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ABSTRACT

In recent years considerable interest in determining the relationship
between the hydraulic conductivity of a rock fracture and its average
aperture has developed. The present study involved both theoretical and
experimental studies of the geometrical factors which influence gas
conductivity of rock fractures. Theoretical analysis of parallel plate
gas flow revealed that the gas conductivity of a fracture is the same as
for incompressible fluids and can be expected to follow a cubic law
relationship. Application of the cubic law to practical field test
situations, however, was found to be limited by uncertainties in flow
boundary conditions, nonlinearity of flow behavior, and effects of
fracture surface roughness. Quantitative assessment of uncertainties in
flow boundary conditions including elliptical injection boundaries,
secoidary intersecting fractures, and estimation of effective radius was
performed. Nonlinear flow behavior was also analyzed and the results
applied to measurements of gas flow rate through a single natural frac-
ture. Evaluation of these reiults suggested a general flow equation of
the form: -(dp/dx) = av + bv®, where a and b are constant coefficients
defined by a fracture's average aperture and surface roughness.
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RELATIONSHIP BETWEEN THE GAS CONDUCTIVITY AND
GEOMETRY OF A NATURAL FRACTURE

JANUARY, 1984

EXECUTIVE SUMMARY

The objective of this study was to determine the relationship between
the measured conductivity and average aperture of a natural fracture.
This relationship provides the tool for indirectly measuring apertures
of in situ fractures using borehole injection tests. Aperture and
aperture distribution is one of the principal fracture parameters needed
to characterize unsaturated flow in fractured rock. In this regard this
study is but a small portion of a larger study to develop the capability
for characterizing unsaturated fractured rock at proposed radioactive
waste repository sites.

A brief review of previous work indicates that very little experimental
data exists on the relationship between the aperture and conductivity of
a natural fracture. Furthermore, interpretation of existing data is
conflicting in part due to the lack of a consistent method for independ-
ently measuring the aperture of a fracture. This study was motivated by
the existing confusion.

Theoretical consideration was given first to deriving basic pressure-
flow rate equations using a parallel plate model. As gas is used as a
testing fluid in the unsaturated zone, special consideration had to be
given to compressible fluid flow. Results indicated that the fracture
conductivity for compressible fluid flow was essentially identical to
that for incompressible fluid flow for ali flow velocities of practical
interest. Nonlinear flow equations were also developed to account for
nonlinear effects associated with irregularities of the fracture walls.
While such effects could not be described precisely, dimensional analy-
sis was used to provide a usable equation.

Consideration was also given to factors influencing in situ measurement,
particularly with regard to deviations from assumed boundary conditions.
Factors considered included elliptical injection boundaries, such as
those created by nonperpendicular borehole/fracture plane intercepts,
and intersecting secondary fractures.

Experimental work was undertaken using a large block of granodiorite
containing a single natural fracture. Fracture aperture was measured
directly by measuring fracture volume and dividing by the fracture area.
This provided an independent estimate of fracture aperture which had not
been available in previous fracture flow studies. Fracture closure was
also measured independently and found to agree quite closely with
changes in fracture aperture as determined from fracture volume



measurements. This close agreement suggests that fracture closure is
largely related to improved mating of the fracture surfaces rather than
deformation or crushing of surface asperities.

Fracture flow rate was measured as a function of injection pressure for
apertures ranging from 200 to 600 microns using nitrogen gas as the
testing fluid. Both linear and radial flow field geometries were used
for these tests. Results indicated that the flow was generally non- 2
linear and well described by an equation of the form: -dp/dx = av + bv
where p is pressure, v is velocity, and a and b are constants given by
the linear and nonlinear conductivities, respectively. The linear con-
ductivity was found to be less than that predicted using a parallel
plate model although the reduction was attributable to surface roughness
and well described by existing empirical equations.



1. INTRODUCTION
1.1 Description

Fractures are important conduits for water movement within rock masses.
Rock fractures often contribute substantially to rock mass permeability
and porosity, particularly when the intact rock permeability and poros-
ity are low. Additionally, fracture systems often influence flow direc-
tions and flow velocities. Herein the term fracture includes not only
rock joints, or discontinuit es with no shear displacement, but al)
significant rock discontinuities characterized by a small but open
aperture,

Interest in the flow behavior of fracture systems arives in a number of
practical applications. Commonplace among these are leakage and stabil-
ity of dam foundations, mine drainage, slope stability, and well produc-
tion characteristics. Considerzble recent interest in fracture flow
pertains to siting of high-ieve' nuclear weste repositories. Such
repositories are generally sitcd in low permeability rock types whose
flow characteristics are dominated by rock frectures. Consequently
accurate estimation of contaminant leakage rates as well as travel times
and paths require assessment of the flow behavior of existing fracture
systems. As some repositories nay be sited within the unsaturated zone,
consideration must also be jiven to estimating the moisture potential at
which fractures drain and the capability for outflux of gaseous contami-
nants through drained fractures

While fractured media have often Leoen treated in terms of equivalent
porous media, this approach oecumes less desirable as fracture spacing
and regularity of fracture syc*ems increase. An alternative approach is
to stochastically model a fracture system using the frequency distribu-
tions of its primary parameters, namely: orientation, areal extent, and
conductivity. Fracture conductivity (see Glossary) is a function of
both fracture aperture and surfac: characteristics such as roughness and
contact area. In unsaturated “iow, fracture aperture al: o determines
the moisture potential at which a fracture will 4rain. Hence a means of
neasurin? fracture aperture distritutions is essential to a meaningful
stochastic fracture model.

At present, no satisfactory means of direct aperture measurement is
available. The effects of stress relief, blast damage, and/or drilling
damage enlarge apparent fractu-e apertures as measurcd along exposed
fracture traces. An alternative indirect approach is to measure a
fracture's conductivity and compute an assocsted aperture on the basis
of the relationship:

q = kg € gy(dn/dx)/y (1.1)



where q = flow rate per unit width of fracture, k¢ = intrinsic permea-
bility, e = average fracture aperture (see Glossary), v = density of the
fluid, g = gravitational acceleration, dh/dx = hydraulic gradient, and u
= the absolute viscosity of the fluid.

For flow between smooth parallel plates, k¢ = ez/lz, and equation (1.1)
becomes:

3

dh
q=H9 P (1.2)

Equation (1.2) is often referred to as the cubic law and has been
commonly used to model fracture flow. Considerable controversy exists
over the validity of the cubic law for rough natural fractures as ex-
perimental data are sparse and conflicting.

Much of the confusion regarding interpretation of experimental

data on fracture flow is attributable to the difficulty of independently
estimating the average aperture (see Glossary) of a fracture. Direct
measurement is difficult since the apertures of natural fractures vary
across the fracture surface. In previous experimental work, the average
aperture of a natural fracture has been determined by estimating the
smallest observed average aperture and then using measur ments of aper-
ture detormation (see Glossary) to determine relative changes in average
aperture. The difficulty of this approach has been lack of an accurate,
o+ even a standard, means of estimating the smallest observed aperture.
Secondly, the method tacitly assumes that measured aperture deformation
equals average aperture chare which may not be the case at higher
stress levels when contact area is large. The results have led to
conflicting conclusions.

Another uncertainty is the applicability of the cubic law to the flow of
compressible fluids, particularly highly compressible fluids such as
gases. Interest in gas flow arises from its use as a test fluid within
the unsaturated zone. Gas is preferable to water for this purpose as it
eliminates the need to consider the effects of gravity and partial
saturation although the thermodynamic character of the fluid expansion
must then be considered.

Further difficulties in application of the cubic law arise from factors
which influence the hydraulic gradient and hence the measured flow rate
in test situations. For example, nonlinear flow behavior has been
observed for rough natural fractures (Sharp, 1970; Iwai, 1976) under
pressure yradients characteristic of field test gradients. The hydrau-
lic gradient is also affected by the assumed boundary conditions. In
the majority of field tests radial flow within a single fracture plane
is induced by injection or withdrawal of fluid through a single borehole

4



intersecting the tested fractur:. Uncertainties in boundary conditions
arise from: ellipiical injection boundaries caused by nonperpendicular
intersection of the borchole axis with the fracture plane; flow
branching caused by intersection of the tested fracture with secondary
fractures; and estimation of an effective radius.

In this investigation the relationship between fracture conductivity and
average fracture aperture is examined both theoretically and experimen-
tally in an effort .o either validate the cubic law or provide a usable
substitute based on measurable fracture surface characteristics.

Factors influencing field applications as discussed above are also
studied and evaluated quantitatively. Details of the scope of this work
are presented in the following section.

1.2 Objective and Scope of Work

The principal objective of this investigation was to determine the
reiationship between fracture conductivity as determined from fracture
flow tests and average fracture aperture. This relationship provides
the basis for either indirectly measuring average fracture apertures
from flow test data or estimating fracture conductivity f -m direct
measurement oY average aperture. To this end the flow of ydas through
fractures was studied theoretically and then evaluated on the basis of
simpla laboratory tests.

Une of the first considerations was the applicability of the cubic law
to a nighly compressible fluid such as gas. The problem was evaluated
eanalytically and from this result simple analytical flow equations were
obtained. Additionally the range of validity of the cubic law for gas
flow was determined.

Uncertainty in radial flow field boundary conditions and their effect on
observed flows was a':0 reviewed ind quantified. Factors included in
this raoview were: elliptical versus circular injection boundaries,
intersecting secondary fractures, and effective radius.

Laboratory studies were then conducted on a si ;3ie atural frad ure.

The relationship between average and deform "* » wCture apertu) 2s was
studied first by measuring fracture volurm Al 'mition as functions
of applied normal stress. Linear and rad,. 1. eld fracture conduc-
tivities were then measured as functions of both injection pressures and
average fracture aperture. Unlike previous fracture flow studies,
direct and independent determination of average fracture aperture was
made by measurement of fra ture volume.

1.3 Previous Work

Previous experimental work on flow through fractures is limited, par-
ticularly for rough natural fractures. The following review of previous



work in fracture flow summarizes the major studies of flow through
parallel plate models and natural fractures.

1.3.1 Parallel Plate Studies

Much of the experimental data collected on fracture flow is based on
flow between parallel plates constructed using a variety of man-made
materials. The earliest comprehensive work on parallel plate flow of
water was conducted by Lomize (1951) who studied the effect of aperture,
surface roughness, and aperture variability (using wedge shaped and
sinusoidal boundaries). Similar experiments were later performed
independently by Louis (1969) with nearly identical results. A flow
regime chart (Figure 1.1) which identified five distinct flow regions
was formulated from these results. The cubic law (equation (1.2?) was
found to be valid for Reynold's numbers (R,) of less than 2300 and a
surface roughness index (S) of less than 0.033. Reynold's numbers and
roughness i dex are defined as:

(1.3)

X
"
n
t}?
<

and

(1.4)

w
"
Nl >
m

where e = average aperture, vy = fluid density, v = fluid velocity, v =
fluid viscosity, and » = mean height of surface asperities.

For boundary plates with a surface roughness index greater than 0.033,
the observed flow rate in the laminar flow region was reduced by a
factor C, which is inversely related to the surface roughness as given
by (Louis, 1969):

: 1
1 +8.8(5) 2

(1.5)

The surface roughness index of natural fractures is generally greater
than 0.033 (Léuis and Maini, 1970).
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Both studies discussed above were conducted on parallel plates with no
contact points between the plates. Romm (1966) examined parallel plate
flow through apertures as thin as 0.2 microns and confirmed the validity
of the cubic law when applied to such superthin fractures.

1.3.2 Rock Fracture Studies

During the past several years, a number of studies of fluid flow through
both natural and artificial rock fractures have been undertaken. Most
of these studies have been concerned chiefly with the effect of applied
stress on fracture conductivity and have not attempted to measure the
relationship between fracture aperture and conductivity.

One of the earliest laboratory studies of flow through natural fractures
(Sharp, 1970) examined one-dimensional water flow through a single
fracture within a granite porphyry. Flow rates were measured for four
different fracture apertures ranging from initial (normal stress equals
sample weight) contact to a maximum increase of 130 microns. Fluid
pressures were measured at several points along the flow path in order
to delineate the areal pressure distribution across the fracture sur-
face.

