WCAP-10156 Rev. 1 Although information contained in this report is nonproprietary, no distribution shall be made outside Westinghouse or its licensees without the customer's approval.

EVALUATION OF THE ACCEPTABILITY OF THE REACTOR VESSEL HEAD LIFT RIG, REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL, AND LOAD CELL LINKAGE TO THE REQUIREMENTS OF NUREG 0612 for TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK UNITS NO. 1 AND NO. 2

FEBRUARY, 1983

H. H. SANDNER, P. E.

Approved: Dn manhae (n. R. J. Leduc, P. E., Manager Component Handling Equipment

> WESTINGHOUSE ELECTRIC CORPORATION Nuclear Energy Systems P.O. Box 355 Pittsburgh, PA 15230

8407180146 840712 PDR ADDCK 05000445 PDR

ABSTRACT

An evaluation of the Comanche Peak reactor vessel head and internal lift rigs, load cell and load cell linkage was performed to determine the acceptability of these devices to meet the requirements of NUREG 0612. The evaluation consists of: (1) a comparison report of the ANSI N14.6 requirements and the requirements used in the design and manufacture of these devices; (2) a stress report in accordance with the design criteria of ANSI N14.6; and (3) a list of recommendations to enable these devices to demonstrate compliance with the intent of NUREG 0612 and ANSI N14.6.

TABLE OF CONTENTS

Section	Title	Page
	ABSTRACT	111
1.	INTRODUCTION	1-1
	1.1 Background	1-1
2.	COMPONENT DESCRIPTION	2-1
	2.1 Reactor Vessel Head Lift Rig	2-1
	2.2 Reactor Vessel Internals Lift Rig	2-1
	2.3 Load Cell and Load Cell Linkage	2-2
3.	SCOPE OF EVALUATION	3-1
	3.1 Study of ANSI N14.6-1978	3-1
	3.2 Stress Report	3-1
	3.3 Recommendations	3-2
4.	DISCUSSION OF EVALUATIONS	4-1
	4.1 Study of ANSI N14.6-1978	4-1
	4.2 Stress Report	4-1
	4.3 Recommendations	4-2
5.	CONCLUSIONS	5-1
6.	RECOMMENDATIONS	6-1

LIST OF ILLUSTRATIONS

Figure		Title	Page
2-1	Reactor Vessel i	Head Lift Rig	2-3
2-2	Reactor Vessel	Internals Lift Rig	2-4

ATTACHMENTS

- A. Comparison of ANSI N14.6-1978 Requirements for Special Lifting
 Devices and the Requirements for the Reactor Vessel Head Lift Rig,
 Reactor Vessel Internals Lift Rig, Load Cell and Load Cell Linkage
 for Texas Utilities Generating Company, Comanche Peak Units No. 1
 and No. 2.
- B. Stress Report Reactor Vessel Head Lift Rig, Reactor Vessel Internals Lift Rig, Load Cell and Load Cell Linkage for Texas Utilities Generating Company, Comanche Peak Units No. 1 and 2.

REFERENCES

- George, H., Control of Heavy Loads at Nuclear Power Plants
 Resolution of Generic Technical Activity A-36, NUREG-0012,
 July, 1980.
- ANSI N14.6-1978 Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Material
- Westinghouse Drawing 1212E27 4 Loop Lifting Rig Head, General Assembly
- 4. Westinghouse Drawing 1216E68 4 Loop Reactor Plant Internals
 Lifting Rig General Assembly
- 5. Manual of Steel Construction, Seventh Edition, American Instituce of Steel Construction.

SECTION 1 INTRODUCTION

The Nuclear Regulatory Commission (NRC) issued NUREG 0612 "Control of Heavy Load at Nuclear Power Plants" in 1980 to address the control of heavy loads to prevent and mitigate the consequences of postulated accidental load drops. NUREG 0612 imposes various training, design, inspection and procedural requirements for assuring safe and reliable operation for the handling of heavy loads. In the containment building, NUREG 0612 Section 5.1.1(4) requires special lifting devices to meet the requirements of ANSI N14.6-1978-"American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials" In general, ANSI N14.6 contains detailed requirements for the design, fabrication, testing, maintenance, and quality assurance of special lifting devices. The Comanche Peak lifting devices which can be categorized as special lifting devices and which are contained in the scope of this report are:

- 1. Reactor vessel head lift rig
- 2. Reactor vessel internals lift rig
- Load cell and load cell linkage

This report contains the evaluation performed on these lifting devices to determine the acceptability of these devices to meet the above requirements.

1.1 BACKGROUND

The reactor vessel head lift rig, the reactor vessel internals lift rig, load cell and load cell linkage were designed and built for the Comanche Peak circa 1975-76. These devices were designed to the requirement that the resulting stress in the load carrying members when subjected to

the total combined lifting weight should not exceed the allowable stresses specified in the AISC^[5] code. Also, a 125 percent load test was required on both devices followed by appropriate non-destructive testing. These items were not classified as nuclear safety components and requirements for formal documentation of design requirements and stress reports were not applicable. Thus, stress reports and design specifications were not formally documented. Westinghouse defined the design, fabrication and quality assurance requirements on detailed manufacturing drawings and purchase order documents. Westinghouse also issued field assembly and operating instructions, where applicable.

SECTION 2 COMPONENT DESCRIPTION

2.1 REACTOR VESSEL HEAD LIFT RIG

The reactor vessel head lift rig^[3] (Figure 2-1) is a three legged carbon steel structure, approximately 48 feet high and 16 feet in diameter, weighing approximately 16,000 points. It is used to handle the assembled reactor vessel head.

The three vertical legs and Control Rod Drive Mechanism (CRDM) platform assembly are permanently attached to the reactor vessel head lifting lugs. The legs, clevis, and pins which are a part of the support for the seismic platform meet the requirements of the ASME Boiler and Pressure Vessel Code, Section III, Subsection NF Class I Supports. The tripod assembly is attached to the three vertical legs and is used when installing and removing the reactor vessel head. During plant operation, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2 REACTOR VESSEL INTERNALS LIFT RIG

The internals lifting rig^[4] (Figure 2-2) is a three-legged callon and stainless steel structure, approximately 30 feet high and 14 feet in diameter weighing approximately 21,000 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing operations. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig is stored on the upper internals storage stand.

The reactor vessel internals lift rig attaches to the internals package by means of three rotolock studs which engage three rotolock inserts located in the internals flange. These rotolock studs are manually operated from the internals lift rig platform using a handling tool which

is an integral part of the rig. The study are normally spring retracted upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions.

2.3 LOAD CELL AND LOAD CELL LINKAGE

The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurring. The unit is a load sensing clevis type, rated at 500,000 pounds.

This load cell is a part of the load cell linkage which is an assembly of pins, plates, and bolts that connect the polar crane main hook to the lifting blocks of both the reactor vessel head and the internal lift rigs.

Figure 2-1. Reactor Vessel Head Lift Rig

Figure 2-2. Reactor Vessel Internals Lift Rig

SECTION 3 SCOPE OF EVALUATION

The evaluation of these lifting devices consists mainly of three parts:

- 1. A detailed review of the ANSI N14.6 requirements
- 2. Preparation of a stress report
- Recommendations to demonstrate compliance with NUREG 0612, Section 5.1.1(4).

Discussion of these items follows.

3.1 REVIEW OF ANSI N14.6-1978

A detailed comparison was made of the information contained in ANSI N14.6 with the information that was used to design, manufacture, inspect and test these special lifting devices. The detailed comparison is provided in three parts:

- 1. Overall item by item comparison of requirements
- 2. Preparation of a critical item list per ANSI N14.6 Section 3.1.2, and
- 3. Preparation of a list of nonconforming items.

This detailed analysis is contained in Attachment A to this report.

3.2 PREPARATION OF A STRESS REPORT

Section 3.1.3 of ANSI N14.6 and NUREG 0612 Section 5.1.1(4) require a stress report to be prepared. Special loads and allowable stress criteria are specified for this analysis. The stress report is Attachment B to this report.

3.3 RECOMMENDED ACTIONS

An obvious result from the previous evaluations is a list of items that can be performed to demonstrate to the NRC that these special lifting devices are in compliance with the guidelines of ANSI N14.6 and NUREG 0612 Section 5.1.1(4). These recommendations are identified in Section 6.

SECTION 4 DISCUSSION OF EVALUATIONS

4.1 STUDY OF ANSI N14.6-1978

A review of ANSI N14.6 identifies certain analyses to be performed and certain identifications that are required to be made to demonstrate compliance with this document. These are a preparation of a stress report in accordance with Section 3.2 and a preparation of a critical items list in accordance with Section 3.1.2. The stress report is Attachment B to this report. The critical items list has been prepared per Section 3.1.2 and is contained in Appendix A to Attachment A. This list identifies the critical load path parts and welds, the materials of these items, and the applied non-destructive volumetric and surface inspections that were performed. (Details of these non-destructive processes and acceptance standards are available at Westinghouse should they be needed.)

A detailed item by item comparison of all the requirements of ANSI N14.6 and those used for the design, manufacture and inspection of these lifting devices is contained as Table 2-1 of Attachment A. The comparison shows that these devices meet the intent of the ANSI document for design, fabrication and quality control. However, they do not meet the requirements of ANSI N14.6 for periodic maintenance, proof and functional testing. Thus, a tabulation of those ANSI N14.6 requirements that are incompatible with these lifting devices was prepared and is Appendix B to Attachment A. Included in Appendix B to Attachment A are recommended actions that may be used to demonstrate acceptability to the NRC.

4.2 STRESS REPORT

As part of the invoking of the ANSI N14.6 document, the NRC requested utilities to demonstrate their compliance with the stress criteria with some qualifying conditions. Attachment B is the stress report for these devices performed in accordance with the criteria of AMSI N14.6. A

discussion is included which responds to the NRC qualifying conditions of NUREG 0612. All of the tensile and shear stresses, meet the design criteria of Section 3.2.1.1 of ANSI N14.6, requiring application of stress design factors of three and five with the accompanying allowable stress limits of yield and ultimate strength, respectively. In addition, all of the tensile and shear stresses meet the requirements of the AISC^[5] code.

4.3 RECOMMENDATIONS

The recommendations identified in Section 6 require a review of plant maintenance and operating instructions to ensure that they contain information relative to the identification, maintenance and periodic testing required by ANSI N14.6. The extent of the periodic testing is also addressed and the recommendations identify procedures which are intended to fully meet the intent of NUREG 0612 and ANSI N14.6 with the least amount of perturbation to the refueling sequence. These recommendations do not involve any equipment changes.

SECTION 5 CONCLUSIONS

The following conclusions are apparent as a result of this evaluation:

- The ANSI N14.6 requirements for design, fabrication and quality assurance are generally in agreement with those used for these special lift devices.
- The ANSI N14.6 criteria for stress limits associated with certain stress design factors for tensile and shear stresses are adequately satisfied.
- 3. These devices are not in strict compliance only with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance. Recommendations are included to identify actions that should enable these devices to be considered in compliance with the intent of ANSI N14.6.
- 4. The application of the ANSI N14.6 criteria for stress design factor of 3 and 5 are only for shear and tensile loading conditions. Other loading conditions are to be analyzed to other appropriate criteria.

SECTION 6 RECOMMENDATIONS

The following recommendations address the areas of ANSI N14.6 which are incompatible with the present lifting devices and which are considered most important in demonstrating the continued reliability of these devices. They consist of suggestions and proposed responses to identify compliance to the NRC and future considerations.

- 6.1 Recommend that no changes be made to the reactor vessel internals lift rig should the stresses, discussed in Attachment B, be considered excessive by others because:
 - a. The design weight used in the stress calculations is based on the weight of the lower internals. The lower internals are only removed when a periodic inservice inspection of the vessel is required (once/10 years).
 - b. Prior to removal of the lower internals, all fuel is removed. Thus the concern for handling over fuel is non-existent in this particular case.
 - c. Normal use of the rig is for moving the upper internals which weigh less than one-half of the lower internals. The design weight is based on lifting the lower internals. Thus all the stresses could be reduced by approximately 50 percent and considered well within the ANSI N14.6 criteria for stress design factors.
- 6.2 Review plant operating procedures to include consideration of ANSI N14.6 Sections 5.1.3 through 5.1.8. These sections include requirements for: scheduled periodic testing; special identification and marking; maintenance, repair, testing and use. Westinghouse remarks on addressing these sections are listed in Attachment A, Appendix B, Items 5, 6, and 7.

- 6.3 A proposed response to the requirement of ANSI N14.6, Section 5.2.1, requiring an initial acceptance load test prior to use equal to 150 percent of the maximum load is that the 125 percent of maximum load test that was performed be accepted in lieu of the 150 percent load test.
- 6.4 A proposed response to ANSI N14.6 Section 5.3 which requires, annually, either a 150 percent maximum load test or dimensional, visual and non-destructive testing of major load carrying welds and critical areas follows. (Since the 150 percent load test is very impractical, the approach identified in the following recommendation is to a rform a minimum of non-destructive testing.)
 - a. Reactor Vessel Head Lift Rig:

Prior to use and after reassembly of the spreader assembly, lifting lug, and upper lifting legs to the upper portion of the lift rig, visually check all welds. Raise the vessel head slightly above its support and hold for 10 minutes. During this time, visually inspect the sling block lugs to the lifting block welds, and spreader lug to spreader arm weld. If no problems are apparent, continue to lift, monitoring the lead cell readout at all times.

b. Reactor Vessel Internals Lift Rig

Prior to use, visually inspect the rig components and welds while on the storage stand for signs of cracks or deformation. Check all bolted joints to ensure that they are tight and secure. After connection to the upper or lower internals, raise the assembly slightly off its support and hold for 10 minutes. During this time, visually inspect the sling block lugs to the lifting block welds. If no problems are apparent, continue to lift, monitoring the load cell readout at all times.

The above actions do not include a non-destructive test of these welds because:

- a. Access to the welds for surface examination is difficult. These rigs are in containment and some contamination is present.
- b. All tensile and shear stresses in the welds are within the allowable stress.
- c. The items that are welded remain assembled and cannot be misused for any other lift other than their intended function.
- d. To perform non-des ructive tests would require:
 - Removal of paint around the area to be examined which is contaminated.
 - (2) Performance of either magnetic particle inspection or liquid penetrant inspection and
 - (3) Repainting after testing is completed.
 - (4) Cleanup of contaminated items.

Performing non-destructive tests on these welds every refueling would increase the critical path refueling time.

Dimensional checking is not included since these structures are large (about 16 ft. dia. by 50 ft. high) and the results of dimensional checking would always be questionable. Other checks on critical load path parts such as pins, are also not included since an examination of these items would require disassembly of the special lift devices.

6.5 Recommend that a periodic non-destructive surface examination of critical welds and/or parts be performed once every ten years as part of an inservice inspection outage.

WESTINGHOUSE CLASS 3

Although information contained in this report is nonproprietary, no distribution shall be made outside Westinghouse or its licensees without the customer's approval.

ATTACHMENT A to WCAP-10156 Rev. 1

Comparison of ANSI N14.6-1978 Requirements for Special Lifting Devices and the Requirements for the Reactor Vessel Head Lift Rig, Reactor Vessel Internals Lift Rig, Load Cell, and the Load Cell Linkage

for

Texas Utilities Generating Company Comanche Peak Units No. 1 and 2

FEBRUARY, 1983

H. H. Sandner, P.E.

Approved

R. J. Leduc, P.E., Manager

Component Handling Equipment

ABSTRACT

The requirements used in the original design, fabrication, testing, maintenance and quality assurance were compared to the ANSI N14.6-1978 requirements for the Comanche Peak reactor vessel head and internals lift rig, load cell and load cell linkage. A critical items list per ANSI N14.6 section 3.1.2 has been prepared and a tabulation of ANSI N14.6 requirements that are, at present, incompatible with the Comanche Peak lifting devices has been prepared.

TABLE OF CONTENTS

Section	Title	Page
	ABSTRACT	iii
1	PURPOSE	1-1
2	INTRODUCTION	2-1
	2.1 Background	2-1
	2.2 Component Description	2-2
	2.2.1 Reactor Vessel Head Lift Rig	2-2
	2.2.2 Reactor Vessel Internals Lift Rig	2-2
	2.2.3 Load Cell and Load Cell Linkage	2-3
3	DISCUSSION	3-1
4	CONCLUSIONS	4-1
APPENDIX A	- CRITICAL ITEMS LIST PER ANSI N14.6-1978	A-1
APPENDIX B	- TABULATION OF ANSI N14.6-1978 REQUIREMENTS INCOMPATIBLE WITH THE COMANCHE PEAK SPECIAL	B-1
	LIFTING DEVICES	

LIST OF ILLUSTRATIONS

Figure	Title	Page
A-1	Reactor Vessel Head Lift Rig	A-5
A-2	Reactor Vessel Internals Lift Rig, Load Cell and Linkage	A-9

LIST OF TABLES

Table	Title	Page
2-1	Comparison of the Requirements of ANSI N14.6 and Comanche Peak Special Lift Devices	2-4
A-1	Reactor Vessel Head Lift Rig, Critical Items List of Parts per ANSI N14.6-1978	A-3
A-2	Reactor Vessel Head Lift Rig, Critical Items List of Welds per ANSI N14.6-1978	A-4
A-3	Reactor Vessel Internals Lift Rig, Critical Items List of Parts per ANSI N14.6-1978	A-6
A-4	Reactor Vessel Internals Lift Rig Load Cell and Load Cell Linkage, Critical Items List of Welds per ANSI N14.6-1978	A-8

REFERENCES

- Westinghouse Drawing 1212E27 4 Loop Lifting Rig Head, General Assembly.
- Westinghouse Drawing 1216E68 4 Loop Reactor Plant Internals Lifting Rig General Assembly.
- 3. Manual of Steel Construction, Seventh Edition, American Institute of Steel Construction.

SECTION 1 PURPOSE

The purpose of this report is to compare the requirements of the special lifting rigs used to lift the reactor vessel head and reactor vessel upper and lower internals with the requirements contained in ANSI N14.6 for special lifting devices.

SECTION 2 INTRODUCTION

ANSI N14.6-1978-"American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials" contains detailed requirements for the design, fabrication, testing, maintenance and quality assurance of special lifting devices. NUREG 0612 "Control of Heavy Load at Nuclear Power Plants", paragraph 5.1.1(4), specifies that special lifting devices should satisfy the guidelines of ANSI N14.6-1978. Subsequently the Nuclear Regulatory Commission (NRC) has requested operating plants to demonstrate compliance with NUREG 0612. To demonstrate compliance with this document, a detailed comparison of the original design, fabrication, testing, maintenance and quality assurance requirements with those of ANSI N14.6 is necessary.

