QUALITY RELATED

FIC-1. 100 2/25/80

CONTROLLED
 BECHTEL PONER CORPORATION
 Field Instruction
 FIC - 1.100 Q

Q-Listed Soils Placement Job Responsibilities Matrix
This supersedes FIC 1.100 Revision 1, Dated $12 / 4 / 79$.

TO: All Civil Field Engineers \& Civil Craft Superintendents.

Abstract

1.0 PURPOSE

This field instruction is written to provide a definition of job responsiblities for Q-Listed soils placement pursuant to Field Procedure FPG-3.000.

2.0 SCOPE

This field instruction applies to all Q-listed placement on the Midland Nuclear Project.

3.0 REFERENCES

Field Procedure FPG-3.000; Job Responsibilities of Field Engineers. Superintender.ts, and Field Subcontract Engineers.

Specification 7220-C-211; Technical Specification for Backfill.

4.0 RESPONSIBILITIES

The duties and responsibilities of the following individuals are defined in this instruction:
a. On-Site Geo-Tech Soil Engineer
b. Field Soils Quality Control Engineer
c. Lab Quality Control Engineer
d. Geo-Tech Soils Engineer
e. United States Testing Co. Lab Tecinician

5.0 INSTRUCTION

This instruction provides detailed job responsibilities instructions for $\mathrm{Q}-1$ isted solls placement. It is provided as an amplification to FPG-3.000 and is compl imentary to the directions provided in Specification 7220-C-211 and Quality Control Inspection Record $\mathrm{C}-1.02$. Any questions on this instruction should be refered to the Lead Civil Field Engineer.

1
Attachments: The attached memos from Project Enginneering list the qualified compaction equipmeat and methods per sections 8.5 and 8.6 of Specification $\mathrm{C}-211$. The attached memo's BEBC-3633 and BCBE-2772 describe the duties of the On-Site Geo-Tech Sails Engineer with regard to surveillance of soils-rellated testing operations. This surveillance will be documented on a Field Engineers report by sample/test number monitored. The specific procedures and steps in the procedure(s) observed will be stated and the results of the surveillance recorded on the Field Engineers report.

FIC - 1.100
Revision 2 Page 3

BECHTE MIDL

른TI ARS
TWX 5283 8/7/79 14:03

ATTN: J.F. NEWGEN
5"3C-3:62
SJEJECT: CPCOMIDLAND PLANT JOB 7220°
 QUALIFICATION OF COMPACTION EQUIPMEVT FILE: 0274, C-21t-PR

THIS THX LISTS WHICH EQUIPMZNT IS QUALIFIED FOR Q-LISTED AND NON-Q-LISTED FILL, PLACEMENT, AS REQUIRED.

SUIPMENT TYPE
-J" FOOT WACKER
MODEL GV? 220 v)
M-E-W VIBR OTARY
MODE GD 7000)

AFPL I CAELE MATERIAL

STRUCTURAL AND RANDOM RANDON SAND

STEUCTURAL AND RANDOY SAND

REQUIRED PASSES \& THI CKNESS

4* LIFT, 6 PASSES

4* LIFT, 6 PASSES

STRUCTURAL AND RANDOM SAND

6" LIFT, 10 PASSES

VI 3 ? 0 PLUS SEIF-PROPELED
(MODE CA-25D)

CORRECTED COPY

To

Subject

L.R. Davis

Midland Plant Units $1 \& 2$ Job 7220
Earthwork - qualification
Copies to of Compaction Equiperat Fils: C274, C-211-PR
S. Blu*
P. Corcoran

It Cures
"J." Wanzeck
Con Log

Bechtel Assoc.des Professional Corporatic Interoffice Memorandum

Date
ARCH 4
70
FAC 1.100
November 16, 1979
From
Z.표. Curtis

NOV 201979
BECHTEL POWER CORP. JOB $/ 220$
PER

References. TOM from S.S. Afifi to Lo Z. Curtis, 9/6/79

The following equipment have been qualified for use based on tent fills and field tests monitored by georechnical services (reference).
d. Structural and Random Sands

1. Wacker vibratory plate with g-inch outzincorp (modal n\%ov 2001)
(a) all area requiring $80 \% R D$
(b) 4-inch lifts and eight passes
B. Clays
2. Vibro plus (model Ca-23 PD)
(a) A11 areas requiring 90% compaction
(b) Five to 3 ix-inch lifts and eight passes per $11 f t$
3. Wacker J-foot temper (model GVR 2204)
(a) 111 areas requiring 90% compaction
(3) Four-1ach $11 f t s$ and $s i x$ passes per Lift
4.

- Yibro plus dynapact (model CF-43)
(a) All areas requiring 90% compaction
(b) Eight-1nch $11 f t s$ and $s i x$ passes per 11 ft

4. Wacker vibratory plata with 8-inch outelggers (mini DVU 3001)
(a) All areas requiring 90% compaction
(b) Four-inch lifts and 1 ix passes per lift.

Rac/sg
11/14/4

Bechtel Power Corporation

Interoffice Memorandum

To
L. H. Curtis
swoet Job 7220 Midland Project Onsite GeoTech Soils Engineer Surveillance of Testing Operations BCBE-2772

Copesen 10

> P. J. Corcoran
> J. P. Betts

File No.

Dose February 13, 1980
From L. E. Davis
a Construction
A Midland, MI But

Reference: BEBC-3633, dated January 30, 1980

The referenced memorandum was received by Field Engineering on February 5, 1980. This memo includes the following directions:
"The onsite GeoTechnical soils engineer shall observe the testing operations at least once a day while testing is in progress. The testing operations to be observed shali include field density and moisture tests, laboratory proctor tests, gradation tests, plotting of zero airvold curves, etc. Tests to be observed will be selected by the onsite GeoTechnical soils engineer. The selection will be random, based on tests being conducted on a particular day and varied to his satisfaction such that all phases of testing are being conducted correctly ..."

Based upon discussion among field personnel and telephone conversations with Project Engineering, the field interprets this to mean that not ail backfill related tests conducted each day must be observed but that at least one of the test procedures on any day of testing must be observed.
We also interpret this direction to mean that all test procedures related to backfill operations must be observed often enough so that the onsite GeoTechnical soils engineer can be satisfied as to the correctness and efficiency of testing operations and can document such observation.

```
L. H. Curtis
BCBE-2772
February 13, 1980
Page Two
```

As directed by the reference, the field will incorporate the reference in Field Instruction FIC-1.100 (Q) by February 22, 1980, including the above interpretation, unless direction to the contrary is received from Project Engineering.

