NP-6695 Final Report dated December, 1989, "Guiclelines for Plant Response to an Earthquake".

RESPONSE SPECTRUM
D51-N111 (VERTICAL)
MARCH 15. 1992 OHIO EARTHOUAKE
PERRY NPP. SMA-3 S/N 165-2
COMP 3
-V-

E0112E. v3

DAMPING VALJJES:
. 00
. 02
.05
.10
.20

K I NEMETH I C S

RESPONSE SPECTRUM

D51-N111 (VERTICAL)
MARCH 15. 1992 OHIO EARTHOUAKE PERRY NPP. SHA-3 S/W 165-2
COMP 3

- \mathbf{V} -

EQ112E. v3

DRMPING VALUES:
.00
.02
.05
.10
.20

Cuntainment Vesse? Vertical Componient Flevation 692"-10*

FIGURE 5.4

PSV (IN/SEC.)

APPENDIX A

 TO
SEISMIC EVENT EVALUATION

FOR THE

MARCH $15,1992 \mathrm{MC}=3.5$ EAR票HQUARE

PERRY NUCLEAR PLANT

KINEMETRICS STRONG-MOTION DATA

ML. 3.5 EARTHQUAKE

MARCH 15, 1992

STRONG-MOIION DATA

FROM THE

PERRY NUCLEAR POWER PLANT
SEISMIC INSTRUMENTATION

cmacompuSeis 3

STRONG MOTION DATA REPORT

世せT the
M. 3.5 EART. 'KE

01
0614 GMJ, MARCK 15, 1992
at
41.90 North. 81.3^{3} West
neax
PERRY, OHIO

RECORDED ON THE
PERRY NUCLEAR POWER PLANT
STRONG MTITION ACCELEROGRAPHS
for

Cleveland Electric Illuminating Company
Remuteifian NB cun1.454

by
Kinemetries/Systems
222 Vista Avenue
Pasadena, CA 91107
Sales Order C-K2082
March 18, 1992

1.0 INTRODUCTION 3
2.0 INSTRUMENTATJON \pm
2.1 Model SMA-3 Accelerograph 3.
2.2 Calibration Data 3
3.0 DATA PROCESSING 4
3.1 Digitization 4
3.2 Conversion and Data Reduction 4
3.3 VOL, Processing 4
3.4 VoL2 Processing 5
3.5 VOL 3 Processing 5
4.0 OBSERVATIONS 5
DATA PLOTSUncorreoted Acceieration: Triaxial response at ReactorBuilding Foundation. Elev 575, and Containment Vessel.E1GV 6t है
Corvected Acceleration, and Integrated Velocity and Displacement: Triaxial response at Containment Vessel, Blev 686.
Tripartite Presentation of rSV, ESA and SD: Triaxial responge de Containment Vessel, Elev 686.

APPENDICES

"Conditioning and Correction of Strong Motion Data on Analog Magnetic Tapes"
suth-3 Datd Sheet

1.0
 INTRODUCTION

On Narch 15, 1992, a (M, 3.5) 1ocal. earthquake was recorded by the strong motion instrumentation at Perry Nuclear Power Plant, Perry Ohic. The FM andiog riagnetic tape cassette records froin two Rinemberics Model SMA-3 accelerographs were retrieved from the instruments and provided to Rinemetrica for analysib

This report describes the processing of these strong motion records and presents the results. Included are the uncorrected accelerogramt, cortected autel eration, velocity and displacement time series for the containment vessel (elevation 686') and response spectra for the containment vessel annulus. Data corfection was not performed and response spectra plots were not made for the rebctor building foundation mat location sinc the recorded earthquake signals are very smallf representing a signal to noise ratio of less than 1

2.0 INSTRUMENTATION

2.1 Model SMA-3 Accelerograph

The SMA-3 is a multi-channel, centralized recording, FM analog magne*ic tape accelerograph system designed to detect and record strong local earthquakes and record the three orthugonal acceleration signals on cassette tape. The SMA-3 remains in a standby mode until its verticai trigger detects an earthquake. The trigger then actuates recording in less than 0.10 seconds

The force balance accelerometers in the SMA-3 have a nominal natural frequency of 50 Hz and damping of 65 eritical. providing flat (-3 (1B) zesponse from DC to 50 Hz . The nominal sensitivity o: each of the three channels is 2.5 volts/g with a full bcale response of 1.0 g . The dynamic range of the accelerograph is nominaliy 40 dB , giving it a resolution of approximately 0.01 g .

