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Applicat { he PEB estimator
NPRDS ¢l » valve data

Comparison ol the maximum hkelihood
stimator (MLE) and the PEB estimator
sing Monte Carlo

t normal theory PEB
intervals by making normal
ximations to the Poisson sampling
butions

tical and Monte Carl its indicate that
EB estimator can | rm significantly
in the standard MLE if the estimation of
ividual failure rates can be combined through
the loss function or through a parametric class of
prior distributions. More work needs to be done
vhich allows shrinkage toward log-linear models
ind which makes more accurate calculation of PEB
confidence intervals for Poisson problems. In short,
preliminary results are very promising, but further
work must be done before PEB can be regularly

ipphied in NPRDS failure rats estimation
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ABBREVIATIONS AND NOTATIONS

NPRDS h iclear Plant Reliability Data System
MLI imum likelihood estimator
PEB ametric empirical Bayes
IS
Sl
variance
) u 1s distributed as (
Independent
Independent identically distributed
Normal distribution with mean u, vanance
Poisson distribution with mean and variance A
Gamim, A) Gamma distribution with mean m, variance A
NB(m, V) Negative binomial distribution with mean m, variance V
E() Expectation operator

Variance operator
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THE APPLICATION OF STEIN AND RELATED
PARAMETRIC EMPIRICAL BAYES ESTIMATORS TO
- THE NUCLEAR PLANT RELIABILITY DATA SYSTEM

1.

report is the result of a preliminary

I the applicability of Stein and
)’ to the Nuclear Plant Reliability
System (NPRDS). The work has been

coniract K-7720 between EG&G 1d

\ I Texas, Austin. The fou
I iua ! eriec Ol Ising
nstributions Slein estimation
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ONer ind all the data ar sed to
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1sed as a Bayesian prior
ymbined with the data from
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r This posterior dist 1butie
¢ parametr mpirical Bavye
on fo he Kind of component
't the PEB distribution is for th
taimnties n 1 probab
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(PRA). The tecnnique s stan

B

INTRODUCTION

PRAs, but the distributions used have often been

ither subjective, based wholly on expert opinion,

L

t1 2 Hve n 1) . vel
Or partly subjective, based on a subjectively chosen

prior plus some data. The PEB distribution is more
lata. A minor refinement

would be to widen the PEB disiribution somewhat,

directly based on real ¢

account for the uncertainty in ing the

prior distnibution. This might be important when
the data set is small. The amount of widening could
be determined by matching (say) the 95% point of
ition to the upper end of the 90" interval

n Section 3. Use of the PEB distribution for

opagating uncertainties 1s mentioned here, but
vill not be considered in the rest of this report
A second use of the PEB distribution is simpl
SN the component’s failure rate, by both
a int estimator and an interval estimator. These
mators are developed in this repert. The point
1lators are then compared ) (Ne us 1X
im lik 1 estimators (MLEs), using data s
it sin NPRDS data. The PEB point esti
mates a en close to the MLEs, but their overall
itistical properties are generally somewhat better

1an those of the MLE. This favorable conclusion

provides indirect support for using the PEB method

We now give, in detail, the background and
definitions needed to understand the results of this
report. Stein's work (1955, 1961) dealt only with

;

normal random variables having a common var

empirical Bayes methods have

used to generalize Stein’s rule in three direc
tions. Efron-Morris (1973, 197%5) and Morris

(1983b) use PEB methods to derive estimators for

rormal unequal variance problems. Morris (1983¢)
derives PEB rules for nonnormal but equal variance
function problems. Morris (1983a,b) suggests PEB
confidence intervals for normal equal and unequal
vanance problems. We review these generalizations
to help motivate the PER estimators we derive for

nuclear data




The Efron-Mor

unequal vanance

"t
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w Niu V.

Ihis might result, for exar

analysis of variance (ANOVA) with n; observations

for treatment

then the MLE for m;,

n

1
|
¥ N
n 1)
ll I

has Distribution (1) with

o)

o“/n;. To motivate the PEB estimates, the y;

» assumed to have prior distributions

ind
A« N(m., A), I Lariad (3)
!

The marginal distributions of the X; are inde

pendent with

X : N(m., V. + A), 1 . (4)
| i |

Furthermore, the y; have posterior distributions

.l X, m., A~ N, (1-B)WV]
| i

i i i
where

(1 -B)X. + B.m

10 i

and

T'he posterior mean, ui.. is a compromise between
the prior mean, m;, and the observed MLE, X;. The
amount of compromise, or shrinking factor, B;, is
determined by the ratio of the sampling variance,

Vi, to the marginal variance, V; + A.Small V; give
small B;, which causes .Al. to be close to \: Large
V; make B; close to 1, which forces ,.I. close to m;
Also, a large prior variance causes all the B; to be
near zero, so more weight is given to X;. On the
other hand, a small A forces all the B; to be near
| and all the .4: to be near m; In other words, ,4:

weights m; and X; according to the relative precision
‘ !