LED/GK/jrh

The referenced action item requires that project engineering and geotechaical services develop guidelines for surveillance of testing operations by the onsite geotechnical soils engineer.

It is requested that field engineering incorporate the following guidelines into the appropriate field instruction and formard a copy of the revised field instruction to project engineering by February 22, 1980.

Guidelines for Surveillance of Testing Operations:
The onsite geotechnical soils engineer shall observe the testing operations at least once a day while testing is in progress. The testing operations to be observed shall faclude field density and molsture tests, laboratory proctor teses, gradation tests, plotting of zero airvoid curves, etc. Tests to be observed will be selected by the onsite geotechnieal soils engineer. The selection will be random, based on tests being conducted on a particular day and varied to his satisfaction such that all phases of testing are beigg conducted corractly and are providing the necessary control of the earthwork operations. The onsite geotechcical solls engineer shall inform appropriate authorities if the operacions are carried out incorrectiy and/or if there are any other methods or tests that could be utilized to improve the concrol or provide increased assurance that testing operations are carried on correctly and effectively.

Bechtel Associates Professional Corporation

IOM to L.E. Davis
BEBC- 3633
Page 2

The onsite geutechnical soils engineer's daily report should show what testing operations were observed and any recommendations for improvements which may have been made.
for Thoth curtis
SR/he
12/5/1

CORRECTED COPY
L.\%. Davis

Subject
Midlated Plant dales 1 a 2 Job 7220
Lartlwozt - Tualification

Copies to

 of Compaction zquipeez: F11e: C274, C-211-P?S. Blue
P. Corcoran
L. Cureis
3. Hanzeck
$\mathrm{C}=\mathrm{m} \mathrm{Log}$

Date
Sovember 16, 1979
From
L.모. Curtis

An
NOV 201379
BECHTEL POWER CORP JOB 7220
PER

Refarence: iom froc SoS. Lfifi : L.E. Curois, 9/6/79

The followias equipoent have been quallfied for use based on tent fills and field cests aonitored by geotechnical sarvices (referenca).
d. Structurnl and iandon Sapis

(a) sil area requiring $90 \% R D$
(b) 4-inch IIEx ead eight passes
B. Clays

1. Vinro plus (model C.J-25 pD)
(a) d11 areas requiring 90% convaction
(b) Five ta tix-1nch lifts and eight pasees per lift
2. Yackar j-foot tamper (Eode\%. Gvs 2204)
(a) All areas reçuiring 90% compaceion
(3) Four-iach lifes and tix passes per lift
3. Fiseo plus dymapace (nodel \subset (F-43)
(a) A11 areas raquirir- 90% comincetion
(b) Eight-1nch Lifts a.d six panses per Lift
4. Wacker vibratory plate with 8-inch outrigaters (-. .ial ove 3001)
(a) All areas requiving $3 n z$ compaction
(b) Four-ineh lifts and siz passes per ilfe.

Rao/sc
11/14/4

DISTRIBUTION OF THIS PROBLEM ALERT OUTSIDE OF ERCCIIT: ROUTES WRITHE:.: APPROVAL FROM DIVISIO: ENGINEERING MANACERT:TT. INFOROTION FROM IT MAM BE USED IN DEVELOPING APPROPRIATE NOTIFICATION OR RECOMINDATIONS TO CLIENTS, BUT PRIVILEGED OR OTIIERNISE SENSITIVE IMFORUTION SHALL HOT BE EXTRACTED WITHOUT ABOVE APPROVAL

Discipline: Civil Engineering
 Origin: Ann Arbor
 Subject: Large Settlements Due to Incorrectly Placed Backfill

Goren Turvezar'
QuE FILE

Discipline Problem Alert Number:

I. APPLICABILITY

These conditions are applicable to all projects where structures are supported fully or partially by compacted backfill material.

II. PROBLEM DESCRIPTION

Insufficiently compacted plant area backfill under the diesel generator building was discovered because of excessive settlement during construction. Further investigation by a soils boring program has indicated that both granular and cohesive soils were improperly compacted in other areas of plant fill as well as the diesel generator building. This required extensive reanalysis and/or modifications of the diesel generator building, the service water structure, the feedwater isolation valve pits, and portions of the auxiliary building.

This condition WAS INITIALLY PICKED \sim P Th t settrunout monitorial

PRog riant with UAS DEsigned To DeTEcT

Based on a thorough investigation, the most probable causes for the resulting remedial work include the following.
A. All types of compaction equipment used for plant area backfill were not prequalified for lift thickness and number of passes. This was particularly true for the small hand-operated equipment. Except for the heavy earth-moving equipment used to construct the plant area dikes, reliance was placed on acceptance being established by end result ASTM acceptance tests.
$2 \rightarrow$ B. An Revifit of test Results Br Germen has shown that the testing laboratory failed to obtain meaningful and accurate results after performing the applicable ASTM acceptance tests. Some examples are the following.

1. More than one-half of the test results for relative density and percent compaction were outside the theoretical comparison limit.

2. Incorrect soil indentification and calculation errors were present. Proanouex To COMtime Tegtime Aentires Wene not Proviows bT The Tostinc contenatoit.)

Ratests used to clear failing tests were not representative "f the material that failed. OC THE ADMINISTRATVE ASPELS of The Testing PRosersm.
The quality assurance ($Q A$) and quality control ($Q C$) departments
Thincigfill rovided surveillance program in lieu of an inprocess, in-depth inspection program. In addition, a continuous, thorough review of the testing methods being performed was not carried out.
III. CORRECTIVE ACTION TAKEN WHERE PROBLEM OCCURRED
A. The structures are being modified to compensate for the in situ soil conditions using the following solutions:

1. Underpinning by the use of caissons and piles for portions of structures partially supported by fill
2. Reduction of residual settlement by surcharge loading the structure totally supported by fill
3. Elimination of the possibility of liquefaction of extensive sand backfill areas during a seistric event by installing a permanent dewatering system
B. The earthwork specification has been revised, so that ati suit compaetion roquiramants aro eleaply defined the spectincation. The specification now requires that both density testing and sid compaction methods be established which include the number of passes for a given lift thickness for all approved equipment.
c. QC rewrote its inspection plans to implement the requirements in the specifications which included verification of equipment qualification. QC also verified the methods used to qualify placements.
D. A resident geotechnical soils engineer has been assigned to the site to oversee the backfill operation.
E. The soils testing laboratory has been made aware of all testing discrepancies and has taken actions to prevent recurrence.
F. All of the construction equipment to be used for compacting the various types of soils at the site has been qualified to a maximum lift thickness with a specified number of passes.
IV. ACTION TO BE TAKEN BY BECHTEL PROJECTS
 entions sherin have a method basis as well as periormance
criteria for acceptance; i.c., Each type of compaction equipment should be qualified at the jobsite for, the respective type of soils to be compacted. Tothis ADPSIIfication includes lift eu reazonaci: thickness and number of passes. The final acceptance criteria are still to be based on testing by the appropriate ASTM acceptance standard.
B. A project soil engineer and a field soil engineer should be assigned to each major project. The project soil engineer is assigned by the geotechnical services department and reports to the head of the soils group in the engineering office. The field soil engineer is on the project construction staff and reports directly to the construction superintendent. The field soil engineer will be hired by Bechtel construction or retained through a subcontract with an outside organization specializing in soil engineering. Project engineering and the geotechnical services group will the qualifications of
4. The field soil engineer's responsibilities will include, as a minimum, the monitoring of fill placement activities,
 testing laboratory activities, foundation excavations and pile and/or cassion foundation installations. In addition, he will coordinate all soil-related activities between project engineering/geotechnical services and construction, and forward progress reports to project engineering.
C. Quality assurance manuals $O X$ 位 soils laboratory testing should be reviewed by geotech as well as project engineering.
D. A maximum limit of the number of times a proctor curve may be . used as representative of the material being placed should be established. The procedures manual should be reviewed by geotech to ensure that proper controls are outlined.

 adequacy of his technical performance. The projeat-and-field soil engineers wat ll have the following duties. Autibititis stound

1. The project soil engineer's responsibilities will include, as a minimum, the coordination of all project soil engineering activities, the continuous review of soil-related construction activities, and the monitoring of the technical performance of the field soil engineer.
E. To minimize errors in testing, the soils testing laboratory should include the following practices in its testing procedures manual.
2. Cohesive Soils - The moisture content of the field densities cannot fall outside the zero air voids curve for the respective specific gravity.
3. Granular Soils - The stockpiled material should be tested for relative density by both the wet and dry methods as defined in the ASTM standards to ensure that the maximum density attainable will be used in placement.
F. Backfill Under Structures
4. To ensure that proper compaction is obtained, the frequency of plotting proctor curves or maximum/minimum density tests should be increased.
5. Consideration should also be given to performing static plate bearing tests as defined in the ASTM standards. The project or field soil engineer should have the option of requesting this type of test when appropriate.
6. Testiac specifications should clomelt came out
v. ACTION TO BE TAKEN BY THE TPO CHIEF CIVIL/STRUCTURAL ENGINEER
A. TPO Specifications $C-441 \operatorname{Rev} 6$ and $C-442 \operatorname{Rev} 0$ which are the materials testing services specifications for both nuclear power plants and fossil fuel power plants are to be revised to eliminate the soils laboratory section.
B. New TPO soils laboratory testing specifications are to be issued by February 1, 1980. In addition to the information presently in TPO Specifications C-441 and C-442, these specifications should be expanded to include the following items:
7. Establish a limit on the number of times a proctor curve may be used as representative of the material being placed.
8. Require a check to ensure that for cohesive soils the moisture content of the field densities does not fall outside the zero air voids curve.
9. Require stockpiled granular soils should always be tested for relative density by both the wet and dry methods as defined in the ASTM standards.
C. Reevaluate and revise as necessary the soils sections of the following TPO Specifications by February 1, 1980.

C-033 Rev 1	Site Grading C-052 Rev 0 Pressure Water Piping, Furnishing and Installing C-053.2 Rev 1
C-054 Rev 0	Furnish and Installing Yard Fire Protection System Storm Sewer, Furnishing and Installing
C056.1 Rev 1	Furnishing and Installing Culverts
C-058 Rev 2	Constructing a Sanitary Sewer
C-062.1 Rev 0	Circulating Water Pipe Installation (Steel)
C-062.2 Rev 0	Circulating Water Pipe Installation (Concrete)
C-314 Rev 0	Circulating Water Pipe Installation (Fiberglass)
C-234 Rev 2	Structural Excavation and Earthwork Construction

Revise derive ovides
BAENFIL OROAATIONS ARE MEEESANN BECAUSE OF UADERGROND HALILTES.
VI. FURTIIER INFORMATION

For further infornation contact G. Tuveson, Ann Arbor office, (313) 994-7727.
VII. FURTHER COORDIMATION

Reevaluation and modifications to the TPO specifications should be coordinated with the geotechnical services department of the $\mathrm{H} \& \mathrm{CF}$ division.
be:
H. W. Wahl
R. L. Castleberry
J. F. Newgen
J. P. Leblanc
W. G. Jones
R. Fiermeston
R. Wiedner
L. A. Dreisbach
P. A. Becnel
W. G. Moring
P. K. Hansen
E. A. Rumbaugh

Bechtel Power Corporation

777 East Eisenhower Parkway Ann Arbor, Michigan
mek Adese: P.O. Box 1000, Ann Arbor, Michigan 48106
sLC-6801
Mr. G. 8. Kaeley
Projact Manager
COISmERRS FOWER COMPANT
1945 Weat Parnall Road
Jackeon, Michigan 49201

Dear Mr. Keeley:
This lattar is to advise you of recont activities relating to the Midiand biesel generter building and modification to the activities previousiy Ideatifiad in the Referance.
Δ meating was held with the soil and Instrumentation consultanta, Dr. Peck, Dr. Hendron, and Mr. Dunifeliff, on November 7, 1978. Dra. Peck and Hendron atrongly recommended aurcharging the diesel generator building area to incur nost of the eattlement prior to plant oparation, deternine the effects of this settlement and then adjust building alevations as requirad. The aitarnate approaeh discusead in the zaference, of accepting the building's anticipated settlement, has two major drawbecks in the Flows of the consultants. Firat, it is mot feasible to predict the long tarm settlement from the borins amples dve to the large variation in samples. The settlement will have to be predieted based on soil monitoring. second, if there are to be difficultias with the underground utilities due to the sattlamant it would be batter not to have tham occur when the plant is operating.

Based on the above recomendation, our proposed activities in the Reference were outlined to the consultants. The consultants advised making the installation of soil instrumentation the highest priority so that a data base cac be developed prior to applying surcharge. They also advised using for greater effectiveness a lower depth of surcharge extended further from the building perimeter. They felt that approximately a $15-f 00 t$ depin placed in increments of 10 and 5 feet with 20 -foot berm placed with 2-to-1 slope should be sufficient but the aoil monitoring data may indicate if more surcharge, a maximum of 20-foot depth, or o longer conscildation time is required.

In addition, the consultants recomaended that the cooling pond be filled to its operating level of elevation 627 just after surcharge is placed, but after it was explained that the filling may take 30 to 60 days they recommended proceeding with filling the pond as rapidly as possible. They concurred that construction should also continue on the structure to add load early in the surcharge period.