In all cases, Sharp observed that the flow rate was not a strictly
linear function of applied hydraulic gradient as predicted by equation
(1.2). Only the smallest aperture exhibited a linear relationship for
hydraulic gradients less than 0.5. This nonlinearity was attributed to
inertial losses and sporadic turbulence associatec with the irregular
boundar.es of the fracture walls. Indeed, with the aid of an injected
dye, Sharp was able to demonstrate channeling of the flow around points
of contact. This observation was confirmed by the measured pressure
distribution which indicated nonparallel equipotential lines.

The initial contact aperture was measured along one sample profile
following completion of testing and found to average 270 microns
although individual values ranged from 0 to nearly 600 microns. The
equivalent hydraulic aperture, as calculated from equation (1.2), was
found to be significantly larger (640 microns). This suggests some
sample disturbance due to fracture extension between the direct and
indirect determinations of initial contact aperture as the hydraulic
aperture would be expected to be smaller than the average aperture.

Sharp developed equations of flow based on the effective aperture (mini-
mum aperture tested = zero effective aperture) and concluded that flow
rate varied as the square of the effective aperture. Based on Sharp's
own calculations (Table 1.1), however, cubic law estimates of fracture
conductivity were within 12% of measured for all apertures tested if the
hydraulically determined aperture of 390 microns is used as a reference
for converting the relative apertures to average apertures.



Table 1.1. Comparison of Cubic Law and Experimental Conductivities
(after Sharp, 1970)

Equivalent Ratio Flow Rate/Hydraulic Gradient*
Effective Paraliel .
Opening Plate Opening Cubic Law Experimental Ratio
(um) (um) (em?/sec) (cm?/sec)
250 640 183 171 1.07
510 890 502 571 0.88
1270 1650 3210 3430 0.94

*Based on slope of q/i as the hydraulic gradient i + 0

A very comprehensive study of water flow through a single rock fracture
was conducted by Iwai (1976) and involved both numerical and experi-
mental work. Numerical models were formulated to evaluate the effect of
boundary deviations from a parallel plate model, including deviation
from a planar surface (fracture waviness), deviation from parallel sides
(aperture variability), and reduction of flow cross section (increased
contact area). While fracture waviness and aperture variability were
both found to reduce resultant flow rates, these reductions were small,
particularly tor minor or moderate deviations. Reduction of flow cross
section through increasing contact area was considerably more signifi-
cant, with the expected flow rate decreasing hyperbolically with
increasing contact area.

Iwai's experimental work consisted chiefly of measuring water flow rates
as a function of fracture aperture. Core samples of basalt, marble, and
granite were used for radial flow measurements by inducing tensile
fractures perpendic.,’ar to the core axis. Two additional granite
samples, one with a polished fracture surface, and one with a rectan-
gular fracture surface for inducing one-dimensional (linear) flow, were
also tested. Iwai's experimental results confirmed a cubic law rela-
tionship between flow rate and aperture. Fracture aperture changes were
determined by externally measuring fracture deformation. The average
fracture aperture was estimated by applying equation (1.2) to calculate
the hydraulic aperture at the smallest observed flow rate (maximum
observed closure) and adding the measured aperture change. Aperture
sizes ranged from a few microns to a few hundreds of microns with most
of the aperture variations achieved by normal loading of the sample
fracture from the initial contact state. It is of note that the largest



deviations between average and hydraulic aperturc were associated with
the polished granite fracture probably as a result of increased contact
area. Flow rates for the polished fracture were reduced slightly

resulting in a nearly constant 15 micron reduction in computed hydraulic
aperture.

Tests conducted on polished rock fractures by Kranz et al. (1979) and
Engelder and Scholz (1981) have suggested inadequacies of the cubic law
as applied to fracture flow. They found flow rates within thin frac-
tures (less than 20 microns) were substantially reduced as an apparent
consequence of reduction of cross section2? flow area. This reduction
in cross-sectional area may be somewh* .rtificial considering the high
applied stresses and smoothness of the polished fracture surfaces.

In situ measurements of fracture conductivity have been conducted (Pratt
et al., 1977; Hardin et al., 1982) in association with direct measure-
ments of joint deformation. Although the data appear to indicate lower
flows than predicted by the cubic law, interpretation of the data is
quantitatively difficult for several reasons:

(1) Analysis of the measured flow rate was complicated by uncertain
boundary conditions;

(2) Saturated flow was assumed although water was used as the
testing fluid within the unsaturated zone;

(3) Estimation of the initial aperture was uncertain;

(4) Joint deformations as measured on the exposed surface trace may
not accurately reflect deeper subsurface fracture deformations.

10



2. THEORETICAL DEVELOPMENT

This chapter deals with the derivation of linear and nonlinear flow
equations based on a parallel plate model for gas flow. Additionally,
uncertainties in field measurement boundary conditions are examined and
quantified in terms of their effect on measured flow rates. Finally,
three fracture deformation models are examined to determine the rela-
tionship between average and deformation apertures when the fracture
surfaces are in contact. The results form the basis for analyzing the
laboratory measurements presented in Chapter 3.

2.1 Gas Conductivity of a Fracture

2.1.1 Validity of a Parallel Plate Model

As stated earlier, considerable controversy exists over the validity of
a parallel plate model as applied to rough natural fractures. Indeed,
numerous arguments exist against the use of a parallel plate model
including:

(1) roughness of fracture surfaces:
(2) waviness of fracture surfaces; and
(3) contact between fracture surfaces.

Existing experimental and numerical data discussed in the previous
Chapter suggest that the magnitude of roughness and waviness effects are
second order in comparison with the effect of contact area between
fracture surfaces, at least for apertures under about 200 to 300
microns. As aperture increases, flow velocities are increased at
similar pressure gradients; consequently roughness and waviness of the
fracture surfaces become significantly more important by initiating
turbulence and creating inertial forces.

The principal arguments in favor of a paralle) plate model are that
existing experimental data suggest it yields a very reasonable approxi-
mation of observed results and the limited amount of data available is
insufficient to formulate a better model. It is important to note that
while the hydraulic aperture and the average aperture may be different,
existing experimental data indicate this difference to be a constant for
any variation in the average aperture of a given fracture.

2.1.2 Derivation of Cubic Law for Gas Flow

For a viscous fluid with constant viscosity, the Navier-Stokes equation
may be written:

11



Dv
Y pE = U+ vg + uvy + (K + 5)9(7y) (2.1)

where v = fluid density, v = fluid viscosity, Vp = pressure gradient
vector, v = velocity vector, J = gravity vector, K = bulk viscosity of
the fluid, and D/Dt = total time derivative.

Considering one-dimensional laminar steady state gas flow through a
fracture (Figure 2.1) and applying equation (2.1), we note:

Dv av
(a) ﬁ% = (yvx 3;5, 0) since flow is steady state and vy =0
) 32vx 32vx
(b) Vv = (——7— + =5 0) since v, = 0
ax ay y
2 %
d Vx o Vx
(c) v(vey) = (—5 ) since v, =0
ax&  ayax y
(d) vyg = (0,0) since y is very small for gases

where the vectors are expressed in terms of their x and y components.

Hence, equation (2.1) reduces to:

2 2

av a Vv av
it = (3P 3P . PR |
(YVX x 0) (3X’3y) + U(axz + ayz ,» 0)
(2.2)
32Vx 32Vx
bk B
X Ay ax

Equation (2.2) may be rewritten as two separate equations for the x and
y components, respectively:

12
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Figure 2.1. Fluid flow through a fracture.
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2 2 a2

av a vV a Vv v
X ap X X M X
YW, — = - + u ( + ) + (K * “) (2.23)
X 38X X axz ayz 3 axz
2
a v
s - 2B ¥ X
0 3y + (K + 3) 3y 3 (2.2b)

Solution of equation (2.2b) for the pressure distribution, p(x,y),
yields:

v
pOx.y) = (K + ) 5= + F(x) = g(x,y) + f(x) (2.2¢)

Therefore we conclude that for strictly laminar flow, the pressure
distribution is the sum of two functions. The first function varies
with both x and y and is created by viscous forces associated with fluid
dilation. The second function varies only with x and is associated with
inertial and viscous forces directly associated with fluid flow in the
x-direction. Intuitively it is expected that f(x) is much larger than
glx,y), and hence pressure can be considered for all practical purposes
te vary only with x.

To solve equation (2.2) formally, we limit our discussion to slow flow
(small values of v,) and note in this case that inertial forces are
negligible since:

x ™~

"
rok<
o
x|

X 3x .0

when y and sz are small.

Viscous forces associated with fluid dilation are also negligible since:

azv 32V

2* and —=% 0
ax ay ax

when v, or equivalently av/ax and ay/ax, are small.
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This simplification may also be valid when v. is not small provided
(3vy/3x) is very small compared with (avx/ayf. Just how small v, must
be *n order that compressibility effects can be ignored is examined
later in Section 2.3.1.

Equation (2.2a) now simplifies to nearly identical form with that
obtained for an incompressible fluid:

? azvx
., x (2.3)
ay

where the hydraulic gradient is expressed solely by the pressure
gradient since gravitational forces are negligible. As we have ignored
viscous forces associated with fluid dilation, (3p/3x) is considered
independent cf y. Hence integrating equation (2.3) twice with respect
to y and applying the non-slip boundary conditions

vx(e/Z) . (-e/2) = 0
to determine the constants of integration yields:
2
. -l e 2, d
“KET-g (2.4)
The maximum velocity occurs at y = 0, and is:

2
Voax * 57 (&) (2.4a)

Integrating equation (2.4) over the profile width and dividing the
result by the interval of integration, an equivalent average flow
velocity is obtained:

2
Vavg * T8 () (2.5)

The volumetric flow rate per unit width of fracture is q=vxexl,
or:

15



3
075 (@ (2.6)

which is the familiar form of the “cubic law". Equations (2.5) and
(2.6) are identical in form to Darcy's Law for porous media when the
intrinsic permeability of the fracture is given by e“/l12.

2.2 Parallel Plate Gas Flow Equations

To apply equations (2.5) and (2.6) to fracture flow measurements, it is
first necessary to describe the pressure distribution through space. In
this section, the continuity equation is solved tc provide analytical
solutions for radial and linear flow rates as a function of fracture
aperture and applied boundary conditions. This development parallels
previous work by Muskat (1946) for porous media flow of gas and Maini
(1971) for fracture flow of an incompressible fluid.

2.2.1 Continuity Equation

The equation of continuity for fluid flow is:

ve(vy) = - (3P) (2.7)

Substitution of the pressure gradient vp for v as related by equation
(2.5) in equation (2.7) results in:

v+(vop) = 3¢ (&) (2.8)
e

To express equation (2.8) in terms of a single dependent variable it is
necessary to relate density to pressure. For an ideal gas, the equation
of state is:

p -lal (2-9)

where R = universal gas constant, T = absolute temperature, and M =
molecular weight of the gas, P = absolute pressurf.

For adiabatic conditions, T = a constant times y m , where m = the
ratio of specific heat at constant volume to that at constant pressure.

16



Hence equation (2.9) becomes:

y=y. P" (2.10)

where y_ = a constant of proportionality.

0

For an ideal gas under isothermal conditions, T = constant, m = 1, and Yo
= M/RT. Substitution of equation (2.10) into (2.8) yields;

2o l?.(l*-mr)p (g:"') (2.11)

While equation (2.11) is difficult to solve analytically because of its
nonlinearity, Kirkham (1946) has indicated that for m = 1 and pressures
very close to atmospheric (5 kPa gage pressure or less) equation (2.11)
can be approximated to within 2.5% by:

2 .12 Pe
e A5 (2.18)

where p, = gage pressure, P, = atmospheric pressure, which is identical
to the ’orm for inconpressiSIe fluids.

Under steady state conditions when (aP™/3t) = 0, :g*ltion (2.11) takes
the form of Laplace's equation for the variable P™!;

g™ . o (2.13)

Thus, for steady state gas flow the pressure distribution can easily be
determined usia, existing solutions of Laplace's equation in terms of
the variable P™¥1,

2.2.2 Linear Flow Equations
Two particular solutions of equation (2.11) are of interest in the
present study: linear (one dimensional) flow, and radial flow between

parallel constant oressure boundaries. While both adiabatic and iso-
thermal flow are considered, gas flow through rock fractures is

17



considered to be closer to isothermal conditions since the mass and heat
capacity of the rock is far greater than that of the gas.