of each

PEB estimators for the y; are constructed by
using Distribution (4) to obtain estimates (m;, B))
and then substituting for (m;, B;) in Equation (6)
I'he following iterative procedure (Morris, 1983b)
defines one way to estimate m = (my,...,mg)" and
A. Given A, calculate

the empirical Bayes weights

Wi 1/(V; + A)

the weighted regression estimate

ol m

o= 2Z2’W2)! Z27wx

—

where the weight matrix W
diag(w;), Z is a known (k X r)
design matrix, and X

(\I. .\k’

the weighted average of squared
residuals

S
S Z\\ (X.-m.) z:\\
0 i i

the weighted average of

sampling variances
E w.V E W
11 i

the unbiased estimate of A

o 2
(X. -m.) -V
i i i




Repeat steps | throu'{h S until A coowry s, If
A < 0, replace it by A = 0. Mow defie th PEB
shrinking factors,

kot-2
ﬁn ) ur ! 2 @
Vi + A
and the PEB estimator
W = (1 -Bi)xi + Bimi‘ ('4)

This formuiation includes several special ca ¢s.
When the samphng variances are equal, .e.,
Vi = Vurn; - nfor the ANOVA problem, (hen
the problem is called an **equal variance' pro’slem.
There are three types of equal variance pre olems
corresponding to differine knowledge of th:: prior
mean. If the prior mean m s known, then it does
not nsed to be estimated, sor = 0, @1 = m, and

~ )5 - (k - 2)V

B (15)
(.\'i - mi)

L

is the 'ames-Stein (1961) shrinking factor. We are
not forcing & = 0 here. If g is unknown, but the

m; av: equal, m; = m, thenr = ! m; = X, and
651 (k - 3)V (16)

which is Lindley's (1962) niodification of Stein's
rule. Finally, if g is unknown and m; # s, but the
m; fit some regression pattern, m = ZP. where 7
is a known (k X r) desigh matrix and f is an
unknown (r X 1) vector of regression coefficients,
then f# can be estimated using ordinary least squares,
ie % = (Z’Z)" Z'X. to give f} = Zﬁ as in
Equation (9).

These equal variance rules dominate the MLE in
the following deci<ion theoretic sense. If the loss
for estimating p = (uy,....ux)" by dXx) =
(). ... d (X))’ is given by

k

L, 9(X)] :E-—-——V——-— (17

th :n the risk, i.e., the expected loss, for Stein’s rule
s

Rigf) = k- (k -1 - 2)5“13 : (18)

Itk > r 4 2, thisis less than the risk of the MLE,
d(X) = X, since

R(ud®) = k . (19)

Stein's (1955) well known theorem on the inad-
m.issibiity of the MLE when k > r + 2 follows
from Equations (18) and (19).

When the sampling variances are not equal, i.c.,
Vi#V or n;#n, this problem is called an
“‘unequani variance’’ problem. Paralleling the equal
vanance Case, differing knowledge of the prior
mean results in three types of unequal variance
problem:

The six normal cases are given in Table 1. In all
cases, 0% and the n; (hence the V)) are assumed
known and A is unknowa. Cases A, B, and C are
the “‘equal variance’ problems. Cases D, E, and
F are the unequal variance problems.

There are three differences between the equal and
unequal variance rules. The main difference is the
use of weighted averages, with weights proportional
to the inverse of the marginal variances, for the
unequal variance estimators in place of the usual
averages used for the equal veriance rules.
Secondly, since the weignts depend on ihe unknown
parameter A, the unequal variance rules are derived

Table 1. Six cases in the estimation of k
normal means

A. Vi = V(n; = n), m; known (r = 0)

B Vi=V(m=nms= m ukkown (r = 1)
C. Vi = Vin = n), m #m unknown (+ > )
D. V;# V(n; #n), m; kiown (r = 0)

E. Vi#V(n #n), m = manknown (r = 1)

F. Vi#Vin #p) m *munknown (r > 1)

SISO S—— W e e+ ettt et e
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(NPRDS) (1979) he NPRDS dat:

proposes PEB estimaiors for the
inction Poisson case, 1.¢., for the

Ihe X; given A; have means A;

iction V(i) A/

iriance

Gami(n a gamma

random variable with mean m and

ginal and postenor

Distributions (24)

the marginal distributions of

negative binomial distributions

1

and vanance m/t + A;

A iInd NB(m, m/t + (26)

B
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strnibution
gamma
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with posterior means
B)X. + B

This rulr looks similar to Ste. ‘s rule with the

Lindley modification given in Eq  tions (14) and

(16) for the equal variai..e normal pr. olem (Case B

I'able |} The difference is that Equation (34) takes

imto accovr* the functional dependence of the
If X and S are defined a: variance on tae mean for Poisson variables

If the NPRDS data could be modeled as equal
varignce Poisson data, ‘en we could use Morris’
rule. However, the NPEDS data do not come from
a designed experimen: with equal t;, but from
operating power planats; heace, the times on test,
tj, are unequa!. The NPRDS problem, therefore,
requires the development of an unequal variance
fu ctioa Poisson estimator.