The trigger in the SMA-3 has a flat $(-3 \mathrm{~dB})$ fesponse from 1 to 10 Hz and a nominal trigger level of 0.01g. For Perry Nuclear Power piant the threshold is lowered to 0.005 g

Power is supplied to the SMA-3 by internal rechargeable batteries These batteries are kept in a charged state by 120 Vac ine power

2.2 Calibration Data

The two acceletometers connected to the Model SMA-3 accelerograph system which recorded the event were calibrated for sensitivity by Pertz NPP pergonmel. Natural freguency and damping characteristics for the senscrs were derived from most recent callblation data avallable tc Rinemetrios

[^1]\qquad

Table 1. Most recent accelerometev calibration data

3.0 DATA PROCESSING

Datd from the Model SMA-3 accelerographs were played back using a Kinemetrics Model SMP-1 Playback System through a Data Compensator, digitized using a Kinemetrics Model SSR-1 Solid State Recorder and processed as described in Kinemetrics' Application Note No. ${ }^{7}$, *Conditioning and Correction of Strong Mction Data on Analog Magnetic Tapes" (appended to this report) with exceptions as noted in section 1.0 INTRODUCTION of this document

3.1 jigitization

The magretic tapes were digitized using the SSR-1 Solid State Recorder. The 1024 Hertz FM time reference recorded on channel 4 of the cassette is output from the SMP-1 and di ided down by four $(256 \mathrm{~Hz} \pm$ deviation) and used as the timing signal for the digltai conversion time interval. The multiplexed uncorrected time series are written into the SSR-1 digitizer's solid state memory for retention until retrieval with an IBM-PC or 1008 compatible computer.

3.2 Conversion and Data Reduction

The binary file(s) retrieved from the SSR-1 recorder are converted to Kinemetrics' common data format for analysis. The time series data is edited to constrain the file to seismic irformation only.

3.3 VOL1 Processing

The digitized data were demultiplexed and scaled to acceleration units using specific sensor characteristics for damping and sensitivity, Calibration data from Table 1 is incorporated into the header information of the tile for refercice during vot 2 analysis. The mean was then subtracted from each acceleration time history. The new time histories were then written in a Kinemetrics' VOLI-format disk file.
record were then plotted, these plots are included in the data section of this report

3.4 VOL2 Processing

The recorded acceierograms were then instrument and baseline corrected using kinemetrics' Vot 2 program. This program is based upon the VOL2 program deve'pped ac caltech (Trisunde and bee. 19731, No major modi tications to the oriyinal voLi aljordthms have been mad?.

The óata were bandpass filtered using Ormaby filters. The 10 ow-pass filtex had a fut off frequency of 33 Hz and a termanation frequency of 35 hz . The high-pass filter hath cutoff trequency of 1.5 Hz and s cermination frequency ot 1.3 Hz
ut of this prograit consigts of a plot of corrected
\& eration, veiocity and displacement for each component of recorded data. Plots for the containment vessel are presented in the ciats section of this report. The small signal devels recorded for the reactor building foundation mat did not permit this type of analysis.

3.5 VOL 3 Processing

Linest response spes ta were calculated from the coriected acceleration time histories usifg the algorithms developed by Trifunac and Lee Response spectra were calculated for damping ratios of $0,2,5,10$, and 20 percent.

The traditional tripartite log-10g plots of pseudo-velocity vs. period were produced and are included in the data Bection of this report

4.0 OBSERVATIONS

The resoiution ot the SMA-3 system is appoximately 0.01g. The earthquake dats recorded at the critainment vessel (elevation 6s6') Were yery smali but, were of Butiscaent signal to noise fatio for Fesponse spect rum calculation. The eazthquake data reconded at the reactor building foundation mat were not of sufticient signal to nosse Fatio to permat this analysis

Because of the low levels of motion associated with this event, the decelerogzaph system triggered on the arrival of the S-wave, not the p-wave. As such the iALtial earthquake motaon was not recorided.

