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ABSTRACT

This report is the result of a preliminary feasibility study of the applicability of
Stein and related parametric empirical Bayes (PEB) estimators to the Nuclear Plant
Reliability Data System (NPRDS). A new estimator is derived for the means of several
independent Poisson distributions with different sampling times. This estimator is
applied to data from NPRDS in an attempt to improve failure rate estimation.
Theoretical and Monte Carlo results indicate that the new PEB estimator can per-
form significantly better than the standard maximum likelihood estimator if the
estimation of the individual means can be combined through the loss function or
through a parametric class of prior distributions.
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SUMMARY

This report is the tesult of a preliminary feasibil- 1. Definition of the unequal variance function
ity study of the applicability of Stein and related Poisson problem
estimators to the Nuclear Plant Reliability Data
System (NPRDS). The work has been done for the 2. Derivation of a PEB estimator for the
United States Nuclear Regulatory Commission on unequal variance function Poisson problem
project contract K-7720 between EG&G Idaho, Inc.
and the University of Texas at Austin. The four 3. Application of the PEB estimator to
objectives of the project were: NPRDS globe valve data

1. Evaluate the effect of using different 4. Comparison of the maximum likelihood
distributions in Stein estimation estimator (MLE) and the PEB estimator

using Monte Carlo
r 2. Evaluate the improvements of Stein estima-

tion over other techniques S. Application of normal theory PEB
} confidence intervals by making normal
y 3. Develop confidence bounds for Stein approximations to the Poisson sampling

estimators distributions.

4. Use Monte Carlo simulation to compare Theoretical and Monte Carlo results indicate that
estimators of component failure rates. the new PEB estimator can perform significantly

better than the standard MLE if the estimation of
Actually, Stein's estimator is not appropriate for the individual failure rates can be combined through

the estimation of nuclear component failure rates the loss function or through a parametric class of
since the nuclear data are not normally distributed prior distributions. More work needs to be done
with equal sampling variances. However, using which allows shrinkage toward log-linear models
parametric empirical Bayes (PEB) theory, gener- and which makes more accurate calculation of PEB
alizations of Stein's estimator can be derived for confidence intervals for Poisson problems. In short,
other situations, including estimators needed for preliminary results are very promising, but further
nuclear reliability. The highlights of the project work must be done before PEB can be regularly
include: applied in NPRDS failure rate estimation.
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THE APPLICATION OF STEIN AND RELATED
PARAMETRIC EMPIRICAL BAYES ESTIMATORS TO
THE NUCLEAR PLANT RELIABILITY DATA SYSTEM

1. INTRODUCTION

This report is the result of a preliminary feasibii. PRAs, but the distributions used have often been
ity study of the applicability of Stein and related either subjective, based wholly on expert opinion,
estimators to the Nuclear Plant Reliability Data or partly subjective, based on a subjectively chosen
System (NPRDS). The work has been done on prior plus some data. The PEB distribution is more
project contract K-7720 between EG&G Idaho and directly based on real data. A minor refinement
the University of Texas, Austin. The four objectives would be to widen the PEB distribution somewhat,
of the project are: to account for the uncertainty in estimating the

1. Evaluate the effect of using different prior distribution. This might be important when

distributions in Stein estimation the data set is small. The amount of widening could
be determined by matching (say) the 95?o point of

2. Evaluate the improvements of Stein estima- the distribution to the upper end of the 90To interval

tion over other techniques g en in tion 3. Use oW M dstrhtion kr
i propagating uncertainties is mentioned here, but

3. Develop confidence bounds for Stein will n t be considered in the rest of this report.
* * " * ' ' '

A second use of the PEB distribution is simply
t estimate the component's failure rate, by both4 Use N1onte Carlo simulation to compare

estimators of component failure rates. a point estimator and an interval estimator. These
estimators are developed in this repert. The point

51any of our results on these four objectives appear estimators are then compared to the usual maxi-
in the theses of Joe R. Hill (1982) and mum likelihood estimators (NILEs), using data sets
A. Sharif Heger (1983), as well as in Hill, that simulate NPRDS data. The PEB point esti-
Homayoun, and Koen (1982). mates are often close to the h1LEs, but their overall

statistical properties are generally somewhat better
in the reliability context, the basic idea is to

than those of the N1LE. This favorable conclusion
estimate the failure rate of one kind of component, provides indirect support for using the PEB method
by using data not only from that one kind of com- for other purposes, such as the above-mentioned
ponent but also from other moderately similar propagation of uncertainties in a PRA.
components. The data from the different com-
ponents are combined in two steps: The failure rate We now give, in detail, the background and
is thought of as varying among the possible kinds definitions needed to understand the results of this
of components, and all the data are used to estimate report. Stein's work (1955,1961) dealt only with
a distribution for the failure rate. Then, this normal random variables having a common var-
distribution is used as a Bayesian prior distribution, iance. Parametric empirical Bayes methods have
and is combined with the data from the kind of been used to generalize Stein's rule in three direc-
component of interest, to produce a posterior tions. Efron-hforris (1973, 1975) and Morris
distribution for the failure rate of the one kind of (1983b) use PEB methods to derive estimators for
component. This posterior distribution may be r.ormal unequal variance problems. Morris (1983c)
called the parametric empirical Bayes (PEB) derives PEB rules for nonnormal but equal variance
distribution for the kind of component. function problems. Niorris (1983a,b) suggests PEB

confidence intervals for normal equal and unequal
One use of the PEB distribution is for the prop- variance problems. We review these generalizations

agation of uncertainties in a probabilistic risk to help motisate the PER estimators we derive for
assessment (PRA). The technique is standard in nuclear data.

I
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The Efron-Morris PEB derivation of normal Vj, to the marginal variance, V; + A. Small V; give
unequal variance rules begins by assuming small Bj, which causes p[ to be close to X . Largei

V make Bj close to I, which forces p[ close to m;.i
. Also, a large prior variance causes all the B; to be

X |p; inde N(p;, V;), i =1,...,k . (1) near zero, so more weight is given to X . On the
other hand, a small A forces all the Bj to be near

This might result, for example, from a one-way I and all the p[ to be near m . In other words, p[
analysis of variance (ANOVA) with ni observations weights m; and X according to the relative precision
for treatment i; i.e., if of each.

ind 2 . PEB estimators for the p; are constructed by
Iij E e N(p;, o ), J = 1,...,n;, using Distribution (4) to obtain estimates (m;, B )i i

and then substituting for (mj,0;)in Equation (6).
i = 1,... k (2) The following iterative procedure (Morris,1983b)

defines one way to estimate m = (m;,...,mk)' and

then the MLE for mj, A. Given X, calculate

n; 1. the empirical Bayes weights

= 1/(V; + A) (8)i* ij' w
;j=1

has Distribution (1) with of M

2Vj = o /n;. To motivate the PEB estimates, the pi 61 = Z(Z'WZ)-I Z'WX (9) fare assumed to have prior distributions
where the weight matrix W =

pi|m , A N N(m , A), i = 1,...,k . (3) diag (w;), Z is a known (k x r)
i i design matrix, and X =

(X;,...,X )'k
The marginal distributions of the X; are inde-

pendent with 3. the weighted average of squared
res duals

X;lm;, A N N(m;, V; + A), i = 1,...,k . (4)

Furthermore, the p have posterior distributions 8 " b*i i ~ bb i *i @)

p;j X, m;, A N N[p;*, (1 - B )V;] (5)
4. the weighted average of

I sampling variances

where

V ={w;V;/{w; (11)

p;* = (1 - B;)X; + B;m; (6)

5. the unbiased estimate of A
and

g ,b k rb' 'NB; = V;/(V; + A) . (7)

[*i. The posterior mean, p;e,is a compromise between
the prior mean, m , and the observed MLE, X;. The
amount of compromise, or shrinking factor, Bj, is k 3,9*,

determined by the ratio of the sampling variance, k-r

2
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Repeat steps I through 5 until A conwrps. If Ihn the' risk, i.e., Ihe expected loss, for Stein's rule
- < 0, replace it by A = 0. !%ow det'tUth PEB -p is
shrinking factors,'

s

R(g.j) = k - (k - r - 2)E O . (18)N
M. ?-

g, ,k-r-2 ~~fu N..
i k-r yg If k > r + 2, this is less than the risk of the MLE,*

i - $ *(X) e X, since1

and the PEB estimator R(p.d*) = k .' (19)
-

-- <-
, ,

p; = (1 -II;)X; + O ni . (!4) N Stein's (1955) well-known theorem on the inad-~ ~gg
missibEty of the'MLE when k > r + 2 follows'

This formdatihn includes several special ca'es. fr m Equations (18) and (19).