Construction has been proceeding with the proposed activities. However, due to existing conditions aome modification to the monitoring program before releasing electrical ducts is required. The south ends of the two condensate pipe encasements have been exposed. The condenaste pipe centerlines were found to be located slightly below the centerline of the encasement sleeves. We will proceed to measure the gap at the top and to install vertical rods on the pipe and encasement to permit monitoring of any relative movement during surcharging. On the north ends we will be monitoring only the gaps from inside of the turbine building.

Construction will conduct the activities related to preloading in accordance with directions issued by Project Engineering. Project Engineering will base the preloading plan on the consultants' recommendations.

While we have received approval to proceed with limited construction and are proceeding to the point of concrete placement, we again request your approval to proceed with concrete construction of the building as soon as possible.

PAM/PP

ce: Mr. D. B. Miller
Mr. T. C. Cooke

Telephone call

E. W. Wahl
P. A. Becnel
J. P. Leblanc
R. L. Castleberry Joe No 7220, MIDLAND 1 \&
J. F. Newgen
S. L. Blue

Advised gReeley that our investigations show the diesel building settlement problem to be potentially serious
E. A. Rumbaugh and we feel it should be reported to the NRC under 50:55(e) requirements. Although it is not clear that any
K. Wiedner safety question would exist, the analysis is likely to be extensive and if remedial action has to be taken it could also be extensive. The diesel generator building and foundations are or engineered fill and while indications are that the fill tested out satisfactorily when placed, it is apparant that some of this fill for some reason now does not wet the specified compaction requirements. Soil testing by a firm ia Boston is expected to take about two weeks. Cur own top soils expert Ferris will be on-site on September 12 and in Ann Arbor on September 13 and we would be table to brief Consumers Power further after that date.

Keeley indicated he had been following this problem and at
P. E. Meyer this point would ask his people to prepare a press release. Ge asked to meet at the Site on Thursday, September 14, at
. R. Bubal
P. K. Hansen
R. Eermeston
L. A. Dreisbach
W. G. Moring 12 noon for further briefing and addressing potential solutions. Keeley concurred with Bechtel's investigative efforts to determine if the problem exists elsewhere onsite.
 PAM/PP

Telephone call
\qquad
-Al Boos T° B Field

- John Htirih/GidataTucten BAAO on $8 / 21 \quad 78 \cdots 1: 30$
Settlement of Due sd Gen Bless. 7220
Diesel Generators BULO - settlement first noted
in $7 / 78$-writ case noted 314
Background: all stouctines on $6{ }^{11}$ mud mot Field has been recording settlements for lest month or so -Al described measurements mode to dots (serattreched page). Al further noted that tho pedestal foundstisi sld have settled mole than the bldg - in some cases it appends that the structure wall is spanning over the mident (ice. a ruler cen be inserted betureen the mun and structure foundation.
Field needs immedicto suppoit-ie. the 24 kc clock for neportability has stinted noon.
Field would like Geotech, Prod. Engin on site yet tody. I promised \&s cell bach later with arrangements. si :c8019 $) \in \mid=1$

Telephone call
phonss Newzen - $517-631-9396$
ors Boos - 517-835-9404
\qquad
\qquad
T0 \qquad \circ \qquad
\qquad

Date \qquad Time \qquad
swore \qquad دoon No
\qquad
a

1.) no clushing e the edge
2) wolkshb settlins, the eastem wall apped to be sponning
3) D / G Bedy ny ti Elar. $650 \pm$, no shb ported yet for mayz floos
4) settemant grestest

*พท
Evaporator Buflding 833

Diesel Generator Pads I 834

COAFIDEHTIAL

J. A. Rutgers

Subject
November 13, 1979._Response to Question 23 NRC Midland Project Job 7220
Copies to

H. W. Wahl
P. A. Becnel
S. L. Blue
J. O. Wanzeck

832

The purpose of this memorandum is to record a Bechtel position on a point introduced in the subject response by CPCo.

During the finalization of the subject response on $11 / 12 / 79$, and as a result of the CPCo in-house review by Messrs. Howell, Keely and Marjugl io on ilovember 10, Mr. Marguglio directed that the following typical revision be added to the response to Part 1, in sub-sections 3.6, 3.7, 3.8, 3.9, and 3.10, following any reference to US Testing test results. The revision was: "--- test results, or satisfactory evaluation of the test results."

The purpose of this addition, according to Mr. Marguglio, was that CPCo did not wish to support a pre-empted version of the situation involving test results. His logic was that as written, without the revision, only the test results were incorrect. CPCo's position was that the lack of correct evaluation of the test results could also have lead to the situation which placed reliance on the test results.

I consulted with Phil Becnel and Jim Wanzeck of Geo-Tech concerning this -matter. We concluded that the statement implies that Bechtel was responsible for evaluating the test results supplied to us by US Testing. Jim Wanzeck's view of "evaluation" of test results impl ies that one would review the calculations and data used in arriving at the test results to assess the technical accuracy of the report. Certainly this was not intended by Bechtel, nor, was it expected of the inspectors and field enginears who used these test results from US Testing. They simply looked at the values that were called out on the report for conformance to specifications.

I explained the foregoing to Mr. Marguglio, who did not agree with this interpretation and insisted that the report reflect his revision. I informed him that Bechtel's position was otherwise and, however, the report would be issued as he had directed. I also pointed out to him that Bechtel has committed in sub-section 3.10 to requesting US Testing to demonstrate to the cognizant engineering representative that test procedures equipinent and personnel used
J. A. Rutgers

Page 2 of 2
for quality verification testing for other than NDE and soils were and are capable for providing accurate test results. I pointed out that this was, in effect, the proper interpretation of evaluation. In view of this information, however, he maintained his position as previosuly stated.

As you recall, I informed you of this difference in interpretation of the revision, and, as requested, I am documenting this for any further action you may consider appropriate.

JM/le
JM-79-113

DATE: July 27, 1979; 9:00 a.m. to $1: 30$ p.m.
PLACE: Ann Arbor, Michigan, Conference Room 8(B) 3A
SUBJECT: Review Proposed Monitoring System with Dewatering Consultant
ATTENDEES:

B. Dhar*
S. Lo
C. McConnel
S. L. Blue*
K. Bailey
D. Wheeler*
W. C. Paris, Jr.
*Part-time
ITEMS DISCUSSED:

1. It was decided to monitor the fines at the subcontractor's return Ine where it discharges into the eductor tank, and monitor the ground water flow with a water meter at the subcontractor's discharge line.
2. The water testing will be conducted using a l-1iter Buchner Funnel.
3. The individual dewatering welle will be tested monthly for information only. The results will be given to the on-site Field Geotechnical Engineer.
4. Any material removed from the subcontractor's eductor tank will be collected, and sieved over a No. 200 mesh screen. The sieved portion will be examined by the on-site Field Geotechnical Engineer.
5. All dewatering wells within the Turbine Building will be installed with stainless steel well screen so that they may be converted to part of the permanent dewatering system at a later date if necessary.
6. Specific dewatering wells located outside the Turbine Building may bc installed with a 6 -inch well screen upon approval by the on-site Field Geotechnical Engineer.