The start-up time for the SMA-3 accelerograph system is 0.1 seconds and is usudily charactexized by a large spike (s) at the beginning
 Q. 1 second atart-up time were edited fxom the socelexogram plagu to this dnalysis work.

```
Reactor Building Foundation Mat, Elevation 575 ft.
        SMA-3 Serial Number 165-1
        Tag Number D51-N101
    Longitudinal Channel - South Orientation
    Transverse Channel - West Orientation
    Yertical Channel - Up Orientak:lon
```

PEAKS (G): 1:-. 038 2: . 028 3:. 039
FILE: E0102E. V1 MAR 17. 1992 16:47:11.953 [C]

K I $N E M$
"

PERRY EO, CASSETTE R102

\qquad

Containment Vessel, Elevation 686 ft .

```
SMA-3 Serial Number 165-2
Tag Number D51-N112
```

```
Longitudinal Channel - South Orientation
Transverse Channel - West Orientation
Vertical Channe1 - Up Orientation
```


MARCH 15． 1992 OHIO EARTHQUAKE
PERRY NPP．SMA－3 S／N 165－2 COMP 2－T－
BRNDPASS FILTER LIMITS： $1.300-1.500 \quad 33.00-35.00$
PEAK VALUES：\quad ACC $=24.54 \quad$ VEL $=.35 \quad$ DISP $=-.01$
コミ5／コヨ5／Wコ

MARCH 15. 1992 OHIO EARTHOLAKE
PERRY NPP, SMA-3 S/N 165-? COMP 3 -V-
BRNDPASS FILTER LIMITS: 1.290-1.500 33.00-35.00
PEAK VALUES: ACC $=-18.06 \quad$ VEL $=.23 \quad$ DISP $=$

$$
\begin{array}{r}
10.00 \\
.00 \\
-10.00
\end{array}
$$

D51-N111 CORRECTED TIME HISTORIES (V)

FIGURE A. 6

FIGURE A. 7

A.PPLICATION NOTE

Conditioning and Correction of Strong Motion Data on Analog Magnetic Tapes

No. 7

Kinemetrics has developed programs for routine computer processing of data recorded on the analog magnetic tape accelerographs, Models SMA-2 and SMA-3. The software from published research for film recording accelecographs (Trifunac \& Lee, 1973) has been adapted to the analog magnetic tape recording instruments.

Magnetic tape is used where rapid playback and analysis of deva are required́. These accelerographs are normally located at large engineered facilities, such as nuclear power plants. Figure 1, "Rinemetrics Earthquake Data Reduction System Flow Diagram," illustrates the specialized services needed to prepare data immediately after an earthquake.

The purpose of this Note is to describe the standard data conditioning and correction used co prepare accelerograms for subsequent response spectrum or time-series analysis. On Figure 1 are references to the following paragraphs: 2.0--Data Playback, 2.0--Analog-:0-Digital Conversion, 3.0--Data Conditioning, and 4.0--Data Correction.

There ar: two "tape speed" errors in all FM analog recording/playback systers. One "error" is a change in apparent amplitude due to unwanted tape speed changes. Correction of this error is called "amplitude compensation". This is shown in Figure 2 and described in Sections 1.0 and 3.0 . The second "error" is a change in apparent length of the earthquake due to different tape speeds during recording and playback. Correction of this error is called "time base compensation". This is shown in Figure 3 and described in Section 2.0.

1.0 Data Playback

1.1 The playback system is a Model SMP-1 (Eigure 4). If the SMP-1 is used to play out the SMA-2 or SMA-3 tapes, the signals which appear on the integral chart recorder are amplitude compensated.
1.2 The electrical outputs taken from the DEMODULATED OUTPUT jacks (Channels 2, 2, of 3 of Figure 4) are not amplitude compensated. However, Rinemetrics has an electronic Data fompensator which plugs into an SMP-1.

When the Data Compensator is used, the output signals are amplitude compensated by electronic subtraction of Channel 4 from Channeis 1,2 , and 3 . The electronic subtraction is accomplished by means of a unity-gain operational amplifier for each of the three data channels. The data channel (1,2 or 3) drives one input to the op-amp and the time compensation channel (4) drives the other op-amp input. The op-amp output is the difference between the two inputs and provides the amplitude compensation (as shown in Figure 2).