Thus, the ANSI N14.6 document has been reviewed in detail and compared to the requirements used to design and manufacture the reactor vessel head lift rig, the reactor vessel internals lift rig, load cell, and the load cell linkage. This comparison is listed in Table 2-1.

2.1 BACKGROUND

The reactor vessel h and internals lifting rigs were designed and built for the Comanche Peak Nuclear Power Plants, circa 1975-76. These devices were designed to the requirement that the resulting stress in the load carrying members, when subjected to the total combined lifting weight, should not exceed the allowable stresses specified in the AISC^[3] code. Also, a 125 percent load test was required on both devices, followed by appropriate non-destructive testing. Westinghouse also required non-destructive tests and inspections on critical load path parts and welds both as raw material and as finished items. These requirements of design, manufacturing and quality assurance were identified on detailed manufacturing drawing and purchasing documents.

Westinghouse also issued field assembly and operating instructions, where applicable.

2.2 COMPONENT DESCRIPTION

2.2.1 Reactor Vessel Head Lift Rig

The reactor vessel head lift rig^[1] is a three legged carbon steel structure, approximately 48 feet high and 16 feet in diameter, weighing approximately 15,000 pounds. It is used to handle the assembled reactor vessel head.

The three vertical legs and control rod drive mechanism (CRDM) platform assembly are permanently attached to the reactor vessel head lifting lugs. The legs, clevis, and pins which are a part of the support for the seismic platform meet the requirements of the ASME Boiler and Pressure Vessel Code, Section III, subsection NF Class I supports. The tripod sling assembly is attached to the three vertical legs and is used when installing and removing the reactor vessel head. During plant operations, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2.2 Reactor Vessel Internals Lift Rig

The reactor vessel internals lift rig^[2] is a three-legged carbon and stainless steel structure, approximately 30 feet high and 14 feet in diameter weighing approximately 21,000 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing operations. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig is stored on the upper internals storage stand.

The reactor vessel internals lift rig attaches to the internals package by means of three rotolock studs which engage three rotolock inserts located in the internals flange. These rotolock studs are manually operated from the internals rig platform using a handling tool which is an integral part of the rig. The studs are normally spring retracted upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions.

2.2.3 Load Cell and Load Cell Linkage

The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurring. The unit is a load sensing device type, rated at 500,000 pounds.

This load cell is a part of the load cell linkage which is an assembly of pins, plates, and bolts that connect the polar crane main hook to the lifting blocks of both the reactor vessel head and internals lift rigs.

TABLE 2-1

COMPARISON OF THE REQUIREMENTS OF ANSI N14.6 AND

COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
1 1.1 to 1.3 2	Scope and Definitions - These sections define the scope of the document and include pertinent definitions of specific items	These sections are definitive, and not requirements.
3 3.1 3.1.1 to 3.1.4	Designer's Responsibilities - This section contains requirements for preparing a design specification and its' contents, stress reports; repair procedures; limitations on use with respect to environmental conditions; marking and nameplate information; and critical items list.	A. No design specification was written concerning these specific requirements. However, assembly and detailed manufacturing drawings and purchasing documents contain the following requirements: (1) Material specification for all the critical load path items to ASTM, ASME specifications or special listed requirements. (2) All welding, weld procedures and welds to be in accordance with ASME Boiler and Pressure Vessel Code - Section IX. (3) Special non-destructive testing for specific critical load path items to be performed to written and approved procedures in accordance with ASTM or specified requirements

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
		(4) All coatings to be performed to strict compliance with specified requirements.
		(5) Letters of compliance for materials and specifications were required for verification with original specifi- cations.
		B. A stress report was not originally required but has been prepared and is Attachment B.
		C. Repair procedures were not identified.
		D. No limitations were identified as to the use of these devices under adverse environments.
		E. Markings and nameplate information was not addressed.
		F. Critical item lists have been prepared for each device and are identified as Appendix A to this Attachment A.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
3.2 3.2.1 to 3.2.6	Design Criteria Stress Design Factors - These sections contain requirements for the use of stress design factors of 3 and 5 for allowable stresses of yield and ultimate respec- tively for maximum shear and tensile stresses; high strength material stress design factors; special pins; wire rope and slings to meet ANSI B30.9-1971; and drop-weight tests and Charpy impact test requirements	1. These devices were originally designed to the requirement that the resulting stress in the load carrying members, when subjected to the total combined lifting weight, should not exceed the allowable stresses specified in the AISC code. A stress report (Attachment B) has been generated which addresses the capability of these rigs to meet the ANSI design stress factors.
		2. High strength materials are used in some of these devices (mostly for pins, load cell). Although the fracture toughness was not determined, the material was selected based on it's excellent fracture toughness characteristics. However, the stress design factors of ANSI N14.6 Section 3.2.1 of 3 and 5 were used in the analysis and the resulting stresses are acceptable.
		Where necessary, the weight of pins was considered for handling.
		4. For the Head Lifting Rig, the material for the clevis pin (item 6), the lifting leg (item 9), and the clevis (item 10) meets the Charpy V-notch requirements per ASME Boiler and Pressure Vessel Code, Section III subsection NF 2300.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
3.3 3.3.1 to 3.3.8	Design Considerations - These sections contain considerations for; materials of construction, lamellar tearing; decontamination effects; remote engagement provisions; equal load distribution; lock devices; position indication of remote actuators; retrieval of device if disengaged; and nameplates.	Decontamination was not specifically addressed. Locking plates, pins, etc. are used throughout these special lifting devices. Remote actuation is only used when engaging the internals lift rig with the internals and position indication is provided from the operating platform.
3.4 3.4.1 to 3.4.6	Design Considerations to Minimize Decontam- ination Efforts in Special Lifting Device Use - These sections contain fabrication, welding, finishes, joint and machining requirements to permit ease in decontamination.	Decontamination was not specifically addressed. However, the design and manufacture included many of these items, i.e. lock devices, pins, etc.
3.5 3.5.1 to 3.5.10	Coatings - These sections contain provisions for ensuring proper methods are used in coating carbon steel surfaces and for ensuring non-contamination of stainless steel items.	The requirements for coating carbon steel surfaces are contained in a Westinghouse process specification referenced on the assembly and detail drawings when applicable. These specifications require a proven procedure, proper cleaning, preparation, application and final inspection of the coating. These requirements meet the intent of 3.5.1 through 3.5.8. No provisions were included in these designs for consideration of decontamination materials or the use of noncontaminating contact materials for use in stainless steel parts.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND

CUMANCHE PEAK SPECIAL LIFT DEVICES

ANSI W14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
3.6 3.6.1 to 3.6.3	Lubricants - These sections contain requirements for special lubricants to minimize contamination and degradation of the lubricant and contacted surfaces or water pools	On the head lifting rig, threaded con- nections and 63 finishes are coated with Fel/pro N-1000 as indicated on the drawings. On the internals lift device, threaded connections are coated with neolube. On the load cell linkage, silicone grease is used where applicable as indicated on the drawings.
4 4.1 4.1.1 to 4.1.12	Fabrication Fabricators Responsibilities -These sections contain specific requirements for proper quality assurance, document control, deviation control, procedure control, material identification and certificate of compliance.	A formal quality assurance program for the manufacturer was specifically required. All the manufacturers welding procedures and non-destructive testing procedures were reviewed by Westinghouse prior to use. All critical load carrying members require certificates of compliance for material requirements. Westinghouse performed certain checks and inspections during various steps of manufacturing. Final Westinghouse review includes visual, dimensional, procedural, cleanliness, personnel qualification, etc. and issuance of a quality release to ensure conformance with drawing requirements.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
4.2 4.2.1 to 4.2.5	Inspectors Responsibilities -These sections contain requirements for a non-supplier inspector.	Westinghouse Quality Assurance personnel performed some in-process and final inspections similar to those identified in these sections, and issued a Quality Release. (Also see comments to Section 4.1 above)
4.3 4.3.1 to 4.3.3	Fabrication Considerations - These sections contain special requirements for ease in decontamination or control of corrosion.	General good manufacturing processes were followed in the manufacture of these devices. However, the information defined in these sections was not specifically addressed.
5.1 5.1.1 to 5.1.8	Acceptance Testing Maintenance, and Assurance of Continued Compliance Owner's Responsibilities - Sections 5.1.1 and 5.1.2 require the owner to verify that the special lifting devices meet the performance criteria of the design specification by reviewing records and witness of testing.	Both the Reactor Vessel Head and Internal Lift kigs were proof tested upon completion with a load of approximately 1.25 times the design weight. Upon the completion of the test, all parts, particularly welds, were visually inspected for cracks or obvious deformation. Critical welds were magnetic partical inspected. In addition, the Westinghouse Quality Release verifies that the criteria for letters of compliance for materials and specifications required by the Westinghouse drawings and purchasing documents was satisfied.
	Section 5.1.3 requires periodic functional testing	Maintenance and inspection procedures should be revised to include a visual check of critical welds and parts during lifting to comply with this requirement for functional testing.

TABLE 2-1 (cont) COMPARISON OF REQUIREMENT OF THE ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
	Section 5.1.4 requires operating procedure	Operating instructions for the reactor vessel internals lift rig were furnished to the utility and operating procedures were prepared and are used.
	Sections 5.1.5, 5.1.5.1 and 5.1.5.2 require special identification and marking to prevent misuse.	It is obvious from their designs that these rigs are special lifting devices and can only be used for their intended purpose. Specific identification of the rig can be made by marking, with stencils, the rig name and rated capacity, preferably on the spreader assembly.
	Sections 5.1.6, 5.1.7 and 5.1.8 require the owner to provide written documentation on the maintenance, repair, testing and use of these rigs.	Operating instructions and maintenance instructions should be reviewed to assure that they contain the requirements to address maintenance logs, repair and testing history, damage incidents etc.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
5.2 and 5.3 5.2.1 to 5.2.3 and 5.3.1 to 5.3.8	Acceptance Testing and Testing to Verify Continuing Compliance - These paragraphs require the rigs to be initially tested at 150% maximum load followed by non-destructive testing of critical load bearing parts and welds and also annual 150% load tests or annual non-destructive tests and examinations; qualification of replacement parts.	The head and internals lift rigs were load tested as indicated in Section 5. At each refueling it is suggested that a check of critical welds and parts be included in the maintenance procedures for both lifting devices. Preferably, during the initial lift at each refueling, a visual inspection should be made. Further note that with the use of the load cell for the head and internals, lifting and lowering is monitored at all times. Replacement parts should be in accordance with the original or equivalent requirements.
5.4 5.4.1 to 5.4.2	Maintenance and Repair - This section requires any maintenance and repair to be performed in accordance with original requirements and no repairs are permitted for bolts, study and nuts.	Maintenance and repair procedures should contain, as much as possible, requirements that were used in the original fabrication. The critical items list of Appendix A contains the original type of non-destructive testing. The procedure should also define bolts, studs and nuts as non-repairable items.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND COMANCHE PEAK SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
5.5 5.5.1 to 5.5.2	Non-destructive Testing Procedures, Personnel Qualifications, and Acceptance Criteria - This section requires non- destructive testing to be performed in accordance with the requirements of the ASME Boiler and Pressure Vessel Code	Liquid penetrant, magnetic particle, ultrasonic and radiograph inspections were performed on identified items. These were in accordance with ASTM specifications, ASME Code, Westinghouse process specifications or as noted on detailed drawings and provide similar results to the requirement of the ASME Code.
6 6.1 6.2 6.3	Special Lifting Devices for Critical Loads - These sections contain special requirements for items handling critical loads.	It is assumed that compliance with NUREG-0612, Section 5.1 has been demonstrated and therefore this section is not applicable to these devices.

SECTION 3 DISCUSSION

The reactor vessel head and internals lift rigs, load cell and load cell linkage generally meet the intent of the ANSI N14.6 requirements for design and manufacture. However, they are not in strict compliance with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance.

Although no specific design specification was written, the assembly and detailed manufacturing drawings and purchase order documents contain equivalent requirements. A stress report has been prepared for these devices. These devices, for the most part, were manufactured under Westinghouse surveillance with identified hold points, procedure review and personnel qualification which adequately meet these related ANSI requirements. A 125 percent load test was performed on both the head and internals lift rigs followed by the appropriate non-destructive testing.

It is anticipated that 100 percent load test, performed on each device, at each refueling, followed by a visual check of critical welds would be sufficient to demonstrate compliance. This may require modification of Comanche Peak operating and maintenance procedures.

Upon completion of the field assembly of the internals lift rig, prior to using, the assembly procedure calls for a visual inspection of all bolted joints on the rig and a visual inspection for cracks or distortions, particularly in the area of the welds. Upon completion of the field assembly of the reactor vessel head lfiting rig, the assembly procedure calls for a 100 percent load test (lifting of the assembled head), with a visual inspection for any signs of distortion.

SECTION 4 CONCLUSIONS

The review of the ANSI N14.6 requirements and comparison with the original Westinghouse requirements has shown that these items are generally in agreement for the design, fabrication and quality assurance of the lifting devices. However, the lifting devices are not in strict compliance with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance. These specific requirements that are incompatible with the lifting devices are discussed in Appendix B with suggested actions. Westinghouse's objective was to provide a quality product and this product was designed, fabricated, assembled and inspected in accordance with internal Westinghouse requirements. In general, Westinghouse requirements meet the intent of ANSI N14.6 but not all the specific detailed requirements.

APPENDIX A CRITICAL ITEMS LIST PER ANSI N14.6-1978

1. GENERAL

Section 3.1.2 of ANSI N14.6-1978 specifies that the design specification shall include a critical items list, which identifies critical components and defines their critical characteristics for material, fabrication, non-destructive testing and quality assurance.

"Critical items list" is further defined in ANSI N14.6, Section 2 as:

"critical items list. A list that specifies the items of a special lifting device and their essential characteristics for which specified quality requirements shall apply in the design, fabrication, utilization, and maintenance of the device."

Load carrying members and welds of these special lifting devices are considered to be the critical items.

Tables A-1, A-2, A-3 and A-4 are the critical items list of parts and welds for the reactor vessel head lift rig, the reactor vessel internals lift rig and the load cell and load cell linkage. These tables include the material identification, and the applicable volumetric and surface inspections that were performed in the fabrication of these special lifting devices. In some instances, non-destructive testing was not specified since the material selection and strength result in very low tensile stresses and thus, non-destructive testing was not justified.

The material selection for all critical load path items was made to ASTM, ASME or special material requirements. The material requirements were supplemented by Westinghouse imposed non-destructive testing, and/or special heat treating requirements for almost all of the critical items. Westinghouse required all welding, welders, and weld procedures to be in accordance with ASME Boiler and Pressure Vessel Code Section IX

for all welds. Westinghouse required a certificate, or letter of compliance that the materials and processes used by the manufacturer were in accordance with the purchase order and drawing requirements. Westinghouse also performed final inspections on these devices and issued quality releases for the internals and head lifting rigs.

TABLE A-1

REACTOR VESSEL HEAD LIFT RIG, LOAD CELL AND LOAD CELL LINKAGE

CRITICAL ITEMS LIST OF PARTS

PER ANSI N14.6-1978

			Non-destructiv	e Testing
Item ^(a)	Description	Material	Material	Finished
1	Lifting Block	ASTM A350 GR. LF	Ultrasonic	Magnetic Particle
2,7	Lug	ASTM A516 Grade 70	Ultrasonic Magnetic Particle	Magnetic Particle (item 2 only)
3,6	Clevis Pin	ASTM 4434 AISI 4340 Steel Class BD	Ultrasonic	Magnetic Particle
4,10	Clevis	ASTM A668 Forging and Class L AISI 4340	Ultrasonic	Magnetic Particle
5,9	Lifting Leg	ASTM A434 Class BC AISI 4340	Ultrasonic	Magnetic Particle
11	Clevis Pin (load sensing)	ASTM A564 Type XM12	Ultrasonic	Magnetic Particle
12	Side Plates	ASTM 533 Type B Class 1	U1 trasonic	-
13	Removable Pin	ASTM A564 Type 630	Ultrasonic	Liquid Penetrant

⁽a) See figure A-1

TABLE A-2 REACTOR VESSEL HEAD LIFT RIG, LOAD CELL, AND LOAD CELL LINKAGE CRITICAL ITEMS LIST OF WELDS PER ANSI N14.6-1978

		Non-destructi	ve Testing
Item	Description	Root Pass	Final
1,2	Lugs to Lifting Block (Full Penetration)	Magnetic Particle	Magnetic Particle Radiograph
7,8	Spreader Arm Lug to Spreader Arm (fillet)	Magnetic Particle	Magnetic Particle

Figure A-1. Reactor Vessel Head Lift Rig

TABLE A-3
REACTOR VESSEL INTERNALS LIFT RIG
CRITICAL ITEMS LIST OF PARTS
PER ANSI N14.6-1978

			Non-destructi	ve Testing
Item ^(a)	Description	Material	Material	Finished
1	Lifting Block	ASTM A350 Grade LF 2	Ultrasonic	Magnetic Partical
2	Lifting Block Lug	ASTM A516 Grade 70	Ultrasonic Magnetic Particle	Magnetic Partical
3,7	Clevis Pin	ASTM A564, Grade 70 Precipitation Hardening SST Age treated @ 1150° F/4HRS. Air cooled RC 28-31	Ultrasonic	Liquid Penetrant
4,6	Clevis	ASTM A471 Class 3 Steel Forging	Ultrasonic	Magnetic Particle
5	Sling Rod	ASTM A434 Class BC AISI 4340 or (ASTM A588'	Ultrasonic	Magnetic Particle
8,11	Spread Lug Leg Lug	ASTM A516 GR 70 STL Plate Normalized	Ultrasonic Particle Magnetic	
13	Mounting Block	ASTM A350 LFI Forging Steel	Ultrasonic Magnetic Particle	
12	Leg Channels	ASTM A36 CS, HR	Vi sua1	

⁽a) See figure A-2

TABLE A-3 (cont) REACTOR VESSEL INTERNALS LIFT RIG CRITICAL ITEMS LIST OF PARTS PEP. ANSI N14.6-1978

1.5			Non-destructi	ve Testing
Item(a)	Description	Material	Material	Finished
14,15	Load Nuts Rod Housing	ASTM A276, Type 304 SST, Hot Rolled, Condition A	Ultrasonic	
16	Guide Sleeve	ASTM A276, Type 304 SST, Hot Rolled, Annealed & Pickled, Condition A	Ultrasonic	Liquid Penetrant
17	Rotolock Stud	ASTM A564, Type 630, 17-4 pH Steel 0 1100°F for 4 hours	Ultrasonic	Liquid Penetrant

⁽a) See figure A-2

TABLE A-4 REACTOR VESSEL INTERNALS LIFT RIG CRITICAL ITEMS LIST OF WELDS PER ANSI N14.6-1978

		Non-destructi	ve Testing
Item	Description	Root Pass	Final
1,2	Lugs to Lifting Block (Full Penetration)	Magnetic Particle	Magnetic Particle Radiograph
8,9	Lug to Spreader Block (Full Penetration)	Magnetic Particle	Magnetic Particle
11,12	Leg Lug to Channel Leg (fillet)	Magnetic Particle	Magnetic Particle
12,13	Mounting Block to Channel Leg (fillet)	Magnetic Particle	Magnetic Particle

Figure A-2. Reactor Vessel Internals Lift Rig

APPENDIX B

TABULATION OF ANSI N14.6-1978 REQUIREMENTS INCOMPATIBLE WITH THE COMANCHE PEAK LIFTING DEVICES

1. GENERAL

The comparison of the various ANSI N14.6 requirements and those of these lifting devices has shown that these devices are not in strict compliance with all the ANSI N14.6 requirements. Listed below is a tabulation of those sections of ANSI N14.6 considered most important in demonstrating the continued load handling reliability of these special lifting devices. Associated Westinghouse remarks are also listed and could be used as suggested actions and/or responses to demonstrate compliance to the NRC.

la. Requirement:

Para. 3.1.4 - requires the designer to indicate permissible repair procedures and acceptance criteria for the repair.