When the samphng variances are equal, .e.,
V = Nirhh n for the ANOVA problem, then When the sampling variances are not equal, i.e.,

.

the problem is called an " equal variance" problem. V; # V or nj # n, this problem is called an'

There are 'hree types of equal variance problems unequan rianceV problem. Parallelmg the equalt
varrance case, differ, g knowledge of the priorcorresponding'to dlfferingknowledge of tN prior m

mea'n. If the prior mean it is known, then it does megn result.yn three types of unequal vanance

not med to be estimatedIso r = 0,[n = m, and P' N#"" Y'

MS (k - 2)V The sii normal cases are given in Table 1. In all
2. - 11 \(15) cases, o and'the n (hence the Vj) are assumed=-

3

(X; - m ; ) ~ %' known and A is unknown. Cases A, B, and C are

) Y the " equal variance" problems. Cases D, E, and,

is the, fames-Stein (1%I) shrinking factor. We are F are the unequal variance problems.'

?not forcing A a 0 here. If mis unknown, but thw s
m ayyqual, m; = m, then r =4J6ij s X, art 4 q m There are three differences between the equal and

'

s unequal variance rules. The main difference is thess

^SL ^ " (k - 3)V X s use I weighted averages, with weights proportional,

,916) to the inverse of the marginal variances, for the
, '

11l =
s s

{ gy ,, y) 2 unequal variinnce estimatbrs in place of the usual%-
%

n ( N averages used for the equal veriance rules.,

b '' Secondly, since the weight 3 epend on the unknownd-

whicI is Lindley's (1%2) ir$dification of Stein's- parameter A, the unequal variance rules are derived
rule. Finally, ifmis unknowii and mi # ni, but the s.

\m fit some regression pattern, m = ZC, where Z
is a known (k x r) desir!i matrix and] is ait ' Tab's 1. Six cases In'the estimation of k
unknown (r x I) vect'or'of regression coefficients, normal means
then can be estimated using ordinary least squares,
i.e., = (Z'Z)-I Z'X,,to give fa = Z } as in
Equation (9). <

-

A. V = V (n; - n), m; kng en (r = 0)i
N.

V - V (n; = n), m; = m unaown (r = 1)T hese equal variapefrules dominate the M LE in Il- i
'

Hhe following dechion theoretic sense. If the loss
C. Vg = V (ni = n), m '# m imknown (r > |}for estimating Y= (pg....,Hk)' DY d(h) "

,

(d (X).....d (h))' I5 IIVCR DYl k D. V # V (n; # n), m kaowp (r = 0)
,

i
' k E. Ng # V (n; # n), m = m unknown (r = I)[ - d[,3)]

Llp d(X)] = -

V F.
(17),- ,-

V # V (n; # c). m; ? m unknown (r > 1)--

i
i=I M _.J,

g ?
,, g. s

\ L

,

s
'

_% 3
,

.



through iteration in contrast to direct computation so

for the equal variance estimators. Finally, unequal
variances cause unequal shrinking factors unlike the E(X;|A ) = A;and (22)
constant shrinking factor in the equal variance case.

Var (X.|A.) = A./t. (23)
Although the unequal variance problems are ii i i

more difficult, the advantage of the PEB viewpoint
is that it suggests more general " Stein-like" Morris (1982) defines the variance function of a
estimators,' for example as given by Equations (8) natural exponential family (NEF) to be the func-
through (14). The nuclear reliability data we will tion that expresses the variance in terms of the
analyze are unequal variance data; i.e., the times mean. For the equal variance normal case, the'
on test for different classes of components are not sampling variance functions are all the same

2equal. The data also are not normal so we should constant function; V(p;) = V = o /n. The
not even apply the unequal variance rules just sug- unequal variance normal problem is now seen to
gested. Instead, we will assume the data are Poisson imply that these sampling variance functions are dif-

2ferent;i.e., V (p;) = V; = o /nj. In both normaland use PEB methods to construct appropriate i
estimators. cases the variance function is independent of pj.

Now for the Poisson problems defined above, if
The nuclear data to be analyzed are those found t = t all i, then the variance functions are all the

in the Nuclear Plant Reliability Data System same; i.e., V(A ) = A;/t even though the A differ.i i
(NPRDS)(1979). The NPRDS data consist of the However,if the tidiffer, then the V (Aj) = 1/t;arei
number of failures, f;, and the time on test, t;, for not the same. This problem will be called "the
each of k classes of components. Class i has r; posi- unequal variance function Poisson problem."
tions m which components are placed. The NPRDS
data collection procedure suggests that each tj is Morris (1983c) proposes PEB estimators for the .

fixed and each fj is the realization of a random equal variance function Poisson case, i.e., for the .

'

variable, F . In other words, the data are a type I case ti = t for all i. The X; given A have means A;
censored sample. The data result from testing and common variance function V(A ) = A /t.i i
components in the jth position (j = 1,... r ) of Specifically

class i(i = 1,...,k) for a fixed time tjj and observ-
ing the number of failures, F j. This testing takes x,gy, j 1- Poiss(A t), i = 1,...,k . Mi
place with replacement; i.e., when the component ii t i

in a given location fails it is replaced with a new
component. We assume that each component in the The PEB rule is constructed by assuming the Aj have

ith class has the same unknown constant failure prior distributions

rate, Aj, and that the a priori distributions of the
A |p, A M Gam (m, A), i = 1,...,k - (25)A are independent and identical. .

Assuming the number of failures for position j
of class i is Poisson with mean A;tij, i.e., that where here Gam (m, A) signifies a gamma

distributed random variable with mean m and

F.. |A. d Poiss(A.t..) (20) variance A.
ij i i ij

The marginal and posterior distributions are
for j = 1,...,rj and i = 1,...k. then the MLE for determined by Distributions (24) and (25). It
the ith failure rate, A , is X = F;/tj where tj = follows that the marginal distributions of the X arei

independent negative binomial distributions eachr;
t;j is the total time on test for the ith class and with mean m and variance m/t + A; that is

~

j{=1
X[ Im, A d NB(m, m/t + A) '. (26)

'

F j is the total number of failures in classFi =. i
5"I The posterior distributions of the A are indepen--

i. The distributions of the X given A are. .

i dent gamma distributions

X;|A; M Poiss(A; t ), i = 1,...,k (21) -A A N Gy y @

4
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with posterior meansi' 'x [ (k - 3)R/t/ (34)=--

{(X. - R)Aj = E(q |X, m, A) * (l' - B)X; + Bia (26)
','

'
where This rule looks similar to Stee.'s rule with the*

Lindley modification given in Eqa tions (14) and,. . . . . .,

m/t . (16) for the equal variaace normal pr. olem (Case B,
B= ;/- (29) Table 1}. The difference is that Equation (34) takes.

into accoun' the functional dependence of the
If R and S are defined as/ variance oh tae mean foi Poisson variables.

k If the NPRDS data could be modeled as equal,
,

1C varirnce Poisson data, Gen we could use Morris'
-

'k1b (30) rule. However, the NPRDS data do not come from
" '

'"

,

i= 1 '

a designed experiment with equal tj, but from>

.. operating power plants; h. ace, the times on test,
and t;, are unequal The NPRDS problem, therefore,

'

requires the development of an unequal variance.-

k
'

furetion Poisson estimator.i

(X; - R) (31)S=
|

,'
."I In Section 2 we derive and evaluate an estimator

I
'

I /
. for the uneoual variance function Poissoa problem

usiig pamletric empirical Bayes mernods. In
f then Morris' PEB rule b . , . .

< --- Section 3 ive report work of Morris (1983a,b) on
/ ) Pl!B confidence intervals for normal problems and

A. = (1 - B)X. + BX (32) suggest how liis intervals might be used for Poisson
,

probbms. In Section 4 we describe and report thei i >
,

results of Monte Carlo experiments used to com-s '

where
'

pare the MLE and the PEB estimators. Section 5
contains our conclusions and suggestions for fur-

_ then work. The Appendix contains the results of

B = k - 3 V(X) (33) several sinmlations which illustrate the effect of
-

k S PEB estimation on individual component estimates.
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2. PARAMETRIC EMPIRICAL BAYES POINT ESTIMATORS
FOR COMPONENT FAILURE RATES

This section is divided into three subsections. In it follows from Distributions (35) and (36) that
Subsection 2.1 we derise a parametric empirical the posterior distributions of the l arei
Bayes estimator for the unequal variance function
Poisson problem. In Subsection 2.2 we compare the gGM',A) (3D

'

new PEB estimator to the N1LE using posterior i i i

component risk and posterior component relative
savings loss. In Subsection 2.3, we apply the where
estimator to globe valve leak data.