The Data Compensator should be used if the signais are to be recorded on a three-channel strip-chart recorder for display. The signals are not time base compensated.
1.3 If the signals aze to be processed on a computer, there are two uptions:
1.3.1 Use the Data Compensator for amplitude
compensation and digitize channels 1,2 and 3.
1.3.2 Without a Data Compensator, digitize channels 1 , 2,3 and 4 , and have software perform amplitude compensation by subtracting channel 4 from each of the three data channels.
2.0 Analog-to-Digital Conversion

The following steps are taken at Kinemetrice using the SMP-1 connected to the Analog-to-Digital Converter, Model DDS-1105 or Dataseis ${ }^{\text {R }}$.
2.1 Three (3) analog outputs of the SMP-1 with Data Compensator are digitized simultaneously: longitudinal, transverse, and vertical (Channels 1, 2,3 of Figure 4). A 12-bit analng-to-digital converter is used with normal full scale of ± 5 volts.
2.2 The FM Time reference output (Channel 5 of Figure 4) is $1,024 \mathrm{~Hz}$ plus or minus tape speed ertor. This signal is divided down by four ($256 \mathrm{~Hz} \pm$ deviation) and used as the timing signal for the digital conversion tim? interval (see Figure 3). Thus, the accelerogram time base is corrected for tape speed error and the voltage values are equally spaced at $1 / 256$ second. This is "time base compensation" and can be done on analog-to-digital converters other than DDS-1105 or Dataseis ${ }^{\text {R }}$.

FIGURE 1 Flow Diagram for Kinemetrics E.D.R.S. (Earthquake Data Reduction Sequence)

Channel 1
(see Figure 1)

Channel 4
(sec Figure 4)

Uncompensated Earthquake Fıcord

1024 siz Time Compensation Channel.

Final Record Following Amplitude Compensation

2.3 The final uncorrected accelerograms are written on 9 -track computer-compatible tape. The three channels are multiplexed (i,e., $1,2,3,1,2,3,1,2, \ldots)$, and are in a 16-bit, offset binary format.

3.0 Data Conditioning

Figure 5 illustrates the flow of the "Data Conditioning" software. Tape speed variations during recording and during playback of FM analog tape change the apparent time base and affect the analog amplitude. The time base has been compensated in the previous section (see Figure 3) by using the FM time reference output as the timing signal for the analog-to-digital converter. The amplitude has been compensated (see Figure 2) using the Data Compensator module.

The output accelerograms are uncorrected in the sense that no modifications have been introduced which involve any hypothesis of the ground motion character or of the instrument involved.

4.0 Data Correction

Figure 6 illustrates the flow of the "Data Correction" software. The purpose is to present corrected acceleration and integrated velocity and displacement time-histories in as accurate a form and over as wide a frequency range as is compatible with the original data. The corrected data are believed to be the most accurate form of input data feasible to produce from tha original records. They are suitable input for structural response calculations and for response spectrum calculations.

A high-frequency instrume..t correction is introduced to compensate for the accelerometers' frequency response. The Caltech publication EERL 71-05 discusses the approach used. The low frequency baseline correction uses an Ormsby high-pass filtp The technique is explrined in Caltech publication EERL 70-07

Figure 7 contains a sample output plot of corrected data for one component of the Santa Barbara earthquake of 13 August 1978, recorded on a SMA-2 accelerograph.

FIGURE 5

Data Conlitioning, E.D.R.S.
Data Correction, E.D.R.S.

FIGURE 7
SANTA BARBARA EARTHCUAKE AUGUS* 13, 2978 - 1555 PDT GOLETA SUBSTATION SCE, $34^{\circ} 28.0^{\prime} \mathrm{N}, 119^{\circ} 53.1^{\prime} \mathrm{W}$ COMP UP OPEAK VAEUES : ACCEL $=105.9 \mathrm{~cm} /$ SEC/SEC VELOCITY $=-5.6 \mathrm{~cm} / \mathrm{SEC} \quad$ OISPL $=1.0 \mathrm{~cm}$ BANDWIDTH $0.03,4.0 \mathrm{SEC}$

REFERENCES

Trifunac, M. D. (1970), Low Frequency Digitization Brrors and a New Method for Zero Baseline Correction of Strong-Motion Accelerograms, Earthquake Engineering Research Laboratory, EERL 70-07, pgs. 32-52, California Institute of Technology,
Pasadena

Trifunac, M. D., F. E, Udwadia and A. G, Brady (2971), Bigh Frequency Errors and Instrument Corrections of Strong-Motion Accelerograms, Earthquake Engineering Research Laboratory, EERL 71-05, pgs. 33-47, California Institute of Technology,
Pasadena

Trifunac, M. D, and V, Lee (1973). Routine Computer Processing of Strong-Motion Accelerograms, Earthquake Engineering Research Laboratory, EERL 93-03, Califorria Institute of Technology, Pasadena

[^2]

SMA-3

Strong Motion Acceleration System

The SMA-3 is a mult-channel, centralized recording. magnetic tape accelerograph system designed to detect and record strong local earthquakes. Typical structural applications include nuclear power plants, tall buildings, dams, offshore platforms and bridges. The SMA-3, used with the companion SMP. 1 Playback System, meets the requirements of U.S. NRC Regulatory Guide 1.12 and is being used at over 90 nuclear power plants around the worid.