WCP/nm

U. S. Testing Company 1415 Park Avenue Hoboken, New Jersey 07030

Attention: Dave Edley

Post Office Box 2167
Midland. Michigan 48640
April 25, 1979

MAY 021979

KARL WIEOMER

Dear Mr. Edley:
Attached for your information and files please find one copy of meeting notes for the jobsite meeting held on Monday, April 9, 1979, at Hoboken, New Jersey.

JFN/LFS/DLP/km

Attachments

MEETING NOTES

U. S. TESTING, CONSUMERS POWER COMPANY AND

BECHTEL POWER CORPORATION

DATE:	April 9, 1979	
PLACE:	U. S. Testing Headquarters, Hoboken, NJ	
SUBJECT:	See Below*	
ATTENDEES:	E. Basile	
	E. Zadena	U. S. Testing Company
	E. Edley	U. S. Testing Company
	M. Anzelmo	U. S. Testing Company
	J. Speltz	U. S. Testing Company
	B. Marguglio	Consumers Power Company
	D. Worn	Consumers Power Company
	R. Wheeler	Consumers Power Company
	D. Palmer	Bechtel Power Corporation
	G. Richardson	Bechtel Power Corporation

1)* Ben Marguglio opened the meeting by establishing the following agenda:

1) Describe the problems relating to the Midland soils problem.
2) What U. S. Testing thinks may be the problem: where did U. S. Testing contribute to the problem?
3) What did U. S. Testing say to the NRC during the NRC investigation.
II) Ben Marguglio presented the following to describe the types of problems:
4) Inconsistencies in the SAR
5) SAR Requirenents not translated accurately/clearly into the specifications.
6) Requirements for testing were not totally stated. Callout for proctor not total story.
7) Interpretations were voried and not released through normal specification channels.
8) Client suspects there was not a total understanding of the process by any one individual. Lack of expertise.
9) There may have been incorrect proctor selection.
10) There may not have been timely corrective action in identifying the extent of the problem and identification of the problem as opposed to fix.
11) Accountability for inspection may have been lacking.

Who inspected
What inspected
How inspected, etc.
9) U. S. Testing may have utilized to a sampling process without sufficient historical background on the process.
10) U. S. Testing may have failed to qualify the test or the inspection process.

Ben added that all of the above contributed or could have contributed to the problem.

1II) The main discussions during the meeting centered around the above. The following is a brief description of the important points of this discussion.

1) Ben discussed the conflicting test methods in specification $C-210$ and asked what U. S. Testing did to assure themselves that they had a clear Specification to work to.
U. S. Testing responded that their direction to use Bechtel modified proctor came from Bechtel as did direction of when to take moistures. There was nothing in writing - direction was verbal.
U. S. Testing added that it was not their responsibility to determine when or where to take a test.
U. S. Testing clearly stated that U. S. Testing responsibility was for performing the testing and not to inspect as to where and when testing is to be performed - this is a Bechtel responsibility.

Question by Don Horn concerning moisture, compaction, and fitting of sample to the proper proctor was directed to U. S. Testing. Inherent error and judgement could be highly contributary factors in giving the wrong result.
U. S. Testing stated that variables exist within a soils testing program that can cause erroneous data. U. S. Testing suggested that the testing agency be given more autonomy in making decisions. It was suggested that possibly the testing agency would serve best if it were responsfbile directly to the client.

Ben stated that on Consumers Power Company jobs (future) he expects U. S. Testing to assure that specification interpretations/changes are obtained officially - and added that U. S. Testing Q A should not allow this to happen.
U. S. Testing responded that their Contract does not provide for this type of QA involvement.
2) Ben asked what type of mechanism U. S. Testing used to determine when a new proctor was required.
U. S. Testing responded that this was (is) normally triggered by the lab technician during selection of the proctor in response to a field test.
U. S. Testing added that there are no procedures to cover this operation; that it is a judgement operation that would be difficult to procedurize.

Ben summarized the problem of direction during testing as being unsatisfactory and a more stringent direction process between Contractor and Subcontractor would be required, particularly that any change in test or specification changes must be received in writing prior to implementation.
3) Ben asked who notified U. S. Testing when a new proctor was needed. U. S. Testing responded this was an ongoing item and proctors were taken as a regular thing and were taken at material changes and new borrows - again there were no procedures.
U. S. Testing stated that they could not remember ever being requested by Bechtel to take a sample specifically to develop a proctor.
U. S. Testing added it was not their responsibility to maintain the test frequency and that they were not privileged to quantity information. Question of frequency revealed that:

1) 10,000 yard frequency test was not accurately followed as related to exact yardage being moved but was an ongoing check basis based on frequency roughly correleted with yardage - this was done because exact yardage movement was not immediately available to prompt the precise frequency implied by the specification.
U. S. Testing added they felt that they did more than their Contract
regired in: required in: required.

Selection of the appropriate proctor to compare to the field density. Over involvement with Canonie.
4) Ben asked how U. S. Testing identified the proper curve to use when
the curve may be six months old.
U. S. Testing responded, they kept approximately 15 samples to be used.

Subcontract 7220-C-208
Meeting Notes of
Apri1 9, 1979
Page Four

Ben inquired what the field procedure was in determining when a new proctor is needed. U. S. Testing responded that:

1) Judgement factor by experienced field personnel determines a large portion of the decision.
2) If characteristics changed, or a new borrow was started then an additional proctor would be made.

Ben added following statement:
For Consumers Power Company projects U. S. Testing should take the attitude that, in the absence of a controlled single source or specific designation for a change in soils, the most conservative approach should be taken.
5) General discussion on testing calculations:
A) Some conflicts noted in D. Horn's audits - U. S. Testing should consider.
B) All test reports submitted to Bechtel Q. C. for review - does not include actual calculations.
C) There normally was not a plot of field test results on the proctor curves - no comparisons to zero air-voids curve.
D) If test plots on wrong side of zero air-voids curve there is an error (per D. Edley).
E) Errors are inherent in test methods being applied:

Troxler has $\pm 3 \%$ error.
Results are conservative.
6) Ben asked what U. S. Testing thought might be the problem - U. S. Testing had no input.
7) Ben asked if U. S. Testing had recommendations for future work - U. S. responded:
A) Take a look at the role you want the test lab to perform.
B) U. S. Testing added that it was Bechtel's responsibility to determine when a new proctor is needed.
C) Review area of what is acceptable material.