2.2.2.1 Linear Flow Field. In a linear flow field the solution of
equation TZ.TJ) 1s:

pm»l pm+]
W‘(g) B —-__L_—]—- X + P?" (2.“)

:hcre Py = absolute pressure at x = 0 and P, = absolute pressure at x =

The pressure distribution described by equation (2.14) for air flow is
presented in Figure 2.2 where pressure is expressed as a fraction of the
injection pressure and distance as a fraction of the total flow path
length. For the curves shown, Py = 2P5, and m = 1 and 0.71 for the
isothermal and adiabatic cases, rtspccgivo1y. Note the small difference
in observed pressure distributions for the two thermodynamic extremes.

The pressure gradient is:
1 1
dp ™! y B -w

2 !
. . (2.15)
A (e X (m+1)P" L

Hence, equation (2.5) may be written as

2
-2“a 1
vip) = 7715;77; ;i (2.16a)
or
2
() = ygiatyy (ox + o™ (2.10)
where
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m+1 1
.
a = 2 [ ] and g = PT*]

The volumetric flow rate per unit width of fracture flow cross-section

may be determined directly from equations (2.16) by multiplying by the
aperture width to yield:

3
q(p) = T?%%:%TE (%ﬁ) (2.17)

or equivalently in terms of the mass fiow rate, g, = vq.

3
- ay
& -@ a X - 0
qm 'Elm*”u (Pm) m+l )u (2']8)

Hence, we find that the steady state mass flow rate is constant at any
flow cross-section since vy, = a constant. The ratio of adiabatic mass
flow rate to isothermal mags flow rate is:

qa ‘ZY. Pg+l _ PT+]

q;  (Tem)y, Pg . P‘]?
m+) (2.19)

g VAl

(T+m) 1-(?2/91)2

This ratio is plotted for air flow (m = 0.71 for adiabatic case) in
Figure 2.3 as a function of the ratio Py/Pp. From this figure it is
clear that the adiabatic flow rate is grea%er than the isothermal flow
rate, particularly as the ratio P /P, increases. This results from the
increased downstream density in alia atic flow.

%.2.2.2 Radial Flow Field. For radial fiow the solution of equation
2.13) is:
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Figure 2.3. Comparison of isothermal and adiabatic flow rates.
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m+1 m+1
P m+]

m+] 2 N
P (r) = In(r/ry) + P (2.20)
|nlr27r]$ 1 1

where P, = absolute pressure at rp, rp > ry, and Py = absolute pressure
at ry.

The pressure distribution described by equation (2.20) for air flow is
presented in Figure 2.4 where pressure is expressed as a fraction of the
injection pressure and distance as the ratio r/r1. In the curves shown
Py = 2Py, rp = 10ry, and m = 1 and 0.71. As for the linear case, small
dlfferences in pressure gradient are observed for the two cases. The
pressure gradient is given by:

pm+l 1 Pm+1
P _ 1 2 g (2.21)
ar (m+])Pm 1n(r2/r]) r

Therefore equation (2.5) becomes:

2
vir) = 1oty ¥ Laln(r) + g1™™(™D) (2.22)

where

pm+i _ pntl
ol 1 ad
" n(r,/r, and 8 =Py - aln(ry)

Hence, the flow rate per unit depth of fracture is:

(2.23)

Ei
3~
~|—

The total mass flow rate, Q,, is given by:
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2n -ne3y a

5 * Tl (2.24)

The ratio of the adiabatic to isothermal mass flow rates is identical to
that for a linear flow field (equation (2.19)).

2.2.3 Non-Linear Flow Equations

In the preceding sections, flow equations were derived assuming a linear
relationship between the pressure gradient and mass flux of the fluid,
as expressed by equation (2.5). Non-linear, or non-Darcian, flow may
occur as a result of inertial losses arising from:

(1) entrance and exit losses along fracture injection or exhaust
boundaries;

(2) changes in flow velocity along the flow path;
(3) initiation of turbulent flow.

Entrance and exit losses result from sudden changes in fluid velocity
and turbulent eddy formation at points of abrupt change in flow cross
sections. Changes in flow velocity along the flow path occur as a
result of (1) changes in fluid density; (2) divergence of the flow
paths, where the flow path width does not remain constant; and (3)
tortuosity of the flow path around points of fracture surface contact.
The last of these also contributes to localized eddy formation and
consequent initiation of turbulent flow.

Inertial losses are generally proportional to the square of the velocity
as these losses involve the kinetic energy of fluid masses. Under
certain conditions, such as the existence of a viscous boundary layer,
inertial losses may vary with the 1.75 to 1.85 power of velocity.
Turbulent flow through smooth pipes is an example of this latter
phenomenon.

To account for inertial energy losses, equation (2.5) may be written as
(for example, see Muskat, 1946):

. %‘E e av + bv" (1.6 < n < 2.0) (2.25)

where a and b are constants dependent on the fluid properties and frac-
ture geometry.
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To evaluate the constant a, we note that as v . v, and hence
equation (2.25) approaches equation (2.5).

Due to the mathematical complexity of a fracture's geometry and the
uncertainty in the source of the nonlinear term, exact evaluation of the
coefficient b is not possible. Ward (1964) eveluated the coefficient b
using dimensional analysis. He showed that for porous media if it is
assumed that:

! )

ap ' \
- d‘ f(\\(.k.v,,,/

where f = an unknown function and k = intrinsic permeability of the
medium, then:

where w is the exponent of velocity. Combining equations (2.25) and
(2.27) yields:

where ¢ represents a dimensionless constant. Although Ward found that c
was a constant for a variety of porous media tested, Arbhabhirama and
Dinoy (1973) found that ¢ increased with Increasing grain size,
Intuitively this makes sense as the tortuosity (nonlinearity) of the
flow paths increases with increasing grain size,.

v

'0 account for density changes in gas fiow, equation (2.28) is multi-
plied by to yield:

where v v, the mass flux per unit area.

1)

In terms of the measured tota) mass flow rate Um*




[ Swﬂ'ﬂ‘n L (W” Qm b m-p]lc 2-n k(n°3)/2 9&. (2.30)
dx Yok  Wee Yo ’ M€ .

where wg = the width of the flow cross section.

To apply equation (2.30) to isothermal flow (m = 1) under specific
boundary conditions we integrate along the flow path between the known
boundary conditions. Implicit in this approach is the assumption that
nonlinear inertial losses occur along the flow path only. This
assumption is believed to be reasonable for very rough natural fractures
and is supported by theoretical and experimental results presented in
following sections.

For linear flow tests (linear being used here to denote parallel flow
paths), wg = wg, the sample width; hence:

2 2 _2 L 2¢ 2-n . (n-3)/2 _L n
p-p..l‘_E—- ¢ = K — Q (2.31a)
1 2 Yo ew, Qm Yo e"wg m
or
2 2 n
P‘ - Pz -, Qm + cbl Qm (2.31b)

where a, and b, are constants related to the lir2ar flow geometry and
fluid properties.

For this special case v, is constant along the flow cross section, and
hence the pressure gradient is unchanged by inertial losses occurring
over the flow path length.

If n=2, we can define a Reynold's number Ry as the ratio of nonlinear
to linear terms, or:

WD - St (2.32)

R, differs from previous definitions of Roy?’}d's numbers for fracture
flow in that the characteristic length is k instead of the hydraulic
diameter, 2e, or radius, €/2, as used by others.
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The associated friction factor, Fk' is:

2 2
1/2 Pa - P
- 1 d 1 2 1
" T;ﬂf'q—of— (2.33)
m

Equation (2.31) may be rewritten in terms of the dimensionless variables
Rg and F as:

1

In the linear or Darcian flow regime, 1/Ry >> ¢ and:

F .1‘5: (2.34b)

In the fully turbulent flow regime ¢ »» 1/Ry and:

Fk = ¢ (2.34c)

For radial flow, wg = 27r, hence equation (2.30) yields:

In(r,/r,)
3 2. /T
Py - PZ yok 2ne Uy

T-n T=n (2.35)
Y (2ve)" n-1 m
or
Py« P2 eag +coQ (2.35b)

27



where a. and b, are constants related to the radial flow geometry and
fluid properties.

Defining a Reynold's number for radial flow is difficult since vV

is no longer constant due to divergence of the flow paths. For the case
of n = 2 we define R§ as for the linear case and recognize that now
contains a characteristic radius r* = (ryralnlra/ry))/(rp-ry) such that
rz > r* > ry, hence:

L wk' /2 (172 2= 0 b
k u

’
" Zner v Tn(rp/ry) O = a U (2.36)

and

, M- ‘
1 dp .
Fk - . e :2 a.g b,. - 2 (2.37)

Previous experimenters have defined v as Q,/2 er* where r* is a charac-
teristic radius ranging from simply r* = ry (Iwai, 1976) to r* = the
largest radius at which turbulent flow occurs (Baker, 1955). Both of
these definitions are arbitrary and in the latter case difficult to
define in the absence of an abrupt linear to turbulent flow transition.

With these definitions of Ry and Fy, equations (2.35) may be described
by equations (2.34).

As a consequence of the variation of v, over the flow path, the non-
linear inertial losses are largest near the inner radius, and hence the
pressure distribution is shifted towards a steeper pressure gradient
near the inner radius.

2.3 Factors Influencing Gas Flow Rates

several factors can influence measured flow rates, particularly under
field testing conditions. In this section certain factors are con-
sidered and quantified including: velocity limitations, elliptical
injection boundaries, intersecting secondary fractures, and effective
radius.
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2.3.1 Limitations on the Cubic Law for Gas Flow

At the beginning of this chapter the cubic law was found to be theoreti-
cally valid for fracture flow of a compressible fluid of constant
viscosity, provided the flow velocity was sufficiently small. The
assumption of constant viscosity is valid for nitrogen and air if the
flow remains essentially isothermal.

To determine how sma)) the velocity, v, must be in order that the
fgnored components of equations (2.2) are negligible, the velocity is
computed using equations (2.4) and either (2.15) or (2.21).

For 1inear isothermal flow (m = 1):

2
Vi) = & (- Y0 (ax v 0)7172

and

B e g (ax s g)/?

Hence the partial derivatives of vix,y) are:

2 2
TR D) (e a2 (2.38a)
L b o8

w kL RSN R (2.38b)
Py ol -3/2 (2.38¢)
o " & (W)(ax+ ) -

Uun? equations (2.38), the ratio of the fgnored forces in oqnuon!
(222 to the pressure gradient as computed from the single term (,3%v/
iy€) are found to be:
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Term Considered from Equations (2.2) Ratio Formula

av Yo el -
LA i inertial force ——-2—‘: (%— - yz)z(ana) ! (2.39a)
u
(K + 3¥) K3« spnort vioo. . 0 gl)“z('z - y?)(ax+8)"? (2.390)
ax forces in x- LN '
direction
(K + 5) iy = ignored viscous (K + 5)“ (y)(ax+a)" (2.39¢)
W gorces in y- 2 .
direction

By inspection, the ratio equations will be maximum when (ax+s) = P2(x)
is sual}ost. tho’ fs at the exit point, x = L assuming P(0) - P(L),
where PE(L) = P,¢. Equations (2.39a and b) will be maximized when y =
0. Intuitively this makes sense since the maximum velocity occurs
midstream at the exit point. For viscous forces in the y-direction,
equation (2.39¢c) will be maximum at the fracture boundaries (y = e/2,
-6/2) where the rate of fluid dilation is greatest. Equations (2.26)
are plotted for these maximums for the fracture aperture, e = 100 um,
and as a function of the factor o = sP2L in Figure 2.5. While all of
the fgnored forces seem to be rather small, the inertial force 1s con-
siderably larger than the others. Note that the ratio values expressed
by Equations (2.39a and b) increase with the square of the aperture.

The inertial force may be expressed in terms of thg fluid velocity by
noting that equation (2.J9a) may be written as y,v© or, for isothermal
flow of an ideal gas, Mv“/RT. Since y, 1s small for gases, the flow
velocity can become rather large before inertial effects are signifi-
cant. Nitrogen at room rature can have a flow velocity of 30 m/s
before inertial forces are 1% of the pressure gradient.