.

A. = E(A; [X, m, A) = (1 - B.)X. + B.m (38)' ' ' '2.1 A Parametric Empirical Bayes
Estimator for the Unequal and
Variance Function Poisson

= Varg X, m, A) = (1 - B.)bt.
*Problem A
i i i i i

The parametric empirical Bayes (PEB) methods with
of Efron and Aforris (1973,1975) have their
background in the work of Stein (1955, with James, m/t.

'1961) on the estimation of the mean of a B. = (39)
m/t; +Amultivariate normal. In justifying Stein's estimator, i

Efron ana Aforris view it as a parametric equivalent
of Robbins' (1955) nonparametric empirical Bayes The marginal distributions of the X; are
(NPEB)(see Storris,1983a,b). This viewpoint helps
them derive a more general theory that can be used ind
in cases other than that of Stein. For example, X |m, A e NB(m, m/t; + A) (40)

Section I recounts the Efron-htorris PEB
generalizations of Stein's rule to unequal variance where NB(m, m/ti + A) signifies a random
normal problems and hlorris' application to the variable which has a negative binomial distribution
equal variance Poisson case. In this section, we use w th mean m and variance m/t; + A.
similar techniques to construct a PEB estimator for
the unequal variance function Poisson problera Paralleling the normal case with r = 1, we con-
defined by Distribution (21). struct PEB estimators of A by using Distribu-i

tion (40) to obtain estimates (6, B ) and theni
in particular, we suppose that substituimg for (m, B ) in Equation (38). Thei

following iterative procedure defines estimates of
m and A. Given & and A, calculate

X;ll; bh Poiss(A;t;) (35)
i

1. The empirical Bayes weights evaluated at

for i = 1,...,k where the t are known and the A; (b. )
i

are to be estimated. The mean and variance of X x. .

given A; are E(X;lAj) = A and V (A ) = Var (X |A ) = "'i = Wi (m, A) = 1/(&/t + A) (41)
i ii i

A;/tj, respectively. The conjugate priors for the A
2. The optimal linear estimate of mare

X /b Wi (42)A |m, A ,ijd, Gam (m, A), i n 1,. . . , k (36) b " b Wi i

where Gam (m. A) continues to refer to a gamma 3. The weighted average of squared residuals

distributed random variable with mean m and S =[wi(Xj - fii)2 [ wi (43)/variance A.

6
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4. The weighted average of sampling variance Lemma 2: The estimator & has mean m and
functions evaluated at a, with V (m) = variance 1/ { wi = (V + A)/k. The estima-i
m/tj tor & is the optimal linear estimate of m.

Proof: Each X is an unbiased estimate of m; hencei_

V(s) = { w;V;(s)/ { w; (44) so is{c X for all {cj) such that { c = 1. Leti

5. The unbiased estimate of A 2
, ,g

^ ' { w; f 3 (X - m) -V;(s)
{w; = [c; [V;(m) + Al - 0([c; - 1) .

i _ Then

=k-1 S - V(s) . (45)

S = 2c.[V (m) + Al - 0OC 3 ISteps I to 5 are repeated until (&, d) converges. j
Then, the PEE shrinking factors are calculated as

,

which implies that
| II

B. = k - 3 i-

I
i k-1 y (g) , g cf = 0*/2[V (m) + Al .j

k-3 t; But
I" k - 1

/t. + A
-

m g.
1 =[c? = 7 1/[V (m) + Al

I

Finally, the PEB estimates of the posterior means
implies that

are

A; = (1 - B )X; + B m, , i = 1,...,k .
O' = 2/{l/[V (m) + A],. - -

,

(47)

8In order to prove the following lemmas, we
assume the weights are evaluated at the true (m, A)
instead of(&, A). This allows us to view the wi as I/IY(m) + A] w.j

Cf " { I/[V (m) + A] *
constants when taking expectations given m and A. *

Lemma 1:{w. = k/(V(m) + A) . Hence & has minimum variance among linear'
unbiased estimates of m. Also

Proof:
Var (s) = w; Var (X;)/({w;)

V (m) + Ag

= V(m){w; + A{ wk= .y

=[w; (1/q)/(h)

1/[wi. QED= (V(m) + A){ w; QED =

7

....



-. . .. .
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.

1

--

s-

ia

i
EV (A) = V (m)and EV(m) = (m). Proof (i) to (iv) are obvious and (v) follows since [Lemma 3: i

-_

Proof: _
;

g *k-3 V(X) P

EV;(&) = ES/t; = m/t; = V;(m) i k-1 y g) , g

EV(G) = { EV;(s)/{wj ={wg V;(m)/{wj _
I

k-3 V(X) -

~I
V(R) + S - V(5)= 9(m) . QED k- 1 -

_

Lemma 4: ES = - I [V(m) + Al -

"

-

k k - 3 V(X) =0 QED=
k S r

Proof:
'

, in practice, the estimator is improve,d by forcing
At be nonnegative, i.e., by setting A = 0 if the g.E(X.- a) [*!(1/w - 1/[w.)

ES=[w'b1
' i j calculated A < 0. g

=
~

E*i The unequal variance function Poisson estimator
.

def' ed here is similar in certain respects to both Im
k-1 the Efron-hlorris normal unequal variance rule with

, {w; , k - 1 (V(m) + A)QED
,

k r = 1, and the hforris equal variance function
Poisson rule. Its d:rivation almost exactly parallels
that of the unequal variance normal rules, and it iLemma 5: E =A
reduces to htorris' rule when the variance functions _

are equal. ;Proof,

On the other hand, it also differs significantly
_

fr m either of them. It differs from hiorris' equal z-
ES - EV(e)E =k-I variance rule since it allows the tj to differ, it dif- [

fers from the Efron-htorris normal rules since it -

- -
accounts for functional dependence of the variance --

k
k - 1 (V + A) - V = A . QED on the mean; i.e., it assumes Poisson as opposed _=

k-I k
to normal sampling distributions. p

ELast, we show that the PEB rule given in
Equations (41) through (47) reduces to h1 orris' rule 2.2 Evaluation of the Parametric -

[ Equations (30) through (34)] when t; = t for alli. Emp;rical Bayes Estimator-
.
_

Lemma 6: If t; = t for all i, then Comparing the PEB Estimator ;
to the MLE |

(i) V; = V
-

(ii) wi = w = 1/(V + A)
In order to compare the unequal variance func- .

tion Poisson estimator to the N1LE, we define the

(iii)in = R posterior component risk of an estimator [(X) as

_ ~ - ~. .

(iv) S = p, {(X;- X)2 R;Q) = R;
- - =

(X, m, A),1 -

7

(v)$;= { =$ = E [(A; - A;) | (X, m, A)] .
I

k
8 {

E
_

I



We also define the posterior component relative It follows that if
savings loss of1 as

, (m - X;)s - e
RSL;(1) = RSLi (3, m, A),1) O s B; , s 2B; (48)

s- -

1

R Q) - R;Q')

" R.Q*) - R.Q') then the PEB estimatorl will have smaller posteriori* '
component risk, and relative savings loss, than the
hfLE, X;. Since & is unbiased for m and $j is

wheref(X) = X and A* has components Aj. approximately unbiased for Bj, Inequality (48)
should hold quite often.

The following facts are easily shown:
Results of Afonte Carlo experiments comparing

the PEB estimator and the hfLE are given in
X. Section 4.'l. R.(A*) = A? = (1 - B.) + B.(I - B.) *.I I I t 1 I t

i i 2.3. Application to the Nuclear
Plant Reliability Data

- 2. R.Q*) = A? + B. (m - X.) System-Globe Valve Leaks
1 i i 1

'

The PEB rule is now applied to NPRDS (1979)
3. R.(l) = A? + [B (m - X.) O.(m - X.)] data for globe valves. The failure mode of interest

' ' ' ' ' is " leaks." Classes are distinguished by their
operator types. The data are given in Table 2. The

- B.(m - X.) 2 AILE and PEB estimates are given in Table 3.- -

RSL;(1) = 1 B (m - X ) The class variance functions are very unequal
4.

' '- because the times on test range from 0.552 x 106-

6to 235.902 x 10 calendar hours (approximately 63
These calculations are similar to results of Efron- to 27,000 years). Since the t; vary significantly so
hforris (1973). do the shrinking factors, B . The shrinking patterni

Table 2. Globe valve (leaks) -
data from NPRDS (1979) represent cumulative totals through 1979.