In Section 2 we derive and evaluate an estimator

fo the uneoual variance functivn Poissoa problem

ther Morris’ PEB rule i us ng pa-z2nletric empirical Bayes metnods. Ip
segtion 3 we report work of Morris (1983a,b) on

PEB confidence intervals for normal problems and

(1-BXx + BX suggest how s ‘ntervals might be used for Poisson
|

probl>ms. 'n Section 4 we describe and report the
results of Monte Carlo experiments used to com
pare the MLE and the PEB estimators. Section §
contains cur conclusions and suggestions for fur-
the: work. The Appendix contains the results of
several siniulations which illustrate the effect of
PEB estimation on individual component estimates.




2. PARAMETRIC EMPIRICAL BAYES POINT ESTIMATORS
FOR COMPONENT FAILURE RATES

butions (35) and (36) tha

il

PEB est
omponent risl
SAvings
estimator t

(1 -B)X. + B.m (38)

2.1 A Parametric Empirical Bayes
Estimator for the Unequal
Variance Function Poisscn
Problem

I'he parametric empirical Bayes (PEB) methods

of Efron T I (1973, 1975) have theur

background in the v of Stein (1955, with James
1961) on the timatnon of the mean ol

multivariate norma justifving Stein’s estimator,
Efron ana Morris view it as a parametric equivalent
of Robbins’ (1955) nonparametric empirical Bayes

I'he marginal distributions of the X; are
(NPEB) (see Morris, 1983a,b). This viewpoint helps

them derive a more general theory that can be used nd
ind

in cases other than that of Stein. For example m, A «= NB(m,

Section ! recounts the Efron-Morris PEB

YO f Stemn'cr | 1 ' 11 i T
geNetaiia )t SREIH 5 TN MRCQUSY Varianc ere NB(m, m/t; A) signifies a random
orm 14 1 i Orris DI 110 { ' L 4 L L .
ormal probl and M ipplication 1o 1able which has a negative binomial distribution
}

ual varna e P SON cas In this section, we¢ ¢ 41 1 o
equal variance Poisson ca m 1011, WE USe with mean m and variance m/t; + A

]
similar Y\'~‘f‘.\“\l\\!~‘ nstruct a PEB estimator

the uneguail varance ] ) [ obler

ira he normail case with 1, we con

11
11K
uct PEB estimators of A; by using Distribu

bution (21

3

(40) to obtain estimates (m. B;) and then
tbstiiaiing ! :, B;) in Equation (38). Th
following iterative procedure defines estimates of

m and A. Given m and A, calculate

I'he empirical Bayes weights evaluated
| kK where the t; are known and the A; (m, A)
are to be estimated. The mean and variance of X; g
given A; are E(X;|A;) A; and Vi(4;) = Var(X;|4;) Wi wi (m, A) I/(m/t; + A)
A:/t;, respectively. The conjugate priors for the A;

l'he optimal linear estimate of m

a q ~
d ) (4
m, A 5 Gam(m, A) | ' 2 :“\\‘ L Vi <)

where Gam(m. A) continue fer to I'he weighted average of squared residuals

distributed random vanable

variance A ol S 2:\\,!4\: "':1: Z Wi (43)




4. The weighted average of sampling variance Lemma 2: The estimator m has mean m and
g !

functions evaluated at m, with Vi(m) vanance | E Wi (V + A)’k. The estima

m/t; tor m 1s the optimal linear estimate of m

F Proof: Each X; is an unbiased estimate of m; hence
vim) 2,“1\5“'” 2 b so is) ¢;X; for all {¢;} such that \ G 1. Let

'he unbiased estimate of A 2
Q E ¢. Var(X.) - & S ¢.-1)
1 1 -t |

=
(X -m)” - V.(m)
i i

E ¢.“ [V.(m) + A} ”‘E c.- 1)
I | |

S - V(m)

2c.[V.m) + A) -6
¢ L0
steps | to § are repeated until (m, A) converges ‘

I'hen, the PEF shrinking factors are calculated as

which implies that
V.(m)
8*/2[V.(m) + A]
|
But

g*
1 Z .. Zl [V (m) + A}

implies that

2 ZI [V.(m) + A],
(1 H‘)\. B.m, i SN )

In order to prove the following lemmas, we
'

Finally, the PEB estimates of the posierior means
arc

assume the weights are evaluated at the true (m, A)
\ ;
instead of (m, A). This allows us to view the W; as 1/1 .‘”” Al “1

constants when taking expectations given m and A 1 1/[V.(m) + A)
. 1

smma 1S w (Vim) + ) Hence m has minimum variance among linear
¢ d | (I g
' unbiased estimates of m. Also