1b. Remarks:

Any repair to these special lifting devices is considered to be in the form of welding. Should pins, bolts or other fasteners need repair, they should be replaced, in lieu of repair, in accordance with the original or equivalent requirements for material and non-destructive testing. Weld repairs should be performed in accordance with the requirements identified in NF-4000 and NF-5000 (Fabrication and Examination) of the ASME Boiler and Pressure Vessel Code, Section III, Division 1 Subsection NF.

2a. Requirement:

Para. 3.2.1.1 - requires the design, when using materials with yield strengths above 80 percent of their ultimate strengths, to be based on the material's fracture toughness and not the listed design factors.

2b. Remarks:

High strength materials are used in these devices. Although the fracture toughness was not determined, the material was selected based on it's excellent fracture toughness characteristics. However, in lieu of a different stress design factor, the stress design factors listed in 3.2.1 of 3 and 5 were used in the analysis and the resulting stresses are considered acceptable.

3a. Requirement:

Para. 3.2.6 requires material for load-bearing members to be subjected to drop-weight or Charpy impact tests.

3b. Remarks:

Fracture toughness requirements were not identified for all the material used in these special lifting devices. However, the material selection was based on its excellent fracture toughness characteristics.

4a. Requirement:

Para. 5.1 lists <u>Owner Responsibilities</u> and 5.1.2 requires the owner to verify that the special lifting devices meet the performance criteria of the design specification by records and witness of testing.

4b. Remarks:

There wasn't any design specification for these rigs. A 125 percent load test followed by the appropriate non-destructive testing was performed. In addition, the Westing-nouse Quality Release, may be considered an acceptable alternate to verify that the criteria for the letters of compliance for materials and specifications required by Westinghouse drawings and purchasing document were satisfied.

5a. Requirement:

Para. 5.1.3 requires periodic functional testing and a system to indicate continued reliable performance.

5b. Remarks:

Maintenance and inspection procedures should include a visual check of critical welds and parts during lifting to comply with this requirement for functional testing.

6a. Requirement:

Para. 5.1.5, 5.1.5.1 and 5.1.5.2 require special identification and marking to prevent misuse.

6b. Remarks:

It is obvious, from their designs, that these rigs are specific lifting devices and can only be used for their intended purpose and parts are not interchangeable. Specific identification of the rig car be made by marking with stencils, the rig name and rated capacity, preferably on the spreader assembly.

7a. Requirement:

Para. 5.1.6, 5.1.7 and 5.1.8 require the owner to provide written documentation on the maintenance, repair, testing and use of these rigs.

7b. Remarks:

Operating instructions and maintenance instructions should be reviewed to assure that they contain the requirements to address maintenance logs, repair and testing history, damage incidents and other items mentioned in these paragraphs.

8a. Requirement:

Para 5.2.1 requires the rigs to be initially tested at 150 percent maximum load followed by non-destructive testing of critical load bearing parts and welds.

8b. Remarks:

Both the reactor vessel head and internals lifting rigs and load cell were proof tested upon completion with a load of approximately 1.25 times the design weight. Upon completion of the test, all parts, particularly welds, were visually inspected for cracks or obvious deformation and critical welds were magnetic partical inspected. In addition the Westinghouse Quality Release verified that the criteria for letters of compliance for materials and specifications required by the Westinghouse drawings and purchasing documents were satisfied.

9a. Requirement:

Para 5.2.2 requires replacement parts to be individually qualified and tested.

9b. Remarks

Replacement parts, should they be required, should be made of identical (or equivalent) material and inspections as originally required. Only pins, bolt and nuts are considered replacement parts for the reactor vessel head and internal lift rigs.

10a. Requirement:

Para 5.3 requires testing to verify continuing compliance and annual 150 percent load tests or annual non-destructive tests and examinations to be performed.

10b. Remarks

These special lifting devices are used during plant refueling which is approximately once per year. During plant operation these special lifting devices are inaccessable since they are permanently installed and/or remain in the containment. They cannot be removed from the containment unless they are disassembled and no known purposes exist for disassembly. Load testing to 150 percent of the total weight before each use

would require special fixtures and is impractical to perform.

Crane capacity could also be limiting. It is suggested that a check (visual) of critical welds and parts be conducted at initial lift prior to moving to full lift and movement for these devices. Further note that with the use of the load cell for the head and internals lift rig, all lifting and lowering is monitored at all times.

2. SUMMARY

The ANSI requirements for periodic checking and functional load testing appear to be most difficult to demonstrate compliance. It is almost impractical to perform the 150 percent load test prior to each use. It is suggested that the proposal to the NRC include a 100 percent load test to be performed with a minimum of non-destructive testing, (visual-only) in the critical parts and welds.

WESTINGHOUSE CLASS 3

Although information contained in this report ATTACHMENT B to is nonproprietary, no distribution shall WCAP-10156 be made outside Mestinghouse or its Rev. 1 licensees without the customer's approval.

STRESS REPORT
REACTOR VESSEL HEAD LIFT RIG,
REACTOR VESSEL INTERNALS LIFT RIG
AND THE LOAD CELL LINKAGE

FOR

TEXAS UTILITIES GENERATING COMPANY
COMANCHE PEAK UNITS NO. 1 AND NO. 2

FEBRUARY, 1983

H. H. Sandner, P.E.

Approved: D. J. Leduc, P.E., Manager Component Handling Equipment

ABSTRACT

A stress analysis of the Comanche Peak reactor vessel head and internal lift rigs load cell and load cell linkage was performed to determine the acceptability of these devices to meet the design requirements of ANSI N14.6.

ACKNOWLEDGMENT

Acknowledgment is hereby made to the following individuals who contributed to the structural analysis presented in this report.

J. S. Urban

F. Peduzzi

TABLE OF CONTENTS

Section	Title	Page
	ABSTRACT	111
1	INTRODUCTION	1-1
	1.1 Background	1-1
2	COMPONENT DESCRIPTION	2-1
	2.1 Reactor Vessel Head Lift Rig	2-1
	2.2 Reactor Vessel Internals Lift Rig	2-1
	2.3 Load Cell and Load Cell Linkage	2-2
3	DESIGN BASIS	3-1
	3.1 Design Criteria	3-1
	3.2 Design Weights	3-2
4	MATERIALS	4-1
	4.1 Material Description	4-1
5	SUMMARY OF RESULTS	5-1
	5.1 Discussion of Results	5-1
	5.2 Conclusion	5-2
APPENDIX A	DETAILED STRESS ANALYSIS - REACTOR	
	VESSEL HEAD LIFT RIG	A-1
APPENDIX B	DETAILED STRESS ANALYSIS - REACTOR	
	VESSEL INTERNALS LIFT RIG, LOAD CELL	
	AND LINKAGE	B-1

LIST OF ILLUSTRATIONS

Figure	Title	Page
5-1	Reactor Vessel Head Lift Rig	5-13
5-2	Reactor Vessel Internals Lift Rig, Load Cell and Linkage	5-23

LIST OF TABLES

Table	Title	Page
4-1	Reactor Vessel Head Lift Rig	
	Material and Material Properties	4-2
4-2	Reactor Vessel Internals Lif. Rig,	
	Load Cell and Load Cell Linkage	
	Material and Material Properties	4-3
5-1	Summary of Results - Reactor Vessel	
	Head Lift Rig	5-4
5-2	Summary of Results - Reactor Vessel	
	Internals Lift Rig, Load Cell and	
	Load Cell Linkage	5-14

REFERENCES.

- George, H., Control of Heavy Loads at Nuclear Power Plants Resolution of Generic Technical Activity A-36, NUREG-U612, July, 1980.
- ANSI N14.6-1978, "Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500kg) or More for Nuclear Material," American National Standards Institute, New York, 1978.
- 3. Westinghouse Drawing 1212E27 Comanche Peak Nuclear Power Plant Head Lifting Rig General Assembly
- Westinghouse Drawing 1216E68 4 Loop Plant General Assembly Lifting Rig Internals
- Lin, C. W., "Approximate Evaluation of Dynamic Load Factors for Certain Types of Load Factors for Certain Types of Loading," ASME Paper 70-WA/NE-2.
- Biggs, J. M., Introduction to Structural Dynamics, McGraw-Hill, New York, 1964.
- Gwinn, Jr., J. T., "Stop Over-Designing for Impact Loads," Machine Design, 33, pp. 105-113 (1961).
- Manual of Steel Construction, Seventh Edition, American Institute of Steel Construction.

SECTION 1 INTRODUCTION

The Nuclear Regulatory Commission (NRC) issued NUREG 0612 "Control of Heavy Load at Nuclear Power Plants" [1] in 1980 to address the control of heavy loads to prevent and mitigate the consequences of postulated accidental load drops. NUREG 0612 imposes various training, design, inspection and procedural requirements for assuring safe and reliable operation for the handling of heavy loads. In the containment building, NUREG 0612 requires special lifting devices to meet the requirements of ANSI N14.6-1978 "American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials". [2] In general, ANSI N14.6 contains detailed requirements for the design, fabrication, testing, maintenance and quality assurance of special lifting devices.

This report contains the stress analysis performed on the Comanche Peak reactor vessel head lift rig, reactor vessel internals lift rig and the load cell and load cell linkage to determine the acceptability of these devices to meet these requirements.

1.1 BACKGROUND

The reactor vessel head lift rig, the reactor vessel internals lifting rig and load cell and load cell linkage, were designed and built for the Comanche Peak Nuclear Power Plants, circa 1975-1976. These devices were designed to the requirements that the resulting stress in the load carrying members when subjected to the total combined lifting weight should not exceed the allowable stresses specified in the AISC^[8] code. Also a 125 percent load test was required on both devices, followed by appropriate non-destructive testing. These items were not classified as nuclear safety components and thus requirements for formal documentation of design requirements and stress reports were not applicable. Thus, stress reports and design specifications were not

formally documented. Westinghouse defined the design, fabrication and quality assurance requirements on detailed manufacturing drawings and purchase order documents. Westinghouse also issued field assembly and operating instructions, where applicable.

SECTION 2 COMPONENT DESCRIPTION

2.1 REACTOR VESSEL HEAD LIFT RIG

The reactor vessel head lift rig^[3] is a three legged carbon steel structure, approximately 48 feet high and 16 feet in diameter, weighing approximately 15,000 pounds. It is used to handle the assembled reactor vessel head.

The three vertical legs and control rod drive mechanism (CRDM) platform assembly are permanently attached to the reactor vessel head lifting lugs. The leg, clevises, and pins which are a part of the support for the seismic platform, meet the requirements of the ASME Boiler and Pressure Vessel Code, Section III, Subsection NF Class I supports. The tripod sling assembly is attached to the three vertical legs and is used when installing and removing the reactor vessel head. During plant operations, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2 REACTOR VESSEL INTERNALS LIFT RIG

The reactor vessel internals lift rig^[4] is a three-legged carbon and stainless steel structure, approximately 30 feet high and 14 feet in diameter weighing approximately 21,000 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing operations. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig is stored on the upper internals storage stand.

The reactor vessel internals lift rig attaches to the internals package by means of three rotolock studs which engage three rotolock inserts located in the internals flange. These rotolock studs are manually operated from the internals lift rig platform using a handling tool which is an integral part of the rig. The studs are normally spring retracted upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions.

2.3 LOAD CELL AND LOAD CELL LINKAGE

The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurring. The unit shall be a load sensing clevis type rated at 500,000 pounds. This load cell is a part of the load cell linkage which is an assembly of pins, plates, and bolts that connect the polar crane main hook to the lifting blocks of both the reactor vessel head and internals lift rig.

SECTION 3 DESIGN BASIS

3.1 DESIGN CRITERIA

NUREG 0612, paragraph 5.1.1(4) states that special lifting devices should satisfy the guidelines of ANSI N14.6. Further, NUREG 0612, 5.1.1(4) states: "In addition, the stress design factor stated in Section 3.2.1.1 of ANSI N14.6 should be based on the combined maximum static and dynamic loads that could be imparted on the handling device based on characteristics of the crane which will be used. This is in lieu of the guideline in Section 3.2.1.1 of ANSI N14.6 which bases the stress design factor on only the weight (static load) of the load and of the intervening components of the special handling device".

It can be inferred from this paragraph that the stress design factors specified in Section 3.2.1.1 of ANSI N14.6 (3 and 5) are not all inclusive. Also, it can be inferred that the specified ANSI N14.6 stress design factors should be increased by an amount based on the crane dynamic characteristics.

The dynamic characteristics of the crane would be based on the main hook and associated wire ropes holding the hook. Most main containment cranes use sixteen (16) or more wire ropes to handle the load. Should the crane hook suddenly stop during the lifting or lowering of a load, a shock load could be transmitted to the connected device. Because of the elasticity of the sixteen or more wire ropes, we consider the dynamic factor for a typical containment crane to be not much larger than 1.0.

Even if the worst conditions existed, the maximum design factor that is recommended by most design texts [5, 6, 7] is a factor of two for

loads that are suddenly applied. The stress design factors required in Section 3.2.1.1 of ANSI N14.6 are:

3 x (weight) < Yield Strength
5 x (weight) < Ultimate Strength</pre>

The factor of 3 specified, based on yield strength, is certainly large enough to compensate for suddenly applied loads, where the dynamic impact factor would be as high as 2.0.

To provide flexibility on stress design factor, the analysis of the devices was performed with stress design factors of 1, 3 and 5. Thus, any stress design factor may be easily applied to satisfy any concerns.

3.2 DESIGN WEIGHTS

The following design weights were used in the analysis of the lifting devices:

3.2.1 Reactor Vessel Head Lift Rig

The design weight is 336,218 pounds which is the total weight of the assembled head and the lifting device.

3.2.2 Reactor Vessel Internals Lift Rig

The design weight for:

- a. The Lower Assembly, Items 13 through 19 of calculations; is 260,000 pounds.
- b. The design weight for the rest of the rig is 290,000 pounds.

SECTION 4 MATERIALS

4.1 MATERIAL DESCRIPTION

The materials and material properties for the reactor vessel head lift rig, the reactor vessel internals lift rig and load cell linkage are listed in Tables 4-1 and 4-2.

TABLE 4-1

REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE MATERIAL

AND MATERIAL PROPERTIES

Item(a)	Description	Material	Yield Strength Sy (ksi)	Ultimate Strength Sult (ksi)
1	Lifting Block	ASTM A350	36	70
2,7	Lug	ASTM A516 Grade 70	38	70
3,6	Clevis Pin	ASTM A434 AISI 4340 Steel Class BD	110	140
4,10	Clevis	ASTM A668 Forging and Class L AISI 4340	85	110
5,9	Lifting Leg	ASTM A434 Class BC AISI 4340	85	110
8	Arm	ASTM A106	35	60
11	Clevis Pin (load sensing)	ASTM A564, Type XM12	105	135
12	Side Plates	ASTM A533, Type B Class 1	50	80
13	Removable Pin	ASTM A564, Type 630	105	135

⁽a) See figure 5-1.

TABLE 4-2

REACTOR VESSEL INTERNALS LIFT RIG MATERIAL

AND MATERIAL PROPERTIES

Item(a)	Description	Material	Yield Strength	Ultimate Strength
			Sy (ksi)	Sult (ksi)
1	Lifting Block	ASTM A350, Grade LF 2	36	70
2	Lifting Block Lug	ASTM A516, Grade 70	38	70-90
3,7	Clevis Pin	ASTM A564, Grade 70 Precipitation	105	135
		Hardening SST, Age Treated @ 1150°F/ 4 hrs. Air Cooled RC 28-31		
4,6	Clevis	ASTM A471, Class 3 Steel Forging	95	110
5	Sling Rod	ASTM A434, Class BC AISI 4340 or (ASTM A588)	85/(46)	110/(67
8,11	Spreader Leg Lug	ASTM A516, GR 70 STL Plate Normalized	38	70-90
9,13	Spreader and Mounting Block	ASTM A350, LFI Forging Steel	30	60
10	Spreader Arm	ASTM A500, Grade B	46	58
12	Leg Channels	ASTM A36, CS, HR	36	58-80
14,15	Load Nuts Rod Housing	ASTM A276, Type 304, SST Hot Rolled, Cond. A	30	75
16	Guide Sleeve	ASTM A276, Type 304, SST, Hot Rolled, Annealed and pickled, Condition A	30	75
17	Rotolock Stud	ASTM A564, Type 630 17-4 PH Steel @ 1100°F for 4 hrs.	115	140

⁽a) See figure 5-2.

SECTION 5 SUMMARY OF RESULTS

Tables 5-1 and 5-2 summarize the stresses on each of the parts which make up the reactor vessel head, load cell and load cell linkage and the internals lift rig. All of the tensile and shear stresses, meet the design criteria of section 3.2.1.1 of ANSI N14.6, requiring application of stress design factors of three and five with accompanying allowable stress limits of yield and ultimate strength, respectively. In addition, all of the tensile and shear stresses meet the requirement of not exceeding the allowables of the AISC^[8] code.