Number of Number Times on
Category Components of Leaks T t = t-

i Operator Type = r; = f; (10 cal. hr's.)

I hianual 5706 31 236.902

2 Pneumatic / diaphragm / cylinder 2764 157 115.944

3 Electric motor / servo %I 30 36.812

4 hfechanical 188 13 7.597

5 Solenoid 174 7 5.466

6 Hydraulic 43 7 1.689

7 None/other/ undefined 33 0 1.123

8 Explosive / squib 13 0 0.552

9

. .. .
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Table 3. MLE and PEB leak rate estimates for globe valves
,

th = 1.20265 d = 1.16918, k = 8,
(th,d) converg,ed in 5 herations ,

Shrinking Factor
^
rn/t

Category MLE PEB O=
~

i k-Ifit/t +1. . ...

X = f /tj Ai = (1 Il)X + lljm ii i i i

1 0.I309 0.I342 0.003088

2 1.3541 1.3532 0.006281

3 0.8150 0.8225 0.019416

4 1.7112 1.6679 0.085180

$ 1.2806 1.27I8 0.113129

6 4.1445 3.3491 0.270358

7 0.0000 0.4107 0.341477 ,s

I

8 0.0000 0.5590 0.464836

I

.

7,8 1 3 |5 2 4 6
_

!
|

PEB. . . . . '
' ' ' - '

1.0 |5 2
'1 7 8 3 4 6

: 2.0 3.0 4.0O
'

Failure rate^
** '

(leaks /10 calendar hrs)6

INEL 4 3005

Figure 1. Shrinking pattern for globe valve leaks.

.
.
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is illustrated in Figure 1. Only the classes with small 0.2 x 10 ' alendar hours per year, then it will take6 c
t have significant shrinkage. A crossover can be at least 9 years before components in Class 8 expect
seen, i.e., a reordering of the estimated failure rates. one or more failures. Similarly, it will take 5 years
The PEB estimates suggest that Class I has lower 6at 0.5 x 10 calendar hours per year for Class 7 to
failure rate than either Class 7 or 8. This contrasts expect one or more failures.
with the reverse ordering for the MLE.

Classa 7 and 8 have X; = 0 butl > 0. Surely Actually Ag does equal zero, since the explosive-i
(?) the failure rates for these operator types are not operated valves will not leak by virtue of their
zero. A more plausible explanation for the lack of design. This observation highlights the need for cau-

' observed failures for these component types is the tion when applying any type of estimator: appli-
small times for their testing. In fact, assuming 18 cable engineering information about components
to be correct, if Class 8 is used for should be incorporated in any statistical analysis.

c

r

-
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3. PARAMETRIC EMPIRICAL BAYES INTERVAL ESTIMATES FOR
COMPONENT FAILURE RATES

This objective is easily the most ambitious of the contributions that result from estimating m; and A.
project. Empirical Bayes confidence interval theory In short, s;2 is the appropriate measure of variance
is in its infancy. h1 orris has only recently (1983a,b) associated with the point estimate p .
defined interul estimates for the equal and unequal
variance normal problems. Though these intervals if component failure rates can be described, as
represent a major breakthrough, there still is much in Section 1, by the Poisson model
work to be done in this area. Here we will report
on hlorris' advances and then make some com- 3, p , g ,1- Poiss(A t ), i = 1,...,k
ments as to how his mtervals might be used for i i t. ii

'
calculating confidence bounds for component
failure rates. We then illustrate one of our sugges- then one of several normal approximations could
tions on the globe valve data analyzed ,n be used in order to take advantage of N1 orris'i

Section 2.3. intervals. Normality might be assumed for the
mean, variance stabilized, skewness stabilized, or

For the situation described by Distributions (1) natural parameter scale, each being justified by the
through (5), N1 orris (1983b) defines an approximate central limit theorem applied to maximum
empirical Bayes confidence interval given by likelihood estimates. ,

1

Oi t z s; (49) For example, if we use the variance stabilizing
transformation, Y =%,p = d , and

where p, is calculated using Equations (8) through V = 1/4t , then approximately,i
(14), and

[ k-?. ) Y; p; j b N(p;, V;), i = 1,...,k

' O. f+ v.(X. - di.)s. = V. I
i (1 -

'
k i ii ii

which is exactly the assumption needed to apply
h1 orris' theory to find EB confidence intervals forwith
thepi. Approximate 95% PEBconfidenceintervals
for the A are found by squaring the upper and loweri

f; = k w;[Z(Z'WZ) 1Z']jj bounds of Interval (49). The results of this pro-
-

cedure are given in Table 4.

(?; estimates the effective values of r for For discussion purposes we focus on upper con-
component i) fidence bounds for Categories 7 and 8. Approx-

imate 95% PEB upper confidence bounds are
" calculated as:

2 ^2[V + A )
I

Category 7v; = ,,,y B; ,

(V. + A j
(07 + 20.95 s7)2'

= [0.27099 + (1.645)(0.430175)]2
(vi approximates the variance of O ). = (0.9786)2 = 0.9577i

The Interval (49) is claimed to contain p; with Category 8
probability 1 - a = 2C(z) - 1.

(08 + Z0.95 58)
The posterior variance of p , given X;, nJj, and = [0.38733 + (1.645)(0.553867)]2

-

A, i.e. V (1-Bj), could be estimated by V (1-B;) and = (1.2984)2 = 1.6859.i i
used to create an interval estimate of p;. The
Interval (49) is wider than the resulting interval The corresponding standard upper 95% confidence

because s 2 accounts for the additional variance bounds (Johnson and Kotz (1969), p. 96) are:

12
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Table 4. PEB 96% confidence intervals for globe valves
k = 8, ni =e- 0.926936, d = 0.321288, convergence in 10 iterations

g,d I
f; tg }"I/t Y=[ Y " {I

.

g g i k-1V+A y 9

31 236.902 0.13086 0.36174 0.001055 0.002338 0.0000027 1.23776
157 115.944 1.35410 1.16366 0.002156 0.0N762 0.0000112 1.23M4
30 36.812 0.81495 0.902*,5 0.006791 0.014786 0.0001063 1.21612
13 7.597 1.71120 1.30813 0.032908 0.066363 0.0019844 1.12645
7 5.466 1.28064 1.13166 0.045737 0.089012 0.0034452 1.08707
7 1.689 4.14446 2.03580 0.148017 0.225283 0.0172590 0.85016
0 1.123 0.00000 0.00000 0.222618 0.292354 0.0250788 0.73355
0 0.552 0.00000 0.00000 0.452899 0.417857 0.0359934 0.51536

fp tf 7 , gg)22 l g , gg . Q )y , g g Ug i L A U, U2sg , p o

!
0.001054 0.032466 0.29943 0.36306 0.42670 0.08966 0.13181 0.18207
0.002148 0.N6348 1.07169 1.16253 I.25337 1.t4852 I.75148 1.57095
0.006706 0.081891 0.74260 0.90310 1.06361 0.55145 0.81560 1.13127
0.031320 0.176974 0.935 % 1.28283 1.62970 0.87603 1.64566 2.65592 {
0.042364 0.205825 0.71002 1.11343 1.51685 0.5N12 1.23973 2.30083 I

0.139436 0.373411 1.05410 1.78599 2.51787 1.11113 3.18976 6.33 % 9
0.185051 0.430175 Da 0.270a9 1.11414 0 0.07344 1.24130
0.306769 0.553867 Oa 0.38733 1.47291 0 0.15002 2.16945

95% lower 95Fe upper
limit limit
for l forlii

L lCalculated values of p7 and pg were negative.a.

Category 7 the true failure rate if sampling of the data is
repeated v'ith fixed failure rates. The PEB cen-

1 ence u s ase n probaMty Gat th
X ,0.95 = 3.00/1.123 = 2.6714 random upper bound exceeds the random true2t 2

7
failure rate if sampling of data and parameters is

Category 8 repeatei

, This simple example illustrates the potential
.5 mpt vement oMe MB upper conNence bounepx2,0.95 = =

.

8 over the standard upper bounds. We need to check
coverage probabilities using simulation. Also, we

The PEB upper confidence bounds are recommend that confidence bounds be developed
significantly less than the standard upper confidence more specifically for the Poisson problems. Though
bounds. The confidence levels of the two bounds this objective is the most difficult, it could also be
do not represent the same probability calculation. the most productive and useful to component
The standard confidence bound is based on the failure rate estimation. We hope to continue work
probability that the random upper bound exceeds in this important field.