) >
Var(m) E w.  Var(X.)/( E w.)"
1 | |
> ] —-\ ]
E w. (1/w )/ 2 w )
1 1 i
1 E wi. QED

/'Mlv“




Lemma 3. EV;i;(m) Viim)and EV (m) Vim)
Proolf

EV.(m) Em/t m/t. V.(m)

1

EVim)

L 2
Z“;l \l (m) 2“1 Z“. \2 (m) 2"
V(m) QED

k-1
Lemma 4. ES M [Vim) « A}

Prool

(Vim) + A)

Lemma 5

Proo/

ES - EV(m)

QED

Last, we show that the PEB rule given in

Equations (41) through {47) reduces to Mornis’ rule

[Equations (30) through ‘34)] when t; t for alli

Lemma 6: If t for all i, then

(uym

Proof: (1) to (iv) are obvious and (v) follows since

k -3 V(X)
B QED
In practice, the estimator is improved by forcing
0 if the

A to be nonnegative, i.e., by setting A
calculated A < 0

I'he unequal variance function Poisson estimator
defined here is similar in certain respects to both
the Efron-Morris normal unequal variance rule with
I 1, and the Morris equal variance function
Poisson rule. Its derivation almost exactly parallels
that of the unequal variance normal rules, and it
reduces to Morris’ rule when the variance functions
are equal

On the other hand, it also differs significantly
from either of them. It differs from Morris’ equal
variance rule since it allows the t; to diifer. It dif
fers from the Efron-Morris normal rules since it
accounts for functional dependence of the vanance
on the mean; i.e., it assumes Poisson as opposed
to normal sampling distributions

2.2 Evaluation of the Parametric
Emp.rical Bayes Estimator—
Comparing the PEB Estimator
to the MLE

In order to compare the uneqgual vanance func
tion Poisson estimator to the MLE, we define the

posterior component risk of an estimator A (X) as

R\(A_» R][¢§. m, A), A'}

(X, m, A)}




We also define the posterior component relative

savings loss of A as

RSL;4) R\l:[Q\, m, \»‘Ayi
J

R.(A) - R.(A*)
1™ -

R.(A°) - R.(A%)
S R

where A°(X) X and A* has components A

I'he following facts are easily shown

-~

[B.(m - X.) - B.(m - X.)]”
| i ] |

|

& - X))
”l““ \ ‘J

I'hese calculations are
Morris (1973)

| |
similar to results of Efron

Table 2. Globe valve (leaks) —

It follows that if

(m - X))
B ——— 2B.

t{m - X.)

then the PEB estimator A; will have smaller posterior
component risk, and relative savings loss, than the
MLE, X;. Since m is unbiased for m and B; is
approximately unbiased for B;, Inequality (48)

should hold quite often

Results of Monte Carlo experiments comparing
the PEB estimator and the MLE are given in
Section 4

2.3. Application to the Nuclear
Plant Reliability Data
System—Globe Valve Leaks

I'he PEB rule is now applied to NPRDS (1979)
data for globe valves. The failure mode of interest
1s “‘leaks.”” Classes are distinguished by their
yperator tvpes. The data are given in Table 2. The

MLE and PEB estimates are given in Table 3

lhe class variance functions are very unequal
cause the times on test range from 0.552 x 106
) 235.902 x 109 calendar hours (approximately 63
oy

» 27,000 years). Since the t; vary significantly so
do the shrinking factors, B;. The shrinking pattern

data from NPRDS (1979) represent cumulative totals through 1979.

Operator Type
Manual
Pneumatic/diaphragm/cylinder
Electric motor/servo
Mechanical
Solenoid
Hvdraulic
None/other /undefined

Explosive/squib

Number of Number Times on
Components of Leaks Ié-\( t
cal. hrs

I f (10

i )

236.902
115.944

36




Table 3. MLE and PEB leak rate estimates for globe valves
m 1.20265, A 1.16918, k = 8,
{(m,A) converged in 5 i“erations

Shrinking Factor

m/1
k-3 I
PEB —_—

k-1 m/t
(1 “i’\l + |

0.1300 0.1342 (0.003088
1.3541 1.3532 0.006281
O.8150 ().8225§ 0.019416
1.7112 1.6679 0.085180

718 0.113129
4 1445 3.3491 0.270358
0.0000 0.4107 0.341477

0. 0000 0.5590 0 4648136

4.0

Failure rate
(Iedks/106 calendar hrs)

INEL 4 3005




|
alendar
Y years belq

farure more fa

| ha 100 ¢

ually Ag does equal zero, since the explosive
{ | ClI

1Or these operator

types are not operated valves will not leak by virtue of the

usible explanation for the lack of design. This observation highlights the need for cau

or these component types is the tion when applying any type of estimator applh

ing. In fact, assuming / cable engineering information about components
! N - !