5.1 DISCUSSION OF RESULTS

5.1.1 Application of ANSI N14.6 Criteria

Both the reactor vessel head and internals lift rig were originally designed to the requirement that all resulting stresses in the load carrying members, when subjected to the total combined lifting weight, should not exceed the allowable stresses specified in the ${\sf AISC}^{[8]}$ code.

The design criteria of section 3.2.1.1 of ANSI N14.6, requiring application of stress design factors of three and five with the accompanying allowable stresses, are to be used for evaluating load bearing members of a special lifting device when subjected to loading conditions resulting in shear or tensile stresses. Application of these design load factors to other loading conditions is not addressed in ANSI N14.6. However, these two stress design factors have been used to determine the stresses of the load carrying members when subject to other loading conditions, viz. bending, bearing. This is an extremely conservative approach and in several instances the resulting stresses exceed the accompanying allowable stress limit.

- a) Bearing Stresses For the internals lifting rig, several of the parts do not meet this criteria. However, since they are localized stresses, they can, if necessary, be considered under section 3.2.1.2, which states that the stress design factors of 3.2.1.1 are not intended to apply to situations where high local stresses are relieved by slight yielding. None of the bearing stresses reach the yield stress, and in fact, all of the bearing stresses meet the design criteria of the AISC^[8] code.
- b) Bending Stresses The removable pin in the load cell linkage does not meet the section 3.2.1.1 criteria. However, a very conservative approach was used to calculate the bending stress in pins, as shown on page 33 of the reactor vessel head lifting rig calculations. In addition, this is a local fiber stress. Even if the fiber stresses reached anywhere near the yield stress, the rest of the pin cross-section could assume the additional load. The shear stress in the pin is extremely low and well within the section 3.2.1.1 criteria. Again, section 3.2.1.2 applies if necessary. The bending stress meets the AISC^[8] code criteria.
- c) <u>Combined Stresses</u> The combined tensile stress from bending and tension, in the lower sling rod clevis (item 6), the spreader lug (item 8), and the leg lug (item 11) of the internals lift rig exceed the section 3.2.1.1 criteria. As indicated above, bending is not a uniform stress, but is at a maximum at the outermost fiber. Bending contributes to the major portion of the stress shown in the table, and, as a result, the tensile stress without the bending is extremely low and well within the section 3.2.1.1 criteria. The combined stresses also meet the AISC code criteria.

5.2 CONCLUSION

Application of the ANSI N14.6 criteria of (3 and 5) to these special lifting devices results in acceptable stress limits for tensile and

shear stresses. Application of this criteria to all structural members subject to other types of loadings tend to result in oversimplified conservatism and with some stresses exceeding the accompanying allowable limits. However, when using the more appropriate criteria for those cases not addressed by the ANSI N14.6 criteria the stresses are within the appropriate allowable limits. In conclusion, there special lift devices meet the ANSI N14.6 criteria for tensile and shear stresses and meet other appropriate criteria for loading conditions that result in combined and bearing stresses.

TABLE 5-1
SUMMARY OF RESULTS
REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

(a)		Calculated Stresses (ksi)					Material Allowable (ksi)	
Item ^(a) No.	Part Name And Material	Designation	M(p)	3W	5W	S _y (c)	Sult	
1	Lifting Block	Tension @ 6.515" Dia. Hole	4.1	12.3	20.5	36	70	
	ASTM A350	Bearing @ 6.515" Dia. Hole	6.4	19.2	32.0			
	Grade LF2	Shear @ 6.515" Dia. Hole	4.1	12.3	20.5			
		Tension @ Lug Supports Cross-Section	6.7	20.1	33.5			
2	Lug	Tension @ 4.015" Dia. Hole	4.4	13.2	22.0	38	70	
	ASTM A516	Bearing @ 4.015" Dia. Hole	7.7	23.1	38.5	71.7	NOT BU	
	Grade 70	Shear @ 4.015" Dia. Hole	4.4	13.2	22.0		his war	
		Tension @ Lug Root	2.9	8.7	14.5			
		Shear @ Lug Root	2.2	6.6	11.0			

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

TABLE 5-1 (cont)
SUMMARY OF RESULTS
REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

Item(a)		Calculated	Stresses (ksi			Material Allowabl	
No.	Part Name And Material	Designation	M(p)	Value 3W	5W	Sy(c)	Sult (d)
3	Clevis Pin	Position 1				110	140
	ASTM A434	Shear	4.9	14.7	24.5		
	AISI 4340	Bearing	7.7	23.1	38.5		
4.4	Steel Class BD	Bending	24.1	72.3	120.5		
		Position 2					
		Shear	4.9	14.7	24.5		
		Bearing	8.0	24.0	40.0	De la	
		Bending	24.7	74.1	123.5		

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

TABLE 5-1 (cont)
SUMMARY OF RESULTS
REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

Item(a)	Part Name	Calculated Stre		Value			Material Allowable (ksi)	
No.	And Material	Designation	М(р)	3W	5W	S _y (c)	S _{ult} (d)	
		Position 3	11					
		Shear	4.5	13.5	22.5			
		Bearing	7.2	21.6	36.0			
		Bending	22.4	67.2	112.0			
4	Clevis	Position 1	W. H					
	ASTM A668	Tension @ 4.005" Dia. Hole	5.0	15.0	25.0	85	110	
	Forging &	Bearing @ 4.005" Dia. Hole	6.4	19.2	32.0			
	Class L	Tension @ Thread Relief	1.9	5.7	9.5			
	AISI 4340	Shear @ 4.005" Dia. Hole	5.0	15.0	25.0			
	Steel	Thread Shear	2.3	6.9	11.5			

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

(-1		Calculated Stre	Material Allowabl				
Item(a)	Part Name			Value			(ksi)
No.	And Material	Designation	M(p)	3W	5W	Sy ^(c)	S _{ult} (d)
		Position 2					
		Tension @ 4.005" Dia. Hole	5.1	15.3	25,5	85	110
		Bearing @ 4.005" Dia. Hole	6.6	19.8	33.0		
		Tension @ Thread Relief	1.9	5.7	9.5		
		Shear @ 4.005" Dia. Hole	5.1	15.3	25.5	F & F 9	
		Thread Shear	2.3	6.9	11.5		F 1 2

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

TABLE 5-1 (cont)
SUMMARY OF RESULTS
REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

Item(a)	Part Name	Calculated Stre	Value			Material Allowable (ksi)	
No.	And Material	Designation	M(p)	3W	5W	Sy ^(c)	Sult
		Position 3		T			
		Tension @ 4.005" bia. Hole	18.4	55.2	92.0	85	110
		Bearing @ 4.005" Dia. Hole	11.6	34.8	58.0		
		Tension @ Thread Relief	1.7	5.1	8.5		
		Shear @ 4.005" Dia. Hole	9.2	27.6	46.0		E Hora
		Thread Shear	2.1	6.3	10.5		
5	Lifting Leg	Tension @ Threads	7.0	21.0	35.0	85	110
	ASTM A434	Thread Shear	2.3	6.9	11.5	De la company	
	Class BC				P. P.		
	AISI 4340						
	Steel						

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

5462B:1/100682

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

Item(a)	2	Calculated Stresses (ksi) Value				Material Allowable (251)	
No.	Part Name And Material	Designation	M(p)	3W	5W	Sy ^(c)	Sult (d
	Claude Die	Chann	4.6	13.8	23.0	110	140
6	Clevis Pin ASTM A434	Shear Bearing	7.1	21.3	35.5		
	AISI 4340	Bending	22.4	67.2	112.0		
	Steel	Delia ing					
	Class BD						
7	Lug	Tension @ Upper Hole	4.6	13.8	23.0	38	70
	ASTM A516	Shear @ Upper Hole	4.6	13.8	23.0		
	Grade 70	Tension @ Lower Hole	2.8	8.4	14.0		
		Shear @ Lower Hole	4.1	12.3	20.5		
		Shear @ Weld	2.2	6.6	11.0		

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

Item(a)		Calculated	Stresses (ksi	Value			Material Allowable (ksi)	
No.	Part Name And Material	Designation	M(p)	3W	5W	S _y (c)	Sult (d)	
8	Arm	Compressive Stress	1.8	5.4	9.0	35	60	
	ASTM A106 Grade B Seamless	Shear @ Weld	2.2	6.6	11.0	18 ^(e)		
9	Lifting Leg	Thread Shear	2.1	6.3	10.5	85	110	
	ASTM A434 Class BC AISI 4340 Turned, Ground & Polished	Tension @ Thread	6.3	18.9	31.5			

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (e) Stress limit for fillet weld from ASME Boiler and Pressur Vessel Code, Section III, Division 1 Subsection NF 1980 Edition, Table NF-3292 1-1, page 43.

TABLE 5-1 (cont)

SUMMARY OF RESULTS

REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

(2)		Calculated Stre	Material Allowable				
Item ^(a)	Part Name		(b) I	Value			ksi)
No.	And Material	Designation	M(p)	3W	5W	s _y (c)	S _{ult} (d)
10	Clevis	Tension @ 3.947" Dia. Hole	4.5	13.5	22.5	85	110
	ASTM A668	Bearing @ 3.947" Dia. Hole	5.9	17.7	29.5	The Lates	
	Forging	Shear @ 3.947" Dia. Hole	4.5	13.5	22.5	12.00	
	Grade L	Tension @ Thread Relief	1.7	5.1	8.5		
	AISI 4340	Thread Shear	2.1	6.3	10.5		
	Steel						
11	Clevis Pin	Bearing @ Midspan Section	7.2	21.6	36.0	105	135
	(Load Sensing)	Bearing @ End Sections	7.2	21.6	36.0		
	ASTM A564	Shear	4.4	13.2	22.0	l w	
	Type XM12	Bending	24.8	74.4	124.0		

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

TABLE 5-1 (cont)

SUMMARY OF RESULTS

REACTOR VESSEL HEAD LIFT RIG AND LOAD CELL LINKAGE

Item(a)	Part Name		resses (ksi) Value			Material Allowable (ksi)		
No.	And Material	Designation	М(р)	3W	5W	S _y (c)	S _{ult} (d)	
12	Side Plates	Tension @ 7.50 Dia. Hole	4.7	14.1	23.5	50	80	
	ASTM A533	Bearing @ 7.50 Dia. Hole	7.2	21.6	36.0			
	Type B, Class 1	Bearing @ 6.520 Dia. Hole Shear Tear-out @ 6.52	6.7	20.1	33.5			
	1	Dia. Hole Shear Tear-out @ 7.50	4.1	12.3	20.5			
		Dia. Hole	4.7	14.1	23.5			
13	Removable Pin	Shear	5.2	15.6	26.0	105	135	
	ASTM A564	Bearing O Midspan	6.4	19.2	32.0			
	Type 630	Bearing Ends	6.7	20.1	33.5			
		Bending	26.4	79.2	132.0			

- (a) See figure 5-1 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

Figure 5-1. Reactor Vessel Head Lift Rig

TABLE 5-2
SUMMARY OF RESULTS
REACTOR VESSEL INTERNALS LIFT RIG

Item(a)	French Manage	Calculated Stresses (ksi) Value					Material Allowable (ksi)	
No.	Part Name And Material	Designation	М(р)	3W	5W	S _y (c)	Sult	
1	Lifting Block ASTM A350	Tensile Stress 0 6.515	3.7	11.1	18.5	36	70	
	Grade LF2	Bearing Stress @ 6.515 Dia. Hole	5.5	16.5	27.5			
		Shear Tear-out @ 6.515 Dia. Hole	3.7	11.1	18.5			
		Tensile Stress @ Central Cylinder	5.8	17.4	29.0			

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

Item(a)	· Part Name	Calculated St	tresses (ksi) Value		Material Allowable	
No.	And Material	Designation	W(p)	3W	5W	s _y (c)	ksi) Sult
2	Lifting Block Lug ASTM A516	Tensile Stress @ 4.015	4.7	14.1	23.5	38	70
	Grade 70	Bearing Stress @ 4.015 Dia. Hole	7.9	23.7	39.5		
		Tension @ Lug Root	6.6	19.8	33.0		
		Shear Tear-out @ 4.015 Dia. Hole	4.5	13.5	22.5		
		Shear @ Lug Root	1.9	5.7	9.5		

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

Item ^(a) No.		Calculated Stresses (ksi) Value			Material Allowable (ksi)		
	Part Name And Material	Designation	M(p)	3W	5W	S _y (c)	Sult (d)
3	Clevis Pin	Shear	5.0	15.0	25.0	105	135
	ASTM A564	Bearing on Lifting Block Lug	7.9	23.7	39.5		
	Type 630	Bending	23.9	71.7	119.5	1	
	17-4 pH H1150	bearing on Clevis Lugs	6.6	19.8	33.0		
4	Clevis	Tension @ 4.018 Dia. Hole	5.1	15.3	25.5	95	110
	ASTM A471	Bearing @ 4.018 Dia. Hole	6.6	19.8	33.0		
	Class 3	Shear Tear-out @ 4.018	5.1	15.3	25.5		Mary.
	Steel Forging	Dia. Hole			10.5		
		Thread Shear	5.3	15.9	26.5		

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

Item(a)	S	Calculated Str	C33C3 (K31	Value			Allowable ksi)
No.	Part Name And Material	Designation	М(р)	3W	5W	S _y (c)	Sult
5	Sling Rod	Thread Shear	5.3	15.9	26.5	85	110
	ASTM A434	Tension @ Thread Relief	12.0	36.0	60.0	or	or
	Class BC AISI 4340 (or) ASTM A588	Tension @ Thread	11.4	34.2	57.0	46	67
6	Lower Sling	Bearing	39.1	117.3	195.5	95	110
	Rod Clevis	Tension @ 4.018 Dia. Hole	29.7	89.1	148.5		
	ASTM A471 Class 3 Steel Forging	Thread Shear	5.4	16.2	27.0		

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

Item(a) Part Name		Calculated Str	esses (KS)	Value		Material Allowable (ksi)	
No.	Part Name And Material	Designation	M(p)	3W	5W	Sy ^(c)	S _{ult} (d)
					RE-LE	1175	
7	Clevis Pin	Bearing	39.1	117.3	195.5	105	135
	ASTM A564	Shear	5.1	15.3	25.5		
	Type 630	Bending	19.0	57.0	95.0		
	17-4 pH H 1150					1	
8	Spreader Lug	Lombined Stresses, Bending	19.7	59.1	58.5	38	70
	ASTM A516	and lensile					
	GR 73 STL		713				
	Plate		1.1				
	Normalized	bearing Stress	29.4	88.2	147.0		

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

Item(a)	Part Name			Value			ksi)
No.	And Material	Designation	M(p)	3W	5W	s _y (c)	S _{ult} (d)
9	Spreader Block ASTM A350 LFI Forging Steel	Bearing from Arm	4.4	13.2	22.0	30	60
10	Spreader Arm ASTM A500 GR B	Nominal Compression Stress	4.4	13.2	22.0	F _a =	22.9 ^(e)
11	Leg Lug ASTM A516	Combined Stress Benging & Tensile @ 4.015 Dia. Hole	13.5	40.5	67.5	38	70
	Grade 70 Steel, Normalized	Bearing Weld Stresses	25.1	75.3 33.9	125.5 56.5	21 ^(f)	

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_{ν} is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (e) Fa = allowable compression stress to prevent buckling in absence of bending moment
- (f) Stress limit for fillet welds from ASME boiler and Pressure Vessel Code, Section III, Division 1 Subsection NF 1980 Edition, Table NF-3292.1-1, page 43.

54628:1/101182

(-1		Calculated	Stresses (ksi)		Material	Allowable
Item ^(a)	Part Name		I have been	Value			ksi)
No.	And Material	Designation	M(p)	3W	5W	S _y (c)	S _{ult} (d)
12	Leg Channels ASTM A36 CS, HR	Tens11e	7.7	23.1	38.5	36	58
13	Mounting Block ASTM A350 LF1 Forging Steel	Bearing to Load Nut Shear in Welds	13.7 3.7	41.4 11.1	68.5 18.5	30 18 ^(f)	60

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_v is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (f) Stress limit for fillet welds from ASME Boiler and Pressure Vessel Code, Section III, Division 1 Subsection NF 1980 Edition, Table NF-3292.1-1, page 43.

Item(a)		Calculated Str	Calculated Stresses (ksi) Value			Material Allowable (ksi)	
No.	Part Name And Material	Designation	М(р)	3W	5W	Sy(c)	Sult
					60.1	20	76
14	Load Nut	Bearing to Mounting Block	13.7	41.4	68.5	30	75
	ASTM A276	Thread Shear	5.3	15.9	26.5		
	Type 304						
15	Rod Housing	Tension @ Thread Relief	10.9	32.7	54.5	35(9)	81 (9
	ASTM A276	Thread Snear on Upper	5.3	15.9	26.5	Type lev	
	Type 304	Threads	A King		1		
		Lower Threads Shear	4.9	14.7	24.5		
16	Guide Sleeve	Thread Shear	4.9	14.7	24.5	35(9)	6119
	ASTN A276	Tension @ Thread kelief	111.6	34.8	58.0		
	Type 304 SST	Bearing to Stud	1 14.2	42.6	71.0		

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)
- (g) These are actual Sy and Sult taken from material certifications.

		Calculated Str	esses (ksi			1	Allowable
Item(a)	Part Name			Value		The second secon	ksi)
No.	And Material	Designation	M(p)	3W	5W	S _y (c)	Sult
17	Rotolock Stud	Tensile Stress @ Cross-	19.0	57.0	95.0	115	140
	ASTM A564 Type 630 17-4 pH H 1100	Section Combined Shear Stress on Land Root	23.4	70.2	117.0		
		Bearing on Land Surfaces	24.9	74.9	124.5		
		Bearing on Steel Head	14.2	42.6	71.0		

- (a) See figure 5-2 for location of item number and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

Figure 5-2. Reactor Vessel Internals Lift Rig, Load Cell, and Linkage

APPENDIX A

DETAILED STRESS ANALYSIS - REACTOR VESSEL HEAD LIFT RIG, LOAD CELL AND LOAD CELL LINKAGE

This appendix provides the detailed stress analysis for the Comanche Peak reactor vessel head lift rig and the load cell and load cell linkage, in accordance with the requirements of ANSI N14.6. Acceptance criteria used in evaluating the calculated stresses are based on the material properties given in Section 4.