13



4. MONTE CARLO COMPARISONS OF MAXIMUM LIKEllHOOD AND
PARAMETRIC EMPIRICAL BAYES ESTIMATES OF COMPONENT

FAILURE RATES

This section is divided into two subsections. In 1. True failure rates were generated using
the first subsection we give an extended discussion Af M Gamma (m = 1.026, A = 1.024),
of a short simulation study in order to highlight the i = 1,...,k = 8
situations in which we can or cannot expect to
improve upon the MLE. In the second subsection
we give the results of several Monte Carlo studies. 2. Observed failure rates were simulated using

Xf i (1/t;)PoissonGf t;), i = 1,...,8j
4.1. A Short Simulation Study

S S
3. Using the simulated data (X. ....,X ), PEB

-S i 8.

( A; , . . . ,.SA) were calculatedUsing the NPRDS data for globe valves recorded estimates

in Table 5, a short simulation study was conducted. according to the procedure outlined in
The basic procedure for the study was as follows: Equations (41) to (47)

\

Table 5. Data for globe valves (mode of failure: leak)

Observation Number of Number of Failure
Components Failures RatesbCategory Timesa

i Operator Type = ti = ni =fi =Xi

1 Manual 293.017 5,922 33 0.133

2 Electric motor / servo 45.616 999 33 0.923

3 flydraulic 2.066 43 7 3.388

4 Pneumatic / diaphragm 141.339 2,811 171 1.210

5 Solenoid 7.154 183 9 1.258

6 Explosive / squib 0.665 13 0 0.000

7 Mechanical 9.240 188 14 1.515

8 Othere 1.716 42 0 0.000

a. 106 calendar hours.

b. Failures per million calendar hours.

c. Other, none, and undefined combined.

k k

(X; E)E= X; = 1.026, s = 1.024=

1 1

14
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S4. Component losses for the N1LE, X. and Table 6. Summary of average losses forI b '
the PEB, A , were calculated using' the MLE and PEB estimators for each

-

squared diff'erence from AS failure rate (globe valves data,
i' leak mode of failure)

'
Step I was repeated four times, hence the

., 32 experiments (4 repetitions times k =8 A 's peri .

repetition) listed in Table 6. Each time Step I was Simul ted Average Average:

done, Steps 2 to 4 were repeated eight times and the Failure Lossesb tosse3b
component losses for these eight repetitions were Experiment Ratesa (AILE) (PEB); averaged. These average losses are given in Table 6.

* As an example of the calculations involved, the 1 0.00077 0.00144 0.00651
'

eight repetitions of Steps 2 to 4 are given in Table 7 2 0.03904 0.00152 0.15808: for a case where AS = 1.40652 Experiment 23 in 3 0.04916 0.53078 1.34727
Table 6. 4 0.06172 0.00438 0.02680=

-

5 0.21169 0.I8776 0.I3098
it has been pointed out that PEB can do much

worse than the h1LE; for example, Experiment 2 6 0.23712 0.00102 0.00112
- has h1LE average loss of 0.00152 and PEB average 7 0.26121 0.06823 0.01986

loss of 0.15808. Naturally, this causes concern for 8 0.33046 0.08895 0.08870
anyone interested in applying PEB. We offer several 9 0.33387 0.00073 0.00081
comments in an attempt to allay this concern. 10 0.44217 0.03626 0.02884

Firstly, it should be noted that the given average 1I 0.54723 0.18763 0.12505
losses are estimates of the frequency risk; that is, 12 0.65556 0.00539 0.00519
they estimate the average loss when sampling of the 13 0.70959 0.44694 0.23141..

data is repeated for fixed values of the parameters. 14 0.79063 0.07844 0.07530

-

It is know n that the N1LE will perform well for such 15 0.79812 0.09058 0.08126
-

_

frequency averages of component loss, so examples
-

of the A1LE beating PEB in this sense should not 16 0.91587 1.22050 0.97810
-- be surprising. 17 0.94388 0.03447 0.02960-

18 1.00920 0.05343 0.05272
) Secondly, for the example given above, the Bayes 19 1.08046 1.55688 0.81674

estimate,(which uses the actual values of m and A), 20 1.08920 0.27821 0.22475-

will also do badly. The reason lies in the fact that
? t6 was very small, which implies that both Bayes 21 1.29132 0.00407 0.00406
- and PEB estimates shrink heavily toward m and iii, 22 1.34945 0.02777 0.02754
i respectively, but, since r^n and m are much larger 23 1.4 % 52 0.02210 0.02175

than 1, this takes the estimates away from the small 24 1.43794 0.05440 0.05578=
6'

A . Efron and htorris (1972) hase suggested 25 1.85540 0.74838 0.453026
s " Limited Translation Rules" (LTR) to protect 26 1.96735 0.46672 0.83273
3 against overshrinkage. Similar ideas could be
2 applied in the Poisson problem. 27 2.25489 0.01090 0.01079 )g 28 2.26682 0.25199 0.20477
-"

Thirdly, Experiment 2 was part of a larger 29 3.40901 0.01183 0.01192
III experiment in which there were k = 8 component 30 4.39659 0.05400 0.05306
2 categories. Actually, Experiment 2 was associated 31 4.83535 1.40672 1.47044

_
with Experiments 1,10,13, 21,23,27, and 31. If 32 5.33254 0.00883 0.00899

_" the average component losses for these eight
experiments are added together, then the PEB-

a. Failures per million calendar hours. )"a estimator does about as well as the h1LE; in
- particular, total average PEB loss was 1.93188
3 compared with total average h1LE loss which was b. Using squared error loss.

1.92995. Comparing the sums of component losses

&

_
15
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Table 7. Example of cticulations for Experiment 23 in Table 6:

Af = 1.40652 x 10'O
=

Simulated
Failure Rate A1LE Estimates $1LE Losses PEB Estimates PEll Losses

'

l.407 x 10-6 1.096 x 10-6 0.0964 1.097 x 10 6 0.0959 2

1.407 x 10-6 1,491 x 10-6 0.0071 1.489 x 10-6 0.0067 g

1.407 x 10-6 1.184 x 10-6 0.0496 1.338 x 10-6 o,0493 .

1.407 x 10-6 1.337 x 10-6 0.0048 1.185 x 10-6 0.0047
'

l.407 x 10-6 1.513 x 10-6 0.0113 1.505 x 10-6 o,oo93

1.407 x 10-6 1.337 x 10-6 0.0048 1.337 x 10-6 0.0048 ''

l.407 x 10-6 1.381 x 10-6 0.0006 1.382 x 10-6 0.0006

1.407 x 10-6 1.359 x 10-6 0.0022 1.357 x 10-6 0.0024

'

Average 0.0221 0.0218
_

m

has the effect of making the difference between data and the parameters (sec hf orris,1983a,b). This -

htLE and PEB component losses more important averaging process could be estimated by repeating
than their ratio; specifically, for example, the fact Steps I to 4 a large number of times and then i
that the PEll average loss for Experiment 2 was averaging the component losses for these repetitions -

0.15656 !arge than the htLE average loss is more (see Subsection 4.2.2). Storris' results for the nor-
important than the fact that the PEll average loss mal case (1983b) suggest we could hope to improve b

kis a hundred times as large. In general, when average upon the A1LE componentwise when taking this
component losses are summed, the htLE can be PEB average. Of course, componentwise domina- "

dominated using PEB. Generally, this domination tion implies domination for the sum of component r

will become apparent only if Steps 2 to 4 are risks. i"
repeated a large number of times (more than the

"

eight times done here). Preliminary Afonte Carlo This discussion is summarized in Table 8. For
studies support this conclusion. each method of evaluating estimators and for com- _-

ponent and total losses, answers are given for the
Fourthly, Bayesian evaluation of estimators question: Is it possible to improve upon the h1LE7

in olves averaging the loss over the posterior dis-
.

tribution of the parameters given the data and the in all cases when the h1LE can be dominated
hyperparameters m and A. Calculations in Sub- additional information is needed which connects in I
section 2.2 suggest we could hope to dominate the some way the independent sampling problems
AlLE componentwise in terms of posterior risk, for assumed for Case (A). The hlLE can be improved
(m,A) values of high likelihood. This type of data for Case (B) only because the loss structure, sum
analytic evaluation of Stein-like estimators can be of component losses, connects the individual
found in Efron-hforris (1975). estimation problems. For Cases (C) and (E) addi-

tional information relating the components comes
Finally, PEll evaluation of an estimator involves in the assumption of a parametric class of prior

averaging the loss over the distribution of both the distributions. Cases (D) and (F) relate the

16
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Table 8. Is it possible to improve upon the MLE?