An SMA. 3 can accommodate up to 27 channels of ac. celeration data. usually from triaxial force balance acceierometers. Model FBA-3. Downhole triaxial sensors (FPA. 130 H) can be in rilled and uniaxial and biaxial accelerometers may also be used. The sensors may be located up to 1500 feet trom the central recorder. The TS.3 triaxial seismic trigger is stanuard with any SMA.3 system The SMA. 3 comes supplied with two cassettes per eoording section and all mounting hardvare and mating connectors for the specified number of triggers and accelerometers.

GENERAL DESCRIPTION

The SMA-3 is a versatile mult-channel acceleration recording systern. It is self-actuating when a local earthquake exceeds a predetermined level of ground acceieration. When acceleration falls below the preset value. the SMA. 3 automatically returns to the standby condition.

The standard FBA-3 triaxial accelerometer package is approximately a 20 centimeter cube. It contains three forcebalance acceleration sensors. The accelerometer package accepts calibration commands for damping and natural frequency
Each accelerometer signal is buffered, frequency modulated. and recorded on an assigned track of a tourtrack magnetic tape cassette. Three tracks are used for acceleration data and the fourth for a timing signal, which is common tor all recording tape transporis in the system

TECHNICAL SPECIFICATIONS

SEISMIC TRIGGERS (Model TS-3)

Type: Triaxial acceierstion trigger
Housing: Cast aluminum, waterproo
Set Point. 0.01 g standard: tieid adjustable, 0.005 g to 0.05 g Option: Adiustment range of 0.025 g to 0.25 g
Current Drain. 045 mA in standby; 60 mA operating
TRANSOUCEAS (Model FBA-3)
Type: Forea balance accelerometers
Housing ast aluminum waterproot
Banowidth: 0 to 50 Hz
Hange: $=19$ tull scale
Output ± 2.5 V full scale
Damping. 70% of er xical
Natural Frequency 50 Hz
Calibration Damping and natural trequency recorded by command
Temperature Range -20° to $70^{\circ} \mathrm{O} 10^{\circ} 10160^{\circ} \mathrm{F}$
Temberature Eftects $\pm 1.5 \%$ of full scaie over operating range

AECORDING SVSTEM

Type: Frequency modulation
Tape: Four track magnetic tape oassette
Tape Speed: $1.7 / 8^{\prime \prime}$ per seconc
pecording Time 30 minutes
Bancwidt: 0 10 50 Hz
Dynarnic Range: 40 a8 from $15^{u} 1035^{\circ} \mathrm{C}$ (with SMP-1)
Modulatiun Frequency $1000 \mathrm{~Hz}=50 \%$ modulation
Timing Erequency $1024 \mathrm{wz}=0.2 \%$
System Accuracy (with SMP.1) $\pm 5 \%$ at full scale, changing inearly to 1.5 3 of fulf scaie at 0.01 g
Start-up Time Less than 0.1 seconds
Event Alarm: Normally Open contacts, rated 1 amp (a) 12 Vac
Event Indicator Electromagnetic visual display
POWER SUPPLY
Two 12 V internat, rechargeable dattenes. An internal battery charge operating from 110 Vac , is supplied.
OPERATING ENVIRONMENT
Temperature of to $55^{\circ} \mathrm{C} 130^{\circ}$ to $+30^{\circ} \mathrm{F}$
Humidity. Aemote packages, 100 \% R w
Cabinet mounted paneis, $80 \% / 2 . H$. non-condensing