TYGP-188	Comanche F	² eak	1 OF 31
R.V. Head Lift Load Cell & Linkag	ge Rig Analysis	PDC -	
J. Urban PURPOSE AND RESULTS:	22-82 H. Sand	iner Alsonda	in

- The purpose of this analysis is to determine the acceptability of this rig to the requirements of ANSI N14.6.
- 2. The results show that all stresses are within the allowable stresses.

Original Issue J. Urban
REVISION NO. DATE DESCRIPTION BY

RESULTING REPORTS, LETTERS OR MEMORANDA:

Н 5	AL LIET	TNIA F.	G STERES	AMA T	4 OF
	AU LIFT		10 1		HK'O. BY
TEX	CALC NO	w E/82	FILE NO.		ROUP
4GP-188	CALC. NO		1		CHE
	CONT OF		-MRIV & L	TET BIG	
me:	SAL OF	nene m.		1111111	
\ET	GHTS:		POUN	05	
	HEAD _				
	DS, NUTS, FU				
	DM S:	DHAILING			
	FULL LENGT		74 10	20	
	HAT LIN			_	
	POSITION				
_	1ALK			95	
	OLT No S				
	MMY CAN'				
	FT RIG -				
	ic tensioner				
	I:MI. F				
	AD THOU				
	MTINGS				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
			33	6,218 PO	UNDS
				,	

TLE	111 40 125	OATE CHE DAY	ATTECHNO BY
TBX	Maguen	5/82 Ab Jana	8/14/82 GROUP
TYGP-138	CALC NO	FILE NO.	CHE
C 01	LI STINATE	DED THROUGHOU	T THE
	LCULATION		
			h. to work a l
0	$1 = 25.142^{\circ}$	pper sling les ma from DWG	1212 E 27
			plus rig assembly
-2 V	1= 326,2	18 pounds	
1-2 T	= tension	in slins led	
	Tcoxx = !	3 236,218 =	
	T = 30.50	3 CO3 25.1420	
	T = 123,9	3021	1w/3
			T/1
			par
			tur
			`w3
			feet +++-
			DATE CHK'D RY D
EV REV.	AUTHOR	DATE CHE'D BY	DATE CHK D. BY D

E H	EAD LIFTING	RIG STRESS AN		G OF 3 1
TBX	De calo	DATE CHK DAY	8/2/82	, O.
	CALC NO.	FILE NO.	GROUP	CHE_
TYGP-188	5 1			1/2
LIFETER	IG BLOCK A	SCEMBLY		16
LTELTI	16 block A	SCHIDEI		
MAT'L -	ITETI NIA BLO	CK, IT1 = AS	TM A 350 GR	ADE LF2
	LUG	IT2 - AST	M A516 GI	RADE TO
	- WELDS		1018 ELECTR	
EST. WT.				
T2 10 AA 11				
	1			
			+w	
	€ - 8.187 - 00 P			0
			1	٥
			/ 7	-8,251
	40	10 1.01 × 4501 2° CHAMFER		A. T.
	h	(BOTH ENDS)		
		1 _ T		- A A
		€.5151.00s Φ		
	L	*		9.001,25 FLAT
		~*		/
		(2)		
			Be	- B
18.00	+ ns 4 40151:00	20° 12°		
1	2.03	1		
10.10	7.00 1.13			25.00
	4		7	
		-× /		
		X	777	
	4.001,01 (THICK) 5.5	DI.136 - Fun		4
- H. H.		-	200:00	
- One of the	nec spread at 121	00	8.001.05	Ψ "
* O'C 01 11			(LUG ROTATE	E IND VIEW

TAUTHOR DATE	TENSILE & B-B W= 336, 218 1b ft = P/At P= W At = TT (8.00) ² /4 = 50.265 in ² ft = 6689 psi
BEARING & A-A W = 336,21816 f = P/A P = W A = d 1 = 6.515 (8.187 - 2(.06)) = 52.56 in 2 f = W/52.56 f = G397 pii	LUG 6.25 7.00 6.25 7.00 7.00+5.50)/2 = 6.25
SHEAR tear-out W= 336,21816 fv= P/2Av P= W Av = 40.87 in² fv = W/(2×40.87) fv = 4113 fsi REV REV AUTHOR DA	TENSION & C-C T = 123,802 1b \[\overline{\text{t}} = P/A_t \] \[P = T/2 \] \[A_t = (5.50 - \frac{4.015}{2})(4.00) \] \[= 13.97 \text{in}^2 \] \[\overline{\text{t}} = \frac{4.31}{2} \text{p} \] \[\overline{\text{t}} = \frac{4.31}{2} \text{p} \] \[\overline{\text{t}} = \frac{4.31}{2} \text{p} \]

HEAD LIFTING	RIG STREES ANALYSIS 7 OF 31
TBX Julianulas 5/82	Hodandon 8/4/82
O TYGP-188 CAEC NO	GROUP. CHE
BEARING	
T= 123,8021b	cmax = 6.25 in
fc= P/Ac P= T	$I = bh^3/12$
$A_c = dl$	= 4.00 (12.5)3/12
= 4.015 (4.00)	= 651.0 in4
= 16.06 in ²	C M A
fc = 7709 psi	fb = MC/I tensile = _ 6077 _ psi
TC = 1107 PSI	
SHEAR - tor-out	f = P/At TENSILEELUGROOT
T= 123,802 16	P= Tsin x = 123,802 - 45.4
fv = P/2Av P = T	$A_{\pm} = bh$ = 4.00 (7.00+5.50)
Av = (5.50 - 1.015)(4.00)	= 50 in ²
= 13.97 in 3	ft = Tsina/50
f. = T/(2 × 12.97)	ft - 1052 pm
fv = 4431 psi	fb+f+ = 7,129 psi
	16. It
	SHEAR @ LUG ROOT
STRELLEUG LUG KOOT	T= 123,802*; a= 25.142
T= 123,802 16	F= TCOSA
Bending moment about	Ay= bh = 50 in2
x = 25.142°	ty = Tcosa/50
$X = .75 \tan \alpha$	fv = 2241 psi
X= 0.3520 m M= Tcosa (6-x)	
M = 632,987 in-16	
REV REV AUTHOR DA	TE CHK'D BY DATE CHK'D BY DAT

TITLE						PAGE	
	+IF	AD LIFTINIE	RI6	STRESS AM	VALLYXIS		» 31
PROJECT		plus was	DATL	Lo Sinter	DATECHA	D. BY	DATE
s.o.	TEX	CALC NO.		FILE NO.	GRO		
TY	16P-188					CHE	
		DESCRIPTION.					(3)
-	LEVIS PI	N					9
	YEATS LT						
1	MAT'L ASTM						
		4340 STEE	L				
	CLAS						
	140,0	00 PSI MIN TE	NATE:	STRENGTH			
E	EST W/T 45	5#		+ .875m	IN FULL THE		
					375 - 16UNG		
				1	-		
					3.995 +.000		
				*			
			_	1.22 2.00			
		* F.		1 11	2 × 450 ± 20 TY		
		7,121.02 -	1.1	26	7 x 42 . F 7 . T/	P	
			1 1	1991			
			, ,	125 128 TYP			
1200							
		17/2 075					
		13.62 REF -					
	KEE	PER FLATES AR	E 1.0	01.02 THICK			
1							
100							
B. 1							
T.							
H							
REV	REV	AUTHOR	DATE	CHK,D BA	DATE CH	K'D. BY	DAT
NO.	DATE						

LE	HEAD LIETT NO	RIG STRESS ANALYS	IS 10 of 31
TEX		DATE Starler 3/2/2	E CHK'D BY DAT
TYGP-188	CALC NO.	FILE NO.	CHE
	E PIN IL USED	TO CONNECT THE	SLING BLOCK
		, LIFTING LEG TO SP	
(POSETION 2)	AND SPREADER ASS	AMBLY TO VERTICAL	LIFTING LEG (MITTION.
	T= 123,802 #		
	W = 336,218 #	DOSETTION (3)	
f. = P/A.			(2.44-2(.043)) = 9.388
A = π d2/	4	P, (W/3)/2	= 56,036*
= TT (3.9		A= dQ= 3.995	(3.88)= 15.501 in2
	350 in2	Pa = (W/3) =	112,073*
POSITIONS	0 (2) P. T	fer: 5969 p	for = 7230 to
VIC 1 + 1 = 09	$\bigcirc P = \frac{(w/3)}{2}$		
		BENDI	NG
200 fy .	4938 ps	- (P)[a	0732
3 fy =-	4470	f= (2) L 2	+g+4] 32
BEAL.	ING		
		mk	m He
t = P	/Ac	ka-4	D 401-
		VP/2	P \(\frac{1}{2}\)
POSITION 1			
Acr di	= 3.995 (:.5-2) = 9.628	om POSITION 1	
P T/	2=61,901#	d = 2.50 - 2(.c	
Acm = dD	3.995 (4.00) = 15.98	oh: 1 = 4.00	* 4.00
Par = T	= 123,802"	d = 3.995	3.995
fc, - 6,429,	2 fc = 7747 ps	9 = [4.38+2(.045	$(5)-4\infty]/2 = 0.235$
POSITION 2			80216
Acx = d9=	3.995 (2.44-2(.045)=938	18 mi. fb = 2 2 +.	$\frac{32}{225 + \frac{4}{4}} \frac{32}{\pi (3.995)^3}$
	12 = 61,901*	-T(.194	
Au = al	= 3.995 (3.83) = 15.501	m = 24,13	isq PSI
Pm = T	= 123,802*		
- 6594	pif=7,987	ai Aderivation in ap	pendix

HEA	DIZFTING A	REG STROS AN	ALVSIS	PAGE
TEX.	AUTHOR COMPLES	5/82 Also	lace 81 day	
° TYGP-188	CALC NO.	FILENO	GROU	CHE
POSITION 2 $a = 2.44 - 2$ $J = 3.88$ $d = 3.995$ $g = 4.50 + 2(.04)$ $P = T = 15$ $f_b = P(\frac{1}{2})(\frac{a}{2} + g + \frac{1}{2})$ $f_b = T(.5)(\frac{2.35}{2} +)$	= 3.88 $= 3.99$ $= 3.88 / 2 = 0.35$ $= 3.80$	s in		
$f_b = 24.7$	22 psi			
A = 3.88 A = 3.995 A = [4.50 + 2(.0)] A = [4.50 + 2(.0)]	(.045) = 2.3 $= 3.88$ $= 3.99$ $(.045) - 3.88 / 2 = 0.3$ $(.045) - 3.88 / 2 = 0.3$	5 in		
fb = 3 (.199	, 380 psi			
AEV REV.	AUTHOR	DATE CHK'D BY	DATE CHK	D 8Y DA

LE	HFA	LUTITINO R:5 LAUTHOR DATE LAUTHOR S82	CHK DABY	ALVITS DATE CHK'C	PAGE 12 OF 31
OJECT	LEX		A Salar	2/2/82 GROU	D
-	1GP-188	CALC NO	FILE NO.	GROO	CHE
T	MAT'L.	ASTM A 668 FORG MINIMUM YIELD 340 # 9,00±.12 18,00±.04 12,50±.0	9.381.03 —		4 340 STEEL NC-25
		TTO 2.50 TTO 2.44 TO 2.44 TO 2 AT BOHOM OF C		1701 4. 1702 4.	
	7.00	MIN THO ENGA	GEMENT (DWG IZIZE 27	VIEW 5-5)

TITLE UFAD LIFTINGE	TO STORES AND VITS 13 OF 31
PROJECT TEX June who was 5/82	TE CHK'D BY DATE CHK O BY DATE When down grufor GROUP
TYGP-188 CALC NO	FILE NO GROUP
T=123,802 W=336,218 TENSION C A-A	BEARING @ A-A
ft = P/At	fc = P/Ac
At item 1 = 2.50 × (9-4.005)/2045 = 6.242 in ² At item 2 = 2.44 × (9-4.005)/2045 = 6.092 in ² THEM 1 IS USED TO CONNECT THE SLING BLOCK TO THE LIFTTHIGLES. O P = T/4 = 30,9516 ITEM 2 IS USED TO CONNECT THE XING ELEFTING LEG TO THE SPREADER ASSIMBLY O P = T/4 = 30,9516 HAND TO CONNECT THE SPREADER ASSIMBLY O P = W/3 = 28,018 lb O ft = (T/4)/6.242 = 4958 psi O ft = (T/4)/6.092	$ \begin{array}{ll} O P = T/2 \cdot 61,901 \text{ lb} \\ A_c = d.l = 4.005 \times (2.50 - 2(.045)) \\ = 9.652 \text{ in}^2 \\ \hline O A_c = d.l = 4.005 \times (2.44 - 2(.045)) \\ = 9.412 \text{ in}^2 \\ P = T/2 = 61,901 \text{ lb} \\ O A_c = d.l \cdot 4.005 \times (2.44 - 2(.045)) \\ = 9.412 \text{ in}^2 \\ P = W/3 = 56,037 \text{ lb} \\ \hline f_{c_1} = (T/2)/9.652 \\ f_{c_2} = (T/2)/9.412 \\ f_{c_3} = (W/3)/2/9.412 \\ f_{c_3} = 59.54 \\ \hline F$
5081 pri 5081 pri 5081 pri 4.599 pri	
	ATE CHK'D. BY DATE CHK'D. BY DAT

HEAD LT	FTINO PIG STR	ESS ANALYSI	S PAGE 2 1
TEX AUTHOR	- War 5/82 ft	Frank Stole	CHK'D BY DA
TYGP-188 CALE NO	FILEN).	CHE
T= 123,802; W= 3	36,218		
TENSION @ B		fv= (T/2)/E(6.242)) 3
		fy = (T/2) = (2 x	(.092)
ft = P/At		fv= 508	1 psi
		fy = (W/3) = (Z	
30 P=T = 123	3,802 16	th. 010	8 pu
At = 9,00 (9.38) -			
= 64.160 in	,2		F., FRE
3 P-W/3		THREAD	SHEAR
At = 64.160 in2		fr = P/A	v
@ ft = T/64.160		AV = IT D	Ds - 1/2
ft: 1930		Dpinh = 1	Ds0077
3 ft = (W/3)/64.1			liameter = 5.00 in
ft = 1747	P)	n = threads	perinch = 4
		Dpikh =	4.8376 in
SHEAR - tear	r.out	J = 7.0	o in
As/9 P/2A	40	Ay = TT (4.8	376)7.00/2
		= 52.19) inc
W P		00 P = T	
0 P= T/2 = C		Av = 53.19	127
A = 2.50 (9.00		3 P= W/3	
* 6.242in2	2	Av = 52.19	lint
@ P = T/2 = (
A = 2.44 (9.00)		to . T/53.1	9
= 6.092 in		fy = (W/3)/3	O poi
@ P= (W/3)/2=	The state of the s	t* 510	
A = 6.09= in		+ y =	- CVL

TITLE	. /-	A. A. T. F. T. T. N.	I D+/ C+DECC		15 of 3 1
ROJECT	FIEX	AD LIFTIN	OATE CHESS A	DATE CHK'D. 8	Y DATE
TY	GP-188	CALC NO.	FILE NO.	GROUP	CHE
		NGLEG			5
	MATIL		4 CLASS BC AIS		
	EST W	TURNED, 2000	UD, POLISHED. MIT	NIMUM YIELD -	1K14916 87 000
1		ТНО			
			5.00 - 4UN-2A	- R.H.	
			5.00-00 d		
136,9	961.06		00		
		ث أ			
			- 6,00- 4UN- 2A- L.	н.	
		7.00 min T	USMBOACUS JHT	7 (VIEW 5-5 DU	UG 1212227)
REV.	REV	AUTHOR	DATE CHK'D. BY	DATE CHK'D.	BY DAT

TEX July Day 5/32	FILE NO GROUP
YGP-188	CHE
THREAD SHEAR	TENSION C A-A
fu = P/Av	ft = P/A+
P=T = 123,802 16	
Av= TT Dptin × 1/2	from page 59 of A.S.U.S.T. (1
	TENSILE STRES. AREA
from page (of a American	A = \(\frac{\pi}{4}\)(D - 0.9743/h)
Stondards unified screw threads	
(1960) for external threads	D= boxic major chamet
Ds = majordiometer	h = number of threads po
he number of theal. princh	
Dpitch = (Ds - 0.64952)	$A_{t} = \frac{\pi}{4} \left(s. \infty - \frac{0.9743}{4} \right)^{2}$
Dr = (5.00 - 0.64952)	$= 17.769 \text{in}^2$
= 4.8376 m	5 -
Ay: TT (4.8376) × 7.00/2	P=T = 123, 802
= 53.19 m ²	C - T/A - 6967
0 =/===	ft = T/At = 6967
f. T/53.19 = 2328 oi	

TITLE						PAGE
ROJECT	HEAD	LIFTIA	VS RTS &	TRESS	ANALYST CHE	0.84 OF 3 DAT
	TEX	dans	ela spr ,	Wand.	- Stopz	
T	GF-188	CALC NO	F-11	LE NO.		CHE
						(6)
C	LEVIS PI					
		TN 0 1	24 ATST	1340 5	TEEL CLASS	RD.
1,					LE STRENGT	
	EST WT					
				`		
				30,33 011	←.061.02 TYP	
	(<u>}</u>	1			-	3.937 +.000 0
		#				
		K	-9.88±.02	-	4 .03 MAX TY	P (BETWEEN FIN
					AND WASH	1ER) - Dune 1311 E27
						O BY DA
REV	REV. DATE	AUTHOR	DATEC	HK O BY	DATE CHK	D. BY

HEAD LIFTING FIG	STRESS ANALYSTS PAGE 18 OF 31
PROJECT TEX AUTHOR DATE 5/82	FILE NO. DATE CHK'D. BY DATE
TYGP-188 T= 123,802 ; W= 336,218	I ,CHE
SHEAR	1, = = (= +3 + =) = = = = = = = = = = = = = = = = =
$f_{v} = P/A_{v}$ $A_{v} = \pi d^{2}/4$ $= \pi (3.937)^{2}/4$ $= 12.1736 \text{ in}^{2}$ $P = (W/3)/2$ $f_{v} = 4603$	$f_{b} = \frac{3}{3} \left(\frac{1}{2} \right) \left(\frac{2.41}{2} + .295 + \frac{4}{4} \right) \frac{32}{\pi (3.937)^{3}}$ $= \frac{3}{3} \left(.199.69 \right)$ $f_{b} = \frac{23.380}{23.380} \text{ ps}$
BEARING fc = P/Ac	
$A_{c_{I}} = [2.50 - 2(.045)] 3.937 \text{ m}$ $P_{I} = (W/3)/2 = 56,03616$ $A_{c_{II}} = [4.00] 3.937 = 15.7486$ $P_{II} = (W/3) = 112,07316$ $f_{c_{I}} = \frac{7,117}{7}$	
BENDING	
a = 2.50 - 2(.045) = 2.41 in $A = 4.00 m$ $A = [4.50 + 2(.045) - 4.00]/2$ $A = 0.295 in$ $A = 3.937 in$	
REV REV. AUTHOR DA	TE CHK D BY DATE CHK D BY DATE