Ben requested that U. S. Testing provide Consumers Power with testimonial information that was provided to the NRC during the interviews covering the soils investigation at Midland.

Subcontract 7220-C-208
Meeting Notes of
Apri1 9, 1979
Page Five
U. S. Testing inquired whether Bechtel would object to this release. Bechtel Subcontracts representative stated that there would be no objection.

The dialogue of these interviews is attached.
Prepared by:

i. EETMG Notes No

Midland Paauts Cunits 1 and 2.
Consurices Pawer Compriay
Date Lucembere, 1970
place Alburquerque, New Moxicio
subjat. Fouidation Eivestigatiai for Diesel Generober Burilling and Oither itructures.

Atterdees:

Bralite)
W. Ferris
5. Ififi
G. Tuveson

Consaltant
P.B. Peck

Purpace
Te obtain recommindations from the consullant on varrous probkinis related to surchiarge loading the biesi I Ginerater Building aird fourdation requireacints for other structures built or to be built on plu,nt areu fill Dr. Pack does have a copy of all the sail torrings and avoilable test data.
Drael oercoruler Builling
1.) Surcharge loading ulorg side Turbine Building wall. a. "1.e surchiarge. formulas sach as thuse shivion in the more recerib toundolion books suihias Bowles or Sprenyler's iext book. Also use at lest cuse $\left(\hat{t}_{0} \approx 0.9\right)$ for Hice carth pressure whines eslculatimi. tio tie rod ferces.

- O.) Were there 6 . problems in voils at th time?

I belleve that Bechtel Q.A. and Consumesi Power Company Q.A. were active in soll: duriur this time period (fall of 1978), but I have no specific resollection.
Q.) Is the BMP and type of moterials specified for the Diesel Generator fill normal for construction?
A.) I had no interface with Project Erigincering and Design.

Showed QCIR SC-1.05 (a Bechtel Q.C. report form).
Q.) Are you aware of Q.C. field activities and responsibilities in solls?
A.) I am aware that they have a program and functions to fulfill, but not of their specific requirements.
Q.) Do you think that Canonie was aware of the specification for compaction and what it was being tested for?
A.) I have no specific knowledge, but assume that they were aware of their job reauirements.
Q.) Was Bechtel woricing soils in addition to Canonie during this
A.) Yes.
Q. When did Canonie auit working?
A.) In 1977, there was a big push to be off site for deer hunting season which began November 15 th.
Q. \{ Why are you working to $D-1557$ now?
A.) Q.C. direction with a memo from Cheek to Siple of $9 / 29 / 78$ (copy attached).
Q. ${ }^{\text {. }}$ What is random fill?
A.) It could be any of several types of material.
Q.) Why would they call random fill just clay?

Cheek to Siple memo was shown. The statement "Random Fill (clay)" was pointed out.
Q.) If it could be other materials, why would he (Cheek) define it as clay?
Q. Did he know the difference?
A.) My interpretation of this memo was that it was addressing testing and that he was distinguishing test procedures for granuiar vs. cohesive solls.
Q.) Do you have anything you wish to add to this discussion?
A.) No.

Reni * Thotupso:1 \& Roger Sin th
NRC Interview: of 1-22-79 $1-23-79$
same dug - valeaki, ex estanculed?!
Q.) Was it difficult to determine what proctor value to use by comparison to the jar samples?
A.) No
C.) Who eve you the locations and elevations for the tests?
A.) Generally the labor foremen or sometimes the laborers.
Q. Who selected the site for the test?
A.) Tine laborers would prepare the site of the test where the foreman selected most of the elma. In some instances we would select the exact site in the general area for which the test was requested.
c.) How often were either Q.C., or Engineering present at the time of the test?
A.) Very seldom.
Q.) Did f.c. do surveillance on your test activities in the field on a regular basic?
A.) No, not that we were aware of.
Q.) How often did they observe you doing the tests
A.) Very seldom.
Q.) Do you kne: what their recuirements are for surveillance of sol ls:
A.) No. I have net had access to that information.
Q.) Were they short of people to do this work?
A.) I cannot answer that question.
Q. Did they have qualified people for this work?
A.) I cannot answer that question.
Q. $\{$ Who was in charge of soils for Q.C.?
A.) Primarily, Daryl Osborn.
Q. Did he have other responsibilities besides soil work?
A.) Yes. To the best of my knowledge, he had other areas of responsibility.
Q.) Were there grade stakes available for elevations?
A.) Very seldom.
Q. How were elavatinn3 determined?
A.) Ninstly from nearby buildings where elevations were written on the wills.
Q.) Viere locutions ertalillshed $k y$ the use accurate measuring devicez?
A.) dic, whey were usually by :alalkg off from a wall or Just eyetall:ig the dintanze.
Q.) Were 11 ft titacl:nczsez meazured?
A.) Not in my presente.
Q.) Kore the area3 free of debrts prior to the placement of fill materlal?
A.) I cannot answer that quastion.
6.) D1d $\approx . C$. maice sure that ereas were free of debris before place:.ent?
A.) I cannot ansifer that question.
Q.) How were retests done? Did they (Eechtel) supply you with a semple?
A.) Reiests were taken by a technician as close to the original test as possible at the requas'; of Bechtel when they felt the area was ready for a retcst. ivo, bechtal did not supply us with a sample.
Q. Was special attention given to test areas?
A. Les, although not a coranon occurance, I did fael that special attention das Given to test areas on certain occazions.
Q.) Can you recall such oecasions?
A.) Yes.
Q.) Would jou dincribe suci instances?
A.) Roger spoke of a test on the $30^{\prime \prime}$ SWI discharge ilne. Bernie mentioned a test in the same area.
Q.) Did the forealan asking for the tests know the requirements for the frequency of tests?
h.) I cannot answer that question.
Q. Were 11 ft thicknesses reasonable or were they excessive?
A.) Generally yes, however there were occasions that they were not.
Q. How was the molsture controlled prior to placement?
A.) Prior to August of 1977, there was no control of molsture prior to placement. After that dats until the spring of 1978 , one molsture was taken in the morning from the stockpile.
Q. Ilow was tho moisture reportech?
A.) The molsture was given, to Q.C. and Engineering.
Q. $\left\{\begin{array}{l}\text { Was the ministure associsted with a proctor value? }\end{array}\right.$
A.) No, 1t vis not at this time.