2.3.2 Elliptica)l Fracture Intercepts

The radia) flow equations developed previously assume that the constant
pressure boundaries are circular. Field borehole injection tests, how-
ever, often involve fractures which do not intersect the borehole axis
perpendicularly resulting in an elliptical boundary. This problem has
been considened by Wang et al. (1977), who indicated that the flow rate
would be increased by the ratio of the elliptical perimeter to the
circular circumference. A more exact solution was worked out by Bourke
et al, (1980) usi»‘ elliptical coordinates. MHe modified the radial flow
rate equation (2.24) to the form:
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"'3’0 Pg*‘ - 97*‘
U * StweT )y In(ry/ry) + 1 " 2c0s6 (2.40)

" Yecoss

where o = the angle between the normal to the fracture plane and the
borehole axis.

This is equivalent to multiplying the borehole radius, r]. by (1 +

cos 9)/2 cos 9. The ratio of Q,¥(ollipt1cal) to Qt (radial) is given as
a function of o in Figure 2.6. From this figure it is seen that for
deviations of less than 45" no major increase in flow rate is observed.
As the angle increases beyond 45°, however, the flow rate increases
rapidly, particularly for sma)ler ratios of rp/ry.

2.3.3 Intersecting Fractures

The flow equations developed in the previous section are based on the
fdealized case of - single fracturc. Under actual field test condi-
tions, secondary iractures often exist which intersect the tested frac-
ture, causing broaching of the flow anu ~onsequent distortion of the
pressure distribution and measured flow rate for the tested fracture.

To quantify the influence of secondary intersecting fractures on
observed radial flow rates from an injection borehole through a tested
fracture, a study was conducted using a numerical approach. Gas flow
was modeled using a modified vers on of the Prickett-Lonnquist finite
difference mode! (Prickett and Lonng ist, 1971). A variable spacing
rectangular mode) mesh was used to “etermine steady state pressure
distribution and boundary fluxes within the principal fracture plane.
As an approximation to constant pressure boundaries at infinity, con-
stant pressure boundaries were places at a distance of 100 borehole
radit.

The influence of a single intersecting fracture was effected by with-
drawin, flows along the line (or nodal column) of fracture intersection.
These flows were drawn off as a proportion of the inflow through the
grincipcl fracture directly upstream from the fracture intersection.
eferring to Figure 2.7, conservation of mass requires:

0, = 0 + 20, (2.4)

where Qg = upstrewn inflow along the principal fracture (nodal inflow),
QJ.; downstreaom outflow along principal fracture (nodal outflow),
A\ 0; * downstream outflow along one branch of the secondary fracture

(nodal flow withdrawal),
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Figure 2.7. Definition of fracture inflows and outflows.




At steady state the downstream pressure gradients within both the secon-
dary and principal fractures will be identical provided that the
boundary conditions for both fractures are identical. This will be
approximately true if both fractures have constant pressure boundaries
at large distances from the line of intersection, where the boundary
conditions are certainly identical. In this case the ratio of Q to Q;
is:

3,3
Hence, combining equations (2.41) and (2.42) we find:
Q i e 2.43
: 2+(e, ’ ( )

In deriving equation (2.43), inertial factors have been ignored. This
is a reasonable assumption in 1ight of experimental studies (Wilson and
Witherspoon, 1970) on the effect of fracture intersectiors.

The results of the numerical study are summarized in Figure 2.8. These
data indicate that intersecting secondary fractures are of minor impor-
tance when the aperture of the intersecting fracture is less than 50%
that of the principal fracture. However, the influence of a secondary
fracture increases considerably as its aperture increases above that of
the principal fracture, rapidly approaching the flow level for a con-
stant ambient pressure boundary along the line of fracture intersection.
[t is noted that the transition zone in terms of the ratio e /ep is
abrupt as would be expected from examination of equation (2.13) The
influence of secondary fractures also diminishes with distance from the
injection well although even at radial distances of 20 well radii
increases in flow rate up to 30% are noted. A complete summary of the
data obtained is presented in Appendix A.

2.3.4 Effective Radius

Estimation of effective radius is a familiar problem in field measure-
ments of conductivity. Effective radius is used here to denote the
minimum radius at which the in situ or ambient pressure head is undis-
turbed. For single hole tests an effective radius must be estimated to
reduce equation ?2.24) to a single unknown, e. The dependence of the
flow rate on the ratio ry/ry, where r; equals the effective radius is
shown in Figure 2.9. As the ratio rzsr] increases this dependence is
shown to decrease.
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For gas flow through a single infinite fracture, the effective radius
will rapidly increase with time owing to the low viscosity and density
of gas. In reality, however, intersections with other fractures greatly
reduces the effective radius by diverting flow and creating constant
pressure boundaries as discussed in the previous section. For this
reason it is suggested that one half the average spacing between inter-
secting fractures be used to estimate an effective radius for gas flow
tests in fractured rock using a single injection hole. Where more
accurate estimates of fracture conductivit, are required, parallel
observation holes should be drilled to provide better estimates of
effective radius.

2.4 Relationship Between Average and Deformation Apertures

In all previous laboratory studies of fracture flow, measured aperture
deformation has been assumed to equal actual changes in average aper-
ture. Strictly speaking, this may not always be true.

The arithmetic average aperture of a fracture may be determined directly
if its volume and area, or planar extent, are known since:

_ v
es I; (2.44)

where e = arithmetic average aperture, V¢ = fracture volume, and Ag =
fracture area (planar extent).

To determine the relationship between se and seq, the aperture deforma-
tion, three fracture deformation models are considered (Figure 2.10).

In the first model, fracture deformation is limited to deformation of
points of contact, hence:

aVg = (Af - Ac)Aed (2.45)

where Ac = the fracture contact area.

Hence,

P (2.46)
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MODEL I

Fracture Closure by Deformation
of Asperities

MODEL IT

Fracture Closure Proportional
to Initial Aperture

MODEL T

Fracture Closure by Improved
Surface Mating Via Shear
Displacement

Figure 2.10. Three fracture deformation models.
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or the arithmetic average aperture changes less than the deformatior
aperture, particularly when contact area is large.

In the second model, fracture contact area remains constant while defor-
mation of the fracture walls creates a closure assumed to be propor-
tional to the initial aperture. For this case, where at any point i on
the fracture surface, ej(new) = cej(initial), and ¢ = a constant at a
given applied stress:

ae = (1-c) e(initial) (2.47)

Although an exact relationsh'p between seq and fracture closure is not
attainable in this particular case, it is reasonable to assume that leq
= Ae or:

max:

ey = (1-¢) emax(initial) (2.48)

Since e,y > e, Le/oeq < 1, as_for the first model. However, as where
the firsg model predicts that se/ieq ~ 0 with increasing normal stress,
the second model predicts that are/seq » 1 under the same conditions.

A third and final model is that of normal and shear dispiacement to
accommodate mating of the fracture surface without fracture deformation.
To analyze this model, it is easier to consider the shear and normal
displacements separately. Under pure shear displacement, no fracture
volume change occurs and hence re = seq = 0. Under subsequent normal
displacement up to the point where fracture contact is reestablished,
Ae = Ae,.

d
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3. LABORATORY MEASUREMENTS

This chapter presents the laboratory measurements of fracture conduc-
tivity, volume, and deformation using a large rock sample containing a
single natural fracture. Included in this chapter are all aspects of
the laboratory studies with separate sections devoted to the experimen-
tal approach or method and the experimental results. Actual discussion
of the experimental results is deferred to the following section.

3.1 Experimental Approach

This section deals with all details of the testing equipment and
methods. Specifically included are discussions of sample preparation,
experimental apparatus, instrument accuracy, and testing procedures.

3.1.1 Sample Preparation

A large rock sample containing a single natural fracture was cut from a
large rock block obtained from a surface outcrop. This method provided
the easiest and quickest means of obtaining a representative fracture

sample by eliminating the need for elaborate in situ cutting techniques.

The sample used for the testing discussed herein was acquired from a
surface exposure near Washington Camp, Arizona, in the southern
Patagonia Mountains. The bedrock here is a portion of a large granodio-
rite batholith, and the fracture contained within the sample is asso-
ciated with a pervasive set of subhorizontal exfoliation joints. The
joint surface (Figure 3.1) is coated with iron oxide staining and slight
amounts of pyrite. Discoloration of the rock near the joint surface
indicates slight weathering to a depth of a few centimeters. While the
surface of the joint is quite rough, the overall surface is very planar
and apparently well mated.

Since the natural fracture contained in the first sample was completely
opened, the sample halves were separated and the exposed fracture sur-
faces protected during removal of the sample from the field. Upon
arrival at the laboratory, the sample halves were remated with a protec-
tive rubber matting placed between the surfaces. A l-inch diameter hole
was then drilled perpendicular to and through the center of the fracture
surface and the sample halves were belted together to permit cutting of
the sample. Cutting, or trimming of, the sample edges to form a rec-
tangular parallelpiped was done with a 36-inch diameter circular diamond
saw. This was followed by lapping of the sample sides to achieve a true
rectangular shape, as the saw cut surfaces were not perfectly parallel
and perpendicular to each other. The sample was then washed thoroughly,
including the fracture surface, to remove all rock flour. The final
dimensions of the prepared sample are 25.4 cm wide by 28.2 cm long by
28.0 cm high with the fracture surface inclined slightly at 3° to the
horizontal.
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Figure 3.1. Photograph of fracture surface.




3.1.2 Measurcment of Sample Stress-Strain Beha'ior

Know'edge or the stress-strain behavior of the rock samples tested is
required to interpret measurements of fracture deformation, which dus to
practical Timitations must include some intact rock deformation. To
this end samples of granodiorite were loaded uniaxially to determine
their stress-strain relations.

Two cores of granodiorite, 2 inches in diameter by 4 irches in length,
were prepared and tested using bonded resistance strain gages with a
1/é-inch gage length. These samples were cored from a large block taken
from the same outcrop as the fractured sample, with the axis of the core
oriented so as to correspond witn the direction of loading of the frac-
tured sample. The first sample was initially load cycled three times;
however, problems with the test instrumentation produced unsatisfactory
results. The samplie was then tested again by load cycling twice to a
maximum applied siress of about 20 MPa. Due to the initial difficulties
incurred during testing of the first sample, no information was obtained
on strain hardening effects. Therefore, a second sample was load cycled
three times to 20 MPa. While the second sample exhibited significant
strain hardening follewing the initial load cycle, repeatable stress-
strain behavior was observed for all subsequent load cycles. Good
agreement was also found between the observed strains of the two
separate samples with the maximum observed differences less than 5%.
Results of these tests are presented in Table 3.1 and Figures 3.2 and
3.3. The measured strains for the 4th and 5th load cycles of the first
sample and the 2nd and 3rd load cycles of the second sample were
averaged to obtain a representative rock strain curve for the fractured
granodiorite sample. This representative curve was subsequently used to
reduce all fracture deformation data.

3.1.3 Experimental Apparatus

3.1.3.1 General Description. The experimental apparatus constructed to
perform the fracture volume and flow measurements consists of six basic
components, namely a pressurized gas supply, a flow regulating and
monitoring manifold, a sample girdle and flow control system, an air
pycrometer and pressure monitoring manifold, a sample loading frame, and
a data monitoring and recording system.

The pressurized gas supply consists of a compressed nitrogen tank
equipped with a 0-1.4 MPa pressure regulator and gage. This provides a
simple constant pressure source which may be varied as a coarse flow
rate adjustment. The supply is connected to the flow regulating and
monitoring manifold with flexible hosing equipped with quick-connect
fittings.

The flow regulating and monitoring manifold is shown schematically in
Figure 3.4. This simple manifold filters incoming air with a 0.6 micron
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Table 3.1. Stress-Strain Measurements for Intact Granodiorite Samples

e T o —— S S—

Axial Strain (microstrain)

Uniaxial Stress Sample No. 1 Sample No. 2
(MPa) #4 #5 #1 #2 #3
0 0 0 0 0 0
2.19 42 46 31 39 39
4.39 91 94 85 90 91
6.59 140 144 139 142 142
8.78 185 188 191 191 190
10.98 230 234 239 236 236
13.17 274 277 295 287 288
15.37 316 318 346 333 335
17.56 363 365 392 373 374
19.76 405 407 447 425 423
17.56 3N 375 412 387 385
15.37 334 337 375 351 350
13.17 295 298 333 31 309
10.98 253 253 290 264 263
8.78 21 213 246 222 219
6.59 170 170 200 181 171
4.39 117 120 150 122 120
2.19 68 65 96 64 60
0 10 5 32 5 4
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Figure 3.3. Stress-strain curves for sample no. 2, 1st, 2nd, and 3rd
load cycles.
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filter and directs output through one of three mass flow transducers,
each designed for a different flow measurement range. Each flow trans-
ducer measures mass flow directly and, hence, is essentially insensitive
to thermal or pressure fluctuations of the flow, eliminating the need
for any pressure or temperature measurement within the manifold.

