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3 The core power histopram employed was for @
13.4 KW/ ft maximum design linear hest oper-
ation rate; see Figure 3-5.

RESULTS

Normal Operation

The results from this enalysis sre shown {n Figure 3-6 with
initial fuel density as a parameter. The line shown for an initiel
fuel density of 95% T.D, is ~onsidered to be most representative consider-
ing current GE data on manufactured fuel pellet densities as & function
of axial position, is the required margin which must be maintained during
normal operation between the actual peak opersting condition and the peak
design LHCR; f.e., 13,4 KW/ft. Maintaining this mergin will assure, with
better than 957 confidence, that no more than one rod will exceed the design
peak LHGR due to the random occurrence of power spikes resulting from axial
fuel column gavs. Consistent with GE's position on densification, previously
discussed in Reference 4 and 1ts supplements, the results of this analysis
sre considered to be a very conservative representation of the power peaking
penalty required to accommodate potential axial fuel column geps during g
normal operating conditions in CE BWR's.

Accident Effect |

Since the results of the power spiking analysis for normal operation |
will be utilized to limit bundle power to assure that the random occurrence
of power spikes will not result in exceeding the design peak LHGR, it is not
believed necessary to separately consider power spikes in the analysis of
transients or accidents whiich have as an initial condition some form of
normal operation, The control rod drop eccident is unique in the respect
that it begins at the cold condition, and is not affected by normal operating

power level, Further, the existence of fuel columngaps cen result in power
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spiking in the cold condition during a control rod drop which ghould thus be

considered in the evaluation of thig sccident., For this purpose, & separate
power spiking anlysis has been performed using the same assumptions as indi-
cated sbove, but employing & power spike versus gap size celculated to
occur in the cold condition with zero voids (Figure 3-4), This anelysis
was performed for a conservative maximum gap size calculated employing a
pellet average immersion density of 94.5% T.D,, and a position near the
top of the core in order to maximize the power spiking effect. This analvsis
vielded a 99% probability that any given fuel rod would have a power splke
of <54,
3,4.4.2 Cladding Creep Collapse

Usi ng the same conservative bases presented in References 7
and 8, the critical pressure ratio; {.e., ratio of collapse pressure to
sctual coolant pressure, was calculated, Figure 3-7 presents the clad mid-
wall temperature versus time for the 8x8 reload fuel. No credit is taken
for internal was pressuve due to relessed fission gas or volatiles. The
interual pressure due to helium backfill at 1 stmosphere during fabrication
is considered. The fuel chacteristics for creep collapse calculations are

as follows:

Clad O.D., in, 0.493
Clad Thickness, in. 0,034 # 0,003
Peak LMGR, KW/ft 13.4

Fast Flux 1 mev, n/cmé-sec 4.37 x 1013
Figure 3-8 gives the calculated critical pressure ratio. As evidenced by
the curve, the calculated oritical pressure ratio is always >1.0,
1,4.4.3 Increased Linear Heat Generation Rate
The following expression was employed to calculate the
dec.ease in fuel column length due to densification in calculation of a

penalty in linear heat generation rate:

3-26f¢
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alLs 0.965 - Py
2

whoere &L * decrease in fuel column length
L

fi = mean value of measured initial
pellet density (immersion - ,5%)

fuel column length

The length reduction due to densification as calculated by the above
equation requires knowledge of the mean immersion density (F&‘ obtained
from the QC data. A correction 0.5% T.D, is applied to convert the
immersion density to & geometric density. The mean pellet immersion

density for Monticello Bx8 fuel 1s 95.44% T.D, This results in

al = 0,965 - (,9544 - 0,005) = 0.0156 = 0,008
L 2 2

or AL = 0.8%
L
Due to thermal expansion, an 8x8 pellet normally expands in going from
the cold to hot condition, en amount equal to 1.2% for a pellet at 13,4 K¥/ft,
This increase in length from the cold to hot condition is not teken credit
for in either design calculations or in the process of core performance
analysis during reactor cperation. The cold pellet length is assumed for

these conditions,

Therefore, the decrease in pellet length due to densification is more than

offset by pellet axial theimal expansion,
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Confermence With Interim Acceptance Criteria, 1In L. snalyses discussed

sbove there heve been no deviations from the evaluation model described in

Appendix A, Part 2 of the AEC Interim Policy Statement,

Effects of ECCS Operation on the Core. The mechanical effects of ECCS opera-

tion on the core, reactor coolant system and ECCS are those associated with the
thermal effect of injecting water into these systems which is cooler than
these systems and components, These thermal stresses have been considered in

the design of the core, reactor coolant system and ECCS,

Tere are no nuclear effects resulting from ECCS operation, since all con-
trol rods ere inserted and the resctos remains subcriticel during the injection

of the cooler ECCS water.

There are no chemical additives in the ECCS water and therefore no chemical

effects on the core, reactor coolunt system or ECCS,

Lag Times, The systum time deluys assimed in the LOCA accident are ae

follown:
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