I

hfethod of Type of
Evaluation Loss
(Averaging Component Total
Distribution) Losses Loss

A B
Frequency (Sampling) No Yes

C D
Bayes (Posterior) Yes Yes

(in regions of high likelihood)

] E F
i Empirical Bayes (Joint) Yes Yes

components in both ways by assuming total loss and 3. Calculate for i = 1,...,k
prior structure. In short, the htLE can be improved
upon only when one is willing to make additional
assumptions. However, if you are willing to make O. = k - 3 'i

i k-Ithe additional assumptions, the possible improve- gj,, g
'ment can be substantial, as illustrated by the hlonte

Carlo results given in the next subsection. ,g,g g

4.2. Two Monte Carlo
Experiments With Data ^i"(''b)i''ii

Simulated to Look Like 4. Simulate true failure rates using
NPRDS Globe Valve Data

A! Gamma (1, n.1, i = 1, . . . , kIn th.is subsection, we give the results of two I i l'
hlonte Carlo experiments. Experiment I compares
h!LE and PEB estimates using frequency averages 5. Simulate observed failure rates using
for sums of component squared error losses. Xf (1/t.) Poisson (Ah t.), i = 1,...,k .Experiment 2 compares the two estimators using I I I I

PEB averages of indisidual component squared
error losses. As predicted in the discussion in The simulated (A}, Xf) should be similar to the
Subsection 4.1, the PEB estimator significantly actual NPRDS data (Aj, X ). Steps 2 and 3 werei
outperforms the htLE. applied to the simulated data (X ,1) in order toS

calculate A ; then XSS Sand A were compared asThe basic algon hm w:e used to generate data thatt 'Sestimates of A .looked like NPRDS data was as follows: i

1. Obtain the observed failure rates and times Actually, both experiments used the NPRDS
on test (Xj, tj), i = 1,....k, from NPRDS globe valve data recorded in Table 2. Results of

Steps 2 and 3 are given in Table 3, except for the
A which are easily calculated from theI , the 0,2. Calculate (m, d) using Equations (41) to i

(45) and the ti.

17
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lt will help us to explain Ihe experiments if we and similarly when using the PEB estimate. The fre-
define a few terms. Step 4 will be repeated NL times quency average of the sum of squared losses for the
with index n = 1, .,NL. For each n, Step 5 will nth set of A's when using the h!LE is
be repeated NX times with index j = 1,...,NX. Fur-

thermore we define L jn(NILE) to be the ith com- NXi
ponent squared error loss for the jth set of X's for _.

3
the nth set of A's when using the N1LE. We define L. . n( " 'sX .jn(
L jn(PEB) analogously. j,gi

4.2.1. Evaluation With Frequency Averages of
Sums of Component Squared Error Losses. For with that for the PEB estimate defined likewise. The
this experiment we averaged the sums of compo- efficiency of the PEB estimate relative to the h1LE
nent losses over repeated sampling given by Step 5. will be defined ,as
in particular, for each set of A's we averaged the
sum of component losses for NX = 500 repetitions

Efficiency = NILE average loss /PEB average loss.
of Step 5. These averages estimate the frequency
risk of the estimators for sum of squared error loss.

Table 9 contains the results of NL = 10 repeti-
In the notation given above, the sum of compo- tions of the above N1onte Carlo routine. The table

nent losses for the jth set of X's for the nth set of also includes the observed mean and variance of the
A's when using the MLE is A's. The PEB estimator clearly outperformed the '

htLE. Only in two cases did the h1LE have smaller
k average loss, but the percentages of lost efficiency

L . (htLE) = L.. (NILE) f r these cases were only 12.6 and 2.3. On the other
.j n ijn hand, for the other eight cases the PEB significantly

i=| improved upon the htLE with percent efficiency 1

Table 9. Average total loss comparison of MLE and PEB estimates

Random No. Seed - 4863.81030
No. of Component Categories = 8
No. of Repetitions of A = 10
No. of Repetitions per A of X - 500

Trial
- Average Total Losses

n_ MLE pEB re Efficiency Lambda-Mean Variance

1 2.92636 2.5%I1 112.7 1.10305 1.01093

2 4.35840 4.32205 100.8 1.33015 2.03527

3 5.68135 3.72526 152.5 1.46098 1.17801

4 3.40159 1.65010 206.1 0.95750 0.39820 |

5 6.67345 4.64720 143.6 1.43675 1.38681

6 7.12965 3.59787 198.2 1.40127 0.58544

7 3.0240.1 3.46026 87.4 1.22517 1.74693

8 5.27728 4.21066 125.3 1.36065 1.72773

9 2.74367 2.80839 97.7 1.13025 1.12605

10 2.26390 1.41756 I59.7 0.94183 0 41307

Total 43.57 % 7 32.43547 134.0 12.34760 11.60845

18
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ranging from 100.8 to 206.1. It should be noted that and analogously for the PEB estimate.
the cases for which the PEB improves the most are
those for which the observed variances of the A's Tables 10 and 1I report the results of this experi.
were small. These are the cases when shrinking is ment for two different initial seeds. Again, the PEB
most desirable. estimators are significantly better than the MLE.

.
** ***"## " #'*8* ' ** ' '"#"4.2.2 Evaluation with PEB Averages of Indi.

vidual Component Squared Error Losses. For eight categodes in M tdalsme pcent Wency
. of the PEB relative to the MLE is approximately

th.is expenment we averaged individual component a decreasing function of the time on test for thelosses over repetitions of both Steps 4 and 5.
category. This is not surprising since it is thoseSpecifically, we averaged component losses for

NL= 1000 repetitions of Step 4, with NX = 1 categories with low times on test which gain the
most from the shrinkage toward a global meanrepetition of Step 5 for each. These averages
value'

estimate the PEB risk of the estimators.

Notationally, the PEB average of the ith com. The results of Experiments I and 2 strongly favor
ponent squared error loss when using the MLE is PEB methods. If you are willing to combine the

estimation of true failure rates in either the loss
NL function or the prior, then you should use PEB, not

it.(MLE) = b
wever, y u n s an er theseL L IMLE) . ,

r NL iln assumptions is valid, then you should continue to
n=1 use the MLE.

Table 10. Average category loss comparison of PEB and MLE estimates

Random No. Seed = 4863.81030
No. of Component Categories = 8
No. of Repetitions of A = 1000
No. of Repetitions per A of X = 1

Average Category
Losses

Category
i MLE PEB % Efficiency Times

1 0.00052 0.00056 92.9 236.902

2 0.01176 0.01155 101.8 115.944

3 0.02223 0.02105 105.6 36.812

4 0.21707 0.I8993 114.2 7.597

5 0.22784 0.18530 123.0 5.466

6 1.88552 1.85733 101.5 1.689

7 0.36259 0.26254 138.1 1.123

8 1.01472 0.54380 186.6 0.552

Total 3.74224 3.07206 121.8 406.085

Total number of PEB estimates that failed to converge = 0
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Table 11. Average category loss comparison of PEB and MLE estimates

Random No. Seed = 715.5800
No. of Component Categories = 8
No. of Repetitions of A = 1000
No. of Repetitions per A of X = 1

Average Category

Category
__

Losses

i MLE IEB % Efficiency Times
4

1 0.00052 0.00057 91.2 236.902

2 0.01168 0.01155 101.1 115.944

3 0.02221 0.02124 104.6 36.812 %

4 0.21081 0.18664 113.0 7.597

5 0.22888 0.18064 126.7 5.466

6 2.08642 1.98046 105.4 1.689

7 0.36257 0.27187 133.4 1.123

8 0.89729 0.4 % 24 180.8 0.552

Total 3.82039 3.14921 121.3 406.085

Total number of PEB estimates that failed to converge = 0

.
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5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Application of Stein and related estimators to where the ith posterior mean is
NPRDS requires development of estimators that
account for various deviations from Stein's normal

m? = (1 - B.)X. + B.m. (51)equal variance problem. Estimators must i i i ii

accommodate:
a weighted average of the observed failure rate, X ,

1. Poisson sampling distril utions and log-linear mean, mj, with weight

2. Unequal times on test

B. = i + at; (52).

i
3. Confidence intervals

e marginal dst &udons am
4. Shrinkage toward regression surfaces.