used for should be incorporated in any statistical analysis




3. PARAMETRIC EMPIRICAL BAYES INTERVAL ESTIMATES FOR

COMPONENT

I'his objective is easily the most ambitious ol the
project. Empirical Bayes confidence interval theory
is in its infancy. Morris has only recently (1983a,b)
defined interval estimates for the equal and unequal
variance normal problems. Though these intervals
represent a major breakthrough, there still is mucl
work to be done in this area. Here we will report
on Morris’ advances and then make some com
ments as to how his intervals might be used tor
calculating confidence bounds for component
failure rates. We then illustrate one of our sugges

tions on the globe valve data analyzed in
Section 2.3

For the situation described by Distributions (1)
through (5), Morris (1983b) defines an approximate

empirical Bayes confidence interval given by
(49)

where y; is calculated using Equations (8) through
(14), and

-

v.(X m.)"

i |

|
k w.|Z(Z'WZ) Z7]

| i

{ '

(r; estimates values ol for

component 1)

and

approximates the variance of B;)

The interval (49) is claimed to contain w; with
probability | - a 29(z) - |

posterior variance of u;, given X;, m;, and
| ] | |

\, i.e. Vi(1-B;), could be estimated by V;(1-B;) and
| estimate of w;. The

i
Interval (49) is wider than the resulting interval
5

used to create an interva

cause s;= accounts for the additional variance

FAILURE RATES

contributions that result from estimating m; and A
-

In short, s;= is the appropriate measure ol variance
1 '

associated with the point estimate y;

If component failure rates can be described, as

in Section 1, by the Poisson model

ind 1
A v — Poiss(A L), 1
i i t 11
|

then one of several normal approximations could
be used in order to take advantage of Morris’
intervals. Normality might be assumed for the
mean, variance stabilized, skewness stabilized, or
natural parameter scale, each being justified by the
central limit theorem applied to maximum

likelihood estimates

For exampie, if we use the variance stabilizing

transformation, Y Xi, M A;, and
i i i i

V; 1/4t;, then approximately,

ind
\)‘ \(-,Al_ \‘,‘ |

which is exactly the assumption needed to apply
Morris’ theory to find EB confidence intervals for
the y;. Approximate 95% PEB confidence intervals
for the A; are found by squaring the upper and lower
bounds of Interval (49). The results of this pro
cedure are given in Table 4

For discussion purposes we focus on upper con
fidence bounds for Categories 7 and 8. Approx
imate 95% PEB upper confidence bounds are
calculated as

Category
175 g /”\)( §7)°
. “
[0.27099 + (1.645)(0.430175)}¢

b P e ]
(0.9786)= 0.95

Category 8
5
(Mg *+ 20 9§ SR .
10 IR733 4+ (1.645%0 <<1x!“)|-

3
(1.2984)~ | .685Y

The corresponding standard upper 95% confidence
bounds (Johnson and Kotz (1969), p. 96) are




Table 4. PEB 95% confidence intervals for globe valves
k = 8 m = 0926936, A = 0.321288, convergence in 10 iterations

0.08966
14852 | 35148
§5148 (.81560

1. 64566 2 65592

2. 30083

6.33969

241 3

2. 16945

the true failure rate if sampling of the data is
repeated with fixed failure rates. The PEB con
fidence bound is based on the probability that the
random upper bound exceeds the random true
failure rate if sampling of data and parameters is

repeated

This simple example illustrates the potential
improvement of the PEB upper confidence bounds
over the standard upper bounds. We need to check
coverage probabilities using simulation. Also, we

PEB upper confidence bounds are recommend that confidence bounds be developed

significantly less than the standard upper confidence more specifically for the Poisson problems. Though

bounds. The confidence levels of the two bounds

this objective is the most difficult, it could also be

10 not represent the same probability calculation the most productive and useful to component

I'he standard confidence bound is based on the fatlure rate

ound exceeds n this important field

estimation. We hope to continue work

I‘.“.\“":‘!' that the randon ipper b




4. MONTE CARLO COMPARISONS OF MAXIMUM LIKELIHOOD AND
PARAMETRIC EMPIRICAL BAYES ESTIMATES OF COMPONENT
FAILURE RATES

generated using

1.026 A\ 1.024).

nw al

the MLE. In the
't several Monte Carlo studies p Observed failure rates were simulated using

X> ind (1 1,))"»\-*!11-\5 ), 1 i, b
i ] J | i

4.1. A Short Simulation Study

. S S
Using the simulated data (X X"} PEB
S S * 8"
; | estimate ! : . hes '
Using the NPRDS data for globe valves recorded we——— Ag) were calculated
according to the procedure outlined in

1 study was as follows Equations (41) to (47)

n Table S, a short sitmulation study was conducted
I he basic procedure for tl

]

Table 5. Data for globe valves (mode of failure: leak)

Observation Number of Number of Failure

:
. Components Failures Rates!