ORDERING INFORMATION, SMA-3
Kinemetrics Part Number 101100
Strong Motion Accsleration System, including:
One triaxiat seismic trigger, Model TS-3 Specify triggering inreshoid (0.01 g standard) Specity number of additional triggers if desired
Up to ant triaxial acceleration sensors. Mocel FBA-3; 1 . Og full scale Cost Qption-Model F8A-11 uniaxia sensor Cust Option-Model FBA-13DH downhole triaxiat senso Option--Dange 0 25g 0 6g sog tull scate
Scecity number and type of sensors, ui 1027 channeis
Uo to nine triaxnal lape recording moctules, with cassertes Cost Option-Fiame resistant wirng Snecity number of chantels, ut to twenty-severn

ControllPower Panes
Cost Ootion-Conve ision to 220 Vac

Accessories:

interconnecting Cables tor seismic Iriggets
Cost Option-Flame retargant cabie
Specity tengiths required, uf to 1500 to aach trigger
interconnecting Cables for remote accelerometers
Cost Ootion-Flame rerardant cable
specify lengths 'ecuired uf to 'soch to each satsor
1 thincn Mack Mounting Caome!
Cost Option-Sersmically praced cabinet
Tape Playback. Moder SMP-1 (see SMP-1 data sheet)
Soates and Sucolies.
Magnetic Tape Cassettes Ran 3700030
Gesiccant Enveliores $\mathrm{B}_{\text {all }}$ \& 700049
12. Satterles (par). Pan \& 103413

APPENDIX B

SEISMIC EVENT EVALUATION

FOR THE

MARCH $15,1992 \mathrm{MC}=3.5$ EARTHQUAKE PERKY NUCLEAR PLANT

ENGDABL STRONG-MOTION DATA

MPL NUMBER: D51-R120 *
LOCATION: REACTOR RECIRCULATION PUMP

SENSORLOCATION	ACCELERATION (g)	
NORTH/SOUTH (L)		
EASTMEST (T)		
VERTICAL		

MPL NUM8ER: D51-R130 * LOCATION: HPCS INJECTION LINE

[^3]TABLE B-2
ENGDAHL RECORDED DATA
03/15 102 EAD THQUAKE

MPL NUMBER: D51-R140
LOCATION: HPCSPUMP BASE MAT - 574

SENSORLOCATION	ACCELERATION (g$)$	
		LLET
NORTH/SOUTH (L)	0.0	0.0
EASTWEST (T)		
VERTICAL	0.038	

MPL NUMBER: D51-R160
LOCATION: REACTOR BUILDING FOUNDATION - 574^{\prime}

REED NUMBER	NOMINAL FREQUENCY (HERTZ)	ACCELERATION (g)					
		North/South		East/West		Vertical	
		LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT
1	2.00	0.0019 g	0.0014	0.00239	0.0000 g	0.000 g	0.000 g
2	2.52	0.00219	0,00419	0.0020 g	0.0013 g	0.000 g	0.000 g
3	3.17	0.00329	0.0054 g	0.0045 g	0.0000 g	0.000 g	0.000 g
4	4.00	0.0000 g	0.0080 g	0.0000 g	0.0000 g	0,000g	0.000 g
5	5.04	0.0000 g	0.0196 g	0.0048 g	0,0000g	0.000 g	0.000 g
6	5.35	0.0078 g	0.01979	0,0000g	0.0000 g	0,000g	0.000 g
7	8.00	0.0000 g	0.0009	0.01298	0.0129 d		0.0009
8	10.1	0.00989	. 00980	0,00009	0,0000r		0.000 g
9	12.7	0.0000 g	0.0154 g	0.0220 g	0.01450	0.000 g	0.000 g
10	16.0	0.0000 g	0.0253 g	0.0366 g	0.0366 g	0.0064	0.000 g
11	20.2	0.0000 g	0,0000g	0.0000 g	0.0000 g	0,000g	0.000 g
12	25.4	0.0625	8259	00008	0.00009	10.000 g	0.000 g

TABLE 3-4
ENGDAHL RECORDED DATA
03/15/92 EARTHQUAKE

MPL NUMBER: D51-R170 *
LOCATION: REACTOR BUILDING BIOSHIELD WALL - DW $630^{\prime}, 240^{\circ}$

REED NUMBER	NOMINAL frequency (HERTZ)	ACCELERATION (g)		
		North/South	East/West	Vertical
1	2.00			
2	2.52			
3	3.17			
4	4.00			
5	5.04			
6	6.35			
7	8.00			
8	10.1			
9	12.7			
10	16.0			
11	20.2			
12	25.4			

[^4]TABLE B-5
ENGDAHL RECO OED OATA
CH276, OS EAD HOUAKE

MPL NUMBER: D5 1-R180 *
LOCATION: HPCS PUMP BASE MAT - 574

REED NUMBER	NOMINAL FREQUENCY (HERTZ)	ACCELERATION (g)		
		North/South	East/West	Vertical*
1	2.00			
2	2.52			
3	3.17			
4	4.00			
5	5.04			
6	6.35			
7	8.00			
8	10.1			
9	12.7			
10	160			
11	20.2			
12	254			

*D51-R180 was out-of-service for repair during the seismic event. No data avallable.