X.jp, a d NB[m;,(h + a)m;] .For any one of the above deviations from Stein's (53)'-problem, good PEB estimators have been proposed. i
f Aforris has proposed PEB estimators for the nor-

mal problem with added features 2, 3, and 4. These distributions look like Poissons with log-
Results of this project have dealt with deviations linear means and enlarged variance factors. The vec-
1,2, and using normal approximations,3. Further tor of regression coefficients,p, and the lack of fit
work needs to be done in which all of I through parameter, e, can both be estimated using Dis-

tribution (53). The estimates ($,iil estimates These
4 are simultaneously allowed. In particular, we need a)can then be used
to develop estimators and confidence intervals for to define PEB point and interv .

the unequal variance function Poisson problem with and other ideas need further investigation to be
shrinkage toward a log-linear model. useful for estimating component failure rates.

f in this direction, we suggest the following To conclude, we review our progress on the four
framework. For i = 1,...,k, assume the distribu. objectives of the project. Objective I required
tion of the observed failure rate, Xj, given the true derivation of Stein-like estimators for distributional
failure rate, A , is assumptions other than Stein's normal equal

variance case. We successfully derived estimators

X.|A. b I- Poiss (A t )
f r the unequal variance function Poisson case with

,

ii t. ii shrinkage toward an unknown constant. For the |'
new theory to be useful, we still need to work out |

and assume the true failure rate has prior the details of shrinkage toward a log-linear model.
jective 2 called for the evaluation of the newdistribution .

estimators. We found some theoretical success by
I ng at postedm M functions. Our simuladonind

A lg,a eGam(m;,am;) results were also optimistic. Afore work on this
g

objective should be directed at specific results for
NPRDS data sets. Objective 3 concerned develop-where a is a " lack of fit" parameter and

m; = expq 'g) is a log linear model with ment of PEB confidence bounds. Unfortunately,
themetkal results fu tMs area am my Meult.

1i = (zit... 7ir), an r-dimensional vector of explan-
, W,e reported the current state of the art, which is

atory vanables, andp = (pg,....pr),, an r-vector of restricted to normal problems, and suggested several
regression coefficients. These distributional assump- MM dd & ml ph-tions imply that the posterior distributions are g g g

ind
-

continued. Objective 4 called for hionte Carlo com-

A;lX,p,,a e Gam mj,(1 B;) mI puter simulations to help evaluate the new
($0) M Cge pops e 6M m

i simulate unequal variance Poisson data with failure

21
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rates that come from a gamma distribution. Results however, that some more basic statistical analysis
for the cases studied were very promising. Further of NPRDS data sets needs to be done. Specifically,

' simulation work should continue to center on data we feel that more complicated models appropriate
generated using NPRDS data sets. for NPRDS data, such as the log-linear models

suggested above, must be studied. Also, whatever
. In short, our preliminary feasibility study statistical models and estimators are used, care must

indicates the potential advantages in applying Stein be exercised to account for existing engineering
and related PEB estimators to NPRDS. We feel, information.

s

.
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APPENDIX A
SIMULATED ILLUSTRATIONS

A computer code has been developed to assist us to data for globe valves, gate valves, pumps and
in comparing the parametric empirical Bayes (PEB) internal combustion engines. Dimensions were
estimator and the maximum likelihood estimator established by operator types for valves and by
(NILE) for estimating Nuclear Plant Reliability Data subclassifications for pumps and engines. Sec-
System (NPRDS) component failure rates. The tion A-1 discusses the application of globe valves
program was written in FORTRAN-IV on The data for failure mode of " leak" to the simulation
University of Texas CDC 64/6600 computer experiment. Gate valves data for failure mode of
system. The code, w hich uses INISL (1982) random " leak" were applied in the next experiment; this is
deviate generators GGANIR and GGPON, is discussed in Section A-2. Pumps data for " leak"
described in detail by lieger (1983). failure mode and engines data for " won't

start / move" mode of failure were used in other
The data obtained for the analyses were extracted simulation experiments. The results are given in

from NPRDS 1980and 1981 Annual Reports (1980, Sections A-3 and A-4, respectively.
1981). The NPRDS produced failure statistics on
selected systems and components related to nuclear
safety in nuclear power plants. The systems and A-1. Globe Valves Experiment
components included in the NPRDS data base are,
in general, those classified as Safety Class I and 2 Data. Population size, frequency of failure, and
m ANSI 18.3 and ANSI N212, excluding spent fuel experiment periods were recorded for globe valves
storage, passive reactor vessel structural internals, for the failure mode ofleak. The source of data was

'

PWR pipmg i mch and below, and BWR piping the NPRDS 1980 Annual Reports (1980). Dimen-
1-1/2 inches and below. Approximately 3,500 com- sions were distinguished by their operator types.
ponents within 25 to 35 systems are meluded in the Ten operator types were noted and are listed in
reportable scope for each umt. The participatmg Table 5. Ilowever, due to the small number of
utdity supplies engineering data for each reportable valves observed for other, none, and undefined
component and system. These engineering data, in operator types, the data from these groups were
coded form, are entered in the data base and are lumped together and listed under other. Therefore,
available as parameters on which to sort and select eight dimensions were yielded for the analyses,
components for specific analyses. In order to com-
pute the component or system service hours, the
engineering data report includes estimates of service in Table 5 Columns 1 and 2 are group number
time as related to reactor service hours at three dif. and types or operator, respectively. Columns 3,4,
ferent conditions: (a) critical, (b) standby, and and 5 are the observed experiment time (t,), popula-

(c) shutdown. It is assumed that these three service tion size (n,), and frequency of failure (t) for each
conditions will account for 100% of total service row. Column 6 represents the point estimates of the

time. Actual service times as reported on the failure rates (X) for each row which is the ratio of
f over ti. In this study,it is assumed that AcomesQuarterly Operating Reports are used to compute i

the estimated service hours for each system and from a Gamma distribution with mean m and
component in the NPRDS data base. Each par. variance A. For the simulation study an estimate
ticipating utility reports in considerable detail ali of mean was calculated by

equipment related failures of a reportable system
or component. k

Four simulation experiments were conducted in mlX = X /k
w hich data from several sources were simulated and y,g
analyzed. The data analyzed were on nuclear
components as documented in the NPRDS 1980
and 1981 Annual Reports (1980,1981). For one For Table A-I data where k = 8
mode of failure of the component under study,
population size, failure frequencies and observation
periods were extracted. The analyses were applied m|X = 1.026.
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An estimate of variance is given by given, respectively. It is apparent from the results
listed in Table A-1 that in the majority of cases the

k PEB method leads to an estimate of the failure rates
closer to its true value than the MLE estimates.

A]X = (X;- m)2 (k-1)./ Calculated losses, using the square error loss
imi method, are tabulated in Table A-2, for both

methods. It should be noted that the experiment
6 to 293.017 x 106' With Table A-1 data periods vary from 0.665 x 10

calendar hours; this, leads to a wide variation in the
snmla equeng aHure. a est ma es for

AjX = 1.024*
- both methods are plotted. Failure rate estimates for

the MLE method are located on the upper horizon-
The mean (m) and variance (A) are treated as the tal line. The PEB estimates of the failure rates are -
real mean .md variance of the prior distribution for plotted on the lower horizontal line. The vertical
the failure rates, and are input to the simulation dotted line represents the mean of the failure rate's
routine. prior distribution. In Figure A 1 six of the PEB

estimates are closer to the mean than their MLE
Results. Table A 1 tabulates the results of the counterparts. The other estimates are very close in
simulation experiment and estimates of failure value for both methods. The value of m shown in
rates. For each dimension, simulated failure rates, the figure is the true prior mean used in the simula-
observation time, simulated frequency of failure, tion. The PEB estimators shrink toward the
MLE and PEB estimates of the failure rates are estimated mean, ni, which is different from m.

Table A-1. Summary of results for globe valves (mode of failure: leak)
s

44

Truca Simulated
Failure Observation Failure MLE PEB

Category Rates,c Times.b Frequencies, Estimates,C Estim,ates.c
i Ai ti fi Xi A;

! 3.409 293.017 972 3.317 3.314

2 1.438 45.616 55 1.206 1.216

3 1.855 2.066 2 0.968 1.175

4 4.397 141.339 626 4.429 4.418

5 2.267 7.154 19 2.656 2.598

6 0.049 0.665 0 0.000 0.790

7 0.791 9.240 7 ' O.758 - 0.831

8 0.547 1.716 0 0.000 0.472

a. Simulated by the program.