Operator Type t n; t X;

['imes*

Manual 293.017 §.922 } 0.133
45 616 9YY 3 0.923

2.066 3 1 188

1.210

1.258

0,000

1.315

0.000

109 calendar hours

Faillures per m calendar hours

Other, nong i mdetined combined

| 3
X = =2 X




Table 6. Summary of average losses for
MLE and PEB estimators for each
failure rate (globe valves data
leak mode of failure)

Average

h

Losses Losses

(MLE) (PEB)

). OO0 000144 0.00651
2 to 4 are given in T: 03904 0.00152 0.15808
1.40652, Experiment . ) 04916 0.53078 1.34727
06172 0.0043R8 ).02680
),21169 0.18776 13098

n pointed out that PEB can do much
worse than the MLE; for example, Experiment 2 23712 00102 00112
has MLI iverage lo of 0.00152 and PI B iIverage :(‘i.‘l 06823 01986
f 0.15808. Naturally. this causes concern for 33046 08895 O8870

11187

sted in applying PEB. We offer sever: : /.33 00073 00081

his concerr i 44217 03626 02884

54723 18763 12505
65556 00539 00519
70959 44694 23141
79063 (07844 07530
79812 ).09058 8126

).91587 1.22050 97810
94388 03447 02960
00920 05343 05272
08046 55688 81674
08921 0.27821 22475

29132 ).00407 ).00406

14945 02777 '} 02754

{ ; 40652 02210 021758

:\n’;lll.ﬁ es away from the small y 13794 05440 05578

M (1972) have suggested A 85540 74838 45302

lation Rules’ (LTR) to protect ) 96735 0.46672 83273
age. Simiar ideas could be

sson problem 2 25489 0.01090 01079

26682 25199 20477

arger 40901 01183 01192

omponent 319659 05400 ).05306

associated I 4.83535 40672 47044

§.331254 08K} 0899

million calendar hours




Table 7. Example of cclculations for Experiment 23 in Table 6;
i3 = 1.40652 * 10°

PEB Losses

00067

0.0491

‘™
Hid

(4R 7 10 048

8055

data and the parameters (see Morris, 1983a,b). This

more 1m wveraging process could be estimated by repeating
example, the fact Steps 1 to 4 a large number of times and then
r Experiment as wveraging the component losses for these repetitions

han iwverage los nore (see Subsection 4.2.2). Morris’ results for the nor

he fact that the PEB average ki case (1983b) suggest we could hope to improve
neral, when average ipon the MLE componentwise when taking this

MLE ¢ PEB average. Of course, componentwise domina

lomination tion implies domination for the sum of component

$K§

Ihis discussion is summarized in Table 8. For
wh method of evaluating estimators and tor com
ponent and total losses, answers are given for the

issible to improve upon the MLE?

he data and th 1 all cases when the MLE can be dominated
ations in Sub additional information is needed which connects in
y dominate some way the independent sampling problems
Sterior ris assumed for Case (A}). The MLE can be improved

for Case (B) only because the loss structure, sun

aluation of Stein-like estimators can be { component losses, connects the individual

Efron-Morris (1975) estimation problems. For Cases (C) and (E) addi

tional information relating the components comes
PEB evaluation of an estimator involves in the assumption of a parametric class of prior

loss over the distribution of both th distributions. Cases (D) and (F) relate the




Table 8. Is it possible to improve upon the MLE?

(Samphing)

D
Yes Yes

(in regions of high hikelihood)

Baves (Joint)

ymponents 1n both ways by assuming total loss and

prior structure. In short, the MLE can be improved
ipon only when one 1s willing to make additional
issumptions. However, if vou are willing to make
the additional assumptions, the possible improve
ment can be substantial, as illustrated by the Monte

ro resulls given in the next subsectior

(! H!»\‘ 4 H!m

4.2. Two Monte Carlo
Experiments With Data
Simulated to Look Like
NPRDS Globe Valve Data

B/t

In this
Monte Car I
MLE and PI B estimates using frequency average Simulate observed failure rates using

y onent sa IT( St S ind )
i juared el s (1/1. )Poisson(A

! ]
dicted s e discussion i ¢ simulated (A

redicte ; \T‘l should be similar to the
the PEB timat actual NPRDS data (A; \yr' aiep
ML plied he simulated data (X°, ) in order to