HEAD OJECT TO Y	ACHTUA ACHTUA	S/82 ASanha	NALYSIS 19 OF 3	DAT
TEX	CALC NO.	FILE NO.	GROUP	
TYGF-188			CHE	_
			(7Y	8
4-LOOP	SPREADE	C ASSEMBLY		
MAT'L:				
0	1 ARM	ASTM A 106	GRADE B SEAMLELS	
0	2 LUG	ASTM A 516	GRADE 70	
	WELDS	E 7018 ELE	CTRODES	
EST WT	2800#			
1		/ /	8.00 SCH35 PTP	E
X	*	/		. 1
			100	2
	Y	k-9.96		2.001
120°				77
TAB	1 . /		.75 / 30°	
0	* ^	-3 (-8)		
	1//9	9	VILLE	in the same of the
	#/	D. 22		
④ \	10			
7	T		←11.00°,04+	
	1450	N 330°	← 11.00-204-	
o		and the second		
	- 3.88±.0	3		
	0			
5.501.06	-		±.IZR	
-		7	4 5.50±.06	
	- ()	1-12	+	
20.50	4.671.03	7.001.00	7.251.12 3.62 1.04	
20.50 Ref		184	1	
	V	1		
-	A	-		
4000	.005 \$	16.00 T.12 R		
1200		-31.96 Rt F		
	TAUTHOR	DATE CHE'D BY	DATE CHK'D BY	DA

HEAD LIFTTING F	CHK D BY DATE CHK D BY DATE CHK D BY DATE C
PROJECT TEX AUTHORIZEDE 5/82	Ul John 2/1/87
TYGP-188 CALONO	FILE NO. GROUP CHE
TENSILE STRESS @ UPPERHOLE $f_t = P/A_t$ $P = T = 123,802*$	ft = 112,271 /29.75in 7
$A_{t} = (5.50(2) - 4.00) 3.88$ $= 27.16 \text{ in}^{2}$ $f_{t} = 122,802/27.16$ $f_{t} = 4558 \text{ psi}$	SHEAR @ LOWER HOLE fy = P/2Av conservatively 4.00 (3.38) = 13.58 m
SHEAR STREET & UPPER HOLE 1. = PA. P- T= 123, 802# A. = (5.50 - 400) 3.88	$f_y = \frac{112,271}{(2 \times 13.58)}$ $f_y = \frac{4134}{psi}$
= 13.58 in 2 fv = 123,802/(2×13.58) fv = 4558 psi	STRESS @ WELD
TENSILE STRESS & LOWER HOLE	P proportion of
A= 1(2+6)h f= P/A+ P= W/3 = 336,812/3	from Mark's Handbook (allipse) le length of perimeter of weld
= 112,271 lb 1-205 A, = 2(20.5+9)11.0	20 = major axis 20 = minor axis \$ = sin 0
A. A. = 3(1+7.25) 5.5 A. = 4. + A. = 3 (20.5+7.25) 6.5 -17.25 & Solving simultaneous & 8=11.67	
A+= (0-1)+ = (1.67-4)3.88 = 29.75 in2	

TITLE				PAGE	5.1
PROJECT		A ROHTUAL	DATE CHE'D BY	DATE CHK'D BY	OF 3
	TEX	he winder	5/2 Delleman	Steper	
\$0.	4GP-188	CALE NO	FILE NO.	GROUP	E
	9+P =	<u>1</u>			
.:	K = 1.0	29			
	J= π(a+6 = 12π(i = 38.79	.029)			
+	houtmin heigh				
A	Lund = 38.7	9 x.3535			
	R= axial for = 30,36	ce in Figure			
	f. = 30,	368/13.71 15 psi			
REV. NO	REV DATE	AUTHOR	OATE CHE'D BY	DATE CHE'D BY	DAT

// Alis L	TOM DATE CHE	The A d 1	CHK'D BY
TBX	ENO. HELE S/82 WILL	wounder 8/29/2	GROUP
46P-188			CHE
LIFTT NI	LEG (VETTAL)		(0
		The second section	
MAT'L ASTM	96# LASS BC	AISE 4340, RANGE	WOUND, TALDHED.
[-0	1	5.50-4 die
4-2-4	4 . Ob A	Lon	
E-rance	\$.00.1.00 P	EULITRICAL	
ķ	267,501.06		
	ELD STRENGTH		
MINIMUM	THO ENGAGEMENT	7.00 ENCHES	
		e from the ball	
7.00 MIN	THE EMONOLINEN	r (view so-bu	Xa (2126 27)
7.00 MIN	THE EMONORMEN	r (ven so-eu	X (212 E 27)
7.00 MIN	THU ENGINEEMEN	r (van so-tu	X. (212 E 27)
7,00 MIN	THU ENGOGEMENT	r (view so-tu	X. (212 E 27)
7.00 MIN	THU ENGOGEMENT	r (view so-tu	Xa (2)26 27)
7.00 MIN	THU ENGOGEMENT	r (view so-tu	Xa (2)26 27)
7.00 MIN	THU EMMORTHEN	r (view so-tu	X5 (2)2 E 27)
7.00 MIN	THU EMMORTMEN	r (view so-eu	Xa (2)2 E 27)
7.00 MIN	THU SMONOS OFF	r (view so-tu	X. (2)2 E 27)
7.00 MIN	THU SMONOLMEN	r (view so-tu	X. (2)2 € 27)
7.00 MIM	THU MUNDOLINE	r (view so- eu	X. (2)2 € 27)
7.00 MIN	THU EMONORMEN	r (view so- eu	Xa 1212 E 27)
7.00 MIN	THU EMONORMEN	r (view so- tu	X. (2)2 E 27)
7.00 MIN	THU SMONDEMEN	r (view so- eu	X. (2)2 E 27)
7.00 MIN	THU SMONOS ONE	r (view so- eu	X. (2)2 E 27)
7.00 MIN	THU EMONORMEN	r (view so- eu	X. (2)2 E 27)

TEX . De May 1/82	CHRESS ANALYZIS 25 OF CHRISTON DATE CHX'D BY BELENO CROUP
TYGP-188 CALE NO	CHE CHE
THREAD SHEAR.	TENSION C A-A for P/At
P = (W/3) = 112,07316	
Av= 17 Dptn x 1/2	from page 59 of A.S.U.S.T. () TENSILE STREE AREA
from page 61 of American Standards unificil screw threads	$A = \frac{\pi}{4}(D - 0.9743/n)^{2}$
(1960) for external threads	D= bosic major diameter
Ds = major diameter	h = number of threads po
$h = number of threads per such$ $D_{pitch} = \left(D_S - \frac{0.64952}{n}\right)$	$A_{t} = \frac{11}{4} \left(5.00 - \frac{0.9743}{4} \right)^{2}$
Dp = (5.00 - 0.64952)	= 17.769in²
Ay: T (4.8376) × 7.00/2	P=(W/3)=112,07
f. P/53.1	ft = P/At = 6307

DATE

NO.

HEAL	LTFTING	FIG STR	ESS ANA	DATE CHK'D	PAGE 26 OF 3
TEX	Hundelon	285 MA	andon	Ju/gy GROU	
4GF-188	CALC. NO.	FILEN	0.		CHE
					(1
CLEVIS					
MAT'L A	STM A 668	FORGING	GRADE L	AISE 43	40 STEEL
	THI MUM YE				
EST WT	340*				
	5-7				
1.0	.621.03	3	13		
	T TAB		11 3		
9.00±.00	→ '	K- 9.5	601.03 -A	5.00	- 4UN -2B
不丁	77	TIVE	17	A	
800±00	27.50	18.06	IN	9.	.001.12
		17.94	N		
¥ 8 1	B		N	.45 t.06	
محرظ ا	1	1 /4	1777	1	
£ 5.07	2014	574	11/	1	
A F 3.01	2.05 A	10	M	12.50	06
1) 1	*++		3.947 T.080 DJA	
X	/ \		A	1	
R-J C		1 >	4.50:0	met	015 ×450±2
		750 ×	- 71		
7.00	OHT MIN	F NID AGE M	TIME	W 5-5 OF	1212 = 27)
HEAR	LUG TH	TONNESS	= 4.00		

TITLE (ICAT ALETTAL P	TO STEESS ANALYSTS 27 OF 31
PROJECT TEX AUTHOR DAT	ECHK'D.BY DATE CHK'D. BY DATE
TYGP-188 CALONO	FILE NO. GROUP CHE
T= 123,802"; W= 336,218" TENSION & A-A	TENSION @ B-B
$f_{t} = P/A_{t}$ $P = (\%_{3})/4$ $= 28,018^{*}$ $A_{t} = (9.00 - 3.947)(\frac{1}{2})(2.50) - (.045)^{2}$ $= 6.285 \text{ in}^{2}$ $f_{t} = (\frac{\%}{3})(\frac{1}{4})/6.285$ $f_{t} = 4458 \text{ psi}$	$f_{t} = P/A_{t}$ $P = (W/3)$ $A_{t} = (9.00)(9.50) - \pi(5.079)^{2}/4$ $= (65.24 \text{ in}^{2})/65.24$ $f_{t} = (\frac{1718}{3})/65.24$
BEARING & A-A	THREAD SHEAR
$f_{c} = P/A_{c}$ $P = (W/3)/2$ $A = d f$ $A_{c} = 3.947 (2.50 - 2(.045))$ $= 9.512 \text{ in}^{2}$ $f_{c} = (\frac{8}{3})(\frac{1}{2})/9.512$ $f_{c} = 5891 \text{ psi}$	$f_{v} = P/A_{v}$ $A_{v} = \pi D_{pitch} 1/2$ $D_{pitch} = 4.8376 in$ $J = 7.00 in$ $A_{v} = 53.19 in^{2}$ $P = (w/3)$ $f_{v} = (\frac{w}{3})/53.19$ $f_{v} = \frac{2107}{53.19}$
SHEAR - tear-out $f_{v} = (P)/2A_{v}$ $P = (N/3)/2$ $A_{v} = (9.00 - 3.947)(\frac{5}{2})(2.50)(.045)$ $= (6.285 in^{2})$ $f_{v} = (\frac{3}{3}(\frac{1}{2}))/(2 \times 6.285)$ $f_{v} = 44.58$ Psi	
	ATE CHK'D. BY DATE CHK'D. BY DATE
IN UNITE	

APPENDIX B DETAILED STRESS ANALYSIS REACTOR VESSEL INTERNALS LIFT RIG

This appendix provides the detailed stress analysis for the Comanche Peak reactor vessel internals lift rig in accordance with the requirements of ANSI N14.6. Acceptance criteria used in evaluating the calculated stresses are based on the material properties given in Section 4.

TYGP-188	Comanche Peak	1 OF 40
R. V. Internals	PDC -	
J. S. Urban DURAM 9-22	1-82 H. Sandner W. H. Sa	indre

- The purpose of this analysis is to determine the acceptability of this rig to the requirements of ANSI N14.6.
- 2. The results show that all stresses are within the allowable stresses.

		Original Issue	J. S. Urban
REVISION NO.	DATE	DESCRIPTION	BY

RESULTING REPORTS, LETTERS OR MEMORANDA:

TNTERN	AL LIFTIN	DATE CHK'O' BY	SS ANALYIS Sadna 9/4/82	PAGE 2	OF LO
TEX TYGP-188	card No.	FILE NO.	GP	CHE	
(1) LIF	TING BLOCK				
		OCLEVIS -			BLOCK 8
	(13)	4) LOAD NUT *-		11	
FCIK	Feth. VI	MOUNTING BLOCK MOUNTING BLOCK RODH 16 TO BNOAGT	ATTRIVITY IN (TIME IN ASS	JN S FFLY ONLY

TYGP-188 CALCINO PILE NO. CHE VARIABLES USED THROUGHOUT THESE CALCULATIONS PLEG THROUGHOUT THROUGHOUT THROUGHOUT THROUGHOUT THROUGHOUT THROUGHOUT TH	of 47		INTERNALS LITTING TO
TYGP-188 CALC. NO. TYGP-188 CALC. NO. WY SLING ROL ADDISON THINDUCHOUT THE SE CALCULATIONS THE TRINGLE GROVE THE TRING	DAT	Sandre Glulgz	DATE TO AUTHOR OF GO
VARIABLES USED THROUGHOUT THESE CALCULATIONS D = A GENERAL FORCE L Let Tention in Server Let compressive the OR LEADING TENT OR LEADING TENT For compressive the OR LEADING TENT OR LEADING TENT The BRIDTING STREET A = AREA I'VE SHIPAR TENT CHE LINK AME CHESTING W = 290,000 lb A0° 15' 40" = 40.2011° TCOS 40.2011° W/3 TE W (0.43281) lb T = 12 (6.675* K = Tent + 15.10.11° K = W (.28230) lb 81.867* WEIGHT OF LOWERINGER HUE 260,000 WILLIAM OF LIGHTS HIGH 10,350		GROUP	TYGP-188 CALC. NO.
SLING ROLE ADDISANT SLING ROLE ADDISANT THE COLLATIONS THE CALL COLLATIONS THE			
SLING ROD ADDISON SLING ROD ADDISON THE TENSION IN SUTION IN SUPPRESSED AND SUPPRESSED AND WEIGHT OF LOWER INTENSE LEGE TO SUPPRESSED AND LINE WEIGHT OF LOWER INTENSE LEGE TO SUPPRESSED AND LINE WEIGHT OF LOWER INTENSE LEGE TO WEIGHT OF LOWER INTENSE LEGE TO WEIGHT OF LOWER INTENSE LEGE TO WEIGHT OF LOWER INTENSE WE 290,000 16 ADDISON AD 2011 - W/3 TOOS 40.2011 - W/3 TOOS 40.2011 - W/3 LEGE TO WEIGHT OF LOWER INTENSE M = MONEUT M = MONEU			w/
## ### ###############################			,9 SIZ N'S DLOCK
## 100 43281) Ib 1 To 100 43281) Ib 2 To 100 43281) Ib 2 To 100 43281) Ib 3 To 100 43281) Ib 40° 15′ 40″ 100 100 100 100 100 100 100 100 100 1		IL COLATIONS	AT
T = 100 100 100 100 100 100 100 100 100 1			, / ,
T = TENTION IN STITULE TO STREET OR LEAVING THE TO STREET OR LEAVING THE TO STREET OR LEAVING THE TO STREET OR LOWER INTERVAL TO STREET OR LINK ARE CONTINUED ON LITTURE HIS AND LITTURE TO STREET OR LITTURE HIS AND LITTURE			40"Is 40"
# 100 100 100 100 100 100 100 100 100 10	FE	P = A GENERAL FORLE	_
T = TENTION IN CLITTLE. T = AREA CI: DIAMETER T = MINERAL OF INTERIOR M = MONERAL M = MONER	T.	ft = TENNETT =- LESS	
T = tention in seriols. A = AREA SEGRAPCE ARM W's WEIGHT OF LOWER INTERPR LIFTING RIG, AND LOAD CALLINK AGE CONSISTED W = 290,000 lb 40° 15' 40" = 40.2.11° T COD 40.2611 = W/3 T = W(0.43681) lb = 126,675* K = Tentiol Add 2000 WEIGHT OF LOWERING AND 20000 WEIGHT OF LOWERING AND 200000 WEIGHT OF LOWERING AND 2000000 WEIGHT OF LOWERING AND 20000000 WEIGHT OF LOWERING AND 2000000000000000000000000000000000000		fc - compressive star	/ K
T = tention in surface. A = AREA SURFACE ARM WEIGHT OF LOWER INTERIAL CHELLING AND LOAD CHELLING AND COAD CHELLING AND COAD WE 290,000 16 A0° 15' 40": 40.2.11" T COS 40.2611 = W/3 T T = W (0.43681) 16 = 12 (0.675* K = T = W (0.43681) 16 81,867* WEIGHT OF LOWERING HALF 260,000 WELDING OF LITTING ATC = 18,350 WELDING OF LITTING ATC = 2930 WELDING OF LITTING ATC = 2930		OF LIAMING TE -	W ST MARK AND
## COMES CENTED TO COME TO COM	7	fb = BENDING STREET.	L3 TEC
### SECTION FOR LOWER INTERVALL WEIGHT OF LOWER INTERVALL LIFTING RIG, AND LIAD CELL LINK A CHICAGO De RESECTION MODELL TO CELL LINK A CHICAGO De RESECTION MODELL TO CELL LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION MODELL TO CELL TAILLE LINK A CHICAGO DE RESECTION A CH	VT.	fy = SHIAR - PRELL	T = ten ion in stille .
W= WEIGHT OF LOWER INTERIAL , LIFTING RIG, AND LIAD CHL LINK AGE CON LITED W= 290,000 16 40° 15' 40"= 40.2 × 11 T COS 40.2 611"= W/3 T= W (0.43681) 16 = 12 6,675# K= Tem +0.2 011" X= W(.28230) 16 81,867# WEIGHT OF LOWININGER LALL 260,000 WEIGHT OF LITTING RIG = 18,350 WITHIN OF LITTING RIG = 18,350		A = AREA	A COMMENCE AND CONTRACTOR
LIFTING RT 5, AND LIAD S = SECTION MODILE	11	The state of the s	SURFACE ARM
W = 290,000 16 40° 15' 40" = 40.2 × 11° T COS 40.2611 = W/3 T = W (0.43681) 16 = 12 6,675* K = T = 12 - 2011° ** K = W (.29230) 16 81,867* WETCHT OF LOWIRINTERNAL 260,000 WELCH OF LITTILS FTG = 18,300 WHICH OF LITTILS FTG = 18,300 WHICH OF LITTILS FTG = 18,300	1114	I = MOWSOL OF INSTITU	WEIGHT OF LOWER INTILIAL
W = 290,000 16 40° 15' 40" = 40.2.11° T COS 40.2611 = W/3 T = W (0.43681) 16 = 12 6,675* K = T = 40.2011° K = W (.29230) 16 81,867* WEIGHT OF LOWIRINGERIAGE 260,000 WEIGHT OF LITTING FIG. 18,350 WHYELD OF LITTING FIG. 2,930 WHYELD OF LITTING FIG. 2,930	111	S = SECTION MODILE	LIFTING RTG, AND LIAD
W = 290,000 16 40° 15' 40" = 40.2.11° T COS 40.2611 = 111/3 T = W (0.43681) 16 = 12 6,675* K = T = 10.2011° K = W (.29230) 16 81,867* WETCHT OF COMMINITERIAL 260,000 WELCH OF LITTING FIG. 18,350 WITHIN OF LITTING FIG. 2,930 WITHIN OF LITTING FIG. 2,930	1.1	b = CHIACTH	CILL LINK APT OF LINED
40° 15' 40" = 40.2.11° T (05 40.2611 = W/3 T = W (0.43681) 16 = 12 6,675* K = T = 40.2.011° K = W (.29230) 16 81,867* WETCHT OF LOWIRINGER HAD 260,000 WELCH OF LITTING FTG = 18,350 WHICH OF LITTING FTG = 2,930	t-1.	h = HILEHT	
TCOS 40.2611 = W/3 T= W(0.43681) 16 = 12 6,675# K= Tein +0.2011 K= W(.29230) 16 81,867# WETENT OF LOWINGINGER JAM: 260,000 WELENT OF LITTING FTG = 18,350 WELENT OF LITTING FTG = 2,930		C - CITALLE - M. NETTAL	
: T= W (0.43681) 16 = 12 6,675# K= Tsin +0.2011 : K= W (.29230) 16 81,867# WETCHT OF LOWIRINGENIAL 260,000 WELCH OF LITTING FTG = 18,350 WETCHT OF LITTING FTG = 2,930	\$18	AND TO EXEMPERIE	
K= Tein +(2.20)16 .: K= W(.28230)16 81,867* WETCHT OF LOWINSMIELIANS 260,000 WELON OF LITTING FTG = 18,350 WITCHT OF LITING FTG = 2,930	7 1 . in	M = MOMELLT	
K= Tem +0.2011 : K= W(.28230)1b 81,867# WETEHT OF LOWINSMEE JALL: 260,000 WELEHT OF LITTING FTG = 18,350 WHITHIS OF LITTING FTG = 2,930			: T= W(0.43681) 16
K= Tein +0.1011° .: K= W(.28230)16 81,867* WETCHT OF LOWINIMEDIAL 260,000 WELCH OF LITTING FTG = 18,350 WITHIN OF LITTING FTG = 2,930			= 126,675*
81,867# WETCHT OF LOWIRINTERNAL 260,000 WELCH OF LITTING FTG = 18,350 WETCHT OF LITTING FTG = 2,930			
WEIGHT OF LOWIRINTERNAL! 260,000 WEIGHT OF LITTING FTG = 18,350 WEIGHT OF LITTING FTG = 2,930			: K= W(.29230)1b
WEIGHT OF LOWIRINTERNAL! 260,000 WEIGHT OF LITTING FTG = 18,350 WEIGHT OF LITTING FTG = 2,930			81.867*
WITHIN OF LITTING FTG = 18,350			WETCHT OF LOWIRINGE HALL 260,000
650			WELDER OF LITTILIS ATG = 18,350
- 8.3W			
			- 8.9.0
290,000 DATE CHK'D. BY DATE CHK'D. BY	DA	DATE CHY'D BY	290,000