Further details of the flowmeters are presented later in this section.
Immediately upstream of each flowmeter is a flow regulating valve and
downstream a positive shut-off value. The regulating vaives are pro-
vided to vary flow rate precisely and enable a determination of the
injection pressure versus flow rate curve. Flow rate is generally
easier to regulate for this purpose than injection pressure. The shut-
off valves are provided as a guard against leakage through unused
branches of the manifold. Connection of the flow regulating manifold to
the sample girdle and flow control system is made via flexible hosing
equipped with quick-connect fittings.

The sample girdle and flow control system is designed to create the
desired boundary conditions for both fracture volume and flow meas-
urements.

For a rectangular fracture, the girdle assembly consists of an intake
manifold, an exhaust manifold, and two side barriers as shown in Figure
3.5. In addition, two thin barrier strips can be attached to the facing
of the intake and exhaust manifold to completely seal the outer fracture
boundary. While the sample girdle is held in place by bolts connecting
opposing members, an airtight seal is obtained by a 1/8-inch rubber
gasket affixed to the inner edges of the girdle and sealed to the sample
sides with RTV silicone rubber. The girdle assembly thus provides for
three boundary conditions: all four fracture boundaries sealed; two
opposing fracture boundaries sealed with the remaining two boundaries
opened only to the intake and exhaust manifolds, respectively; and all
four fracture boundaries open to the atmosphere. These conditions are
imposed for air pycnometer volume measurements; linear flow and air
pycnometer volume measurements; and radial flow measurements, respec-
tively. The intake manifold is fitted with two connections, a valved
air intake with quick-connect fitting for attachment to the flow regu-
lating manifold, and an unvalved port to the air pycnometer and pressure
monitoring manifold. This second connection allows for both air
pycnometer and injection pressure measurements during linear flow
testing. The exhaust manifold is equipped with a single port which can
be plugged. Both manifolds are equipped with type T thermoccuple sen-
sors for monitoring temperature differentials between intake and exhaust
gases.

The fractured sample block contains a single 25-mm center hole, perpen-
dicular to the fracture plane for fracture volume (air pycnometer) and
radial flow tests. This center hole, which is largely plugged with
epoxy filler, contains a narrow 1/4-inch drilled hole connecting the
fracture opening with a lower plate as shown in Figure 3.6. Epoxyed to
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Figure 3.6. Detail of center hole piping.
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the sample base to prevent leakage along the sample plate interface,
this lower plate contains a second herizontal hole which connects the
vertical hole to an outside port along the plate's edge. This piping
system is connected in turn to the air pycnometer and pressure moni-
toring manifold. Additionally, a quick-connect fitting for connection
to the flow regulating and monitoring manifold is provided.

The air pycnometer and pressure mounting manifold (Figure 3.7) provides
the means for directly measuring the fracture volume and flow injection
pressures. This simple manifold consists of a pressure transducer, a
reference volume cylinder, and a few associated valves. The reference
volume cylinder provides a known volume by which successively larger
volumes, including the remainder of the pycnometer manifold, may be
measured through a process of pressurization and equilibration. This
procedure is discussed in greater detail later in this section. The
cross valve connecting the reference volume to the remainder of the
manifold permits isolation of this reference volume. A second positive
shut-off valve is used to isolate the entire pycnometer manifold, which
serves as a reference volume during actual fracture volume measurements.
For the testing of rectangular fracture samples, a three-way switching
valve is used to connect the pycnometer manifold to either the intake
manifold or the center hole piping system.

The sample loading frame (Figure 3.8) is designed for uniaxial loading
of large fractured rock samples and has a maximum design capacity of
270,000 kg, or a safe load capacity of about 180,000 kg. Samples up to
45 cm on a side can be accommodated as dictated by the column spacing,
while the upper plates can be raised or lowered to accommodate total
sample heights of 29 to 34 cm. Loads are applied with stainless steel
hydraulic flatjacks using a hand pump with a 20 MPa maximum pressure
capability. The maximum permissible load for the sample tested is about

20 MPa.

The data monitoring system (Figure 3.9) used to read and convert trans-
ducer voltages is an HP3497 data logger controlled by an HP85 mini-
computer. This system can be programmed to read voltages with either a
manual or internally timed trigger. Raw voltages and converted readings
are recorded on 11-cm paper tape and magnetic tape cartridges.

3.1.3.2 Air Pycnometer. The air pycnometer prc.ides a direct and
acCurate means of measuring unknown volumes and is used in these tests
to measure fracture volumes. As such it provides an 1ndependent check
on hydraulically measured apertures, which previously had not been
performed.

Treating nitrogen as an idea) gas under isothermal conditions, the
product PV, where P = the hydrostatic absolute pressure and V = the
volume of the system under consideration, is a constant. To apply this
principle to volume measurement, a system of known volume and initial
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Figure 3.7. Schematic of air pycnometer and pressure monitoring
manifold.
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Figure 3.8. Photograph of sample loading frame.
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Figure 3.9. Photograph of data monitoring system.




pressure is connected to a system of unknown volume and known initial
pressure (Figure 3.10). Measurement of the new equilibrium pressure of
the combined system can then be utilized to determine the second system

volume.

Analytically we have:

PiVy = NyRT (3.1)
PoV, = NyRT (3.2)
P3(v,+v2) = (N]+N2)RT (3.3)

Combination of equations (3.1), (3.2), and (3.3) yields:

(P]'P3)
Ty e i

Hence the simple relationship expressed by equation (3.4) can be used to
determine the unknown volume V,. In these experiments, Vy is initially
the volume of the reference cy?inder. whose volume is measured directly
using distilled water and a balance. The reference cylinder is then
pressurized and equilibrated to determine the volume of the remainder of
the pycnometer manifold. The combined volume of the pycnometer manifold
then becomes the new known volume V,. The unknown measured volume Vj
then becomes the combined volume of the sample fracture and any con-
necting volume between the pycnometer manifold and the sample fracture.
This Tatter volume can be measured separately, and since it does not
vary during changes in the fracture volume, it may be subtracted from
the measured volume V, to determine the true fracture volume.

3.1.3.3 Flow Measurement. Air flow measurements are made with Teledyne
Hastings ST series mass flowmeters. These flowmeters utilize a heated
conduit and measure heat transfer from the conduit to the gas flowing
through the conduit, which is a function only of the mass flow rate and
specific heat capacity of the gas. Hence the flowmeter calibration is
relatively independent of temperature and pressure fluctuations within
the recommended operating ranges of 0°-50°C and 0-1.7 MPa. Long-term
drift measurements performed prior to testing suggested about a 1% of
full scale zero drift due to daily temperature variation. Three
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Figure 3.10. Air pycnometer diagram.

56



different flowmeters, with ranges of 0-0.1, 0-1.0, and 0-10.0 standard

liters per minute, are used in these tests. As all three flowmeters are

factory calibrated, accuracy of the flowmeters is uncertain although

manufacturer's data indicate that nonlinearity is less than 2% of the |
full scale reading and typically 1% of the full scale reading.

3.1.3.4 Pressure Measurement. Presure measurements are made with
Ametek 57/M series pressure transducers. The sensing element for these
transducers is a piezoresistive silicon chip with an integral Wheatstone
bridge circuit and temperature compensation over the range of 0°-55°C.
Long-term drift measurements indicate a zero drift of about 1% of full
scale due to daily temperature variation. Manufacturer's data reports a
transducer accuracy of +1% full scale, including linearity, repeatabil-
ity, and hysteresis. Three pressure gages were used in these tests, O-
200 kPa (0-30 psig), and 0-1330 kPa (0-200 psig) transducers for the air
flow measurements and a 0-28 MPa (0-4000 psig) transducer for the hydraulic
flatjack system. The 0-200 kPa und 0-1330 kPa transducers were cali-
brated against a standard 0-670 kPa (0-10U psia) transducer with an NBS
traceable calibration, and an accuracy of better than 0.7 kPa (0.1 psi).
Indicated agreement between both calibrated gages and the standard was
better than 0.7 kPa (0.1 psi). The 0-28 MPa transducer was calibrated
against a second standard (0-28 MPa Heise gage) with an NBS traceable
calibration. Indicated agreement between the calibrated transducer and
standard was better than 0.03 MPa (5 psi).

3.1.3.5 Displacement Measurement. Uisplacement measurements of frac-
ture deformation were made with Trans Tek Series 240 direct current
differential transformers (OCDTs) with a measurement range of *0.64 cm
(V.25 inches) and a linearity of +0.5% full scale (50 microns or .002
in.) according to manufacturer's specifications. Long-term drift meas-
urements (Figure 3.11) with the transducers mounted in place on the
unloaded sample indicated a zero drift of about 25 microns due to daily
thermal variation. The DCDTs were calibrated using a micrometer with a
precision of 1 micron and a specially designed calibration jig. Indi-
cated accuracy of the DCDTs is better than 20 microns over a 10 mm-range
including linearity, hysteresis, and repeatability. As actual relative
Measurements are over a far smaller range, about 1 mm, considerably

greater accuracy is expected.

J.1.4 Test Procedures

The test procedure can be broken down into three consecutive test
series: measurement of fracture deformation versus volume, measurement
of fracture deformation and volume versus linear conductivity, and
measurement of fracture deformation versus radial conductivity.

In the first test series, the sample girdle was placed as shown in
Figure 5.12a, and the sample was load cycled twice to 20 MPa (3000 psi).
Fracture volume and deformation were measured at successive stress
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increments using the air pycnometer as coupled through the center hole.
Air leaks plagued the pycnometer during the initial test, and a second
test was performed using an improved method. The sample base was
epoxyed to the sample, and dead space in the center hole was reduced
with epoxy filler. Equilibration time between initial and final pres-
sure readings was set at one second, which was found to be sufficient to
allow thermodynamic cooling to subside while eliminating any significant
influence of minute leaks.

The next test series was begun by remeasuring the fracture volume using
the girdle arrangement of the first test series for a reference. The
girdle ends were then shifted to open to the intake and exhaust manifold
as shown in Figure 3.12b. Following initial fracture volume and flow
measurements, the sample was load cycled to 20 MPa with fracture volume,
fracture deformation and flow measurements repeated at each stress
increment. When unloaded, the sample was jacked open by pressurizing
the fracture to extend the measurement range to apertures larger than
that of the initial contact.

Fracture volume measurements were made in an identical manner to that of
the first test series although connections to the pycnometer manifold
assembly were made via the intake manifold while the center hole and
exhaust manifold outlets were closed. This increased the total volume
measured, sample plus dead space, considerably, and hence the equilibra-
tion time was increased to 2 seconds to accommodate the larger pressure
arops.

Flow measurements were made by varying flow rate and measuring the
associated injection pressure following flow stabilization. At each
aperture tested flow rate was varied from 10,000 sccm to 1,000 scem in
increments of 1,000 sccm. Additional measurements at flow rates between
1,000 scem and 250 scem were made for several tests. A minimum of 5
readings at iniervals of 1 minute were taken at each flow rate to
maximize the accuracy of pressure readings.

The final test series was begun by measuring the initial (unloaded)
fracture volume using the girdle arrangement of the previous test
series. The sample girdle was then removed to achieve the boundary
conditions shown in Figure 3.12c, and the sample load cycled to 20 MPa.
Fracture deformation and flow measurements were taken at each stress
increment in the same manner as for the previous test series. Upon
completion of the final test series, the upper sample half was removed
and the pressure drop between the injection pressure measurement point
and the actual injection point was measured over the range of 1,000 to
10,000 scem.



3.2 Experimenta) Results

This subsection presents *he results obtained from the tests outlined at
the beginning of this section. Included are separate presentations of
the fracture aperture and fracture fiow measurements. Complete data
listings are precented in Appendices B and C. Discussion and irterpre-
tation of the experimenta) results is deferred to Chapter 4.