N by
calculate A then X and AJwere compared as
|

AIZOTHNIMm we use
fimaie
NPRDS data w
used the NPRDS
lable 2. Results of
ven in Table 3, ex ept for the

alculated from the A;. the I{‘




4 2.1 Evaluation With Frequency Averages of
Sums of Component Squared Error Losses. |

fable 9. Average total loss comparison of MLE and PEB estimates




bl

4.2.2 Evaluation with PEB Averages of Indi
vidual Component Squared Error Losses. |

this experiment

W
WEer

illy, wi
XX

x‘\_:,,.
NI repetitions
repetition of Step 5 for

the PEB risk of

ol

¢estimale

th

I

Table 10

Random No
No. of (
\‘.
No

Seed
omponent ¢
of }«’[;\n"!!n‘l' of A

i R,';\('|!l‘i,\~ per A

number of PEB «

repetitions ol

averaged

PEB :

both Steps 4 a
component
Step 4,

with

cacn

the estimators

iverage of the

the N

vhen using

Il\H k)

A863 81030

HeROTICS

1 OO0

X

Average (

losses

NX |

I hese ive

averaged individual component

nd S

TAECS

om

ILE is

alecgory

| osses

MLI

) 00052

N176

PEB

0.00056

001158

0.02108

(. 189494

().26254

() S43iIR0

206

1 1)

PEB

|

uits of thi

Again, th

than the

report the experi
PEB
viLl

the

srent 1nit |
Crent mitial seeds

stimators are sigmficantly better

I'he PEB has smalle

eighnt

average loss for seven ol
ategories in both tnals. Th

PEB relative MLI

a decreasing | tme

¢ percent ethiciency

of the to the

1S approximately

unction of the on test for the

ategory nis n SUrprising since it 1s those

categories times on test which gain the

most from shrinkage toward a global mean

he
value

I'he results of Experiments 1 and 2 strongly favor
PEB methods. It

Ol

you are willing to combine the

estimation true fairlure rates in either the loss
function or the prior, then you should use PEB, not
MLI

assumpuions is

ML

If, however, you insist that neither of these

valid, then you should continue to

the

USC

Average category loss comparison of PEB and MLE estimates




Table 11. Average category loss comparison of PEB and MI E estimates

715 S800)
1 OO0
Average Category
L.osses
MLI I'EB % Efficiency
0.00082 0. 00087 9l
0.01168 0.01155
0.02221 0.02124
0.21081 (. 18664
0.18064
2 08642 1.98046

U 'i'|:( i.,.‘l\.‘

)

() ‘AJA..E' I'J‘Jf\:l

1.82039 3.14921

PEB estimates that failed to converge




5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Application of Stein and related estimators
NPRDS requires development of estimators that

account tor various deviations from Stein’s normal

equal variance problem. Estimators must

accommodate
Poisson sampling distril utions
Unequal times on test
Contidence intervals
Shrinkage toward regression surfaces

For any one of the above deviations from Stein’s
problem, good PEB estimators have been proposed
Morris has proposed PEB estimators for the not
mal problem with added features 2, 3, and 4
Results of this project have dealt with deviations
I, 2, and using normal approximations, 3, Further
work needs to be done in which all of 1 through
4 are simultaneously allowed. In particular, we need
to develop estimators and confidence intervals for
the unequal variance function Poisson problem with

shrinkage toward a log linear model

in this direction, we suggest the following
framework. For i l,....k, assume the distribu
tion of the observed failure rate, X;, given the true
tallure rate, A

T 1
nd |
w = Poiss (A1)

ind  assumd

distrnibutior

ind
¥ wamim. .eam. )

parameter and

icar model with

tor of explai

U “‘,) \n r-vegtor ol

[ hese distributional assump

or distributions ars

(1 -B)X. + B.m
| 1 | i

a weighted average of the observed failure rate,

and log-linear mean, m;, with weight

I'he marginal distributions are

ind |
X.|6, @ <> NB[m = + a)m ]
| |

|

I'hese distributions look like Poissons with log
linear means and enlarged vanance factors. The ve
tor of regression coefficients, f§, and the lack of fit
parameter, a, can both be esimated using Dis
tribution (53). The estimates (f8,@) can then be used
to define PEB point and interval estimates. These
and other ideas need further investigation to be

useful for estimating component failure rates

l'o conclude, we review our progress on the four
objectives of the project. Objective | required
derivation of Stein-like estimators for distributional
assumptions other than Stein’s normal equal
variance case. We successfully derived estimators
tor the unequal vanance function Poisson case with
shrinkage toward an unknown constant. For the
new theory to be useful, we still need to work out
the details of shrinkage toward a log-linear model
Objective 2 called for the evaluation of the new
estimators. We found some theoretical success by
looking at posterior risk functions. Our simulation
results were also optimistic. More work on this
objective should be directed at specific results for
NPRDS data sets. Objective 3 concerned develop
ment of PEB confidence bounds. Unfortunately,
theoretical results for this area are very difficult
We reported the current state of the art, which is
restricted to normal problems, and suggested several
ways in which we could make normal approxima
tions. We hope work on this objective can be
ontinued. Objective 4 called for Monte Carlo com
puter simulations to help evaluate the new
estimator. Computer programs were developed to

simulate unequal variance Poisson data with failure




NPRDS la sets ! do Sp¢
ve feel that more con ated models apprq
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APPENDIX A
SIMULATED ILLUSTRATIONS