INTERNA	AUTHOR	DATE CHECKED ANAI	DATE CHK'D. BY
TEX	dhown 5	102 Stahen 9	1/21/82
TYGP-188	CALC NO	FILE NO.	CHE
101 100			OFF
ITETTN	BINK AS	SEMBLY - 33	(1)
FTL I TIM	5 DLOCK AS	2511051 - 33	
MATI -	TETTNIC BLOCK	x TT1 - NSTN	A A 350 GRADE LF2
			A516 GRADE 70
	WELDS		8 ELECTROPES
EST. WT.		210	10 CLLCINODES
Die Wi.	940		
BOOK AND DESCRIPTION OF THE PARTY OF THE PAR	on beautiful and their their		
	E. Series		1
	8.197-20		1"
****	.,04	racamina and some some some	1
			-82
		(BOTH ENDS)	
		A/	(a) X
		5±:0000	++++
	3.51	9 000	
			9.00t,2
		@* \	
		(2)	
		Be	- B
18.00±.	40151:000 0	30920	
		X	La
	7.001.13	1	36.0
		100	3
	~	X	
	100	×	
	4.001.01 (THECK) 5.501.1	SR - FOX+	1
		→ ×,00:.05	1
* One of three	. spread at 120°		8.001.05 \$ H
	TAUTHOR	DATE CHK'D. BY	DATE CHK'D. BY
REV.	MUINUN	DATE CHA D. B.	DATE CHA D. O.

INTERNAL	S LIFTING RIG	STRESS ANALYSTS 5 OF 40
TEX	omaulan tiz	FILE NO GROUP
TYGP-138	CALC NO.	CHE
LIFTING 1	BLOCK	TENSILE STRESSES CERCTION R-B W=290,000 lb ft = F/At
ft = P/At		$A_{\xi} = \pi (7.95)^{2}/4$ -49.64 in^{2}
$P = W/2$ $A_{\pm} = (8.00)$ $= 3.8$	5- 20)8.181 - (on)	f _t = W(0.02015)
$f_{t} = W/(2)$ $W = 20$ $f_{t} = 30$	12900)	2
GEARTING STREETS W: 290,000 fe = P/Ac P = W A. = d	4	C 6.50- 6.25 7.00
	.39 in 2 019089)	ENSION STREETS & SECTION COL
TEAR-OUT SHEAR W = 290,00 fy = P/2 P=W Ay = 38	A	T = 126,675 16 $f_{\pm} = P/A_{\pm}$ $P = \pm 1/2$ $A_{\pm} = (5.37 - \frac{4.021}{2})(3.99)$ $= 13.40 \text{ in}^2$
fy = W (.		ft = T(.03730) ft = 4725 poi

INTERNALS LIFTING RIG	STRESS ANALYSIS 6 OF 40 DATE
TBX Johna Wan 5/32	HASahan 9/4/82
TYGP-188 BEARING & 4.015 ϕ HOLE $T = 126,675 \text{ lb}$ $f_c = P/A_c$ $P = T$ $A_c = dl = 4.015(3.99)$ $= 16.020 \text{ m}^2$ $f_t = T(0.06242)$ $f_t = 7907 \text{ psi}$	CHE Cmax = 6.25 I = bh ³ /12 = 4.00 (12.5) ³ /12 = 651.0 in ⁴ fb = Mc/I = 4.094T (6.25)/651 = T(.03930) fb = 4978 Fill
TEAR-OUT SHEA 0 4.015 \$ HOLE $T = 126,675$ $f_V = P/2A_V$) $P = T$ $A_V = (5.50 - \frac{4.013}{2})(4.00)$ $= 13.97 \text{ in}^2$ $f_V = T(0.03579)$ $f_V = 4534$	2) TENDER & LUS FORT f. = P/At F-Toin & At - bh - 4.00 (7.00+5.50) - 50 in f. = Tsin a /50 f. = 1637 p.i
STREET & LUG ROOT 1) ENCING TO CO T = 126, 675 BENDING MOMENT ABOUT POINT D. CLW+ X = 40.2611° X = .75 ton \(\alpha \) = 0.6352 in M = Tcos\(\alpha \)(0.00 - 0.6352) M = 4.094T in -16	forft = 6615 psi SHEAR & LUG ROOT T= 126,675#, x= 40.22 fv= F/Av P= Tcos x Av= bh- 50 in fv= Trox /50 fv= 1934 psi

TEX TYGP-198 CALC N CLEVIS PIN MAT'L ASIM A STAINLESS STR 135,000 PSL M: ELT WT 45 LE	A 564 TYPE 630 EEL, AGE TREATEI IN TENSILE STR	PRECIPITATION CENSOF FOR 4 ENIGHTH R. 28.31	HARDENING HOURS, AIR COOLLIE
CLEVIS PIN MAT'L ASTM A STATINLESS STR 135,000 PSL M: E:T WT 45 LE	A 564 TYPE 630 EEL, AGE TREATEI IN TENSILE STR	PRECIPITATION CE 1150°F FOR 4 ENIGHTH R. 28.31	HARDENING HOURS, AIR COOLER
CLEVIS PIN MAT'L ASTM A STAINLESS STE 135,000 PSL M: ELT WT 45 LE	A 564 TYPE 630 EEL, AGE TREATEI IN TENSILE STR SS.	4.004 (HARDENING HOURS, AIR COOLLIE
MAT'L ASTM A STAINLESS STE 135,000 PSL M: ELT WT 45 LE	A 564 TYPE 630 EEL, AGE TREATEI IN TENSILE STR SS.	4.004 (-

LE INTERNALS LIFTING RIG DATE CH DATE CH DATE CH DATE CH DATE CH DATE CH	STRESS ANALYSIS & OF TO
	GROUP CHE
CLEVIS PIN	BENDING
SHEAR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f P/A.	-3
$P = T/2$ $A_v = (4.004)^2 TT/4$ $= 12.5915 in^2$	P/2 P/2
fy = T(0.03971) fy = 5030 psi	l = 4.00 a = (9.25 - 4.266)/2 = 2.492 q = (4.266 - 4.00)/2 = 0.133
BEARING	d = 4.004 $P = T$
$f_{c} = P/A_{c}$ $P = T/2$ $A_{c} = [(9.25 - 4.266)/209]4.004$	$f_b = \frac{2}{2} \left(\frac{3}{2} + q + \frac{1}{4} \right) \frac{32}{\pi d^3}$
fc, = T(.05199) fc, = 6586 pai	F _b = 23,910 ps
P ₂ = T A ₄ = (4.00)(4.004)	
fcz = T (0.06244) fcz = 7910 psi	
EV REV AUTHOR DATE	HK'D. BY DATE CHK'D. BY

TBX	Janowan 9	STECHNOIS ANALY	2
TY GP-188	CALC NO.	FILE NO.	CHE
CLEVIS	- 31		(4)
A.OOO-4UNCZES THRU (RIGHT HAMD) 9.00	1.240 LB	9.00 4.018 \$\text{brok corners .03/.06}	FOLLR
		-4.	

LE NITH NI	ALS LIFTI NO	ECHKORY DAT	EICHKID BY DA
OJECT TBX CALC	Haway myour 2/85	FILE NO.	GROUPCHE
TYGP-188	Administration of the second	THREAD	
CLEVIS		Inch	3/12/1
(4)	The grade and the	fu= P/	
TENSION STRESS	@ SECTION A-A	Av = TT D	
$f_t = P/A_t$			3.8376 in
P = T/4		Av= 17 (3.9	2/(e-E1)(0758
A= (9.00-4.018)/2 x	(9.25-4.266)/2	= 24. P=	112 in2
$- (.045)^2$ = 6.2069	2		(.04147)
ft = T(.04			5 253 pi
ft - 51		* MARKS 8-10	
BEARING STREES &	SECTION A'A		
(5/1			
f = P/1 P = T/2	-10		
Ac = (9.25 -	4.266)/2 -2(.095)		
× 4.018			
= 9,651 f_ ~ T(.0			
fc - 65			
SHEAR TEAR	-OUT		
0			
to to b			
D F T	2 2060 in		
fy = T/	.04.029)		
THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	THOR 04	Staten Jos	TE CHK'D. BY
DATE 2/14/83	The sula 83	6 Soffman 163	

JECT T	3X AU	blind wan 5		S/U/2 OF TO
YGP -	CAL	C NO.	FILE NO.	GROUPCHE
SI	LING I	CHED. MILLIAMUM	O, TURNIO, GROU	H 85,000 PSE; OR ASTM
Ę	ST WT-	320 LB		4.000-4UNC-2A
	3.660			4.000-1010-21
11.00	1200	1 4.00 Ф		——————————————————————————————————————
	SECTION	90.00 3.62 4 2-2		

ROJECT	INITK	NALS LIFTING	DATE CHK PA	DATE CHE'D. BY DATE
TYC	TBX 5P-188	CATC NO	482 Liferone	GROUP CHE
	SLING	ROD	AREA	e z-z
	THREAD			$(0)^{2}/4 - 2 A_{s}$ $(0)^{2}/4 - 2 A_{s}$ $(0)^{2}/4 - 2 A_{s}$ $(0)^{2}/4 - 2 A_{s}$
MARKS 8	P = T Av = TD Av = 3 J = (13 Av = 24 fv = T($9 + 1 \times 1/2$ 1.8376 $1.112 \cdot 10^{2}$	As 2(25.18)(\$) 2 = 1.77 A= 0.7 A= 0.7 A= 0.7	22-1.917 = 0.8508 12-[0.8508(1.81)/2]2 58-1.540
	ft = 1 At = 7	P/A _t T = (3.66) ² π/4 = 10.521 in ² = (0.09505) 12,041 psi	F	
	ft = T P=T 8-10 At - ft = T			
REV.	REV. DATE	AUTHOR	DATE CHK'D BY	DATE CHK'D. BY DAT

JECT _	TBX TBX	JOHN S UR	DATE CHEDO STATES	S ANALYIS 3	OF 40 DATE
TYC	P-198	CALC. NO.	FILE NO	CH	ع
(The spre The color entitled forces are	speader black leg lug ing stresses a slated on the spreader joint a stress distri-	octing between the refollowing three r. The resulting in butions are then in listed items' stress	pages, noments used as	

INTERNALS LIFTING	RIG STRESS ANALYSIS 14 OF 40 DATE CHK'D. BY DAT
TBX JOHN S URBAN	L. L. Sandow G/21/82
CALC. NO.	FILE NO. GROUP
TYGP-188	CHE
	from TECHNOLOGY INC,
SPREADER JOINT	REPORT T1-219-69-24
	All lugs are of similiar thickness
CHAMFER	so the model becomes:
2,53 2,47 2,53 2,47 14,96	TY I
9,94 IGN 15.18	de diometer Pa Force q = q ap
W= Weight to be lifted = 290,000	Me moment
T= force on clevis = 126,675 K= force on spreader = 81,867=	model as the leg corries or fo
L = force on leg - 96,667	carries only harizontal forces.
"The distribution of the bearing	The clevis has both horizontal and vertical components acting
stess between lug and pin is	
assumed to be similar to the	on it, so the stresses will
stress distribution that would	be superimposed for the clevis.
be obtained in a rectangular	
cross-section of width d	The stress due to the force P
	would be
and depth t subjected to	
a load Pand moment M.	0 5000
* As assumed in section 9.5.1"	ft = P/Ot)
Lu Bearing Strength For Single Shoar Dims	
Unter Driften Axial Load	DATE CHK'D. BY DATE CHK'D. BY
REV. REV. AUTHOR	

TBX JOHN SURBAN	RIG STRESS ALIALYID 15 OF LE CHK'D BY FILE NO. GROUP GROUP GROUP CHE
TYGP-138 CALC NO.	CHE CHE
SPREADER JOINT	The moment produced by the joint will be Mroral = P(++y)
The stresses due to the moment M would be for bendingstress = Mc/I	Dividing the joint moment between the two ends M = P/2(E+g) LEG MOMENT:
The	In the vertical Flanc Mile (96,000) (1/2) (2.50+0) = 60,4 In the horizontal plane Mannae = (81,20) (2) (2) (2.5+25) = 102,35
When these stresses are combined the vesult is	The combined effects of the horizontal (spreader) and vertical (in moments acting on the sling lead to are obtained using the method
fmax = P/dt + Mc/I	of sec 10-11, page 336, of E.P. Povou's Mechanics of Material Znd Edition. Clavis Moment = 7 60,4162+102,334
III III	= 118,83.7 in-16 Therefore the bearing stess component due to the moment
for a rectangular section * I = bh²/12 and c = h/2	is fb = 6M/dt2 where Min given above. Chois: dpin * 3.992" tmin * 2.47-2(.00) = Ley: dpin * 3.942" t= 2.44-(.28) =
therefore from = P/dt + 6 M/dt ²	Sprender: dpin = 3.992" += 2.47 in

TOTERNALS ROJECT TRX	CIFTING	ECHYD STREW ALL	ALYSIS O OF	DATE
TYG P-198 CALC.	OHN 2 OKNIN	FILE NO.	GROUP CHE	
SPREADER X	TNIC			
The combined l Stresses are (fm	peoring ax=fbg+fag)			
CLEVIS: P/dt +6M/at	2			
(126,675)/(3.992 + 2.35) for 39,095 psi	+ 6(118,871)(3.99(*)35			
SPR: 4 DER: (81,867,/(3.992+2,47)+ fB - 29,362 psi	6 (102,334 / Lacons			
(290,000 /3.992+2.10 fB = 25,068 psi	6) . 460,416/6.30.			
REV REV AUT	HOR D	ATE CHK'D. BY	DATE CHK'D. BY	DAT

THE TOTAL COUNTY OF THE THE THE STEEL FOR GING CLASS 3 EST WT 375 LB 1.000-4UNC-2B-LH 2.00 FILE NO 1.018 \$\Phi\$ 2.00 FILE NO 1.018 \$\Phi\$ 2.00 FILE NO 1.018 \$\Phi\$ 1.018 \$\	THE STRESS ANNEYSIS 17 OF 40	
TYGP-188 CALE NO CLEVIS-27 MAT'L - ASTM A471 STEEL FORGING CLASS 3 EST WT 375 LB 1.000-4UNC-28-LH 21.00	1 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10	DAT
CLEVIS-27 MAT'L - ASTM A471 STEEL FORGING CLASS 3 EST WT 375 LB 1.000-4UNC-2B-CH 21.00 FULL 8	FILE NO. GROUP CHE	
MAT'L - ASTM A471 STEEL FORGING CLASS 3 EST WT 375 LB 1.000-4UNC-28-LH 21.00 FIGO		-
21.00 PNOO PNOO POULE	6	
21.00 PNOO PNOO POULE	EL FORGING CLASS 3	
7.00 7.00		
71.00 71.00		
71.00 71.00	-2B-LH 1	
4,018	9.00	
4,018	1	
4,018		
4,018		. 16
4,018		
4,018	51.00	
4,018		
4,018 Ф		
4.018 0		
4.018 0		
4.018 0		
4,018 Ф		
4,018 Ф	+ (-)	
4,018 Ф		
4,018 Ф	*	
BUSENK CORNERS , 03/.06	.018 Φ	
	MENK CORNEL , 03/.06	
AUTHOR DATE CHK'D. BY DATE CHK'D. BY	A THE STREET SHEET THE	0