6b. - 10 calendar hours.

c. Failures per n'!!! ion calendar hours.
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Table A-2. Calculated square error loss (globe valves, leak mode of failure)

Simulated Failure MLE PEB
Category Rates Loss Loss

1 3.409 x 10-6 0.84 x 10-2 0.90 x 10-2

2 1.438 x 10-6 0.54 x 10-2 0.50 x 10-I

3 1.855 x 10-6 0.79 0.46

4 4.397 x 10-6 0,3g x 30-2 0.45 x 10-3

5 2.267 x 10-6 0.15 0.11

6 0.049 x 10-6 0.24 x 10-2 0.55

7 0.791 x 10-6 0.11 x 10-2 0.17 x 10-2

8 0.547 x 10-6 0.30 0.57 x 10-2

L. |
i

M LE --=-
g

3! 26,8 7 5 1 4

I'
I

h

k
|
|

[
8 57 '32 5 1 4

|I

PEB -m = 1.026
INEL 4 3004 |

Figure A l. Comparison of the estimates of the Ml_E and PEB methods for globe valves for failure mode of leak.
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A 2. Gate Valves Experiment same format as was described in Section A-1. For
the gate valves data, eight of the ten categories hase
PEll estimates that are closer to the prior mean than

Data. A second hlonte Carlo expen. ment was con- their respective NILE estimates.
ducted using data for gate valves. Population size,
frequency of failure events, and observation periods
were obtained from the NPRDS 1980 Annual A-3. Pumps Experiment
Reports (1980). The NILE and PEll estimators were
compared using the results of this simulation Data. A group of pumps with flow rate capacities
experiment. of 500 to 2,499 gpm were selected for this experi-

ment. Population size, frequencies of failure events
Test data for the gate valves is tabulated in for leaks, and experiment periods were obtain:d

Table A-3. For the data given in Table A-3, the from the 1980 NPRDS Annual Reports (1980).
prior mean (mE) is 0.70 and the variance of the These data were sorted by types of pumps under

distribution (A@) is 1.22. study; the data are presented in Table A-6. Based
on the data collected, the prior distribution mean

Results. Simulated failure rates, and their blLE (mE)is 1.90 and the prior variance (AM)is 10.76.
and PEll estimates are listed in Table A-4. In six
of the ten categories considered for the gate valves, Results. Using the simulation program, the failure
the PEll estimates were closer to the simulated rates were simu!ated, followed by calculation of
failure rates than the NILE estimates. Estimation their htLE and PEll estimators. Results are sum-
losses wcre calculated using the Square Error Loss matized in Tables A-7 and A-8. A graphical presen-
(SEL) method; those values are listed in Table A-5. tation of the simulation experiment is given in
Figure A-2 idustrates the estimation results in the Figure A-3, where on the upper horizontalline the

'Table A-3. Data for gate valves (failure mode: leak)

Observation Number of Number of Failurg
Category Times,a Components, Failures, Rates,D

i Operator Type ti ni fi Xi

I hlanual 317.795 6,641 47 0.148

2 Elec. motor / servo 151.467 3,207 97 0.640

3 liydraulic 1.385 28 0 0.000

4 Pneumatic / diaphragm 16.689 372 18 1.079

5 Solenoid 3.488 70 4 1.147

6 Float 0.131 2 0 0.000

7 Explosive / squib 0.415 10 0 0.000

8 hlechanical 0.559 14 2 3.578

9 Otherc 2.453 64 1 0.408

10 Piston 0.166 3 0 0.0(X)

6a. 10 calendar hours,

b. Failures per million calendar hours.

c. Other, none, and undefined combined.

30

-



_ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - _ _ _ -

Table A-4. Summary of results for gate valves (mode of failure: leak)

Trued Simulated
Failure Observatjon Failure MLE PEB

Category Rates,C Times,D Frequencies, Estimates,C Estimates,C
i Ai ti fi Xi li
1 0.001 317.795 0 0.000 0.002

2 0.652 151.467 104 0.687 0.680

3 0.029 1.385 0 0.000 0.132

4 0.(M3 16.689 0 0.000 0.029

5 0.243 3.488 1 0.287 0.272

6 0.019 0.I31 0 0.000 0.I84

7 2.I61 0.415 0 0.000 0.I69

8 2.154 0.559 1 1.789 0.776
'

9 0.002 2.453 0 0.000 0.106

10 1.771 0.I66 0 0.000 0.I82

a. Simulated by the program.
i

b. 106 calendar hours.

c. Failures per million calendar hours.}

Table A-5. Calculated square error loss (gate valves, leak mode of failure)

Simulated Failure MLE PEB
Category Rates Loss Loss

1 0.001 x 10-6 0.11 x 10-5 0.59 x 10-6

2 0.652 x 104 0.12 x 10-2 0.77 x 10-3

3 0.029 x 10-6 0.86 x 10-3 0.11 x 10-1

4 0.043 x 10 6 o,gg x go-2 0.I8 x 10-3

5 0.243 x 10-6 o,39 x io-2 0.84 x 10-3,

6 0.019 x 10-6 0.36 x 10-3 0.27 x 10-1

7 2.161 x 10-6 4.67 3.97

8 2.154 x 10-6 0.13 1.90

9 0.002 x 10 6 o,g3 x 30-5 o,gg x 0-1

10 1.771 x 10-6 3.14 2.53-
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4 9 6 |

m = 0.70
INEL 4 3003

Figure A-2. Comparison of the estimates of the MLE and PEB methods for gate valves for failure mode of leak.

s.

Table A-6. Data for 500 - 2,499 GPM pumps (mode of failure: leak)

Observation Number of Number of Failure
Category times,a Components, Failures, Rates,b

i Operator Type ti n; fi X;

1 Centrifugal 9.353 170 18 1.925

2 Diaphragm 0.132 2 1 7.576

3 Gear 0.132 2 0 0.000

4 Reciprocating 0.286 5 0 0.000

$ Rotary 0.075 1 0 0.000

610 calendar hours,a.

b. Failures per million calendar hours.
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Figure A-3. Comparison of the estimates of the MLE and PEB methods for 500 - 2,499 gpm pumps for failure mode
ofleak.

ht LE estimates are plotted. The PEH estimates are were gathered from the 1980 NPRDS Annual
located on the lower line. In Table A-7, three of the Reports (1980). The data listed in Table A-9 are
five PEB estimates are closer to the simulated sorted by types of the engines. Based on the col- N
values. All of the PEB estimates are closer to the lected data, the prior mean for the observed failure
prior mean of their distribution than their MLE rates (mL>D is 14.26 and the variance (Al2i) is
counterparts, as shown in Figure A-3. 244.46.

Results. A survey of Table A-10 data reveals thatA 4. Internal Combustion .

m all cases the PEB estimators are closer to theEng.ineS simulated failure rates than those of MLE. The
square error losses are compared in Table A II. A

Data. Data for the internal combustion engines graphical comparison of the two methods is given
that had failed because they did not move or start in Figure A-4.

Table A 9. Data for internal combustion engines (mode of failure: won't startimove)

Observation Number of Number of Failurp
Category times,a Components, Failures, Rates,D

i Operator Type ti ni fi Xi

1 Two stroke, inline block 1.005 20 1 0.995

2 Two stroke, V-block 1.565 27 22 14.058

3 Four stroke, inline block 0.149 3 6 40.268

4 Four stoke, V-block 2.220 39 7 3.153

5 Other 0.078 2 1 12.821

a. 106 calendar hours,

b. Failures per million calendar hours.
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Table A 10. Summary cf results for int 6tnal combustion engines

(failure mode: won't start /moveh

4

*

Truca Simulated ' ,
Failure Observation Failure MLE PER'

.
,

Category Rates C Times b Picqt:encie=,' Estimates,C Estimates,C
1 li ,_1 11 fi Xi

'

i_

1 0.557 1.005 0 0.000 0.402,

i .

2; 12.460 1.565 , 22 14.060 13.640*

/;
3 2.786 ' 0.I49 0 0.000 1.479

~
>

4 3.347 2.220 6 2.703 2.804

5 7.735 0.078 1 12.820 10.320

a. Simulated by the ' program.

! b. 610 calendar hours.
?

>
c. Failures per million calendar hours ..g-

/
,! .

s

Table A-11. Calculated square.arror loss
xxx(internal combdstion engines, mode of failure: won't start / move)

Si'aulated Failure MLE PEB
Category Rates Loss Loss

1 0.557 x 10-6 0.31 0.24 x 10-1

2 12.460 x 10-6 2.57 1.40

3 2.788 x 104 7.77 1.71

4 3.347 x 104 0.42 0.29

5 7.735 x 10-6 25.90 6.71
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Figure A-4. Comparison of the estimates of the MLE and PEll methods for internal combustion engines for failure
mode of won't start /n'ove..
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