TABLE B-6
ENGDAHL RECORDED DATA
05715/92 EAR THOUAKE

MPL NUMBER: D51-R190

LคCATION: RCIC PUMP BASE MAT $\cdot 574^{\circ}$

REED NUMBER	NOMINAL FREQUENCY (HERTZ)	ACCELERATION (g)					
		North/South		EastWest		Vertical *	
		LEFT	RIGHT	L,EFT	R1GHT	LEFT	R1GHT
1	2.00	0.006	000	0.20	0.004	NA	NA
2	2.52	0.007	11.00	0.003	0.002	NA	NA
3	3.17	0.008	0.00	0.004	0.00	NA	NA
4	4.00	0.00	0.00	0.004	0.004	NA	NA
5	3.04	0.00	0.020	0.00	0.00	NA	NA
6	€. 35	0.00	0.00	0.00	0.00	NA	SA
7	8.00	0.00	0.025	0.019	A	Na	NA
8	10.1	0.00	0.00	0.00	0.00	NA	NA
9	12.7	0.00	0.00	0.00	0.00	NA	NA
10	16.0	0.00	0.00	0.00	0.00	NA	NA
11	20.2	0.00	0.00	0.00	0.00	NA	NA
12	25.4	0.00	9.00	0.00	0.00	NA	NA

[^5]
APPENDIX C

TO

SEISMI EVENT EVALUATION

FOR THE

MARCH $15,1992 \mathrm{MC}=3.5$ EARTHQUAKE

PERRY NUCLEAK PLANT

PDAS -100 RECORDINGS AND CAV CALCULATIONS
C. Analysis of the PDAS-100 Data Records of the Earthquake of March 15, 1992 06:14 GMT

C. 1 Introduction

The 3/15/92 earthquake event was recorded by a purtabla digital seismograph (PDAS-100) installed at the Antioch station of the CE1 Autostar network. The Antioch station is located about 1 km ENE of the Perry Nuclear Plant and approximately 8 km from the epicenter of the March 15 th earthe sake.

At the time of the earthquake, the PDAS-100 was configured to record two verwical component channels and 1 hotizontal component channel. The PDAS-100 was in this configuration to "base-1. ne" the unit with the Autostar Network. All channels were enabled to record at 100 samples per secend. The transducer for one of the vertical components is a PA20 accelerometer (ieledyme-Geotech). This acceleroneter was installed at ground surface ch a wood floor of a small shed which houses the telemetry of the Antioch seismic station. The second vertical component included an L-28 velocity transducer (Mark Products) with $\&$ natural frequency of 4.5 hert:. The horizontal component also included an $L-28$ velocity transducer. Both the vertical and horizontal $L-28$ velocity transducers are installed in a waterproof lexan bo: and installed outside the Autostar instrument shed. The lexan box and velocity transducers are buried at a depth of about 1 foot below ground surface. It should be noted that the Antioch site has a stratigraphic column of about 70 feet of overburden over Paleozoic bedrock. Thus, PDAS-100 ground surface records discussed below were recorded at a 'soi. site'.
C. 2 Recorded Ground Motion

The PA20 vertical component record was correctef for instrument sensitivity (i.e. 5 volts/g) to obtain the accelerogram shown at the

```
top of Figure C.1. Th.? peak acceleration for this record is 0.014g.
```

Fourier Arplitude Spectrum and Power Spectral Density plots shown on Figure C. 1 illustrate the frequencs composition of the PA2) vertical componant accelerogram. Dominant frequencles are at 10.9 and 11.7 hertz. Other spectral peaks occur at $5,7,14,3$, and 18,8 hertz. It is noted that the PA 20 record exhibited additional high frecquency energy at frequencies of about 38 to 42 hertz. Sinilar amplitude high frequencies were not present in the L-28 vertical record buried in the ground near the small instrument sheci. The high frequencies are attributed to resonance of the wooden shed. These high frecquencies were filtered using a cut-off frequency of 30 hertz. The peak acceleration of the unfiltered record was siightly higher at -0.016 g .