CT TNTER	NALS LIF E	DATE CHANGE		15 19 OF 41
TBX	CALC. NO.	FILE NO.	ner 9/21/82	ROUP
4CP-188		and a later to the		CHE
				(7
CLEVIS	PIN-28			•
				D CANADA
MAT'L . A	ASTM ASGA TYP	E 630 PRECIP	MATTON HE	EXMINE.
51	TAINLESS ST	CEL, AGE TEEA	TEDE HIST-F	STRINISTH R. 23-3
		135,000 PSI MI	W 16.127 PE	215.112.11 112.11.1
EST WT	32 LB			
A A S		ALL STREET	3.996 \$	
			3.700	
		П		
CHAMOLE COTH ENDS	7.62	sox)	
CHANCIN COLD CAR.	9,87			

INTERN TEX	AUTHOR DA	DATE CHKO BY	our glubs	OF 41
TYG P-188	CALCUO	FILE NO.	GROUPCHE	
THE BROING STA				
IN THAT THE OTH				
AND LES) WILL	CAPI / LOVE O	F		
THE MOMENT AN	C THE LUGG WO	LD		
PROVILL SURIOR	T FF.T.VSV.T.145			
LANGE TO FLEST	I DNC. ALLO NOTE			
THAT BENDENS OF	41.16.17.5			
MULTINE HAL F. &				
1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	CF 1.70			
1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Carlotter .	= 44		
MINICKAM SHT	ECHICA STIC			
MOULL L. THE	SAMO HISTORY			
MEXIMUM CID	\$ (50) (2			
£ 39,0	95 PSI			
		Table 2		

ROJECT	TAUTHOR A DAT	RIG STREE ANALY	CHK'D. BY DAT
TBX	MORAND Wan 5/82	Hospin ghiller	
°TYGP-188	CALC NO.	FILE NO.	GROUP CHE
			(8) 9 (10)
SPREAD	DER ASSEMBLY		
EST WT	3190 LBS	X//	
		Real Property of the Parket of	
		TS 8×1	8 x 275
	7.25	SPREADER	
	2	X Seatment	
30°12°		9.50±.06	.1
3012		4.602.06	143.743 KEF
BLOCK 9	4/	7.501.03	,
		14.0151:000	POINT OF INTERCENTION OF LEG & S.
	-2.80±.03	TIN	10.001.06
	15,12 - 06		7.1
	25,00±.12	1	Luc 8
8) MAT'L	0 - TM A = 31/- 6P	. 70 STL PLATE . NORM	ARLIZED .
SPREADER ARM!	ASTM 4-500 6	R. B	
	ASTM A-350 LE		
REV REV			E CHK'D. BY DA

THIS CHALS LIFTING	CHMO BY DATE CHK'D. BY DATE
TYG D-188	FILE NO CHE
SPREADER 08	fb= (202,334./2)+1.235/23-2
A TAMA	COMBINED TELLE A COMBIN
M= 102, 334 m-16 K= 81, 867#	16,887+2802 19689psi
TENUTUR 2 A-A $f_t = P/A_t$ $A_t = 9.94 - 4.020, 10$ $= 14.598 t$ $P = K_2 81,867 $	Calculated at sprender Joint bearing stress calculations $f_1 = 29,362 psi$
2,802 p.1	
FL= MC/I	
M=102,334 16/2 2.93 2.4 3/12 = 3.742124	DATE CHK'D BY DAT
REV REV AUTHOR DAT	E CHK'D. BY DATE CHK'D. BY DAT

TAUTE I NAME OF THE	CHKPAY DATE CHK'D. BY DATE
TYG P-188	FILE NO. DATE CHK'D. BY DATE PATE CHK'D. BY GROUP CHE
SPREADER ARM	P=S=47,266*
10	Ac = 10.8 m2
TROM: ATT. MANUAL OF LITER L - 211-711 JC713011 -7148L F3-48	$f_c = 47,266 + 10.8$ $f_c = 4,376 + 10.8$
AND K' = 1 KE = EFFECTIVE LEWIT - FAITH EFFECTIVE LEWIT - FAITH EFFECTIVE LEWIT - FAITH	S = compressive stressive in include in inc
PARTICLE = 248,000 LBS I (r) = 10.9 m I (r) = 3.0 cin PS-188 K _E =1	S=47,266
faccourse - 248,000/10.8 - 22,936 psi	
COMPRESSIVE ETERS IN SPIRES FOR A FL = P/AL	
REV REV AUTHOR DA	TE CHK'D BY DATE CHK'D BY DAT

HOJECT TEX	DANG WAR	DATE CHAPPEY STRESS	GIZISZ DATE CHK'D. BY DATE
*TYGP-188	CALC NO.	FILE NO.	GROUP CHE
INTERNA	* 1 *	RIG LEG ASSEM	BLY 11 12 13
M.			- US
CHANNEL 12	111	-12 CHANNEL	
	40.89		
172. RE	38 41. RF1		
	4). KE		
170.62 170.50			
		-(13) MOUNT	ENG BLOCK
	W/3		
REV. REV	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY DAT

TBX	LAW Q	OATE CHE OF Sandner	94/82
YGP-198	CALE NO.	FILE NO	GROUP CHE
	UG WELD	fysher = [2]	00/3/2 7)+2(3.08)].37
	una II. co.	for fillets secur s	s, both on trate 10
WILEST N	10 4 1 1 25	f.com.	6059+5231
D 910.17	page 3	£v.	= 11,290 psi
Efthe upperheld, which is assumed equivalent to the controlly construct for simple (and + 1 conditions assumed that he that he that with 1 1 27 2 2 62 (151))	17. de constitue	7. 1.73 7. d	
= 31.23	3(n)+3n3) 2		
S= 3122 = 11.5 fr. M/S-			

THEENAL LIFTING TO THE TOTAL OF	HASandar	Guler DATE CHK'D. BY
TYGP-188 CALE NO.	FILE NO.	GROUP
LEGS		
(12)		
CROSL - LECTIONAL		
CHANNELL"		
A = (2.47 - 1.00 - 0.40) (4X.490)		
+(z)(9.78-2)(.490) + \frac{1}{4}(2.98=-2.00=)		
= 13.379 in ² * sir mounting between the		
11 11 11 11 11 11		
TENDILE ETTEIL IN		
ft = P/At At 13. 379 in2		
ft= W(0.024915)		
ft = 7724 psi		
, DATE 2/14/87 AUTHOR 24	ATE CHK'D gh Jank	

ECT THICK NAL	AUTHOR SONTA	DATE CHE BY	DATECH	15 30 of 4
TBX	CALC NO.	FILE NO	- 9/2/82 GR	OUP CHE
MOUNTING BLO	XK DETAILS			(13)
	1.03	R + 3.03	-:585	
9.75 9.75 9.72 9.72 9.72 PAOUNTIN 4.50 4.50 4.50 4.50 PAOUNTIN 4.50 4.50 4.50	CWT	3) SLOTS BOTTOM TOP I BOTTOM	SEES O INTER W= 26 SO ITEN 19 WILL DESIGN INSTEA FOR T	WER ASSME NAL'S WEIGHT NAL'S WEIGHT NO DE THE NO OF THE NO PREVIOUS ASTABULATED

-YGP-188 CARNO COLO., 9/92	FILE NO. GROUP CHE
MOUNTING BLOCK	SHEAR IN MOUNTING BLOCK WELDS. fr = P/Ar
BEARING OF LOAD NUT TO MOUNTING BLOCK D. = (5.995-2(.21))	$P = W/3$ $A_{v} = 2(.707)[\pi(2) + 2(8.78-2) + 4(2.9758) \times .50 + .707(.50)(4)(3.9758)$ $= 14.587 \text{ in}^{2}$
$D_{z} = (4.56 + 2(.06))$ $A_{1} = D_{1}^{2}\pi/4 = 24.4107 \text{ in}^{2}$ $A_{2} = D_{2}^{2}\pi/4 = 17.2021 \text{ in}^{2}$ $A_{3} \propto (D_{1} - D_{2})(2)(.502)$ $= .8986 \text{ in}^{2}$	fr = 3,679
$f_c = P/A_c$ $A_c = A_1 - A_2 - A_3$ $= 6.310 \text{ m}^2$ $P = W/3$ $f_c = W(.05283)$	
fc=_13,736 psi	

LE INTERNA	LS LIFTING	DATE CHESS		32 of 40
167	bauman	to H. H. Hondra	- 74/12	
TYGP-188	CALC NO.	FILE NO.	(CHE
LOAD 1	80 -TU			(4)
EST WT	17# ASTM A 2	76, TYPE 304	, HOT ROLLED	COND A
18±,03 x 45°±5° TYP CHAMFER	4.0	3.001.03 00-4UNC-2E TH		
EV. REV.	TAUTHOR	DATE CHK'D BY	DATE CHK'D	BY C

TITLE	PAGE
INTERNALS LIFTING	RIG STRESS ANDLYST 33 OF 40 PATEICHKID BY DATE
PACIFCI MUINUNA A	
	Shaver 721/82 GROUP
S.O. CALC NO.	Trice NO.
TYGP-188	CHE
LOAD NUT	
	f = P/Ac
(14)	P=W/3
	$A_c = A_1 - A_2 - A_3$
	= 6.310 in2
•	^/
THREAD SHEAR	f= W(.05283)
fv= P/Av	
	fc = 13,736 psi
A T. Dp. kn 2/2	TC - Latina Pal
for 4.000 - 4UNC - 2E THD	
M-8-10) Ditch= 2.3376	
) = 2.97	
Av= π(Dp)2.97/2-2.97(.52)	
Av = 16.359 in2	
P= W/3	
fv = W/3Av	
= W (.02038)	
f. 5299 psi	
14 0 5 2 3 0 bs1	
+ for notch cut out of rod housing	
BEARING OF LOAD	
NUT TO MOUNTING	
BLOCK	
π ς, , , , , , , , , , , , , , , , , , ,	
A, = (5.995 - 2(.21)) 4	
= 24.4107 in	
Az= (4.56+2(.06))24	
= 17.202 line	
A, * (D,-D,)(2)(.502)=	
.898 6 in	
REV. REV. AUTHOR DA	TE CHX'O. BY DATE CHX'D. BY DATE
NO. DATE	

E	LIFETIN	h BTG S	+00 L A	JALVATS 2	4 of 40
JECT TRX	LICTIN CONTUAL		Sandrer	DATE CHK'D BY	DA
100	CALC NO.	FILE		GROUP	CHE
TYGP-188					<u> </u>
					(15)
RODHO	USING-C	06	Kale		(13)
EST WT		TURE 204	HAT BOLLE	D COND A	
MAIL	ASTM A 276,	1 TPE 301	, 1401 10000	D, CO. 170 A.	
		1 1	1.750030	1 rues	
_	A 1 0		1 - 122.03 × 4	6'25°	
	2.50 1.03				
	+	+10 !	4.00-	AUNC - ZA THO	
15.50±.06					
	11.501.06	1			
	1				
			1		
			.751.06		
	+	- des 1010-	.06 L	D2 x45°±5°	
	-	-4.76 - 860 -	→ *		
			1 150 t.03		
	3.001.03		1		
4	+	-++-	5.00	- 60N - 2A THD	
		-5.50 E.03 -	-		
		Ф			
110	\				
	1				
	1,652,03				
	Contract of the Contract of th				
50.50	TOPVIEW				

TRX	Almoula, 6/1-	STRESS AND	DATE CHK'D. BY	DA
	CALC NO.	FILE NO.	IGROUP	HE
TYGP-188	DINETHI.			1 1 km
RODF	IOUSING	THREAD SH	EAR ON	
(15		UPPER TH		
(3				
		fv = P		
TA NOICHST	THREAD	Av= 11 1	Opitin 1/2	-1(.52
RELIE	F		00-4UNL-	SHT SIZ
			3.9376	
ft = P/At		J= 2.95		- 201 / 51
P= W/3		Ay = 17.	Dp)(2.97)/2	- 600 1 (120
$A_t = \frac{\pi}{4} (3.65)$		P= W/:		
ft = W(0.		fy - W		
ft = 10, 8	,		1 (.02038)
4- 14	- State day			
THREAD SHEA	IF ON	fu =	5,299	PSI
LOWER THRE				
fv = P/A				
Ay = 17 D1				
for 5.00 - 60	OHT AS-W			
8-10) Dp. R. H = D				
l= 2.97 - Αν= π (D				
= 17.59				
F = 3A	w (0.01894)			
fv = 4.9	124 psi			

.E	SNAL LIETI	NO RIG STRES	6 . A L Y A T > -	36 of 40
TBX	AUTHOD Mawa	an 452 Standar	S/21/82 CHK'D. BY	DA
TYGP-188	CALC NO.	FILE NO.	GROUP	CHE
GUID	E SLEEVI	E-04-60		(16)
MAT'L	- ASTM A ?	276, TYPE 304 S	CKLED COND	Α.
		r- 600±.06 Φ		
	+	1	T - 50 -00	
		3.502.03	5.000-601	4 2B 7HD
0.0		3.06.01 Brutes OIA		
	-	19781.005	.121.63 ×4525°	CHAMITE
	0.	751.06 a.3121.05		
	11.142.00	32,00	,12E.03×459.5°	
			+ 1	t Hamesa,
		100000000	3	
		+ 5.3751.005-		
V NEV	AUTHOR	OATE CHK'D. BY	DATE CHK'D. 8	iv t

	ECHNOR BY DATE CHK O BY DATE C
GUIDE SLEEVE (6) THREAD SHEAR $f_{V} = P/A_{V}$ $F = W/3$ $A_{V} = \pi Dpitch 1/2$ $J = 2.975315$ $f_{OF} = 5.00 - 6UN - 2A THD$ $Dpitch = 4.8917$ $A_{V} = \pi (4.9917)(2.29)/2$ $= 17.596 In^{2}$ $f_{V} = 3A_{V} = W(0.01894)$ $f_{V} = 4.924 psi$	BEARING OF GUIDE SLEEVE TO BOLT A. = [4.785 - 2(.11)] THE A. = [3.317 + 2(.15)] THE Ac = A A. = 6.092 in THE FC = P/Ac P = W/3 FC = W (0.05472) TC = [4,227 psi * Nominal dimensions, and centrolably aligned
FELTEF ft = P/At P = W/3 At = \$\frac{1}{5.94^2} - 5.08^2\) \$\frac{1}{4} = W(0.04478) ft = \frac{11}{643} \text{ pi}	

TNTER		No RIG STRE	S ANALYSTS	38 of 40
OJECT TBX	pholos	6/82 HA	Ina spelor	, DA
TYGP-188	CALC. NO.	FILE NO.	GROUP	CHE
ROTO-	LOCKSTUD	-05		(17)
EST W	T 32#			
		4 TYPE 630	17-4 PRECIPITATE	ION
	HARDENING	STAINLESS STE	EL. AGE TREATE	De
	1100°F FOR	4 HRS AND AIR	COOLED. 140,000	PSI
	MIN TENSI	LE STRENGTH		
		47901.005		
	(777)			1
L'S VACALIDEE B	1.030:0004	DOS MILA	B	
1-1		The same are same	1,00 × 450 € 30	
1 15 12	7.031.0:R	1 1.12 0	01 K	
111/		3.125 ± .005 -		
THE WAS	Hours	Φ		16.871.04
	CORNIES			
0.00	AAL	^^^		
7		.597t	-003 TYP	
AND ALEM				
	2,410 1:000 0	1.03	01 ×45013 HAMFER TYP	
	*03:00 R			1
	Ī	12 17		
		-		*
		L 1 182.03	unm	
		3071 31		
	TAUTHOR	DATE CHK'D BY	DATE CHK'D	8
D DATE	AU (MUN			

ONITELNALS LIFTING	RIG STRESS ANALYSIS 39 OF 40
DIECT TBX AUTHORNS Was 6/8	2 HA Janhan 9/21/82
TIGP-188 CALE NO	FILE NO. GROUP CHE
ROTO-LOCK STUD*	f. = (W/N)(0.4920)
TOTAL LOAD IS W LOAD PER STUD IS W/3	COMBINED SHEAR AND BENDING IN
N-NUMBER OF LANDS	f = M/Z
TENSILE STREES AT SEC A-A	Z= L_d2/6 = N350 T(2.408)(.5973/6
fe - P/A	· N(.06740)
F. W/3	M = BENDING MOMENT = PX P = W/3
A - TI d 1/4	P = W/3
$\pi (2.408)^2/4$ = 4.554 in ²	MOMENT ARM WORST-CAST
ft = W/(3x4.554) = W(.07319) ft = 19,029 pm	
SHEAR OF STUD LANDS	JUNET TRENC
f. = P/A.	Aum ako
A.L.d	K YYY
d = DEPTH OF LANDS	CHAMPERS . O4 × 45° MAX
d = .597	Assuming mineman Director one on
L _c = 300 π(2.408) * N	THE WIND AND MAXIMUS DIMILESTED OF
P W/3	THE THERY, AND THAT STUD IS TIGH
A = 0.6774 N	AGATINST RIGHT SITE.

CTTBX A	than color	CHKO AN ALVES ANALVES	
-YGP-188 6	ALC NO.	FILE NO. GROUP	CHE
w= width o surface = (3.025 - 2. 035 - w= .195 min	405)/2 2(.04) orm of force +.035	A, = [3.028 - 2(.035) = 6.8720 m ² Az = [2.438 + 2(.035) = 4.9402 in ² Ac = A ₁ - A ₂ = 1.932 in ²	2 —
f _b = \frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\fir}\firk}{\fir}{\fir}{\fir}{\fir}}}}{\frac{\frac{\frac{\	(31)	$A_{c}^{\prime} = N \frac{320}{360} A_{c}^{\prime}$ $f_{c} = P/A_{c}^{\prime}$ $P = W/3$ $f_{c} = \frac{W}{X} / (3 \times \frac{340}{360} \times 340$	
$V_{\text{max}} = \left[\left(\frac{f_b}{2} \right)^2 + \frac{v}{N} \left(\left[\frac{853}{2} \right]^2 \right)^2 \right]$ $= \frac{v}{N} \left[\left(0.65 \right)^2 \right]$	f,"]" + + + + + + + + + + + + + + + + + +	COMPRELLIVE BEARING	STRESS
fvmex = 23,	351 pi	A, = [4.785 -2(.11)] # A, = [3.317 + 2(.15)] # A. A, -A2 = 6.092	
COMPRESSIVE STRESS ON L		$f_c = P/A_c$ $P = W/3$ $f_c = W(0.0547)$ $f_c = 14,222$	psi