3.2.1 Fracture Aperturc Measurements

Fracture volume and deformation measurements were made during the first
and second test series and at the start of the third test series to
determine the relationship between true average fracture aperture and
deformation aperture and/or to provide a reforence aperture. A complete
listing of volume and deformation data obtained during these tests is
presented in Appendix B.

The first test series was devoted entirely co measurements of fracture
deformation and average aperture. Coruequently dead space volume <G~
tributions from connecting lines could ve gr2atly reduced and accuracy
of average aperture measurements increased. Average volumetric aper-
ture, E,, was computed as the fracture volume divided by its area (see
Glossary). Thus €, is a measurement of the arithmetic average aperture.
Fracture deformation aperture, Eq, was computed as the initial
volumetric aperture minus the measured fracture Jeformation as corrected
for rock straii (see Glossary).

The apertures E, and E4 are shown as functions f app'ied normai stress
in Figures 3.13, 3.14, and 3.15, using the data of the first test
series. Figures 3.13 and 3.14 represent measurements taken during the
first load cycle with the Yatter representing the loading portion only.
During the first load cycle, the measurement procedure was still being
perfected and consequently more scatter in the Ey, values is observed,
particularly for the initial measurements at 0.6 and .G MPa. The
scatter is largely attributed to thermodynamic cooling etfects resulting
in Tower E, values. T¢ is noted that the average E, values generally
correspond well with the ¢4 values but indicate a deergence during the
unloading cycle nossibly as a result of permanent strain.

Figure 3.15 represcnis measuroments taken during a second 'o:24 cycle to
17 MPa at which point tne flatjack fiiled. The sample assembly was
compietely disassembied and reassembled prior to the second load cycle
resulting in a different initial aperture (about 1,000 um versus 600).
Far greoater repeatebiiity was oobtained for the Ey m~asurements of the
second cycle due to improvcment of the measurement technique.

The loading curves of both cycles are identical, indicate an initial

contact aperture of about 450 .., asymptotically approach a minimum
aperture of 300 ym with increasing normal stiess, and return to an
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aperture of between 250 and 400 um upon jack depressurization.
Differences between initial and final contact apertures are likely due
in part to permanent fracture deformation but are enharnced by a residual
stress resulting from flatjack strain. Permanent strains are also a
result of improved mating of the fracture surfaces following load
cycling.

During the girdle changeover between the first and second test series,
an effort was made to compare fracture volume measurements made with
both test configurations. Pycnometer measurements were made for each
test configuration, while fracture deformation measurements were made
during the changeover to correct for fracture movement associated with
the Shangeover. These results, presented in Table 3.2, agree to within
1 cm”, or in terms of fracture aperture about 15 um, suggesting an
absolute accuracy of this order for the method.

Table 3.2. Comparison of Fracture Volume Measurements for Different
Test Configurations*

e = S

Test Measured Fracture Volume Reference Average
Configuration Volume Volume Correction Volume Volume
Porosity 71.96 42.3 3.26 39.0 39.0+0.1

72.07 42.4 3.45 38.9

.13 42.4 3.47 39.0

Linear Flow 304.08 31.8 -5.67 37.5
Field 304.78 2.5 -5.71 38.2 38.0+0.4

304.78 2.5 -5.65 38.2

* A1l volumes expressed in cm3.

During the second test series, flow measurements were made at each
consecutive stress increment, hence the loading cycle was conducted over
a period of several days. As a result, some degradation in deformation
measurements would be expected due to temperature changes and instrument
drift. Furthermore, the dead space volume associated with the fracture
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volume measurement increased from 29.7 emd to 272.3 cm? reducing

measurement accuracy.

The apertures E, and E4 measured during the second test series are shown
in Figure 3.16 as func@ions of applied normal stress. From this figure
it is apparent that both aperture values are somewhat erratic. The E
values are irregular, particularly in the lower stress range, althoug“
the average values are close to the corresponding E4 values as for the
first test series. The E4 measurements twice exhib?ted gradual over-
night upward shifts of about 20 um between stress levels of 1.5 and 2.0
MPa and 7 and 1.3 MPa. These drifts are attributed primarily to over-
night cooling effects. Although opposite shifts were not noted during
daytime testing, the successive load incrementation for tests run during
the same day could mask such changes. For this reason, no effort was
made to correct for these shifts.

The loading curve for the second test series indicates smaller apertures
at lower stress levels than for the previous test series. This may be a
result of better initial mating of the fracture surfaces, as the frac-
ture surfaces were not separated following the previous load cycle. A
second possibility is that due to the longer time intervals between
successive stress increments, sample creep may be more of a factor. It
is of note that the initial contact aperture is approximately the same
as the initial contact aperture for the first test series as is the
asymptotic aperture.

Near the end of the second test series (tests #9 and 10), the fracture
was opened beyond the initial contact aperture by raising the upper
platen slightly and pressurizing the fracture. This was done to extend
the flow test range to larger apertures. Referring to Figure 3.17 where
the E, and E4 values are presented in their order of measurement, it is
seen !hat for tests #9 and 10 large differences exisi between the voiu-
metric and deformation apertures, and between the deformation apertures
measured during fracture volume readings and during the flow test.

These differences are attributable to the effects of pressurization
during pycnometer measurements.

With the upper platen raised slightly and the fracture aperture extended
beyond the initial contact cperture, the upper sample half is held in
position only by contact with the sample girdle. Furthermore, this
contact surface consists of a 3 mm-rubber gasket which aliows for rela-
tive movement of the sample halves via shear deformation of the gasket.
Hence during a pycnometer measurement the fracture aperture increases
due to the force exerted by the equilibration pressure against the
fracture surfaces resulting in high £, values. The corresponding Eq4
values are lower since they are read some 15 seconds later following
partial bleed-off of the equilibration pressure. Eq values taken during
the flow test are even lower since the flow test pressures are consid-
erably lower than the pycnometer equilibration pressures. It is
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apparent from the sight decline in the E4 flow test values that even the
lower flow test pressures cause slight increases in fracture aperture.
It is of note that the Eq flow test values for test #9 are equal to the
assumed initial contact aperture of the previous test series. With the
above considerations in mind, the Ey and E4 values of the pycnometer
measurements for tests #9 and 10 are hereafter ignored, and the Eq flow
test values are considered representative.

Measured apertures versus stress for the third test series are shown in
Figure 3.18. As for the second test series, an initial fracture volume
measurement was made using the girdle configuration of the previous
test. At the end of the second test series the fracture was pushed open
by pressurizing the fracture, hence the initial aperture was greater
than for the second test series. The initial contact aperture is again
found to be close to that of the first two test series, however the
minimum aperture is about 100 um less. This is attributable to removal
of the sample girdle permitting greater shear displacement and hence
better mating of the fracture halves. Although the third test series
was conducted over a period of three days, no displacement <hifts as
noted for the previous test series occurred.

J.2.2 Fracture Flow Measurements

Fracture flow measurements were made during the second and third test
series to determine the relationship between fracture aperture and

conductivity. A complete listing of flow data obtained during these
tests is presented in Appendix C.

Flow measurement results were interpreted using equations (2.31) and
(2.35) which can be linearized to the form:

-1
a + QDQ; (3.5)

chc?, the results are presented in plots of pz/um as a function of
Qu" '. Data thus presented should plot as a straight line with inter-
cept a and slope cb, assuming that equation (3.5) is valid and the
exponent n is chosen correctly. The coefficients a and cb can then be
determined from simple linear regression.

The second test series utilized the test configuration of Figure 3.12b
to obtain a linear flow field. This provides a constant pressure
squared gradient and a constant mass flow rate along the flow path
simplifying interpretation of test results by reducing the number of
variables to be considered. A total of ten flow tests were conducted
each at a different aperture (Figure 3.17) ranging from 300 to 600 um.
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Results of the second test series are presented in Figures 3.19 and 3.20
using the variables of equation (3.5) with n = 2. From these figures it
is apparent that the data lie on a straight line as indicated by the
plottgd linear regression fits. Scatter of the data for Qp less than 3
x 1072 kg/sec is attributed chiefly to errors in pressure measurement
since gage injection pressures are less than 1 kPa (.01 atm) at sugh low
flow rates. These errors are magnified in computing the value vp /Qm.

The numbers used for plotting symbols in Figures 3.19 and 3.20 represent
the test number. Tests #] and 2 were conducted at essentially identical
apertures and indicate the relative repeatability of the measurement.
Also of note is the increase in slope or magnitude of the nonlinear term
with decreasing aperture. Indeed this monotonic increase in both
coefficients a and b, which are inversely related to fracture conduc-
tivity, suggest that the overnight deformation shifts previously noted
between tests #4 and 5, and #7 and 8, are not related to actual fracture
deformation. For test #10, which was conducted with the fracture sur-
faces completely separated, the coefficient b is nearly zero indicating
that the nonlinear term is related to fracture mating.

The third test series utilized the test configuration of Figure 3.12b %o
obtain a nearly radial flow field. This creates a steep pressure
squared gradient near the injection boundary and a mass flow rate which
varies inversely with distance from the injection boundary. The non-
linear term of equation (3.5) further increases the steepness of the
pressure squared gradient near the injection boundary. Consequently the
flow characteristics of the fracture surface near the injection boundary
bias the test results. Eleven radial flow field tests were conducted
(Figure 3.21) at apertures ranging from about 425 to 200 um.

Limited access to the central injection hole during the third test
series required that the injection pressure be measured at the con-
necting line entrance near the base of the sample (Figure 3.6). To
account for pressure losses between the measurement and injection
points, the pressure drop as a function of mass flow rate was measured
with the pressure at the injection point equal to atmospheric pressure
(upper sample half removed) following completion of the test series.
Two such tests were performed to assure repeatability of results and the
data fit to equation (3.5) with n = 1.9 (Figure 3.22). Although this
equation does not accurately represent the low pressure points, it was
founnd to be the most accurate overall pressure correction of various
correction equations tried. In light of observed measurement errors in
the low pressure range, it is believed that a separate pressure correc-
tion formula for the low pressure range was unwarranted.

Results of the third tests series, using the corrected injection pres-
sure, are presented in Figures 3.23 and 3.24 in the same manner as for
the previous test series. As before, the data lie close to a straight
line as indicated by the plotted linear regression fits; however, there
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is a slight downward curvature, particularly for the higher injection
pressure tests #8 through 11. This curvature may be partly due to
errors in the injection pressure correction, particularly for low Qn
values. Another possibility is that the use of a radial flow approxima-
tion is less suitable at higher injection pressures where the outer
rectangular boundary shape has a greater influence on the pressure
squared gradient.

A third possibility is that necking of the flow, due to the abrupt
change in flow cross section at the injection boundary, delays the onset
of turbulent flow. Such an effect is of far greater influence in radial
flow as a consequence of the larger velocities and associated pressure
losses near the injection boundary. Studies of parallel plate flow have
indicated the length of the laminar zone varies inversely with the
Reynold's number for fully turbulent flow (Rissler, 1978). Since the
masc flow rate is directly proportional to the Reynold's number, this
effect is only significant for lower flow rates. This phenomenon may
explain the initial nonlinearity of the radial flow data of Figures 3.23
and 3.24.

An improved fit to equation (3.5) is obtained if the exponent n is set
equal to 1.82. Results of this substitution are plotted in Figures 3.25
and 3.26. In this case the fits of the higher injection pressure tests
are significantly improved while those of the remaining tests are not.
Since the lower pressure injection tests fall in the same pressure range
as the linear flow tests, the exponent n may be a function of the
pressure squared gradient. Alternatively the fit of equation (3.5) may
be less sensitive to the choice of the exponent n at lower pressure
squared gradients.
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4. DISCUSSION OF RESULTS

The experimental results presented in the previous chapter are evaluated
in this section in an effort to provide a unified interpretation of all
test results. As before, the fracture aperture and flow measurements

are considered separately.

4.1 Comparison of Average and Deformation Apertures

Previously, it was noted that the average and deformation apertures
were nearly identical for all tests conducted. The relationship between
E, and E4 1s examined directly in Figures 4.1, 4.2, and 4.3. From these
ngures ?t is seen that for the greater part the data lie along the line
E, = E4. The few data points which lie considerably above this line are
associated with aperture measurements made during extension of the
fracture and are therefore believed in error for reasons previously

discussed.