NRC DIESEL GiE. .ANTCH BUILETHG SOIL: INV IIGATION at the Vildland, Michigan, Project Site

Interviewers: Genc: Gillapher, I!RC Solls Specialist G. A. Ihlllip, liiC Investication Speciallst

Interviewee: John Spelti, U.S. Testing Site Project Supervisor
The followine notes were eenerated from notes taken by John Speltz durine an interview in the Consumers Power Company conference room on $12 / 14 / 78$.
Q.) Did you $3 C=$ a conflict in $C-210$ (earthwork specification) between GMP (Pechtel Kodiried Proctors) and ASTM D-1557?
A.) Yes, there was on area of concern in section 13.
Q.) What eriteria were you working to?
A.) The EMP, as indicated on our reports.
Q. What is your period of activity on site?
A.) Since December, 1976.

A letter to Clurch (Subcontracts) from Valenzaro (Engineering) of $6 / 10 / 74$ was shown. Section 13.7 of $C-210$ was pointed to in the letter.
Q.) What does modified Proctor mean to you?
A.) ASTM D-1557 medifying AS'TM D-698.
Q.) Do modified Proctor, EMP, and D-1557 mean the same?
A.) No.
Q. Does EMP and modified Proctor mean the same?
A. No.

Showed telecon Hook (Bechtel Q.A. onsite) to Rao (Ann Arbor, Project Engineerinr), October, 1977, and telecon Teague (Lead Civil Field Engineer) to Rac, October 10, 1977 (copy attached), noting that e1ther D-1557 or BiiP can be used.
Q. What was your source of direction on this?
A.) Verb lly, as mentioned in a note on top of the original of the telecon.
Q.) Do you feel Hook or Teague were responding to you (John Speltz)?
A.) No, not to me directly.
Q. Who would respond to you with this information?
A.) Bechtel Q.C.
Q.) Why is the response so-late? \rightarrow of: oct 10,77 dete
A.) I have no information on that.
Q. Were there other arens where soll work was going on?
A.) What worl: are you referring to?
6. It was indicated that o' i2"diameler culvert pipe would bo used to protect the tic rods with the rods placed along the invert of the pipe
c. Large concrete blocks, properly designed, could be used as a gravity wall to retain the earth along the turbine building
2.) It is nat necessary to break up the mud nat in the diesel generator trilling before the surcharge load is applied
3) The current design is based on an ups, er limit at 20 feel of surcharge above grave. Increments of prelood may be lo feet over the whole aria, monitor settlement for one week, then add =more feet of fill, monitor for another week and finally add s feel of additional fill.
4) Rebound measurements of the Boris points are to be taken frequently. Temperature corrections are not necessary. but the ambient air tempera tare should bo recorded.
\Rightarrow Rebound mecasurenients shourir be helpful in pres. dieting the soil matulus values for seismic anali/5is
6) Obtain several sets of readings of the messuremint Jevicos tefere prciouling above grate with?
with the surclurge
7) Boring capacity should not be a problem. We should celernnine the angle of internal friction for the soil, based on prelouding conditions Use soil io support the ground floor slab inside the building. Invest quit burring capacity using formulas which, insult overburden wild the angle of internal friction os wall as the cohesion.
8) Or Musk does not consider it necessury to conduct a suits boring program after removing the surcharge we niuy consicter hind digigiry a shallow test pit to evaluate birring eapaiity by the use of pocket penetromeler and loud tostirif
9) Alternate Solutions:
a) In the cent trisere is a bearing copacity problem after preloudiny, a mil foundaciois could resolve the question. It may be desire. cable to hove a mat ctisign available.
b) Oblain o three ctimensinal motel where the sand under the poundatisi is located. Tie the boring and the cionstrusitin record. Determine the groutabiling of this sand.
10) Tho letter is P. Martinez, dated 12-7-78 wis next discussed. Ciondensale water line concrete encase mont maul be inf conduit witt) the building
sump on the south side of the' building. A hard spot may be formed which could cause the building to hang up. It would aspocer desireable, where the duct tank comes in contact witt the sump, to cut the duct bank loose. This should be in vestigated in more delaif or be monitored during installation of the surcharge.
11) Building cracks should be mapper before and after preioading.
12) Rationale

The final loot will be smaller than the surcharge ias. It should be possible to obtain an upper limit of future settlement which should not exceed the rebound from ore loading

- Other Areas of the site

1) Tran-, forme foundations south of Turbine Buibtirig The settlement clata and the sal borin.js were reviewed. If differential settlements develop, it will be because of the properties of time shallow soils, therefore a low surcharge would help. Dr. Peck recommended that the transformer pads te surcharged io their design load and in addition 5 feet of sorlbe vised to surcharge the remininter of the fronsformer foundaícii bit. Prior to surcharge SB16952'y la ting cinick with the maniafocturer on the
amour. of differential movecrient the buss can accomodate and the tilting the rronsformar can withstand
2) Tank Farm, North of Auxiliary Building The two boraled water storage cants are ''lass), and the other two torts located in the center of the tank form are not Class/. The ring foundations installed and setElement are nominal. Tanks con be used for preloading the soil. Monitor the settlement of the tanks and check the piping. The piping may need to be adjusted after testing. The water may be required to be left in the tanks for an clterded period (several weeks) until a settlement curve is establishat. The ground abler should also be inonitored during this period.
3) Guard House

The sol borings indicated that the material under the foundation should be removed or a pile foundation be used. Drive H-piles is feet into the till
4) Bullock Creek Pipe Bridge
5) Radurisce Building

Settlements are only nominalat this time, continue to monitor. At present, noactron is required.
6) Retaining walls

The borings do not indicate any additional problems are to be expected. Therefore monitor settlement in normal manner.
7) Clorination Building

The superstructure is very light, and the boring do not indicate that any additional action needs to be token
8) Condensate Storaye Touts

The borings do indicate that there is a problem. The fill is sectlingunder it's own weight. Consider prelooding the tank area. Decide on February 15, 1979, after reviewing Diesel Generator data, if preloading must be done. Preloading, if required, should extend to a distance of 20 feet from the tanks
\qquad
\qquad
\qquad

Bechtel Associates Professionadequtporation

Inter-office Memorandum

Attached you will find C. H. Gould's summary of his presentation at the July 18, 1979 meeting. This has been re-written and the summary presented on the above reference is superseded. I understand this was requested by Mr. Keeley of CFC and should be transmitted as soon as possible.