More extensive processing was reguired to generate acceleration time histories for the vertical and horizontal ground motions recorded by the L-28 velocity transducers. Ground velocities were computed using the published instrument sensitivities (i.e. $0.65 \mathrm{volts} / \mathrm{inch} / \mathrm{second}$). Next, the time derivative was taken of the velocity record to derive ground acceleration records, Shown on Figure C. 2 is the vertical component L-28 dnrived accelerogram. The peak ground acceleration is 0.0095 y . Spectral composition of this $\mathrm{t}-28$ record is similar to that recorded by the PA20 accelermeter. Dominant spectral peaks are at about 10.6 and 11.8 hertz. Secondary peaks occur at $5,7,13.2$ and 17.8 hertz.

Application of the same data processing stream to the $\mathrm{L}-28$ horizontal component ground response record resulted in the accelerogram shown on Figure C.3. The peak acceleration of this record is 0.102 g , about a factor of 10 larger than the corresponding L-28 vertical component acceleration time history. As can be seen in the time history, the
peak acceleration is associated with one cycle of high amplitude S-wave motion. The dominant frequency of the lateral acceleration is at 11.5 hertz. Other peaks occur at 5.2 and 13.7 hertz.

C. 3 Cumplative Absolute Velocity (CAV)

Cumulative absolute velocity (CAV) has been promoted as an alternative measure of greund motion intensity, which perhaps is better correlated to damage potential than is peak acceleration, especially if the peak acceleration is associated with high ground motion frequencies. The formulation used tc calculate CAV values from the PDAS-100 data for the $3 / 15 / 92$ event is defined in EPRI NP-5930, Project 2848-16, A Criterion for Determining Eyceedance of the Operating Basis Earthquake, Final Report dated 7/88.

CAV can be computed for the entire duration of the recorded time history. It should be noted that approximistely 70 seconds of coda were recorded by the PDAS for the March 15 th earthquake. Figures C. 4 thru $C .6$ show 10.24 seconds of the record beginning at the p-wave arrival. Although the entire records have a duration of about 76 seconds, highest accelerations are observed in the first 4 to 5 seconds after initial p-wave arrival. Amplitudes are relatively small at 10 seconds from the beginning of the event. CAV is thus computed for the 10.24 seconds of ground motion shown on Figures C. 4 thru C. 6 for the PA20 (vertical), $\mathrm{L}-28$ (vertical), and L-28 (horizontal), respectively.

Resultant CAV's for these records are $.012 \mathrm{q}-\mathrm{sec}, .0077 \mathrm{~g}-\mathrm{sec}$, and $.026 \mathrm{~g}-\mathrm{sec}$, respectivelv. . omparison of the CAV of . $026 \mathrm{~g}-\mathrm{sec}$ computed for the L-28 horizontal component record with CAV's determined by the OBE Exceedance Working Panel (EPRI RP2843-16), sugqests that the associated site intensity at the Antioch site for the March 15 th earthquake was about 111 on the Modified Mercalli

Scale. Seven records with CAV's ranging from, 021 to . $027 \mathrm{~g}-\mathrm{sec}$ are listed in the referenced EPRI OBE Excnedance report. Pbrameters of these events are listed belov.

Dataset Mame:	Mar 15
Uersion Number:	1
Series Name	Cif
Date Aequired:	$3-19$
Time Acquired:	1992
Uert Units:	$16: 23: 52.93$
Horiz Units:	6
Num Sanples:	1824

Sample Rate
163
aximum:

1. 1419488877

- © 6488492
wenents: Mone

None

W1 Rar 35.1. Ch:
L28 Vertical Component
Accelerogram - derivative of recorded velocity lecord

[^0]: 1 Thaxial Tume History Accelerograph
 2 Iriaxal Peak Accelerograph
 3. Triaxial Response Spectrum Recorder

[^1]: Sensor characteristics provided by CEI and used to correct the data

[^2]: Ed. II--September 1984

[^3]: *Information not available at preparation time of this report

[^4]: *Information not avallable at preparation time of this report

[^5]: *Recordings from the Vertical component were difficult to read, 'rregula anc thought to be non setsmic scratches. These will be reviewa by our nofsultant, Enouth