APPENDIX A
SIMULATED ILLUSTRATIONS

onent failure

n FORTRAN-IV
CDC 646600

h uses IMSL (¢
GOAMR and GGPON

Heger (1983)

w the analyses were extra

iata obramned i«

NPRDS 1980 and 1981 Annual Reports (1980

NPRDS produced failu
YOREeNts reiale { 1] .
olinte. Hia sataais 2ot A-1. Globe Valves Experiment
NPRDS da

w—— y Data. Populat S12¢ ncy of failure, and

OAdS Were re tor globe valves

Salt

node of leak. The source of data was

the NPRDS 1980 Annual Reports (1980). Dimen
SIONS Wi tinguished by their operator Lypes
Lypes wel noted and are histed in

due Lhe mall number of
other, none, and undefined

the data from these groups wer
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method are locatec
PEB estimates of the
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izontal
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tor both me
the [rue

PEB

mean, m

Summary of results for globe valves (mode of failure: leak)

f 1

\;(HHH‘H'
to 293.017 x 109

i

¢ vanatton int

h
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Hure estimates tor

ranure
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line. The vertical
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PEB
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Table A-2. Calculated square error loss (globe valves, leak mode of failure)

0.049 x




A-2. Gate Valves Experiment

Data A M

A-3. Pumps Experiment

Data \

ind exper

the 1980 N

criment per W
PRDS Annual Reports (1980)

pumps under

lable A-6. Based

mn the data « | ¢ nor distribution mean
Results. Simulated fa m|X) s 1.90 and the pri riance (AX)
d PEB ' -

MR | i Results. Using t
PEB nat \ 1« nulatcd At sim
MLE anc

Table A 3. Data for gate valves (failure mode: leak)

X

(). 148
0.640
0. 000
| 079
1.147
0,000

0.0

() 408

() (XN)




Table A-4. Summary of results for gate valves (mode of failure: leak)

[rued Simulated
Failure ) tjon Failure ML PEB
Rate mes,’

Frequencic Estimates Estimates,*

"[
0.002
C.652 1 S ) 0.680
0.029 0.132
0.043 16.689 0 0.029

243 3488 | 287 0.272
0.019 0.13) 0.184
2. 161 0169

453

0.166

ndar hours

per million calendar hour

Table A5. Calculated square error loss (gate valves, leak mode of failure)

PEB

loss

0.59 x 1070

0.77 3




Table A-6. Data for 500 - 2,499 GPM pumps (mode of failure: leak)

() (XKN)

OO0




Teble A-7. Suminary of results for 500 - 2,499 GMT pumps (mode of failure: leak!

l' | 1
Failure Observat
Category Rates,* ET0
| I‘
| {1 146 ) 353
3 1\.’ 0 !"w
O 001 132
0.451 0.2%
b 1.638 ).O7S
| Simulated by the program
{ AL enda 10U
Failures »er million calendar hours

Table A-8. Calculated square error loss (pumps

Simulated Failure

100

C ategory Rates
(.146 x 10°°
2 | . 495 10-0
001 106
! 0.451 x 100

l“(\

Simulated

Failure

Frequen

1es

500

) S

6.9

2,499

0. 008,

1070

024

PEB
Estimates

(.285

0,454

PER

1.oss

gpm, leak failure mode)

4.64 x 102




m=1.90

A-4. Internal Combustion
Engines

Table A9

PEB——e

INEL 4 3002

theres rom the 1980 NPRDS Annual
s (1980) e data listed in Table A-9 are
Based on the )
the prior mean for the observed failure
(mX) is 14.26 an he variance (A|X)
244 .46

Results. A survey of Table A-10 data reveals that
Il cases the PEB estimators are closer to the
han those of MLI I he
r losses are compared in Table A-11. A

i the two methods i1s given

|

i
|
i

ated failure rates

S1MI

gure A-4

Data for internal combustion engines (mode of failure: won't startmove)

() bsor

Hon

Number of Number ol I.u(n"‘
Components, Failures, Rates,®
) f; X

0.998
14 0S8

10 268




Table A-10. Summary ~f results for internal combustion engines
(failure mode: woun't startmove’

lrue® Simulated

Failure Observation Vailure LI PER
Rates, lnnn.h 13 encies, Estimates,* Estimates,*
{ X Ai

A { | i

| i
0 0.000 0.402

14.060 13.640

0.000 1.479

2.703 2.804

12.820 10.320

Simulated by the program
109 calendar hours

Failures per million calendar hours

Table A-11. Calcuiated sguare arror loss
o x(internal combustion engines, mode of failure: won't start/move)

Sivaulated Failure PEB
Category Rates Loss

5§57 % 1070 0.24 x 107!

1076
106

10°6




m= 1426

INEL 4 3001
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