JOW/nm Attachments

Remedial Measures For Electrical Penetration Areas and Isolation

This is a brief report on the proposed penetration areas of the auxiliary bu pits. The objective of the remedial of a questionable measure as evidence the remedial measure has the objective capacity with structural elements whit foundations to underlying undisturbed to existing structures and construct this it is planned to utilize the st to bridge over sane of the question caissons at the extremities of the shall have sufficient capacity to and live loads of the electrical being supported by the control to the isolation valve pits is to temp mine them by removing all materials
till is encountered and filling
The plan of attack for performing \qquad

1. Locally dewater the soil above It is essential that the 10 excavation under the structure

Sub/ner dewatering system shall be of any excavation. The dewate. majority of the eductors w turbine building. The dischai
2. Temporarily support the spanning between the but resp wall at the ground surface
3. Excavate an access shaft: of approximately 7 feet would then proceed late extreme edge of the elect rall:

Attached
the July
presented
requested
possible.
Jow/na
Attachments

\qquadrich
\qquad ionbileSuper
elect
\qquad
benet:1
\qquad
영

$$
0 .
$$

Bechtel Associates Professionaderetporation

Inter-office Memorandum

To
R. L. Castleberry
Subject
Midland Units 1 and 2
Job 7220-001
NRC Meeting July 18, 1979
Copies to S. L. Blue w/o
H. H. Burke/W. R. Ferris w/a
J. O. Wanzeck w/a
P. A. Martinez w/a
K. Wiedner w/a
1320, 3130
Date 3 August 1979
KARI MIEDMES
From S. S. Afifi
Of
Geotechnical Services
At Ann Arbor 10 D 5 7220-79-145
REFERENCE: IOM S. S. Afifi to R. L. Castleberry, dated July 25, 1979

Attached you will find C. H. Gould's summary of his presentation at the July 18, 1979 meeting. This has been rewritten and the summary presented on the above reference is supereaded. I understand this was requested by Mr. Keeley of CPCo and should be transmitted as soon as possible.

Yow anjut for $/ \mathrm{SSA}$
JOW/nm
Attachments

Remedial Measures For
Electrical Penetration Areas
and Isolation Valve Pits

This is a brief report on the proposed remedial measures for the electrical penetration areas of the auxiliary building and the adjacent isolation valve pits. The objective of the remedial measures is to replace bearing capacity of a questionable measure as evidenced by soil sampling data. The design of the remedial measure has the objective of replacing the suspect soil bearing capacity with structural elements which extend from the existing concrete foundations to underlying undisturbed glacial till while minimizing disturbances to existing structures and construction operations. In order to accamplish this it is planned to utilize the structural capacity of the penetration area to bridge over same of the questionable underlying materials by providing caissons at the extremities of the electrical penetration areas. These caissons shall have sufficient capacity to support approximately one-half of the dead and live loads of the electrical penetration areas with the remaining one-half being supported by the control tower area. The proposed method for supporting the isolation valve pits is to temporarily support them in place, totally undermine them by removing all materials to a depth at which.undisturbed glacial till is encountered and filling the excavation with lean concrete.

The plan of attack for performing the work is as follows:

1. Iocally dewater the soil above the glacial till in the affected areas. It is essential that the loose gramular soils be dewatered to permit excavation under the structures without significant loss of ground. The dewatering system shall be installed and the water drawn down in advance of any excavation. The dewatering system is a curtain cut-off type. A majority of the eductors will be installed from the lower basement of the turbine building. The discharge will be monitored for piped fines.
2. Temporarily support the isolation valve pit by the use of needle beams spanning between the buttress access shaft and turbine building foundation wall at the ground surface.
3. Excavate an access shaft adjacent to the isolation valve pits to a depth of approximately 7 feet below the bottam of these pits. The excavation would then proceed laterally as a drift until the excavation reaches the extreme edge of the electrical penetration area.
4. Install jacked caissons at this location utilizing the electrical penetration area foundation as the reaction. The jacked caisson method has been selected for the following reasons:
a. It will be possible to jack through loose sands and soft clays without excavating material fram within the caisson thus preventing loss of ground from under the electrical penetration area, turbine building and buttress access shaft.
b. It is known that there are sizable concrete obstructions in the backfill area which will be encountered by the caissons. A caisson provides man-size working room for demolition of the concrete obstructions.
c. Likewise, the man-size working room of the caisson will permit direct excavation of highly compacted sands and/or clay as well as the glacial till (caissons penetrate the glacial till a minimum of 5 feet).
d. The caisson provides access for direct visual inspection of the glacial till for the initial detemination of bearing capacity (final bearing capacity is by load test).
5. Concrete the caisson and load test same.
a. Load test one caisson under each electrical penetration area at 2.0 times design capacity.
b. Ioad test each caisson individually at 1.5 times design capacity.
c. Ioad test all caissons as a group at 1.0 times design capacity or $1 / 4^{\text {n }}$ of vertical structure movement, whichever occurs first.
d. Upon completion of any tests the caissons are to be left in a prestressed state to prevent any settlement.
6. Install support of excavation system along the turbine building foundation wall and connect it to the access shaft and the jacked caissons. The jacked caissons which were previously installed under the electrical penetration area will temporarily act as support of excavation for the excavation under the isolation valve pit. The contairment structure and the buttress access shaft form the remainder of the excavation enclosure under the isolation valve pit.

The support of excavation system along the turbine wall foundation will also act to:
a. Support the temporary additional load inposed on the foundation wall by the needle beams which support the isolation valve pit at the surface.
b. Support the turbine building vertical loads within the zone of influence of the excavation under the isolation valve pit.
7. Excavate all material from underneath the isolation valve pits to a depth at which undisturbed glacial till is encountered.
8. Fill the excavation under the isolation valve pit with lean concrete backfill to within 7 feet of the existing foundation.
9. Place structural concrete in the drift under the isolation valve pit and the access area used for installation of caissons underneath the electrical penetration area.
10. Dry pack and transfer isolation valve pit load to the lean concrete backfill.

The design of the caisson is based upan a very conservative caisson tip pressure of 25 kips per square foot (KSF) for straight sided caissons. This provides a tip load intensity of approximateiy one-tenth that nomally associated with jacked piling, and will bring the long tern settlenent into line with expected settlements of the balance of the auxillary building. The bearing strata pressure is limited to 20 KSF for straight sided caisson. If the botton of the jacked caissons are belled in the glacial fill, the design tip pressure is recuced to 17.7 KSF . The bearing strata pressure associated with belled caissons is not relevant. The steel shells for the jacked caissons are neglected in calculating the structural capacity of the caisson.

The bearing pressure on the glacial till below the isolation valve pit is only nominally increased by the substitution of concrete for earthen fill.