Three fracture closure models were examined in Section 2.4 to determine
the relationship between E, and E4. On the basis of these models, it is
found that fracture deformation must be largely a result of shear dis-
placement which allows for better mating of the fracture surfaces. This
hypothesis is confirmed by the greater observed fracture closure of the
third test series in which removal of the sample girdle reduced lateral

sample confinement.

Also of interest is the fact that initial fracture contact, following
fracture extensio’ beyond initial contact, was found to be the same for
all tests run (ab. .t 450 ym). This result indicates that crushing of
asperities or perm. ent deformation of the fracture surface does not
occur. Indeed, no evidence of damage to the fracture surface was
observed upon examination at the conclusion of all testing. Although
considerable permanent fracture strain occurred following initial load
cycling, this is attributed to improved mating of the fracture surfaces
via either overall shear displacement of the fracture surface or
localized shear deformation of asperities. Permanent normal deformation
of asperities would be of insufficient magnitude to fully account for
the observed permanent strain.

4.2 Evaluation of Flow Equation Constants

The constants a and b of the flow equations (2.31) and (2.35)_are
determined from the i?tercept and slope, respectively, of (Plz - P 2)/Qm
as a function of Qm"' . In the analysis of §h1s data, the intrinsic
permeability is assumed to be given by k = e%/12. By virtue of this
substitutior, the coefficients a and b of squations (2.31) and (2.35)
are seen to be inversely proportional to e”, and hence the ratio of b to
a is theoretically a constant. The substitution k = e is considered
preferable for the analyses considered here to the definitions ke and
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k17262 gince it eliminates the need to consider two separate parameters.
The value of e is easily determined from the measured coefficient a
using the known fluid properties and sample geometry. This value of e
is hereafter referred to as the hydraulic aperture, e,, to distinguish
it from the mean aperture, € (see Glossary). The coe’ficient ¢ is then
calculated from the measured slope using the hydraulic aperture ep. On
the basis of the previous section the average aperture is assumed equal
to the deformation aperture ey and is referred to as é.

Results of the calculations of €, and ¢ are presented in Tables 4.1 and
4.2 for the linear and radial flow cases, respectively. Good agreement
fs found between the linear and radial flow field constants at similar
apertures although the assumed dimensionless constant, ¢, is seen to
vary with both aperture and the exponent of the nonlinear term.

From these data it is evident that the computed hydraulic aperture is
considerably smaller than the corresponding mean aperture in al) cases.
The relationship between e, and & is shown in Figure 4.4 and suggests
that e, = cye + co. The fact that ¢y < ) can be 1nterpretsd to mean
that the perneabi‘ity k 1s reduced by a factor c* = (e,/®)” < 1,
although c* must be a function of & since ¢, does not equal 0. The cube
of the ratio is used here since in the fnit‘al calculations ke was
assumed equal to ke, and not ké.

As discussed in detail in Section 2.1.1, reduction of a rough natural
fracture's conductivity over that of an equivalent parallel plate mode)
is attributable to surface roughness, waviness of the fracture surface,

and contact area.

Louis (1969) derived an empirica)l equation to account for surface roug-
hness based on parallel plate flow studies. Using a surface roughness
index S, defined as the mean asperity height, \, divided by the hydrau-
lic diameter, 2¢, he found:

.. 1 .
c T (§-0.033) (4.1)

Values of ¢* as computed from the ratio (e /E)3 were used to determine
the parameters S and \, as shown in Table Q.3. The values of the
parameter . are found to be nearly constant and reasonable in light of
the observed asperity height. Further, ) is close to the assumed
inftial contact aperture of 450 um, which would be expected for a wel)

mated fracture.

The relationship between e, and & as predicted by equation (4.1) with »
= 500 microns is shown in Pigure 4.5. Although the observed fit is
excellent, it is cautioned that this may simply be fortuitous as equa-
tion (4.1) is based on water flow measurements for 0.033 < S < 0.4,
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Table 4.1.

Linear Flow Field Test Results

Test

st o e 06heikedss?) () (M) C
1 2.580 1.149 396.7 233.4 0.0759
2 2.875 1.066 391.4 225.1 0.0632
3 3.225 1.556 364.5 217.5 0.0832
4 3.698 2.282 346.6 207.9 0.1065
5 3.933 2.564 354.9 203.1 0.1116
6 4.747 3.028 336.3 190.9 0.1095%
7 5.899 4.158 315.6 177.7 0.1213
8 7.522 5.836 308.3 163.6 0.1328
“ 1.640 0.415 442.7 272.2 0.0435
10 0.631 0.0257 590.1 374.4 0.0070




Table 4.2. Radial Flow Field Test Results

Test fooff a ‘Coeff b e e,
No.  (10"%Pa%/kgss)  (10'%Pal/kg"s™) (um) (um) c

With exponent n = 2

1 1.288 0.7845 427.5 211.2 0.0583
2 1.255 0.8082 418.6 217.9 0.0720
3 1.67N 1.178 387.5 197.2 0.0785
4 2.322 1.738 356.1 176.6 0.0828
5 3.912 2.967 315.2 151.0 0.0927
6 6.158 4.701 294.1 129.4 0.0915
7 8.990 Y.046 272.2 114.5 0.1246
8 13.92 16.21 238.8 98.8 0.1426
9 20.94 31.70 227.8 85.0 0.1759
10 30.02 4.7 211.7 76.1 0.1802
1 34.25 55.40 203.3 72.2 0.1888
With exponent n = 1.82
1 1.133 0.1839 427.5 231.1 0.1666
2 1.099 0.1887 418.6 233.8 0.1774
3 1.446 0.2747 387.5 212.4 0.1931
4 1.983 0.4063 356.1 191.5 0.2097
5 3.34 0.6921 315.2 161.3 0.2133
6 5.258 1.096 294.1 138.7 0.2147
7 7.266 2.109 272.2 124.4 0.2988
8 10.78 3.787 238.8 109.4 0.3649
Rl 15.48 7.310 227.8 96.9 0.4884
10 21.44 10.43 211.7 86.9 0.5042
1 24.69 12.78 203.3 83.0 0.5372
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Table 4.3. Jurface Roughness Permeability Reduction Factors

Test c* < A(um) Jre”
Linear
] 0.204 0.582 462 13.5
2 0.190 0.61% 483 13.6
3 0.212 0.562 410 13.0
4 0.216 0.554 384 12.7
5 J.188 0.624 443 13.1
6 0.183 0.636 422 12.9
7 0.179 0.649 410 12.6
8 0.149 0.748 461 12.7
B 0.233 0.520 450 13.9
10 0.255 0.479 565 15.4
Radial*
1 0.158 U.716 612 14.4
2 0.174 0.662 554 11.2
3 0.165 0.693 537 13.8
4 0.155 0.725 516 13.4
5 0.134 0.814 513 13.1
6 0.105 0.980 576 13.1
7 0.095 1.051 572 12.9
8 0.096 1.045 499 12.2
g 0.077 1.229 550 12.3
106 0.069 .327 562 12.2
n 0.068 1.343 546 12.0

tRadial flow test results based on nonlinear exponent of 1.82.
Joint roughness coefficient.
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This corresponds to a fracture surface in which the asperities do not
tross the aperture midplane. Asperities first cross the midplane at S =
0.5, which roughly corresponds to the initial contact aperture.

Equation (4.1) defines a family of curves in terms of the parameter )
for fixed €. In the range of S < 0.4, the predicted curve parallels the
cubic law such that e, = & - a constant. Hence, for fractures in
extension se, = A€ and changes in flow rate can be expressed by the
cubic law. ?his explains why the data of Sharp (1969) presented earlier
appears to follow a cubic law when the initial rlow rate is used as a
reference. Iwai's data incorporated a similar correction term although
the majority of his data was based on a fracture under compression.
Based on Iwai's initial contact apertures of 50 to 100 microns, 1 can be
assumed to be considerably less for his tests and hence more closely
aligned with the cubic law. The predicted curve for » = 100 microns is
shown in Figure 4.5 and indicates close agreement with the cubic law,
particularly where a minimum flow correction term is used.

Barton (1982) has suggested that reduction of the hydraulic aperture
over that of the average aperture could be estimated on the basis of the
Joint roughness coefficient, JRC. He proposed the empirical formula:

e = e2/Jrce -5 (4.2)

where e is expressed in microns.

Values of JRC as calculated from the measured values of e, and € are
also presented in Table 4.3. The computed values of JRC are seen to be
reasonably constant, although a slight reduction in JRC values is noted

with decreasing aperture.

The predicted relationships of €y versus eq as determined from equation
(4.2) is shown in Figure 4.6. As seen from this figure, equation (4.2)
provides a poor fit and is overly sensitive to the choice of JRC.

The \ and JRC values can be estimated independently from measurements of
the surface roughness profile of the tested sample. Measurements made
along a 150 mm sampling line in increments of 1.3 mm are shown in Figure
4.7. The consistent downward trend of the profile is a result of the 3°
slope, as measured from tne horizontal of the fracture surface. Both
the ) and JRC values appear to be well predicted from the observed
profile. The mean asperity height is seen to average about 500 um,
which is close to the computed » values of 400-600 ym. Comparison of
the roughness profile with the typical roughness profiles given for
various values of JRC (Barton and Choubey, 1977) indicates that a JRC
value of 12 to 14 yields a reasonable match. Note that the relative
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size of the asperities when compared to the hydraulic aperture indicate
that indeed the fracture is well mated.

Iwai (1971) used one-dimensional numerical simulations to examine the
influence of random waviness and variability of fracture aperture along
the flow path. With regards to fracture waviness where the fracture
aperture is held constant, Iwai found that the permeability reduction
factor varied with the maximum angularity of the flow path. Comparing
his flow rate reduction with the values of c* in Table 4.2, it is found
that a maximum angularity of about 607, as measured from the horizontal,
is required to produce a ¢* value of 0.25. While direct comparison of
Iwai's results with the test results presented here is not possible,
since actual flow path deviations are two dimensional, it is noted that
increases in flow path length do substantially reduce fracture permea-
bility.

As suggested by Sharp and Maini (1972), fracture waviness may explain
the discrepancy between the average and hydraulic apertures due to the
effect of angularity of the fracture surface on the measurement of e.
Recalling the definition of average aperture as the fracture volume
divided by its planar area, it is seen that € is a measure of the
vertical fracture height, whereas e, is a measure of the normal separa-
tion of the fracture surfaces. Therefore, e, = COS 8,6 as shown in
Figure 4.8. While the factor cos varies over the entire fracture
surface, certainly some representative angle 6, exists which is repre-
sentative of the summation.

To seek such a value, cos 65 and 6, were computed from the ratio eh/E as
shown in Table 4.4. Relatively consistent values of 6, are noted
although the values show a small shift between the radial and linear
flow field data and with increasing normal stress. The shift between
the radial and linear values are a consequence of the slightly lower
hydraulic apertures of the radial data. The shifts are within the range
of experimental error but may be attributed to the effects of shear
movements, as the higher values correspond to larger shear displace-
ments. As shear improves the mating of the fracture surfaces so it
increases contact area, flow constrictions, and angularity of the flow
path, all of which act to reduce fracture permeability.

The angle 8, can be computed from the surface roughness profile as the
slopes between successive measuremer. yairs. The frequency histogram of

is given in Figure 4.9. The mean value of ¢, is 9.1, which is
considerably lower than the previously computed 6, values. Based on
this average value of 6,, no significant correction of the average
aperture would be expecged. Estimation of the angle ¢, is biased,
however, towards lower values since the line of measurement is not
generally in the direction of maximum slope. For this reason the maxi-
mum observed values of o, may be more representative of the true value
of g,. Use of the maximum value of 6, has also been suggested (Sharp

94




Figure 4.8. Relationship between e, and e.
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Table 4.4. Surface Angularity Permeability Reduction Factors
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Figure 4.9. Frequency histogram of surface angularity.




and Maini, 1972) as more characteristic for a different reason, that
flow is dominated by the minimum apertures encountered along the flow
path.

Increase_in flow path length is also seen to vary as cos 9., suggesting
c* = cos® o,, although here the value of cos ¢, varies with the tor-
tuosity of %he flow path which is truly three aimensional and, hence, a
different value of &, needs to be defined. The effect is also self-
cancelling to a certain degree since for certain orientations of the
local surfaces the flow path width is increased. The effect of flow
tortuosity is perhaps better explained by consideration of the varia-
bility of the fracture aperture.

Variability of fracture aperture may also significantly reduce flow rate
as a consequence of the dominance of flow path constrictions on overall
flow rate. lwai found the permeability reduction was a function of the
ratio of minimum to maximum apertures, although significant reductions
(greater than 15%) were only noted for ratios of less than 0.5. Iwai's
one-dimensional model probably overestimates flow restriction, however,
in that two-dimensional flow permits diversion of the flow around points
of constriction. Neuzil and Tracy (1981) analyzed the effect of vari-
able fracture aperture across the flow cross section and concluded the
cubic law should be modified such that:

eh3 = é e3f(e) de (4.3)

where f(e) = the normalized density distribution of e.

Equation (4.3) predicts that e, > €, for any arbitrary f(e) because the
third moment about zero, e,” is always greater than the cube of the
first moment e”. It is readily seen that the effect of aperture varia-
bility is dependent on direction. This is analogous to comparing the
equivalent conductivity of layered strata. When considering flow per-
pendicular to the layering, the low permeability strata dominate the
equivalent conductivity. However, when considering parallel flow, the
high permeability strata dominate. For this reason one-dimensional
analysis is insufficient to characterize the effect of aperture varia-
bility.

The effect of contact area has also been examined by Iwai using two-
dimensional numerical and laboratory studies. On the basis of these
results, Iwai.developed the following expression:

o ORI RN, |
ko 6 /Ps +4 4

(4.4)



where A. = fracture contact area, A¢ = total fracture area, ke = frac-
ture permeability with contact area, and k, = the fracture permeability
with zero contact area. Implicit in equation (4.4) is the assumption
that contact area consists of small, randomly distributed areas.

Although equation (4.4) predicts large reduction in fracture perema-
bility, the ratio k /kg 15 uncorrected for the associated reduction in
average aperture and hence:

- = \ \'3
c*(contact area) = (1-(AC/Af)) k. /g (4.5)

With this correction c* is found to be considerably larger than Ke/K
and may even be greater than unity if contact area is larger than 509.

In view of the numerous factors acting to reduce fracture conductivity,
it is hardly surprising that e, < e. Of the factors considered it would
appear that surface roughness and angularity are most influential.
Supporting this hypothesis is the observation that significant reduction
in permeability occurs even when the fracture surfaces are not in con-
tact. Oue to the complexity of the problem, analytical evaluation of
the reduction factor c* is not possible in more than a qualitative
sense. Of the measured fracture parameters considered, it would appear
that roughness of the fracture surface, as related by a dimensionless
index such as relative roughness, provides the most satisfactory means
of predicting the observed reductions in fracture permeability by means
of empirical equations.

The nonlinear coefficient ¢ varies with both the mean aperture e and the
nonlinear exponent n, as seen from the values listed in Tables 4.1 and
4.2. Variation with the exponent n, while not expected theoretically,
can be attributed in part to differences in the curve fit of the data
from which ¢ is determined. Another possibility is that c contains
geometric factors which lend it a dimensionality not accounted for.
Values between test series for n = 2 do correlate well with each other
as shown in Figure 4.10.

Variation of the coefficient ¢ with aperture is attributed to increasing
tortuosity of the flow path as the aperture is reduced and the fracture
surfaces are better mated. Indeed the nonlinear term essentially
disappears as the fracture surfaces are separated. This observation
supports the previous assumption that nonlinear pressure losses occur
along the flow path and are not associated with entrance and exit
losses.

Louis (1969) examined fully turbulent flow as a function of surface
roughness and proposed the following empirical equation:
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Fp = (-2 log(s/d))™? = ﬂgﬂ (S > 0.033) (4.6)
Yv

where F;, = dimensionless friction factor for the characteristic length
2e, S = relative roughness (1/2e), and d = a coefficient dependent on

the range of S.

The relationship between Fx, as defined by equation (2.33) or (2.37),
and Fp is:

¢ = F = Fp/a/T2 (4.7)

As with equation (4.2), equation (4.6) is based on experimental data for
0.033 < S < 0.40

To compare the measured values of the nonlinear coefficient ¢ to those
of equation (4.7) a correction must be employed to account for the use
of e, versus & in the original calculation of c. The corrected c
values, computed by dividing the values in Tables 4.1 and 4.2 by c*, are
listed in Table 4.5. Also shown are the values of the coefficient d,
computed from equations (4.6) and (4.7) using the values of 1 = 500 um
as determined from the linear coefficients. The computed values of d
are seen to be reasonably constant particularly for the linear flow
tests and the lower pressure gradient radial flow tests. The higher d
values computed for radial flow tests number 7 through 11 are likely a
consequence of the inexactness of the n = 2 fit for these tests as
discussed previously. Louis (1969) gave values of the coefficient d as
d = 3.7 for S < 0.033 and d = 1.9 for 0.033 < S < 0.4. Hence the value
of d determined here, d = 1.1 for S > 0.4 is reasonable.

The ¢ values predicted by equations (4.6) and (4.7) are compared to the
observed values in Figure 4.10 using d = 1.1. Despite the scatter in
the measured c values, they are reasonably described by equation (4.6)
for 1 values of between 400 and 500. The sensitivity of the computed c
values to the parameter ) is found to be far greater than for the linear
coefficient 1/c*, particularly for larger values of relative roughness,
and hence estimates of ¢ from \ are less accurate.

Equations (4.2) and (4.6) are based on the same experimental data of
Louis. The fact that both equations indicate good agreement with the
experimental data obtained here for the same parameter suggests that
extrapolation of these equations to values of S considerably greater
than 0.4 is valid.
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Table 4.5.

Nonlinear Flow Factors

Test No. c d
Linear
1 0.372 1.05
2 0.333 1.09
3 0.393 1.%8
4 0.493 .12
5 0.594 1.05
6 0.598 1.10
7 0.678 1.15
8 0.891 1.13
9 0.187 1.16
10 0.027 2.78
Radial (n = 2)
1 0.369 0.97
2 0.414 0.97
3 0.476 1.01
4 0.534 1.07
5 0.692 1.15
6 0.871 1.18
7 1.312 1.20
8 1.485 1.35
9 2.284 1.35
10 2.612 1.03
11 2.776 1.48
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Equations of identical form were developed independently by Lomize
(1951), although he defined the relative roughness, Reynold's number and
friction factor in a slightly different fashion. Converting Lomize's
results by use of the appropriate scaling factors for comparison with

equations (4.2) and (4.6) yields:

]
c* = (4.8)
1417.0(s) " -0

Fy = (-0.95 - 2.56 log(s/1.9))"2 (4.9)

Differences between Lomize and Louis' results may be attributed to
differences in the experimental methods used. While Lomize's results
are based on roughness as created by uniform sand grains glued to a wood
surface, Louis' results are obtained from measurements of flow between
concrete slabs. The latter is considered a better simulation of natural

fracture roughness and hence was used in this study.

Equation (4.6) is also of identical form to Nikuragse's (1930) formula
for fully turbulent flow through rough pipes:

Fp = (-2 Tog(s/d))? (4.10)

where d = 3.7. Indeed, the form cf equation (4.10) is the motivation
for equation (4.6). This motivation may be misguided since nonlinear
losses in fractures are only slightly comparable to turbulent losses in
pipes due to differences in the scale of roughness. This may in part
explain why d is not independent of S.

The results can now be summarized in terms of the dimensionless friction

factor F, and Reynold's number R,. Using the definitions of Fx and Ry
as given by (2.33) or (2.37), a universal flow law of the form of
equation (2.34a) is obtained although the equation must be rewritten in

the form:

C
_ & 4.1
Fk h-k— + C2 ( )

where c) and cp are dimensionless functions of the relative roughness, S
= \/2e:
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¢ = 1+ 8.8(5)]'5

_ 1
4/T2(-2 10g(5/d))?

€2
the permeability k = €2/12
3.7 $ < 0.33

and d = 1.9 0.33 <§ <0.4
1.1 S > 0.4
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S.

CONCLUSIONS AND SUMMARY

The relationship between deformation, average, and hydraulic apertures
for a natural fracture has been examined experimentally in this study.
Theoretical evaluations were also performed to determine the suitability
of the cubic law as applied to compressible fluid flow and evaluate the
effect of certain boundary conditions on observed flow rates. On the
basis of these results, the following conclusions are drawn:

i.

The cubic law was found to be theoretically valid for paral]sl glate
compressible fluid flow provided the dimensionless factor yv /p",
where y = density, v = velocity, p = absolute pressure, m = the
thermodynamic coefficient = 1 for isothermal flow, is less than the
desired fractional error. For nitrogen at room temperature this
places an upper velocity limit of 30 m/s for a 1% error.

Elliptical fracture boundaries, caused by nonperpendicular
intersections of test boreholes with fracture planes, increase flow
rate over that of a circular boundary. The increase in flow rate,
over that of a circular boundary, is equivalent to increasing the
borehole radius by the factor (1 + cos «)/2 cos o, where o is the
angular deviation of the borehole axis from the normal to the

fracture plane.

When considering Darcian radial flow through a single principal
fracture from a borehole, no significant disturbance of the steady
state flow rate occurs as a result of intersecting fractures when
the ratio of the intersecting to principal fracture apertures is
less than 1/2. Thereafter, flow rate is increased appreciably. For
ratios greater than 2, the intersecting fracture may be treated as a
constant ambient pressure boundary. As radial distance to the
fracture from the borehole increases, disturbance of the flow rate
decreases hyperbolically. However, even at radial distances of 20
borehole radii, increases in flow rate of up to 30% were noted.

The mean or average fracture aperture decreases at a lesser rate
than the observed fracture deformation upon normal loading of a
fracture unless the observed deformation is accommodated by improved
mating of the fracture surfaces via shear displacement. For the
sample tested the average and deformation apertures were found to be
nearly identical even when shear movement was restricted, although
considerably greater fracture deformation occurred at similar stress
Tevels when shear movement was unrestricted.

Following separation of the fracture surfaces, the initial contact
aperture, as measured at the smallest applied stress of 0.03 MPa,
was found to be nearly constant and close to the mean asperity
height. After icad cycling, however, considerable residual fracture
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deformation was noted indicating improved mating of the fracture
surfaces.

Nonlinear flow conditions were observed for all flow tests conducted
and found to be well described by an equation of the form -dp/dx =
ay + by" with n = 2. This indicates a smooth transition from linear
laminar to fully turbulent flow regimes.

The linear conductivity of the fracture tested was found to be well
below that predicted by the cubic law using the average fracture
aperture. The observed difference was attributable to surface
roughness and was well described by empirical equations in terms of
the relative roughness, defined as the mean asperity height divided
by the mean aperture. These equations were found to be valid even
when applied to relative roughness as large as 1.4, despite the fact
that the empirical equations were based on relative roughnesses of
less than 0.4.

The nonlinear coefficient cb was also found to be reasonably
described by similar empirical equations, although here again the
relative roughness values were greater than the assumed range of
validity. The magnitude of the nonlinear term was found to increase
with decreasing aperture and may be related to the degree of
fracture mating in addition to the magnitude of surface roughness.

Although the cubic law was found not to be strictly valid for fluid flow
through a rough fracture, it is of note that as the relative roughness
decreases the difference between the hydraulic and deformation aperture
approaches a constant; hence, the cubic law may be approximately valid
for predicting changes in fracture conductivity if the range of aper-
tures considered is reasonably moderate. Considering the relative domi-
nance of the nonlinear term as relative roughness increases, the cubic
law may be inconsequential in terms of predicting flow rate for very
rough fractures.

The ability to predict both the nonlinear and linear coefficients
provides a means of determining both the mean aperture and the ra2lative
roughness in test situations where neither can be measured directly.
This results from the fact that two independent equations exist in the
linear and nonlinear coefficients respectively, and these are a function
of only two unknowns. Implicit in this approach, however, is the
assumption that sufficient nonlinearity exists such that the nonlinear
coefficient equation is sensitive to the relative roughness parameter.
It is believed, however, that this will almost aiways be the case.




LIST OF SYMBOLS

English Letters
linear and nonlinear coefficients, respectively, of nonlinear
pressure-mass flow rate equations described by fluid properties
and flow geometry
a and b coefficients for linear flow field
a and b coefficients for radial flow field

fracture 